WorldWideScience

Sample records for automated dna assembly

  1. j5 DNA assembly design automation software.

    Science.gov (United States)

    Hillson, Nathan J; Rosengarten, Rafael D; Keasling, Jay D

    2012-01-20

    Recent advances in Synthetic Biology have yielded standardized and automatable DNA assembly protocols that enable a broad range of biotechnological research and development. Unfortunately, the experimental design required for modern scar-less multipart DNA assembly methods is frequently laborious, time-consuming, and error-prone. Here, we report the development and deployment of a web-based software tool, j5, which automates the design of scar-less multipart DNA assembly protocols including SLIC, Gibson, CPEC, and Golden Gate. The key innovations of the j5 design process include cost optimization, leveraging DNA synthesis when cost-effective to do so, the enforcement of design specification rules, hierarchical assembly strategies to mitigate likely assembly errors, and the instruction of manual or automated construction of scar-less combinatorial DNA libraries. Using a GFP expression testbed, we demonstrate that j5 designs can be executed with the SLIC, Gibson, or CPEC assembly methods, used to build combinatorial libraries with the Golden Gate assembly method, and applied to the preparation of linear gene deletion cassettes for E. coli. The DNA assembly design algorithms reported here are generally applicable to broad classes of DNA construction methodologies and could be implemented to supplement other DNA assembly design tools. Taken together, these innovations save researchers time and effort, reduce the frequency of user design errors and off-target assembly products, decrease research costs, and enable scar-less multipart and combinatorial DNA construction at scales unfeasible without computer-aided design. PMID:23651006

  2. Scar-less multi-part DNA assembly design automation

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Nathan J.

    2016-06-07

    The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.

  3. DNA Assembly in 3D Printed Fluidics

    OpenAIRE

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Che-Wei Wang; Jaime J Rivera; Octavio Mondragón-Palomino; Carr, Peter A.; Voigt, Christopher A.; Neri Oxman; Kong, David S.

    2015-01-01

    The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly p...

  4. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  5. Automated Extraction of DNA from clothing

    OpenAIRE

    Stangegaard, Michael; Hjort, Benjamin Benn; Nøhr Hansen, Thomas; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable DNA profiles.

  6. Automated Extraction of DNA from clothing

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hjort, Benjamin Benn; Nøhr Hansen, Thomas;

    2011-01-01

    Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing the...... amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable DNA profiles....

  7. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  8. Automated quantitative image analysis of nanoparticle assembly

    Science.gov (United States)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2015-05-01

    The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated manner. The software outputs averages and distributions in the size, radius of gyration, fractal dimension, backbone length, end-to-end distance, anisotropic ratio, and aspect ratio of NP clusters as a function of time along with bootstrapped error bounds for all calculated properties. The polydispersity in the NP building blocks and biases in the sampling of NP clusters are accounted for through the use of probabilistic weights. This software, named Particle Image Characterization Tool (PICT), has been made publicly available and could be an invaluable resource for researchers studying NP assembly. To demonstrate its practical utility, we used PICT to analyze scanning electron microscopy images taken during the assembly of surface-functionalized metal NPs of differing shapes and sizes within a polymer matrix. PICT is used to characterize and analyze the morphology of NP clusters, providing quantitative information that can be used to elucidate the physical mechanisms governing NP assembly.The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated

  9. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  10. 3D Assembly Group Analysis for Cognitive Automation

    OpenAIRE

    Christian Brecher; Thomas Breitbach; Simon Müller; Marcel Ph. Mayer; Barbara Odenthal; Schlick, Christopher M.; Werner Herfs

    2012-01-01

    A concept that allows the cognitive automation of robotic assembly processes is introduced. An assembly cell comprised of two robots was designed to verify the concept. For the purpose of validation a customer-defined part group consisting of Hubelino bricks is assembled. One of the key aspects for this process is the verification of the assembly group. Hence a software component was designed that utilizes the Microsoft Kinect to perceive both depth and color data in the assembly area. This i...

  11. Automated assembly of micro mechanical parts in a Microfactory setup

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta; Arentoft, Mogens

    2006-01-01

    focuses on the issues that have to be taken into consideration in order to go from a semi-automatic production into an automated microfactory. The application in this study is a switch consisting of 7 parts. The development of a microfactory setup to take care of the automated assembly of the switch is......Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This paper...

  12. Software design for automated assembly of truss structures

    Science.gov (United States)

    Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.

    1992-01-01

    Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.

  13. Integrating Test-Form Formatting into Automated Test Assembly

    Science.gov (United States)

    Diao, Qi; van der Linden, Wim J.

    2013-01-01

    Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…

  14. DNA addition using linear self-assembly

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; QIAN LuLu; LIU Qiang; ZHANG ZhiZhou; HE Lin

    2007-01-01

    This paper presents a DNA algorithm which adds two nonnegative binary integers using self-assembly in constant steps. The approach has the benefit of greater experimental simplicity when compared with previous DNA addition algorithms. For the addition of two binary n-bit integers, O(n) is different from DNA strands and only O(1) biochemical experimental procedures are required.

  15. Lipophilic DNA-conjugates: DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2009-01-01

    DNA detection systems based on encoded solid particles have been reported but require often tedious and not generally applicable surface chemistry. In the present study a system comprised of a lipid-modified DNA probe sequence and unmodified DNA target sequences is used to non-covalently assemble...

  16. Enzymatic assembly of overlapping DNA fragments.

    Science.gov (United States)

    Gibson, Daniel G

    2011-01-01

    Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction. The second method uses 3'-exonuclease III (ExoIII), antibody-bound Taq pol, and Taq lig in a one-step thermocycled reaction. The third method employs 5'-T5 exonuclease, Phusion® DNA polymerase, and Taq lig in a one-step isothermal reaction and can be used to assemble both ssDNA and dsDNA. These assembly methods can be used to seamlessly construct synthetic and natural genes, genetic pathways, and entire genomes and could be very useful for molecular engineering tools. PMID:21601685

  17. Nanoscale Assembly Using DNA and Electromagnetic Fields

    OpenAIRE

    Eskelinen, Antti-Pekka

    2013-01-01

    In this work we demonstrate the control of nanoparticles and nanostructures with the help of the DNA origami method and dielectrophoresis. DNA nanotechnology is a subfield of nanotechnology where DNA is used as a construction material. The DNA origami method is a recent development in the field which enables the assembly of nanoparticles with nanometer scale accuracy through self-assembly. Here we take advantage of the method for efficient deposition and alignment of single-walled carbon nanotub...

  18. Attomolar DNA detection with chiral nanorod assemblies

    OpenAIRE

    Ma, Wei; Kuang, Hua; Xu, Liguang; Ding, Li; Xu, Chuanlai; Wang, Libing; Kotov, Nicholas A.

    2013-01-01

    Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activity of side-by-side assembled patterns is attributed to a 7–9 degree twist between the nanorod axes. ...

  19. 3D Assembly Group Analysis for Cognitive Automation

    Directory of Open Access Journals (Sweden)

    Christian Brecher

    2012-01-01

    Full Text Available A concept that allows the cognitive automation of robotic assembly processes is introduced. An assembly cell comprised of two robots was designed to verify the concept. For the purpose of validation a customer-defined part group consisting of Hubelino bricks is assembled. One of the key aspects for this process is the verification of the assembly group. Hence a software component was designed that utilizes the Microsoft Kinect to perceive both depth and color data in the assembly area. This information is used to determine the current state of the assembly group and is compared to a CAD model for validation purposes. In order to efficiently resolve erroneous situations, the results are interactively accessible to a human expert. The implications for an industrial application are demonstrated by transferring the developed concepts to an assembly scenario for switch-cabinet systems.

  20. Shear-induced assembly of lambda-phage DNA.

    OpenAIRE

    Haber, C.; Wirtz, D

    2000-01-01

    Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of lambda-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted lambda-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing th...

  1. Assembly and Assessment of DNA Scaffolded Vaccines.

    Science.gov (United States)

    Liu, Xiaowei; Wang, Lili; Yan, Hao; Chang, Yung

    2016-01-01

    Vaccines play an important role in preventing many life-threatening infectious diseases. To meet the demand of vaccination for treating a wide range of diseases, rational vaccine design has been recognized as a desirable and necessary strategy for development of safe and effective vaccines. DNA nanostructures are advantageous in the design and construction of synthetic vaccines, owing to their robust self-assembly, programmability, and precision control in complex organization, as well as their intrinsic adjuvant activity. Here, we describe a modular assembly of DNA scaffolded vaccine complex, composing of a model antigen, streptavidin, and adjuvant, CpG oligonucleotide. The DNA-assembled vaccines were found to elicit strong antigen-specific antibody responses, but causing little or no adverse reactions. Conceivably, this vaccine platform can be further optimized for improved immunogenicity and extended to the construction of various subunit vaccines. PMID:27076307

  2. Attomolar DNA detection with chiral nanorod assemblies

    Science.gov (United States)

    Ma, Wei; Kuang, Hua; Xu, Liguang; Ding, Li; Xu, Chuanlai; Wang, Libing; Kotov, Nicholas A.

    2013-10-01

    Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activity of side-by-side assembled patterns is attributed to a 7-9 degree twist between the nanorod axes. This results in a strong polarization rotation that matches theoretical expectations. The amplitude of the bisignate ‘wave’ in the circular dichroism spectra of side-by-side assemblies demonstrates excellent linearity with the amount of target DNA. The limit of detection for DNA using side-by-side assemblies is as low as 3.7 aM. This chiroplasmonic method may be particularly useful for biological analytes larger than 2-5 nm which are difficult to detect by methods based on plasmon coupling and ‘hot spots’. Circular polarization increases for inter-nanorod gaps between 2 and 20 nm when plasmonic coupling rapidly decreases. Reaching the attomolar limit of detection for simple and reliable bioanalysis of oligonucleotides may have a crucial role in DNA biomarker detection for early diagnostics of different diseases, forensics and environmental monitoring.

  3. DNA Assembly in 3D Printed Fluidics

    OpenAIRE

    Patrick, William G.; Nielsen, Alec A.K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly p...

  4. Verification Test of Automated Robotic Assembly of Space Truss Structures

    Science.gov (United States)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  5. DNA-nanostructure-assembly by sequential spotting

    Directory of Open Access Journals (Sweden)

    Breitenstein Michael

    2011-11-01

    Full Text Available Abstract Background The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid to incorporate advanced structures. Conclusions The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.

  6. Multilayers Assembly of DNA Probe for Biosensor

    Institute of Scientific and Technical Information of China (English)

    谢文章; 路英杰; 隋森芳

    2002-01-01

    Surface plasmon resonance (SPR) was a sensitive method to study molecular interactions. Based on the specific binding, this paper presented the molecular assembly of protein-nucleic acid multilayers on the surface of a gold film. The first layer was a biotin-lipid (B-DMPE/DMPE) containing a monolayer prepared using the Langmuir-Blodgett (LB) technique. The second and third layers were avidin and DNA labeled biotin, respectively. The fourth layer was anti-DNA antibody extracted from the serum of patients with systemic lupus erythematosus (SLE). These interactions provide stability in the multilayer films of the complexes. The multilayer formation process was detected by SPR spectroscopy. The results show that the chip-based sensor system can be used for functional characterization of protein-protein and protein-DNA interactions.

  7. Potential control of DNA self-assembly on gold electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode.A new approach based on potential was first used to control DNA self-assembly covalently onto the SAM with the activation of 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS). The influence of potential on DNA self-assembly was investigated by means of cyclic voltammetry (CV), AC impedance, Auger electron spectrometry (AES) and atomic force microscopy (AFM). The result proves that controlled potential can affect the course of DNA self-assembly. More negative potential can restrain the DNA self-assembly, while more positive potential can accelerate the DNA self-assembly, which is of great significance for the control of DNA self-assembly and will find wide application in the field of DNA-based devices.

  8. Software-Supported USER Cloning Strategies for Site-Directed Mutagenesis and DNA Assembly

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen;

    2015-01-01

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER...... (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at ....

  9. Real Time Observation of DNA Nanotube Assembly

    Science.gov (United States)

    Verde, Lisa Val

    2006-03-01

    DNA nanotubes are of interest for applications ranging from nanofabrication to biophysical studies. The DNA Nanotubes used in this research are self-assembling structures composed of DNA double-crossover tiles. These tiles are simply two connected helices composed of five single stranded DNA oligomers. Each tile exposes four sticky ends responsible for the linkage between neighboring tiles. This linkage creates the nanotube lattice, with intrinsic curvature. The curvature orients each tile with a 60^o angle from the previous one so that six tiles make up the circumference of a nanotube. Nanotube stability depends on conditions such as ionic strength and temperature. A PCR machine is used to anneal the strands into nanotubes. A duplicated annealing process was constructed under a light microscope. PVP (polyvinyl prolidone) coated glass both confined the DNA nanotubes to a 2-3 μm focal plane and prevented them from sticking to the sample surface. By the time the tubes were long enough to track (>= 3 μm), they continued to lengthen primarily via end-to-end joining with some reaching lengths greater than 100 μm. These observations helped define more efficient annealing protocols that resulted in tubes with fewer imperfections.

  10. DNA origami as a nanoscale template for protein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kuzyk, Anton; Laitinen, Kimmo T [Nanoscience Center, Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40014 (Finland); Toermae, Paeivi [Department of Applied Physics, Helsinki University of Technology, PO Box 5100, FIN-02015 (Finland)], E-mail: paivi.torma@hut.fi

    2009-06-10

    We describe two general approaches to the utilization of DNA origami structures for the assembly of materials. In one approach, DNA origami is used as a prefabricated template for subsequent assembly of materials. In the other, materials are assembled simultaneously with the DNA origami, i.e. the DNA origami technique is used to drive the assembly of materials. Fabrication of complex protein structures is demonstrated by these two approaches. The latter approach has the potential to be extended to the assembly of multiple materials with single attachment chemistry.

  11. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa;

    2015-01-01

    is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts......We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We...... present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments...

  12. Assemble four-arm DNA junctions into nanoweb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    DNA is of structural polymorphism, which is useful in nanoarchitecture; especially, four-arm DNA junc tions can be used to assemble nanowebs. The static four-arm DNA junctions were designed and synthesized. One-arm DNA and two-arm DNA came out simultaneously with the four-arm DNA junction's formation. A new method, termed the two-step method, was proposed and the productivity of four-arm DNA junctions was increased. A nanoweb was assembled successfully, but it showed irregularity itself. It was not the same as we expected. We consider that it is aresult from the flexibility of four-arm DNA junction.

  13. A Modular Assembly Platform for Rapid Generation of DNA Constructs

    OpenAIRE

    Akama-Garren, Elliot H.; Joshi, Nikhil S.; Tuomas Tammela; Chang, Gregory P.; Wagner, Bethany L.; Da-Yae Lee; Rideout III, William M.; Thales Papagiannakopoulos; Wen Xue; Tyler Jacks

    2016-01-01

    Traditional cloning methods have limitations on the number of DNA fragments that can be simultaneously manipulated, which dramatically slows the pace of molecular assembly. Here we describe GMAP, a Gibson assembly-based modular assembly platform consisting of a collection of promoters and genes, which allows for one-step production of DNA constructs. GMAP facilitates rapid assembly of expression and viral constructs using modular genetic components, as well as increasingly complicated genetic...

  14. Bricks and blueprints: methods and standards for DNA assembly.

    Science.gov (United States)

    Casini, Arturo; Storch, Marko; Baldwin, Geoffrey S; Ellis, Tom

    2015-09-01

    DNA assembly is a key part of constructing gene expression systems and even whole chromosomes. In the past decade, a plethora of powerful new DNA assembly methods - including Gibson Assembly, Golden Gate and ligase cycling reaction (LCR) - have been developed. In this Innovation article, we discuss these methods as well as standards such as the modular cloning (MoClo) system, GoldenBraid, modular overlap-directed assembly with linkers (MODAL) and PaperClip, which have been developed to facilitate a streamlined assembly workflow, to aid the exchange of material between research groups and to create modular reusable DNA parts. PMID:26081612

  15. Automated protein-DNA interaction screening of Drosophila regulatory elements

    OpenAIRE

    Hens, Korneel; Feuz, Jean-Daniel; Isakova, Alina; Iagovitina, Antonina; Massouras, Andreas; Bryois, Julien; Callaerts, Patrick; Celniker, Susan E.; Deplancke, Bart

    2011-01-01

    Drosophila melanogaster has one of the best characterized metazoan genomes in terms of functionally annotated regulatory elements. To explore how these elements contribute to gene regulation in the context of gene regulatory networks, we need convenient tools to identify the proteins that bind to them. Here, we present the development and validation of a highly automated protein-DNA interaction detection method, enabling the high-throughput yeast one-hybrid-based screening of DNA elements ver...

  16. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels;

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free......, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however...

  17. Automated preparation of DNA sequences for publication.

    OpenAIRE

    Shapiro, M B; Senapathy, P

    1986-01-01

    A computer program which draws DNA sequences is described. A simple method is used which enables the user to highlight or annotate specific parts of a sequence. The sizes of the characters in the sequence to be drawn are specified by the user. In addition, vertical spacing between lines and horizontal spacing between characters can be specified. Sequences can be prepared and high quality output produced on a plotter in a short period of time, making the program advantageous to use over typing...

  18. Automated Image Processing for the Analysis of DNA Repair Dynamics

    CERN Document Server

    Riess, Thorsten; Tomas, Martin; Ferrando-May, Elisa; Merhof, Dorit

    2011-01-01

    The efficient repair of cellular DNA is essential for the maintenance and inheritance of genomic information. In order to cope with the high frequency of spontaneous and induced DNA damage, a multitude of repair mechanisms have evolved. These are enabled by a wide range of protein factors specifically recognizing different types of lesions and finally restoring the normal DNA sequence. This work focuses on the repair factor XPC (xeroderma pigmentosum complementation group C), which identifies bulky DNA lesions and initiates their removal via the nucleotide excision repair pathway. The binding of XPC to damaged DNA can be visualized in living cells by following the accumulation of a fluorescent XPC fusion at lesions induced by laser microirradiation in a fluorescence microscope. In this work, an automated image processing pipeline is presented which allows to identify and quantify the accumulation reaction without any user interaction. The image processing pipeline comprises a preprocessing stage where the ima...

  19. DNA Image Pro -- A Tool for Generating Pixel Patterns using DNA Tile Assembly

    OpenAIRE

    Limbachiya, Dixita; Trivedi, Dhaval; Gupta, Manish K.

    2016-01-01

    Self-assembly is a process found everywhere in the Nature. In particular, it is known that DNA self-assembly is Turing universal. Thus one can do arbitrary computations or build nano-structures using DNA self-assembly. In order to understand the DNA self-assembly process, many mathematical models have been proposed in the literature. In particular, abstract Tile Assembly Model (aTAM) received much attention. In this work, we investigate pixel pattern generation using aTAM. For a given image, ...

  20. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    Directory of Open Access Journals (Sweden)

    Daniel Klevebring

    2009-01-01

    Full Text Available Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. Results. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. Conclusions. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  1. The Automated Assembly Team contributions to the APRIMED Agile Manufacturing Project

    International Nuclear Information System (INIS)

    The Automated Assembly Team of the APRIMED Project (abbreviated as A') consists of two parts: the Archimedes Project, which is an ongoing project developing automated assembly technology, and the A' Robot Team. Archimedes is a second generation assembly planning system that both provides a general high-level assembly sequencing capability and, for a smaller class of products, facilitates automatic programming of a robotic workcell to assemble them. The A' robot team designed, developed, and implemented a flexible robot workcell which served as the automated factory of the A' project. In this document we briefly describe the role of automated assembly planning in agile manufacturing, and specifically describe the contributions of the Archimedes project and the A' robot team to the A' project. We introduce the concepts of the Archimedes automated assembly planning project, and discuss the enhancements to Archimedes which were developed in response to the needs of the A' project. We also present the work of the A' robot team in designing and developing the A' robot workcell, including all tooling and programming to support assembly of the A' discriminator devices. Finally, we discuss the process changes which these technologies have enabled in the A' project

  2. Computational design of co-assembling protein-DNA nanowires

    Science.gov (United States)

    Mou, Yun; Yu, Jiun-Yann; Wannier, Timothy M.; Guo, Chin-Lin; Mayo, Stephen L.

    2015-09-01

    Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.

  3. AI tools for use in assembly automation and some examples of recent applications

    OpenAIRE

    Sanders, David; Gegov, Alexander

    2013-01-01

    Purpose – This paper aims to review seven artificial intelligence tools that are useful in assembly automation: knowledge‐based systems, fuzzy logic, automatic knowledge acquisition, neural networks, genetic algorithms, case‐based reasoning and ambient‐intelligence. Design/methodology/approach – Each artificial intelligence tool is outlined, together with some examples of their use in assembly automation. Findings – Artificial intelligence has produced a number of useful and powerful tools. T...

  4. Development and verification testing of automation and robotics for assembly of space structures

    Science.gov (United States)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1993-01-01

    A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.

  5. DNA-Controlled Assembly of Soft Nanoparticles

    DEFF Research Database (Denmark)

    Vogel, Stefan

    2015-01-01

    This book covers the emerging topic of DNA nanotechnology and DNA supramolecular chemistry in its broader sense. By taking DNA out of its biological role, this biomolecule has become a very versatile building block in materials chemistry, supramolecular chemistry and bio-nanotechnology. Many nove...

  6. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  7. Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly

    Science.gov (United States)

    Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.

    2013-01-01

    Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…

  8. Space station automation study: Autonomous systems and assembly, volume 2

    Science.gov (United States)

    Bradford, K. Z.

    1984-01-01

    This final report, prepared by Martin Marietta Denver Aerospace, provides the technical results of their input to the Space Station Automation Study, the purpose of which is to develop informed technical guidance in the use of autonomous systems to implement space station functions, many of which can be programmed in advance and are well suited for automated systems.

  9. Directed Formation of DNA Nanoarrays through Orthogonal Self-Assembly

    Directory of Open Access Journals (Sweden)

    Eugen Stulz

    2011-06-01

    Full Text Available We describe the synthesis of terpyridine modified DNA strands which selectively form DNA nanotubes through orthogonal hydrogen bonding and metal complexation interactions. The short DNA strands are designed to self-assemble into long duplexes through a sticky-end approach. Addition of weakly binding metals such as Zn(II and Ni(II induces the formation of tubular arrays consisting of DNA bundles which are 50-200 nm wide and 2-50 nm high. TEM shows additional long distance ordering of the terpy-DNA complexes into fibers.

  10. A Modular Assembly Platform for Rapid Generation of DNA Constructs.

    Science.gov (United States)

    Akama-Garren, Elliot H; Joshi, Nikhil S; Tammela, Tuomas; Chang, Gregory P; Wagner, Bethany L; Lee, Da-Yae; Rideout, William M; Papagiannakopoulos, Thales; Xue, Wen; Jacks, Tyler

    2016-01-01

    Traditional cloning methods have limitations on the number of DNA fragments that can be simultaneously manipulated, which dramatically slows the pace of molecular assembly. Here we describe GMAP, a Gibson assembly-based modular assembly platform consisting of a collection of promoters and genes, which allows for one-step production of DNA constructs. GMAP facilitates rapid assembly of expression and viral constructs using modular genetic components, as well as increasingly complicated genetic tools using contextually relevant genomic elements. Our data demonstrate the applicability of GMAP toward the validation of synthetic promoters, identification of potent RNAi constructs, establishment of inducible lentiviral systems, tumor initiation in genetically engineered mouse models, and gene-targeting for the generation of knock-in mice. GMAP represents a recombinant DNA technology designed for widespread circulation and easy adaptation for other uses, such as synthetic biology, genetic screens, and CRISPR-Cas9. PMID:26887506

  11. DNA three-way junction-ruthenium complex assemblies

    OpenAIRE

    Irvoas, Joris; Noirot, Arielle; Chouini-Lalanne, Nadia; Reynes, Olivier; Sartor, Valérie

    2013-01-01

    Three-way junction building blocks were designed to construct novel 2D ruthenium-DNA assemblies. Discrete three - branched DNA motifs were formed with 1 to 3 sticky ends of 14-, 20- and/or 24-mer nucleotides. Hybridization with the complementary mono Ru-DNA conjugates afforded the formation of a family of three-way assemblies with 1 to 3 peripheral ruthenium complexes. The use of sticky ends of different lengths allowed us to modulate the number of metallic complexes introduced and also to ex...

  12. Assembling semiconductor nanocomposites using DNA replication technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year

  13. Arduino-based automation of a DNA extraction system.

    Science.gov (United States)

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile. PMID:26409535

  14. Enzyme-catalysed assembly of DNA hydrogel

    Science.gov (United States)

    Um, Soong Ho; Lee, Jong Bum; Park, Nokyoung; Kwon, Sang Yeon; Umbach, Christopher C.; Luo, Dan

    2006-10-01

    DNA is a remarkable polymer that can be manipulated by a large number of molecular tools including enzymes. A variety of geometric objects, periodic arrays and nanoscale devices have been constructed. Previously we synthesized dendrimer-like DNA and DNA nanobarcodes from branched DNA via ligases. Here we report the construction of a hydrogel entirely from branched DNA that are three-dimensional and can be crosslinked in nature. These DNA hydrogels were biocompatible, biodegradable, inexpensive to fabricate and easily moulded into desired shapes and sizes. The distinct difference of the DNA hydrogel to other bio-inspired hydrogels (including peptide-based, alginate-based and DNA (linear)-polyacrylamide hydrogels) is that the crosslinking is realized via efficient, ligase-mediated reactions. The advantage is that the gelling processes are achieved under physiological conditions and the encapsulations are accomplished in situ-drugs including proteins and even live mammalian cells can be encapsulated in the liquid phase eliminating the drug-loading step and also avoiding denaturing conditions. Fine tuning of these hydrogels is easily accomplished by adjusting the initial concentrations and types of branched DNA monomers, thus allowing the hydrogels to be tailored for specific applications such as controlled drug delivery, tissue engineering, 3D cell culture, cell transplant therapy and other biomedical applications.

  15. Analysis of Demand for Intelligent Automation in Taiwan’s Notebook PC Assembly Industry

    OpenAIRE

    Ying-Mei Tai

    2013-01-01

    Assembly manufacturers of 3C (computers, communications and consumer electronics) products in Taiwan play a crucial role in the global market. Most of these manufacturer’s plants, however, are located in China, where quality issues tend to be a problem. This study explores the notebook PC assembly industry, which is characterized by higher output values, growth rates and market share in the 3C assembly sector. The study aims to assess the potential demand for intelligent automation. Investmen...

  16. Designing proactive assembly systems – Criteria and interaction between Automation, Information, and Competence

    OpenAIRE

    Fasth, Åsa; Lundholm, Thomas; Mårtensson, Lena; Dencker, Kerstin; Stahre, Johan

    2009-01-01

    Increasing customisation of products results in decreasing production batch sizes, especially in the final assembly. Industry must therefore increase their capability to handle smaller batches as well as radically decrease set up time between different product groups and new products. This paper suggests the need for further development, primarily addressing time parameters in dynamically changing assembly systems. We propose proactivity as a vital characteristic of semi-automated assembly sy...

  17. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  18. A semi-automated protocol for Archaea DNA extraction from stools.

    OpenAIRE

    Khelaifia, Saber; Ramonet, Pierre-Yves; Bedotto Buffet, Marielle; Drancourt, Michel

    2013-01-01

    BACKGROUND: The PCR-based detection of archaea DNA in human specimens relies on efficient DNA extraction. We previously designed one such protocol involving only manual steps. In an effort to reduce the workload involved, we compared this manual protocol to semi-automated and automated protocols for archaea DNA extraction from human specimens. FINDINGS: We tested 110 human stool specimens using each protocol. An automated protocol using the EZ1 Advanced XL extractor with the V 1.066069118 Qia...

  19. Phase Transition and Optical Properties of DNA-Gold Nanoparticle Assemblies

    OpenAIRE

    Sun, Young; Harris, Nolan C.; Kiang, Ching-Hwa

    2007-01-01

    We review recent work on DNA-linked gold nanoparticle assemblies. The synthesis, properties, and phase behavior of such DNA-gold nanoparticle assemblies are described. These nanoparticle assemblies have strong optical extinction in the ultraviolet and visible light regions; hence, the technique is used to study the kinetics and phase transitions of DNA-gold nanoparticle assemblies. The melting transition of DNA-gold nanoparticle assemblies shows unusual trends compared to those of free DNA. T...

  20. Programmable DNA scaffolds for spatially-ordered protein assembly

    Science.gov (United States)

    Chandrasekaran, Arun Richard

    2016-02-01

    Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally

  1. Structural Diversity of DNA-Coated Particle Assemblies

    Science.gov (United States)

    Starr, Francis W.

    2012-02-01

    Custom designed nanoparticles (NP) or colloids with specific recognition offer the possibility to control the phase behavior and structure of particle assemblies for a range of applications. One approach to realize these new materials is by attaching DNA to a core particle; the hybridization of double-stranded DNA between particles results in the spontaneous assembly of higher-order structures. Control of the assembled state can be achieved by adjusting several parameters, including sequence selectivity, DNA link orientation, DNA length and flexibility, and the balance between the length of links and non-specific repulsive interactions. I will discuss the results of a coarse-grained molecular model for DNA-linked nanoparticles that helps to rationalize experimental findings and demonstrate new routes to control the assembled structure. We examine how the number and orientation of strands affects the structure, phase behavior, and dynamics. We show that it is possible to realize unusual phase diagrams with many thermodynamically distinct phases, both amorphous and crystal. We further examine the parameters that control the pathways of assembly, which are critical to avoid kinetic bottlenecks. Finally, we discuss strategies to create highly anisoptropic structures using both isotropic and anisotropic core units.

  2. Chromatin Assembly at Kinetochores Is Uncoupled from DNA Replication

    Science.gov (United States)

    Shelby, Richard D.; Monier, Karine; Sullivan, Kevin F.

    2000-01-01

    The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric “state” on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [3H]thymidine we demonstrate that CENP-A–associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation. PMID:11086012

  3. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2015-01-01

    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

  4. Robust Adhesive Precision Bonding in Automated Assembly Cells

    OpenAIRE

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-01-01

    The assembly of optical components goes along with highest requirements regarding assembly precision. Laser products have become an integral part of many industrial, medical, and consumer applications and their relevance will increase significantly in the years to come. Still economic challenges remain. Assembly costs are driven by the demanding requirements regarding alignment and adhesive bonding. Especially challenging in precision bonding are the interdependencies between alignment and bo...

  5. Process development for automated solar cell and module production. Task 4: automated array assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagerty, J.J.

    1980-06-30

    The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

  6. Automated Sequencing and Subassembly Detection in Automobile Body Assembly Planning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The choice of the sequence in which parts or subass em blies are put together in the mechanical assembly of a product can drastical ly affect the efficiency of the assembly process. Unlike metal cutting operation s where computer aided system have been available for some 15 to 25 years to hel p manufacturing engineers in generating cutting sequences and NC programs, the m ajority of assembly planning tasks in automobile body design is still manually p erformed by assembly designers according to their pa...

  7. Self-Assembling DNA Quadruplex Conjugated to MRI Contrast Agents

    OpenAIRE

    Cai, Jianfeng; Shapiro, Erik M.; Hamilton, Andrew D.

    2009-01-01

    We report the preparation and magnetic resonance (MR) characterization of new MRI contrast agents based on gadolinium complexes conjugated to a self-assembling DNA quadruplex scaffold. As a single gadolinium-DOTA chelated DNA strand, the r1 molar relaxivity is 6.4 mM-1 s-1 per Gd and increases to 11.7 mM-1 s-1 per Gd upon formation of a DNA quadruplex. Similar results were obtained when a gadolinium-DOTA dendrimer was conjugated to DNA, the r1 molar relaxivity increasing to 12.9 mM-1 s-1 per ...

  8. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  9. Evaluation of Four Automated Protocols for Extraction of DNA from FTA Cards

    OpenAIRE

    Stangegaard, Michael; Børsting, Claus; Ferrero-Miliani, Laura; Frank-Hansen, Rune; Poulsen, Lena; Hansen, Anders J.; Morling, Niels

    2013-01-01

    Extraction of DNA using magnetic bead-based techniques on automated DNA extraction instruments provides a fast, reliable, and reproducible method for DNA extraction from various matrices. Here, we have compared the yield and quality of DNA extracted from FTA cards using four automated extraction protocols on three different instruments. The extraction processes were repeated up to six times with the same pieces of FTA cards. The sample material on the FTA cards was either blood or buccal cell...

  10. DNA Self-Assembly For Constructing 3D Boxes

    OpenAIRE

    Kao, Ming-Yang; Ramachandran, Vijay

    2001-01-01

    We propose a mathematical model of DNA self-assembly using 2D tiles to form 3D nanostructures. This is the first work to combine studies in self-assembly and nanotechnology in 3D, just as Rothemund and Winfree did in the 2D case. Our model is a more precise superset of their Tile Assembly Model that facilitates building scalable 3D molecules. Under our model, we present algorithms to build a hollow cube, which is intuitively one of the simplest 3D structures to construct. We also introduce fi...

  11. Cation Charge Dependence of the Forces Driving DNA Assembly

    OpenAIRE

    DeRouchey, Jason; Parsegian, V. Adrian; Rau, Donald C.

    2010-01-01

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental fo...

  12. Low Cost Automated Module Assembly for 180 GHz Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Despite the obvious advantages of millimeter wave technology, a major barrier to expanded use is high assembly costs due to: need for specialized equipments; need...

  13. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    Science.gov (United States)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  14. SolidWorks Secondary Development with Visual Basic 6 for an Automated Modular Fixture Assembly Approach

    OpenAIRE

    Uday H. Farhan; Simona O’Brien; Majid T. Rad

    2012-01-01

    Modular fixtures (MFs) play an important role in terms of cost and production time reduction in manufacturing processes. In this paper, the authors illustrate an automated approach for MFs design and assembly. This approach is based on the secondary development of SolidWorks integrating with Visual Basic (VB) 6 programing language. SolidWorks API (Application programming interface) functions were applied in order to control SolidWorks commands and assembly operations. An ActiveX DLL project w...

  15. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  16. Development and characterization for the automated surface mount assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yerganian, S.S.; Grice, J.V.

    1996-11-01

    Development of the ability to automatically assemble surface mount devices on circuits is described, including the characterization of the assembly process and improvements made to the system to increase the accuracy and repeatability of this process. The accuracy and repeatability of the system were characterized by measurements of the individual system components as well as the actual placement of components on a specially designed gauge. The forces and stresses experienced by the components when handled by the system were analyzed. The ability to deliver surface mount components to the system was developed by the design and development of stick magazines, vibratory feeders, a feeder control system, and an automatic stick magazine loader.

  17. A Binary Programming Approach to Automated Test Assembly for Cognitive Diagnosis Models

    Science.gov (United States)

    Finkelman, Matthew D.; Kim, Wonsuk; Roussos, Louis; Verschoor, Angela

    2010-01-01

    Automated test assembly (ATA) has been an area of prolific psychometric research. Although ATA methodology is well developed for unidimensional models, its application alongside cognitive diagnosis models (CDMs) is a burgeoning topic. Two suggested procedures for combining ATA and CDMs are to maximize the cognitive diagnostic index and to use a…

  18. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    Science.gov (United States)

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  19. Space station automation study. Volume 2: Technical report. Autonomous systems and assembly

    Science.gov (United States)

    1984-01-01

    The application of automation to space station functions is discussed. A summary is given of the evolutionary functions associated with long range missions and objectives. Mission tasks and requirements are defined. Space station sub-systems, mission models, assembly, and construction are discussed.

  20. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    Science.gov (United States)

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  1. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Zhang Yunhuai, E-mail: xp2031@163.com [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Yang Tongyi [School of Life Science. NanJing University, Nanjing, 210093 (China); Zhang Huai [Liming Research Institute of Chemical Industry, LuoYang, 471001 (China); Yang Yixuan [State Key Laboratory of Chemical Resource Engineering. Beijing University of Chemical Technology, Beijing 100029 (China); Xiao Peng [College of Mathematics and Physics, Chongqing University, Chongqing 400044 (China)

    2009-10-15

    The fabrication of biosensors via self-assembly of single-walled carbon nanotubes (SWNTs) and DNA on a platinum electrode was presented in this paper. The carboxylic SWNTs were assembled on an amine-modified platinum electrode surface and followed by the assembly of NH{sub 2}-DNA with the carboxyl-amine coupling. The decorated surface was characterized by Field Emission Electron Microscopy (FEG-SEM) and electrochemical experiments, which showed that the reaction of DNA-SWNTs biosensor was quasi-reversible. The mechanism of DNA and riboflavin (VB{sub 2}) was studied by cyclic voltammetry and UV-Vis spectroscopy. The fabricated SWNTs-reinforced biosensor exhibits high sensitivity and low detection limit for the tested VB{sub 2} compared to the reported methods.

  2. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin

    International Nuclear Information System (INIS)

    The fabrication of biosensors via self-assembly of single-walled carbon nanotubes (SWNTs) and DNA on a platinum electrode was presented in this paper. The carboxylic SWNTs were assembled on an amine-modified platinum electrode surface and followed by the assembly of NH2-DNA with the carboxyl-amine coupling. The decorated surface was characterized by Field Emission Electron Microscopy (FEG-SEM) and electrochemical experiments, which showed that the reaction of DNA-SWNTs biosensor was quasi-reversible. The mechanism of DNA and riboflavin (VB2) was studied by cyclic voltammetry and UV-Vis spectroscopy. The fabricated SWNTs-reinforced biosensor exhibits high sensitivity and low detection limit for the tested VB2 compared to the reported methods.

  3. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences.

    Science.gov (United States)

    Paul, Moumita; Murray, Vincent

    2012-03-01

    The determination of the sequence selectivity of DNA-damaging agents is very important in elucidating the mechanism of action of anti-tumour drugs. The development of automated capillary DNA sequencers with fluorescent labelling has enabled a more precise method for DNA sequence specificity analysis. In this work we utilized the ABI 3730 capillary sequencer with laser-induced fluorescence to examine the sequence selectivity of cisplatin with purified DNA sequences. The use of this automated machine enabled a higher degree of precision of both position and intensity of cisplatin-DNA adducts than previously possible with manual and automated slab gel procedures. A problem with artefact bands was overcome by ethanol precipitation. It was found that cisplatin strongly formed adducts with telomeric DNA sequences. PMID:21678458

  4. Cation charge dependence of the forces driving DNA assembly.

    Science.gov (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge. PMID:20959102

  5. Reprogramming the assembly of unmodified DNA with a small molecule

    Science.gov (United States)

    Avakyan, Nicole; Greschner, Andrea A.; Aldaye, Faisal; Serpell, Christopher J.; Toader, Violeta; Petitjean, Anne; Sleiman, Hanadi F.

    2016-04-01

    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

  6. The Problem of Automation of Solar Concentrator Assembly and Adjustment

    OpenAIRE

    Kussul, Ernst; Makeyev, Oleksandr; Baidyk, Tatiana; Blesa, Jose Saniger; Bruce, Neil; Lara-Rosano, Felipe

    2011-01-01

    Recently we have proposed a low cost solar concentrator based on a large number of small flat mirrors that approximates parabolic surface needed for solar light concentration. In this work we describe an improvement of the concentrator support frame assembly. The improvement is connected with the design of the gauge/guages for support frame adjustment. The gauge has the parabolic edge and rotates in the central tube. Special nuts are moved up to the contact with parabolic edge of the gauge.

  7. An integer programming approach to DNA sequence assembly.

    Science.gov (United States)

    Chang, Youngjung; Sahinidis, Nikolaos V

    2011-08-10

    De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794

  8. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  9. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    OpenAIRE

    Bamdad, C

    1998-01-01

    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture...

  10. Designer nanoscale DNA assemblies programmed from the top down

    Science.gov (United States)

    Veneziano, Rémi; Ratanalert, Sakul; Zhang, Kaiming; Zhang, Fei; Yan, Hao; Chiu, Wah; Bathe, Mark

    2016-06-01

    Scaffolded DNA origami is a versatile means of synthesizing complex molecular architectures. However, the approach is limited by the need to forward-design specific Watson-Crick base pairing manually for any given target structure. Here, we report a general, top-down strategy to design nearly arbitrary DNA architectures autonomously based only on target shape. Objects are represented as closed surfaces rendered as polyhedral networks of parallel DNA duplexes, which enables complete DNA scaffold routing with a spanning tree algorithm. The asymmetric polymerase chain reaction is applied to produce stable, monodisperse assemblies with custom scaffold length and sequence that are verified structurally in three dimensions to be high fidelity by single-particle cryo-electron microscopy. Their long-term stability in serum and low-salt buffer confirms their utility for biological as well as nonbiological applications.

  11. Evaluation of Automated and Manual Commercial DNA Extraction Methods for Recovery of Brucella DNA from Suspensions and Spiked Swabs ▿

    OpenAIRE

    Dauphin, Leslie A.; Hutchins, Rebecca J.; Bost, Liberty A.; Bowen, Michael D.

    2009-01-01

    This study evaluated automated and manual commercial DNA extraction methods for their ability to recover DNA from Brucella species in phosphate-buffered saline (PBS) suspension and from spiked swab specimens. Six extraction methods, representing several of the methodologies which are commercially available for DNA extraction, as well as representing various throughput capacities, were evaluated: the MagNA Pure Compact and the MagNA Pure LC instruments, the IT 1-2-3 DNA sample purification kit...

  12. A new building block for DNA network formation by self-assembly and polymerase chain reaction

    OpenAIRE

    Holger Bußkamp; Sascha Keller; Marta Robotta; Malte Drescher; Andreas Marx

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled ob...

  13. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    Science.gov (United States)

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications. PMID:27427583

  14. DNA/Fusogenic Lipid Nanocarrier Assembly: Millisecond Structural Dynamics.

    Science.gov (United States)

    Angelov, Borislav; Angelova, Angelina; Filippov, Sergey K; Narayanan, Theyencheri; Drechsler, Markus; Štěpánek, Petr; Couvreur, Patrick; Lesieur, Sylviane

    2013-06-01

    Structural changes occurring on a millisecond time scale during uptake of DNA by cationic lipid nanocarriers are monitored by time-resolved small-angle X-ray scattering (SAXS) coupled to a rapid-mixing stopped-flow technique. Nanoparticles (NPs) of nanochannel organization are formed by PEGylation, hydration, and dispersion of a lipid film of the fusogenic lipid monoolein in a mixture with positively charged (DOMA) and PEGylated (DOPE-PEG2000) amphiphiles and are characterized by the inner cubic structure of very large nanochannels favorable for DNA upload. Ultrafast structural dynamics of complexation and assembly of these cubosome particles with neurotrophic plasmid DNA (pDNA) is revealed thanks to the high brightness of the employed synchrotron X-ray beam. The rate constant of the pDNA/lipid NP complexation is estimated from dynamic roentgenograms recorded at 4 ms time resolution. pDNA upload into the vastly hydrated channels of the cubosome carriers leads to a fast nanoparticle-nanoparticle structural transition and lipoplex formation involving tightly packed pDNA. PMID:26283134

  15. Shared robotic system: automated pipette calibration and pipette tip filter assembly

    International Nuclear Information System (INIS)

    At the Savannah River Laboratory a Zymate Laboratory Automation System has been developed to perform two completely independent tasks within one work cell. One operation is the precise calibration of pipettes; the other is the assembly of a filter in a pipette tip. Since neither task requires full robot time, the shared system is an economical means of robotizing both processes. These are tedious, repetitive, time consuming tasks; and human operators fail to yield constant results. Automation insures a repeatable process which increases product quality

  16. Automated assembly of large space structures using an expert system executive

    Science.gov (United States)

    Allen, Cheryl L.

    1993-01-01

    NASA LaRC has developed a unique testbed for investigating the practical problems associated with the assembly of large space structures using robotic manipulators. The testbed is an interdisciplinary effort which considers the full spectrum of assembly problems from the design of mechanisms to the development of software. This paper will describe the automated structures assembly testbed and its operation, detail the expert system executive and its development, and discuss the planned system evolution. Emphasis will be placed on the expert system development of the program executive. The executive program must be capable of directing and reliably performing complex assembly tasks with the flexibility to recover from realistic system errors. By employing an expert system, information pertaining to the operation of the system was encapsulated concisely within a knowledge base. This lead to a substantial reduction in code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.

  17. An expert system executive for automated assembly of large space truss structures

    Science.gov (United States)

    Allen, Cheryl L.

    1993-01-01

    Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.

  18. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  19. The Reversible Phase Transition of DNA-Linked Colloidal Gold Assemblies

    OpenAIRE

    Sun, Young; Harris, Nolan C.; Kiang, Ching-Hwa

    2005-01-01

    We present direct evidence for a reversible phase transition of DNA-linked colloidal gold assemblies. Transmission electron microscopy and optical absorption spectroscopy are used to monitor the colloidal gold phase transition, whose behavior is dominated by DNA interactions. We use single-stranded DNA-capped colloidal gold that is linked by complementary linker DNA to form the assemblies. We found that, compared to free DNA, a sharp melting transition is observed for the DNA-linked colloidal...

  20. Targeted Chemical Wedges Reveal the Role of Allosteric DNA Modulation in Protein — DNA Assembly

    OpenAIRE

    Moretti, Rocco; Donato, Leslie J.; Brezinski, Mary L.; Stafford, Ryan L.; Hoff, Helena; Thorson, Jon S.; Dervan, Peter B.; Ansari, Aseem Z.

    2008-01-01

    The cooperative assembly of multiprotein complexes results from allosteric modulations of DNA structure as well as direct intermolecular contacts between proteins. Such cooperative binding plays a critical role in imparting exquisite sequence specificity on the homeobox transcription factor (Hox) family of developmental transcription factors. A well-characterized example includes the interaction of Hox proteins with extradenticle (Exd), a highly conserved DNA binding transcription factor. Alt...

  1. A first implementation of an automated reel-to-reel fluidic self-assembly machine.

    Science.gov (United States)

    Park, Se-Chul; Fang, Jun; Biswas, Shantonu; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O

    2014-09-10

    A first automated reel-to-reel fluidic selfassembly process for macroelectronic applications is reported. This system enables high-speed assembly of semiconductor dies (15 000 chips per hour using a 2.5 cm-wide web) over large-area substrates. The optimization of the system (>99% assembly yield) is based on identification, calculation, and optimization of the relevant forces. As an application, the production of a solid-state lighting panel is discussed, involving a novel approach to apply a conductive layer through lamination. PMID:24975472

  2. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Science.gov (United States)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  3. Insights of Mixing on the Assembly of DNA Nanoparticles

    Science.gov (United States)

    Williams, Manda S.

    Size is a crucial parameter in the delivery of nanoparticle therapeutics, affecting mechanisms such as tissue delivery, clearance, and cellular uptake. The morphology of nanoparticles is dependent both upon chemistry and the physical process of assembly. Polyplexes, a major class of non-viral gene delivery vectors, are conventionally prepared by vortex mixing, resulting in non-uniform nanoparticles and poor reproducibility. Better understanding and control of the physical process of assembly, and mixing in particular, will produce polyplexes of a more uniform and reliable size, optimizing their efficiency for laboratory and clinical use. "Mixing" is the reduction of length scale of a system to accelerate diffusion until a uniform concentration is achieved. Vortex mixing is poorly characterized and sensitive to protocols. Microfluidic systems are notable for predictable fluid behavior, and are ideal for analyzing and controlling the physical interaction of reagents on the microscale, realm where mixing occurs. Several microdevices for the preparation of DNA polyplexes are explored here. Firstly, the staggered herringbone mixer, a chaotic advection micromixer, is used to observe the effects of mixing time on nanoparticle size. Next, a novel device to surround the reagent flows with a sheath of buffer, preventing interaction with the walls and confining the complexation to a zone of lower, less variable shear and residence time, is used to demonstrate the role of shear in nanoparticle assembly. Lastly, uneven diffusion between ion pairs produces a small separation of charge at fluid interfaces; this short-lived electric field has a significant impact on the transport of DNA over the time scales of mixing and complexation. The effects of common buffers on the transport of DNA are examined for possible applications to mixing and complexation. These three investigations demonstrate the importance of the physical process in polyplex assembly, and indicate several

  4. Technologies for the Fast Set-Up of Automated Assembly Processes

    DEFF Research Database (Denmark)

    Krüger, Norbert; Ude, Ales; Petersen, Henrik Gordon;

    2014-01-01

    In this article, we describe technologies facilitating the set-up of automated assembly solutions which have been developed in the context of the IntellAct project (2011–2014). Tedious procedures are currently still required to establish such robot solutions. This hinders especially the automatio...... work on tele-operation, dexterous grasping, pose estimation and learning of control strategies. The prototype developed in IntellAct is at a TRL4 (corresponding to ‘demonstration in lab environment’)....

  5. Evaluation of Four Automated Protocols for Extraction of DNA from FTA Cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Børsting, Claus; Ferrero-Miliani, Laura;

    2013-01-01

    from the FTA cards in all six rounds of extractions in sufficient amount and quality to obtain complete short tandem repeat (STR) profiles on a QIAcube and a QIAsymphony SP. With the PrepFiler Express kit, almost all the extractable DNA was extracted in the first two rounds of extractions. Furthermore......, we demonstrated that it was possible to successfully extract sufficient DNA for STR profiling from previously processed FTA card pieces that had been stored at 4 °C for up to 1 year. This showed that rare or precious FTA card samples may be saved for future analyses even though some DNA was already......Extraction of DNA using magnetic bead-based techniques on automated DNA extraction instruments provides a fast, reliable, and reproducible method for DNA extraction from various matrices. Here, we have compared the yield and quality of DNA extracted from FTA cards using four automated extraction...

  6. 75 FR 3253 - Lamb Assembly and Test, LLC, Subsidiary of Mag Industrial Automation Systems, Machesney Park, IL...

    Science.gov (United States)

    2010-01-20

    ... Employment and Training Administration Lamb Assembly and Test, LLC, Subsidiary of Mag Industrial Automation... published in the Federal Register on December 11, 2009 (74 FR 65796). Pursuant to 29 CFR 90.18(c..., based on the finding that imports of automation equipment and machine tools did not contribute to...

  7. Streamlining DNA barcoding protocols: automated DNA extraction and a new cox1 primer in arachnid systematics.

    Directory of Open Access Journals (Sweden)

    Nina Vidergar

    Full Text Available BACKGROUND: DNA barcoding is a popular tool in taxonomic and phylogenetic studies, but for most animal lineages protocols for obtaining the barcoding sequences--mitochondrial cytochrome C oxidase subunit I (cox1 AKA CO1--are not standardized. Our aim was to explore an optimal strategy for arachnids, focusing on the species-richest lineage, spiders by (1 improving an automated DNA extraction protocol, (2 testing the performance of commonly used primer combinations, and (3 developing a new cox1 primer suitable for more efficient alignment and phylogenetic analyses. METHODOLOGY: We used exemplars of 15 species from all major spider clades, processed a range of spider tissues of varying size and quality, optimized genomic DNA extraction using the MagMAX Express magnetic particle processor-an automated high throughput DNA extraction system-and tested cox1 amplification protocols emphasizing the standard barcoding region using ten routinely employed primer pairs. RESULTS: The best results were obtained with the commonly used Folmer primers (LCO1490/HCO2198 that capture the standard barcode region, and with the C1-J-2183/C1-N-2776 primer pair that amplifies its extension. However, C1-J-2183 is designed too close to HCO2198 for well-interpreted, continuous sequence data, and in practice the resulting sequences from the two primer pairs rarely overlap. We therefore designed a new forward primer C1-J-2123 60 base pairs upstream of the C1-J-2183 binding site. The success rate of this new primer (93% matched that of C1-J-2183. CONCLUSIONS: The use of C1-J-2123 allows full, indel-free overlap of sequences obtained with the standard Folmer primers and with C1-J-2123 primer pair. Our preliminary tests suggest that in addition to spiders, C1-J-2123 will also perform in other arachnids and several other invertebrates. We provide optimal PCR protocols for these primer sets, and recommend using them for systematic efforts beyond DNA barcoding.

  8. SolidWorks Secondary Development with Visual Basic 6 for an Automated Modular Fixture Assembly Approach

    Directory of Open Access Journals (Sweden)

    Uday H. Farhan

    2012-12-01

    Full Text Available Modular fixtures (MFs play an important role in terms of cost and production time reduction in manufacturing processes. In this paper, the authors illustrate an automated approach for MFs design and assembly. This approach is based on the secondary development of SolidWorks integrating with Visual Basic (VB 6 programing language. SolidWorks API (Application programming interface functions were applied in order to control SolidWorks commands and assembly operations. An ActiveX DLL project was created in VB 6 and a plug-in file in .dll format was generated. The outcomes were creating new menus in SolidWorks environment for selecting, inserting, and assembling MFs elements. The approach was applied for a side clamping procedure and for a semi-circular workpiece.

  9. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    Indian Academy of Sciences (India)

    Andrew M. Lynn; Chakresh Kumar Jain; K. Kosalai; Pranjan Barman; Nupur Thakur; Harish Batra; Alok Bhattacharya

    2001-04-01

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences.

  10. Analysis of DNA-Guided Self Assembly of Microspheres Using Imaging Flow Cytometry

    OpenAIRE

    Tang, Hao; Deschner, Ryan; Allen, Peter; Cho, Younjin; Sermas, Patrick; Maurer, Alejandro; Ellington, Andrew D; Willson, C. Grant

    2012-01-01

    Imaging flow cytometry was used to analyze the self assembly of DNA-conjugated polystyrene microspheres. This technique enables quantitative analysis of the assembly process and thereby enables detailed analysis of effect of structural and process variables on the yield of assembly. In a demonstration of the potential of this technique, the influence of DNA strands base pair (bp) length was examined and it was found that 50 bp was sufficient to efficiently drive the assembly of microspheres, ...

  11. Assembly, Structure and Properties of DNA Programmable Nanoclusters

    Science.gov (United States)

    Chi, Cheng

    Finite size nanoclusters can be viewed as a nanoscale analogue of molecules. Just as molecules, synthesized from atoms, give access to new properties, clusters composed of nanoparticles modulate of their functional properties of nanoparticles. In contrast to synthetic chemistry which is a mature field, the creation of nanoscale clusters with well-defined architectures is a new and challenging area of research. My work explores how to assemble model systems of nanoclusters using DNA-programmable interparticle linkages. The simplest clusters of two particles, dimers, allow one to investigate fundamental effects in these systems. Such clusters serve as a versatile platform to understand DNA-mediated interactions, especially in the non-trivial regime where the nanoparticle and DNA chains are comparable in size. I systematically studied a few fundamental questions as follows: Firstly, we examined the structure of nanoparticle dimers in detail by a combination of X-ray scattering experiments and molecular simulations. We found that, for a given DNA length, the interparticle separation within the dimer is controlled primarily by the number of linking DNA. We summarized our findings in a simple model that captures the interplay of the number of DNA bridges, their length, the particle's curvature and the excluded volume effects. We demonstrated the applicability of the model to our results, without any free parameters. As a consequence, the increase of dimer separation with increasing temperature can be understood as a result of changing the number of connecting DNA. Later, we investigated the self-assembly process of DNA-functionalized particles in the presence of various lengths of the DNA linkage strands using 3 different pathways. We observed a high yield of dimer formation when significantly long linkers were applied. Small Angle X-ray Scattering revealed two configurations of the small clusters by different pathways. In one case, the interparticle distance increases

  12. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands

    Directory of Open Access Journals (Sweden)

    Kevin M. Bradley

    2014-08-01

    Full Text Available Synthetic biologists wishing to self-assemble large DNA (L-DNA constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson–Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS, and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting" software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  13. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles

    Science.gov (United States)

    Rogers, W. Benjamin; Shih, William M.; Manoharan, Vinothan N.

    2016-03-01

    DNA is not just the stuff of our genetic code; it is also a means to design self-assembling materials. Grafting DNA onto nano- and microparticles can, in principle, ‘program’ them with information that tells them exactly how to self-assemble. Although fully programmable assembly has not yet been realized, the groundwork has been laid: with an understanding of how specific interparticle attractions arise from DNA hybridization, we can now make systems that reliably assemble in and out of equilibrium. We discuss these advances, and the design rules that will allow us to control — and ultimately program — the assembly of new materials.

  14. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    Science.gov (United States)

    Yao, Hui; Yi, Changqing; Tzang, Chi-Hung; Zhu, Junjie; Yang, Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures.

  15. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links

    DEFF Research Database (Denmark)

    Räschle, Markus; Smeenk, Godelieve; Hansen, Rebecca K;

    2015-01-01

    technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we...

  16. FABRICATION OF SELF-ASSEMBLY DNA-C60 MULTI LAYER FILMS

    Institute of Scientific and Technical Information of China (English)

    Shu-guang Yang; Yong-jun Zhang; Xin-hu Daia; Wen-hong Tang; Chun-yan Liu; Wei-xiao Cao; Yu-liang Li; Jian Xu

    2002-01-01

    Electrostatic layer-by-layer self-assembly multilayer films were successfully fabricated from C60-ethylenediamineadduct (C60-EDA) and DNA. Under visible light irradiation, DNA is ready to be cleaved and the films are destroyed.

  17. Automated extraction of DNA from biological stains on fabric from crime cases. A comparison of a manual and three automated methods

    OpenAIRE

    Stangegaard, Michael; Hjort, Benjamin B; Hansen, Thomas N.; Hoflund, Anders; Mogensen, Helle S; Hansen, Anders J.; Morling, Niels

    2013-01-01

    The presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. DNA extraction from fabric for forensic genetic purposes may be challenging due to the occasional presence of PCR inhibitors that may be co-extracted with the DNA. Using 120 forensic trace evidence samples consisting of various types of fabric, we compared three automated DNA extraction methods based on magnetic beads (Pr...

  18. Fully automated hybrid diode laser assembly using high precision active alignment

    Science.gov (United States)

    Böttger, Gunnar; Weber, Daniel; Scholz, Friedemann; Schröder, Henning; Schneider-Ramelow, Martin; Lang, Klaus-Dieter

    2016-03-01

    Fraunhofer IZM, Technische Universität Berlin and eagleyard Photonics present various implementations of current micro-optical assemblies for high quality free space laser beam forming and efficient fiber coupling. The laser modules shown are optimized for fast and automated assembly in small form factor packages via state-of-the-art active alignment machinery, using alignment and joining processes that have been developed and established in various industrial research projects. Operational wavelengths and optical powers ranging from 600 to 1600 nm and from 1 mW to several W respectively are addressed, for application in high-resolution laser spectroscopy, telecom and optical sensors, up to the optical powers needed in industrial and medical laser treatment.

  19. DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Fellermann, Harold; Rasmussen, Steen

    2012-01-01

    We utilize a coarse-grained directional dynamic bonding DNA model [C. Svaneborg, Comp. Phys. Comm. (In Press DOI:10.1016/j.cpc.2012.03.005)] to study DNA self-assembly and DNA computation. In our DNA model, a single nucleotide is represented by a single interaction site, and complementary sites can...

  20. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems. PMID:26647640

  1. DNA templates silver clusters with magic sizes and colors for multi-cluster fluorescent assemblies

    Science.gov (United States)

    Copp, Stacy

    2015-03-01

    The natural inclusion of information in DNA, a vital part of life's rich complexity, can also be exploited to create diverse structures with multiple scales of complexity. Now emerging in novel photonic applications, DNA-stabilized silver clusters (AgN-DNA) are compelling examples of multi-scale DNA-directed assembly: individual fluorescent clusters, each templated by specific DNA base motifs, can then be arranged together in DNA-mediated multi-cluster assemblies with nanoscale precision. We discuss how DNA imbues AgN-DNA with unique features. Our optical data on pure AgN-DNA show that DNA base-cationic silver ligands impose rod-like shapes for neutral silver clusters, whose length primarily determines fluorescence color. This shape anisotropy leads to the aspherical AgN-DNA magic number cluster sizes and ``magic color'' groupings. We exploit DNA's sequence properties to extract multi-base motifs that select certain magic cluster sizes, using machine learning algorithms applied to large data sets. With these base motifs, we design DNA scaffolds to arrange multiple atomically precise AgN together in nanoscale proximity. We demonstrate that clusters are stable when held at separations below 10 nm, both in bicolor, dual cluster DNA clamp assemblies and in one-dimensional assemblies of atomically precise clusters arrayed on DNA nanotubes. Supported by NSF-CHE-1213895 and NSF-DMR-1309410. SMC acknowledges NSF-DGE-1144085, a NSF GRFP.

  2. Automated serial extraction of DNA and RNA from biobanked tissue specimens

    Science.gov (United States)

    2013-01-01

    Background With increasing biobanking of biological samples, methods for large scale extraction of nucleic acids are in demand. The lack of such techniques designed for extraction from tissues results in a bottleneck in downstream genetic analyses, particularly in the field of cancer research. We have developed an automated procedure for tissue homogenization and extraction of DNA and RNA into separate fractions from the same frozen tissue specimen. A purpose developed magnetic bead based technology to serially extract both DNA and RNA from tissues was automated on a Tecan Freedom Evo robotic workstation. Results 864 fresh-frozen human normal and tumor tissue samples from breast and colon were serially extracted in batches of 96 samples. Yields and quality of DNA and RNA were determined. The DNA was evaluated in several downstream analyses, and the stability of RNA was determined after 9 months of storage. The extracted DNA performed consistently well in processes including PCR-based STR analysis, HaloPlex selection and deep sequencing on an Illumina platform, and gene copy number analysis using microarrays. The RNA has performed well in RT-PCR analyses and maintains integrity upon storage. Conclusions The technology described here enables the processing of many tissue samples simultaneously with a high quality product and a time and cost reduction for the user. This reduces the sample preparation bottleneck in cancer research. The open automation format also enables integration with upstream and downstream devices for automated sample quantitation or storage. PMID:23957867

  3. Modelling DNA origami self-assembly at the domain level

    International Nuclear Information System (INIS)

    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking of helices and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling, and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami

  4. Modelling DNA origami self-assembly at the domain level

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Frits; Kwiatkowska, Marta [Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD (United Kingdom); Dunn, Katherine E. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Bath, Jonathan; Turberfield, Andrew J. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Ouldridge, Thomas E. [Department of Physics, University of Oxford, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom)

    2015-10-28

    We present a modelling framework, and basic model parameterization, for the study of DNA origami folding at the level of DNA domains. Our approach is explicitly kinetic and does not assume a specific folding pathway. The binding of each staple is associated with a free-energy change that depends on staple sequence, the possibility of coaxial stacking with neighbouring domains, and the entropic cost of constraining the scaffold by inserting staple crossovers. A rigorous thermodynamic model is difficult to implement as a result of the complex, multiply connected geometry of the scaffold: we present a solution to this problem for planar origami. Coaxial stacking of helices and entropic terms, particularly when loop closure exponents are taken to be larger than those for ideal chains, introduce interactions between staples. These cooperative interactions lead to the prediction of sharp assembly transitions with notable hysteresis that are consistent with experimental observations. We show that the model reproduces the experimentally observed consequences of reducing staple concentration, accelerated cooling, and absent staples. We also present a simpler methodology that gives consistent results and can be used to study a wider range of systems including non-planar origami.

  5. DNA-mediated self-assembly of artificial vesicles.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available BACKGROUND: Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. METHODOLOGY/PRINCIPAL FINDINGS: In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. CONCLUSIONS/SIGNIFICANCE: This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment

  6. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors

    DEFF Research Database (Denmark)

    Fu, Yanming; Zeng, Dongdong; Chao, Jie;

    2013-01-01

    (within only 10-20 min), exhibiting extraordinarily high cooperativity that is often observed in assembly of natural molecular machines in cells (e.g. ribosome). By exploiting the high specificity of DNA-based self-assembly, we can precisely anchor proteins on these DNA origami nanostructures with sub-10...

  7. BASIC: A New Biopart Assembly Standard for Idempotent Cloning Provides Accurate, Single-Tier DNA Assembly for Synthetic Biology.

    Science.gov (United States)

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Fleming, Toni; Trewhitt, Harry; Ellis, Tom; Baldwin, Geoff S

    2015-07-17

    The ability to quickly and reliably assemble DNA constructs is one of the key enabling technologies for synthetic biology. Here we define a new Biopart Assembly Standard for Idempotent Cloning (BASIC), which exploits the principle of orthogonal linker based DNA assembly to define a new physical standard for DNA parts. Further, we demonstrate a new robust method for assembly, based on type IIs restriction enzyme cleavage and ligation of oligonucleotides with single stranded overhangs that determine the assembly order. It allows for efficient, parallel assembly with great accuracy: 4 part assemblies achieved 93% accuracy with single antibiotic selection and 99.7% accuracy with double antibiotic selection, while 7 part assemblies achieved 90% accuracy with double antibiotic selection. The linkers themselves may also be used as composable parts for RBS tuning or the creation of fusion proteins. The standard has one forbidden restriction site and provides for an idempotent, single tier organization, allowing all parts and composite constructs to be maintained in the same format. This makes the BASIC standard conceptually simple at both the design and experimental levels. PMID:25746445

  8. Automated extraction of DNA from biological stains on fabric from crime cases. A comparison of a manual and three automated methods

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hjort, Benjamin B; Hansen, Thomas N;

    2013-01-01

    The presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. DNA extraction from fabric for forensic genetic purposes may be challenging due to the occasional presence of PCR inhibitors...... that may be co-extracted with the DNA. Using 120 forensic trace evidence samples consisting of various types of fabric, we compared three automated DNA extraction methods based on magnetic beads (PrepFiler Express Forensic DNA Extraction Kit on an AutoMate Express, QIAsyphony DNA Investigator kit...... either with the sample pre-treatment recommended by Qiagen or an in-house optimized sample pre-treatment on a QIAsymphony SP) and one manual method (Chelex) with the aim of reducing the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable STR-profiles. A total of 480...

  9. Automated extraction of DNA and PCR setup using a Tecan Freedom EVO® liquid handler

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Frøslev, Tobias G.; Frank-Hansen, Rune;

    2009-01-01

    We have implemented and validated automated methods for DNA extraction and PCR setup developed for a Tecan Freedom EVO« liquid handler mounted with a Te-MagS(TM) magnetic separation device. The DNA was extracted using the Qiagen MagAttract« DNA Mini M48 kit. The DNA was amplified using Amp...

  10. Instrument-free, Automation and multi-platform ready unmodified Iron Oxide based DNA isolation system

    Directory of Open Access Journals (Sweden)

    Rajani Kanth Vangala

    2012-04-01

    Full Text Available The majority of molecular genetic tests start with the extraction of DNA, indicating the great importance of a suitable and reliable method for this purpose. Next to many in-house standard operating procedures (SOPs, a lot of commercial extraction kits have been developed. These methods are generally accepted and have proven their validity with good results. However, it is obvious that the automation and simplification of the extraction procedure could have major benefits; i.e. a higher throughput, more reliable and reproducible processing of the samples, improved traceability and possible streamlining of the entire DNA extraction procedure. To make the process of DNA isolation robust and possible for automation on any automation machine available (example., automated liquid handler, there are several roadblocks like centrifugation. Therefore, we have developed a simple, yet robust isolation technology which can be used on any automation machine and also can be used outside the lab environment at the point of sample collection by anyone. 

  11. The Reversible Phase Transition of DNA-Linked Colloidal Gold Assemblies

    CERN Document Server

    Sun, Y; Kiang, C H; Sun, Young; Harris, Nolan C.; Kiang, Ching-Hwa

    2005-01-01

    We present direct evidence for a reversible phase transition of DNA-linked colloidal gold assemblies. Transmission electron microscopy and optical absorption spectroscopy are used to monitor the colloidal gold phase transition, whose behavior is dominated by DNA interactions. We use single-stranded DNA-capped colloidal gold that is linked by complementary linker DNA to form the assemblies. We found that, compared to free DNA, a sharp melting transition is observed for the DNA-linked colloidal gold assemblies. The structure of the assemblies is non-crystalline, much like a gel phase, consistent with theoretical predictions. Optical spectra and melting curves provide additional evidence of gelation of the colloidal system. The phase transition and separation are examples of percolation in a dilute solvent.

  12. Automated extraction of DNA and PCR setup using a Tecan Freedom EVO® liquid handler

    DEFF Research Database (Denmark)

    Frøslev, Tobias Guldberg; Hansen, Anders Johannes; Stangegaard, Michael;

    We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO® liquid handler mounted with the TeMagS magnetic separation device. The methods were validated for accredited, forensic genetic work according to ISO 17025 using the Qiagen Mag....... With the Identifiler kit, the number of full DNA profiles was approximately 20% higher with DNA prepared with the robot compared to that obtained with DNA prepared manually with the Chelex method. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for...... accredited, forensic genetic DNA typing can be implemented on a simple robot leading to the reduction of manual work as well as increased quality and throughput....

  13. Electrostatic assembly of protein lysozyme on DNA visualized by atomic force microscopy

    International Nuclear Information System (INIS)

    In the present work, atomic force microscopy (AFM) has been used to study the assembly of protein lysozyme on DNA molecule. Based on the electrostatic interaction, the positively charged lysozyme can easily bind onto the negatively charged DNA molecule surface. The protein molecules appear as globular objects on the DNA scaffold, which are distinguishable in the AFM images. At the same time, lysozyme molecules can be assembled onto DNA as dense or sporadic pattern by varying the protein concentration. This work may provide fundamental aspects for building protein nanostructures and studying of DNA-protein interaction

  14. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  15. Assembly and melting of DNA nanotubes from single-sequence tiles

    Energy Technology Data Exchange (ETDEWEB)

    Sobey, T L; Renner, S; Simmel, F C [Lehrstuhl fuer Bioelektronik-E14, Department Physik, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)], E-mail: thomas.sobey@ph.tum.de

    2009-01-21

    DNA melting and renaturation studies are an extremely valuable tool to study the kinetics and thermodynamics of duplex dissociation and reassociation reactions. These are important not only in a biological or biotechnological context, but also for DNA nanotechnology which aims at the construction of molecular materials by DNA self-assembly. We here study experimentally the formation and melting of a DNA nanotube structure, which is composed of many copies of an oligonucleotide containing several palindromic sequences. This is done using temperature-controlled UV absorption measurements correlated with atomic force microscopy, fluorescence microscopy and transmission electron microscopy techniques. In the melting studies, important factors such as DNA strand concentration, hierarchy of assembly and annealing protocol are investigated. Assembly and melting of the nanotubes are shown to proceed via different pathways. Whereas assembly occurs in several hierarchical steps related to the formation of tiles, lattices and tubes, melting of DNA nanotubes appears to occur in a single step. This is proposed to relate to fundamental differences between closed, three-dimensional tube-like structures and open, two-dimensional lattices. DNA melting studies can lead to a better understanding of the many factors that affect the assembly process which will be essential for the assembly of increasingly complex DNA nanostructures.

  16. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.

    Science.gov (United States)

    Choi, Min-Seong; Yoo, Jae-Chern

    2015-04-01

    We report a fully automated DNA purification platform with a micropored membrane in the channel utilizing centrifugal microfluidics on a lab-on-a-disc (LOD). The microfluidic flow in the LOD, into which the reagents are injected for DNA purification, is controlled by a single motor and laser burst valve. The sample and reagents pass successively through the micropored membrane in the channel when each laser burst valve is opened. The Coriolis effect is used by rotating the LOD bi-directionally to increase the purity of the DNA, thereby preventing the mixing of the waste and elution solutions. The total process from the lysed sample injection into the LOD to obtaining the purified DNA was finished within 7 min with only one manual step. The experimental result for Salmonella shows that the proposed microfluidic platform is comparable to the existing devices in terms of the purity and yield of DNA. PMID:25737025

  17. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Bruno, Vincent M.; Fang, Zhide; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Sherlock, Gavin; Snyder, Michael; Wang, Zhong

    2010-11-19

    Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied. Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95percent) and reconstruct full-length genes for the majority of the existing gene models (54.3percent). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics. Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome.

  18. Thermodynamics and Kinetics of DNA Tile-Based Self-Assembly

    Science.gov (United States)

    Jiang, Shuoxing

    Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of DNA toolboxes, a quantitative understanding of DNA self-assembly in terms of thermodynamics and kinetics, will provide researchers with more subtle design guidelines that facilitate more precise spatial and temporal control. This dissertation focuses on studying the physicochemical properties of DNA tile-based self-assembly process by recapitulating representative scenarios and intermediate states with unique assembly pathways. First, DNA double-helical tiles with increasing flexibility were designed to investigate the dimerization kinetics. The higher dimerization rates of more rigid tiles result from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. Next, the thermodynamics and kinetics of single tile attachment to preformed "multitile" arrays were investigated to test the fundamental assumptions of tile assembly models. The results offer experimental evidences that double crossover tile attachment is determined by the electrostatic environment and the steric hindrance at the binding site. Finally, the assembly of double crossover tiles within a rhombic DNA origami frame was employed as the model system to investigate the competition between unseeded, facet and seeded nucleation. The results revealed that preference of nucleation types can be tuned by controlling the rate-limiting nucleation step. The works presented in this dissertation will be helpful for refining the DNA tile assembly model for future designs and simulations. Moreover, The works presented here could also be

  19. GenePublisher: automated analysis of DNA microarray data

    DEFF Research Database (Denmark)

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, T.;

    2003-01-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with aspecification of the data. The server performs normalization......, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user....

  20. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.

    Science.gov (United States)

    Myers, Benjamin D; Lin, Qing-Yuan; Wu, Huanxin; Luijten, Erik; Mirkin, Chad A; Dravid, Vinayak P

    2016-06-28

    The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior. PMID:27192324

  1. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    OpenAIRE

    van der Heijden, Thijn; Seidel, Ralf; Modesti, Mauro; Kanaar, Roland; Wyman, Claire; Dekker, Cees

    2007-01-01

    textabstractThe human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using...

  2. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    OpenAIRE

    Van der Heijden, T.; Seidel, R.; Modesti, M.; Kanaar, R.; Wyman, C; Dekker, C.

    2007-01-01

    The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using magnetic tw...

  3. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    International Nuclear Information System (INIS)

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. (paper)

  4. Electrophoretic dynamics of self-assembling branched DNA structures

    Science.gov (United States)

    Heuer, Daniel Milton

    This study advances our understanding of the electrophoretic dynamics of branched biopolymers and explores technologies designed to exploit their unique properties. New self-assembly techniques were developed to create branched DNA for visualization via fluorescence microscopy. Experiments in fixed gel networks reveal a distinct trapping behavior, in contrast with linear topologies. The finding that detection can be achieved by introducing a branch point contributes significantly to the field of separation science and can be exploited to develop new applications. Results obtained in polymer solutions point to identical mobilities for branched and linear topologies, despite large differences in their dynamics. This finding led to a new description of electrophoresis based on non-Newtonian viscoelastic effects in the electric double layer surrounding a charged object. This new theoretical framework presents a new outlook important not only to the electrophoretic physics of nucleic acids, but all charged objects including proteins, colloids, and nanoparticles. To study the behavior of smaller biopolymers, such as restriction fragments and recombination intermediates, a library of symmetrically branched DNA was synthesized followed by characterization in gels. The experimental results contribute a large body of information relating molecular architecture and the dynamics of rigid structures in an electric field. The findings allow us to create new separation technologies based on topology. These contributions can also be utilized in a number of different applications including the study of recombination intermediates and the separation of proteins according to structure. To demonstrate the importance of these findings, a sequence and mutation detection technique was envisioned and applied for genetic analysis. Restriction fragments from mutation "hotspots" in the p53 tumor suppressor gene, known to play a role in cancer development, were analyzed with this technique

  5. Controlling self-assembly of DNA-polymer conjugates for applications in imaging and drug delivery.

    Science.gov (United States)

    Peterson, Amberlyn M; Heemstra, Jennifer M

    2015-01-01

    Amphiphilic supramolecular structures such as micelles and vesicles can be formed through phase-driven self-assembly of monomer units having discrete hydrophilic and hydrophobic blocks. These structures show great promise for use in medical and biological applications, and incorporating DNA as the hydrophilic block of the amphiphilic monomers enables the creation of assemblies that also take advantage of the unique information storage and molecular recognition capabilities of DNA. Recently, significant advances have been made in the synthesis of DNA-polymer conjugates (DPCs), controlling the morphology of DPC assemblies by altering monomer structure, and probing the effect of assembly on DNA stability and hybridization. Together, these investigations have laid the framework for using DPCs in drug delivery, cellular imaging, and other applications in materials science and chemistry. PMID:25327363

  6. Specific and Reversible DNA-Directed Self-Assembly of Modular Vesicle-Droplet Hybrid Materials.

    Science.gov (United States)

    Hadorn, Maik; Boenzli, Eva; Hanczyc, Martin M

    2016-04-19

    Modular hybrid structures functionalized to assemble in a controlled manner possess diverse properties necessary for a new generation of complex materials and applications. Here, we functionalized giant unilamellar vesicles and emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker to demonstrate specific and reversible DNA-directed self-assembly into vesicle-droplet hybrid structures. A low molar percentage of PEGylated phospholipids independent of the DNA-based recognition machinery at the supramolecular surface modulated the stability of the system. The reversibility of the aggregation was demonstrated by heating the hybrid structures above the melting temperature of the conjoining double-stranded DNA in the presence of excess biotin. The application of this general assembly control system to diverse multiphase soft materials provides the mechanism to assemble complex modular hybrid systems in a controllable and reversible way, which may provide an advantage where multifunctionality is a target property. PMID:27010467

  7. Engineering of DNA-mediated assemblies for biosensing applications /

    OpenAIRE

    Xu, Phyllis F.

    2013-01-01

    Traditionally known as the genetic code, in recent years DNA has been engineered in new ways and applied toward novel applications in materials science and bio- nanotechnology. The nanometer features and highly specific base-pairing of DNA has enabled its use to build complex 2 - and 3D nano-architectures and nano-structures. Specific DNA scaffolds include branched DNA junctions, 2D and 3D DNA "tiles" and "bricks", and DNA hydrogels that can be used for applications across various fields of m...

  8. Automated microfluidic DNA/RNA extraction with both disposable and reusable components

    International Nuclear Information System (INIS)

    An automated microfluidic nucleic extraction system was fabricated with a multilayer polydimethylsiloxane (PDMS) structure that consists of sample wells, microvalves, a micropump and a disposable microfluidic silica cartridge. Both the microvalves and micropump structures were fabricated in a single layer and are operated pneumatically using a 100 µm PDMS membrane. To fabricate the disposable microfluidic silica cartridge, two-cavity structures were made in a PDMS replica to fit the stacked silica membranes. A handheld controller for the microvalves and pumps was developed to enable system automation. With purified ribonucleic acid (RNA), whole blood and E. coli samples, the automated microfluidic nucleic acid extraction system was validated with a guanidine-based solid phase extraction procedure. An extraction efficiency of ∼90% for deoxyribonucleic acid (DNA) and ∼54% for RNA was obtained in 12 min from whole blood and E. coli samples, respectively. In addition, the same quantity and quality of extracted DNA was confirmed by polymerase chain reaction (PCR) amplification. The PCR also presented the appropriate amplification and melting profiles. Automated, programmable fluid control and physical separation of the reusable components and the disposable components significantly decrease the assay time and manufacturing cost and increase the flexibility and compatibility of the system with downstream components

  9. Automated microfluidic DNA/RNA extraction with both disposable and reusable components

    Science.gov (United States)

    Kim, Jungkyu; Johnson, Michael; Hill, Parker; Sonkul, Rahul S.; Kim, Jongwon; Gale, Bruce K.

    2012-01-01

    An automated microfluidic nucleic extraction system was fabricated with a multilayer polydimethylsiloxane (PDMS) structure that consists of sample wells, microvalves, a micropump and a disposable microfluidic silica cartridge. Both the microvalves and micropump structures were fabricated in a single layer and are operated pneumatically using a 100 µm PDMS membrane. To fabricate the disposable microfluidic silica cartridge, two-cavity structures were made in a PDMS replica to fit the stacked silica membranes. A handheld controller for the microvalves and pumps was developed to enable system automation. With purified ribonucleic acid (RNA), whole blood and E. coli samples, the automated microfluidic nucleic acid extraction system was validated with a guanidine-based solid phase extraction procedure. An extraction efficiency of ~90% for deoxyribonucleic acid (DNA) and ~54% for RNA was obtained in 12 min from whole blood and E. coli samples, respectively. In addition, the same quantity and quality of extracted DNA was confirmed by polymerase chain reaction (PCR) amplification. The PCR also presented the appropriate amplification and melting profiles. Automated, programmable fluid control and physical separation of the reusable components and the disposable components significantly decrease the assay time and manufacturing cost and increase the flexibility and compatibility of the system with downstream components.

  10. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination

    OpenAIRE

    Chou, Leo Y.T.; Zagorovsky, Kyryl; Chan, Warren C.W.

    2014-01-01

    The assembly of nanomaterials using DNA can produce complex nanostructures, but the biological applications of these structures remain unexplored. Here we describe the use of DNA to control the biological delivery and elimination of inorganic nanoparticles by organizing them into colloidal superstructures. The individual nanoparticles serve as building blocks, whose size, surface chemistry, and assembly architecture dictate overall superstructure design. These superstructures interact with ce...

  11. A new technique for determining the distribution of N7-methylguanine using an automated DNA sequencer.

    Science.gov (United States)

    Shoukry, S; Anderson, M W; Glickman, B W

    1991-11-01

    We have developed a method to determine rapidly the sequence specificity of DNA alkylation resulting from chemical treatment. The utility of this approach is demonstrated here in a study of the sequence specificity of alkylation by dimethylsulphate (DMS). The method is independent of the sequence chosen and makes use of the polymerase chain reaction (PCR) to generate a fluorescently labelled DNA target. In this study, a 302 bp segment of the Escherichia coli lacI gene was amplified and the product purified by liquid chromatography on a Mono Q column. This DNA was alkylated with DMS and treated with hot piperidine to produce single-strand breaks at sites of N7 alkylation. The distribution of the break points, and hence the position and extent of alkylation, were determined on an Applied Biosystems 370A automated DNA sequencer. PMID:1682064

  12. Automated screening for small organic ligands using DNA-encoded chemical libraries.

    Science.gov (United States)

    Decurtins, Willy; Wichert, Moreno; Franzini, Raphael M; Buller, Fabian; Stravs, Michael A; Zhang, Yixin; Neri, Dario; Scheuermann, Jörg

    2016-04-01

    DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d. PMID:26985574

  13. Molecular Behavior of DNA Origami in Higher-Order Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhe [Arizona State Univ., Tempe, AZ (United States); Liu, Minghui [Arizona State Univ., Tempe, AZ (United States); Lei, Wang [Arizona State Univ., Tempe, AZ (United States); Shandong Univ., Jinan (China); Nangreave, Jeanette [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States)

    2010-09-08

    DNA-based self-assembly is a unique method for achieving higher-order molecular architectures made possible by the fact that DNA is a programmable information-coding polymer. In the past decade, two main types of DNA nanostructures have been developed: branch-shaped DNA tiles with small dimensions (commonly up to ~20 nm) and DNA origami tiles with larger dimensions (up to ~100 nm). Here we aimed to determine the important factors involved in the assembly of DNA origami superstructures. We constructed a new series of rectangular-shaped DNA origami tiles in which parallel DNA helices are arranged in a zigzag pattern when viewed along the DNA helical axis, a design conceived in order to relax an intrinsic global twist found in the original planar, rectangular origami tiles. Self-associating zigzag tiles were found to form linear arrays in both diagonal directions, while planar tiles showed significant growth in only one direction. Although the series of zigzag tiles were designed to promote two-dimensional array formation, one-dimensional linear arrays and tubular structures were observed instead. We discovered that the dimensional aspect ratio of the origami unit tiles and intertile connection design play important roles in determining the final products, as revealed by atomic force microscopy imaging. This study provides insight into the formation of higher-order structures from self-assembling DNA origami tiles, revealing their unique behavior in comparison with conventional DNA tiles having smaller dimensions.

  14. Aptaligner: Automated Software for Aligning Pseudorandom DNA X-Aptamers from Next-Generation Sequencing Data

    OpenAIRE

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T.; Volk, David E.

    2014-01-01

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provid...

  15. Automated serial extraction of DNA and RNA from biobanked tissue specimens

    OpenAIRE

    Mathot, Lucy; Wallin, Monica; Sjöblom, Tobias

    2013-01-01

    Background: With increasing biobanking of biological samples, methods for large scale extraction of nucleic acids are in demand. The lack of such techniques designed for extraction from tissues results in a bottleneck in downstream genetic analyses, particularly in the field of cancer research. We have developed an automated procedure for tissue homogenization and extraction of DNA and RNA into separate fractions from the same frozen tissue specimen. A purpose developed magnetic bead based te...

  16. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna;

    2015-01-01

    produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...

  17. Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair

    OpenAIRE

    Bleuit, Jill S.; Xu, Hang; Ma, Yujie; Wang, Tongsheng; Liu, Jie; Morrical, Scott W.

    2001-01-01

    Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the...

  18. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens

    DEFF Research Database (Denmark)

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in...

  19. Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector.

    Science.gov (United States)

    Hou, Zheng; Zhou, Zheng; Wang, Zonglin; Xiao, Gengfu

    2016-04-01

    Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named pGF (plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid pCC1BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome (YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction (PCR) from the plasmid pBS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination (TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using pGF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction. PMID:27113243

  20. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    Science.gov (United States)

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. PMID:22310206

  1. Self-assembly of ssDNA-amphiphiles into micelles, nanotapes and nanotubes

    Science.gov (United States)

    Pearce, Timothy R.

    The field of DNA nanotechnology utilizes DNA as a construction material to create functional supramolecular and multi-dimensional structures like two-dimensional periodic lattices and three-dimensional polyhedrons with order on the nanometer scale for many nanotechnology applications including molecular templating, nanosensors, and drug delivery. Single-stranded DNA (ssDNA) is often used to create these nanostructures as the DNA bases provide an intrinsic molecular code that can be exploited to allow for the programmed assembly of structures based upon Watson-Crick base-pairing. However, engineering these complex structures from biopolymers alone requires careful design to ensure that the intrinsic forces responsible for organizing the materials can produce the desired structures. Additional control over supramolecular assembly can be achieved by chemically modifying the ssDNA with hydrophobic moieties to create amphiphilic molecules, which adds the hydrophobic interaction to the list of contributing forces that drive the self-assembly process. We first explored the self-assembly behavior of a set of ssDNA aptamer-amphiphiles composed of the same hydrophobic tail and hydrophilic ssDNA aptamer headgroup but with different spacer molecules linking these groups together. Through the use of cryo-transmission electron microscopy (cryo-TEM), small angle x-ray scattering (SAXS), and circular dichroism (CD) we show that the aptamer-amphiphiles can assemble into a variety of structures depending on the spacer used. We demonstrated, for the first time, the creation of self-assembled aptamer-amphiphile nanotape structures and show that the choice of the spacer used in the design of aptamer-amphiphiles can influence their supramolecular self-assembly as well as the secondary structure of the aptamer headgroup. We next explored the role of the ssDNA headgroup on the amphiphile self-assembly behavior by designing amphiphiles with headgroups of multiple lengths and nucleotides

  2. DNA origami: a quantum leap for self-assembly of complex structures

    DEFF Research Database (Denmark)

    Tørring, Thomas; Voigt, Niels Vinther; Nangreave, Jeanette; Yan, Hao; Gothelf, Kurt Vesterager

    2011-01-01

    The spatially controlled positioning of functional materials by self-assembly is one of the fundamental visions of nanotechnology. Major steps towards this goal have been achieved using DNA as a programmable building block. This tutorial review will focus on one of the most promising methods: DNA...... origami. The basic design principles, organization of a variety of functional materials and recent implementation of DNA robotics are discussed together with future challenges and opportunities....

  3. Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids.

    Science.gov (United States)

    Yao, Dongbao; Song, Tingjie; Sun, Xianbao; Xiao, Shiyan; Huang, Fujian; Liang, Haojun

    2015-11-11

    Programmable and algorithmic behaviors of DNA molecules allow one to control the structures of DNA-assembled materials with nanometer precision and to construct complex networks with digital and analog behaviors. Here we developed a way of integrating a DNA-strand-displacement circuit with self-assembly of spherical nucleic acids, wherein a single DNA strand was used to initiate and catalyze the operation of upstream circuits to release a single strand that subsequently triggers self-assembly of spherical nucleic acids in downstream circuits, realizing a programmable kinetic control of self-assembly of spherical nucleic acids. Through utilizing this method, single-nucleotide polymorphisms or indels occurring at different positions of a sequence of oligonucleotide were unambiguously discriminated. We provide here a sophisticated way of combining the DNA-strand-displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, which may find broad potential applications in the fabrication of a wide range of complex multicomponent devices and architectures. PMID:26485090

  4. Synthetic materials and macromolecular assemblies for control over the delivery of DNA and proteins

    Science.gov (United States)

    Jewell, Christopher M.

    The work described in this thesis is focused on the design, characterization, and application of synthetic materials that can be used to manipulate and control the delivery of biomacromolecules such as DNA and proteins to cells. The work described herein was conducted in two primary contexts: (1) the fabrication and characterization of multilayered films comprised of DNA and degradable polyamines, with applications to the surface-mediated delivery of DNA and proteins, and (2) the formation of self-assembled aggregates of DNA and redox-active lipids that could allow active control over the delivery of DNA. The first approach described in this thesis is based on the layer-by-layer assembly and characterization of thin films fabricated from hydrolytically-degradable polyamines and biomacromolecules. When contacted with cells in culture, these assemblies permit the surface-mediated delivery of DNA and proteins and may prove useful in the development of methods seeking the localized delivery of therapeutics. Additional work involving DNA-containing multilayered films deposited on the surfaces of biomedical devices such as intravascular stents has demonstrated that these assemblies are able to withstand mechanical stresses similar to those associated with stent deployment in vivo, and further, that film-coated stents are able to mediate high levels of cell transfection in vitro. The second approach described in this thesis demonstrates that lipoplexes formed from DNA and a ferrocene-containing, redox-active cationic lipid can be used to control the delivery of DNA to cells in ways that depend critically upon the redox-state of the lipid. Additional studies demonstrate that these assemblies can be chemically transformed from an inactive state (e.g., a state this is unable to mediate cell transfection) to an active state (e.g., a state that mediates high levels of cell transfection) using a chemical reducing agent. This approach could thus serve as a platform for exerting

  5. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    Science.gov (United States)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  6. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    Science.gov (United States)

    1984-01-01

    The space station automation study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions. The initial step taken by NASA in organizing the SSAS was to form and convene a panel of recognized expert technologists in automation, space sciences and aerospace engineering to produce a space station automation plan.

  7. First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor.

    Science.gov (United States)

    Çiftçi, Gönül Yenilmez; Şenkuytu, Elif; İncir, Saadet Elif; Yuksel, Fatma; Ölçer, Zehra; Yıldırım, Tuba; Kılıç, Adem; Uludağ, Yıldız

    2016-06-15

    Cancer, as one of the leading causes of death in the world, is caused by malignant cell division and growth that depends on rapid DNA replication. To develop anti-cancer drugs this feature of cancer could be exploited by utilizing DNA-damaging molecules. To achieve this, the paraben substituted cyclotetraphosphazene compounds have been synthesized for the first time and their effect on DNA (genotoxicity) has been investigated. The conventional genotoxicity testing methods are laborious, take time and are expensive. Biosensor based assays provide an alternative to investigate this drug/compound DNA interactions. Here for the first time, a new, easy and rapid screening method has been used to investigate the DNA damage, which is based on an automated biosensor device that relies on the real-time electrochemical profiling (REP™) technology. Using both the biosensor based screening method and the in vitro biological assay, the compounds 9 and 11 (propyl and benzyl substituted cyclotetraphosphazene compounds, respectively), have resulted in higher DNA damage than the others with 65% and 80% activity reduction, respectively. PMID:26852202

  8. Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

    2002-12-01

    This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

  9. Multistep assembly of DNA condensation clusters by SMC.

    Science.gov (United States)

    Kim, HyeongJun; Loparo, Joseph J

    2016-01-01

    SMC (structural maintenance of chromosomes) family members play essential roles in chromosome condensation, sister chromatid cohesion and DNA repair. It remains unclear how SMCs structure chromosomes and how their mechanochemical cycle regulates their interactions with DNA. Here we used single-molecule fluorescence microscopy to visualize how Bacillus subtilis SMC (BsSMC) interacts with flow-stretched DNAs. We report that BsSMC can slide on DNA, switching between static binding and diffusion. At higher concentrations, BsSMCs form clusters that condense DNA in a weakly ATP-dependent manner. ATP increases the apparent cooperativity of DNA condensation, demonstrating that BsSMC can interact cooperatively through their ATPase head domains. Consistent with these results, ATPase mutants compact DNA more slowly than wild-type BsSMC in the presence of ATP. Our results suggest that transiently static BsSMC molecules can nucleate the formation of clusters that act to locally condense the chromosome while forming long-range DNA bridges. PMID:26725510

  10. Rapid DNA analysis for automated processing and interpretation of low DNA content samples

    OpenAIRE

    Turingan, Rosemary S.; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F.

    2016-01-01

    Background Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or f...

  11. Branch migration displacement assay with automated heuristic analysis for discrete DNA length measurement using DNA microarrays

    OpenAIRE

    Pourmand, Nader; Caramuta, Stefano; Villablanca, Andrea; Mori, Silvia; Karhanek, Miloslav; Wang, Shan X.; Ronald W Davis

    2007-01-01

    The analysis of short tandem repeats (STRs) plays an important role in forensic science, human identification, genetic mapping, and disease diagnostics. Traditional STR analysis utilizes gel- or column-based approaches to analyze DNA repeats. Individual STR alleles are separated and distinguished according to fragment length; thus the assay is generally hampered by its low multiplex capacity. However, use of DNA microarray would employ a simple hybridization and detection for field forensics ...

  12. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Gao Wenli [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Feng Bo, E-mail: fengbo@swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ni Yuxiang [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang Yongli [College of Material Science and Engineering, Sichuan University, Chengdu 610054 (China); Lu Xiong; Weng Jie [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-11-01

    Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.

  13. Automated Line Tracking of lambda-DNA for Single-Molecule Imaging

    CERN Document Server

    Guan, Juan; Granick, Steve

    2011-01-01

    We describe a straightforward, automated line tracking method to visualize within optical resolution the contour of linear macromolecules as they rearrange shape as a function of time by Brownian diffusion and under external fields such as electrophoresis. Three sequential stages of analysis underpin this method: first, "feature finding" to discriminate signal from noise; second, "line tracking" to approximate those shapes as lines; third, "temporal consistency check" to discriminate reasonable from unreasonable fitted conformations in the time domain. The automated nature of this data analysis makes it straightforward to accumulate vast quantities of data while excluding the unreliable parts of it. We implement the analysis on fluorescence images of lambda-DNA molecules in agarose gel to demonstrate its capability to produce large datasets for subsequent statistical analysis.

  14. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles.

    Science.gov (United States)

    Yao, Dongbao; Li, Hui; Guo, Yijun; Zhou, Xiang; Xiao, Shiyan; Liang, Haojun

    2016-06-18

    The toehold-mediated DNA-strand-displacement reaction has unique programmable properties for driving the catalytic assembly of gold nanoparticles (AuNPs). Herein, we introduced a pH-responsive triplex structure into the DNA-strand-displacement-based catalytic assembly system of DNA-AuNPs to add an additional controlling factor, namely the pH. In this catalytic system, the aggregation rate of AuNPs could be regulated by both internal factors (concentrations of substrate, target, etc.) and an external control (pH gradient). This strategy can be used to construct pH-induced DNA logic gates and sophisticated DNA networks as well as to image instantaneous pH changes in living cells. PMID:27225943

  15. DNA hybridization in nanostructural molecular assemblies enables detection of gene mutations without a fluorescent probe.

    Science.gov (United States)

    Maruyama, Tatsuo; Park, Lian-Chun; Shinohara, Toshimitsu; Goto, Masahiro

    2004-01-01

    We have developed a simple single nucleotide polymorphisms (SNPs) analysis utilizing DNA hybridization in nanostructural molecular assemblies. The novel technique enables the detection of a single-base mismatch in a DNA sequence without a fluorescent probe. This report describes for the first time that DNA hybridization occurs in the nanostructural molecular assemblies (termed reverse micelles) formed in an organic medium. The restricted nanospace in the reverse micelles amplifies the differences in the hybridization rate between mismatched and perfectly matched DNA probes. For a model system, we hybridized a 20-mer based on the p53 gene sequence to 20-mer complementary oligonucleotides with various types of mismatches. Without any DNA labeling or electrochemical apparatus, we successfully detected the various oligonucleotide mismatches by simply measuring the UV absorbance at 260 nm. PMID:14715007

  16. A Programmable Transducer Self-Assembled from DNA

    OpenAIRE

    Chakraborty, Banani; Jonoska, Natasha; Seeman, Nadrian C.

    2011-01-01

    A transducer consists of an input/output alphabet, a finite set of states, and a transition function. From an input symbol applied to a given state, the transition function determines the next state, and an output symbol. Using DNA, we have constructed a transducer that divides a number by 3. The input consists of a series of individually addressable 2-state DNA nanomechanical devices that control the orientations of a group of flat 6-helix DNA motifs; these motifs have edge domains tailed in...

  17. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Science.gov (United States)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  18. Self-assembly and Evolution from protein complexes to DNA nanostructures

    Science.gov (United States)

    Louis, Ard A.

    2012-02-01

    The remarkable ability of biological matter to robustly self-assemble into well defined composite objects excites the imagination, suggesting that these processes could perhaps be emulated through the judicious design of synthetic building blocks. We use statistical mechanics to uncover the design rules for self-assembly into well defined three dimensional composite objects. In Nature, the rules for self-assembly emerge from an evolutionary process. We show how some patterns in protein complexes can be explained by their evolutionary origin [1]. We also introduce a coarse-grained rigid nucleotide model of DNA that reproduces the basic thermodynamics of short strands: duplex hybridization, single-stranded stacking and hairpin formation, and also captures the essential structural properties of DNA: the helical pitch, persistence length and torsional stiffness of double-stranded molecules, as well as the comparative flexibility of unstacked single strands [2]. We apply the model to calculate the detailed free-energy landscape of one full cycle of DNA ``tweezers,'' a simple machine driven by hybridization and strand displacement. We also study other nanomachines as well as processes such as force-induced melting, cruciform formation and the self-assembly of DNA tetrahedra.[4pt] [1] The self-assembly and evolution of homomeric protein complexes Gabriel Villar, et al., Phys. Rev. Lett. 102, 118106 (2009[0pt] [2] Structural and thermodynamic properties of a coarse-grained model of DNA, Thomas E. Ouldridge, Ard A. Louis, Jonathan P.K. Doye, J. Chem. Phys. 134 , 085101 (2011)

  19. Highly specific electronic signal transduction mediated by DNA/metal self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Dentinger, Paul M.; Pathak, Srikant

    2003-11-01

    Highly specific interactions between DNA could potentially be amplified if the DNA interactions were utilized to assemble large scale parts. Fluidic assembly of microsystem parts has the potential for rapid and accurate placement of otherwise difficult to handle pieces. Ideally, each part would have a different chemical interaction that allowed it to interact with the substrate only in specific areas. One easy way to obtain a multiple chemical permutations is to use synthetic DNA oligomers. Si parts were prepared using silicon-on-insulator technology microfabrication techniques. Several surface chemistry protocols were developed to react commercial oligonucleotides to the parts. However, no obvious assembly was achieved. It was thought that small defects on the surface did not allow the microparts to be in close enough proximity for DNA hybridization, and this was. in part, confirmed by interferometry. To assist in the hybridization, plastic, pliable parts were manufactured and a new chemistry was developed. However, assembly was still absent even with the application of force. It is presently thought that one of three mechanisms is preventing the assembly. The surfaces of the two solid substrates can not get in close enough proximity, the surface chemistry lacks sufficient density to keep the parts from separating, or DNA interactions in close proximity on solid substrates are forbidden. These possibilities are discussed in detail.

  20. A DNA-Fullerene Conjugate as a Template for Supramolecular Chromophore Assemblies: Towards DNA-Based Solar Cells.

    Science.gov (United States)

    Ensslen, Philipp; Gärtner, Stefan; Glaser, Konstantin; Colsmann, Alexander; Wagenknecht, Hans-Achim

    2016-01-01

    A fullerene was covalently attached to a (dA)20 template that serves as structural scaffold to self-assemble an ordered and mixed array of ethynyl-pyrene- and ethynyl-Nile-red-nucleoside conjugates. Fluorescence spectroscopy revealed evidence for energy transfer between the two different chromophores. Moreover, fluorescence quenching is significantly enhanced by the attached fullerene in mixed assemblies of different chromophore ratios. This indicates exciton dissociation by electron transfer from the photo-generated exciton on the chromophore stack to the fullerene. The fullerene-DNA-conjugate was integrated as a photo-active layer in solar cells that showed charge-carrier generation in the spectral regime of all three components of the conjugate. This work clearly demonstrates that DNA is suitable as structural element for chromophore assemblies in future organic optoelectronic devices, such as solar cells. PMID:26689149

  1. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA.

    Science.gov (United States)

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-08-19

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated 'CasHRA (Cas9-facilitated Homologous Recombination Assembly)' that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  2. Gold electrode modified by self-assembled monolayers of thiols to determine DNA sequences hybridization

    Indian Academy of Sciences (India)

    Mízia M S Silva; Igor T Cavalcanti; M Fátima Barroso; M Goreti F Sales; Rosa Fireman Dutra

    2010-11-01

    The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.

  3. Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases.

    Science.gov (United States)

    Sagredo, Sandra; Pirzer, Tobias; Aghebat Rafat, Ali; Goetzfried, Marisa A; Moncalian, Gabriel; Simmel, Friedrich C; de la Cruz, Fernando

    2016-03-18

    DNA-binding proteins are promising reagents for the sequence-specific modification of DNA-based nanostructures. Here, we investigate the utility of a series of relaxase proteins-TrwC, TraI, and MobA-for nanofunctionalization. Relaxases are involved in the conjugative transfer of plasmids between bacteria, and bind to their DNA target sites via a covalent phosphotyrosine linkage. We study the binding of the relaxases to two standard DNA origami structures-rodlike six-helix bundles and flat rectangular origami sheets. We find highly orthogonal binding of the proteins with binding yields of 40-50 % per binding site, which is comparable to other functionalization methods. The yields differ for the two origami structures and also depend on the position of the binding sites. Due to their specificity for a single-stranded DNA target, their orthogonality, and their binding properties, relaxases are a uniquely useful addition to the toolbox available for the modification of DNA nanostructures with proteins. PMID:26915475

  4. DNA Synthesis, Assembly and Applications in Synthetic Biology

    OpenAIRE

    Ma, Siying; Tang, Nicholas; Tian, Jingdong

    2012-01-01

    The past couple of years saw exciting new developments in microchip-based gene synthesis technologies. Such technologies hold the potential for significantly increasing the throughput and decreasing the cost of gene synthesis. Together with more efficient enzymatic error correction and genome assembly methods, these new technologies are pushing the field of synthetic biology to a higher level.

  5. Automated and Manual Methods of DNA Extraction for Aspergillus fumigatus and Rhizopus oryzae Analyzed by Quantitative Real-Time PCR▿

    OpenAIRE

    Francesconi, Andrea; Kasai, Miki; Harrington, Susan M.; Beveridge, Mara G; Petraitiene, Ruta; Petraitis, Vidmantas; Schaufele, Robert L.; Walsh, Thomas J.

    2008-01-01

    Quantitative real-time PCR (qPCR) may improve the detection of fungal pathogens. Extraction of DNA from fungal pathogens is fundamental to optimization of qPCR; however, the loss of fungal DNA during the extraction process is a major limitation to molecular diagnostic tools for pathogenic fungi. We therefore studied representative automated and manual extraction methods for Aspergillus fumigatus and Rhizopus oryzae. Both were analyzed by qPCR for their ability to extract DNA from propagules a...

  6. DNA brick self-assembly with an off-lattice potential

    CERN Document Server

    Reinhardt, Aleks

    2016-01-01

    We report Monte Carlo simulations of a simple off-lattice patchy-particle model for DNA `bricks'. We relate the parameters that characterise this model with the binding free energy of pairs of single-stranded DNA molecules. We verify that an off-lattice potential parameterised in this way reproduces much of the behaviour seen with a simpler lattice model we introduced previously, although the relaxation of the geometric constraints leads to a more error-prone self-assembly pathway. We investigate the self-assembly process as a function of the strength of the non-specific interactions. We show that our off-lattice model for DNA bricks results in robust self-assembly into a variety of target structures.

  7. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on the creation and development of an automated robotic manufacturing infrastructure...

  8. Association of DNA with nuclear matrix in in vitro assembled nuclei induced by rDNA from Tetrahymena shanghaiensis in Xenopus egg extracts

    Institute of Scientific and Technical Information of China (English)

    CHENYING; BOZHANG; 等

    1997-01-01

    The nuclei assembled from exogenous DNA or chromatin in egg extracts resemble their in vivo counterparts in many aspects.However,the distribution pattern of DNA in these nuclei remains unknown.We introduced rDNA from the macronuclei of Tetrahymena into Xenopus cellfree extracts to examine the association of specific DNA sequences with nuclear matrix(NM) in the nuclei assembled in vitro.Our previous works showed the 5'NTS(nontranscription sequences) of the rDNA specifically bind to the NM system in the macronuclei.We show now the rDNA could induce chromatin assembly and nuclear formation in Xenopus cell-free system.When we extracted the NM system and compared the binding affinity of different regions of rDNA with the NM system,we found that the 5'NTS still hold their binding affinity with insoluble structure of the assembled nuclei in the estracts of Xenopus eggs.

  9. Metallic Nanostructures Based on Self-Assembling DNA Templates for Studying Optical Phenomena

    Science.gov (United States)

    Pilo-Pais, Mauricio

    DNA origami is a novel self-assembly technique that can be used to form various 2D and 3D objects, and to position matter with nanometer accuracy. It has been used to coordinate the placement of nanoscale objects, both organic and inorganic, to make molecular motor and walkers; and to create optically active nanostructures. In this dissertation, DNA origami templates are used to assemble plasmonic structures. Specifically, engineered Surface Enhanced Raman Scattering (SERS) substrates were fabricated. Gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies exhibited "hot spots" of enhanced electromagnetic field between the nanoparticles. These hot spots significantly enhanced the Raman signal from Raman molecules covalently attached to the assemblies. Control samples with only one nanoparticle per DNA template, which therefore lacked inter-particle hot spots, did not exhibit strong enhancement. Furthermore, Raman molecules were used to map out the hot spots' distribution, as the molecules are photo-damaged when experiencing a threshold electric field. This method opens up the prospect of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.

  10. Stepwise Assembly and Characterization of DNA Linked Two-Color Quantum Dot Clusters.

    Science.gov (United States)

    Coopersmith, Kaitlin; Han, Hyunjoo; Maye, Mathew M

    2015-07-14

    The DNA-mediated self-assembly of multicolor quantum dot (QD) clusters via a stepwise approach is described. The CdSe/ZnS QDs were synthesized and functionalized with an amphiphilic copolymer, followed by ssDNA conjugation. At each functionalization step, the QDs were purified via gradient ultracentrifugation, which was found to remove excess polymer and QD aggregates, allowing for improved conjugation yields and assembly reactivity. The QDs were then assembled and disassembled in a stepwise manner at a ssDNA functionalized magnetic colloid, which provided a convenient way to remove unreacted QDs and ssDNA impurities. After assembly/disassembly, the clusters' optical characteristics were studied by fluorescence spectroscopy and the assembly morphology and stoichiometry was imaged via electron microscopy. The results indicate that a significant amount of QD-to-QD energy transfer occurred in the clusters, which was studied as a function of increasing acceptor-to-donor ratios, resulting in increased QD acceptor emission intensities compared to controls. PMID:26086169

  11. DNA-Origami-Directed Self-Assembly of Discrete Silver-Nanoparticle Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suchetan [Arizona State Univ., Tempe, AZ (United States); Deng, Zhengtao [Arizona State Univ., Tempe, AZ (United States); Ding, Baoquan [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States)

    2010-03-16

    We report a bottom-up method for the fabrication of discrete, well-ordered AgNP nanoarchitectures on self-assembled DNA origami structures of triangular shape by using AgNPs (20 nm in diameter) conjugated with chimeric phosphorothioated DNA (ps-po DNA) as building blocks. Discrete monomeric, dimeric, and trimeric AgNP structures and a AgNP–AuNP hybrid structure could be constructed reliably in high yield. We demonstrate that the center-to-center distance between adjacent AgNPs can be precisely tuned from 94 to 29 nm, whereby the distance distribution is limited by the size distribution of the nanoparticles. The self-assembly of discrete AgNP and AgNP–AuNP nanoarchitectures by using rationally designed DNA templates enabled us to control some of the properties that are essential for hierarchical nanoparticle assembly. These properties include but are not limited to the spatial relationship between the particles and the identity of the particles. The system described herein could potentially be used to gain better insight into particle–particle interactions. Systematic studies with this objective are underway. Although more systematic investigations (e.g. spectroscopic studies combined with theoretical simulation of the assembled structures) are needed to identify the photonic properties of the spatially controlled AgNP architectures, we see no fundamental limitation now to the assembly of target structures.

  12. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Science.gov (United States)

    Sreenivasulu, Gollapudi; Lochbiler, Thomas A.; Panda, Manashi; Srinivasan, Gopalan; Chavez, Ferman A.

    2016-04-01

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO3 (BTO) and 200 nm NiFe2O4 (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  13. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  14. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  15. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    Science.gov (United States)

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  16. Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets

    OpenAIRE

    Hadorn, Maik; Bönzli, Eva; Sørensen, Kristian; Fellermann, Harold; Hotz, Peter Eggenberger; Hanczyc, Martin

    2012-01-01

    Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion...

  17. Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection

    OpenAIRE

    Frey Daniel; Edmondson Sonia; Crone Stephanie; Sauter Marion; Wagen Sandro; Kuchen Melanie; Olieric Natacha; Ostermeier Christian; Steinmetz Michel O; Jaussi Rolf

    2010-01-01

    Abstract Background Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products. Results Our vectors apply positive selection for the insert or negative selection against empty vector molecules and drive strong express...

  18. Self-assembly of hierarchically ordered structures in DNA nanotube systems

    Science.gov (United States)

    Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.

    2016-05-01

    The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable

  19. Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks

    International Nuclear Information System (INIS)

    We report an experimental finding of photoacoustic signal enhancement from finite sized DNA–gold nanoparticle networks. We synthesized DNA-functionalized hollow and solid gold nanospheres (AuNS) to form finite sized networks, which were characterized by means of optical extinction spectroscopy, dynamic light scattering, and scanning electron microscopy in transmission mode. It is shown that the signal amplification scales with network size for networks comprising either hollow or solid AuNS as well as networks consisting of both types of nanoparticles. The laser intensities applied in our multispectral setup (λ = 650 nm, 850 nm, 905 nm) were low enough to maintain the structural integrity of the networks. This reflects that the binding and recognition properties of the temperature-sensitive cross-linking DNA-molecules are retained. (paper)

  20. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Elena Ordoñez

    2013-01-01

    Full Text Available Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. Results. Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL, the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. Conclusion. We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.

  1. Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining*

    OpenAIRE

    Tsai, Chun J.; Chu, Gilbert

    2013-01-01

    Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF int...

  2. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    Science.gov (United States)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  3. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.

    Science.gov (United States)

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  4. From Nano to Macro through Hierarchical Self-Assembly: The DNA Paradigm.

    Science.gov (United States)

    Pfeifer, Wolfgang; Saccà, Barbara

    2016-06-16

    From atoms to molecules and bio-macromolecules, from organelles to cells, tissues, to the whole living system, nature shows us that the formation of complex systems with emergent properties originates from the hierarchical self-assembly of single components in guided bottom-up processes. By using DNA as a fundamental building block with well-known self-recognition properties, scientists have developed design rules and physical-chemical approaches for the fully programmable construction of highly organized structures with nanosized features. This review highlights the basic principles of hierarchical self-assembly in terms of type and number of distinguishable components and their interaction energies. Such general concepts are then applied to DNA-based systems. After a brief overview of the strategies used until now for the construction of individual DNA units, such as DNA tile motifs and origami structures, their self-association into assemblies of higher order is discussed. Particular emphasis is given to the forces involved in the self-assembly process, understanding and rational combination of which might help to coordinate the single elements of hierarchical structures both in space and time, thus advancing our efforts towards the creation of devices that mimic the complexity and functionality of natural systems. PMID:27186937

  5. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Felicie F; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De; Frøhlich, Rikke F; Krüger, Dinna; Bungert, Jörg; Agbandje-McKenna, Mavis; McKenna, Robert; Jensen, Sissel Juul; Veigaard, Christopher; Koch, Jørn; Rubinstein, John L; Guldbrandtsen, Bernt; Hede, Marianne S; Karlsson, Göran; Andersen, Anni H; Pedersen, Jan Skov; Knudsen, Birgitta R

    2008-01-01

     The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates fo...

  6. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA

    International Nuclear Information System (INIS)

    The Lesch-Nyhan (LN) syndrome is a severe X chromosome-linked disease that results from a deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT). The mutations leading to the disease are heterogeneous and frequently arise as de novo events. The authors have identified nucleotide alterations in 15 independently arising HPRT-deficiency cases by direct DNA sequencing of in vitro amplified HPRT cDNA. They also demonstrate that the direct DNA sequence analysis can be automated, further simplifying the detection of new mutations at this locus. The mutations include DNA base substitutions, small DNA deletions, a single DNA base insertion, and errors in RNA splicing. The application of these procedures allows DNA diagnosis and carrier identification by the direct detection of the mutant alleles within individual families affected by LN

  7. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, R.A. (Baylor College of Medicine, Houston, TX (USA)); Nguyen, Phinga (Howard Hughes Medical Institute, Houston, TX (USA)); McBride, L.J.; Koepf, S.M. (Applied Biosystems, Foster City, CA (USA)); Caskey, C.T. (Baylor College of Medicine, Houston, TX (USA) Howard Hughes Medical Institute, Houston, TX (USA))

    1989-03-01

    The Lesch-Nyhan (LN) syndrome is a severe X chromosome-linked disease that results from a deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT). The mutations leading to the disease are heterogeneous and frequently arise as de novo events. The authors have identified nucleotide alterations in 15 independently arising HPRT-deficiency cases by direct DNA sequencing of in vitro amplified HPRT cDNA. They also demonstrate that the direct DNA sequence analysis can be automated, further simplifying the detection of new mutations at this locus. The mutations include DNA base substitutions, small DNA deletions, a single DNA base insertion, and errors in RNA splicing. The application of these procedures allows DNA diagnosis and carrier identification by the direct detection of the mutant alleles within individual families affected by LN.

  8. A route to self-assemble suspended DNA nano-complexes

    Science.gov (United States)

    Lansac, Yves; Degrouard, Jeril; Renouard, Madalena; Toma, Adriana C.; Livolant, Françoise; Raspaud, Eric

    2016-02-01

    Highly charged polyelectrolytes can self-assemble in presence of condensing agents such as multivalent cations, amphiphilic molecules or proteins of opposite charge. Aside precipitation, the formation of soluble micro- and nano-particles has been reported in multiple systems. However a precise control of experimental conditions needed to achieve the desired structures has been so far hampered by the extreme sensitivity of the samples to formulation pathways. Herein we combine experiments and molecular modelling to investigate the detailed microscopic dynamics and the structure of self-assembled hexagonal bundles made of short dsDNA fragments complexed with small basic proteins. We suggest that inhomogeneous mixing conditions are required to form and stabilize charged self-assembled nano-aggregates in large excess of DNA. Our results should help re-interpreting puzzling behaviors reported for a large class of strongly charged polyelectrolyte systems.

  9. A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles.

    Science.gov (United States)

    Garmann, Rees F; Sportsman, Richard; Beren, Christian; Manoharan, Vinothan N; Knobler, Charles M; Gelbart, William M

    2015-06-24

    Using the components of a particularly well-studied plant virus, cowpea chlorotic mottle virus (CCMV), we demonstrate the synthesis of virus-like particles (VLPs) with one end of the packaged RNA extending out of the capsid and into the surrounding solution. This construct breaks the otherwise perfect symmetry of the capsid and provides a straightforward route for monofunctionalizing VLPs using the principles of DNA nanotechnology. It also allows physical manipulation of the packaged RNA, a previously inaccessible part of the viral architecture. Our synthesis does not involve covalent chemistry of any kind; rather, we trigger capsid assembly on a scaffold of viral RNA that is hybridized at one end to a complementary DNA strand. Interaction of CCMV capsid protein with this RNA-DNA template leads to selective packaging of the RNA portion into a well-formed capsid but leaves the hybridized portion poking out of the capsid through a small hole. We show that the nucleic acid protruding from the capsid is capable of binding free DNA strands and DNA-functionalized colloidal particles. Separately, we show that the RNA-DNA scaffold can be used to nucleate virus formation on a DNA-functionalized surface. We believe this self-assembly strategy can be adapted to viruses other than CCMV. PMID:26043403

  10. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR Phase 2 program on the development and demonstration of an automated robotic manufacturing...

  11. Direct Simulation of the Self-Assembly of a Small DNA Origami.

    Science.gov (United States)

    Snodin, Benedict E K; Romano, Flavio; Rovigatti, Lorenzo; Ouldridge, Thomas E; Louis, Ard A; Doye, Jonathan P K

    2016-02-23

    By using oxDNA, a coarse-grained nucleotide-level model of DNA, we are able to directly simulate the self-assembly of a small 384-base-pair origami from single-stranded scaffold and staple strands in solution. In general, we see attachment of new staple strands occurring in parallel, but with cooperativity evident for the binding of the second domain of a staple if the adjacent junction is already partially formed. For a system with exactly one copy of each staple strand, we observe a complete assembly pathway in an intermediate temperature window; at low temperatures successful assembly is prevented by misbonding while at higher temperature the free-energy barriers to assembly become too large for assembly on our simulation time scales. For high-concentration systems involving a large staple strand excess, we never see complete assembly because there are invariably instances where two copies of the same staple both bind to the scaffold, creating a kinetic trap that prevents the complete binding of either staple. This mutual staple blocking could also lead to aggregates of partially formed origamis in real systems, and helps to rationalize certain successful origami design strategies. PMID:26766072

  12. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.

    Science.gov (United States)

    Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo; Bathe, Mark; Shih, William M; Ke, Yonggang

    2016-06-22

    Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries. PMID:27224641

  13. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    Science.gov (United States)

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology. PMID:23272944

  14. Double-degradable responsive self-assembled multivalent arrays-temporary nanoscale recognition between dendrons and DNA

    OpenAIRE

    Barnard, A.; Posocco, P.; Fermeglia, M.; Tschiche, A.; Calderon, Marcelo; Pricl, S.; Smith, D. K.

    2014-01-01

    This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA-this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing...

  15. Performance of heuristic methods driven by chaotic dynamics for ATSP and applications to DNA fragment assembly

    Science.gov (United States)

    Kato, Tomohiro; Hasegawa, Mikio

    Chaotic dynamics has been shown to be effective in improving the performance of combinatorial optimization algorithms. In this paper, the performance of chaotic dynamics in the asymmetric traveling salesman problem (ATSP) is investigated by introducing three types of heuristic solution update methods. Numerical simulation has been carried out to compare its performance with simulated annealing and tabu search; thus, the effectiveness of the approach using chaotic dynamics for driving heuristic methods has been shown. The chaotic method is also evaluated in the case of a combinatorial optimization problem in the real world, which can be solved by the same heuristic operation as that for the ATSP. We apply the chaotic method to the DNA fragment assembly problem, which involves building a DNA sequence from several hundred fragments obtained by the genome sequencer. Our simulation results show that the proposed algorithm using chaotic dynamics in a block shift operation exhibits the best performance for the DNA fragment assembly problem.

  16. Immobilization and release strategies for DNA delivery using carbon nanofiber arrays and self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Peckys, Diana B [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Melechko, Anatoli V [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Simpson, Michael L [University of Tennessee in Knoxville, Knoxville, TN 37996-2200 (United States); McKnight, Timothy E [Measurement Science and Systems Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6006 (United States)], E-mail: peckysdb@ornl.gov

    2009-04-08

    We report a strategy for immobilizing dsDNA (double-stranded DNA) onto vertically aligned carbon nanofibers and subsequently releasing this dsDNA following penetration and residence of these high aspect ratio structures within cells. Gold-coated nanofiber arrays were modified with self-assembled monolayers (SAM) to which reporter dsDNA was covalently and end-specifically bound with or without a cleavable linker. The DNA-modified nanofiber arrays were then used to impale, and thereby transfect, Chinese hamster lung epithelial cells. This mechanical approach enables the transport of bound ligands directly into the cell nucleus and consequently bypasses extracellular and cytosolic degradation. Statistically significant differences were observed between the expression levels from immobilized and releasable DNA, and these are discussed in relation to the distinct accessibility and mode of action of glutathione, an intracellular reducing agent responsible for releasing the bound dsDNA. These results prove for the first time that an end-specifically and covalently SAM-bound DNA can be expressed in cells. They further demonstrate how the choice of immobilization and release methods can impact expression of nanoparticle delivered DNA.

  17. Immobilization and release strategies for DNA delivery using carbon nanofiber arrays and self-assembled monolayers

    International Nuclear Information System (INIS)

    We report a strategy for immobilizing dsDNA (double-stranded DNA) onto vertically aligned carbon nanofibers and subsequently releasing this dsDNA following penetration and residence of these high aspect ratio structures within cells. Gold-coated nanofiber arrays were modified with self-assembled monolayers (SAM) to which reporter dsDNA was covalently and end-specifically bound with or without a cleavable linker. The DNA-modified nanofiber arrays were then used to impale, and thereby transfect, Chinese hamster lung epithelial cells. This mechanical approach enables the transport of bound ligands directly into the cell nucleus and consequently bypasses extracellular and cytosolic degradation. Statistically significant differences were observed between the expression levels from immobilized and releasable DNA, and these are discussed in relation to the distinct accessibility and mode of action of glutathione, an intracellular reducing agent responsible for releasing the bound dsDNA. These results prove for the first time that an end-specifically and covalently SAM-bound DNA can be expressed in cells. They further demonstrate how the choice of immobilization and release methods can impact expression of nanoparticle delivered DNA.

  18. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    Directory of Open Access Journals (Sweden)

    Mentovich Elad D

    2012-05-01

    Full Text Available Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC, which creates an all-organic engineered network.

  19. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    OpenAIRE

    Elena Ordoñez; Laura Rueda; M. Paz Cañadas; Carme Fuster; Vincenzo Cirigliano

    2013-01-01

    Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 15...

  20. Performance verification of the Maxwell 16 Instrument and DNA IQ Reference Sample Kit for automated DNA extraction of known reference samples.

    Science.gov (United States)

    Krnajski, Z; Geering, S; Steadman, S

    2007-12-01

    Advances in automation have been made for a number of processes conducted in the forensic DNA laboratory. However, because most robotic systems are designed for high-throughput laboratories batching large numbers of samples, smaller laboratories are left with a limited number of cost-effective options for employing automation. The Maxwell 16 Instrument and DNA IQ Reference Sample Kit marketed by Promega are designed for rapid, automated purification of DNA extracts from sample sets consisting of sixteen or fewer samples. Because the system is based on DNA capture by paramagnetic particles with maximum binding capacity, it is designed to generate extracts with yield consistency. The studies herein enabled evaluation of STR profile concordance, consistency of yield, and cross-contamination performance for the Maxwell 16 Instrument. Results indicate that the system performs suitably for streamlining the process of extracting known reference samples generally used for forensic DNA analysis and has many advantages in a small or moderate-sized laboratory environment. PMID:25869266

  1. A Real-Time de novo DNA Sequencing Assembly Platform Based on an FPGA Implementation.

    Science.gov (United States)

    Hu, Yuanqi; Georgiou, Pantelis

    2016-01-01

    This paper presents an FPGA based DNA comparison platform which can be run concurrently with the sensing phase of DNA sequencing and shortens the overall time needed for de novo DNA assembly. A hybrid overlap searching algorithm is applied which is scalable and can deal with incremental detection of new bases. To handle the incomplete data set which gradually increases during sequencing time, all-against-all comparisons are broken down into successive window-against-window comparison phases and executed using a novel dynamic suffix comparison algorithm combined with a partitioned dynamic programming method. The complete system has been designed to facilitate parallel processing in hardware, which allows real-time comparison and full scalability as well as a decrease in the number of computations required. A base pair comparison rate of 51.2 G/s is achieved when implemented on an FPGA with successful DNA comparison when using data sets from real genomes. PMID:27045828

  2. CENTRIFUGAL LABTUBE FOR FULLY AUTOMATED DNA EXTRACTION & LAMP AMPLIFICATION BASED ON AN INTEGRATED, LOW-COST HEATING SYSTEM

    OpenAIRE

    Hoehl, Melanie Margarete; Weibert, Michael; Paust, Nils; Zengerle, Roland; Slocum, Alexander H.; Steigert, Juergen

    2013-01-01

    In this paper, we introduce a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA-extraction platform (LabTube). We demonstrate fully automated, fully closed extraction of as little as 100 DNA copies of verotoxin-producing (VTEC) Escherichia coli lysate in water, milk and apple juice in a standard laboratory centrifuge, followed by subsequent automatic LAMP amplification with an overall time-to-result of 1.5hrs. The ...

  3. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Hadorn, M.; Boenzli, E.; Sørensen, Kristian T.;

    2013-01-01

    soft matter assemblies and that the highly sensitive gene-expression machinery remains intact and active during multiple experimental steps. An in silico model recapitulates the experiments performed in vitro and covers additional experimental setups highlighting the parameters that control the DNA...... of giant unilamellar vesicles functionalized with a basic cellular machinery to express green fluorescent protein and specified neighbor-to-neighbor interactions. We show both that the local and programmable DNA pairing rules on the nanoscale are able to direct the microscale vesicles into macroscale...

  4. Interactions between Cytochrome c and DNA Strands Self-Assembled at Gold Electrode

    Directory of Open Access Journals (Sweden)

    Lihua Wang

    2007-02-01

    Full Text Available In this work, we reported the investigation on the interaction between DNAstrands self-assembled at gold electrodes and an electron transfer protein, cytochrome c. Weobserved that cytochrome c exhibited well-defined electrochemistry in both double-strandedand single-stranded DNA films. This suggested that the electron transfer reaction ofcytochrome c arose possibly due to the electron hopping along DNA strands rather thanwiring along the double helix. We also compared the heterogeneous electron transfer rate ofcytochrome c with that of a ruthenium complex, which further confirmed this mechanism.

  5. DNA-based programming of quantum dot valency, self-assembly and luminescence.

    Science.gov (United States)

    Tikhomirov, Grigory; Hoogland, Sjoerd; Lee, P E; Fischer, Armin; Sargent, Edward H; Kelley, Shana O

    2011-08-01

    The electronic and optical properties of colloidal quantum dots, including the wavelengths of light that they can absorb and emit, depend on the size of the quantum dots. These properties have been exploited in a number of applications including optical detection, solar energy harvesting and biological research. Here, we report the self-assembly of quantum dot complexes using cadmium telluride nanocrystals capped with specific sequences of DNA. Quantum dots with between one and five DNA-based binding sites are synthesized and then used as building blocks to create a variety of rationally designed assemblies, including cross-shaped complexes containing three different types of dots. The structure of the complexes is confirmed with transmission electron microscopy, and photophysical studies are used to quantify energy transfer among the constituent components. Through changes in pH, the conformation of the complexes can also be reversibly switched, turning on and off the transfer of energy between the constituent quantum dots. PMID:21743454

  6. An automated image cytometry system for monitoring DNA ploidy and other cell features of radiotherapy and chemotherapy patients

    International Nuclear Information System (INIS)

    DNA content and distribution in cell nuclei were studied in samples of fine-needle aspiration (FNA) from 27 locally advanced breast and head and neck cancers in two going randomized trials that compared accelerated fractionation to standard fractionation radiation in locally advanced breast cancer and head and neck cancer. Two image cytometry methods were compared: a new, fully automated DNA image cytometry system (AIC) and a conventional image cytometry (CIC) system with manual selection, focusing, and segmentation of cells. The results of both techniques were compared on the basis of DNA histogram parameters including DNA index (DI), mean DNA values (MDV), and Auer's DNA histogram patterns. An excellent correlation was achieved between the two imaging techniques in terms of DI (r=0.985, p<0.001) and MDV (r=0.951, p<0.001) as well as between Auer's histogram patterns, where both methods agreed completely. It was concluded in these analyses that the two image cytometry methods were equivalent. However, the AIC offered an advantage by scanning samples in a fully automated way, which represented significant time saving for cytopathologists working with the system, as well as a larger number of cells used in the automated analysis. With the automated image cytometer, 500 relevant cells were collected and analyzed in about 10 minutes, where with the interactive (manual) method, it took typically an hour to collect and analyze only about 250 cells. Seventeen samples were sufficient for flow analysis. Image cytometry and flow cytometry showed good agreement in DI determination; however, three cases reported as diploid by flow cytometry were found to be aneuploid by image cytometry techniques. (author)

  7. Exploring Programmable Self-Assembly in Non-DNA based Molecular Computing

    CERN Document Server

    Terrazas, German; Krasnogor, Natalio

    2013-01-01

    Self-assembly is a phenomenon observed in nature at all scales where autonomous entities build complex structures, without external influences nor centralised master plan. Modelling such entities and programming correct interactions among them is crucial for controlling the manufacture of desired complex structures at the molecular and supramolecular scale. This work focuses on a programmability model for non DNA-based molecules and complex behaviour analysis of their self-assembled conformations. In particular, we look into modelling, programming and simulation of porphyrin molecules self-assembly and apply Kolgomorov complexity-based techniques to classify and assess simulation results in terms of information content. The analysis focuses on phase transition, clustering, variability and parameter discovery which as a whole pave the way to the notion of complex systems programmability.

  8. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    Science.gov (United States)

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers. PMID:25748774

  9. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age

    OpenAIRE

    Marangos, P; Stevense, M.; Niaka, K.; Lagoudaki, M.; Nabti, I.; Jessberger, R.; Carroll, J.

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes fro...

  10. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies.

    Directory of Open Access Journals (Sweden)

    Maxim Kostylev

    Full Text Available Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.

  11. Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Perch-Nielsen, Ivan Ryberg; Rodrigo, Peter John;

    2007-01-01

    We demonstrate how optical trapping and manipulation can be used to assemble microstructures. The microstructures we show being automatically recognized and manipulated are produced using the two-photon polymerization (2PP) technique with submicron resolution. In this work, we show identical shape......-complementary puzzle pieces being manipulated in a fluidic environment forming space-filling tessellations. By implementation of image analysis to detect the puzzle pieces, we developed a system capable of assembling a puzzle with no user interaction required. This allows for automatic gathering of sparsely scattered...

  12. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    Directory of Open Access Journals (Sweden)

    Wu Bai-Lin

    2009-10-01

    patients. Methods and assay sequences are reported in this paper. Conclusion This automated process allows laboratories to discover DNA variations in a short time and at low cost.

  13. Fluorescently Sensing of DNA Triplex Assembly Using an Isoquinoline Alkaloid as Selector, Stabilizer, Inducer, and Switch-On Emitter.

    Science.gov (United States)

    Hu, Yuehua; Lin, Fan; Wu, Tao; Wang, Ying; Zhou, Xiao-Shun; Shao, Yong

    2016-07-20

    DNA triplex assembly has attracted a variety of interest in the regulation of genetic expression, drug screening, molecular switches, and sensors. However, these achievements are essentially dependent on the formation and stability of the triplex assembly. Herein, the recognition of DNA triplex assembly with various isoquinoline alkaloids was investigated. We found that natural chelerythrine (CHE) exhibits the highest selectivity in recognizing the triplex structure. The DNA triplex stability is substantially increased upon CHE binding, as opposed to the invariance in the stability of the duplex counterpart. CHE also favors the assembly of the triplex-forming oligonucleotide (TFO) with its duplex counterpart. The triplex binding switches CHE to a strong fluorescent emitter, which suggests CHE as a useful probe in following triplex assembly. As a unique triplex selector, inducer, and emitter, CHE successfully reports the wide pH- and metal-ion-dependent tunability of the triplex nanoswitch in a label-free manner. PMID:27252050

  14. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  15. A Rapid, Cost-Effective Method of Assembly and Purification of Synthetic DNA Probes >100 bp

    Science.gov (United States)

    Jensen, Michael A.; Jauregui, Lauren; Davis, Ronald W.

    2012-01-01

    Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (12) could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes. PMID:22493688

  16. Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery.

    Science.gov (United States)

    Oyane, Ayako; Araki, Hiroko; Nakamura, Maki; Shimizu, Yoshiki; Shubhra, Quazi T H; Ito, Atsuo; Tsurushima, Hideo

    2016-05-01

    Surface-mediated gene delivery systems have many potential applications in tissue engineering. We recently fabricated an assembly consisting of DNA-amorphous calcium phosphate (DNA-ACP) nanocomposite spheres on a polymer substrate via coprecipitation in a labile supersaturated calcium phosphate (CaP) solution and demonstrated the assembly's high gene delivery efficacy. In this study, we conducted a detailed investigation of the coprecipitation process in solution and revealed that the negatively charged DNA molecules were immobilized in the ACP spheres during the initial stage of coprecipitation and functioned as both sphere-dispersing and size-regulating agents. As a result, the DNA-ACP nanocomposites grew into size-regulated submicrospheres in solution and assembled onto the substrate via gravity sedimentation. The assembled nanocomposite spheres were chemically anchored to the substrate surface through an intermediate layer of CaP-based nanoparticles that was formed heterogeneously at the substrate surface. The coprecipitation conditions, i.e., coprecipitation time and Ca and P concentrations in solution, greatly affected the state of assembly of the nanocomposite spheres, thereby influencing the gene expression level of the cells cultured on the substrate. Increasing the number density and decreasing the size of the nanocomposite spheres did not always increase the assembly's gene delivery efficacy (per surface area of the substrate) due to adverse effects on cellular viability. As demonstrated herein, controlling the coprecipitation conditions is important for designing a cell-stimulating and biocompatible scaffold surface consisting of an assembly of DNA-ACP nanocomposite spheres. PMID:26896659

  17. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  18. Application of X-ray digital radiography to online automated inspection of interior assembly structures of complex products

    International Nuclear Information System (INIS)

    The paper proposes an application of X-ray digital radiography to online automated inspection and recognition of the interior assembly structures of complex products by means of the multiple views techniques. First, a vertical hybrid projection function (VHPF) is proposed as the recognition feature of a two-dimensional image. VHPF combines an integral projection function and a standard deviation function so that it can reflect the mean and the variance of the pixels in the vertical direction in an image. Secondly, by considering the different importance grades of objects inside the product and the independence of these objects along the circumference, the paper presents a hierarchical recognition method and uses a neural network system to speed up the computation process with parallel operations. Thirdly, using the whole-orientation features of one standard swatch and by extracting its maximal system of linear independence as the feature basis, the issue of blind areas for recognition is resolved. Based on this approach, the first domestic X-ray multi-view digital detection system has been developed and applied to the online detection of objects containing complicated assembly structures.

  19. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  20. Automated assembly of hingeless 90° out-of-plane microstructures

    Science.gov (United States)

    Tsang, S. H.; Sameoto, D.; Foulds, I. G.; Johnstone, R. W.; Parameswaran, M.

    2007-07-01

    A novel design for hingeless out-of-plane microstructures is presented. These structures can be assembled to 90° by a single-point actuation, which can be provided by, for example, a microelectronics wirebonder or a microprober station. Both wirebonders and microprober stations are commonly available to microfabrication facilities, and therefore the assembly method described here introduces a practical and economical approach to the creation of out-of-plane structures. The microstructure designs can be used in many types of microfabrication processes, and in particular have been fabricated using both PolyMUMPs and an SU-8 technology developed at Simon Fraser University. In addition to the fabricated devices, we will present the results of finite element analysis (FEA). Also reported here are tests for positional repeatability and reliability.

  1. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.

    Science.gov (United States)

    Zhang, Zhong; Zhang, Sha; Lin, Mengshi

    2014-05-01

    This study aimed at developing a sensitive and reliable SERS substrate by assembling DNA-embedded Au-Ag core-shell nanoparticles (NPs) on silicon slides. First, a monolayer of well separated DNA-functionalized Au NPs (40 nm) was decorated on (3-aminopropyl)triethoxysilane modified silicon slides. The DNA-embedded Au-Ag core-shell NPs were assembled on the 40 nm Au-DNA NPs to form a core-satellite structure through DNA hybridization. Using 4-MBA as a Raman dye, the SERS performance of the substrates was evaluated after being cleaned by low oxygen and argon plasma. The Raman intensity of the assembly using DNA-embedded Au-Ag core-shell NPs was 8-10 times higher than the intensity of the assembly using Au NPs as satellites. In addition, the signal-to-noise ratio of the assembly was 2.6 times higher than that of a commercial substrate (Klarite™) when a 785 nm laser was used. The SERS enhancements of the assembled substrates were 2.2 to 2.8 times higher than the Klarite when an acquisition time of 5 s was used at an excitation wavelength of 633 nm. The assembled substrates also show a good spot-to-spot and substrate-to-substrate reproducibility at the excitation wavelengths of 633 and 785 nm. These results demonstrate that the fabrication process is simple and cost-effective for assembling DNA-embedded Au-Ag core-shell NPs on silicon slides that can be used as a reliable SERS substrate. PMID:24627887

  2. LOW-COST BACTERIAL DETECTION SYSTEM FOR FOOD SAFETY BASED ON AUTOMATED DNA EXTRACTION, AMPLIFICATION AND READOUT

    OpenAIRE

    Hoehl, Melanie Margarete; Bocholt, Eva Schulte; Karippai, Nobu; Zengerle, Roland; Steigert, Juergen; Slocum, Alexander H.

    2013-01-01

    To ensure food, medical and environmental safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification and amplification. It consists of a disposable, centrifugally-driven DNA purification platform (LabTube) and the subsequent amplification in a low-cost UV/vis-reader (LabReader). In this paper, food safety was chosen as the first sample application with pathogenic verotoxin-producing (VTEC) E...

  3. Self-assembly of three-dimensional prestressed tensegrity structures from DNA

    Science.gov (United States)

    Liedl, Tim; Högberg, Björn; Tytell, Jessica; Ingber, Donald E.; Shih, William M.

    2010-07-01

    Tensegrity, or tensional integrity, is a property of a structure indicating a reliance on a balance between components that are either in pure compression or pure tension for stability. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture. Here, we report nanoscale, prestressed, three-dimensional tensegrity structures in which rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables. Our DNA tensegrity structures can self-assemble against forces up to 14 pN, which is twice the stall force of powerful molecular motors such as kinesin or myosin. The forces generated by this molecular prestressing mechanism can be used to bend the DNA bundles or to actuate the entire structure through enzymatic cleavage at specific sites. In addition to being building blocks for nanostructures, tensile structural elements made of single-stranded DNA could be used to study molecular forces, cellular mechanotransduction and other fundamental biological processes.

  4. Self-assembly of Escherichia coli MutL and its complexes with DNA.

    Science.gov (United States)

    Niedziela-Majka, Anita; Maluf, Nasib K; Antony, Edwin; Lohman, Timothy M

    2011-09-20

    The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly. PMID:21793594

  5. Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA

    OpenAIRE

    Graham, James E.; Sherratt, David J.; Szczelkun, Mark D.

    2010-01-01

    FtsK is a homohexameric, RecA-like dsDNA translocase that plays a key role in bacterial chromosome segregation. The FtsK regulatory γ-subdomain determines directionality of translocation through its interaction with specific 8 base pair chromosomal sequences [(KOPS); FtsK Orienting / Polarizing Sequence(s)] that are cooriented with the direction of replication in the chromosome. We use millisecond-resolution ensemble translocation and ATPase assays to analyze the assembly, initiation, and tra...

  6. Computer-aided design of nano-filter construction using DNA self-assembly

    OpenAIRE

    Mohammadzadegan Reza; Mohabatkar Hassan

    2006-01-01

    AbstractComputer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules.

  7. Structure of a Bacterial Virus DNA-Injection Protein Complex Reveals a Decameric Assembly with a Constricted Molecular Channel.

    Science.gov (United States)

    Zhao, Haiyan; Speir, Jeffrey A; Matsui, Tsutomu; Lin, Zihan; Liang, Lingfei; Lynn, Anna Y; Varnado, Brittany; Weiss, Thomas M; Tang, Liang

    2016-01-01

    The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. The assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. The gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device. PMID:26882199

  8. Structure of a Bacterial Virus DNA-Injection Protein Complex Reveals a Decameric Assembly with a Constricted Molecular Channel.

    Directory of Open Access Journals (Sweden)

    Haiyan Zhao

    Full Text Available The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. The assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. The gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device.

  9. Methodology on Investigating the Influences of Automated Material Handling System in Automotive Assembly Process

    Science.gov (United States)

    Saffar, Seha; Azni Jafar, Fairul; Jamaludin, Zamberi

    2016-02-01

    A case study was selected as a method to collect data in actual industry situation. The study aimed to assess the influences of automated material handling system in automotive industry by proposing a new design of integration system through simulation, and analyze the significant effect and influence of the system. The method approach tool will be CAD Software (Delmia & Quest). The process of preliminary data gathering in phase 1 will collect all data related from actual industry situation. It is expected to produce a guideline and limitation in designing a new integration system later. In phase 2, an idea or concept of design will be done by using 10 principles of design consideration for manufacturing. A full factorial design will be used as design of experiment in order to analyze the performance measured of the integration system with the current system in case study. From the result of the experiment, an ANOVA analysis will be done to study the performance measured. Thus, it is expected that influences can be seen from the improvement made in the system.

  10. Assembly and electrical characterization of DNA-wrapped carbon nanotube devices.

    Energy Technology Data Exchange (ETDEWEB)

    Dentinger, Paul M.; Morales, Alfredo Martin; Pathak, Srikant; Hunter, Lucas Lawrence; Leonard, Francois Leonard; Jones, Frank Eugene; Talin, Albert Alec

    2004-06-01

    In this article we report on the electrical characteristics of single wall carbon nanotubes (SWCNTs) wrapped with single-stranded deoxyribonucleic acid (ssDNA). We fabricate these devices using a solution-based method whereby SWCNTs are dispersed in aqueous solution using 20-mer ssDNA, and are placed across pairs of Au electrodes using alternating current dielectrophoresis (ACDEP). In addition to current voltage characteristics, we evaluate our devices using scanning electron microscopy and atomic force microscopy. We find that ACDEP with ssDNA based suspensions results in individual SWCNTs bridging metal electrodes, free of carbon debris, while similar devices prepared using the Triton X-100 surfactant yield nanotube bundles, and frequently have carbon debris attached to the nanotubes. Furthermore, the presence of ssDNA around the nanotubes does not appear to appreciably affect the overall electrical characteristics of the devices. In addition to comparing the properties of several devices prepared on nominally clean Au electrodes, we also investigate the effects of self-assembled monolayers of C{sub 14}H{sub 29}-SH alkyl thiol and benzyl mercaptan on the adhesion and electrical transport across the metal/SWCNT/metal devices.

  11. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA.

    Science.gov (United States)

    Barnard, Anna; Posocco, Paola; Fermeglia, Maurizio; Tschiche, Ariane; Calderon, Marcelo; Pricl, Sabrina; Smith, David K

    2014-01-21

    This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets. PMID:24263553

  12. Ultrasensitive visual detection of DNA with tunable dynamic range by using unmodified gold nanoparticles and target catalyzed hairpin assembly amplification.

    Science.gov (United States)

    Yun, Wen; Jiang, Jiaolai; Cai, Dingzhou; Zhao, Pengxiang; Liao, Junsheng; Sang, Ge

    2016-03-15

    A simple and novel strategy for enzyme-free ultrasensitive DNA detection platform has been present here based on gold nanoparticles (AuNPs) colorimetry and target catalyzed hairpin assembly amplification. Three hairpin auxiliary probes (H1, H2, and H3) are designed with signal-stranded DNA (ssDNA) sticky ends which could effectively stabilize AuNPs against salt-induced aggregation. However, a cascade of assembly steps with H1, H2, and H3 are activated in the presence of the target DNA, followed by a disassembly step in which H3 displaces the target DNA from the complex, freeing the target DNA to catalyze the self-assembly of additional branched junctions. The formed branched junction consisted with dsDNA is stiffer, and cannot prevent salt-induced AuNPs aggregation, corresponding to a red-to-blue color change. The result can be read out by naked eyes or UV-vis spectrometer. The detection limit of this method is 0.1 pM by naked eyes, and this result is comparable or even better than enzyme or hybridization chain reaction (HCR) based amplification AuNPs colorimetric assays. Moreover, the dynamic range of sensor could be tuned by using different concentration of hairpins. Importantly, this strategy provides a versatile ultrasensitive detection platform for the DNA and related filed targets including metal ions, small molecules, proteins, cells et al. by combining with specific DNAzymes and aptamers. PMID:26448518

  13. Self-assembly of size-controlled liposomes on DNA nanotemplates.

    Science.gov (United States)

    Yang, Yang; Wang, Jing; Shigematsu, Hideki; Xu, Weiming; Shih, William M; Rothman, James E; Lin, Chenxiang

    2016-05-01

    Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision. PMID:27102682

  14. Self-assembly of size-controlled liposomes on DNA nanotemplates

    Science.gov (United States)

    Yang, Yang; Wang, Jing; Shigematsu, Hideki; Xu, Weiming; Shih, William M.; Rothman, James E.; Lin, Chenxiang

    2016-05-01

    Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision.

  15. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.

    Science.gov (United States)

    Marangos, Petros; Stevense, Michelle; Niaka, Konstantina; Lagoudaki, Michaela; Nabti, Ibtissem; Jessberger, Rolf; Carroll, John

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes from aged mice. These data lead us to propose that the SAC is a major gatekeeper preventing the progression of oocytes harbouring DNA damage. The SAC therefore acts to integrate protection against both aneuploidy and DNA damage by preventing production of abnormal mature oocytes and subsequent embryos. Finally, we suggest escaping this DNA damage checkpoint in maternal ageing may be one of the causes of increased chromosome anomalies in oocytes and embryos from older mothers. PMID:26522734

  16. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure.

    Science.gov (United States)

    Nayak, Ashok K; Mishra, Aseem; Jena, Bhabani S; Mishra, Barada K; Subudhi, Umakanta

    2016-01-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La(3+) ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949

  17. Nanoengineering a single-molecule mechanical switch using DNA self-assembly

    International Nuclear Information System (INIS)

    The ability to manipulate and observe single biological molecules has led to both fundamental scientific discoveries and new methods in nanoscale engineering. A common challenge in many single-molecule experiments is reliably linking molecules to surfaces, and identifying their interactions. We have met this challenge by nanoengineering a novel DNA-based linker that behaves as a force-activated switch, providing a molecular signature that can eliminate errant data arising from non-specific and multiple interactions. By integrating a receptor and ligand into a single piece of DNA using DNA self-assembly, a single tether can be positively identified by force–extension behavior, and receptor–ligand unbinding easily identified by a sudden increase in tether length. Additionally, under proper conditions the exact same pair of molecules can be repeatedly bound and unbound. Our approach is simple, versatile and modular, and can be easily implemented using standard commercial reagents and laboratory equipment. In addition to improving the reliability and accuracy of force measurements, this single-molecule mechanical switch paves the way for high-throughput serial measurements, single-molecule on-rate studies, and investigations of population heterogeneity.

  18. Nanoengineering a single-molecule mechanical switch using DNA self-assembly

    Science.gov (United States)

    Halvorsen, Ken; Schaak, Diane; Wong, Wesley P.

    2011-12-01

    The ability to manipulate and observe single biological molecules has led to both fundamental scientific discoveries and new methods in nanoscale engineering. A common challenge in many single-molecule experiments is reliably linking molecules to surfaces, and identifying their interactions. We have met this challenge by nanoengineering a novel DNA-based linker that behaves as a force-activated switch, providing a molecular signature that can eliminate errant data arising from non-specific and multiple interactions. By integrating a receptor and ligand into a single piece of DNA using DNA self-assembly, a single tether can be positively identified by force-extension behavior, and receptor-ligand unbinding easily identified by a sudden increase in tether length. Additionally, under proper conditions the exact same pair of molecules can be repeatedly bound and unbound. Our approach is simple, versatile and modular, and can be easily implemented using standard commercial reagents and laboratory equipment. In addition to improving the reliability and accuracy of force measurements, this single-molecule mechanical switch paves the way for high-throughput serial measurements, single-molecule on-rate studies, and investigations of population heterogeneity.

  19. Automated extraction of DNA from blood and PCR setup using a Tecan Freedom EVO liquid handler for forensic genetic STR typing of reference samples

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune;

    2011-01-01

    We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO...... automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid...... 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the...

  20. Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly.

    Science.gov (United States)

    Hjelm, Rachel M E; Garcia, Kristen E; Babanova, Sofia; Artyushkova, Kateryna; Matanovic, Ivana; Banta, Scott; Atanassov, Plamen

    2016-05-01

    The development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells, photo-bio energy harvesting devices, nano-biosensors and bio-actuators and other bio-nano-interfacial architectures. In this study we demonstrate a scaffold design utilizing carbon nanotubes, deoxyribose nucleic acid (DNA) and a specific DNA binding transcription factor that allows for directed immobilization of a single enzyme. Functionalized carbon nanotubes were covalently bonded to a diazonium salt modified gold surface through carbodiimide chemistry creating a brush-type nanotube alignment. The aligned nanotubes created a highly ordered structure with high surface area that allowed for the attachment of a protein assembly through a designed DNA scaffold. The enzyme immobilization was controlled by a zinc finger (ZNF) protein domain that binds to a specific dsDNA sequence. ZNF 268 was genetically fused to the small laccase (SLAC) from Streptomyces coelicolor, an enzyme belonging to the family of multi-copper oxidases, and used to demonstrate the applicability of the developed approach. Analytical techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and enzymatic activity analysis, allowed characterization at each stage of development of the bio-nano architecture. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26751397

  1. Controlling DNA Bundle Size and Spatial Arrangement in Self-assembled Arrays on Superhydrophobic Surface

    Institute of Scientific and Technical Information of China (English)

    Gabriele Ciasca; Luca Businaro; Marco De Spirito; Massimiliano Papi; Valentina Palmieri; Michela Chiarpotto; Simone Di Claudio; Adele De Ninno; Ennio Giovine; Gaetano Campi; Annamaria Gerardino

    2015-01-01

    The use of superhydrophobic surfaces (SHSs) is now emerging as an attractive platform for the realization of one-dimensional (1D) nanostructures with potential applications in many nanotechnological and biotechnological fields. To this purpose, a strict control of the nanostructures size and their spatial arrangement is highly required. However, these parameters may be strongly dependent on the complex evaporation dynamics of the sessile droplet on the SHS. In this work, we investigated the effect of the evaporation dynamics on the size and the spatial arrangement of self-assembled 1D DNA bundles. Our results reveal that different arrangements and bundle size distributions may occur depending on droplet evaporation stage. These results contribute to elucidate the formation mechanism of 1D nanostructures on SHSs.

  2. Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking.

    Science.gov (United States)

    Abdallah, Hatem O; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Sha, Ruojie; Fox, Keith R; Brown, Tom; Rusling, David A; Mao, Chengde; Seeman, Nadrian C

    2016-06-28

    The tensegrity triangle is a robust DNA motif that can self-assemble to generate macroscopic three-dimensional crystals. However, the stability of these crystals is dependent on the high ionic conditions used for crystal growth. Here we demonstrate that a triplex-forming oligonucleotide can be used to direct the specific intercalation, and subsequent photo-cross-linking, of 4,5',8-trimethylpsoralen to single or multiple loci within or between the tiles of the crystal. Cross-linking between the tiles of the crystal improves their thermal stability. Such an approach is likely to facilitate the removal of crystals from their mother liquor and may prove useful for applications that require greater crystal stability. PMID:27265774

  3. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays.

    Science.gov (United States)

    Drmanac, Radoje; Sparks, Andrew B; Callow, Matthew J; Halpern, Aaron L; Burns, Norman L; Kermani, Bahram G; Carnevali, Paolo; Nazarenko, Igor; Nilsen, Geoffrey B; Yeung, George; Dahl, Fredrik; Fernandez, Andres; Staker, Bryan; Pant, Krishna P; Baccash, Jonathan; Borcherding, Adam P; Brownley, Anushka; Cedeno, Ryan; Chen, Linsu; Chernikoff, Dan; Cheung, Alex; Chirita, Razvan; Curson, Benjamin; Ebert, Jessica C; Hacker, Coleen R; Hartlage, Robert; Hauser, Brian; Huang, Steve; Jiang, Yuan; Karpinchyk, Vitali; Koenig, Mark; Kong, Calvin; Landers, Tom; Le, Catherine; Liu, Jia; McBride, Celeste E; Morenzoni, Matt; Morey, Robert E; Mutch, Karl; Perazich, Helena; Perry, Kimberly; Peters, Brock A; Peterson, Joe; Pethiyagoda, Charit L; Pothuraju, Kaliprasad; Richter, Claudia; Rosenbaum, Abraham M; Roy, Shaunak; Shafto, Jay; Sharanhovich, Uladzislau; Shannon, Karen W; Sheppy, Conrad G; Sun, Michel; Thakuria, Joseph V; Tran, Anne; Vu, Dylan; Zaranek, Alexander Wait; Wu, Xiaodi; Drmanac, Snezana; Oliphant, Arnold R; Banyai, William C; Martin, Bruce; Ballinger, Dennis G; Church, George M; Reid, Clifford A

    2010-01-01

    Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of $4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies. PMID:19892942

  4. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb in length, 75% were flanked on one or both sides by (often unrelated segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85% semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13% regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22, 13 kb (at 7q11, and 1 kb (at 16q24 fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.

  5. Structural insight into DNA-assembled oligochromophores: crystallographic analysis of pyrene- and phenanthrene-modified DNA in complex with BpuJI endonuclease

    Science.gov (United States)

    Probst, Markus; Aeschimann, Walter; Chau, Thi T.H.; Langenegger, Simon M.; Stocker, Achim; Häner, Robert

    2016-01-01

    The use of the DNA duplex as a supramolecular scaffold is an established approach for the assembly of chromophore aggregates. In the absence of detailed structural insight, the characterization of thus assembled oligochromophores is, today, largely based on solution-phase spectroscopy. Here, we describe the crystal structures of three DNA-organized chromophore aggregates. DNA hybrids containing non-nucleosidic pyrene and phenanthrene building blocks were co-crystallized with the recently described binding domain of the restriction enzyme BpuJI. Crystal structures of these complexes were determined at 2.7, 1.9 and 1.6 Å resolutions. The structures reveal aromatic stacking interactions between pyrene and/or phenanthrene units within the framework of the B-DNA duplex. In hybrids containing a single modification in each DNA strand near the end of the duplex, the two polyaromatic hydrocarbons are engaged in a face-to-face stacking orientation. Due to crystal packing and steric effects, the terminal GC base pair is disrupted in all three crystal structures, which results in a non-perfect stacking arrangement of the aromatic chromophores in two of the structures. In a hybrid containing a total of three pyrenes, crystal lattice induced end-to-end stacking of individual DNA duplexes leads to the formation of an extended aromatic π-stack containing four co-axially arranged pyrenes. The aromatic planes of the stacked pyrenes are oriented in a parallel way. The study demonstrates the value of co-crystallization of chemically modified DNA with the recombinant binding domain of the restriction enzyme BpuJI for obtaining detailed structural insight into DNA-assembled oligochromophores. PMID:27422870

  6. Preparatory methods for DNA hydrolysis, cytochemistry, immunocytochemistry and ploidy analysis. Their application to automated and routine diagnostic cytopathology.

    Science.gov (United States)

    Husain, O A; Watts, K C

    1987-06-01

    A review is presented of some methods used to prepare cytologic specimens for analytical and/or automated studies, with the steps of the procedures detailed in appendices. The preparation of the cell monolayers required for optimal automated cell image analysis and classification, e.g., by the Cytoscan 110, is discussed, as is the preparation of poly-L-lysine-coated slides used in the production of monolayered specimens. These monolayers, which can be prepared from a variety of specimens, are also useful for cytochemical and immunocytochemical studies and DNA ploidy analysis. For DNA analysis, a modified gallocyanin chrome alum staining procedure is described as a stoichiometric alternative to the time-consuming Feulgen reaction. The hydrolysis technique required by the latter method is also detailed. The freeze-fracturing technique for the enhancement of monoclonal antibody immunocytochemical staining of detectable antigens is described, along with an indirect immunoalkaline phosphatase staining method. The use of enzyme cytochemical reactions for glucose 6 phosphate dehydrogenase and lysosomal naphthylamidase is also presented. PMID:3620061

  7. The absence of tertiary interactions in a self-assembled DNA crystal structure.

    Science.gov (United States)

    Nguyen, Nam; Birktoft, Jens J; Sha, Ruojie; Wang, Tong; Zheng, Jianping; Constantinou, Pamela E; Ginell, Stephan L; Chen, Yi; Mao, Chengde; Seeman, Nadrian C

    2012-04-01

    DNA is a highly effective molecule for controlling nanometer-scale structure. The convenience of using DNA lies in the programmability of Watson-Crick base-paired secondary interactions, useful both to design branched molecular motifs and to connect them through sticky-ended cohesion. Recently, the tensegrity triangle motif has been used to self-assemble three-dimensional crystals whose structures have been determined; sticky ends were reported to be the only intermolecular cohesive elements in those crystals. A recent communication in this journal suggested that tertiary interactions between phosphates and cytosine N(4) groups are responsible for intermolecular cohesion in these crystals, in addition to the secondary and covalent interactions programmed into the motif. To resolve this issue, we report experiments challenging this contention. Gel electrophoresis demonstrates that the tensegrity triangle exists in conditions where cytosine-PO(4) tertiary interactions seem ineffective. Furthermore, we have crystallized a tensegrity triangle using a junction lacking the cytosine suggested for involvement in tertiary interactions. The unit cell is isomorphous with that of a tensegrity triangle crystal reported earlier. This structure has been solved by molecular replacement and refined. The data presented here leave no doubt that the tensegrity triangle crystal structures reported earlier depend only on base pairing and covalent interactions for their formation. PMID:22434713

  8. Hierarchical Assembly of Plasmonic Nanostructures using Virus Capsid Scaffolds on DNA Origami Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Debin; Capehart, Stacy L.; Pal, Suchetan; Liu, Minghui; Zhang, Lei; Schuck, P. J.; Liu, Yan; Yan, Hao; Francis, Matthew B.; De Yoreo, James J.

    2014-07-07

    Plasmonic nanoarchitectures using biological scaffolds have shown the potential to attain controllable plasmonic fluorescence via precise spatial arrangement of fluorophores and plasmonic antennae. However, previous studies report a predominance of fluorescence quenching for small metal nanoparticles (less than ~60 nm) due to their small scattering cross-sections. In this work, we report the design and performance of fluorescent plasmonic structures composed of fluorophore-modified virus capsids and gold nanoparticles (AuNPs) assembled on DNA origami tiles. The virus capsid creates a scaffold for control over the three dimensional arrangement of the fluorophores, whereas the DNA origami tile provides precise control over the distance between the capsid and the AuNP. Using finite-difference time-domain (FDTD) numerical simulations and multimodal single-particle imaging measurements, we show that the judicial design of these structures places the dye molecules near the hot spot of the AuNP. This effectively increases the fluorescence intensity in the quenching regime of the AuNP, with an enhancement factor that increases with increasing AuNP size. This strategy of using biological scaffolds to control fluorescence paves the way for exploring the parameters that determine plasmonic fluorescence. It may lead to a better understanding of the antenna effects of photon absorption and emission, enabling the construction of multicomponent plasmonic systems.

  9. Self-assembling DNA-peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide.

    Science.gov (United States)

    Gour, Nidhi; Kedracki, Dawid; Safir, Ilyès; Ngo, Kien Xuan; Vebert-Nardin, Corinne

    2012-06-01

    For the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release. PMID:22534735

  10. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently......, several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...

  11. Detection of Onchocerca volvulus in Latin American black flies for pool screening PCR using high-throughput automated DNA isolation for transmission surveillance.

    Science.gov (United States)

    Rodríguez-Pérez, Mario A; Gopal, Hemavathi; Adeleke, Monsuru Adebayo; De Luna-Santillana, Erick Jesús; Gurrola-Reyes, J Natividad; Guo, Xianwu

    2013-11-01

    The posttreatment entomological surveillance (ES) of onchocerciasis in Latin America requires quite large numbers of flies to be examined for parasite infection to prove that the control strategies have worked and that the infection is on the path of elimination. Here, we report a high-throughput automated DNA isolation of Onchocerca volvulus for PCR using a major Latin American black fly vector of onchocerciasis. The sensitivity and relative effectiveness of silica-coated paramagnetic beads was evaluated in comparison with phenol chloroform (PC) method which is known as the gold standard of DNA extraction for ES in Latin America. The automated method was optimized in the laboratory and validated in the field to detect parasite DNA in Simulium ochraceum sensu lato flies in comparison with PC. The optimization of the automated method showed that it is sensitive to detect O. volvulus with a pool size of 100 flies as compared with PC which utilizes 50 flies pool size. The validation of the automated method in comparison with PC in an endemic community showed that 5/67 and 3/134 heads pools were positive for the two methods, respectively. There was no statistical variation (P < 0.05) in the estimation of transmission indices generated by automated method when compared with PC method. The fact that the automated method is sensitive to pool size up to 100 confers advantage over PC method and can, therefore, be employed in large-scale ES of onchocerciasis transmission in endemic areas of Latin America. PMID:24030195

  12. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  13. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    Science.gov (United States)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  14. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA.

    Science.gov (United States)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account. PMID:27421397

  15. Single-stranded DNA detection by solvent-induced assemblies of a metallo-peptide-based complex

    Science.gov (United States)

    Das, Priyadip; Reches, Meital

    2016-05-01

    DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications.DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications. Electronic supplementary information (ESI) available: Peptide and receptor synthesis, characterization of the final and intermediate products, experimental details and additional figures including SEM, TEM, DLS, XRD, UV analysis and AFM topographic analysis. See DOI: 10.1039/c5nr07714a

  16. Detection of DNA Aneuploidy in Exfoliated Airway Epithelia Cells of Sputum Specimens by the Automated Image Cytometry and Its Clinical Value in the Identification of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    杨健; 周宜开

    2004-01-01

    To evaluate the value of detecton of DNA aneuploidy in exfoliated airway epithelia cells of sputum specimens by the automated image cytometry for the identification of lung cancer, 100patients were divided into patient group (50 patients with lung cancer)and control group (30 patients with tuberculosis and 20 healthy people). Sputum was obtained for the quantitative analysis of DNA content of exfoliated airway epithelial cells with the automated image cytometry, together with the examinations of brush cytology and conventional sputum cytology. Our results showed that DNA aneuploidy (DI>2.5 or 5c) was found in 20 out of 50 sputum samples of lung cancer, 1 out of 30 sputum samples from tuberculosis patients, and none of 20 sputum samples from healthy people. The positive rates of conventional sputum cytology and brush cytology were 16 % and 32 %,which was lower than that of DNA aneuploidy detection by the automated image cytometry (P<0.01 ,P>0.05). Our study showed that automated image cytometry, which uses DNA aneuploidy as a marker for tumor, can detect the malignant cells in sputum samples of lung cancer and it is a sensitive and specific method serving as a complement for the diagnosis of lung cancer.

  17. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA.

    Science.gov (United States)

    Ryan, Valorie T; Grimwade, Julia E; Camara, Johanna E; Crooke, Elliott; Leonard, Alan C

    2004-03-01

    Initiator DnaA and DNA bending proteins, Fis and IHF, comprise prereplication complexes (pre-RC) that unwind the Escherichia coli chromosome's origin of replication, oriC. Loss of either Fis or IHF perturbs synchronous initiation from oriC copies in rapidly growing E. coli. Based on dimethylsulphate (DMS) footprinting of purified proteins, we observed a dynamic interplay among Fis, IHF and DnaA on supercoiled oriC templates. Low levels of Fis inhibited oriC unwinding by blocking both IHF and DnaA binding to low affinity sites. As the concentration of DnaA was increased, Fis repression was relieved and IHF rapidly redistributed DnaA to all unfilled binding sites on oriC. This behaviour in vitro is analogous to observed assembly of pre-RC in synchronized E. coli. We propose that as new DnaA is synthesized in E. coli, opposing activities of Fis and IHF ensure an abrupt transition from a repressed complex with unfilled weak affinity DnaA binding sites to a completely loaded unwound complex, increasing both the precision of DNA replication timing and initiation synchrony. PMID:14982629

  18. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Lalit [University under Sect. 3 of UGC Act – 1956, Elite Status and Center of Excellence – Govt. of Maharashtra, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (India); Tyagi, Monica [Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Gupta Lab, Cancer Research Institute (India); Patel, Ketan [University under Sect. 3 of UGC Act – 1956, Elite Status and Center of Excellence – Govt. of Maharashtra, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (India); Gupta, Sanjay [Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Gupta Lab, Cancer Research Institute (India); Vavia, Pradeep, E-mail: vaviapradeep@yahoo.com [University under Sect. 3 of UGC Act – 1956, Elite Status and Center of Excellence – Govt. of Maharashtra, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (India)

    2014-12-15

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP–PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX–CMP) via hydrazone and confirmed by FTIR and {sup 1}H-NMR. In vitro release studies of pH-sensitive DOX–CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP–PAA NCs or DOX–CMP–PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP–PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP–PAA NCs at 1:2 weight ratio. CMP–PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX–CMP–PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  19. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    International Nuclear Information System (INIS)

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP–PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX–CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX–CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP–PAA NCs or DOX–CMP–PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP–PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP–PAA NCs at 1:2 weight ratio. CMP–PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX–CMP–PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery

  20. A rapid method for sequencing of rRNA gene(s) amplified by polymerase chain reaction using an automated DNA sequencer

    OpenAIRE

    Dwivedi, P.P.; Patel, B.K.C.; Rees, G.N.; Ollivier, Bernard

    1996-01-01

    A method for DNA sequencing of ribosomal RNA (rRNA) genes, amplified by polymerase chain reaction (PCR), using internal primers, designed on the basis of conserved regions of rRNA genes for determining a near complete sequence (99%) of the gene using an automated DNA sequencer (Applied Biosystem Incorporation, USA) is described. The procedure is extremely rapid as cloning of the gene is not required for sequence determination. In addition time consuming steps such as ethanol precipitation and...

  1. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, Rec...

  2. Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection

    Directory of Open Access Journals (Sweden)

    Frey Daniel

    2010-08-01

    Full Text Available Abstract Background Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products. Results Our vectors apply positive selection for the insert or negative selection against empty vector molecules and drive strong expression of target proteins in E.coli cells. Variable tags are available both in N-terminal or C-terminal position. A newly developed β-lactamase (ΔW290 selection cassette contains a segment inside the β-lactamase open reading frame encoding a stretch of hydrophilic amino acids that result in a T7 promoter when back-translated. This position of the promoter permits positive selection and attenuated expression of fusion proteins with C-terminal tags. We have tested eight vectors by inserting six target sequences of variable length, provenience and function. The target proteins were cloned, expressed and detected using an automated Tecan Freedom Evo II liquid handling work station. Only two colonies had to be picked to score with 85% correct inserts while 80% of those were positive in expression tests. Conclusions Our results establish co-transformation and positive/negative selection cloning in conjunction with the provided vectors and selection cassettes as an automatable alternative to commercialized high-throughput cloning systems like Gateway® or ligase-independent cloning (LIC .

  3. Theoretical foundations of the automated designing of assembly drawings of rolls of wheel rolling vertical type mills

    OpenAIRE

    Снітко, С. О.; Яковченко, О. В.; Івлєва, Н. І.

    2014-01-01

    Automated designing inker, pressure and conical rolls, as well as centering and driving rollers of modern wheel-rolling mills of vertical type required for the development of new highly effective profile of railway wheels is actual scientific and technical problem. In this paper, first proposed the theoretical foundations of the automated design drawings of rolls of vertical type wheel-rolling mills. The designing of circuits of pressure and inker rolls and calculation values technological ga...

  4. DNA组装新方法的研究进展%Perspective on the novel methods for DNA assembly

    Institute of Scientific and Technical Information of China (English)

    李雷; 芦银华; 姜卫红

    2013-01-01

    In 2010,the artificial synthesis of Mycoplasma mycoides triggers the new era of synthetic biology.This great breakthrough is achieved mainly thanks to the powerful DNA recombinant ability of yeast.In recent years,except for the methods used for large DNA assembly on the basis of in vivo homologous recombination,various different DNA assembly methods in vitro,based on the concept of DNA ligation or polymerization,have also been developed,such as Biobrick\\BglBrick,SLIC and Gibson one-step assembly.Application of these new technologies has greatly accelerated the construction of synthetic part libraries,biosynthetic pathway and even microbial chromosomes.In fact,all DNA assembly methods are derived from the combinations of DNA joining and organizational schemes.This review describes the brief introduction of the main in vivo and in vitro DNA assembly protocols developed so for,which will benefit the construction of different types of synthetic functional devices and also biosynthetic pathways in the research of synthetic biology in China.%2010年,蕈状支原体Mycoplasma mycoides的人工合成,迎来了合成生物学的崭新时代.这种突破性的进展主要得益于酵母自身强大的DNA体内重组能力.近几年来,除了利用体内重组的DNA大片段拼接技术,基于连接或聚合思想的不同尺度的DNA体外组装方法也相继出现,如Biobrick\\Bglbrick、SLIC与Gibson等温一步法等,这些方法的应用加快了合成生物学功能元件库、生物合成途径乃至微生物染色体的人工构建.事实上,目前所建立的各种DNA组装方法,均是由DNA分子拼接理念(包括两分子衔接思想与多片段组装模式)衍生而来.文中将在介绍DNA组装基本理念的基础上,对体内、体外主要的DNA组装方法进行简要梳理,希望为不同类型的合成生物学功能器件及生物合成途径的构造提供参考与借鉴.

  5. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    Science.gov (United States)

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-01

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery. PMID:26943244

  6. Comparative Evaluation of a Commercially Available Automated System for Extraction of Viral DNA from Whole Blood: Application to Monitoring of Epstein-Barr Virus and Cytomegalovirus Load ▿

    OpenAIRE

    Pillet, Sylvie; Bourlet, Thomas; Pozzetto, Bruno

    2009-01-01

    The NucliSENS easyMAG automated system was compared to the column-based Qiagen method for Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA extraction from whole blood before viral load determination using the corresponding R-gene amplification kits. Both extraction techniques exhibited a total agreement of 81.3% for EBV and 87.2% for CMV.

  7. Correlation of the UV-induced mutational spectra and the DNA damage distribution of the human HPRT gene: Automating the analysis

    International Nuclear Information System (INIS)

    Automated DNA sequencers can be readily adapted for various types of sequence-based nucleic acid analysis: more recently it was determined the distribution of UV photoproducts in the E. coli laci gene using techniques developed for automated fluorescence-based analysis. We have been working to improve the automated approach of damage distribution. Our current method is more rigorous. We have new software that integrates the area under the individual peaks, rather than measuring the height of the curve. In addition, we now employ an internal standard. The analysis can also be partially automated. Detection limits for both major types of UV-photoproducts (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) are reported. The UV-induced damage distribution in the hprt gene is compared to the mutational spectra in human and rodents cells

  8. DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif.

    Science.gov (United States)

    Greive, Sandra J; Fung, Herman K H; Chechik, Maria; Jenkins, Huw T; Weitzel, Stephen E; Aguiar, Pedro M; Brentnall, Andrew S; Glousieau, Matthieu; Gladyshev, Grigory V; Potts, Jennifer R; Antson, Alfred A

    2016-01-29

    The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses. PMID:26673721

  9. Self-Assembly of Arbitrary Shapes with RNA and DNA tiles (extended abstract)

    CERN Document Server

    Demaine, Erik D; Schweller, Robert T; Summers, Scott M

    2010-01-01

    Staged self-assembly with RNA removal is a model of tile-based algorithmic self-assembly that was introduced by Abel, Benbernou, Damian, Demaine, Demaine, Flatland, Kominers and Schweller (Shape Replication through Self-Assembly and RNase Enzymes, SODA 2010) and is a model that allows for the periodic removal of all tiles in a given assembly that belong to a specially designated group of (RNA) tiles. In this paper, we study the self-assembly of arbitrary shapes in staged assembly systems with RNA removal. We analyze the performance of our assembly systems with respect to their tile complexity, stage complexity as well as the scale factor, connectivity and addressability of the uniquely produced final assembly.

  10. Electrochemistry of nucleic acids and proteins. 2. Self-assembled monolayers of thiolated DNA at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil

    Lańsk-Olsztyn, 2009. s. 1. [III Summer School. 06.09.2009-18.09.2009, Lańsk-Olsztyn] R&D Projects: GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040507 Keywords : thiolated DNA electroactivity * self-assembled monolayers Subject RIV: BO - Biophysics

  11. Comparison of automated nucleic acid extraction methods for the detection of cytomegalovirus DNA in fluids and tissues

    Directory of Open Access Journals (Sweden)

    Jesse J. Waggoner

    2014-04-01

    Full Text Available Testing for cytomegalovirus (CMV DNA is increasingly being used for specimen types other than plasma or whole blood. However, few studies have investigated the performance of different nucleic acid extraction protocols in such specimens. In this study, CMV extraction using the Cell-free 1000 and Pathogen Complex 400 protocols on the QIAsymphony Sample Processing (SP system were compared using bronchoalveolar lavage fluid (BAL, tissue samples, and urine. The QIAsymphonyAssay Set-up (AS system was used to assemble reactions using artus CMV PCR reagents and amplification was carried out on the Rotor-Gene Q. Samples from 93 patients previously tested for CMV DNA and negative samples spiked with CMV AD-169 were used to evaluate assay performance. The Pathogen Complex 400 protocol yielded the following results: BAL, sensitivity 100% (33/33, specificity 87% (20/23; tissue, sensitivity 100% (25/25, specificity 100% (20/20; urine, sensitivity 100% (21/21, specificity 100% (20/20. Cell-free 1000 extraction gave comparable results for BAL and tissue, however, for urine, the sensitivity was 86% (18/21 and specimen quantitation was inaccurate. Comparative studies of different extraction protocols and DNA detection methods in body fluids and tissues are needed, as assays optimized for blood or plasma will not necessarily perform well on other specimen types.

  12. Automated extraction of DNA from blood and PCR setup using a Tecan Freedom EVO liquid handler for forensic genetic STR typing of reference samples.

    Science.gov (United States)

    Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels

    2011-04-01

    We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. PMID:21609694

  13. Ultrasensitive Lipopolysaccharides Detection Based on Doxorubicin Conjugated N-(Aminobutyl)-N-(ethylisoluminol) as Electrochemiluminescence Indicator and Self-Assembled Tetrahedron DNA Dendrimers as Nanocarriers.

    Science.gov (United States)

    Xie, Shunbi; Dong, Yongwang; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2016-05-17

    The preparation of self-assembled DNA nanostructure with different sizes and shapes has been one of the most promising research areas in recent years, while the application of these DNA nanostructures in biosensors is far from fully developed. Here, we presented a novel carrier system to construct an electrochemiluminescence (ECL) aptasensor for ultrasensitive determination of lipopolysaccharides (LPS) on the basis of self-assembled tetrahedron DNA dendrimers. Doxorubicin (Dox), a well-known intercalator of double stranded DNA (dsDNA), was conjugated with the ECL luminophore of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) to form a new type of ECL indicators (Dox-ABEI), which could noncovalently attach to dsDNA through intercalation. Based on this property, self-assembled tetrahedron DNA dendrimers were employed as an efficient nanocarrier to achieve a high loading efficiency for Dox-ABEI with significantly amplified ECL signal output. Streptavidin (SA) and biotin, a typical ligand-receptor pair, has been chosen to anchor the tetrahedron DNA dendrimers on the electrode surface. Moreover, by converting LPS content into DNA output, catalyzed hairpin assembly (CHA) target recycling signal amplification strategy was also adopted to enhance the sensitivity of the ECL aptasensor. With combining the loading power of the tetrahedron DNA dendrimers for ECL indicators, the inherent high sensitivity of ECL technique and target recycling for signal amplification, the proposed strategy showed a detection limit of 0.18 fg/mL for LPS. PMID:27087505

  14. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    Science.gov (United States)

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents. PMID:27008186

  15. Phase 2 of the array automated assembly task for the low-cost Silicon Solar Array Project. Third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Wihl, M.

    1978-07-01

    The results of the continuing work done on the feasibility of manufacturing photovoltaic solar modules in a future automated production facility are documented. During this quarter, the verification of metallization and junction formation were completed, and the verification of interconnection and encapsulation of cells into modules was started.

  16. ExSPAnder: a universal repeat resolver for DNA fragment assembly

    OpenAIRE

    Prjibelski, Andrey D.; Vasilinetc, Irina; Bankevich, Anton; Gurevich, Alexey; Krivosheeva, Tatiana; Nurk, Sergey; Pham, Son; Korobeynikov, Anton; Lapidus, Alla; Pevzner, Pavel A.

    2014-01-01

    Next-generation sequencing (NGS) technologies have raised a challenging de novo genome assembly problem that is further amplified in recently emerged single-cell sequencing projects. While various NGS assemblers can use information from several libraries of read-pairs, most of them were originally developed for a single library and do not fully benefit from multiple libraries. Moreover, most assemblers assume uniform read coverage, condition that does not hold for single-cell projects where u...

  17. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J.; Birktoft, J; Yi, C; Tong, W; Ruojie, S; Constantinou, P; Ginell, S; Chenge, M; Seeman, N

    2009-01-01

    We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter1. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends2. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so3; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4?Angstroms resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle4. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.

  18. DNA-nanoparticle assemblies go organic : Macroscopic polymeric materials with nanosized features

    NARCIS (Netherlands)

    Mentovich, Elad D.; Livanov, Konstantin; Prusty, Deepak K.; Sowwan, Mukules; Richter, Shachar

    2012-01-01

    Background: One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can b

  19. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    OpenAIRE

    Mentovich Elad D; Livanov Konstantin; Prusty Deepak K; Sowwan Mukules; Richter Shachar

    2012-01-01

    Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materi...

  20. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    Science.gov (United States)

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-01

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA

  1. Mathematical modelling of the automated FADU assay for the quantification of DNA strand breaks and their repair in human peripheral mononuclear blood cells

    International Nuclear Information System (INIS)

    Cells continuously undergo DNA damage from exogenous agents like irradiation or genotoxic chemicals or from endogenous radicals produced by normal cellular metabolic activities. DNA strand breaks are one of the most common genotoxic lesions and they can also arise as intermediates of DNA repair activity. Unrepaired DNA damage can lead to genomic instability, which can massively compromise the health status of organisms. Therefore it is important to measure and quantify DNA damage and its repair. We have previously published an automated method for measuring DNA strand breaks based on fluorimetric detection of alkaline DNA unwinding [1], and here we present a mathematical model of the FADU assay, which enables to an analytic expression for the relation between measured fluorescence and the number of strand breaks. Assessment of the formation and also the repair of DNA strand breaks is a crucial functional parameter to investigate genotoxicity in living cells. A reliable and convenient method to quantify DNA strand breakage is therefore of significant importance for a wide variety of scientific fields, e.g. toxicology, pharmacology, epidemiology and medical sciences

  2. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA.

    Science.gov (United States)

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J; Nitiss, Karin C; Nitiss, John L; Hanakahi, Leslyn A

    2015-06-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ. PMID:25841101

  3. DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection

    Science.gov (United States)

    Seow, Nianjia; Tan, Yen Nee; Yung, Lin-Yue Lanry; Su, Xiaodi

    2015-12-01

    We have developed a unique DNA-assembled gold nanoparticles (AuNPs) dimer for dynamic light scattering (DLS) sensing of transcription factors, exemplified by estrogen receptor (ER) that binds specifically to a double-stranded (ds) DNA sequence containing estrogen response element (ERE). Here, ERE sequence is incorporated into the DNA linkers to bridge the AuNPs dimer for ER binding. Coupled with DLS, this AuNP dimer-based DLS detection system gave distinct readout of a single ‘complex peak’ in the presence of the target molecule (i.e., ER). This unique signature marked the first time that such nanostructures can be used to study transcription factor-DNA interactions, which DLS alone cannot do. This was also unlike previously reported AuNP-DLS assays that gave random and broad distribution of particles size upon target binding. In addition, the ERE-containing AuNP dimers could also suppress the light-scattering signal from the unbound proteins and other interfering factors (e.g., buffer background), and has potential for sensitive detection of target proteins in complex biological samples such as cell lysates. In short, the as-developed AuNP dimer probe coupled with DLS is a simple (mix and test), rapid (readout in ~5 min) and sensitive (low nM levels of ER) platform to detect sequence-specific protein-DNA binding event.

  4. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  5. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. PMID:27034378

  6. A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes.

    Science.gov (United States)

    Lee, Ernest Y; Lee, Calvin K; Schmidt, Nathan W; Jin, Fan; Lande, Roberto; Curk, Tine; Frenkel, Daan; Dobnikar, Jure; Gilliet, Michel; Wong, Gerard C L

    2016-06-01

    We examine how the interferon production of plasmacytoid dendritic cells is amplified by the self-assembly of liquid-crystalline antimicrobial peptide/DNA complexes. These specialized dendritic cells are important for host defense because they quickly release large quantities of type I interferons in response to infection. However, their aberrant activation is also correlated with autoimmune diseases such as psoriasis and lupus. In this review, we will describe how polyelectrolyte self-assembly and the statistical mechanics of multivalent interactions contribute to this process. In a more general compass, we provide an interesting conceptual corrective to the common notion in molecular biology of a dichotomy between specific interactions and non-specific interactions, and show examples where one can construct exquisitely specific interactions using non-specific interactions. PMID:26956527

  7. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    Science.gov (United States)

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. PMID:26995284

  8. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures

    OpenAIRE

    Zhao, Chao; Qu, Konggang; Xu, Can; Ren, Jinsong; Qu, Xiaogang

    2011-01-01

    As a promising strategy for artificially control of gene expression, reversible assembly of nanomaterials and DNA nanomachine, DNA triplex formation has received much attention. Carbon nanotubes as gene and drug delivery vector or as ‘building blocks’ in nano/microelectronic devices have been successfully explored. Therefore, studies on triplex DNA-based carbon nanotube hybrid materials are important for development of smart nanomaterials and for gene therapy. In this report, a small molecule...

  9. MUTATIONS THAT PROBE THE COOPERATIVE ASSEMBLY OF O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE (AGT) COMPLEXES†

    OpenAIRE

    Adams, Claire A.; Fried, Michael G.

    2011-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts present in DNA that has been exposed to alkylating agents. AGT binds DNA cooperatively and models of cooperative complexes predict that residues 1–7 of one protein molecule and 163–169 of a neighboring protein are closely juxtaposed. To test these models we used directed mutagenesis to substitute triplets of alanine for triplets of native residues across these two sequences. Six of eight d...

  10. Modified Genetic Algorithm for DNA Sequence Assembly by Shotgun and Hybridization Sequencing Techniques

    OpenAIRE

    Prof.Narayan Kumar Sahu; Prof.Somesh Dewangan; Prof.Akash Wanjari

    2012-01-01

    Since the advent of rapid DNA sequencing methods in 1976, scientists have had the problem of inferring DNA sequences from sequenced fragments. Shotgun sequencing is a well-established biological and computational method used in practice. Many conventional algorithms for shotgun sequencing are based on the notion of pair wise fragment overlap. While shotgun sequencing infers a DNA sequence given the sequences of overlapping fragments, a recent and complementary method, called sequencing by hy...

  11. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    OpenAIRE

    Mastroianni, Alexander

    2009-01-01

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral sym...

  12. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    OpenAIRE

    Mastroianni, Alexander; Claridge, Shelley; Alivisatos, A. Paul

    2009-01-01

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmet...

  13. Assembly of DNA curtains using hydrogen silsesquioxane as a barrier to lipid diffusion

    OpenAIRE

    Fazio, T. A.; Lee, Ja Yil; Wind, S. J.; Greene, E.C.

    2012-01-01

    We have established a single-molecule imaging experimental platform called “DNA curtains” in which DNA molecules tethered to a lipid bilayer are organized into patterns at nanofabricated metallic barriers on the surface of a microfluidic sample chamber. This technology has wide applications for real-time single-molecule imaging of protein-nucleic acid interactions. Here, we demonstrate that DNA curtains can also be made from hydrogen silsesquioxane (HSQ). HSQ offers important advantages over ...

  14. Single-step DNA immobilization on antifouling self-assembled monolayers covalently bound to silicon (111).

    Science.gov (United States)

    Böcking, Till; Kilian, Kristopher A; Gaus, Katharina; Gooding, J Justin

    2006-04-11

    Hydrosilylation of alkenes with epoxide-terminated tri(ethylene oxide) moieties on Si-H surfaces yields homogeneous monolayers for the efficient coupling of biomolecules. The wetting properties of the epoxide-functionalized surface allow for the spotting of solutions of biomolecules, making the surface amenable to microarraying. Immobilization of thiolated DNA was achieved in a single step to fabricate biorecognition interfaces showing the hybridization of complementary DNA at low concentrations and negligible binding of noncomplementary DNA. PMID:16584219

  15. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Oleg [Center for Functional Nanomaterials

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard

  16. DNA Triplexes-Guided Assembly of G-Quadruplexes for Constructing Label-free Fluorescent Logic Gates.

    Science.gov (United States)

    Xu, Lijun; Hong, Shanni; Shen, Xiaoqiang; Zhou, Lu; Wang, Jine; Zhang, Jianye; Pei, Renjun

    2016-07-01

    Assembly of G-quadruplexes guided by DNA triplexes in a controlled manner is achieved for the first time. The folding of triplex sequences in acidic conditions brings two separated guanine-rich sequences together and subsequently a G-quadruplex structure is formed in the presence of K(+) . Based on this novel platform, label-free fluorescent logic gates, such as AND, INHIBIT, and NOR, are constructed with ions as input and the fluorescence of a G-quadruplex-specific fluorescent probe NMM as output. PMID:27224871

  17. Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies

    OpenAIRE

    Lars Feuk; MacDonald, Jeffrey R; Terence Tang; Carson, Andrew R.; Martin Li; Girish Rao; Razi Khaja; Stephen W Scherer

    2005-01-01

    With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of i...

  18. Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal

    CERN Document Server

    Reinhardt, Aleks; Romano, Flavio; Doye, Jonathan P K

    2016-01-01

    We use Monte Carlo simulations and free-energy techniques to show that binary solutions of penta- and hexavalent two-dimensional patchy particles can form thermodynamically stable quasicrystals even at very narrow patch widths, provided their patch interactions are chosen in an appropriate way. Such patchy particles can be thought of as a coarse-grained representation of DNA multi-arm `star' motifs, which can be chosen to bond with one another very specifically by tuning the DNA sequences of the protruding arms. We explore several possible design strategies and conclude that DNA star tiles that are designed to interact with one another in a specific but not overly constrained way could potentially be used to construct soft quasicrystals in experiment. We verify that such star tiles can form stable dodecagonal motifs using oxDNA, a realistic coarse-grained model of DNA.

  19. Assembly of DNA curtains using hydrogen silsesquioxane as a barrier to lipid diffusion.

    Science.gov (United States)

    Fazio, T A; Lee, Ja Yil; Wind, S J; Greene, E C

    2012-09-18

    We have established a single-molecule imaging experimental platform called "DNA curtains" in which DNA molecules tethered to a lipid bilayer are organized into patterns at nanofabricated metallic barriers on the surface of a microfluidic sample chamber. This technology has wide applications for real-time single-molecule imaging of protein-nucleic acid interactions. Here, we demonstrate that DNA curtains can also be made from hydrogen silsesquioxane (HSQ). HSQ offers important advantages over metallic barriers because it can be lithographically patterned directly onto fused silica slides without any requirement for further processing steps, thereby offering the potential for rapid prototype development and/or scale up for manufacturing. PMID:22946619

  20. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    International Nuclear Information System (INIS)

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)]2+ (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)]2+ is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)]2+ through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs

  1. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  2. XTile: An Error-Correction Package for DNA Self-Assembly

    CERN Document Server

    Chaurasia, Anshul; Jain, Prateek; Gupta, Manish K

    2009-01-01

    Self assembly is a process by which supramolecular species form spontaneously from their components. This process is ubiquitous throughout the life chemistry and is central to biological information processing. It has been predicted that in future self assembly will become an important engineering discipline by combining the fields of bio molecular computation, nano technology and medicine. However error control is a key challenge in realizing the potential of self assembly. Recently many authors have proposed several combinatorial error correction schemes to control errors which have a close analogy with the coding theory such as Winfree s proofreading scheme and its generalizations by Chen and Goel and compact scheme of Reif, Sahu and Yin. In this work, we present an error correction computational tool XTile that can be used to create input files to the Xgrow simulator of Winfree by providing the design logic of the tiles and it also allows the user to apply proofreading, snake and compact error correction ...

  3. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency

    OpenAIRE

    Benčina, Mojca; Hodnik, Vesna; Mori, Jerneja; Koprivnjak, Tomaž; Gaber, Rok; Tomšič, Nejc; Turnšek, Jernej; Lebar, Tina; Conrado, Robert J.; Jerala, Roman; Glavnik, Vesna; Avbelj, Monika; Vovk, Irena; Anderluh, Gregor

    2015-01-01

    Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli. This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domai...

  4. Assembly of Helicobacter pylori initiation complex is determined by sequence-specific and topology-sensitive DnaA-oriC interactions.

    Science.gov (United States)

    Donczew, Rafał; Mielke, Thorsten; Jaworski, Paweł; Zakrzewska-Czerwińska, Jolanta; Zawilak-Pawlik, Anna

    2014-07-29

    In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2-DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator-origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori. PMID:24862285

  5. Generation of porcine reproductive and respiratory syndrome virus by in vitro assembly of viral genomic cDNA fragments.

    Science.gov (United States)

    Suhardiman, Maman; Kramyu, Jarin; Narkpuk, Jaraspim; Jongkaewwattana, Anan; Wanasen, Nanchaya

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent for a swine disease affecting the pig industry worldwide. Infection with PRRSV leads to reproductive complications, respiratory illness, and weak immunity to secondary infections. To better control PRRSV infection, novel approaches for generating control measures are critically needed. Here, in vitro Gibson assembly (GA) of viral genomic cDNA fragments was tested for its use as a quick and simple method to recover infectious PRRSV in cell culture. GA involves the activities of T5-exonuclease, Phusion polymerase, and Taq ligase to join overlapping cDNA fragments in an isothermal condition. Four overlapping cDNA fragments covering the entire PRRSV genome and one vector fragment were used to create a plasmid capable of expressing the PRRSV genome. The assembled product was used to transfect a co-culture of 293T and MARC-145 cells. Supernatants from the transfected cells were then passaged onto MARC-145 cells to rescue infectious virus particles. Verification and characterization of the recovered virus confirmed that the GA protocol generated infectious PRRSV that had similar characteristics to the parental virus. This approach was then tested for the generation of a chimeric virus. By replacing one of the four genomic fragments with that of another virus strain, a chimeric virus was successfully recovered via GA. In conclusion, this study describes for the first time the use of GA as a simple, yet powerful tool for generating infectious PRRSV needed for studying PRRSV biology and developing novel vaccines. PMID:25300804

  6. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including...

  7. Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation

    Science.gov (United States)

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-05-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA-silica composite films exhibited strong optical activity at 295 nm and in the range of 400-800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy.

  8. DNA in Nanoscale Electronics

    Science.gov (United States)

    Slinker, Jason

    2012-10-01

    DNA, the quintessential molecule of life, possesses a number of attractive properties for use in nanoscale circuits. Charge transport (CT) through DNA itself is of both fundamental and practical interest. Fundamentally, DNA has a unique configuration of π-stacked bases in a well ordered, double helical structure. Given its unparalleled importance to life processes and its arrangement of conjugated subunits, DNA has been a compelling target of conductivity studies. In addition, further understanding of DNA CT will elucidate the biological implications of this process and advance its use in sensing technologies. We have investigated the fundamentals of DNA CT by measuring the electrochemistry of DNA monolayers under biologically-relevant conditions. We have uncovered both fundamental kinetic parameters to distinguish between competing models of operation as well as the practical implications of DNA CT for sensing. Furthermore, we are leveraging our studies of DNA conductivity for the manufacture of nanoscale circuits. We are investigating the electrical properties and self-assembly of DNA nanowires containing artificial base pair surrogates, which can be prepared through low cost and high throughput automated DNA synthesis. This unique and economically viable approach will establish a new paradigm for the scalable manufacture of nanoscale semiconductor devices.

  9. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding.

    Science.gov (United States)

    Persil, Ozgül; Santai, Catherine T; Jain, Swapan S; Hud, Nicholas V

    2004-07-21

    Molecules that reversibly bind DNA and trigger the formation of non-Watson-Crick secondary structures would be useful in the design of dynamic DNA nanostructures and as potential leads for new therapeutic agents. We demonstrate that coralyne, a small crescent-shaped molecule, promotes the formation of a duplex secondary structure from homo-adenine oligonucleotides. AFM studies reveal that the staggered alignment of homo-adenine oligonucleotides upon coralyne binding produces polymers of micrometers in length, but only 2 nm in height. A DNA duplex was also studied that contained eight A.A mismatches between two flanking 7-bp Watson-Crick helices. CD spectra confirm that the multiple A.A mismatches of this duplex bind coralyne in manner similar to that of homo-adenine oligonucleotides. Furthermore, the melting temperature of this hybrid duplex increases by 13 degrees C upon coralyne binding. These observations illustrate that the helical structure of the homo-adenine-coralyne duplex is compatible with the B-form DNA helix. PMID:15250704

  10. Photoligation of self-assembled DNA constructs containing anthracene-functionalized 2'-amino-LNA monomers

    DEFF Research Database (Denmark)

    Pasternak, Karol; Pasternak, Anna; Gupta, Pankaj;

    2011-01-01

    Efficient synthesis of a novel anthracene-functionalized 2'-amino-LNA phosphoramidite derivative is described together with its incorporation into oligodeoxynucleotides. Two DNA strands with the novel 2'-N-anthracenylmethyl-2'-amino-LNA monomers can be effectively cross-linked by photoligation at...

  11. Self-assembled monolayers at electrodes in DNA and protein analysis

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Ostatná, Veronika; Dorčák, Vlastimil; Trefulka, Mojmír

    Dublin, 2007. s. 0-20. [5th Spring Meeting of the International Society of Electrochemistry. 01.05.2007-04.05.2007, Dublin] Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * nanocrystals * osmium Subject RIV: BO - Biophysics

  12. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  13. Label-free and amplified electrogenerated chemiluminescence biosensing method for the determination of DNA methyltransferase activity using signal reagent-assembled graphene oxide

    International Nuclear Information System (INIS)

    Highlights: • Label-free ECL biosensing method for DNA MTase was developed. • The ECL biosensing method is based on Ru(phen)32+-assembled graphene oxide served as an ECL signal compound. • The biosensing method showed high sensitivity. - Abstract: A novel label-free electrogenerated chemiluminescence (ECL) biosensing method for the determination of DNA methyltransferase (MTase) activity was developed on base of enzyme-linkage reactions and tris(1, 10-phenanthroline) ruthenium-assembled graphene oxide (GO) served as an ECL signal compound. The ECL biosensing electrode was fabricated by self-assembling 5′-thiol modified hairpin-capture DNA probe containing methylation recognition site 5′-GATC-3′ on the surface of a gold electrode. When DNA adenine methylation (Dam) MTase and S-adenosyl-L-methionine were introduced, all adenine residues within 5′-GATC-3′ of hairpin-capture DNA probe on the biosensing electrode were methylated. After the methylated biosensing electrode was treated by the methylation-sensitive restriction endonuclease Dpn I, the methylated adenines were cleaved, methylation-induced scission of hairpin-capture DNA probe would displace the hairpin section and remain the “capture DNA probe” section on the gold electrode, then a long ssDNA was immobilized via the partial hybridization reaction between long ssDNA and hairpin-capture DNA probe remained section, the more binding site allow tris(1, 10-phenanthroline) ruthenium-assembled GO to be more bound to the long ssDNA on the electrode surface through both hydrophobic and π–π stacking interaction, in conjunction with the generation of a increased ECL signal. The ECL intensity versus the concentration of Dam MTase was linear in the range from 0.02 unit/mL to 10 unit/mL. The detection limit was 0.01 unit/mL. This work demonstrates that using the different affinities of GO for ssDNA and dsDNA for the fabrication of the label-free ECL biosensing method for DNA MTase activity is

  14. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection.

    Science.gov (United States)

    Gu, Jijin; Wang, Xiao; Jiang, Xinyi; Chen, Yanzuo; Chen, Liangcen; Fang, Xiaoling; Sha, Xianyi

    2012-01-01

    Biomaterials coated polymer/DNA complexes are developed as an efficient non-viral gene delivery system. It is able to circumvent the changes of various biophysical properties of the biomaterials and the corresponding polymer/DNA nanoparticles with covalent linkage. In the present study, we introduced pH-sensitive carboxymethyl poly (l-histidine) (CM-PLH) and poly (β-amino ester) (PbAE) as functional biomaterials to form CM-PLH/PbAE/DNA core-shell ternary complexes system based on electrostatically adsorbed coatings for gene efficient delivery and transfection. The preparation of the complexes was performed self-assembly in 25 mm sodium acetate buffer solution at pH 5.2. The complexes kept stable nano-size, behaving good condensation capacity and low toxicity, even provided a higher transfection efficiency than the binary complexes (PbAE/DNA without CM-PLH) and transfected up to (89.6 ± 4.45) % in HEK293 and (57.1 ± 2.10) % in B16-F10 in vitro. The ternary complexes significantly enhanced their cellular uptake and endosomal escape which were proved by the results that the complexes could evade the endosomal lumen and localize in the nucleus of treated cells visualized under Fluorescence Confocal Microscopy (FCM). The aforementioned results indicated that CM-PLH with pH-sensitive imidazole groups played an important role in enhancing the endosomal escape and transfection efficiency. The in vivo gene transfection confirmed that the ternary complexes with pGL3-promoter as led to effectively deposit at the tumor site by the EPR effect and shown 4 fold higher luciferase expression in B16-F10 tumor than the binary complexes. Consequently, CM-PLH/PbAE/DNA ternary complexes system exhibited significant improvements in transfection efficiency in comparison with non-coated PbAE/DNA both in vitro and in vivo, highlighting their functional prospect. Our approach and the gene delivery system fabrication could potentially be useful for effective gene delivery and therapies to

  15. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl

    2010-09-28

    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  16. DNA bases assembled on the Au(110)/electrolyte interface: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Salvatore, Princia; Nazmutdinov, Renat R.; Ulstrup, Jens;

    2015-01-01

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional......, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures...... of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy...

  17. Target-Catalyzed DNA Four-Way Junctions for CRET Imaging of MicroRNA, Concatenated Logic Operations, and Self-Assembly of DNA Nanohydrogels for Targeted Drug Delivery.

    Science.gov (United States)

    Bi, Sai; Xiu, Bao; Ye, Jiayan; Dong, Ying

    2015-10-21

    Here we report a target-catalyzed DNA four-way junction (DNA-4WJ) on the basis of toehold-mediated DNA strand displacement reaction (TM-SDR), which is readily applied in enzyme-free amplified chemiluminescence resonance energy transfer (CRET) imaging of microRNA. In this system, the introduction of target microRNA-let-7a (miR-let-7a) activates a cascade of assembly steps with four DNA hairpins, followed by a disassembly step in which the target microRNA is displaced and released from DNA-4WJ to catalyze the self-assembly of additional branched junctions. As a result, G-quadruplex subunit sequences and fluorophore fluorescein amidite (FAM) are encoded in DNA-4WJ in a close proximity, stimulating a CRET process in the presence of hemin/K(+) to form horseradish peroxidase (HRP)-mimicking DNAzyme that catalyzes the generation of luminol/H2O2 chemiluminescence (CL), which further transfers to FAM. The background signal is easily reduced using magnetic graphene oxide (MGO) to remove unreacted species through magnetic separation, which makes a great contribution to improve the detection sensitivity and achieves a detection limit as low as 6.9 fM microRNA-let-7a (miR-let-7a). In addition, four-input concatenated logic circuits with an automatic reset function have been successfully constructed relying on the architecture of the proposed DNA-4WJ. More importantly, DNA nanohydrogels are self-assembled using DNA-4WJs as building units after centrifugation, which are driven by liquid crystallization and dense packaging of building units. Moreover, the DNA nanohydrogels are readily functionalized by incorporating with aptamers, bioimaging agents, and drug loading sites, which thus are served as efficient nanocarriers for targeted drug delivery and cancer therapy with high loading capacity and excellent biocompatibility. PMID:26420675

  18. Crystal Structure of the VapBC Toxin–Antitoxin Complex from Shigella flexneri Reveals a Hetero-Octameric DNA-Binding Assembly

    DEFF Research Database (Denmark)

    Dienemann, Christian; Bøggild, Andreas; Winther, Kristoffer S.; Gerdes, Kenn; Brodersen, Ditlev

    2011-01-01

    the crystal structure of the intact Shigella flexneri VapBC TA complex, determined to 2.7 Å resolution. Both in solution and in the crystal structure, four molecules of each protein combine to form a large and globular hetero-octameric assembly with SpoVT/AbrB-type DNA-binding domains at each end and...

  19. Initial analysis of non-typical Leber hereditary optic neuropathy (LHON) at onset and late developing demyelinating disease in Italian patients by SSCP and automated DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sartore, M.; Semeraro, A.; Fortina, P. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    LHON is a mitochondrial genetic disease characterized by maternal inheritance and late onset of blindness caused by bilateral retinal degeneration. A number of molecular defects are known affecting expression of seven mitochondrial genes encoding subunits of respiratory chain complex I, III and IV. We screened genomic DNA from Italian patients for seven of the known point mutations in the ND-1, ND-4 and ND-6 subunits of complex I by PCR followed by SSCP and restriction enzyme digestion. Most of the patients had nonfamilial bilateral visual loss with partial or no recovery and normal neurological examination. Fundoscopic examination revealed that none of the patients had features typical of LHON. Nine of 21 patients (43%) showed multifocal CNS demyelination on MRI. Our results show aberrant SSCP patterns for a PCR product from the ND-4 subunit in one affected child and his mother. Sfa NI and Mae III digestions suggested the absence of a previously defined LHON mutation, and automated DNA sequence analysis revealed two A to G neutral sequence polymorphisms in the third position of codons 351 and 353. In addition, PCR products from the same two samples and an unrelated one showed abnormal SSCP patterns for the ND-1 subunit region of complex I due to the presence of a T to C change at nt 4,216 which was demonstrated after Nla III digestion of PCR products and further confirmed by DNA sequence analysis. Our results indicate that additional defects are present in the Italian population, and identification of abnormal SSCP patterns followed by targeted automated DNA sequence analysis is a reasonable strategy for delineation of new LHON mutations.

  20. An Electrostatically Self-Assembled Ternary Nanocomplex as a Non-Viral Vector for the Delivery of Plasmid DNA into Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Cho, Sun-Hee; Noh, Young-Woock; Cho, Mi Young; Lim, Yong Taik

    2016-01-01

    In this study, we developed electrostatically self-assembled ternary nanocomplexes as a safe and effective non-viral vector for the delivery of plasmid DNA (pDNA) into human adipose-derived stem cells (hASCs). Although polyethylenimine (PEI) polymers initially showed excellent performance as gene delivery carriers, their broad use has been limited by cytotoxicity resulting from their strong positive charge. To reduce the cytotoxicity, we utilized anionic hyaluronic acid (HA) as a corona layer material for pDNA/PEI binary nanocomplexes. HA was also introduced to increase the targeting efficiency of pDNA/PEI nanocomplexes because HA has can bind CD44 that is highly expressed on the surface of hASCs. We confirmed that the addition of HA changed the surface charge of pDNA/PEI nanocomplexes from positive to negative. The pDNA/PEI/HA ternary nanocomplexes showed high transfection efficiency and low cytotoxicity compared with commercially available products. When hASCs were pretreated with HA to passivate CD44, the transfection efficiency of pDNA/PEI/HA nanocomplexes was significantly reduced. These results suggest that HA that can act as a targeting ligand to CD44 contributed to the improved transfection of pDNA into hASCs. Our novel pDNA/PEI/HA nanocomplexes may be used as an effective non-viral pDNA delivery system for hASCs. PMID:27136523

  1. Label-free and rapid colorimetric detection of DNA damage based on self-assembly of a hemin-graphene nanocomposite

    International Nuclear Information System (INIS)

    Hemin-graphene nanosheets (H-GNs) can be controllably assembled by target DNA via a hybridization process. This results in a color change from dark blue-green to light blue-green. The degree of aggregation is dependent on DNA concentration and very sensitive to base mismatch. The formation of the blue-green color can be detected with bare eyes or a spectrometer. The method is simple, rapid, and works over the concentration range from 1.0 to 100 nM. The detection limit for target DNA is 0.2 nM. Excellent selectivity is also found in that a DNA with a single base mismatch can be discriminated. This was exploited to detect DNA damage as induced by styrene oxide, sodium arsenite, Fenton’s reagent, or UV radiation. We presume that this method represents a promising tool for evaluating genotoxicity. (author)

  2. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria;

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  3. High quality DNA obtained with an automated DNA extraction method with 70+ year old formalin-fixed celloidin-embedded (FFCE) blocks from the indiana medical history museum

    OpenAIRE

    Niland, Erin E; McGuire, Audrey; Cox, Mary H; Sandusky, George E

    2012-01-01

    DNA and RNA have been used as markers of tissue quality and integrity throughout the last few decades. In this research study, genomic quality DNA of kidney, liver, heart, lung, spleen, and brain were analyzed in tissues from post-mortem patients and surgical cancer cases spanning the past century. DNA extraction was performed on over 180 samples from: 70+ year old formalin-fixed celloidin-embedded (FFCE) tissues, formalin-fixed paraffin-embedded (FFPE) tissue samples from surgical cases and ...

  4. DNA-树状聚脂肪醚杂化体的合成及组装性能研究%Synthesis and Self-Assembly of DNA-Aliphatic Polyether Dendron Hybrids

    Institute of Scientific and Technical Information of China (English)

    赵智勇; 吴芬; 杨忠强; 刘冬生; 范青华

    2013-01-01

    A new kind of amphiphilic DNA-aliphatic polyether dendron hybrids consisting of a flexible hydrophobic polyether dendron and a single stranded DNA are synthesized, which are characterized by MALDI-TOF mass spectroscopy, HPLC and polyacrylamide gel electrophoresis (PAGE). In aqueous solution, as DNA length shortens from 24 mer to 18 mer, to 12 mer, to 6 mer, the hydrophilic DNA content in the DNA-aliphatic polyether dendron hybrid decreases, the morphology of the aggregates change from spherical micelles to nanofibers, and to irregular clusters. These different assemblies from DNA-aliphatic polyether dendron hybrids in aqueous solution are depended on the hydrophobic/hydrophilic ratio between the polyether dendron skeleton and DNA strand. However, when adding 1/10 (V/V) organic solvents such as dichloromethane (DCM), diethyl ether (EtOEt) or tetrahydrofuran (THF) into aqueous solution and after the assembling process that the sample solution is heated to 90 ℃ for 30 min and subsequently cooled to room temperature overnight, the third generation dendron conjugated 18 mer DNA hybrid could assemble into nanofibers. Meanwhile, in the THF/H2O (1:10, V/V) mixed solvents, with the same assembling process, as different dendron generations (the second or third generation) and different DNA lengths (6 mer, 12 mer, 18 mer or 24 mer) in the hybrids, all these hybrids could assemble into long nanofibers. The assembled structures have been characterized by transmission electron microscopy (TEM), atomic force microscope (AFM), dynamic light scattering (DLS) and fluorescent experiments. Subsequently, we verified the assembling mechanism that the spherical micelles and nanofibers contain a hydrophobic dendron core and a hydrophilic DNA shell by hydrophobic fluorescent molecule Nile Red encapsulation experiment and precise DNA hybridization to load gold nanoparticles at a size of 10 nm. The hybridization property of DNA at the shell associated with the encapsulation ability of

  5. Automated Extraction and Quantification of Human Cytomegalovirus DNA in Whole Blood by Real-Time PCR Assay

    OpenAIRE

    Mengelle, C.; Sandres-Sauné, K.; Pasquier, C; Rostaing, L.; Mansuy, J.-M.; Marty, M.; Da Silva, I.; Attal, M.; Massip, P.; Izopet, J.

    2003-01-01

    The measurement of human cytomegalovirus (HCMV) DNA in blood is becoming the standard method for monitoring HCMV infection in immune-suppressed and unsuppressed patients. As various blood compartments can be used, we have compared the HCMV DNA measured in whole blood (WB), peripheral blood leukocytes (PBL), and plasma by real-time PCR. We tested 286 samples: HCMV DNA was extracted automatically from WB and PBL with the MagNA Pure instrument (Roche Molecular Biochemicals) and manually from pla...

  6. Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B; Leung, Kevin; Rempe, Susan B.; Dossa, Paul D.; Frischknecht, Amalie Lucile; Martin, Marcus Gary

    2007-10-01

    Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely

  7. A Novel Supramolecular Assembly Film of Porphyrin Bound DNA: Characterization and Catalytic Behaviors Towards Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Osamu Ikeda

    2005-04-01

    Full Text Available A stable Fe(4-TMPyP-DNA-PADDA (FePyDP film was characterized onpyrolytic graphite electrode (PGE or an indium-tin oxide (ITO electrode through thesupramolecular interaction between water-soluble iron porphyrin (Fe(4-TMPyP and DNAtemplate, where PADDA (poly(acrylamide-co-diallyldimethylammonium chloride isemployed as a co-immobilizing polymer. Cyclic voltammetry of FePyDP film showed a pairof reversible FeIII/FeII redox peaks and an irreversible FeIV/FeIII peak at –0.13 V and 0.89vs. Ag|AgCl in pH 7.4 PBS, respectively. An excellent catalytic reduction of NO wasdisplayed at –0.61 V vs. Ag|AgCl at a FePyDP film modified electrode.Chronoamperometric experiments demonstrated a rapid response to the reduction of NOwith a linear range from 0.1 to 90 μM and a detection limit of 30 nM at a signal-to-noiseratio of 3. On the other hand, it is the first time to apply high-valent iron porphyrin ascatalyst at modified electrode for NO catalytic oxidation at 0.89 vs. Ag|AgCl. The sensorshows a high selectivity of some endogenous electroactive substances in biological systems.The mechanism of response of the sensors to NO is preliminary studied.

  8. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.

    Science.gov (United States)

    Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie

    2016-06-01

    ' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences. PMID:26403255

  9. Self-assembly of c-myc DNA promoted by a single enantiomer ruthenium complex as a potential nuclear targeting gene carrier

    Science.gov (United States)

    Wu, Qiong; Mei, Wenjie; Zheng, Kangdi; Ding, Yang

    2016-01-01

    Gene therapy has long been limited in the clinic, due in part to the lack of safety and efficacy of the gene carrier. Herein, a single enantiomer ruthenium(II) complex, Λ-[Ru(bpy)2(p-BEPIP)](ClO4)2 (Λ-RM0627, bpy = 4,4′-bipyridine, p-BEPIP = 2-(4-phenylacetylenephenyl)imidazole [4,5f][1, 10] phenanthroline), has been synthesized and investigated as a potential gene carrier that targets the nucleus. In this report, it is shown that Λ-RM0627 promotes self-assembly of c-myc DNA to form a nanowire structure. Further studies showed that the nano-assembly of c-myc DNA that induced Λ-RM0627 could be efficiently taken up and enriched in the nuclei of HepG2 cells. After treatment of the nano-assembly of c-myc DNA with Λ-RM0627, over-expression of c-myc in HepG2 cells was observed. In summary, Λ-RM0627 played a key role in the transfer and release of c-myc into cells, which strongly indicates Λ-RM0627 as a potent carrier of c-myc DNA that targets the nucleus of tumor cells. PMID:27381008

  10. A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids.

    Science.gov (United States)

    Chen, Chaohui; Li, Ningxing; Lan, Jingwen; Ji, Xinghu; He, Zhike

    2016-01-01

    A target-catalyzed hairpin assembly (CHA) and graphene/Au-NPs hybrids-based platform has been developed for the determination of DNA. This new sensor not only avoided any labeling but also reduced the background signal. In the absence of target, the assembly of H1 and H2 couldn't be triggered. The catalytic activity of graphene/Au-NPs hybrids was inhibited by adsorption of H1 and H2, leading to the "inactive" hybrids unable to catalyze the oxidation reaction of 3,3',5,5'-tetramethylbenzidine (TMB). However, with the addition of target DNA, the target-catalyzed hairpin assembly was initiated and produced plenty of H1-H2 duplex, which had a weak binding affinity with the graphene/Au-NPs. Thus, the protected interface of graphene/Au-NPs hybrids became active and catalyzed the oxidation reaction of TMB accompanied with a colorless to-blue color change. This approach exhibited good sensitivity and specificity for target DNA with a detection limit of 5.74 × 10(-11) M, and realized the assay of target DNA in human serum samples. Besides, this sensor could be further expanded to detect viruses or proteins by adapting the corresponding aptamers, showing great potential in biochemical detections. PMID:26703265

  11. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference.

    Science.gov (United States)

    Mastretta-Yanes, A; Arrigo, N; Alvarez, N; Jorgensen, T H; Piñero, D; Emerson, B C

    2015-01-01

    Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico. PMID:24916682

  12. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri;

    2009-01-01

    advantages and applicability of this technique. Our present data on assessment of low radiation doses, repair kinetics, spontaneous DNA damage in cancer cells, as well as constitutive and replication stress-induced HR events and their dependence on upstream factors within the DDR machinery document the......Maintenance of genome integrity is essential for homeostasis and survival as impaired DNA damage response (DDR) may predispose to grave pathologies such as neurodegenerative and immunodeficiency syndromes, cancer and premature aging. Therefore, accurate assessment of DNA damage caused by...... environmental or metabolic genotoxic insults is critical for contemporary biomedicine. The available physical, flow cytometry and sophisticated scanning approaches to DNA damage estimation each have some drawbacks such as insufficient sensitivity, limitation to analysis of cells in suspension, or high costs and...

  13. Three-dimensional structure of DNA self-assembly based on molecular beacon%基于分子信标的DNA自组装立体结构

    Institute of Scientific and Technical Information of China (English)

    刘静; 殷志祥

    2014-01-01

    文章讨论了分子信标技术和DNA自组装作为DNA计算的重要模型,并对近年来分子信标技术和DNA自组装技术的发展状况进行了总结;将分子信标技术的优势融入DNA自组装模型,提出一种DNA四面体结构,并利用该结构解决布尔逻辑运算问题。%Molecular beacon and DNA self-assembly as the important DNA computing model are dis-cussed ,and recent developments of molecular beacon technology and DNA self-assembly technology are summarized .The advantages of molecular beacon technology are integrated into DNA self-assem-bly model ,and a tetrahedron structure of DNA is proposed to solve the problem of the Boolean logical operation .

  14. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.

    Science.gov (United States)

    Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan

    2016-09-15

    Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits. PMID:27132002

  15. Engineering of supramolecular photoactive protein architectures: the defined co-assembly of photosystem I and cytochrome c using a nanoscaled DNA-matrix

    Science.gov (United States)

    Stieger, Kai R.; Ciornii, Dmitri; Kölsch, Adrian; Hejazi, Mahdi; Lokstein, Heiko; Feifel, Sven C.; Zouni, Athina; Lisdat, Fred

    2016-05-01

    The engineering of renewable and sustainable protein-based light-to-energy converting systems is an emerging field of research. Here, we report on the development of supramolecular light-harvesting electrodes, consisting of the redox protein cytochrome c working as a molecular scaffold as well as a conductive wiring network and photosystem I as a photo-functional matrix element. Both proteins form complexes in solution, which in turn can be adsorbed on thiol-modified gold electrodes through a self-assembly mechanism. To overcome the limited stability of self-grown assemblies, DNA, a natural polyelectrolyte, is used as a further building block for the construction of a photo-active 3D architecture. DNA acts as a structural matrix element holding larger protein amounts and thus remarkably improving the maximum photocurrent and electrode stability. On investigating the photophysical properties, this system demonstrates that effective electron pathways have been created.The engineering of renewable and sustainable protein-based light-to-energy converting systems is an emerging field of research. Here, we report on the development of supramolecular light-harvesting electrodes, consisting of the redox protein cytochrome c working as a molecular scaffold as well as a conductive wiring network and photosystem I as a photo-functional matrix element. Both proteins form complexes in solution, which in turn can be adsorbed on thiol-modified gold electrodes through a self-assembly mechanism. To overcome the limited stability of self-grown assemblies, DNA, a natural polyelectrolyte, is used as a further building block for the construction of a photo-active 3D architecture. DNA acts as a structural matrix element holding larger protein amounts and thus remarkably improving the maximum photocurrent and electrode stability. On investigating the photophysical properties, this system demonstrates that effective electron pathways have been created. Electronic supplementary information

  16. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  17. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    Directory of Open Access Journals (Sweden)

    Kramme Stefanie

    2008-05-01

    Full Text Available Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is the gold standard for diagnosis but is inadequate for early case detection. In order to serve as a diagnostic tool in an eventual biological weapon attack or in local epidemics we developed a real-time 5'nuclease based PCR assay with an internal control system. To facilitate high-throughput an automated extraction procedure was evaluated. Results To determine the minimum number of copies that are detectable at 95% chance probit analysis was used. Limit of detection in blood was 2,881 copies/ml [95%CI, 2,188–4,745 copies/ml] with a manual extraction procedure and 4,235 copies/ml [95%CI, 3,143–7,428 copies/ml] with a fully automated extraction procedure, respectively. To demonstrate clinical application a total of 72 specimens of animal origin were compared with respect to manual and automated extraction. A strong correlation between both methods was observed rendering both methods suitable. Testing of 247 follow up specimens of animal origin from a local Q-fever epidemic rendered real-time PCR more sensitive than conventional PCR. Conclusion A sensitive and thoroughly evaluated real-time PCR was established. Its high-throughput mode may show a useful approach to rapidly screen samples in local outbreaks for other organisms relevant for humans or animals. Compared to a conventional PCR assay sensitivity of real-time PCR was higher after testing samples from a local Q-fever outbreak.

  18. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes

    Science.gov (United States)

    Shinozaki, Natsuko; Ye, Bin; Tsuboi, Akito; Nagasaki, Masao; Yamashita, Riu

    2016-01-01

    The rapid improvement of next-generation sequencing performance now enables us to analyze huge sample sets with more than ten thousand specimens. However, DNA extraction can still be a limiting step in such metagenomic approaches. In this study, we analyzed human oral microbes to compare the performance of three DNA extraction methods: PowerSoil (a method widely used in this field), QIAsymphony (a robotics method), and a simple boiling method. Dental plaque was initially collected from three volunteers in the pilot study and then expanded to 12 volunteers in the follow-up study. Bacterial flora was estimated by sequencing the V4 region of 16S rRNA following species-level profiling. Our results indicate that the efficiency of PowerSoil and QIAsymphony was comparable to the boiling method. Therefore, the boiling method may be a promising alternative because of its simplicity, cost effectiveness, and short handling time. Moreover, this method was reliable for estimating bacterial species and could be used in the future to examine the correlation between oral flora and health status. Despite this, differences in the efficiency of DNA extraction for various bacterial species were observed among the three methods. Based on these findings, there is no “gold standard” for DNA extraction. In future, we suggest that the DNA extraction method should be selected on a case-by-case basis considering the aims and specimens of the study. PMID:27104353

  19. Parallel molecular computation of modular-multiplication with two same inputs over finite field GF(2(n)) using self-assembly of DNA tiles.

    Science.gov (United States)

    Li, Yongnan; Xiao, Limin; Ruan, Li

    2014-06-01

    Two major advantages of DNA computing - huge memory capacity and high parallelism - are being explored for large-scale parallel computing, mass data storage and cryptography. Tile assembly model is a highly distributed parallel model of DNA computing. Finite field GF(2(n)) is one of the most commonly used mathematic sets for constructing public-key cryptosystem. It is still an open question that how to implement the basic operations over finite field GF(2(n)) using DNA tiles. This paper proposes how the parallel tile assembly process could be used for computing the modular-square, modular-multiplication with two same inputs, over finite field GF(2(n)). This system could obtain the final result within less steps than another molecular computing system designed in our previous study, because square and reduction are executed simultaneously and the previous system computes reduction after calculating square. Rigorous theoretical proofs are described and specific computing instance is given after defining the basic tiles and the assembly rules. Time complexity of this system is 3n-1 and space complexity is 2n(2). PMID:24534382

  20. Origin Remodeling and Opening in Bacteria Rely on Distinct Assembly States of the DnaA Initiator

    OpenAIRE

    Duderstadt, Karl E.; Mott, Melissa L.; Crisona, Nancy J.; Chuang, Kevin; Yang, Haw; Berger, James M.

    2010-01-01

    The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-asse...

  1. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Wengel, Jesper

    2013-01-01

    : Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit...

  2. Self-Assembly Model of DNA Molecular Logical Operators%DNA分子并行自组装逻辑运算模型

    Institute of Scientific and Technical Information of China (English)

    佘辉; 游自立; 张文政; 霍家佳

    2013-01-01

    Since Aldeman successful implemented DNA computing to solve HPP problem, the potential of calculation of DNA molecules was noticed by many scientists. We use it to solve logic operations based on the Self-Assembly Model. It was used DNA enzymes to dispose the product of the DNA to find the results of DNA logical operations. After the above experiment, it showed that the DNA molecule calculation model is feasible.%自从Aldeman成功地实现了用DNA计算解决汉密尔顿路径问题,DNA分子的计算潜力得到了许多科学家的高度关注.本文提出一种可实现的高并行性自组装的逻辑运算模型.通过DNA互补配对的特性使计算分子自行识别组装,利用DNA内切酶等处理DNA产物完成对DNA分子逻辑运算结果的筛选.实验表明该DNA分子计算模型是可行的.

  3. Automated Test-Form Generation

    Science.gov (United States)

    van der Linden, Wim J.; Diao, Qi

    2011-01-01

    In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…

  4. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  5. Comparison of automated nucleic acid extraction methods for the detection of cytomegalovirus DNA in fluids and tissues

    OpenAIRE

    Waggoner, Jesse J.; Pinsky, Benjamin A.

    2014-01-01

    Testing for cytomegalovirus (CMV) DNA is increasingly being used for specimen types other than plasma or whole blood. However, few studies have investigated the performance of different nucleic acid extraction protocols in such specimens. In this study, CMV extraction using the Cell-free 1000 and Pathogen Complex 400 protocols on the QIAsymphony Sample Processing (SP) system were compared using bronchoalveolar lavage fluid (BAL), tissue samples, and urine. The QIAsymphonyAssay Set-up (AS) sys...

  6. Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination

    KAUST Repository

    So, Monica

    2015-01-01

    Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.

  7. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Directory of Open Access Journals (Sweden)

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  8. Direct observation of one-dimensional plasmon coupling in metallic nanofibers prepared by evaporation-induced self-assembly with DNA

    Science.gov (United States)

    Nakao, Hidenobu; Tokonami, Shiho; Hamada, Taichi; Shiigi, Hiroshi; Nagaoka, Tsutomu; Iwata, Futoshi; Takeda, Yoshihiko

    2012-10-01

    Here we report a simple method for the preparation of highly aligned metallic nanofibers with anisotropic aggregates of silver nanoparticles (AgNPs) as well as a direct observation of localized plasmon field and its coupling in the prepared metallic nanofibers. Metallic nanofibers of several tens of nanometers wide and millimeters long were prepared. The preparation method, which is based on the process of evaporation-induced self-assembly with DNA and drying front movement, eliminates the need for lithography and an external field, and it is fast, cheap and easy. Dark-field scattering spectroscopy was used to study the strong plasmon coupling of AgNPs in the metallic nanofibers. We observed strong near-field coupling between neighboring nanoparticles, which results in red-shifted multipolar plasmon modes that are highly polarized along the fiber axis. The polarization dependence of plasmon coupling in the metallic nanofibers observed in this study was satisfactorily explained by the morphology of the metallic nanofibers, which was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, Raman spectra imaging of the metallic nanofibers revealed the existence of intense hot spots localized along their axes, which played a significant role in the intensity of surface enhanced Raman scattering (SERS) signals from DNA bases in the metallic nanofiber. Our results demonstrate the use of evaporation-induced self-assembly with DNA as a straightforward method to produce one-dimensional coupling of localized plasmons with a longer scale.

  9. Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation.

    Science.gov (United States)

    Stumpf, F; Schoendube, J; Gross, A; Rath, C; Niekrawietz, S; Koltay, P; Roth, G

    2015-07-15

    Single-cell analysis has developed into a key topic in cell biology with future applications in personalized medicine, tumor identification as well as tumor discovery (Editorial, 2013). Here we employ inkjet-like printing to isolate individual living single human B cells (Raji cell line) and load them directly into standard PCR tubes. Single cells are optically detected in the nozzle of the microfluidic piezoelectric dispenser chip to ensure printing of droplets with single cells only. The printing process has been characterized by using microbeads (10µm diameter) resulting in a single bead delivery in 27 out of 28 cases and relative positional precision of ±350µm at a printing distance of 6mm between nozzle and tube lid. Process-integrated optical imaging enabled to identify the printing failure as void droplet and to exclude it from downstream processing. PCR of truly single-cell DNA was performed without pre-amplification directly from single Raji cells with 33% success rate (N=197) and Cq values of 36.3±2.5. Additionally single cell whole genome amplification (WGA) was employed to pre-amplify the single-cell DNA by a factor of >1000. This facilitated subsequent PCR for the same gene yielding a success rate of 64% (N=33) which will allow more sophisticated downstream analysis like sequencing, electrophoresis or multiplexing. PMID:25771302

  10. Automated DNA sequence-based early warning system for the detection of methicillin-resistant Staphylococcus aureus outbreaks.

    Directory of Open Access Journals (Sweden)

    Alexander Mellmann

    2006-03-01

    Full Text Available BACKGROUND: The detection of methicillin-resistant Staphylococcus aureus (MRSA usually requires the implementation of often rigorous infection-control measures. Prompt identification of an MRSA epidemic is crucial for the control of an outbreak. In this study we evaluated various early warning algorithms for the detection of an MRSA cluster. METHODS AND FINDINGS: Between 1998 and 2003, 557 non-replicate MRSA strains were collected from staff and patients admitted to a German tertiary-care university hospital. The repeat region of the S. aureus protein A (spa gene in each of these strains was sequenced. Using epidemiological and typing information for the period 1998-2002 as reference data, clusters in 2003 were determined by temporal-scan test statistics. Various early warning algorithms (frequency, clonal, and infection control professionals [ICP] alerts were tested in a prospective analysis for the year 2003. In addition, a newly implemented automated clonal alert system of the Ridom StaphType software was evaluated. A total of 549 of 557 MRSA were typeable using spa sequencing. When analyzed using scan test statistics, 42 out of 175 MRSA in 2003 formed 13 significant clusters (p < 0.05. These clusters were used as the "gold standard" to evaluate the various algorithms. Clonal alerts (spa typing and epidemiological data were 100% sensitive and 95.2% specific. Frequency (epidemiological data only and ICP alerts were 100% and 62.1% sensitive and 47.2% and 97.3% specific, respectively. The difference in specificity between clonal and ICP alerts was not significant. Both methods exhibited a positive predictive value above 80%. CONCLUSIONS: Rapid MRSA outbreak detection, based on epidemiological and spa typing data, is a suitable alternative for classical approaches and can assist in the identification of potential sources of infection.

  11. Hierarchical Self-Assembly of a Biomimetic Light-Harvesting Antenna Based on DNA G-Quadruplexes

    NARCIS (Netherlands)

    Oltra, Nuria Sancho; Browne, Wesley R.; Roelfes, Gerard

    2013-01-01

    A new modular approach to an artificial light-harvesting antenna system is presented. The approach involves the hierarchical self-assembly of porphyrin acceptor molecules to G-quadruplexes tethered to coumarin donor moieties.

  12. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob;

    2007-01-01

    BACKGROUND: Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from...... public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. RESULTS: Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which...... with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential...

  13. Fluorometric sensing of DNA using curcumin encapsulated in nanoparticle-assembled microcapsules prepared from poly(diallylammonium chloride-co-sulfur dioxide)

    International Nuclear Information System (INIS)

    We report on the synthesis of microcapsules (MCs) containing self-assembled nanoparticles formed from poly[diallylammonium chloride-co-(sulfur dioxide)] in the presence of citrate and silica sol nanoparticles. The MCs are spherical, and SEM and optical microscopy reveal them to have micrometer size. The fluorescent probe curcumin was encapsulated in the MCs and found to be located in the shell. The fluorescence of curcumin in the MCs is altered depending on their microenvironment. Effects of pH and ammonia on the fluorescence of curcumin in the MCs also were studied. The brightness of the probe in the MCs increases on addition of DNA. The effect was used to determine DNA from fish sperm by fluorometry. The association constant (K) is 4000 mL. g-1, and the number of binding sites is ∼1.0. (author)

  14. Evaluating the surface density and heterogeneity of a dithiobis (succinimidylpropionate) self-assembled monolayer on gold and its coupling with DNA embedded within a matrix

    International Nuclear Information System (INIS)

    The homogeneity of a self-assembled monolayer (SAM) on a surface is an important parameter which affects the ability of a SAM to fulfill its intended function. As an example, SAMs formed from octanethiols can form an impermeable surface, while SAMs based on a bifunctional coupling reagent can form a surface with uniform reactivity. Exposure of gold nanoparticles or gold surfaces to solutions of dithiobis (succinimidylpropionate) (DSP) gives rise to a surface which can react with DNA. Atomic force microscopy, UV-vis and gel electrophoresis experiments indicate that a self-assembled monolayer of DSP on gold nanoparticles can attenuate aggregation, inhibit the 'lying down' of covalently-bound single-stranded (ss) DNA and promote more efficient hybridization. The determination of the point of aggregation after reacting DSP with colloidal gold yields 2.86 x 10-10 mol/cm2 or 42% of the value determined from molecular modeling. Cyclic voltammetry experiments validate that DSP on a gold quartz crystal (6.3 x 10-10 mol/cm2) forms a fairly uniform SAM that is within 94% of maximum coverage when compared with results obtained from molecular modeling (6.67 x 10-10 mol/cm2). Surface plasmon resonance experiments indicate that the reaction of a DSP coated gold surface with (ss) DNA yields 2.4 x 10-12 mol/cm2 or reaction with about 1% of the available surface area. Subsequent reactions of the DSP surface with the filler, n-boc-1,4-phenylene diamine (n-boc), yield a total surface coverage of 1.8 x 10-11 mol/cm2. The surrounded (ss) DNA yields a surface with 97% hybridization efficiency toward the complement.

  15. Assembly of two-dimensional DNA crystals carrying N 4-[2-(tert- butyldisulfanyl)ethyl]cytosine residues

    OpenAIRE

    Eritja Casadellà, Ramón; Garibotti, Alejandra V.; Sisquella, Xavier; Martínez, Elena

    2009-01-01

    DNA Lattices carrying two cytosine residues bearing the N 4-[(tert-butyldisulfanyl)ethyl] group at the apex of hairpin topological markers are prepared for first time. We show that these residues are important for the deposition of DNA lattices on gold surfaces.

  16. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease.

    NARCIS (Netherlands)

    Pello, R.; Martin, M.A.; Carelli, V.; Nijtmans, L.G.J.; Achilli, A.; Pala, M.; Torroni, A.; Gomez-Duran, A.; Ruiz-Pesini, E.; Martinuzzi, A.; Smeitink, J.A.M.; Arenas, J.; Ugalde, C.

    2008-01-01

    Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disorder, is mostly due to three mitochondrial DNA (mtDNA) mutations in respiratory chain complex I subunit genes: 3460/ND1, 11778/ND4 and 14484/ND6. Despite considerable clinical evidences, a genetic modifying role of the m

  17. Comparative Evaluation of Three Automated Systems for DNA Extraction in Conjunction with Three Commercially Available Real-Time PCR Assays for Quantitation of Plasma Cytomegalovirus DNAemia in Allogeneic Stem Cell Transplant Recipients▿

    OpenAIRE

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo Liria, Beatriz; Solano Vercet, Carlos; José Remigia, María; Navarro, David

    2011-01-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qia...

  18. Analysis of Lymphocytic DNA Damage in Early Multiple Sclerosis by Automated Gamma-H2AX and 53BP1 Foci Detection: A Case Control Study

    Science.gov (United States)

    Rasche, Ludwig; Heiserich, Lisa; Behrens, Janina Ruth; Lenz, Klaus; Pfuhl, Catherina; Wakonig, Katharina; Gieß, René Markus; Freitag, Erik; Eberle, Caroline; Wuerfel, Jens; Dörr, Jan; Bauer, Peter; Bellmann-Strobl, Judith; Paul, Friedemann; Roggenbuck, Dirk; Ruprecht, Klemens

    2016-01-01

    Background In response to DNA double-strand breaks, the histone protein H2AX becomes phosphorylated at its C-terminal serine 139 residue, referred to as γ-H2AX. Formation of γ-H2AX foci is associated with recruitment of p53-binding protein 1 (53BP1), a regulator of the cellular response to DNA double-strand breaks. γ-H2AX expression in peripheral blood mononuclear cells (PBMCs) was recently proposed as a diagnostic and disease activity marker for multiple sclerosis (MS). Objective To evaluate the significance of γ-H2AX and 53BP1 foci in PBMCs as diagnostic and disease activity markers in patients with clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS) using automated γ-H2AX and 53BP1 foci detection. Methods Immunocytochemistry was performed on freshly isolated PBMCs of patients with CIS/early RRMS (n = 25) and healthy controls (n = 27) with γ-H2AX and 53BP1 specific antibodies. Nuclear γ-H2AX and 53BP1 foci were determined using a fully automated reading system, assessing the numbers of γ-H2AX and 53BP1 foci per total number of cells and the percentage of cells with foci. Patients underwent contrast enhanced 3 Tesla magnetic resonance imaging (MRI) and clinical examination including expanded disability status scale (EDSS) score. γ-H2AX and 53BP1 were also compared in previously frozen PBMCs of each 10 CIS/early RRMS patients with and without contrast enhancing lesions (CEL) and 10 healthy controls. Results The median (range) number of γ-H2AX (0.04 [0–0.5]) and 53BP1 (0.005 [0–0.2]) foci per cell in freshly isolated PBMCs across all study participants was low and similar to previously reported values of healthy individuals. For both, γ-H2AX and 53BP1, the cellular focus number as well as the percentage of positive cells did not differ between patients with CIS/RRMS and healthy controls. γ-H2AX and 53BP1 levels neither correlated with number nor volume of T2-weighted lesions on MRI, nor with the EDSS. Although γ-H2AX, but not

  19. Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage

    DEFF Research Database (Denmark)

    Juul, Sissel; Iacovelli, Federico; Falconi, Mattia;

    2013-01-01

    ABSTRACT We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 1...... the cargo in the central cavity of the cage at 4 C. The entrapped enzyme was catalytically active inside the DNA cage and was able to convert substrate molecules penetrating the apertures in the DNA lattice that surrounded the central cavity of the cage....

  20. PR-PR: Cross-Platform Laboratory Automation System

    Energy Technology Data Exchange (ETDEWEB)

    Linshiz, G; Stawski, N; Goyal, G; Bi, CH; Poust, S; Sharma, M; Mutalik, V; Keasling, JD; Hillson, NJ

    2014-08-01

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  1. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    Science.gov (United States)

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA

  2. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  3. Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures

    International Nuclear Information System (INIS)

    Electrochemiluminescence (ECL) integrates the advantages of electrochemical detection and chemiluminescent techniques. The method has received particular attention because it is highly sensitive and selective, has a wide linear range but low reagent costs. The use of nanomaterials with their unique physical and chemical properties has led to new kinds of biosensors that exhibit high sensitivity and stability. Compared to other nanomaterials, DNA nanostructures are more biocompatible, more hydrophilic, and thus less prone to nonspecific adsorption onto the electrode surface. We describe here a label-free and ultrasensitive ECL biosensor for detecting a cancer-associated microRNA at a femtomolar level. We have designed two auxiliary probes that cause the formation of a long-range self-assembly in the form of a μm-long 1-dimensional DNA concatamer. These can be used as carriers for signal amplification. The intercalation of the ECL probe Ru(phen)32+ into the grooves of the concatamers leads to a substantial increase in ECL intensity. This amplified sensor shows high selectivity for discriminating complementary target and other mismatched RNAs. The biosensor enables the quantification of the expression of microRNA-21 in MCF-7 cells. It also displays very low limits of detection and provides an alternative approach for the detection of RNA or DNA detection in diagnostics and gene analysis. (author)

  4. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  5. Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology

    OpenAIRE

    Brown, Steven D.; Utturkar, Sagar M.; Magnuson, Timothy S.; Ray, Allison E.; Poole, Farris L.; Lancaster, W Andrew; Thorgersen, Michael P.; Adams, Michael W. W.; Elias, Dwayne A.

    2014-01-01

    Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.

  6. Anchoring of self-assembled plasmid DNA/ anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery

    Directory of Open Access Journals (Sweden)

    Ma G

    2013-03-01

    Full Text Available Guilei Ma,1,# Yong Wang,1,# Ilia Fishbein,2 Mei Yu,1 Linhua Zhang,1 Ivan S Alferiev,2 Jing Yang,1 Cunxian Song,1 Robert J Levy2 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Children's Hospital of Philadelphia, Abramson Research Building, Philadelphia, PA, USA #These authors contributed equally to this work Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP, thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol-propionate (SPDP as a crosslinker. Rhodamine-labeled DNA was used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate binding capacity and stability. DAC micelles (encoding green fluorescent protein were tethered onto the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects. Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was 17-fold higher than that of the physical adsorbed control stents and its retention time was also significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene delivery. Conclusion: The DAC micelle

  7. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  8. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM).

    Science.gov (United States)

    Miodek, Anna; Mejri, Nawel; Gomgnimbou, Michel; Sola, Christophe; Korri-Youssoufi, Hafsa

    2015-09-15

    Two-step electrochemical patterning methods have been employed to elaborate composite nanomaterials formed with multiwalled carbon nanotubes (MWCNTs) coated with polypyrrole (PPy) and redox PAMAM dendrimers. The nanomaterial has been demonstrated as a molecular transducer for electrochemical DNA detection. The nanocomposite MWCNTs-PPy has been formed by wrapping the PPy film on MWCNTs during electrochemical polymerization of pyrrole on the gold electrode. The MWCNTs-PPy layer was modified with PAMAM dendrimers of fourth generation (PAMAM G4) with covalent bonding by electro-oxidation method. Ferrocenyl groups were then attached to the surface as a redox marker. The electrochemical properties of the nanomaterial (MWCNTs-PPy-PAMAM-Fc) were studied using both square wave voltammetry and cyclic voltammetry to demonstrate efficient electron transfer. The nanomaterial shows high performance in the electrochemical detection of DNA hybridization leading to a variation in the electrochemical signal of ferrocene with a detection limit of 0.3 fM. Furthermore, the biosensor demonstrates ability for sensing DNA of rpoB gene of Mycobacterium tuberculosis in real PCR samples. Developed biosensor was suitable for detection of sequences with a single nucleotide polymorphism (SNP) T (TCG/TTG), responsible for resistance of M. tuberculosis to rifampicin drug, and discriminating them from wild-type samples without such mutation. This shows potential of such systems for further application in pathogens diagnostic and therapeutic purpose. PMID:26313137

  9. Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via lncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway.

    Science.gov (United States)

    Shi, Sirong; Peng, Qiang; Shao, Xiaoru; Xie, Jing; Lin, Shiyu; Zhang, Tao; Li, Qianshun; Li, Xiaolong; Lin, Yunfeng

    2016-08-01

    Self-assembled tetrahedral DNA nanostructures (TDNs) with precise sizes have been extensively applied in various fields owing to their exceptional mechanical rigidity, structural stability, and modification versatility. In addition, TDNs can be internalized by mammalian cells and remain mainly intact within the cytoplasm by escaping degradation by nucleases. Here, we studied the effects of TDNs on cell migration and the underlying molecular mechanisms. TDNs remarkably enhanced the migration of rat adipose-derived stem cells and down-regulated the long noncoding RNA (lncRNA) XLOC 010623 to activate the mRNA expression of Tiam1 and Rac1. Furthermore, TDNs highly up-regulated the mRNA and protein expression of RHOA, ROCK2, and VCL. These results indicate that TDNs suppressed the transcription of lncRNA XLOC 010623 and activated the TIAM1/RAC1 and RHOA/ROCK2 signaling pathways to promote cell migration. On the basis of these findings, TDNs show a high potential for application in tissue repair and regenerative medicine as a functional three-dimensional DNA nanomaterial. PMID:27403707

  10. Phase I of the automated array assembly task of the low cost silicon solar array project. Annual technical report. Motorola report No. 2258/4

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, M.G.; Pryor, R.A.; Grenon, L.A.; Lesk, I.A.

    1977-02-01

    Work performed to analyze, both technically and economically, the state of technology readiness for the automated production of solar cells and modules is compiled and reviewed critically. The long-term objective solar module characteristics include a selling price of less than $.50/peak watt and a mean-time-before-failure (MTBF) of 20 years in any terrestrial environment. While efficiency is important to attaining the cost goal, it is a most significant factor in array economics; accordingly, this program has stressed high efficiency, with a suggested cell goal of 15 percent. The analysis emphasized technical evaluation of individual process steps first, and then concentrated upon process sequences for making solar cells and modules. Further analysis was performed to yield a detailed cost study of individual process steps; this was applied to the cost analysis of potential process sequences. Potentially economical process sequences formed from process steps deemed to have high technical merit were then identified. Potentially promising technologies needing further development to achieve satisfactory maturity were then identified. It is concluded that, while specific areas of technology need advanced development and the source of silicon needs definition, no fundamentally new technology needs to be developed to permit manufacture of solar cells which will meet the 1985 LSSA Program cost goals.

  11. Apparatus for assembling and welding end plugs to nuclear fuel cladding tubes and inspecting the end plug welds on an automated basis

    International Nuclear Information System (INIS)

    This patent describes an automated apparatus for welding a separate end plug to one open end of each of a succession of nuclear fuel cladding tubes and for inspecting each end plug weld. The apparatus comprising, in combination: a welding station; a cooldown station for cooling each end plug weld in an inert gas atmosphere; a serial number reader station for reading a serial number on each end plug; a first weld inspection station; a second weld inspection station for generating second weld inspection data; a computer system linked with the serial number reader and the first and second weld inspection stations; an input queue for holding a plurality of tubes; a tube transporter for periodically picking individual tubes from the input queque and conveying the tubes in a direction transverse to their tube axis in indexing steps to index positions respectively axially aligned with the welding, serial number reader, and first and second weld inspection stations; and a sorter positioned at an output end of the tube transporter

  12. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  13. Process automation

    International Nuclear Information System (INIS)

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  14. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  15. Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling.

    Science.gov (United States)

    Lu, Minghua; Xiao, Rui; Zhang, Xiaona; Niu, Jiahua; Zhang, Xiaoting; Wang, Youmei

    2016-11-15

    This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg(2+)) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg(2+)-T coordination chemistry by using target-induced dissociation of indicator-labeled poly-T(15) oligonucleotide from graphene oxide nanosheets. The electronic signal was amplified through DNase I-triggered target recycling. Experimental results indicated that the amperometric response of DNA-based sensing platform deceased with the increasing Hg(2+) concentration in the sample, and has a detection limit of 0.12nM with a dynamic working range of up to 50nM. Our strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. More significantly, this methodology displayed high reproducibility and acceptable accuracy, thus representing an optional sensing scheme for the screening of Hg(2+) in environmental water samples. PMID:27179567

  16. Danger! Automation at Work; Report of the State of Illinois Commission on Automation and Technological Progress.

    Science.gov (United States)

    Karp, William

    The 74th Illinois General Assembly created the Illinois Commission on Automation and Technological Progress to study and analyze the economic and social effects of automation and other technological changes on industry, commerce, agriculture, education, manpower, and society in Illinois. Commission members visited industrial plants and business…

  17. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology

    OpenAIRE

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-01-01

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, w...

  18. Análise das estratégias de produção de seis montadoras de motores para automóveis Operations strategies of automobile engine assembly companies

    Directory of Open Access Journals (Sweden)

    Alceu Gomes Alves Filho

    2011-01-01

    Full Text Available São identificadas e analisadas neste artigo as Estratégias de Produção (EP adotadas, durante o período 2005-2006, por 6 empresas montadoras de motores para automóveis instaladas no Brasil. Três delas instalaram-se há várias décadas no País e são aqui denominadas "estabelecidas"; as outras três, apenas há alguns anos, são denominadas "entrantes". Para o levantamento de informações sobre as EPs adotadas, entrevistas semiestruturadas foram feitas com pelo menos um dos principais responsáveis - gerentes - pela unidade produtora de motores em cada empresa. Observou-se que as EPs adotadas pelas empresas são distintas entre os grupos e em cada grupo (intragrupos, marcadas por diferenças nas áreas de decisão estruturais, apesar de haver semelhanças entre as estratégias competitivas das empresas em cada grupo (estabelecidas e entrantes. Alguns dos resultados encontrados nesta pesquisa confirmam proposições da literatura, outros indicam que há temas que precisam ainda ser cuidadosamente investigados.The operations strategies adopted by six engine assemblers between 2005 and 2006 in Brazil were identified and analyzed. Three of them started their operations some decades ago and were, therefore, denominated "established firms". The other three have started their operations only after the 1990s and were denominated "entrant firms". Information on the adopted strategies was gathered through interviews with at least one of the main managers in each engine assembly plant investigated. We observed that the adopted operations strategies are different in terms of inter and intra groups of those plants. The distinct characteristics of operations strategies are mainly due to differences in structural decision areas although the competitive strategies in each group have some common traces.

  19. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  20. On-Orbit Assembly of Flexible Space Structures with SWARM

    OpenAIRE

    Mohan, Swati; Katz, Jacob G.; Miller, David W.

    2010-01-01

    On-orbit assembly is an enabling technology for many space applications. However, current methods of human assisted assembly are high in cost and risk to the crew, motivating a desire to automate the on-orbit assembly process using robotic technology. Construction of large space structures will likely involve the manipulation of flexible elements such as trusses or solar panels, and automation for assembly of flexible structures has significant challenges, particularly in control systems. Thi...

  1. Automated extraction of DNA from reference samples from various types of biological materials on the Qiagen BioRobot EZ1 Workstation

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Jørgensen, Mads; Hansen, Anders Johannes;

    2009-01-01

    We have validated and implemented a protocol for DNA extraction from various types of biological materials using a Qiagen BioRobot EZ1 Workstation. The sample materials included whole blood, blood from deceased, buccal cells on Omni swabs and FTA Cards, blood on FTA Cards and cotton swabs, and...... muscle biopsies. The DNA extraction was validated according to EN/ISO 17025 for the STR kits AmpFlSTR« Identifiler« and AmpFlSTR« Yfiler« (Applied Biosystems). Of 298 samples extracted, 11 (4%) did not yield acceptable results. In conclusion, we have demonstrated that extraction of DNA from various types...... of biological material can be performed quickly and without the use of hazardous chemicals, and that the DNA may be successfully STR typed according to the requirements of forensic genetic investigations accredited according to EN/ISO 17025...

  2. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System.

    Science.gov (United States)

    Janku, Filip; Huang, Helen J; Claes, Bart; Falchook, Gerald S; Fu, Siqing; Hong, David; Ramzanali, Nishma M; Nitti, Giovanni; Cabrilo, Goran; Tsimberidou, Apostolia M; Naing, Aung; Piha-Paul, Sarina A; Wheler, Jennifer J; Karp, Daniel D; Holley, Veronica R; Zinner, Ralph G; Subbiah, Vivek; Luthra, Rajyalakshmi; Kopetz, Scott; Overman, Michael J; Kee, Bryan K; Patel, Sapna; Devogelaere, Benoit; Sablon, Erwin; Maertens, Geert; Mills, Gordon B; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-06-01

    Cell-free (cf) DNA from plasma offers an easily obtainable material for BRAF mutation analysis for diagnostics and response monitoring. In this study, plasma-derived cfDNA samples from patients with progressing advanced cancers or malignant histiocytosis with known BRAF(V600) status from formalin-fixed paraffin-embedded (FFPE) tumors were tested using a prototype version of the Idylla BRAF Mutation Test, a fully integrated real-time PCR-based test with turnaround time about 90 minutes. Of 160 patients, BRAF(V600) mutations were detected in 62 (39%) archival FFPE tumor samples and 47 (29%) plasma cfDNA samples. The two methods had overall agreement in 141 patients [88%; κ, 0.74; SE, 0.06; 95% confidence interval (CI), 0.63-0.85]. Idylla had a sensitivity of 73% (95% CI, 0.60-0.83) and specificity of 98% (95% CI, 0.93-1.00). A higher percentage, but not concentration, of BRAF(V600) cfDNA in the wild-type background (>2% vs. ≤ 2%) was associated with shorter overall survival (OS; P = 0.005) and in patients with BRAF mutations in the tissue, who were receiving BRAF/MEK inhibitors, shorter time to treatment failure (TTF; P = 0.001). Longitudinal monitoring demonstrated that decreasing levels of BRAF(V600) cfDNA were associated with longer TTF (P = 0.045). In conclusion, testing for BRAF(V600) mutations in plasma cfDNA using the Idylla BRAF Mutation Test has acceptable concordance with standard testing of tumor tissue. A higher percentage of mutant BRAF(V600) in cfDNA corresponded with shorter OS and in patients receiving BRAF/MEK inhibitors also with shorter TTF. Mol Cancer Ther; 15(6); 1397-404. ©2016 AACR. PMID:27207774

  3. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  4. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput. PMID:26830031

  5. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  6. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    International Nuclear Information System (INIS)

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription

  7. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  8. Use of Pooled Urine Samples and Automated DNA Isolation To Achieve Improved Sensitivity and Cost-Effectiveness of Large-Scale Testing for Chlamydia trachomatis in Pregnant Women

    OpenAIRE

    2005-01-01

    The success of large-scale screening for Chlamydia trachomatis depends on the availability of noninvasive samples, low costs, and high-quality testing. To evaluate C. trachomatis testing with pregnant women, first-void urine specimens from 750 consecutive asymptomatic pregnant women from the Rotterdam area (The Netherlands) were collected. Initially, we investigated the performance of three different DNA isolation methods with 350 of these urines and 70 pools of 5 of the same subset of urine ...

  9. POSA: Perl Objects for DNA Sequencing Data Analysis

    Directory of Open Access Journals (Sweden)

    Jungerius Bart J

    2004-08-01

    Full Text Available Abstract Background Capillary DNA sequencing machines allow the generation of vast amounts of data with little hands-on time. With this expansion of data generation, there is a growing need for automated data processing. Most available software solutions, however, still require user intervention or provide modules that need advanced informatics skills to allow implementation in pipelines. Results Here we present POSA, a pair of new perl objects that describe DNA sequence traces and Phrap contig assemblies in detail. Methods included in POSA include basecalling with quality scores (by Phred, contig assembly (by Phrap, generation of primer3 input and automated SNP annotation (by PolyPhred. Although easily implemented by users with only limited programming experience, these objects considerabily reduce hands-on analysis time compared to using the Staden package for extracting sequence information from raw sequencing files and for SNP discovery. Conclusions The POSA objects allow a flexible and easy design, implementation and usage of perl-based pipelines to handle and analyze DNA sequencing data, while requiring only minor programming skills.

  10. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  11. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2010-07-26

    How things work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of individual parts and the interactions between parts based on their geometry and a few user specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences and animation to convey the causal chain of motions and mechanical interactions between parts. We present results for a wide variety of assemblies. © 2010 ACM.

  12. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2013-01-01

    How-things-work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of the individual parts and the interactions across the parts based on their geometry and a few user-specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences, and animation to convey the causal chain of motions and mechanical interactions across parts. We demonstrate our system on a wide variety of assemblies. © 2013 ACM 0001-0782/13/01.

  13. 壳聚糖-质粒DNA层层组装及携载DNA量的评价方法%Layer-by-layer assembly of chitosan and plasmid DNA on metal surface

    Institute of Scientific and Technical Information of China (English)

    鲍军波; 唐丽娜; 罗昭锋; 宋存先

    2008-01-01

    目的 壳聚糖与质粒DNA可以层层组装形成多层膜,可用于金属表面载基因涂层.本研究采用表面等离子共振(SPR)技术,实时检测金属表面与壳聚糖、壳聚糖与质粒DNA(pDNA)的相互作用,并分析壳聚糖携载质粒DNA的能力以及壳聚糖-质粒DNA多层膜在液流作用下的稳定性.方法 在11-巯基十一羧酸处理过的裸金芯片上自组装不同浓度、不同相对分子量的壳聚糖(50~400 ku)和质粒DNA分子.结果 层层组装方法中壳聚糖对质粒的携载量与相对分子量和浓度密切相关,即高浓度、高分子量的壳聚糖可以形成更加厚实的多层膜,并可以携载更多的质粒DNA,自组装形成的多层膜还具有耐液流冲刷性,物理性质稳定.结论 采用壳聚糖与治疗基因的多层自组装可以在血管支架上携载质粒DNA,为探索载基因血管支架涂层的构建提供了新的方法和手段.%Objective To investigate the technology for layer-by-layer assembly of chitosan and plasmid DNA on metal surface, which has a potential in vascular stent mediated gene delivery. Methods Chitosan and plasmid DNA were loaded on the surface of 11-MUA treated gold chip through layer by layer deposition. The real- time monitoring of interactions of various molecular weight (Mw) chitosan samples with 11-MUA and chitosan with plasmid DNA were evaluated by surface plasmon resonance (SPR). The pDNA loading capacity of chitosan and the stability of the muhilayer under flow condition were profiled. Results The amount of DNA loaded by chitosan on the metal surface was dependent on the concentration and molecular weight of chitosan. Thicker multilayer and higher loading of pDNA were obtained with higher concentration and/or higher molecular weight of chitosan. The multilayer is stable under running buffer flushed through the system. Conclusion The assembled multilayer of chitosan and pDNA is stable on the metal surface and can be used as a new tool for stent

  14. Workload analyse of assembling process

    Science.gov (United States)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  15. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  16. Evaluation of cell lysis procedures and use of a micro fluidic system for an automated DNA-based cell identification in interplanetary missions

    Science.gov (United States)

    Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.

    2006-12-01

    A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with

  17. DNA-Mediated Electrochemistry

    OpenAIRE

    Gorodetsky, Alon A.; Buzzeo, Marisa C.; Barton, Jacqueline K.

    2008-01-01

    The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristi...

  18. Concerted Assembly and Cloning of Multiple DNA Segments Using In Vitro Site-Specific Recombination: Functional Analysis of Multi-Segment Expression Clones

    OpenAIRE

    Cheo, David L.; Titus, Steven A.; Byrd, Devon R.N.; Hartley, James L.; Temple, Gary F.; Brasch, Michael A.

    2004-01-01

    The ability to clone and manipulate DNA segments is central to molecular methods that enable expression, screening, and functional characterization of genes, proteins, and regulatory elements. We previously described the development of a novel technology that utilizes in vitro site-specific recombination to provide a robust and flexible platform for high-throughput cloning and transfer of DNA segments. By using an expanded repertoire of recombination sites with unique specificities, we have e...

  19. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  20. 3DNA: A Tool for DNA Sculpting

    OpenAIRE

    Gupta, Shikhar Kumar; Joshi, Foram; Limbachiya, Dixita; Gupta, Manish K.

    2014-01-01

    DNA self-assembly is a robust and programmable approach for building structures at nanoscale. Researchers around the world have proposed and implemented different techniques to build two dimensional and three dimensional nano structures. One such technique involves the implementation of DNA Bricks proposed by Ke et al., 2012 to create complex three-dimensional (3D) structures. Modeling these DNA nano structures can prove to be a cumbersome and tedious task. Exploiting the programmability of b...

  1. EDNA-An expert software system for comparison and evaluation of DNA profiles in forensic casework

    DEFF Research Database (Denmark)

    Haldemann, B.; Dornseifer, S.; Heylen, T.;

    2015-01-01

    eDNA is an expert software system for DNA profile comparison, match interpretation and automated report generation in forensic DNA casework. Process automation and intelligent graphical representation maximise reliability of DNA evidence, while facilitating and accelerating the work of DNA experts....

  2. Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(L-lysine)-graft-poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Oupický, D.; Reschel, Tomáš; Koňák, Čestmír; Oupická, L.

    2003-01-01

    Roč. 36, č. 18 (2003), s. 6863-6872. ISSN 0024-9297 R&D Projects: GA AV ČR KSK4055109 Keywords : graft copolymers * self-assembly * gene delivery Subject RIV: CC - Organic Chemistry Impact factor: 3.621, year: 2003

  3. Replication protein A and γ-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, γ-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and γ-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and γ-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and γ-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and γ-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with γ-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and γ-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with γ-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells

  4. A Cost-Effective Knowledge-Based Reasoning System for Design for Automation.

    OpenAIRE

    Shehab, Essam; H. S. Abdalla

    2006-01-01

    Design for assembly automation (DFAA) is an important part of the concurrent engineering strategy for reduction of product manufacturing costs and lead times. An intelligent knowledge-based system (KBS) for design for automation and early cost modelling within a concurrent engineering environment has been developed. This paper focuses upon the development of the design for an assembly automation system. The system framework encompasses an extensive knowledge-based reasoning system, a CAD syst...

  5. Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast

    International Nuclear Information System (INIS)

    Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The Δgrx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1+ gene encoding a putative A-type Fe-S scaffold, in addition to mas5+ and hsc1+ genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2+, but not isu1+ and ssc1+, complemented the growth phenotype of Δgrx5 mutant as isa1+ did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.

  6. Automating occupational protection records systems

    International Nuclear Information System (INIS)

    Occupational protection records have traditionally been generated by field and laboratory personnel, assembled into files in the safety office, and eventually stored in a warehouse or other facility. Until recently, these records have been primarily paper copies, often handwritten. Sometimes, the paper is microfilmed for storage. However, electronic records are beginning to replace these traditional methods. The purpose of this paper is to provide guidance for making the transition to automated record keeping and retrieval using modern computer equipment. This paper describes the types of records most readily converted to electronic record keeping and a methodology for implementing an automated record system. The process of conversion is based on a requirements analysis to assess program needs and a high level of user involvement during the development. The importance of indexing the hard copy records for easy retrieval is also discussed. The concept of linkage between related records and its importance relative to reporting, research, and litigation will be addressed. 2 figs

  7. Interaction with DNA of a heteronuclear [Na2Cu4] coordination cluster obtained from the assembly of two hydroxo-bridged [Cu(II)2] units by a dimeric sodium nitrate template.

    Science.gov (United States)

    Mandal, Debashree; Chauhan, Mala; Arjmand, Farukh; Aromí, Guillem; Ray, Debashis

    2009-11-14

    The heteronuclear [Na(2)Cu(4)(bemp)(2)(OH)(2)(NO(3))(2)(OH(2))(4)] x 5 H(2)O (1 x 5H(2)O; H(3)bemp: 2,6-bis-[(2-hydroxyethylimino)-methyl]-4-methyl-phenol) cluster has been synthesized in aqueous-methanol at room temperature and structurally characterized. The water soluble complex is obtained from the template assembly of two [Cu(2)(bemp)(OH)] neutral fragments through their weak oxophillic interactions with two interconnected NaNO(3) units as core. Four [Na(2)Cu(4)] units form a metal-organic cage arrangement in the crystal lattice that traps a (H(2)O)(7) cluster. Variable-temperature magnetic susceptibility measurements (2-300 K) reveals a strong antiferromagnetic coupling between the Cu(II) ions within the dimers with J = -124.1 cm(-1) (in the H = -2JS(1)S(2) convention). The interaction of complex 1 x 3H(2)O with calf thymus DNA (binding constant K(b), 4.6 x 10(4) M(-1)) in Tris buffer was studied by UV-visible and emission titration, and cyclic voltammetry. The hexanuclear Na(2)Cu(4) complex also binds double-stranded supercoiled plasmid pBR322 DNA and displays efficient hydrolytic cleavage. The hydrolytic mechanism is supported by evidence from DNA relegation employing T4 ligase assay and reactive oxygen species (ROS) quenching cleavage experiments. PMID:20449195

  8. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus;

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...

  9. Manufacturing and automation

    OpenAIRE

    Ernesto Córdoba Nieto

    2010-01-01

    The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and e...

  10. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Rajkumar, Arun Stephen; Zhang, Jie;

    2015-01-01

    Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here...... method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking...... out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae....

  11. LEGO-like DNA Structures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2012-01-01

    -dimensional (3D) DNA structures by self-assembly of single-stranded DNA “bricks.” The method opens a new route to complex self-assembled (3D) nanostructures that may serve as addressable templates for placing guest molecules with high precision, with possible applications in biophysics, medicine...

  12. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  13. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jacob; Gilchrist, Michael J.; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J.; Havgaard, Jacob H.; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans Henrik; Wernersson, Rasmus; Madsen, Lone B.; Thomsen, Bo; Hornhoj, Henrik; Zhan, Bujie; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete

    BACKGROUND: Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from ......: This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies....

  14. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jacob;

    2007-01-01

    BACKGROUND: Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from ......: This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies....

  15. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly

    NARCIS (Netherlands)

    Scheinin, I.; Sie, D.; Bengtsson, H.; Wiel, M.A. van de; Olshen, A.B.; Thuijl, H.F. van; Essen, H.F. van; Eijk, P.P.; Rustenburg, F.; Meijer, G.A.; Reijneveld, J.C.; Wesseling, P.; Pinkel, D.; Albertson, D.G.; Ylstra, B.

    2014-01-01

    Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, including lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable sample quality, and biases in the sequencing procedures. Formalin-fixed paraff

  16. COMPUTER-AIDED BLOCK ASSEMBLY PROCESS PLANNING IN SHIPBUILD-ING BASED ON RULE-REASONING

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiying; LI Zhen; JIANG Zhibin

    2008-01-01

    Computer-aided block assembly process planning based on rule-reasoning are developed in order to improve the assembly efficiency and implement the automated block assembly process planning generation in shipbuilding. First, weighted directed liaison graph (WDLG) is proposed to represent the model of block assembly process according to the characteristics of assembly relation, and edge list (EL) is used to describe assembly sequences. Shapes and assembly attributes of block parts are analyzed to determine the assembly position and matched parts of parts used frequently. Then, a series of assembly rules are generalized, and assembly sequences for block are obtained by means of rule reasoning. Final, a prototype system of computer-aided block assembly process planning is built. The system has been tested on actual block, and the results were found to be quite efficiency. Meanwhile, the fundament for the automation of block assembly process generation and integration with other systems is established.

  17. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    Science.gov (United States)

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  18. Conducting Automated Test Assembly Using the Premium Solver Platform Version 7.0 with Microsoft Excel and the Large-Scale LP/QP Solver Engine Add-In

    Science.gov (United States)

    Cor, Ken; Alves, Cecilia; Gierl, Mark J.

    2008-01-01

    This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…

  19. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  20. Establishing the Design Rules for DNA-Mediated Colloidal Crystallizatio

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, Robert John [Northwestern Univ., Evanston, IL (United States); Jones, Matthew R. [Northwestern Univ., Evanston, IL (United States); Senesi, Andrew J. [Northwestern Univ., Evanston, IL (United States); Young, Kaylie L. [Northwestern Univ., Evanston, IL (United States); Lee, Byeongdu [Argonne National Laboratory (ANL), Argonne, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Mirkin, Chad A. [Northwestern Univ., Evanston, IL (United States)

    2010-01-01

    DNA-programmable colloidal crystals are assembled with 5–80 nm nanoparticles, and the lattice parameters of the resulting crystals vary from 25 to 225 nm. A predictable and mathematically definable relationship between particle size and DNA length dictates the assembly and crystallization processes, creating a set of design rules for DNA-based nanoscale assembly.

  1. DNA Charge Transport Leading to Disulfide Bond Formation

    OpenAIRE

    Takada, Tadao; Barton, Jacqueline K.

    2005-01-01

    Here, we show that DNA-mediated charge transport (CT) can lead to the oxidation of thiols to form disulfide bonds in DNA. DNA assemblies were prepared possessing anthraquinone (AQ) as a photooxidant spatially separated on the duplex from two SH groups incorporated into the DNA backbone. Upon AQ irradiation, HPLC analysis reveals DNA ligated through a disulfide. The reaction efficiency is seen to vary in assemblies containing intervening DNA mismatches, confirming that the reaction is DNA-medi...

  2. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  3. Configuration Management Automation (CMA)

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  4. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response.

    Science.gov (United States)

    Mancini, F; Pieroni, L; Monteleone, V; Lucà, R; Fici, L; Luca, E; Urbani, A; Xiong, S; Soddu, S; Masetti, R; Lozano, G; Pontecorvi, A; Moretti, F

    2016-01-14

    The p53 inhibitor, MDM4 (MDMX) is a cytoplasmic protein with p53-activating function under DNA damage conditions. Particularly, MDM4 promotes phosphorylation of p53 at Ser46, a modification that precedes different p53 activities. We investigated the mechanism by which MDM4 promotes this p53 modification and its consequences in untransformed mammary epithelial cells and tissues. In response to severe DNA damage, MDM4 stimulates p53Ser46(P) by binding and stabilizing serine-threonine kinase HIPK2. Under these conditions, the p53-inhibitory complex, MDM4/MDM2, dissociates and this allows MDM4 to promote p53/HIPK2 functional interaction. Comparative proteomic analysis of DNA damage-treated cells versus -untreated cells evidenced a diffuse downregulation of proteins with anti-apoptotic activity, some of which were targets of p53Ser46(P)/HIPK2 repressive activity. Importantly, MDM4 depletion abolishes the downregulation of these proteins indicating the requirement of MDM4 to promote p53-mediated transcriptional repression. Consistently, MDM4-mediated HIPK2/p53 activation precedes HIPK2/p53 nuclear translocation and activity. Noteworthy, repression of these proteins was evident also in mammary glands of mice subjected to γ-irradiation and was significantly enhanced in transgenic mice overexpressing MDM4. This study evidences the flexibility of MDM2/MDM4 heterodimer, which allows the development of a positive activity of cytoplasmic MDM4 towards p53-mediated transcriptional function. Noteworthy, this activity uncovers coordinated repression of molecules with shared anti-apoptotic function which precedes active cell apoptosis and that are frequently overexpressed and/or markers of tumour phenotype in human cancer. PMID:25961923

  5. Novel cationic polyene glycol phospholipids as DNA transfer reagents--lack of a structure-activity relationship due to uncontrolled self-assembling processes.

    Science.gov (United States)

    Øpstad, Christer L; Zeeshan, Muhammad; Zaidi, Asma; Sliwka, Hans-Richard; Partali, Vassilia; Nicholson, David G; Surve, Chinmay; Izower, Mitchell A; Bilchuk, Natalia; Lou, Howard H; Leopold, Philip L; Larsen, Helge; Liberska, Alexandra; Khalique, Nada Abdul; Raju, Liji; Flinterman, Marcella; Jubeli, Emile; Pungente, Michael D

    2014-10-01

    Cationic glycol phospholipids were synthesized introducing chromophoric, rigid polyenoic C20:5 and C30:9 chains next to saturated flexible alkyl chains of variable lengths C6-20:0. Surface properties and liposome formation of the amphiphilic compounds were determined, the properties of liposome/DNA complexes (lipoplexes) were established using three formulations (no co-lipid, DOPE as a co-lipid, or cholesterol as a co-lipid), and the microstructure of the best transfecting compounds inspected using small angle X-ray diffraction to explore details of the partially ordered structures of the systems that constitute the series. Transfection and cytotoxicity of the lipoplexes were evaluated by DNA delivery to Chinese hamster ovary (CHO-K1) cells using the cationic glycerol phospholipid 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) as a reference compound. The uncontrollable self-association of the molecules in water resulted in aggregates and liposomes of quite different sizes without a structure-property relationship. Likewise, adding DNA to the liposomes gave rise to unpredictable sized lipoplexes, which, again, transfected without a structure-activity relationship. Nevertheless, one compound among the novel lipids (C30:9 chain paired with a C20:0 chain) exhibited comparable transfection efficiency and toxicity to the control cationic lipid EPC. Thus, the presence of a rigid polyene chain in this best performing achiral glycol lipid did not have an influence on transfection compared with the chiral glycerolipid reference ethyl phosphocholine EPC with two flexible saturated C14 chains. PMID:24814958

  6. Harnessing DNA intercalation.

    Science.gov (United States)

    Persil, Ozgül; Hud, Nicholas V

    2007-10-01

    Numerous small molecules are known to bind to DNA through base pair intercalation. Fluorescent dyes commonly used for nucleic acid staining, such as ethidium, are familiar examples. Biological and physical studies of DNA intercalation have historically been motivated by mutation and drug discovery research. However, this same mode of binding is now being harnessed for the creation of novel molecular assemblies. Recent studies have used DNA scaffolds and intercalators to construct supramolecular assemblies that function as fluorescent 'nanotags' for cell labeling. Other studies have demonstrated how intercalators can be used to promote the formation of otherwise unstable nucleic acid assemblies. These applications illustrate how intercalators can be used to facilitate and expand DNA-based nanotechnology. PMID:17825446

  7. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  8. Method of Measuring Fixture Automatic Design and Assembly for Auto-Body Part

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of 3-D measuring fixture automatic assembly for auto-body part is presented. Locating constraint mapping technique and assembly rule-based reasoning are applied. Calculating algorithm of the position and pose for the part model, fixture configuration and fixture elements in virtual auto-body assembly space are given. Transforming fixture element from itself coordinate system space to assembly space with homogeneous transformation matrix is realized. Based on the second development technique of unigraphics(UG), the automated assembly is implemented with application program interface (API) function. Lastly the automated assembly of measuring fixture for rear longeron as a case is implemented.

  9. Shoe-String Automation

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M.L.

    2001-07-30

    Faced with a downsizing organization, serious budget reductions and retirement of key metrology personnel, maintaining capabilities to provide necessary services to our customers was becoming increasingly difficult. It appeared that the only solution was to automate some of our more personnel-intensive processes; however, it was crucial that the most personnel-intensive candidate process be automated, at the lowest price possible and with the lowest risk of failure. This discussion relates factors in the selection of the Standard Leak Calibration System for automation, the methods of automation used to provide the lowest-cost solution and the benefits realized as a result of the automation.

  10. Automated addition of Chelex solution to tubes containing trace items

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Thomas Møller; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Extraction of DNA from trace items for forensic genetic DNA typing using a manual Chelex based extraction protocol requires addition of Chelex solution to sample tubes containing trace items. Automated of addition of Chelex solution may be hampered by high viscosity of the solution and fast...

  11. Probing DNA Binding, DNA Opening and Assembly of a Downstream Clamp/Jaw in E. coli RNA Polymerase – λPR Promoter Complexes Using Salt and the Physiological Anion Glutamate†

    OpenAIRE

    Kontur, Wayne S.; Capp, Michael W.; Gries, Theodore J.; Saecker, Ruth M.; Record, M. Thomas

    2010-01-01

    Transcription by all RNA polymerases (RNAP) requires a series of large-scale conformational changes to form the transcriptionally-competent open complex RPo. At the λPR promoter, E. coli σ70 RNAP first forms a wrapped, closed 100 bp complex I1. The subsequent step opens the entire 13 base DNA bubble, creating the relatively unstable (open) complex I2. Additional conformational changes convert I2 to the stable RPo. Here we probe these events by dissecting the effects of Na+ salts of Glu−, F− a...

  12. Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications.

    Science.gov (United States)

    Chintakunta, Ramesh; Buaron, Nitsa; Kahn, Nicole; Moriah, Amana; Lifshiz, Rinat; Goldbart, Riki; Traitel, Tamar; Tyler, Betty; Brem, Henry; Kost, Joseph

    2016-10-01

    Quaternized derivatives of pectic galactan (QPG) were synthesized by a reaction of pectic galactan (PG) with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) in the presence of aqueous sodium hydroxide solution under mild reaction conditions. The results showed that the concentration of CHPTAC and NaOH has great impact on the quaternization reaction. QPG was found to interact electrostatically with plasmid DNA in aqueous solution to form complexes in globular condensed morphology in a nanometer scale size ranging from 60 to 160nm. Complexes formed with QPG fluorescently labeled with 5-DTAF (QPG-5-DTAF) were introduced to the C6 rat glioma cell line, and were found to be able to enter the cell and approach the nucleus within 24h. The results suggest that this type of modified natural polysaccharide may have an advantage as a biocompatible and biodegradable gene delivery carrier and furthermore may serve as a cell specific carrier. PMID:27312642

  13. Repeated extraction of DNA from FTA cards

    OpenAIRE

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus; Frank-Hansen, Rune; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range.

  14. Automated storage and retrieval system design report

    OpenAIRE

    Eaglesham, Mark A.

    1995-01-01

    This report describes the design and operation of an Automated Storage and Retrieval System (AS/RS) to serve the Flexible Manufacturing and Assembly System (FMAS) in the Manufacturing Systems Laboratory at Virginia Tech. The system requirements of the AS/RS, justification of design choices, and the proposed modes of operating the system are described. The AS/RS was designed to automatically move material on pallets between the storage racks in the laboratory to the FMAS conveyor interface....

  15. Human DNA polymerase α in binary complex with a DNA:DNA template-primer

    OpenAIRE

    Javier Coloma; Johnson, Robert E.; Louise Prakash; Satya Prakash; Aggarwal, Aneel K.

    2016-01-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually e...

  16. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  17. Control of an automated storage and retrieval system

    OpenAIRE

    Lawrence, Terry

    1996-01-01

    The Robotics and Automation Laboratory at Virginia Polytechnic Institute and State University contains a Flexible Machining and Assembly System (FMAS) and an Automated Storage and Retrieval System (AS/RS). These systems were developed for educational purposes to emulate a typical flexible manufacturing process in industry. The AS/RS hardware was designed and constructed in a previous project by Mark Eaglesham. His project consisted of hardware development only and did not in...

  18. Nucleoprotein-based nanoscale assembly

    OpenAIRE

    Smith, Steven S.; Niu, Luming; Baker, David J.; Wendel, John A.; Kane, Susan E.; Joy, Darrin S.

    1997-01-01

    A system for addressing in the construction of macromolecular assemblies can be based on the biospecificity of DNA (cytosine-5) methyltransferases and the capacity of these enzymes to form abortive covalent complexes at targeted 5-fluorocytosine residues in DNA. Using this system, macromolecular assemblies have been created using two representative methyltransferases: M·HhaI and M·MspI. When 5-fluorocytosine (F) is placed at the targeted cytosine in each recognition sequence in a synthetic ol...

  19. A Gold Nanoparticle Based Approach for Screening Triplex DNA Binders

    OpenAIRE

    Han, Min Su; Lytton-Jean, Abigail K. R.; Mirkin, Chad A.

    2006-01-01

    Nanoparticle assemblies interconnected with DNA triple helixes can be used to colorimetrically screen for triplex DNA binding molecules and simultaneously determine their relative binding affinities based on melting temperatures. Nanoparticles assemble only when DNA triple helixes form between DNA from two different particles and a third strand of free DNA. In addition, the triple helix structure is unstable at room temperature and only forms in the presence of triplex DNA binding molecules w...

  20. Grid structure for nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Described is a nuclear fuel element support system comprising an egg-crate-type grid made up of slotted vertical portions interconnected at right angles to each other, the vertical portions being interconnected by means of cross straps which are dimpled midway between their ends to engage fuel elements disposed within openings formed in the egg-crate assembly. The cross straps are disposed at an angle, other than a right angle, to the vertical portions of the assembly whereby their lengths are increased for a given span, and the total elastic deflection capability of the cell is increased. The assembly is particularly adapted for computer design and automated machine tool fabrication

  1. Automated ship image acquisition

    Science.gov (United States)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  2. Mechanisms for DNA Charge Transport

    OpenAIRE

    Genereux, Joseph C.; Barton, Jacqueline K.

    2010-01-01

    DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to...

  3. Automated welding of appendages on empty clad tubes: an advanced technique

    International Nuclear Information System (INIS)

    Several developments have been carried out at Atomic Fuels Division related to fabrication of PHWR fuel assemblies. This paper describes the salient features of an automated welding equipment and its design. Special attention was given to ensure integration of equipment in the existing assembly lines with ease. Detailed drawings are made using Autocad-12 and isometric view of the assembly was prepared. The equipment design is a significant step in the advancement of PHWR fuel assembly fabrication

  4. Automated stopcock actuator

    OpenAIRE

    Vandehey, N. T.; O'Neil, J.P.

    2015-01-01

    Introduction We have developed a low-cost stopcock valve actuator for radiochemistry automation built using a stepper motor and an Arduino, an open-source single-board microcontroller. The con-troller hardware can be programmed to run by serial communication or via two 5–24 V digital lines for simple integration into any automation control system. This valve actuator allows for automated use of a single, disposable stopcock, providing a number of advantages over stopcock manifold systems ...

  5. The Adaptive Automation Design

    OpenAIRE

    Calefato, Caterina; Montanari, Roberto; TESAURI, Francesco

    2008-01-01

    After considering the positive effects of adaptive automation implementation, this chapter focuses on two partly overlapping phenomena: on the one hand, the role of trust in automation is considered, particularly as to the effects of overtrust and mistrust in automation's reliability; on the other hand, long-term lack of exercise on specific operation may lead users to skill deterioration. As a future work, it will be interesting and challenging to explore the conjunction of adaptive automati...

  6. Service functional test automation

    OpenAIRE

    Hillah, Lom Messan; Maesano, Ariele-Paolo; Rosa, Fabio; Maesano, Libero; Lettere, Marco; Fontanelli, Riccardo

    2015-01-01

    This paper presents the automation of the functional test of services (black-box testing) and services architectures (grey-box testing) that has been developed by the MIDAS project and is accessible on the MIDAS SaaS. In particular, the paper illustrates the solutions of tough functional test automation problems such as: (i) the configuration of the automated test execution system against large and complex services architectures, (ii) the constraint-based test input generation, (iii) the spec...

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To improve the thermal and mechanical safety of fuel rods and structural components by making the local power coefficient of jointed fuel rods greater than that of other fuel rods in a fuel assembly. Constitution: In a fuel assembly comprising a plurality of fuel rods bundled by a spacer and held at the upper and the lower positions with tie plates for insertion into a channel, the degree of enrichment of uranium 235 for uranium dioxide fuel pellets charged in jointed fuel rods is adjusted such that the local power coefficient of the jointed fuel rods is made greater than that of the other fuel rods. In the case if the upper tie plate is moved upwardly by the extension of the jointed fuel rods, other fuel rods axially free from the upper tie plate receives no tension, whereby the safety of the fuel assembly can be improved. (Moriyama, K.)

  8. Positioning strategies and sensor integration in tools for assembling MOEMS

    Science.gov (United States)

    Reinhart, Gunther; Jacob, Dirk

    2000-08-01

    Assembly is a crucial process during the production of microsystems. Especially automated and economic assembly of flip- chip at small and medium batch sizes is not solved at the moment in industry. For flexible and economic assembly of standard and flip-chip elements a tool was developed, which makes it possible to assemble MOEMS with an accuracy of less than 8 micrometers by a standard industrial robot. This is done by integrating a fine positioning drive and sensors into the tool. Moreover, a special optics module for the assembly of flip-chip elements was developed, which can be used in different positioning devices in a manual and automatic modus.

  9. Flexible manufacturing for photonics device assembly

    Science.gov (United States)

    Lu, Shin-Yee; Pocha, Michael D.; Strand, Oliver T.; Young, K. David

    1994-01-01

    The assembly of photonics devices such as laser diodes, optical modulators, and opto-electronics multi-chip modules (OEMCM), usually requires the placement of micron size devices such as laser diodes, and sub-micron precision attachment between optical fibers and diodes or waveguide modulators (usually referred to as pigtailing). This is a very labor intensive process. Studies done by the opto-electronics (OE) industry have shown that 95 percent of the cost of a pigtailed photonic device is due to the use of manual alignment and bonding techniques, which is the current practice in industry. At Lawrence Livermore National Laboratory, we are working to reduce the cost of packaging OE devices through the use of automation. Our efforts are concentrated on several areas that are directly related to an automated process. This paper will focus on our progress in two of those areas, in particular, an automated fiber pigtailing machine and silicon micro-technology compatible with an automated process.

  10. Automated Weather Observing System

    Data.gov (United States)

    Department of Transportation — The Automated Weather Observing System (AWOS) is a suite of sensors, which measure, collect, and disseminate weather data to help meteorologists, pilots, and flight...

  11. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. PMID:26065792

  12. Automated cloning methods.; TOPICAL

    International Nuclear Information System (INIS)

    Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)

  13. Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles

    Science.gov (United States)

    Shi, Xiaolong; Wu, Xiaoxu; Song, Tao; Li, Xin

    2016-08-01

    The design of DNA nanotubes is a promising and hot research branch in structural DNA nanotechnology, which is rapidly developing as a versatile method for achieving subtle nanometer scale materials and molecular diagnostic/curative devices. Multifarious methods have been proposed to achieve varied DNA nanotubes, such as using square tiles and single-stranded tiles, but it is still a challenge to develop a bottom-up assembly way to build DNA nanotubes with different diameters and patterns using certain universal DNA nanostructures. This work addresses the challenge by assembling three types of spatial DNA nanotubes with different diameters and patterns from the so-called ``basic bricks'', i.e., hierarchical DNA sub-tiles. A high processing rate and throughput synthesis of DNA nanotubes are observed and analyzed by atomic force microscopy. Experimental observations and data analysis suggests the stability and controllability of DNA nanotubes assembled by hierarchical DNA sub-tiles.

  14. Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles.

    Science.gov (United States)

    Shi, Xiaolong; Wu, Xiaoxu; Song, Tao; Li, Xin

    2016-08-21

    The design of DNA nanotubes is a promising and hot research branch in structural DNA nanotechnology, which is rapidly developing as a versatile method for achieving subtle nanometer scale materials and molecular diagnostic/curative devices. Multifarious methods have been proposed to achieve varied DNA nanotubes, such as using square tiles and single-stranded tiles, but it is still a challenge to develop a bottom-up assembly way to build DNA nanotubes with different diameters and patterns using certain universal DNA nanostructures. This work addresses the challenge by assembling three types of spatial DNA nanotubes with different diameters and patterns from the so-called "basic bricks", i.e., hierarchical DNA sub-tiles. A high processing rate and throughput synthesis of DNA nanotubes are observed and analyzed by atomic force microscopy. Experimental observations and data analysis suggests the stability and controllability of DNA nanotubes assembled by hierarchical DNA sub-tiles. PMID:27444699

  15. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  16. ROBOTIC FORK-LIFT AUTOMATED STORAGE AND RETRIEVAL SYSTEM (AS/RS)

    OpenAIRE

    S.U.CHAKOLE; G.H. WAGHMARE

    2013-01-01

    The automated storage and retrieval systems (AS/RS) are major material handling support systems that are commonly used in the automated factories, distribution centers, warehousing, and non manufacturing environments. Their applications vary widely from a simple storage and retrieval system for small parts to central systems where production, assembly, and manufacturing operations are concentrically located around them. This paper summarizes the literature study of a Robotic automated storage...

  17. The role of automation in the construction of the CMS silicon strip detector

    International Nuclear Information System (INIS)

    The CMS silicon tracker , requires the assembly of about 16,000 silicon detector modules with reproducible quality. In order to ensure proper module assembly, an automated system has been developed at CERN, based on a high-precision robotic positioning machine. This project has successfully demonstrated the feasibility of high quality and high throughput module assembly. Four assembly centers are now being installed in Europe at Bari, Perugia, Lyon, Brussels and at Padova in addition, as backup. Two assembly centers in USA at Fermilab share the assembly task. All centers will have identical robotic positioning machines in order to assure uniform high quality module construction

  18. Enhancing Seismic Calibration Research Through Software Automation

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S; Dodge, D; Elliott, A; Ganzberger, M; Hauk, T; Matzel, E; Ryall, F

    2004-07-09

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration with automation tools. We present an overview of our software automation efforts and framework to address the problematic issues of very large datasets and varied formats utilized during seismic calibration research. The software and scientific automation initiatives directly support the rapid collection of raw and contextual seismic data used in research, provide efficient interfaces for researchers to measure/analyze data, and provide a framework for research dataset integration. The automation also improves the researcher's ability to assemble quality controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks provide the robust foundation upon which synergistic and efficient development of, GNEM R&E Program, seismic calibration research may be built. The task of constructing many seismic calibration products is labor intensive and complex, hence expensive. However, aspects of calibration product construction are susceptible to automation and future economies. We are applying software and scientific automation to problems within two distinct phases or 'tiers' of the seismic calibration process. The first tier involves initial collection of waveform and parameter (bulletin) data that comprise the 'raw materials' from which signal travel-time and amplitude correction surfaces are derived and is highly suited for software automation. The second tier in seismic research content development activities include development of correction surfaces and other calibrations. This second tier is less susceptible to complete automation, as these activities require the judgment of scientists skilled in the interpretation of often highly

  19. Library Automation Style Guide.

    Science.gov (United States)

    Gaylord Bros., Liverpool, NY.

    This library automation style guide lists specific terms and names often used in the library automation industry. The terms and/or acronyms are listed alphabetically and each is followed by a brief definition. The guide refers to the "Chicago Manual of Style" for general rules, and a notes section is included for the convenience of individual…

  20. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and support

  1. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  2. DNA-based Artificial Nanostructures: Fabrication, Properties, and Applications

    OpenAIRE

    Sun, Young; Kiang, Ching-Hwa

    2005-01-01

    Table of Content 1. Introduction 2. DNA fundamentals 3. Attachment of DNA to surface 4. Fabrication of nanostructures using DNA 4.1 Nanostructures of pure DNA 4.2 DNA-based assembly of metal nanoparticles 4.3 Construction of semiconductor particle arrays using DNA 4.4 DNA-directed nanowires 4.5 DNA-functionalized carbon nanotubes 4.6 Field-transistor based on DNA 4.7 Nanofabrication using artificial DNA 5. DNA-based nanostructures as biosensors 6. Properties of DNA-linked gold nanoparticles 6...

  3. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases. PMID:27611326

  4. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  5. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  6. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  7. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  8. Grasping devices and methods in automated production processes

    DEFF Research Database (Denmark)

    Fantoni, Gualtiero; Santochi, Marco; Dini, Gino;

    2014-01-01

    assembly to disassembly, from aerospace to food industry, from textile to logistics) are discussed. Finally, the most recent research is reviewed in order to introduce the new trends in grasping. They provide an outlook on the future of both grippers and robotic hands in automated production processes. (C...

  9. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly is composed of a fuel bundle surrounded by a channel box. The fuel bundle comprises a large number of fuel rods and a water rod secured to upper and lower tie plate by way of a plurality of fuel spacers. Grooves (libretti) are formed in the direction along the flowing direction of coolants to at least one of the surface of the fuel rods, the inner surface of the channel box, the surface of the water rod and spacer constituting components. In this case, the lateral width of the libretto in the flowing direction is determined as the minimum thickness of the bottom layer of a layered flow determined by a coolant flow rate. With such a constitution, abrasion resistance relative to coolants is reduced to reduce the pressure loss of fuel assemblies. (I.N.)

  10. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  11. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  12. Cryptic single-stranded-DNA binding activities of the phage λ P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA

    OpenAIRE

    Learn, Brian A.; Um, Soo-Jong; Huang, Li; McMacken, Roger

    1997-01-01

    The bacteriophage λ P and Escherichia coli DnaC proteins are known to recruit the bacterial DnaB replicative helicase to initiator complexes assembled at the phage and bacterial origins, respectively. These specialized nucleoprotein assemblies facilitate the transfer of one or more molecules of DnaB helicase onto the chromosome; the transferred DnaB, in turn, promotes establishment of a processive replication fork apparatus. To learn more about the mechanism of the DnaB transfer reaction, we ...

  13. DNA nanotechnology: a future perspective

    Science.gov (United States)

    Zahid, Muniza; Kim, Byeonghoon; Hussain, Rafaqat; Amin, Rashid; Park, Sung Ha

    2013-03-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology.

  14. Improvement of Test Automation

    OpenAIRE

    Räsänen, Timo

    2013-01-01

    The purpose for this study was to find out how to ensure that the automated testing of MME in the Network Verification will continue smooth and reliable while using the in-house developed test automation framework. The goal of this thesis was to reveal the reasons of the currently challenging situation and to find the key elements to be improved in the MME testing carried by the test automation. Also a reason for the study was to get solutions as to how to change the current procedures and wa...

  15. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  16. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  17. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. PMID:26773303

  18. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  19. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  20. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.