WorldWideScience

Sample records for automated change detection

  1. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    alerting to the presence of an acoustically chameleonic object. While the utility of exploiting changes in signal phase degrades over time, with time...pp. 643–656, October 2003. [7] D. Brie, M. Tomczak, H. Oehlmann, and A. Richard, “Gear crack detection by adaptive amplitude and phase demodulation

  2. Automated baseline change detection phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  3. Automated baseline change detection phase I. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER ampersand WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements

  4. Automated baseline change detection - Phases 1 and 2. Final report

    International Nuclear Information System (INIS)

    Byler, E.

    1997-01-01

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust

  5. Automated Change Detection for Validation and Update of Geodata

    DEFF Research Database (Denmark)

    Olsen, Brian Pilemann; Knudsen, Thomas

    )is presented. Height information is used to determine the location of object which stands above terrain, and the CIR-Imagery is used to exclude vegetation, leading to a potential buildings mask. Comparing the existing objects in the map database with these extracted objects leads to a validation of the map...... to newer (raster based) remote sensing images in order to detect changes in objects. In this paper an automatic change detection method considering changes in the building theme and based on colourinfrared (CIR) aerial photographs in combination with height information (LIDAR, digital photogrammetry...

  6. Information Foraging and Change Detection for Automated Science Exploration

    Science.gov (United States)

    Furlong, P. Michael; Dille, Michael

    2016-01-01

    This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective is to free remote scientists from possibly-infeasible extensive preliminary site investigation prior to sending robotic agents. We simulate a common exploration task for an autonomous robot sampling the environment at various locations and compare performance against simpler control strategies. An extension is proposed and evaluated that further permits operation in the presence of environmental variability in which the robot encounters a change in the distribution underlying sampling targets. Experimental results indicate a strong improvement in performance across varied parameter choices for the scenario.

  7. Quest for automated land cover change detection using satellite time series data

    CSIR Research Space (South Africa)

    Salmon, BP

    2009-07-01

    Full Text Available and surface climate in the next fifty years,” Global Change Biology, vol. 8, no. 5, pp. 438–458, May 2002. [3] J. A. Foley et al., “Global consequences of land use,” Science, vol. 309, no. 5734, pp. 570–574, July 2005. [4] R. S. Lunetta et al., “Land... (class 1). These four subsets were used to produce a confusion matrix to test if the operational MLP can detect change reliably in an automated fashion on subsets 1 and 2, while not falsely detecting change for subsets 3 and 4. This particular splic...

  8. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    Full Text Available A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST of the change algorithms is applied to calculate the probability of change for a particular location. CEST

  9. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery

    Science.gov (United States)

    Kit, Oleksandr; Lüdeke, Matthias

    2013-09-01

    This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration.

  10. Algorithms and data structures for automated change detection and classification of sidescan sonar imagery

    Science.gov (United States)

    Gendron, Marlin Lee

    During Mine Warfare (MIW) operations, MIW analysts perform change detection by visually comparing historical sidescan sonar imagery (SSI) collected by a sidescan sonar with recently collected SSI in an attempt to identify objects (which might be explosive mines) placed at sea since the last time the area was surveyed. This dissertation presents a data structure and three algorithms, developed by the author, that are part of an automated change detection and classification (ACDC) system. MIW analysts at the Naval Oceanographic Office, to reduce the amount of time to perform change detection, are currently using ACDC. The dissertation introductory chapter gives background information on change detection, ACDC, and describes how SSI is produced from raw sonar data. Chapter 2 presents the author's Geospatial Bitmap (GB) data structure, which is capable of storing information geographically and is utilized by the three algorithms. This chapter shows that a GB data structure used in a polygon-smoothing algorithm ran between 1.3--48.4x faster than a sparse matrix data structure. Chapter 3 describes the GB clustering algorithm, which is the author's repeatable, order-independent method for clustering. Results from tests performed in this chapter show that the time to cluster a set of points is not affected by the distribution or the order of the points. In Chapter 4, the author presents his real-time computer-aided detection (CAD) algorithm that automatically detects mine-like objects on the seafloor in SSI. The author ran his GB-based CAD algorithm on real SSI data, and results of these tests indicate that his real-time CAD algorithm performs comparably to or better than other non-real-time CAD algorithms. The author presents his computer-aided search (CAS) algorithm in Chapter 5. CAS helps MIW analysts locate mine-like features that are geospatially close to previously detected features. A comparison between the CAS and a great circle distance algorithm shows that the

  11. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  12. Point Cloud Based Change Detection - an Automated Approach for Cloud-based Services

    Science.gov (United States)

    Collins, Patrick; Bahr, Thomas

    2016-04-01

    The fusion of stereo photogrammetric point clouds with LiDAR data or terrain information derived from SAR interferometry has a significant potential for 3D topographic change detection. In the present case study latest point cloud generation and analysis capabilities are used to examine a landslide that occurred in the village of Malin in Maharashtra, India, on 30 July 2014, and affected an area of ca. 44.000 m2. It focuses on Pléiades high resolution satellite imagery and the Airbus DS WorldDEMTM as a product of the TanDEM-X mission. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. The pre-event topography is represented by the WorldDEMTM product, delivered with a raster of 12 m x 12 m and based on the EGM2008 geoid (called pre-DEM). For the post-event situation a Pléiades 1B stereo image pair of the AOI affected was obtained. The ENVITask "GeneratePointCloudsByDenseImageMatching" was implemented to extract passive point clouds in LAS format from the panchromatic stereo datasets: • A dense image-matching algorithm is used to identify corresponding points in the two images. • A block adjustment is applied to refine the 3D coordinates that describe the scene geometry. • Additionally, the WorldDEMTM was input to constrain the range of heights in the matching area, and subsequently the length of the epipolar line. The "PointCloudFeatureExtraction" task was executed to generate the post-event digital surface model from the photogrammetric point clouds (called post-DEM). Post-processing consisted of the following steps: • Adding the geoid component (EGM 2008) to the post-DEM. • Pre-DEM reprojection to the UTM Zone 43N (WGS-84) coordinate system and resizing. • Subtraction of the pre-DEM from the post-DEM. • Filtering and threshold based classification of

  13. Automated asteroseismic peak detections

    Science.gov (United States)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  14. Automated asteroseismic peak detections

    DEFF Research Database (Denmark)

    de Montellano, Andres Garcia Saravia Ortiz; Hekker, S.; Themessl, N.

    2018-01-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However......, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible...... of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler....

  15. Short wavelength automated perimetry can detect visual field changes in diabetic patients without retinopathy

    Directory of Open Access Journals (Sweden)

    Othman Ali Zico

    2014-01-01

    Full Text Available Purpose: The purpose of the following study is to compare short wave automated perimetry (SWAP versus standard automated perimetry (SAP for early detection of diabetic retinopathy (DR. Materials and Methods: A total of 40 diabetic patients, divided into group I without DR (20 patients = 40 eyes and group II with mild non-proliferative DR (20 patients = 40 eyes were included. They were tested with central 24-2 threshold test with both shortwave and SAP to compare sensitivity values and local visual field indices in both of them. A total of 20 healthy age and gender matched subjects were assessed as a control group. Results: Control group showed no differences between SWAP and SAP regarding mean deviation (MD, corrected pattern standard deviation (CPSD or short fluctuations (SF. In group I, MD showed significant more deflection in SWAP (−4.44 ± 2.02 dB compared to SAP (−0.96 ± 1.81 dB (P = 0.000002. However, CPSD and SF were not different between SWAP and SAP. In group II, MD and SF showed significantly different values in SWAP (−5.75 ± 3.11 dB and 2.0 ± 0.95 compared to SAP (−3.91 ± 2.87 dB and 2.86 ± 1.23 (P = 0.01 and 0.006 respectively. There are no differences regarding CPSD between SWAP and SAP. The SWAP technique was significantly more sensitive than SAP in patients without retinopathy (p, but no difference exists between the two techniques in patients with non-proliferative DR. Conclusion: The SWAP technique has a higher yield and efficacy to pick up abnormal findings in diabetic patients without overt retinopathy rather than patients with clinical retinopathy.

  16. Automated detection of retinal disease.

    Science.gov (United States)

    Helmchen, Lorens A; Lehmann, Harold P; Abràmoff, Michael D

    2014-11-01

    Nearly 4 in 10 Americans with diabetes currently fail to undergo recommended annual retinal exams, resulting in tens of thousands of cases of blindness that could have been prevented. Advances in automated retinal disease detection could greatly reduce the burden of labor-intensive dilated retinal examinations by ophthalmologists and optometrists and deliver diagnostic services at lower cost. As the current availability of ophthalmologists and optometrists is inadequate to screen all patients at risk every year, automated screening systems deployed in primary care settings and even in patients' homes could fill the current gap in supply. Expanding screens to all patients at risk by switching to automated detection systems would in turn yield significantly higher rates of detecting and treating diabetic retinopathy per dilated retinal examination. Fewer diabetic patients would develop complications such as blindness, while ophthalmologists could focus on more complex cases.

  17. Improving the measurement of longitudinal change in renal function: automated detection of changes in laboratory creatinine assay

    Directory of Open Access Journals (Sweden)

    Norman Poh

    2015-04-01

    Full Text Available IntroductionRenal function is reported using the estimates of glomerular filtration rate (eGFR. However, eGFR values are recorded without reference to the particular serum creatinine (SCr assays used to derive them, and newer assays were introduced at different time points across the laboratories in the United Kingdom. These changes may cause systematic bias in eGFR reported in routinely collected data, even though laboratory-reported eGFR values have a correction factor applied.DesignAn algorithm to detect changes in SCr that in turn affect eGFR calculation method was developed. It compares the mapping of SCr values on to eGFR values across a time series of paired eGFR and SCr measurements.SettingRoutinely collected primary care data from 20,000 people with the richest renal function data from the quality improvement in chronic kidney disease trial.ResultsThe algorithm identified a change in eGFR calculation method in 114 (90% of the 127 included practices. This change was identified in 4736 (23.7% patient time series analysed. This change in calibration method was found to cause a significant step change in the reported eGFR values, producing a systematic bias. The eGFR values could not be recalibrated by applying the Modification of Diet in Renal Disease equation to the laboratory reported SCr values.ConclusionsThis algorithm can identify laboratory changes in eGFR calculation methods and changes in SCr assay. Failure to account for these changes may misconstrue renal function changes over time. Researchers using routine eGFR data should account for these effects.  

  18. Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide

    Directory of Open Access Journals (Sweden)

    R. A. Kromer

    2017-05-01

    Full Text Available We present an automated terrestrial laser scanning (ATLS system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  19. Use of an automated digital images system for detecting plant status changes in response to climate change manipulations

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo

    2014-05-01

    The importance of phenological research for understanding the consequences of global environmental change on vegetation is highlighted in the most recent IPCC reports. Collecting time series of phenological events appears to be of crucial importance to better understand how vegetation systems respond to climatic regime fluctuations, and, consequently, to develop effective management and adaptation strategies. However, traditional monitoring of phenology is labor intensive and costly and affected to a certain degree of subjective inaccuracy. Other methods used to quantify the seasonal patterns of vegetation development are based on satellite remote sensing (land surface phenology) but they operate at coarse spatial and temporal resolution. To overcome the issues of these methodologies different approaches for vegetation monitoring based on "near-surface" remote sensing have been proposed in recent researches. In particular, the use of digital cameras has become more common for phenological monitoring. Digital images provide spectral information in the red, green, and blue (RGB) wavelengths. Inflection points in seasonal variations of intensities of each color channel can be used to identify phenological events. Canopy green-up phenology can be quantified from the greenness indices. Species-specific dates of leaf emergence can be estimated by RGB image analyses. In this research, an Automated Phenological Observation System (APOS), based on digital image sensors, was used for monitoring the phenological behavior of shrubland species in a Mediterranean site. The system was developed under the INCREASE (an Integrated Network on Climate Change Research) EU-funded research infrastructure project, which is based upon large scale field experiments with non-intrusive climatic manipulations. Monitoring of phenological behavior was conducted continuously since October 2012. The system was set to acquire one panorama per day at noon which included three experimental plots for

  20. Automated land cover change detection: the quest for meaningful high temporal time series extraction

    CSIR Research Space (South Africa)

    Salmon, BP

    2010-07-01

    Full Text Available and methodologies on sequential time series extracted from satellite data. 5. REFERENCES [1] R. S. DeFries, L. Bounoua, and G. J. Collatz, “Human modification of the landscape and surface climate in the next fifty years,” Global Change Biology, vol. 8, no. 5... was extracted for only the first two spectral bands from the 8-day composite MODIS MCD43A4 data set (tile H20V11) (year 2000–2008) as it was shown to have considerable class separation when the features are analyzed [6]. 2.3. Data sets: Validation...

  1. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  2. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  3. Changing change detection

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    The change detection paradigm is a popular way of measuring visual short-term memory capacity. Using the paradigm, researchers have found evidence for a capacity of about four independent visual objects, confirming classic estimates that were based on the number of items that could be reported...

  4. Automated early detection of diabetic retinopathy

    NARCIS (Netherlands)

    Abràmoff, M.D.; Reinhardt, J.M.; Russell, S.R.; Folk, J.C.; Mahajan, V.B.; Niemeijer, M.; Quellec, G.

    2010-01-01

    Purpose To compare the performance of automated diabetic retinopathy (DR) detection, using the algorithm that won the 2009 Retinopathy Online Challenge Competition in 2009, the Challenge2009, against that of the one currently used in EyeCheck, a large computer-aided early DR detection project.

  5. Automated image based prominent nucleoli detection.

    Science.gov (United States)

    Yap, Choon K; Kalaw, Emarene M; Singh, Malay; Chong, Kian T; Giron, Danilo M; Huang, Chao-Hui; Cheng, Li; Law, Yan N; Lee, Hwee Kuan

    2015-01-01

    Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.

  6. Automated image based prominent nucleoli detection

    Directory of Open Access Journals (Sweden)

    Choon K Yap

    2015-01-01

    Full Text Available Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.

  7. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images

    NARCIS (Netherlands)

    Adal, K.M.; Van Etten, Peter G.; Martinez, Jose P; Rouwen, Kenneth W.; Vermeer, K.A.; van Vliet, L.J.

    People with diabetes mellitus need annual screening to check for the development of diabetic retinopathy. Tracking small retinal changes due to early diabetic retinopathy lesions in longitudinal fundus image sets is challenging due to intra- and inter-visit variability in illumination and image

  8. Automated system for crack detection using infrared thermograph

    International Nuclear Information System (INIS)

    Starman, Stanislav

    2009-01-01

    The objective of this study was the development of the automated system for crack detection on square steel bars used in the automotive industry for axle and shaft construction. The automated system for thermographic crack detection uses brief pulsed eddy currents to heat steel components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These changes of temperature are visualized using an infrared camera. The image acquired by the infrared camera is evaluated through an image processing system. The advantages afforded by the system are its inspection time, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. The automated system consists of four IR cameras (each side of steel bar is evaluated at a time), coil, high frequency generator and control place with computers. The system is a part of the inspection line where the subsurface and surface cracks are searched. If the crack is present, the cracked place is automatically marked. The components without cracks are then deposited apart from defective blocks. The system is fully automated and its ability is to evaluate four meter blocks within 20 seconds. This is the real reason for using this system in real industrial applications. (author)

  9. Automated vehicle for railway track fault detection

    Science.gov (United States)

    Bhushan, M.; Sujay, S.; Tushar, B.; Chitra, P.

    2017-11-01

    For the safety reasons, railroad tracks need to be inspected on a regular basis for detecting physical defects or design non compliances. Such track defects and non compliances, if not detected in a certain interval of time, may eventually lead to severe consequences such as train derailments. Inspection must happen twice weekly by a human inspector to maintain safety standards as there are hundreds and thousands of miles of railroad track. But in such type of manual inspection, there are many drawbacks that may result in the poor inspection of the track, due to which accidents may cause in future. So to avoid such errors and severe accidents, this automated system is designed.Such a concept would surely introduce automation in the field of inspection process of railway track and can help to avoid mishaps and severe accidents due to faults in the track.

  10. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation.

    Science.gov (United States)

    Boyer, Célia; Dolamic, Ljiljana

    2015-06-02

    than 50% for contact details (100% precision, 69% recall), authority (85% precision, 52% recall), and reference (75% precision, 56% recall). The results also revealed issues for some criteria such as date. Changing the "document" definition (ie, using the sentence instead of whole document as a unit of classification) within the automated system resolved some but not all of them. Study results indicate concordance between automated and expert manual compliance detection for authority, privacy, reference, and contact details. Results also indicate that using the same general parameters for automated detection of each criterion produces suboptimal results. Future work to configure optimal system parameters for each HONcode principle would improve results. The potential utility of integrating automated detection of HONcode conformity into future search engines is also discussed.

  11. Automated DNA electrophoresis, hybridization and detection

    International Nuclear Information System (INIS)

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-01-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; 32 P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing

  12. Automated detection of microcalcification clusters in mammograms

    Science.gov (United States)

    Karale, Vikrant A.; Mukhopadhyay, Sudipta; Singh, Tulika; Khandelwal, Niranjan; Sadhu, Anup

    2017-03-01

    Mammography is the most efficient modality for detection of breast cancer at early stage. Microcalcifications are tiny bright spots in mammograms and can often get missed by the radiologist during diagnosis. The presence of microcalcification clusters in mammograms can act as an early sign of breast cancer. This paper presents a completely automated computer-aided detection (CAD) system for detection of microcalcification clusters in mammograms. Unsharp masking is used as a preprocessing step which enhances the contrast between microcalcifications and the background. The preprocessed image is thresholded and various shape and intensity based features are extracted. Support vector machine (SVM) classifier is used to reduce the false positives while preserving the true microcalcification clusters. The proposed technique is applied on two different databases i.e DDSM and private database. The proposed technique shows good sensitivity with moderate false positives (FPs) per image on both databases.

  13. Automated oil spill detection with multispectral imagery

    Science.gov (United States)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  14. Automated detection of multiple sclerosis lesions in serial brain MRI

    International Nuclear Information System (INIS)

    Llado, Xavier; Ganiler, Onur; Oliver, Arnau; Marti, Robert; Freixenet, Jordi; Valls, Laia; Vilanova, Joan C.; Ramio-Torrenta, Lluis; Rovira, Alex

    2012-01-01

    Multiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided. Time-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge. This paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends. Lesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI. (orig.)

  15. Automated detection of multiple sclerosis lesions in serial brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Llado, Xavier; Ganiler, Onur; Oliver, Arnau; Marti, Robert; Freixenet, Jordi [University of Girona, Computer Vision and Robotics Group, Girona (Spain); Valls, Laia [Dr. Josep Trueta University Hospital, Department of Radiology, Girona (Spain); Vilanova, Joan C. [Girona Magnetic Resonance Center, Girona (Spain); Ramio-Torrenta, Lluis [Dr. Josep Trueta University Hospital, Institut d' Investigacio Biomedica de Girona, Multiple Sclerosis and Neuroimmunology Unit, Girona (Spain); Rovira, Alex [Vall d' Hebron University Hospital, Magnetic Resonance Unit, Department of Radiology, Barcelona (Spain)

    2012-08-15

    Multiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided. Time-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge. This paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends. Lesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI. (orig.)

  16. Automating Vendor Fraud Detection in Enterprise Systems

    Directory of Open Access Journals (Sweden)

    Kishore Singh

    2013-06-01

    Full Text Available Fraud is a multi-billion dollar industry that continues to grow annually. Many organisations are poorly prepared to prevent and detect fraud. Fraud detection strategies are intended to quickly and efficiently identify fraudulent activities that circumvent preventative measures. In this paper we adopt a Design-Science methodological framework to develop a model for detection of vendor fraud based on analysis of patterns or signatures identified in enterprise system audit trails. The concept is demonstrated be developing prototype software. Verification of the prototype is achieved by performing a series of experiments. Validation is achieved by independent reviews from auditing practitioners. Key findings of this study are: i automating routine data analytics improves auditor productivity and reduces time taken to identify potential fraud, and ii visualisations assist in promptly identifying potentially fraudulent user activities. The study makes the following contributions: i a model for proactive fraud detection, ii methods for visualising user activities in transaction data, iii a stand-alone MCL-based prototype.

  17. Social Network Change Detection

    National Research Council Canada - National Science Library

    McCulloh, Ian A; Carley, Kathleen M

    2008-01-01

    ... between group members. The ability to systematically, statistically, effectively and efficiently detect these changes has the potential to enable the anticipation of change, provide early warning of change, and enable...

  18. Automated spoof-detection for fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, LN

    2016-05-01

    Full Text Available that they are highly separable, resulting in 100% accuracy regarding spoof-detection, with no false rejections of real fingers. This is the first attempt at fully automated spoof-detection using OCT....

  19. Removing Parallax-Induced False Changes in Change Detection

    Science.gov (United States)

    2014-03-27

    Teller , “Equation of state calculations by fast computing machines ,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. [89] J. D’Errico...especially in the case of HS data, due to its hundreds of spectral channels. Therefore, there is a strong need for methodologies that enable automated ...researchers for many years due in large part to the number of applications across diverse disciplines. Automated image change detection (CD) is the

  20. Supervised / unsupervised change detection

    OpenAIRE

    de Alwis Pitts, Dilkushi; De Vecchi, Daniele; Harb, Mostapha; So, Emily; Dell'Acqua, Fabio

    2014-01-01

    The aim of this deliverable is to provide an overview of the state of the art in change detection techniques and a critique of what could be programmed to derive SENSUM products. It is the product of the collaboration between UCAM and EUCENTRE. The document includes as a necessary requirement a discussion about a proposed technique for co-registration. Since change detection techniques require an assessment of a series of images and the basic process involves comparing and contrasting the sim...

  1. (Automated) software modularization using community detection

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Manikas, Konstantinos

    2015-01-01

    The modularity of a software system is known to have an effect on, among other, development effort, change impact, and technical debt. Modularizing a specific system and evaluating this modularization is, however, challenging. In this paper, we apply community detection methods to the graph...... of class dependencies in software systems to find optimal modularizations through communities. We evaluate this approach through a study of 111 Java systems contained in the Qualitas Corpus. We found that using the modularity function of Newman with an Erdős-Rényi null-model and using the community...... detection algorithm of Reichardt and Bornholdt improved community quality for all systems, that coupling decreased for 99 of the systems, and that coherence increased for 102 of the systems. Furthermore, the modularity function correlates with existing metrics for coupling and coherence....

  2. Automated Incident Detection Using Real-Time Floating Car Data

    Directory of Open Access Journals (Sweden)

    Maarten Houbraken

    2017-01-01

    Full Text Available The aim of this paper is to demonstrate the feasibility of a live Automated Incident Detection (AID system using only Floating Car Data (FCD in one of the first large-scale FCD AID field trials. AID systems detect traffic events and alert upcoming drivers to improve traffic safety without human monitoring. These automated systems traditionally rely on traffic monitoring sensors embedded in the road. FCD allows for finer spatial granularity of traffic monitoring. However, low penetration rates of FCD probe vehicles and the data latency have historically hindered FCD AID deployment. We use a live country-wide FCD system monitoring an estimated 5.93% of all vehicles. An FCD AID system is presented and compared to the installed AID system (using loop sensor data on 2 different highways in Netherlands. Our results show the FCD AID can adequately monitor changing traffic conditions and follow the AID benchmark. The presented FCD AID is integrated with the road operator systems as part of an innovation project, making this, to the best of our knowledge, the first full chain technical feasibility trial of an FCD-only AID system. Additionally, FCD allows for AID on roads without installed sensors, allowing road safety improvements at low cost.

  3. Automated detection of fundus photographic red lesions in diabetic retinopathy.

    Science.gov (United States)

    Larsen, Michael; Godt, Jannik; Larsen, Nicolai; Lund-Andersen, Henrik; Sjølie, Anne Katrin; Agardh, Elisabet; Kalm, Helle; Grunkin, Michael; Owens, David R

    2003-02-01

    To compare a fundus image-analysis algorithm for automated detection of hemorrhages and microaneurysms with visual detection of retinopathy in patients with diabetes. Four hundred fundus photographs (35-mm color transparencies) were obtained in 200 eyes of 100 patients with diabetes who were randomly selected from the Welsh Community Diabetic Retinopathy Study. A gold standard reference was defined by classifying each patient as having or not having diabetic retinopathy based on overall visual grading of the digitized transparencies. A single-lesion visual grading was made independently, comprising meticulous outlining of all single lesions in all photographs and used to develop the automated red lesion detection system. A comparison of visual and automated single-lesion detection in replicating the overall visual grading was then performed. Automated red lesion detection demonstrated a specificity of 71.4% and a resulting sensitivity of 96.7% in detecting diabetic retinopathy when applied at a tentative threshold setting for use in diabetic retinopathy screening. The accuracy of 79% could be raised to 85% by adjustment of a single user-supplied parameter determining the balance between the screening priorities, for which a considerable range of options was demonstrated by the receiver-operating characteristic (area under the curve 90.3%). The agreement of automated lesion detection with overall visual grading (0.659) was comparable to the mean agreement of six ophthalmologists (0.648). Detection of diabetic retinopathy by automated detection of single fundus lesions can be achieved with a performance comparable to that of experienced ophthalmologists. The results warrant further investigation of automated fundus image analysis as a tool for diabetic retinopathy screening.

  4. Automated lung nodule classification following automated nodule detection on CT: A serial approach

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Altman, Michael B.; Wilkie, Joel; Sone, Shusuke; Li, Feng; Doi, Kunio; Roy, Arunabha S.

    2003-01-01

    We have evaluated the performance of an automated classifier applied to the task of differentiating malignant and benign lung nodules in low-dose helical computed tomography (CT) scans acquired as part of a lung cancer screening program. The nodules classified in this manner were initially identified by our automated lung nodule detection method, so that the output of automated lung nodule detection was used as input to automated lung nodule classification. This study begins to narrow the distinction between the 'detection task' and the 'classification task'. Automated lung nodule detection is based on two- and three-dimensional analyses of the CT image data. Gray-level-thresholding techniques are used to identify initial lung nodule candidates, for which morphological and gray-level features are computed. A rule-based approach is applied to reduce the number of nodule candidates that correspond to non-nodules, and the features of remaining candidates are merged through linear discriminant analysis to obtain final detection results. Automated lung nodule classification merges the features of the lung nodule candidates identified by the detection algorithm that correspond to actual nodules through another linear discriminant classifier to distinguish between malignant and benign nodules. The automated classification method was applied to the computerized detection results obtained from a database of 393 low-dose thoracic CT scans containing 470 confirmed lung nodules (69 malignant and 401 benign nodules). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of the classifier to differentiate between nodule candidates that correspond to malignant nodules and nodule candidates that correspond to benign lesions. The area under the ROC curve for this classification task attained a value of 0.79 during a leave-one-out evaluation

  5. Automated visual fruit detection for harvest estimation and robotic harvesting

    OpenAIRE

    Puttemans, Steven; Vanbrabant, Yasmin; Tits, Laurent; Goedemé, Toon

    2016-01-01

    Fully automated detection and localisation of fruit in orchards is a key component in creating automated robotic harvesting systems, a dream of many farmers around the world to cope with large production and personnel costs. In recent years a lot of research on this topic has been performed, using basic computer vision techniques, like colour based segmentation, as a suggested solution. When not using standard RGB cameras, research tends to resort to other sensors, like hyper spectral or 3D. ...

  6. A review on automated pavement distress detection methods

    NARCIS (Netherlands)

    Coenen, Tom B.J.; Golroo, Amir

    2017-01-01

    In recent years, extensive research has been conducted on pavement distress detection. A large part of these studies applied automated methods to capture different distresses. In this paper, a literature review on the distresses and related detection methods are presented. This review also includes

  7. Automated Windowing Processing for Pupil Detection

    National Research Council Canada - National Science Library

    Ebisawa, Y

    2001-01-01

    .... The pupil center in the video image is a focal point to determine the eye gaze. Recently, to improve the disadvantages of traditional pupil detection methods, a pupil detection technique using two light sources (LEDs...

  8. A survey on automated wheeze detection systems for asthmatic patients

    Directory of Open Access Journals (Sweden)

    Syamimi Mardiah Shaharum

    2012-11-01

    Full Text Available The purpose of this paper is to present an evidence of automated wheeze detection system by a survey that can be very beneficial for asthmatic patients. Generally, for detecting asthma in a patient, stethoscope is used for ascertaining wheezes present. This causes a major problem nowadays because a number of patients tend to delay the interpretation time, which can lead to misinterpretations and in some worst cases to death. Therefore, the development of automated system would ease the burden of medical personnel. A further discussion on automated wheezes detection system will be presented later in the paper. As for the methodology, a systematic search of articles published as early as 1985 to 2012 was conducted. Important details including the hardware used, placement of hardware, and signal processing methods have been presented clearly thus hope to help and encourage future researchers to develop commercial system that will improve the diagnosing and monitoring of asthmatic patients.

  9. Automated detection of exudates for diabetic retinopathy screening

    International Nuclear Information System (INIS)

    Fleming, Alan D; Philip, Sam; Goatman, Keith A; Williams, Graeme J; Olson, John A; Sharp, Peter F

    2007-01-01

    Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy

  10. Automated detection of exudates for diabetic retinopathy screening

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alan D [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom); Philip, Sam [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Goatman, Keith A [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom); Williams, Graeme J [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Olson, John A [Diabetes Retinal Screening Service, David Anderson Building, Foresterhill Road, Aberdeen, AB25 2ZP (United Kingdom); Sharp, Peter F [Biomedical Physics, University of Aberdeen, Aberdeen, AB25 2ZD (United Kingdom)

    2007-12-21

    Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy.

  11. Automated detection of exudates for diabetic retinopathy screening

    Science.gov (United States)

    Fleming, Alan D.; Philip, Sam; Goatman, Keith A.; Williams, Graeme J.; Olson, John A.; Sharp, Peter F.

    2007-12-01

    Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy.

  12. Unsupervised land cover change detection: meaningful sequential time series analysis

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-06-01

    Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...

  13. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    Science.gov (United States)

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  14. Systems and Methods for Automated Water Detection Using Visible Sensors

    Science.gov (United States)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  15. Automated detection and categorization of genital injuries using digital colposcopy

    DEFF Research Database (Denmark)

    Fernandes, Kelwin; Cardoso, Jaime S.; Astrup, Birgitte Schmidt

    2017-01-01

    handcrafted features and deep learning techniques in the automated processing of colposcopic images for genital injury detection. Positive results where achieved by both paradigms in segmentation and classification subtasks, being traditional and deep models the best strategy for each subtask type...

  16. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images.

    Science.gov (United States)

    Wang, Kang; Jayadev, Chaitra; Nittala, Muneeswar G; Velaga, Swetha B; Ramachandra, Chaithanya A; Bhaskaranand, Malavika; Bhat, Sandeep; Solanki, Kaushal; Sadda, SriniVas R

    2018-03-01

    We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Enhanced detection levels in a semi-automated sandwich ...

    African Journals Online (AJOL)

    A peptide nucleic acid (PNA) signal probe was tested as a replacement for a typical DNA oligonucleotidebased signal probe in a semi-automated sandwich hybridisation assay designed to detect the harmful phytoplankton species Alexandrium tamarense. The PNA probe yielded consistently higher fluorescent signal ...

  18. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  19. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  20. Detect and Avoid (DAA) Automation Maneuver Study

    Science.gov (United States)

    2017-02-01

    GUY A. FRENCH JOSEPH C. PRICE, MAJ, USAF Work Unit Manager Acting Chief, Supervisory Control and Cognition Branch Supervisory Control and Cognition...19a. NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified Guy French 19b. TELEPHONE...the ability to detect and safely avoid other aircraft in flight ( Cook & Davis, 2013). In order to increase UAS flight safety and support UAS

  1. Automated Sargassum Detection for Landsat Imagery

    Science.gov (United States)

    McCarthy, S.; Gallegos, S. C.; Armstrong, D.

    2016-02-01

    We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.

  2. Automation: An Illustration of Social Change.

    Science.gov (United States)

    Warnat, Winifred I.

    Advanced automation is significantly affecting American society and the individual. To understand the extent of this impact, an understanding of the country's service economy is necessary. The United States made the transition from a goods- to service-based economy shortly after World War II. In 1982, services generated 67% of the Gross National…

  3. Quantitative Indicators for Behaviour Drift Detection from Home Automation Data.

    Science.gov (United States)

    Veronese, Fabio; Masciadri, Andrea; Comai, Sara; Matteucci, Matteo; Salice, Fabio

    2017-01-01

    Smart Homes diffusion provides an opportunity to implement elderly monitoring, extending seniors' independence and avoiding unnecessary assistance costs. Information concerning the inhabitant behaviour is contained in home automation data, and can be extracted by means of quantitative indicators. The application of such approach proves it can evidence behaviour changes.

  4. Automated detection of geomagnetic storms with heightened risk of GIC

    Science.gov (United States)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  5. Rapid Change Detection Algorithm for Disaster Management

    Science.gov (United States)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  6. Automated gravity gradient tensor inversion for underwater object detection

    International Nuclear Information System (INIS)

    Wu, Lin; Tian, Jinwen

    2010-01-01

    Underwater abnormal object detection is a current need for the navigation security of autonomous underwater vehicles (AUVs). In this paper, an automated gravity gradient tensor inversion algorithm is proposed for the purpose of passive underwater object detection. Full-tensor gravity gradient anomalies induced by an object in the partial area can be measured with the technique of gravity gradiometry on an AUV. Then the automated algorithm utilizes the anomalies, using the inverse method to estimate the mass and barycentre location of the arbitrary-shaped object. A few tests on simple synthetic models will be illustrated, in order to evaluate the feasibility and accuracy of the new algorithm. Moreover, the method is applied to a complicated model of an abnormal object with gradiometer and AUV noise, and interference from a neighbouring illusive smaller object. In all cases tested, the estimated mass and barycentre location parameters are found to be in good agreement with the actual values

  7. Multisensor Fusion for Change Detection

    Science.gov (United States)

    Schenk, T.; Csatho, B.

    2005-12-01

    Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach

  8. Automated Fault Detection for DIII-D Tokamak Experiments

    International Nuclear Information System (INIS)

    Walker, M.L.; Scoville, J.T.; Johnson, R.D.; Hyatt, A.W.; Lee, J.

    1999-01-01

    An automated fault detection software system has been developed and was used during 1999 DIII-D plasma operations. The Fault Identification and Communication System (FICS) executes automatically after every plasma discharge to check dozens of subsystems for proper operation and communicates the test results to the tokamak operator. This system is now used routinely during DIII-D operations and has led to an increase in tokamak productivity

  9. Towards an Automated Acoustic Detection System for Free Ranging Elephants.

    Science.gov (United States)

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In this paper, we present a method for the automated detection of elephant vocalizations that is robust to the diverse noise sources present in the field. We evaluate the method on a dataset recorded under natural field conditions to simulate a real-world scenario. The proposed method outperformed existing approaches and robustly and accurately detected elephants. It thus can form the basis for a future automated early warning system for elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics for the study of wildlife recordings.

  10. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation

    OpenAIRE

    Boyer, Célia; Dolamic, Ljiljana

    2015-01-01

    Background To earn HONcode certification, a website must conform to the 8 principles of the HONcode of Conduct In the current manual process of certification, a HONcode expert assesses the candidate website using precise guidelines for each principle. In the scope of the European project KHRESMOI, the Health on the Net (HON) Foundation has developed an automated system to assist in detecting a website?s HONcode conformity. Automated assistance in conducting HONcode reviews can expedite the cu...

  11. An Automated Motion Detection and Reward System for Animal Training.

    Science.gov (United States)

    Miller, Brad; Lim, Audrey N; Heidbreder, Arnold F; Black, Kevin J

    2015-12-04

    A variety of approaches has been used to minimize head movement during functional brain imaging studies in awake laboratory animals. Many laboratories expend substantial effort and time training animals to remain essentially motionless during such studies. We could not locate an "off-the-shelf" automated training system that suited our needs.  We developed a time- and labor-saving automated system to train animals to hold still for extended periods of time. The system uses a personal computer and modest external hardware to provide stimulus cues, monitor movement using commercial video surveillance components, and dispense rewards. A custom computer program automatically increases the motionless duration required for rewards based on performance during the training session but allows changes during sessions. This system was used to train cynomolgus monkeys (Macaca fascicularis) for awake neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The automated system saved the trainer substantial time, presented stimuli and rewards in a highly consistent manner, and automatically documented training sessions. We have limited data to prove the training system's success, drawn from the automated records during training sessions, but we believe others may find it useful. The system can be adapted to a range of behavioral training/recording activities for research or commercial applications, and the software is freely available for non-commercial use.

  12. Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images

    Directory of Open Access Journals (Sweden)

    Akara Sopharak

    2013-07-01

    Full Text Available Diabetic retinopathy is the commonest cause of blindness in working age people. It is characterised and graded by the development of retinal microaneurysms, haemorrhages and exudates. The damage caused by diabetic retinopathy can be prevented if it is treated in its early stages. Therefore, automated early detection can limit the severity of the disease, improve the follow-up management of diabetic patients and assist ophthalmologists in investigating and treating the disease more efficiently. This review focuses on microaneurysm detection as the earliest clinically localised characteristic of diabetic retinopathy, a frequently observed complication in both Type 1 and Type 2 diabetes. Algorithms used for microaneurysm detection from retinal images are reviewed. A number of features used to extract microaneurysm are summarised. Furthermore, a comparative analysis of reported methods used to automatically detect microaneurysms is presented and discussed. The performance of methods and their complexity are also discussed.

  13. Automated Detection of Thermo-Erosion in High Latitude Ecosystems

    Science.gov (United States)

    Lara, M. J.; Chipman, M. L.; Hu, F.

    2017-12-01

    Detecting permafrost disturbance is of critical importance as the severity of climate change and associated increase in wildfire frequency and magnitude impacts regional to global carbon dynamics. However, it has not been possible to evaluate spatiotemporal patterns of permafrost degradation over large regions of the Arctic, due to limited spatial and temporal coverage of high resolution optical, radar, lidar, or hyperspectral remote sensing products. Here we present the first automated multi-temporal analysis for detecting disturbance in response to permafrost thaw, using meso-scale high-frequency remote sensing products (i.e. entire Landsat image archive). This approach was developed, tested, and applied in the Noatak National Preserve (26,500km2) in northwestern Alaska. We identified thermo-erosion (TE), by capturing the indirect spectral signal associated with episodic sediment plumes in adjacent waterbodies following TE disturbance. We isolated this turbidity signal within lakes during summer (mid-summer & late-summer) and annual time-period image composites (1986-2016), using the cloud-based geospatial parallel processing platform, Google Earth Engine™API. We validated the TE detection algorithm using seven consecutive years of sub-meter high resolution imagery (2009-2015) covering 798 ( 33%) of the 2456 total lakes in the Noatak lowlands. Our approach had "good agreement" with sediment pulses and landscape deformation in response to permafrost thaw (overall accuracy and kappa coefficient of 85% and 0.61). We identify active TE to impact 10.4% of all lakes, but was inter-annually variable, with the highest and lowest TE years represented by 1986 ( 41.1%) and 2002 ( 0.7%), respectively. We estimate thaw slumps, lake erosion, lake drainage, and gully formation to account for 23.3, 61.8, 12.5, and 1.3%, of all active TE across the Noatak National Preserve. Preliminary analysis, suggests TE may be subject to a hysteresis effect following extreme climatic

  14. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Elżbieta Pociask

    2016-01-01

    Full Text Available Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement, segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.

  15. Change Detection in Social Networks

    National Research Council Canada - National Science Library

    McCulloh, Ian; Webb, Matthew; Graham, John; Carley, Kathleen; Horn, Daniel B

    2008-01-01

    .... This project proposes a new method for detecting change in social networks over time, by applying a cumulative sum statistical process control statistic to normally distributed network measures...

  16. Automated Detection of Oscillating Regions in the Solar Atmosphere

    Science.gov (United States)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  17. Organizational changes and automation: Towards a customer-oriented automation: Part 3

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1994-01-01

    Automation offers great opportunities in the efforts of energy utilities in the Netherlands to reorganize towards more customer-oriented businesses. However, automation in itself is not enough. First, the organizational structure has to be changed considerably. Various energy utilities have already started on it. The restructuring principle is the same everywhere, but the way it is implemented differs widely. In this article attention is paid to the necessity of realizing an integrated computerized system, which, however, is not feasible at the moment. The second best alternative is to use various computerized systems, capable of two-way data exchange. Two viable approaches are discussed: (1) one operating system on which all automated systems within a company should run, or (2) a selective system linking on the basis of required speed information exchange. Option (2) offers more freedom of selecting the system. 2 figs

  18. Automation in airport security X-ray screening of cabin baggage: Examining benefits and possible implementations of automated explosives detection.

    Science.gov (United States)

    Hättenschwiler, Nicole; Sterchi, Yanik; Mendes, Marcia; Schwaninger, Adrian

    2018-10-01

    Bomb attacks on civil aviation make detecting improvised explosive devices and explosive material in passenger baggage a major concern. In the last few years, explosive detection systems for cabin baggage screening (EDSCB) have become available. Although used by a number of airports, most countries have not yet implemented these systems on a wide scale. We investigated the benefits of EDSCB with two different levels of automation currently being discussed by regulators and airport operators: automation as a diagnostic aid with an on-screen alarm resolution by the airport security officer (screener) or EDSCB with an automated decision by the machine. The two experiments reported here tested and compared both scenarios and a condition without automation as baseline. Participants were screeners at two international airports who differed in both years of work experience and familiarity with automation aids. Results showed that experienced screeners were good at detecting improvised explosive devices even without EDSCB. EDSCB increased only their detection of bare explosives. In contrast, screeners with less experience (tenure automated decision provided better human-machine detection performance than on-screen alarm resolution and no automation. This came at the cost of slightly higher false alarm rates on the human-machine system level, which would still be acceptable from an operational point of view. Results indicate that a wide-scale implementation of EDSCB would increase the detection of explosives in passenger bags and automated decision instead of automation as diagnostic aid with on screen alarm resolution should be considered. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Automated crack detection in conductive smart-concrete structures using a resistor mesh model

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon

    2018-03-01

    Various nondestructive evaluation techniques are currently used to automatically detect and monitor cracks in concrete infrastructure. However, these methods often lack the scalability and cost-effectiveness over large geometries. A solution is the use of self-sensing carbon-doped cementitious materials. These self-sensing materials are capable of providing a measurable change in electrical output that can be related to their damage state. Previous work by the authors showed that a resistor mesh model could be used to track damage in structural components fabricated from electrically conductive concrete, where damage was located through the identification of high resistance value resistors in a resistor mesh model. In this work, an automated damage detection strategy that works through placing high value resistors into the previously developed resistor mesh model using a sequential Monte Carlo method is introduced. Here, high value resistors are used to mimic the internal condition of damaged cementitious specimens. The proposed automated damage detection method is experimentally validated using a 500 × 500 × 50 mm3 reinforced cement paste plate doped with multi-walled carbon nanotubes exposed to 100 identical impact tests. Results demonstrate that the proposed Monte Carlo method is capable of detecting and localizing the most prominent damage in a structure, demonstrating that automated damage detection in smart-concrete structures is a promising strategy for real-time structural health monitoring of civil infrastructure.

  20. AUTOMATION AND TECHNOLOGICAL CHANGE IN BANKING.

    Science.gov (United States)

    STEINER, CARL L.

    THE PURPOSES OF THIS STUDY WERE TO DETERMINE THE PERSONNEL CHANGE DIRECTLY RESULTING FROM THE INSTALLATION OF ELECTRONIC DATA PROCESSING IN ONE OF THE LARGE COMMERCIAL BANKS IN BALTIMORE, TO DESCRIBE THE PROCESSES AND JOB DUTIES INVOLVED, AND TO INDICATE HOW CHANGES HAVE AFFECTED EMPLOYMENT AND WHAT MAY BE EXPECTED IN THE FUTURE. THE USE OF THE…

  1. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  2. The Automated Assessment of Postural Stability: Balance Detection Algorithm.

    Science.gov (United States)

    Napoli, Alessandro; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2017-12-01

    Impaired balance is a common indicator of mild traumatic brain injury, concussion and musculoskeletal injury. Given the clinical relevance of such injuries, especially in military settings, it is paramount to develop more accurate and reliable on-field evaluation tools. This work presents the design and implementation of the automated assessment of postural stability (AAPS) system, for on-field evaluations following concussion. The AAPS is a computer system, based on inexpensive off-the-shelf components and custom software, that aims to automatically and reliably evaluate balance deficits, by replicating a known on-field clinical test, namely, the Balance Error Scoring System (BESS). The AAPS main innovation is its balance error detection algorithm that has been designed to acquire data from a Microsoft Kinect ® sensor and convert them into clinically-relevant BESS scores, using the same detection criteria defined by the original BESS test. In order to assess the AAPS balance evaluation capability, a total of 15 healthy subjects (7 male, 8 female) were required to perform the BESS test, while simultaneously being tracked by a Kinect 2.0 sensor and a professional-grade motion capture system (Qualisys AB, Gothenburg, Sweden). High definition videos with BESS trials were scored off-line by three experienced observers for reference scores. AAPS performance was assessed by comparing the AAPS automated scores to those derived by three experienced observers. Our results show that the AAPS error detection algorithm presented here can accurately and precisely detect balance deficits with performance levels that are comparable to those of experienced medical personnel. Specifically, agreement levels between the AAPS algorithm and the human average BESS scores ranging between 87.9% (single-leg on foam) and 99.8% (double-leg on firm ground) were detected. Moreover, statistically significant differences in balance scores were not detected by an ANOVA test with alpha equal to 0

  3. Automated microaneurysm detection in diabetic retinopathy using curvelet transform

    Science.gov (United States)

    Ali Shah, Syed Ayaz; Laude, Augustinus; Faye, Ibrahima; Tang, Tong Boon

    2016-10-01

    Microaneurysms (MAs) are known to be the early signs of diabetic retinopathy (DR). An automated MA detection system based on curvelet transform is proposed for color fundus image analysis. Candidates of MA were extracted in two parallel steps. In step one, blood vessels were removed from preprocessed green band image and preliminary MA candidates were selected by local thresholding technique. In step two, based on statistical features, the image background was estimated. The results from the two steps allowed us to identify preliminary MA candidates which were also present in the image foreground. A collection set of features was fed to a rule-based classifier to divide the candidates into MAs and non-MAs. The proposed system was tested with Retinopathy Online Challenge database. The automated system detected 162 MAs out of 336, thus achieved a sensitivity of 48.21% with 65 false positives per image. Counting MA is a means to measure the progression of DR. Hence, the proposed system may be deployed to monitor the progression of DR at early stage in population studies.

  4. Automated Detection of Client-State Manipulation Vulnerabilities

    DEFF Research Database (Denmark)

    Møller, Anders; Schwarz, Mathias

    2012-01-01

    automated tools that can assist the programmers in the application development process by detecting weaknesses. Many vulnerabilities are related to web application code that stores references to application state in the generated HTML documents to work around the statelessness of the HTTP protocol....... In this paper, we show that such client-state manipulation vulnerabilities are amenable to tool supported detection. We present a static analysis for the widely used frameworks Java Servlets, JSP, and Struts. Given a web application archive as input, the analysis identifies occurrences of client state...... and infers the information flow between the client state and the shared application state on the server. This makes it possible to check how client-state manipulation performed by malicious users may affect the shared application state and cause leakage or modifications of sensitive information. The warnings...

  5. Automated detection of optical counterparts to GRBs with RAPTOR

    International Nuclear Information System (INIS)

    Wozniak, P. R.; Vestrand, W. T.; Evans, S.; White, R.; Wren, J.

    2006-01-01

    The RAPTOR system (RAPid Telescopes for Optical Response) is an array of several distributed robotic telescopes that automatically respond to GCN localization alerts. Raptor-S is a 0.4-m telescope with 24 arc min. field of view employing a 1k x 1k Marconi CCD detector, and has already detected prompt optical emission from several GRBs within the first minute of the explosion. We present a real-time data analysis and alert system for automated identification of optical transients in Raptor-S GRB response data down to the sensitivity limit of ∼ 19 mag. Our custom data processing pipeline is designed to minimize the time required to reliably identify transients and extract actionable information. The system utilizes a networked PostgreSQL database server for catalog access and distributes email alerts with successful detections

  6. [Automated detection of estrus and mastitis in dairy cows].

    Science.gov (United States)

    de Mol, R M

    2001-02-15

    The development and test of detection models for oestrus and mastitis in dairy cows is described in a PhD thesis that was defended in Wageningen on June 5, 2000. These models were based on sensors for milk yield, milk temperature, electrical conductivity of milk, and cow activity and concentrate intake, and on combined processing of the sensor data. The models alert farmers to cows that need attention, because of possible oestrus or mastitis. A first detection model for cows, milked twice a day, was based on time series models for the sensor variables. A time series model describes the dependence between successive observations. The parameters of the time series models were fitted on-line for each cow after each milking by means of a Kalman filter, a mathematical method to estimate the state of a system on-line. The Kalman filter gives the best estimate of the current state of a system based on all preceding observations. This model was tested for 2 years on two experimental farms, and under field conditions on four farms over several years. A second detection model, for cow milked in an automatic milking system (AMS), was based on a generalization of the first model. Two data sets (one small, one large) were used for testing. The results for oestrus detection were good for both models. The results for mastitis detection were varying (in some cases good, in other cases moderate). Fuzzy logic was used to classify mastitis and oestrus alerts with both detection models, to reduce the number of false positive alerts. Fuzzy logic makes approximate reasoning possible, where statements can be partly true or false. Input for the fuzzy logic model were alerts from the detection models and additional information. The number of false positive alerts decreased considerably, while the number of detected cases remained at the same level. These models make automated detection possible in practice.

  7. An automated detection for axonal boutons in vivo two-photon imaging of mouse

    Science.gov (United States)

    Li, Weifu; Zhang, Dandan; Xie, Qiwei; Chen, Xi; Han, Hua

    2017-02-01

    Activity-dependent changes in the synaptic connections of the brain are tightly related to learning and memory. Previous studies have shown that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. To further explore synaptic dynamics in specific pathways, concurrent imaging of pre and postsynaptic structures in identified connections is required. Consequently, considerable attention has been paid for the automated detection of axonal boutons. Different from most previous methods proposed in vitro data, this paper considers a more practical case in vivo neuron images which can provide real time information and direct observation of the dynamics of a disease process in mouse. Additionally, we present an automated approach for detecting axonal boutons by starting with deconvolving the original images, then thresholding the enhanced images, and reserving the regions fulfilling a series of criteria. Experimental result in vivo two-photon imaging of mouse demonstrates the effectiveness of our proposed method.

  8. Sunglass detection method for automation of video surveillance system

    Science.gov (United States)

    Sikandar, Tasriva; Samsudin, Wan Nur Azhani W.; Hawari Ghazali, Kamarul; Mohd, Izzeldin I.; Fazle Rabbi, Mohammad

    2018-04-01

    Wearing sunglass to hide face from surveillance camera is a common activity in criminal incidences. Therefore, sunglass detection from surveillance video has become a demanding issue in automation of security systems. In this paper we propose an image processing method to detect sunglass from surveillance images. Specifically, a unique feature using facial height and width has been employed to identify the covered region of the face. The presence of covered area by sunglass is evaluated using facial height-width ratio. Threshold value of covered area percentage is used to classify the glass wearing face. Two different types of glasses have been considered i.e. eye glass and sunglass. The results of this study demonstrate that the proposed method is able to detect sunglasses in two different illumination conditions such as, room illumination as well as in the presence of sunlight. In addition, due to the multi-level checking in facial region, this method has 100% accuracy of detecting sunglass. However, in an exceptional case where fabric surrounding the face has similar color as skin, the correct detection rate was found 93.33% for eye glass.

  9. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    Science.gov (United States)

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  10. CT changes after lumbar percutaneous automated nucleotomy

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. (Depts. of Radiology, Section of Neuroradiology and Neurosurgery, Ullevaal Univ. Hospital, Oslo (Norway)); Amundsen, T. (Depts. of Radiology, Section of Neuroradiology and Neurosurgery, Ullevaal Univ. Hospital, Oslo (Norway)); Nakstad, P.H. (Depts. of Radiology, Section of Neuroradiology and Neurosurgery, Ullevaal Univ. Hospital, Oslo (Norway)); Magnaes, B. (Depts. of Radiology, Section of Neuroradiology and Neurosurgery, Ullevaal Univ. Hospital, Oslo (Norway))

    1994-09-01

    In order to assess changes occurring in disk hernias and disk spaces following percutaneous nucleotomy a follow-up CT was carried out an average of 6 months after treatment of 69 disks in 60 patients. Forty-three of the disks were also reexamined at an average of 11 months after the first follow-up. Twenty-seven percent of the hernias were reduced in size at the first follow-up. Fourteen percent were reduced and 7% had increased between the first and second follow-ups. The medium-sized and large hernias were more frequently reduced compared to the smaller ones. Reduction of the disk space was found in 29% of the cases at first follow-up. An additional 24% were reduced between the first and second follow-ups. No association was demonstrated between change in size of the herniation or disk space and clinical outcome or amount of nucleous material removed at nucleotomy. (orig.).

  11. Automated detection of actinic keratoses in clinical photographs.

    Science.gov (United States)

    Hames, Samuel C; Sinnya, Sudipta; Tan, Jean-Marie; Morze, Conrad; Sahebian, Azadeh; Soyer, H Peter; Prow, Tarl W

    2015-01-01

    Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist's assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist's intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001) were detected in the high actinic keratosis group compared to the no actinic keratosis group. The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve sensitivity of detection of 53.1% on the arms.This suggests that image analysis is

  12. Retail industry adopting change : adaptation: automation: benefits

    OpenAIRE

    Ahmed, Nabeel

    2013-01-01

    This thesis contains the research on the key change adoptive agents/forces and the solu-tions to the world‟s rapidly growing and one of the most consumer facing industry. The trillions worth retail industries are undergoing the period of important restructuring inter-nally and externally. The author highlights the key factors that force the retail industry to adopt modern technologies for their daily business processes in order to be more competi-tive. The factors have been viewed in two pers...

  13. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  14. Evaluation of a New Digital Automated Glycemic Pattern Detection Tool.

    Science.gov (United States)

    Comellas, María José; Albiñana, Emma; Artes, Maite; Corcoy, Rosa; Fernández-García, Diego; García-Alemán, Jorge; García-Cuartero, Beatriz; González, Cintia; Rivero, María Teresa; Casamira, Núria; Weissmann, Jörg

    2017-11-01

    Blood glucose meters are reliable devices for data collection, providing electronic logs of historical data easier to interpret than handwritten logbooks. Automated tools to analyze these data are necessary to facilitate glucose pattern detection and support treatment adjustment. These tools emerge in a broad variety in a more or less nonevaluated manner. The aim of this study was to compare eDetecta, a new automated pattern detection tool, to nonautomated pattern analysis in terms of time investment, data interpretation, and clinical utility, with the overarching goal to identify early in development and implementation of tool areas of improvement and potential safety risks. Multicenter web-based evaluation in which 37 endocrinologists were asked to assess glycemic patterns of 4 real reports (2 continuous subcutaneous insulin infusion [CSII] and 2 multiple daily injection [MDI]). Endocrinologist and eDetecta analyses were compared on time spent to analyze each report and agreement on the presence or absence of defined patterns. eDetecta module markedly reduced the time taken to analyze each case on the basis of the emminens eConecta reports (CSII: 18 min; MDI: 12.5), compared to the automatic eDetecta analysis. Agreement between endocrinologists and eDetecta varied depending on the patterns, with high level of agreement in patterns of glycemic variability. Further analysis of low level of agreement led to identifying areas where algorithms used could be improved to optimize trend pattern identification. eDetecta was a useful tool for glycemic pattern detection, helping clinicians to reduce time required to review emminens eConecta glycemic reports. No safety risks were identified during the study.

  15. Evaluation of the Initial Thematic Output from a Continuous Change-Detection Algorithm for Use in Automated Operational Land-Change Mapping by the U.S. Geological Survey

    Directory of Open Access Journals (Sweden)

    Bruce Pengra

    2016-10-01

    Full Text Available The U.S. Geological Survey (USGS has begun the development of operational, 30-m resolution annual thematic land cover data to meet the needs of a variety of land cover data users. The Continuous Change Detection and Classification (CCDC algorithm is being evaluated as the likely methodology following early trials. Data for training and testing of CCDC thematic maps have been provided by the USGS Land Cover Trends (LC Trends project, which offers sample-based, manually classified thematic land cover data at 2755 probabilistically located sample blocks across the conterminous United States. These samples represent a high quality, well distributed source of data to train the Random Forest classifier invoked by CCDC. We evaluated the suitability of LC Trends data to train the classifier by assessing the agreement of annual land cover maps output from CCDC with output from the LC Trends project within 14 Landsat path/row locations across the conterminous United States. We used a small subset of circa 2000 data from the LC Trends project to train the classifier, reserving the remaining Trends data from 2000, and incorporating LC Trends data from 1992, to evaluate measures of agreement across time, space, and thematic classes, and to characterize disagreement. Overall agreement ranged from 75% to 98% across the path/rows, and results were largely consistent across time. Land cover types that were well represented in the training data tended to have higher rates of agreement between LC Trends and CCDC outputs. Characteristics of disagreement are being used to improve the use of LC Trends data as a continued source of training information for operational production of annual land cover maps.

  16. Evaluation of the initial thematic output from a continuous change-detection algorithm for use in automated operational land-change mapping by the U.S. Geological Survey

    Science.gov (United States)

    Pengra, Bruce; Gallant, Alisa L.; Zhu, Zhe; Dahal, Devendra

    2016-01-01

    The U.S. Geological Survey (USGS) has begun the development of operational, 30-m resolution annual thematic land cover data to meet the needs of a variety of land cover data users. The Continuous Change Detection and Classification (CCDC) algorithm is being evaluated as the likely methodology following early trials. Data for training and testing of CCDC thematic maps have been provided by the USGS Land Cover Trends (LC Trends) project, which offers sample-based, manually classified thematic land cover data at 2755 probabilistically located sample blocks across the conterminous United States. These samples represent a high quality, well distributed source of data to train the Random Forest classifier invoked by CCDC. We evaluated the suitability of LC Trends data to train the classifier by assessing the agreement of annual land cover maps output from CCDC with output from the LC Trends project within 14 Landsat path/row locations across the conterminous United States. We used a small subset of circa 2000 data from the LC Trends project to train the classifier, reserving the remaining Trends data from 2000, and incorporating LC Trends data from 1992, to evaluate measures of agreement across time, space, and thematic classes, and to characterize disagreement. Overall agreement ranged from 75% to 98% across the path/rows, and results were largely consistent across time. Land cover types that were well represented in the training data tended to have higher rates of agreement between LC Trends and CCDC outputs. Characteristics of disagreement are being used to improve the use of LC Trends data as a continued source of training information for operational production of annual land cover maps.

  17. AN AUTOMATED ROAD ROUGHNESS DETECTION FROM MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2017-05-01

    Full Text Available Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  18. An Automated Road Roughness Detection from Mobile Laser Scanning Data

    Science.gov (United States)

    Kumar, P.; Angelats, E.

    2017-05-01

    Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  19. Digital tripwire: a small automated human detection system

    Science.gov (United States)

    Fischer, Amber D.; Redd, Emmett; Younger, A. Steven

    2009-05-01

    A low cost, lightweight, easily deployable imaging sensor that can dependably discriminate threats from other activities within its field of view and, only then, alert the distant duty officer by transmitting a visual confirmation of the threat would provide a valuable asset to modern defense. At present, current solutions suffer from a multitude of deficiencies - size, cost, power endurance, but most notably, an inability to assess an image and conclude that it contains a threat. The human attention span cannot maintain critical surveillance over banks of displays constantly conveying such images from the field. DigitalTripwire is a small, self-contained, automated human-detection system capable of running for 1-5 days on two AA batteries. To achieve such long endurance, the DigitalTripwire system utilizes an FPGA designed with sleep functionality. The system uses robust vision algorithms, such as a partially unsupervised innovative backgroundmodeling algorithm, which employ several data reduction strategies to operate in real-time, and achieve high detection rates. When it detects human activity, either mounted or dismounted, it sends an alert including images to notify the command center. In this paper, we describe the hardware and software design of the DigitalTripwire system. In addition, we provide detection and false alarm rates across several challenging data sets demonstrating the performance of the vision algorithms in autonomously analyzing the video stream and classifying moving objects into four primary categories - dismounted human, vehicle, non-human, or unknown. Performance results across several challenging data sets are provided.

  20. Automated Breast Ultrasound Lesions Detection using Convolutional Neural Networks.

    Science.gov (United States)

    Yap, Moi Hoon; Pons, Gerard; Marti, Joan; Ganau, Sergi; Sentis, Melcior; Zwiggelaar, Reyer; Davison, Adrian K; Marti, Robert

    2017-08-07

    Breast lesion detection using ultrasound imaging is considered an important step of Computer-Aided Diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e. Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.

  1. Operator adaptation to changes in system reliability under adaptable automation.

    Science.gov (United States)

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  2. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  3. Automated detection of retinal whitening in malarial retinopathy

    Science.gov (United States)

    Joshi, V.; Agurto, C.; Barriga, S.; Nemeth, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Lewallen, S.; Harding, S.

    2016-03-01

    Cerebral malaria (CM) is a severe neurological complication associated with malarial infection. Malaria affects approximately 200 million people worldwide, and claims 600,000 lives annually, 75% of whom are African children under five years of age. Because most of these mortalities are caused by the high incidence of CM misdiagnosis, there is a need for an accurate diagnostic to confirm the presence of CM. The retinal lesions associated with malarial retinopathy (MR) such as retinal whitening, vessel discoloration, and hemorrhages, are highly specific to CM, and their detection can improve the accuracy of CM diagnosis. This paper will focus on development of an automated method for the detection of retinal whitening which is a unique sign of MR that manifests due to retinal ischemia resulting from CM. We propose to detect the whitening region in retinal color images based on multiple color and textural features. First, we preprocess the image using color and textural features of the CMYK and CIE-XYZ color spaces to minimize camera reflex. Next, we utilize color features of the HSL, CMYK, and CIE-XYZ channels, along with the structural features of difference of Gaussians. A watershed segmentation algorithm is used to assign each image region a probability of being inside the whitening, based on extracted features. The algorithm was applied to a dataset of 54 images (40 with whitening and 14 controls) that resulted in an image-based (binary) classification with an AUC of 0.80. This provides 88% sensitivity at a specificity of 65%. For a clinical application that requires a high specificity setting, the algorithm can be tuned to a specificity of 89% at a sensitivity of 82%. This is the first published method for retinal whitening detection and combining it with the detection methods for vessel discoloration and hemorrhages can further improve the detection accuracy for malarial retinopathy.

  4. Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Directory of Open Access Journals (Sweden)

    Sarel Halachmi

    2007-01-01

    Full Text Available To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy.

  5. Automated Detection of Firearms and Knives in a CCTV Image

    Science.gov (United States)

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims. PMID:26729128

  6. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  7. Automated Detection of Firearms and Knives in a CCTV Image

    Directory of Open Access Journals (Sweden)

    Michał Grega

    2016-01-01

    Full Text Available Closed circuit television systems (CCTV are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  8. Automated Detection of Firearms and Knives in a CCTV Image.

    Science.gov (United States)

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  9. Automated analysis for detecting beams in laser wakefield simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-01-01

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

  10. Automated detection of microaneurysms using robust blob descriptors

    Science.gov (United States)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  11. Automated detection and characterization of harmonic tremor in continuous seismic data

    Science.gov (United States)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  12. Automated approach to detecting behavioral states using EEG-DABS

    Directory of Open Access Journals (Sweden)

    Zachary B. Loris

    2017-07-01

    Full Text Available Electrocorticographic (ECoG signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves. Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.

  13. Automated Detection of Small Bodies by Space Based Observation

    Science.gov (United States)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  14. Detection of Operator Performance Breakdown as an Automation Triggering Mechanism

    Science.gov (United States)

    Yoo, Hyo-Sang; Lee, Paul U.; Landry, Steven J.

    2015-01-01

    Performance breakdown (PB) has been anecdotally described as a state where the human operator "loses control of context" and "cannot maintain required task performance." Preventing such a decline in performance is critical to assure the safety and reliability of human-integrated systems, and therefore PB could be useful as a point at which automation can be applied to support human performance. However, PB has never been scientifically defined or empirically demonstrated. Moreover, there is no validated objective way of detecting such a state or the transition to that state. The purpose of this work is: 1) to empirically demonstrate a PB state, and 2) to develop an objective way of detecting such a state. This paper defines PB and proposes an objective method for its detection. A human-in-the-loop study was conducted: 1) to demonstrate PB by increasing workload until the subject reported being in a state of PB, and 2) to identify possible parameters of a detection method for objectively identifying the subjectively-reported PB point, and 3) to determine if the parameters are idiosyncratic to an individual/context or are more generally applicable. In the experiment, fifteen participants were asked to manage three concurrent tasks (one primary and two secondary) for 18 minutes. The difficulty of the primary task was manipulated over time to induce PB while the difficulty of the secondary tasks remained static. The participants' task performance data was collected. Three hypotheses were constructed: 1) increasing workload will induce subjectively-identified PB, 2) there exists criteria that identifies the threshold parameters that best matches the subjectively-identified PB point, and 3) the criteria for choosing the threshold parameters is consistent across individuals. The results show that increasing workload can induce subjectively-identified PB, although it might not be generalizable-only 12 out of 15 participants declared PB. The PB detection method based on

  15. Automated Detection of Salt Marsh Platforms : a Topographic Method

    Science.gov (United States)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method

  16. Prevalence of discordant microscopic changes with automated CBC analysis

    Directory of Open Access Journals (Sweden)

    Fabiano de Jesus Santos

    2014-12-01

    Full Text Available Introduction:The most common cause of diagnostic error is related to errors in laboratory tests as well as errors of results interpretation. In order to reduce them, the laboratory currently has modern equipment which provides accurate and reliable results. The development of automation has revolutionized the laboratory procedures in Brazil and worldwide.Objective:To determine the prevalence of microscopic changes present in blood slides concordant and discordant with results obtained using fully automated procedures.Materials and method:From January to July 2013, 1,000 hematological parameters slides were analyzed. Automated analysis was performed on last generation equipment, which methodology is based on electrical impedance, and is able to quantify all the figurative elements of the blood in a universe of 22 parameters. The microscopy was performed by two experts in microscopy simultaneously.Results:The data showed that only 42.70% were concordant, comparing with 57.30% discordant. The main findings among discordant were: Changes in red blood cells 43.70% (n = 250, white blood cells 38.46% (n = 220, and number of platelet 17.80% (n = 102.Discussion:The data show that some results are not consistent with clinical or physiological state of an individual, and cannot be explained because they have not been investigated, which may compromise the final diagnosis.Conclusion:It was observed that it is of fundamental importance that the microscopy qualitative analysis must be performed in parallel with automated analysis in order to obtain reliable results, causing a positive impact on the prevention, diagnosis, prognosis, and therapeutic follow-up.

  17. Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.

    Science.gov (United States)

    Greenlee, Eric T; DeLucia, Patricia R; Newton, David C

    2018-03-01

    The primary aim of the current study was to determine whether monitoring the roadway for hazards during automated driving results in a vigilance decrement. Although automated vehicles are relatively novel, the nature of human-automation interaction within them has the classic hallmarks of a vigilance task. Drivers must maintain attention for prolonged periods of time to detect and respond to rare and unpredictable events, for example, roadway hazards that automation may be ill equipped to detect. Given the similarity with traditional vigilance tasks, we predicted that drivers of a simulated automated vehicle would demonstrate a vigilance decrement in hazard detection performance. Participants "drove" a simulated automated vehicle for 40 minutes. During that time, their task was to monitor the roadway for roadway hazards. As predicted, hazard detection rate declined precipitously, and reaction times slowed as the drive progressed. Further, subjective ratings of workload and task-related stress indicated that sustained monitoring is demanding and distressing and it is a challenge to maintain task engagement. Monitoring the roadway for potential hazards during automated driving results in workload, stress, and performance decrements similar to those observed in traditional vigilance tasks. To the degree that vigilance is required of automated vehicle drivers, performance errors and associated safety risks are likely to occur as a function of time on task. Vigilance should be a focal safety concern in the development of vehicle automation.

  18. Automated detection of neovascularization for proliferative diabetic retinopathy screening.

    Science.gov (United States)

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2016-08-01

    Neovascularization is the primary manifestation of proliferative diabetic retinopathy (PDR) that can lead to acquired blindness. This paper presents a novel method that classifies neovascularizations in the 1-optic disc (OD) diameter region (NVD) and elsewhere (NVE) separately to achieve low false positive rates of neovascularization classification. First, the OD region and blood vessels are extracted. Next, the major blood vessel segments in the 1-OD diameter region are classified for NVD, and minor blood vessel segments elsewhere are classified for NVE. For NVD and NVE classifications, optimal region-based feature sets of 10 and 6 features, respectively, are used. The proposed method achieves classification sensitivity, specificity and accuracy for NVD and NVE of 74%, 98.2%, 87.6%, and 61%, 97.5%, 92.1%, respectively. Also, the proposed method achieves 86.4% sensitivity and 76% specificity for screening images with PDR from public and local data sets. Thus, the proposed NVD and NVE detection methods can play a key role in automated screening and prioritization of patients with diabetic retinopathy.

  19. Changes in motivational and higher level cognitive processes when interacting with in-vehicle automation

    OpenAIRE

    Beggiato, Matthias

    2014-01-01

    Many functions that at one time could only be performed by humans can nowadays be carried out by machines. Automation impacts many areas of life including work, home, communication and mobility. In the driving context, in-vehicle automation is considered to provide solutions for environmental, economic, safety and societal challenges. However, automation changes the driving task and the human-machine interaction. Thus, the expected benefit of in-vehicle automation can be undermined by changes...

  20. Changes in motivational and higher level cognitive processes when interacting with in-vehicle automation

    OpenAIRE

    Beggiato, Matthias

    2015-01-01

    Many functions that at one time could only be performed by humans can nowadays be carried out by machines. Automation impacts many areas of life including work, home, communication and mobility. In the driving context, in-vehicle automation is considered to provide solutions for environmental, economic, safety and societal challenges. However, automation changes the driving task and the human-machine interaction. Thus, the expected benefit of in-vehicle automation can be undermined by changes...

  1. Precise Automatic Image Coregistration Tools to Enable Pixel-Level Change Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Automated detection of land cover changes between multitemporal images (i.e., images captured at different times) has long been a goal of the remote sensing...

  2. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Science.gov (United States)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  3. [Research and Design of a System for Detecting Automated External Defbrillator Performance Parameters].

    Science.gov (United States)

    Wang, Kewu; Xiao, Shengxiang; Jiang, Lina; Hu, Jingkai

    2017-09-30

    In order to regularly detect the performance parameters of automated external defibrillator (AED), to make sure it is safe before using the instrument, research and design of a system for detecting automated external defibrillator performance parameters. According to the research of the characteristics of its performance parameters, combing the STM32's stability and high speed with PWM modulation control, the system produces a variety of ECG normal and abnormal signals through the digital sampling methods. Completed the design of the hardware and software, formed a prototype. This system can accurate detect automated external defibrillator discharge energy, synchronous defibrillation time, charging time and other key performance parameters.

  4. Land-cover change detection

    Science.gov (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  5. Statistical techniques for automating the detection of anomalous performance in rotating machinery

    International Nuclear Information System (INIS)

    Piety, K.R.; Magette, T.E.

    1979-01-01

    The level of technology utilized in automated systems that monitor industrial rotating equipment and the potential of alternative surveillance methods are assessed. It is concluded that changes in surveillance methodology would upgrade ongoing programs and yet still be practical for implementation. An improved anomaly recognition methodology is formulated and implemented on a minicomputer system. The effectiveness of the monitoring system was evaluated in laboratory tests on a small rotor assembly, using vibrational signals from both displacement probes and accelerometers. Time and frequency domain descriptors are selected to compose an overall signature that characterizes the monitored equipment. Limits for normal operation of the rotor assembly are established automatically during an initial learning period. Thereafter, anomaly detection is accomplished by applying an approximate statistical test to each signature descriptor. As demonstrated over months of testing, this monitoring system is capable of detecting anomalous conditions while exhibiting a false alarm rate below 0.5%

  6. User-based motion sensing and fuzzy logic for automated fall detection in older adults

    DEFF Research Database (Denmark)

    Boissy, Patrice; Choquette, Stéphane; Hamel, Mathieu

    2007-01-01

    , and reduce complications from falls. The performance of a 2-stage fall detection algorithm using impact magnitudes and changes in trunk angles derived from user-based motion sensors was evaluated under laboratory conditions. Ten healthy participants were instrumented on the front and side of the trunk with 3...... fall conditions with a success rate of 93% and a false-positive rate of 29% during nonfall conditions. Despite a slightly superior identification performance for the accelerometer located on the front of the trunk, no significant differences were found between the two motion sensor locations. Automated...... detection of fall events based on user-based motion sensing and fuzzy logic shows promising results. Additional rules and optimization of the algorithm will be needed to decrease the false-positive rate....

  7. [Development of an automated processing method to detect coronary motion for coronary magnetic resonance angiography].

    Science.gov (United States)

    Asou, Hiroya; Imada, N; Sato, T

    2010-06-20

    On coronary MR angiography (CMRA), cardiac motions worsen the image quality. To improve the image quality, detection of cardiac especially for individual coronary motion is very important. Usually, scan delay and duration were determined manually by the operator. We developed a new evaluation method to calculate static time of individual coronary artery. At first, coronary cine MRI was taken at the level of about 3 cm below the aortic valve (80 images/R-R). Chronological change of the signals were evaluated with Fourier transformation of each pixel of the images were done. Noise reduction with subtraction process and extraction process were done. To extract higher motion such as coronary arteries, morphological filter process and labeling process were added. Using these imaging processes, individual coronary motion was extracted and individual coronary static time was calculated automatically. We compared the images with ordinary manual method and new automated method in 10 healthy volunteers. Coronary static times were calculated with our method. Calculated coronary static time was shorter than that of ordinary manual method. And scan time became about 10% longer than that of ordinary method. Image qualities were improved in our method. Our automated detection method for coronary static time with chronological Fourier transformation has a potential to improve the image quality of CMRA and easy processing.

  8. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  9. On Radar Resolution in Coherent Change Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  10. Automated detection of test fixture strategies and smells

    NARCIS (Netherlands)

    Greiler, M.S.; Van Deursen, A.; Storey, M.A.

    2013-01-01

    Paper accepted for publication in the Proceedings of the Sixth International Conference on Software Testing, Verification and Validation, IEEE Computer Society, 18-22 March 2013, ISBN 978-1-4673-5961-0, doi: 10.1109/ICST.2013.45 Designing automated tests is a challenging task. One important concern

  11. Automated real-time detection of tonic-clonic seizures using a wearable EMG device

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Henning, Oliver

    2018-01-01

    OBJECTIVE: To determine the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) using a wearable surface EMG device. METHODS: We prospectively tested the technical performance and diagnostic accuracy of real-time seizure detection using a wearable surface EMG device....... The seizure detection algorithm and the cutoff values were prespecified. A total of 71 patients, referred to long-term video-EEG monitoring, on suspicion of GTCS, were recruited in 3 centers. Seizure detection was real-time and fully automated. The reference standard was the evaluation of video-EEG recordings...

  12. Assessment of automated disease detection in diabetic retinopathy screening using two-field photography.

    Science.gov (United States)

    Goatman, Keith; Charnley, Amanda; Webster, Laura; Nussey, Stephen

    2011-01-01

    To assess the performance of automated disease detection in diabetic retinopathy screening using two field mydriatic photography. Images from 8,271 sequential patient screening episodes from a South London diabetic retinopathy screening service were processed by the Medalytix iGrading™ automated grading system. For each screening episode macular-centred and disc-centred images of both eyes were acquired and independently graded according to the English national grading scheme. Where discrepancies were found between the automated result and original manual grade, internal and external arbitration was used to determine the final study grades. Two versions of the software were used: one that detected microaneurysms alone, and one that detected blot haemorrhages and exudates in addition to microaneurysms. Results for each version were calculated once using both fields and once using the macula-centred field alone. Of the 8,271 episodes, 346 (4.2%) were considered unassessable. Referable disease was detected in 587 episodes (7.1%). The sensitivity of the automated system for detecting unassessable images ranged from 97.4% to 99.1% depending on configuration. The sensitivity of the automated system for referable episodes ranged from 98.3% to 99.3%. All the episodes that included proliferative or pre-proliferative retinopathy were detected by the automated system regardless of configuration (192/192, 95% confidence interval 98.0% to 100%). If implemented as the first step in grading, the automated system would have reduced the manual grading effort by between 2,183 and 3,147 patient episodes (26.4% to 38.1%). Automated grading can safely reduce the workload of manual grading using two field, mydriatic photography in a routine screening service.

  13. Automated Techniques for Quantification of Coastline Change Rates using Landsat Imagery along Caofeidian, China

    International Nuclear Information System (INIS)

    Dong, Di; Li, Ziwei; Liu, Zhaoqin; Yu, Yang

    2014-01-01

    This paper focuses on automated extraction and monitoring of coastlines by remote sensing techniques using multi-temporal Landsat imagery along Caofeidian, China. Caofeidian, as one of the active economic regions in China, has experienced dramatic change due to enhanced human activities, such as land reclamation. These processes have caused morphological changes of the Caofeidian shoreline. In this study, shoreline extraction and change analysis are researched. An algorithm based on image texture and mathematical morphology is proposed to automate coastline extraction. We tested this approach and found that it's capable of extracting coastlines from TM and ETM+ images with little human modifications. Then, the detected coastline vectors are imported into Arcgis software, and the Digital Shoreline Analysis System (DSAS) is used to calculate the change rate (the end point rate and linear regression rate). The results show that in some parts of the research area, remarkable coastline changes are observed, especially the accretion rate. The abnormal accretion is mostly attributed to the large-scale land reclamation during 2003 and 2004 in Caofeidian. So we can conclude that various construction projects, especially the land reclamation project, have made Caofeidian shorelines change greatly, far above the normal

  14. Automated Techniques for Quantification of Coastline Change Rates using Landsat Imagery along Caofeidian, China

    Science.gov (United States)

    Dong, Di; Li, Ziwei; Liu, Zhaoqin; Yu, Yang

    2014-03-01

    This paper focuses on automated extraction and monitoring of coastlines by remote sensing techniques using multi-temporal Landsat imagery along Caofeidian, China. Caofeidian, as one of the active economic regions in China, has experienced dramatic change due to enhanced human activities, such as land reclamation. These processes have caused morphological changes of the Caofeidian shoreline. In this study, shoreline extraction and change analysis are researched. An algorithm based on image texture and mathematical morphology is proposed to automate coastline extraction. We tested this approach and found that it's capable of extracting coastlines from TM and ETM+ images with little human modifications. Then, the detected coastline vectors are imported into Arcgis software, and the Digital Shoreline Analysis System (DSAS) is used to calculate the change rate (the end point rate and linear regression rate). The results show that in some parts of the research area, remarkable coastline changes are observed, especially the accretion rate. The abnormal accretion is mostly attributed to the large-scale land reclamation during 2003 and 2004 in Caofeidian. So we can conclude that various construction projects, especially the land reclamation project, have made Caofeidian shorelines change greatly, far above the normal.

  15. Detection of retinal changes from illumination normalized fundus images using convolutional neural networks

    NARCIS (Netherlands)

    Adal, K.M.; Van Etten, Peter G.; Martinez, Jose P; Rouwen, Kenneth; Vermeer, K.A.; van Vliet, L.J.; Armato, Samuel G.; Petrick, Nicholas A.

    2017-01-01

    Automated detection and quantification of spatio-temporal retinal changes is an important step to objectively assess disease progression and treatment effects for dynamic retinal diseases such as diabetic retinopathy (DR). However, detecting retinal changes caused by early DR lesions such as

  16. Automated Detection of Sepsis Using Electronic Medical Record Data: A Systematic Review.

    Science.gov (United States)

    Despins, Laurel A

    Severe sepsis and septic shock are global issues with high mortality rates. Early recognition and intervention are essential to optimize patient outcomes. Automated detection using electronic medical record (EMR) data can assist this process. This review describes automated sepsis detection using EMR data. PubMed retrieved publications between January 1, 2005 and January 31, 2015. Thirteen studies met study criteria: described an automated detection approach with the potential to detect sepsis or sepsis-related deterioration in real or near-real time; focused on emergency department and hospitalized neonatal, pediatric, or adult patients; and provided performance measures or results indicating the impact of automated sepsis detection. Detection algorithms incorporated systemic inflammatory response and organ dysfunction criteria. Systems in nine studies generated study or care team alerts. Care team alerts did not consistently lead to earlier interventions. Earlier interventions did not consistently translate to improved patient outcomes. Performance measures were inconsistent. Automated sepsis detection is potentially a means to enable early sepsis-related therapy but current performance variability highlights the need for further research.

  17. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.

    Science.gov (United States)

    Fleming, Alan D; Goatman, Keith A; Philip, Sam; Williams, Graeme J; Prescott, Gordon J; Scotland, Graham S; McNamee, Paul; Leese, Graham P; Wykes, William N; Sharp, Peter F; Olson, John A

    2010-06-01

    Automated grading has the potential to improve the efficiency of diabetic retinopathy screening services. While disease/no disease grading can be performed using only microaneurysm detection and image-quality assessment, automated recognition of other types of lesions may be advantageous. This study investigated whether inclusion of automated recognition of exudates and haemorrhages improves the detection of observable/referable diabetic retinopathy. Images from 1253 patients with observable/referable retinopathy and 6333 patients with non-referable retinopathy were obtained from three grading centres. All images were reference-graded, and automated disease/no disease assessments were made based on microaneurysm detection and combined microaneurysm, exudate and haemorrhage detection. Introduction of algorithms for exudates and haemorrhages resulted in a statistically significant increase in the sensitivity for detection of observable/referable retinopathy from 94.9% (95% CI 93.5 to 96.0) to 96.6% (95.4 to 97.4) without affecting manual grading workload. Automated detection of exudates and haemorrhages improved the detection of observable/referable retinopathy.

  18. A Hybrid Change Detection Approach for Damage Detection and Recovery Monitoring

    Science.gov (United States)

    de Alwis Pitts, Dilkushi; Wieland, Marc; Wang, Shifeng; So, Emily; Pittore, Massimiliano

    2014-05-01

    Following a disaster, change detection via pre- and post-event very high resolution remote sensing images is an essential technique for damage assessment and recovery monitoring over large areas in complex urban environments. Most assessments to date focus on detection, destruction and recovery of man-made objects that facilitate shelter and accessibility, such as buildings, roads, bridges, etc., as indicators for assessment and better decision making. Moreover, many current change-detection mechanisms do not use all the data and knowledge which are often available for the pre-disaster state. Recognizing the continuous rather than dichotomous character of the data-rich/data-poor distinction permits the incorporation of ancillary data and existing knowledge into the processing flow. Such incorporation could improve the reliability of the results and thereby enhance the usability of robust methods for disaster management. This study proposes an application-specific and robust change detection method from multi-temporal very high resolution multi-spectral satellite images. This hybrid indicator-specific method uses readily available pre-disaster GIS data and integrates existing knowledge into the processing flow to optimize the change detection while offering the possibility to target specific types of changes to man-made objects. The indicator-specific information of the GIS objects is used as a series of masks to treat the GIS objects with similar characteristics similarly for better accuracy. The proposed approach is based on a fusion of a multi-index change detection method based on gradient, texture and edge similarity filters. The change detection index is flexible for disaster cases in which the pre-disaster and post-disaster images are not of the same resolution. The proposed automated method is evaluated with QuickBird and Ikonos datasets for abrupt changes soon after disaster. The method could also be extended in a semi-automated way for monitoring

  19. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  20. Automated detection of structural alerts (chemical fragments in (ecotoxicology

    Directory of Open Access Journals (Sweden)

    Ronan Bureau

    2013-02-01

    Full Text Available This mini-review describes the evolution of different algorithms dedicated to the automated discovery of chemical fragments associated to (ecotoxicological endpoints. These structural alerts correspond to one of the most interesting approach of in silico toxicology due to their direct link with specific toxicological mechanisms. A number of expert systems are already available but, since the first work in this field which considered a binomial distribution of chemical fragments between two datasets, new data miners were developed and applied with success in chemoinformatics. The frequency of a chemical fragment in a dataset is often at the core of the process for the definition of its toxicological relevance. However, recent progresses in data mining provide new insights into the automated discovery of new rules. Particularly, this review highlights the notion of Emerging Patterns that can capture contrasts between classes of data.

  1. AUTOMATED DETECTION OF STRUCTURAL ALERTS (CHEMICAL FRAGMENTS IN (ECOTOXICOLOGY

    Directory of Open Access Journals (Sweden)

    Alban Lepailleur

    2013-02-01

    Full Text Available This mini-review describes the evolution of different algorithms dedicated to the automated discovery of chemical fragments associated to (ecotoxicological endpoints. These structural alerts correspond to one of the most interesting approach of in silico toxicology due to their direct link with specific toxicological mechanisms. A number of expert systems are already available but, since the first work in this field which considered a binomial distribution of chemical fragments between two datasets, new data miners were developed and applied with success in chemoinformatics. The frequency of a chemical fragment in a dataset is often at the core of the process for the definition of its toxicological relevance. However, recent progresses in data mining provide new insights into the automated discovery of new rules. Particularly, this review highlights the notion of Emerging Patterns that can capture contrasts between classes of data.

  2. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    of continuous seismic record by the Alaskan permanent seismic network and Hi-Climb trans-Himalayan seismic network. The processing chain we developed also opens the possibility for a near-real time seismic detection of landslides, in association with remote-sensing automated detection from Sentinel 2 images for example.

  3. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    Science.gov (United States)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  4. Automated Waterline Detection in the Wadden Sea Using High-Resolution TerraSAR-X Images

    Directory of Open Access Journals (Sweden)

    Stefan Wiehle

    2015-01-01

    Full Text Available We present an algorithm for automatic detection of the land-water-line from TerraSAR-X images acquired over the Wadden Sea. In this coastal region of the southeastern North Sea, a strip of up to 20 km of seabed falls dry during low tide, revealing mudflats and tidal creeks. The tidal currents transport sediments and can change the coastal shape with erosion rates of several meters per month. This rate can be strongly increased by storm surges which also cause flooding of usually dry areas. Due to the high number of ships traveling through the Wadden Sea to the largest ports of Germany, frequent monitoring of the bathymetry is also an important task for maritime security. For such an extended area and the required short intervals of a few months, only remote sensing methods can perform this task efficiently. Automating the waterline detection in weather-independent radar images provides a fast and reliable way to spot changes in the coastal topography. The presented algorithm first performs smoothing, brightness thresholding, and edge detection. In the second step, edge drawing and flood filling are iteratively performed to determine optimal thresholds for the edge drawing. In the last step, small misdetections are removed.

  5. Automated detection of cavities present in the high explosive filler of artillery shells

    International Nuclear Information System (INIS)

    Kruger, R.P.; Janney, D.H.; Breedlove, J.R. Jr.

    1976-01-01

    Initial research has been conducted into the use of digital image analysis techniques for automated detection and characterization of piping cavities present in the high explosive (HE) filler region of 105-mm artillery shells. Experimental work utilizing scene segmentation techniques followed by a sequential similarity detection algorithm for cavitation detection have yielded promising initial results. This work is described with examples of computer-detected defects

  6. From drafting guideline to error detection: Automating style checking for legislative texts

    OpenAIRE

    Höfler Stefan; Sugisaki Kyoko

    2012-01-01

    This paper reports on the development of methods for the automated detection of violations of style guidelines for legislative texts, and their implementation in a prototypical tool. To this aim, the approach of error modelling employed in automated style checkers for technical writing is enhanced to meet the requirements of legislative editing. The paper identifies and discusses the two main sets of challenges that have to be tackled in this process: (i) the provision of domain-specific NLP ...

  7. A method for the automated detection phishing websites through both site characteristics and image analysis

    Science.gov (United States)

    White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.

    2012-06-01

    Phishing website analysis is largely still a time-consuming manual process of discovering potential phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing phishing sites up and down rapidly at new locations, making automated response essential. In this paper, we present a method for rapid, automated detection and analysis of phishing websites. Our method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch the pages pointed to by each URL and characterize each page with a set of easily computed values such as number of images and links. We also capture a screen-shot of the rendered page image, compute a hash of the image and use the Hamming distance between these image hashes as a form of visual comparison. We provide initial results demonstrate the feasibility of our techniques by comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for future work.

  8. Changing Traditions: Automation and the Oxford College Libraries.

    Science.gov (United States)

    Bell, Suzanne

    1990-01-01

    Discussion of automation in the Oxford College Libraries (England) begins with background on the university library system, which consists of numerous independent libraries. Centralized and decentralized automation activities are described, and hardware and software for the microcomputer-based system at the University College Library are…

  9. Automated detection of a prostate Ni-Ti stent in electronic portal images.

    Science.gov (United States)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-01

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  10. Automated detection of a prostate Ni-Ti stent in electronic portal images

    International Nuclear Information System (INIS)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-01-01

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins

  11. Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series

    DEFF Research Database (Denmark)

    Muro, Javier; Canty, Morton; Conradsen, Knut

    2016-01-01

    Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time serie...... certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes....

  12. Cell-Detection Technique for Automated Patch Clamping

    Science.gov (United States)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image

  13. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection

    Energy Technology Data Exchange (ETDEWEB)

    Zelst, J.C.M. van, E-mail: Jan.vanZelst@radboudumc.nl [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Tan, T.; Platel, B. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Jong, M. de [Jeroen Bosch Medical Centre, Department of Radiology, ‘s-Hertogenbosch (Netherlands); Steenbakkers, A. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Mourits, M. [Jeroen Bosch Medical Centre, Department of Radiology, ‘s-Hertogenbosch (Netherlands); Grivegnee, A. [Jules Bordet Institute, Department of Radiology, Brussels (Belgium); Borelli, C. [Catholic University of the Sacred Heart, Department of Radiological Sciences, Rome (Italy); Karssemeijer, N.; Mann, R.M. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands)

    2017-04-15

    Objective: To investigate the effect of dedicated Computer Aided Detection (CAD) software for automated breast ultrasound (ABUS) on the performance of radiologists screening for breast cancer. Methods: 90 ABUS views of 90 patients were randomly selected from a multi-institutional archive of cases collected between 2010 and 2013. This dataset included normal cases (n = 40) with >1 year of follow up, benign (n = 30) lesions that were either biopsied or remained stable, and malignant lesions (n = 20). Six readers evaluated all cases with and without CAD in two sessions. CAD-software included conventional CAD-marks and an intelligent minimum intensity projection of the breast tissue. Readers reported using a likelihood-of-malignancy scale from 0 to 100. Alternative free-response ROC analysis was used to measure the performance. Results: Without CAD, the average area-under-the-curve (AUC) of the readers was 0.77 and significantly improved with CAD to 0.84 (p = 0.001). Sensitivity of all readers improved (range 5.2–10.6%) by using CAD but specificity decreased in four out of six readers (range 1.4–5.7%). No significant difference was observed in the AUC between experienced radiologists and residents both with and without CAD. Conclusions: Dedicated CAD-software for ABUS has the potential to improve the cancer detection rates of radiologists screening for breast cancer.

  14. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection

    International Nuclear Information System (INIS)

    Zelst, J.C.M. van; Tan, T.; Platel, B.; Jong, M. de; Steenbakkers, A.; Mourits, M.; Grivegnee, A.; Borelli, C.; Karssemeijer, N.; Mann, R.M.

    2017-01-01

    Objective: To investigate the effect of dedicated Computer Aided Detection (CAD) software for automated breast ultrasound (ABUS) on the performance of radiologists screening for breast cancer. Methods: 90 ABUS views of 90 patients were randomly selected from a multi-institutional archive of cases collected between 2010 and 2013. This dataset included normal cases (n = 40) with >1 year of follow up, benign (n = 30) lesions that were either biopsied or remained stable, and malignant lesions (n = 20). Six readers evaluated all cases with and without CAD in two sessions. CAD-software included conventional CAD-marks and an intelligent minimum intensity projection of the breast tissue. Readers reported using a likelihood-of-malignancy scale from 0 to 100. Alternative free-response ROC analysis was used to measure the performance. Results: Without CAD, the average area-under-the-curve (AUC) of the readers was 0.77 and significantly improved with CAD to 0.84 (p = 0.001). Sensitivity of all readers improved (range 5.2–10.6%) by using CAD but specificity decreased in four out of six readers (range 1.4–5.7%). No significant difference was observed in the AUC between experienced radiologists and residents both with and without CAD. Conclusions: Dedicated CAD-software for ABUS has the potential to improve the cancer detection rates of radiologists screening for breast cancer.

  15. Unsupervised EEG analysis for automated epileptic seizure detection

    Science.gov (United States)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  16. [Automated detection and volumetric segmentation of the spleen in CT scans].

    Science.gov (United States)

    Hammon, M; Dankerl, P; Kramer, M; Seifert, S; Tsymbal, A; Costa, M J; Janka, R; Uder, M; Cavallaro, A

    2012-08-01

    To introduce automated detection and volumetric segmentation of the spleen in spiral CT scans with the THESEUS-MEDICO software. The consistency between automated volumetry (aV), estimated volume determination (eV) and manual volume segmentation (mV) was evaluated. Retrospective evaluation of the CAD system based on methods like "marginal space learning" and "boosting algorithms". 3 consecutive spiral CT scans (thoraco-abdominal; portal-venous contrast agent phase; 1 or 5 mm slice thickness) of 15 consecutive lymphoma patients were included. The eV: 30 cm³ + 0.58 (width × length × thickness of the spleen) and the mV as the reference standard were determined by an experienced radiologist. The aV could be performed in all CT scans within 15.2 (± 2.4) seconds. The average splenic volume measured by aV was 268.21 ± 114.67 cm³ compared to 281.58 ± 130.21 cm³ in mV and 268.93 ± 104.60 cm³ in eV. The correlation coefficient was 0.99 (coefficient of determination (R²) = 0.98) for aV and mV, 0.91 (R² = 0.83) for mV and eV and 0.91 (R² = 0.82) for aV and eV. There was an almost perfect correlation of the changes in splenic volume measured with the new aV and mV (0.92; R² = 0.84), mV and eV (0.95; R² = 0.91) and aV and eV (0.83; R² = 0.69) between two time points. The automated detection and volumetric segmentation software rapidly provides an accurate measurement of the splenic volume in CT scans. Knowledge about splenic volume and its change between two examinations provides valuable clinical information without effort for the radiologist. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Automated detection and volumetric segmentation of the spleen in CT scans

    International Nuclear Information System (INIS)

    Hammon, M.; Dankerl, P.; Janka, R.; Uder, M.; Cavallaro, A.; Kramer, M.; Seifert, S.; Tsymbal, A.; Costa, M.J.

    2012-01-01

    To introduce automated detection and volumetric segmentation of the spleen in spiral CT scans with the THESEUS-MEDICO software. The consistency between automated volumetry (aV), estimated volume determination (eV) and manual volume segmentation (mV) was evaluated. Retrospective evaluation of the CAD system based on methods like ''marginal space learning'' and ''boosting algorithms''. 3 consecutive spiral CT scans (thoraco-abdominal; portal-venous contrast agent phase; 1 or 5 mm slice thickness) of 15 consecutive lymphoma patients were included. The eV: 30 cm 3 + 0.58 (width x length x thickness of the spleen) and the mV as the reference standard were determined by an experienced radiologist. The aV could be performed in all CT scans within 15.2 (± 2.4) seconds. The average splenic volume measured by aV was 268.21 ± 114.67 cm 3 compared to 281.58 ± 130.21 cm 3 in mV and 268.93 ± 104.60 cm 3 in eV. The correlation coefficient was 0.99 (coefficient of determination (R 2 ) = 0.98) for aV and mV, 0.91 (R 2 = 0.83) for mV and eV and 0.91 (R 2 = 0.82) for aV and eV. There was an almost perfect correlation of the changes in splenic volume measured with the new aV and mV (0.92; R 2 = 0.84), mV and eV (0.95; R 2 = 0.91) and aV and eV (0.83; R 2 = 0.69) between two time points. The automated detection and volumetric segmentation software rapidly provides an accurate measurement of the splenic volume in CT scans. Knowledge about splenic volume and its change between two examinations provides valuable clinical information without effort for the radiologist. (orig.)

  18. Incrementally Detecting Change Types of Spatial Area Object: A Hierarchical Matching Method Considering Change Process

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2018-01-01

    Full Text Available Detecting and extracting the change types of spatial area objects can track area objects’ spatiotemporal change pattern and provide the change backtracking mechanism for incrementally updating spatial datasets. To respond to the problems of high complexity of detection methods, high redundancy rate of detection factors, and the low automation degree during incrementally update process, we take into account the change process of area objects in an integrated way and propose a hierarchical matching method to detect the nine types of changes of area objects, while minimizing the complexity of the algorithm and the redundancy rate of detection factors. We illustrate in details the identification, extraction, and database entry of change types, and how we achieve a close connection and organic coupling of incremental information extraction and object type-of-change detection so as to characterize the whole change process. The experimental results show that this method can successfully detect incremental information about area objects in practical applications, with the overall accuracy reaching above 90%, which is much higher than the existing weighted matching method, making it quite feasible and applicable. It helps establish the corresponding relation between new-version and old-version objects, and facilitate the linked update processing and quality control of spatial data.

  19. Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France.

    Science.gov (United States)

    Campillo-Gimenez, Boris; Garcelon, Nicolas; Jarno, Pascal; Chapplain, Jean Marc; Cuggia, Marc

    2013-01-01

    The surveillance of Surgical Site Infections (SSI) contributes to the management of risk in French hospitals. Manual identification of infections is costly, time-consuming and limits the promotion of preventive procedures by the dedicated teams. The introduction of alternative methods using automated detection strategies is promising to improve this surveillance. The present study describes an automated detection strategy for SSI in neurosurgery, based on textual analysis of medical reports stored in a clinical data warehouse. The method consists firstly, of enrichment and concept extraction from full-text reports using NOMINDEX, and secondly, text similarity measurement using a vector space model. The text detection was compared to the conventional strategy based on self-declaration and to the automated detection using the diagnosis-related group database. The text-mining approach showed the best detection accuracy, with recall and precision equal to 92% and 40% respectively, and confirmed the interest of reusing full-text medical reports to perform automated detection of SSI.

  20. Changing technology in transportation : automated vehicles in freight.

    Science.gov (United States)

    2017-06-27

    The world of transportation is on the verge of undergoing an impactful transformation. Over the past decade, automotive computing technology has progressed far more rapidly than anticipated. Most major auto manufacturers integrated automated features...

  1. A Framework for Automated Marmoset Vocalization Detection And Classification

    Science.gov (United States)

    2016-09-08

    for studying the origins and neural basis of human language. Vocalizations belonging to the same species, or Conspecific Vocalizations (CVs), are...applications including automatic speech recognition [17], speech enhancement [18], voice activity detection [19], hyper-nasality detection [20], and emotion ...vocalizations. The feature sets chosen have the desirable property of capturing characteristics of the signals that are useful in both identifying and

  2. Automated detection of oestrus and mastitis in dairy cows

    NARCIS (Netherlands)

    Mol, de R.M.

    2000-01-01

    Detection models for oestrus and mastitis in dairy cows were developed, based on sensors for milk yield, milk temperature, electrical conductivity of milk, cow's activity and concentrate intake, and on combined processing of the sensor data. The detection model generated alerts for cows,

  3. An Automated Detection System for Microaneurysms That Is Effective across Different Racial Groups

    Directory of Open Access Journals (Sweden)

    George Michael Saleh

    2016-01-01

    Full Text Available Patients without diabetic retinopathy (DR represent a large proportion of the caseload seen by the DR screening service so reliable recognition of the absence of DR in digital fundus images (DFIs is a prime focus of automated DR screening research. We investigate the use of a novel automated DR detection algorithm to assess retinal DFIs for absence of DR. A retrospective, masked, and controlled image-based study was undertaken. 17,850 DFIs of patients from six different countries were assessed for DR by the automated system and by human graders. The system’s performance was compared across DFIs from the different countries/racial groups. The sensitivities for detection of DR by the automated system were Kenya 92.8%, Botswana 90.1%, Norway 93.5%, Mongolia 91.3%, China 91.9%, and UK 90.1%. The specificities were Kenya 82.7%, Botswana 83.2%, Norway 81.3%, Mongolia 82.5%, China 83.0%, and UK 79%. There was little variability in the calculated sensitivities and specificities across the six different countries involved in the study. These data suggest the possible scalability of an automated DR detection platform that enables rapid identification of patients without DR across a wide range of races.

  4. An Automated Detection System for Microaneurysms That Is Effective across Different Racial Groups.

    Science.gov (United States)

    Saleh, George Michael; Wawrzynski, James; Caputo, Silvestro; Peto, Tunde; Al Turk, Lutfiah Ismail; Wang, Su; Hu, Yin; Da Cruz, Lyndon; Smith, Phil; Tang, Hongying Lilian

    2016-01-01

    Patients without diabetic retinopathy (DR) represent a large proportion of the caseload seen by the DR screening service so reliable recognition of the absence of DR in digital fundus images (DFIs) is a prime focus of automated DR screening research. We investigate the use of a novel automated DR detection algorithm to assess retinal DFIs for absence of DR. A retrospective, masked, and controlled image-based study was undertaken. 17,850 DFIs of patients from six different countries were assessed for DR by the automated system and by human graders. The system's performance was compared across DFIs from the different countries/racial groups. The sensitivities for detection of DR by the automated system were Kenya 92.8%, Botswana 90.1%, Norway 93.5%, Mongolia 91.3%, China 91.9%, and UK 90.1%. The specificities were Kenya 82.7%, Botswana 83.2%, Norway 81.3%, Mongolia 82.5%, China 83.0%, and UK 79%. There was little variability in the calculated sensitivities and specificities across the six different countries involved in the study. These data suggest the possible scalability of an automated DR detection platform that enables rapid identification of patients without DR across a wide range of races.

  5. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang; Germain, Cé cile; Sebag, Michè le

    2010-01-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting

  6. Automated syndrome detection in a set of clinical facial photographs.

    Science.gov (United States)

    Boehringer, Stefan; Guenther, Manuel; Sinigerova, Stella; Wurtz, Rolf P; Horsthemke, Bernhard; Wieczorek, Dagmar

    2011-09-01

    Computer systems play an important role in clinical genetics and are a routine part of finding clinical diagnoses but make it difficult to fully exploit information derived from facial appearance. So far, automated syndrome diagnosis based on digital, facial photographs has been demonstrated under study conditions but has not been applied in clinical practice. We have therefore investigated how well statistical classifiers trained on study data comprising 202 individuals affected by one of 14 syndromes could classify a set of 91 patients for whom pictures were taken under regular, less controlled conditions in clinical practice. We found a classification accuracy of 21% percent in the clinical sample representing a ratio of 3.0 over a random choice. This contrasts with a 60% accuracy or 8.5 ratio in the training data. Producing average images in both groups from sets of pictures for each syndrome demonstrates that the groups exhibit large phenotypic differences explaining discrepancies in accuracy. A broadening of the data set is suggested in order to improve accuracy in clinical practice. In order to further this goal, a software package is made available that allows application of the procedures and contributions toward an improved data set. Copyright © 2011 Wiley-Liss, Inc.

  7. AN INVESTIGATION OF AUTOMATIC CHANGE DETECTION FOR TOPOGRAPHIC MAP UPDATING

    Directory of Open Access Journals (Sweden)

    P. Duncan

    2012-08-01

    Full Text Available Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI, South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  8. Automated detection of Lupus white matter lesions in MRI

    Directory of Open Access Journals (Sweden)

    Eloy Roura Perez

    2016-08-01

    Full Text Available Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML. In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM, gray matter (GM and cerebrospinal fluid (CSF, while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative and quantitative results in terms of precision and sensitivity of lesion detection (True Positive Rate (62% and Positive Prediction Value (80% respectively as well as segmentation accuracy (Dice Similarity Coefficient (72%. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration.

  9. Validation of an automated seizure detection algorithm for term neonates

    Science.gov (United States)

    Mathieson, Sean R.; Stevenson, Nathan J.; Low, Evonne; Marnane, William P.; Rennie, Janet M.; Temko, Andrey; Lightbody, Gordon; Boylan, Geraldine B.

    2016-01-01

    Objective The objective of this study was to validate the performance of a seizure detection algorithm (SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies from 2 centres. Methods EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the gold standard. The SDA was tested on the EEGs at a range of sensitivity settings. Annotations from the expert and SDA were compared using event and epoch based metrics. The effect of seizure duration on SDA performance was also analysed. Results Between sensitivity settings of 0.5 and 0.3, the algorithm achieved seizure detection rates of 52.6–75.0%, with false detection (FD) rates of 0.04–0.36 FD/h for event based analysis, which was deemed to be acceptable in a clinical environment. Time based comparison of expert and SDA annotations using Cohen’s Kappa Index revealed a best performing SDA threshold of 0.4 (Kappa 0.630). The SDA showed improved detection performance with longer seizures. Conclusion The SDA achieved promising performance and warrants further testing in a live clinical evaluation. Significance The SDA has the potential to improve seizure detection and provide a robust tool for comparing treatment regimens. PMID:26055336

  10. Automated detection of macular drusen using geometric background leveling and threshold selection.

    Science.gov (United States)

    Smith, R Theodore; Chan, Jackie K; Nagasaki, Takayuki; Ahmad, Umer F; Barbazetto, Irene; Sparrow, Janet; Figueroa, Marta; Merriam, Joanna

    2005-02-01

    Age-related macular degeneration (ARMD) is the most prevalent cause of visual loss in patients older than 60 years in the United States. Observation of drusen is the hallmark finding in the clinical evaluation of ARMD. To segment and quantify drusen found in patients with ARMD using image analysis and to compare the efficacy of image analysis segmentation with that of stereoscopic manual grading of drusen. Retrospective study. University referral center.Patients Photographs were randomly selected from an available database of patients with known ARMD in the ongoing Columbia University Macular Genetics Study. All patients were white and older than 60 years. Twenty images from 17 patients were selected as representative of common manifestations of drusen. Image preprocessing included automated color balancing and, where necessary, manual segmentation of confounding lesions such as geographic atrophy (3 images). The operator then chose among 3 automated processing options suggested by predominant drusen type. Automated processing consisted of elimination of background variability by a mathematical model and subsequent histogram-based threshold selection. A retinal specialist using a graphic tablet while viewing stereo pairs constructed digital drusen drawings for each image. The sensitivity and specificity of drusen segmentation using the automated method with respect to manual stereoscopic drusen drawings were calculated on a rigorous pixel-by-pixel basis. The median sensitivity and specificity of automated segmentation were 70% and 81%, respectively. After preprocessing and option choice, reproducibility of automated drusen segmentation was necessarily 100%. Automated drusen segmentation can be reliably performed on digital fundus photographs and result in successful quantification of drusen in a more precise manner than is traditionally possible with manual stereoscopic grading of drusen. With only minor preprocessing requirements, this automated detection

  11. Automated electrochemical detection of iron ions in erythrocytes from melim minipigs suffering from melanoma

    Czech Academy of Sciences Publication Activity Database

    Kremplová, M.; Krejcová, l.; Hynek, D.; Barath, P.; Majzlík, P.; Horák, Vratislav; Adam, V.; Sochor, J.; Cernei, N.; Hubálek, J.; Vrba, R.; Kižek, R.

    2012-01-01

    Roč. 7, č. 7 (2012), s. 5893-5909 ISSN 1452-3981 Institutional research plan: CEZ:AV0Z50450515 Keywords : Automation * Biological sample * Electrochemical detection Subject RIV: CG - Electrochemistry Impact factor: 3.729, year: 2011

  12. Automated Detection of Heuristics and Biases among Pathologists in a Computer-Based System

    Science.gov (United States)

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-01-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to…

  13. Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients

    NARCIS (Netherlands)

    Grobusch, Martin P.; Hänscheid, Thomas; Krämer, Benedikt; Neukammer, Jörg; May, Jürgen; Seybold, Joachim; Kun, Jürgen F. J.; Suttorp, Norbert

    2003-01-01

    BACKGROUND: Cell-Dyn automated blood cell analyzers use laser flow cytometry technology, allowing detection of malaria pigment (hemozoin) in monocytes. We evaluated the value of such an instrument to diagnose malaria in febrile travelers returning to Berlin, Germany, the relation between the

  14. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  15. An automated computer misuse detection system for UNICOS

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1994-09-27

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. This activity is reflected in the system audit record, in the system vulnerability posture, and in other evidence found through active testing of the system. During the last several years we have implemented an automatic misuse detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter (NADIR). We are currently expanding NADIR to include processing of the Cray UNICOS operating system. This new component is called the UNICOS Realtime NADIR, or UNICORN. UNICORN summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. The first phase of UNICORN development is nearing completion, and will be operational in late 1994.

  16. Toward automated face detection in thermal and polarimetric thermal imagery

    Science.gov (United States)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  17. Change Detection Algorithm for the Production of Land Cover Change Maps over the European Union Countries

    Directory of Open Access Journals (Sweden)

    Sebastian Aleksandrowicz

    2014-06-01

    Full Text Available Contemporary satellite Earth Observation systems provide growing amounts of very high spatial resolution data that can be used in various applications. An increasing number of sensors make it possible to monitor selected areas in great detail. However, in order to handle the volume of data, a high level of automation is required. The semi-automatic change detection methodology described in this paper was developed to annually update land cover maps prepared in the context of the Geoland2. The proposed algorithm was tailored to work with different very high spatial resolution images acquired over different European landscapes. The methodology is a fusion of various change detection methods ranging from: (1 layer arithmetic; (2 vegetation indices (NDVI differentiating; (3 texture calculation; and methods based on (4 canonical correlation analysis (multivariate alteration detection (MAD. User intervention during the production of the change map is limited to the selection of the input data, the size of initial segments and the threshold for texture classification (optionally. To achieve a high level of automation, statistical thresholds were applied in most of the processing steps. Tests showed an overall change recognition accuracy of 89%, and the change type classification methodology can accurately classify transitions between classes.

  18. Automated Detection of Anomalous Shipping Manifests to Identify Illicit Trade

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Chikkagoudar, Satish

    2013-11-12

    We describe an approach to analyzing trade data which uses clustering to detect similarities across shipping manifest records, classification to evaluate clustering results and categorize new unseen shipping data records, and visual analytics to provide to support situation awareness in dynamic decision making to monitor and warn against the movement of radiological threat materials through search, analysis and forecasting capabilities. The evaluation of clustering results through classification and systematic inspection of the clusters show the clusters have strong semantic cohesion and offer novel ways to detect transactions related to nuclear smuggling.

  19. System and method for automated object detection in an image

    Science.gov (United States)

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  20. Automated and unsupervised detection of malarial parasites in microscopic images

    Directory of Open Access Journals (Sweden)

    Purwar Yashasvi

    2011-12-01

    Full Text Available Abstract Background Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis and prone to human error (leading to erroneous diagnosis, even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. Method A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. Results The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Conclusion Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method

  1. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  2. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  3. LV challenge LKEB contribution : fully automated myocardial contour detection

    NARCIS (Netherlands)

    Wijnhout, J.S.; Hendriksen, D.; Assen, van H.C.; Geest, van der R.J.

    2009-01-01

    In this paper a contour detection method is described and evaluated on the evaluation data sets of the Cardiac MR Left Ventricle Segmentation Challenge as part of MICCAI 2009s 3D Segmentation Challenge for Clinical Applications. The proposed method, using 2D AAM and 3D ASM, performs a fully

  4. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    Directory of Open Access Journals (Sweden)

    Mohendra Roy

    2016-05-01

    Full Text Available Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al., we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  5. Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.

    Science.gov (United States)

    Clarke, Anthea C; Anson, Judith M; Pyne, David B

    2017-04-01

    Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.

  6. Automated vehicle detection in forward-looking infrared imagery.

    Science.gov (United States)

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  7. An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows.

    Science.gov (United States)

    Dickinson, R A; Morton, J M; Beggs, D S; Anderson, G A; Pyman, M F; Mansell, P D; Blackwood, C B

    2013-07-01

    Automated walk-over weighing systems can be used to monitor liveweights of cattle. Minimal literature exists to describe agreement between automated and static scales, and no known studies describe repeatability when used for daily measurements of dairy cows. This study establishes the repeatability of an automated walk-over cattle-weighing system, and agreement with static electronic scales, when used in a commercial dairy herd to weigh lactating cows. Forty-six lactating dairy cows from a seasonal calving, pasture-based dairy herd in southwest Victoria, Australia, were weighed once using a set of static scales and repeatedly using an automated walk-over weighing system at the exit of a rotary dairy. Substantial agreement was observed between the automated and static scales when assessed using Lin's concordance correlation coefficient. Weights measured by the automated walkover scales were within 5% of those measured by the static scales in 96% of weighings. Bland and Altman's 95% limits of agreement were -23.3 to 43.6 kg, a range of 66.9 kg. The 95% repeatability coefficient for automated weighings was 46.3 kg. Removal of a single outlier from the data set increased Lin's concordance coefficient, narrowed Bland and Altman's 95% limits of agreement to a range of 32.5 kg, and reduced the 95% repeatability coefficient to 18.7 kg. Cow misbehavior during walk-over weighing accounted for many of the larger weight discrepancies. The automated walk-over weighing system showed substantial agreement with the static scales when assessed using Lin's concordance correlation coefficient. This contrasted with limited agreement when assessed using Bland and Altman's method, largely due to poor repeatability. This suggests the automated weighing system is inadequate for detecting small liveweight differences in individual cows based on comparisons of single weights. Misbehaviors and other factors can result in the recording of spurious values on walk-over scales. Excluding

  8. Detecting change-points in extremes

    KAUST Repository

    Dupuis, D. J.; Sun, Ying; Wang, Huixia Judy

    2015-01-01

    Even though most work on change-point estimation focuses on changes in the mean, changes in the variance or in the tail distribution can lead to more extreme events. In this paper, we develop a new method of detecting and estimating the change

  9. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    Directory of Open Access Journals (Sweden)

    Sheng-Cheng Huang

    2017-01-01

    Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  10. Automated detection of diabetic retinopathy in retinal images

    Directory of Open Access Journals (Sweden)

    Carmen Valverde

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis.

  11. Automated detection of diabetic retinopathy in retinal images.

    Science.gov (United States)

    Valverde, Carmen; Garcia, Maria; Hornero, Roberto; Lopez-Galvez, Maria I

    2016-01-01

    Diabetic retinopathy (DR) is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis.

  12. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang

    2010-10-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.

  13. Automated Meteor Detection by All-Sky Digital Camera Systems

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Šimberová, Stanislava

    2017-01-01

    Roč. 120, č. 3 (2017), s. 189-215 ISSN 0167-9295 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985815 ; RVO:67985556 Keywords : meteor detection * autonomous fireball observatories * fish-eye camera * Hough transformation Subject RIV: IN - Informatics, Computer Science; BN - Astronomy, Celestial Mechanics, Astrophysics (ASU-R) OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8); Astronomy (including astrophysics,space science) (ASU-R) Impact factor: 0.875, year: 2016

  14. Automated detection of repeated structures in building facades

    Directory of Open Access Journals (Sweden)

    M. Previtali

    2013-10-01

    Full Text Available Automatic identification of high-level repeated structures in 3D point clouds of building façades is crucial for applications like digitalization and building modelling. Indeed, in many architectural styles building façades are governed by arrangements of objects into repeated patterns. In particular, façades are generally designed as the repetition of some few basic objects organized into interlaced and\\or concatenated grid structures. Starting from this key observation, this paper presents an algorithm for Repeated Structure Detection (RSD in 3D point clouds of building façades. The presented methodology consists of three main phases. First, in the point cloud segmentation stage (i the building façade is decomposed into planar patches which are classified by means of some weak prior knowledge of urban buildings formulated in a classification tree. Secondly (ii, in the element clustering phase detected patches are grouped together by means of a similarity function and pairwise transformations between patches are computed. Eventually (iii, in the structure regularity estimation step the parameters of repeated grid patterns are calculated by using a Least- Squares optimization. Workability of the presented approach is tested using some real data from urban scenes.

  15. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    Science.gov (United States)

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  16. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study.

    Science.gov (United States)

    Ahmed, Ismaïl; Thiessard, Frantz; Miremont-Salamé, Ghada; Haramburu, Françoise; Kreft-Jais, Carmen; Bégaud, Bernard; Tubert-Bitter, Pascale

    2012-06-01

    Improving the detection of drug safety signals has led several pharmacovigilance regulatory agencies to incorporate automated quantitative methods into their spontaneous reporting management systems. The three largest worldwide pharmacovigilance databases are routinely screened by the lower bound of the 95% confidence interval of proportional reporting ratio (PRR₀₂.₅), the 2.5% quantile of the Information Component (IC₀₂.₅) or the 5% quantile of the Gamma Poisson Shrinker (GPS₀₅). More recently, Bayesian and non-Bayesian False Discovery Rate (FDR)-based methods were proposed that address the arbitrariness of thresholds and allow for a built-in estimate of the FDR. These methods were also shown through simulation studies to be interesting alternatives to the currently used methods. The objective of this work was twofold. Based on an extensive retrospective study, we compared PRR₀₂.₅, GPS₀₅ and IC₀₂.₅ with two FDR-based methods derived from the Fisher's exact test and the GPS model (GPS(pH0) [posterior probability of the null hypothesis H₀ calculated from the Gamma Poisson Shrinker model]). Secondly, restricting the analysis to GPS(pH0), we aimed to evaluate the added value of using automated signal detection tools compared with 'traditional' methods, i.e. non-automated surveillance operated by pharmacovigilance experts. The analysis was performed sequentially, i.e. every month, and retrospectively on the whole French pharmacovigilance database over the period 1 January 1996-1 July 2002. Evaluation was based on a list of 243 reference signals (RSs) corresponding to investigations launched by the French Pharmacovigilance Technical Committee (PhVTC) during the same period. The comparison of detection methods was made on the basis of the number of RSs detected as well as the time to detection. Results comparing the five automated quantitative methods were in favour of GPS(pH0) in terms of both number of detections of true signals and

  17. Automated drusen detection in retinal images using analytical modelling algorithms

    Directory of Open Access Journals (Sweden)

    Manivannan Ayyakkannu

    2011-07-01

    Full Text Available Abstract Background Drusen are common features in the ageing macula associated with exudative Age-Related Macular Degeneration (ARMD. They are visible in retinal images and their quantitative analysis is important in the follow up of the ARMD. However, their evaluation is fastidious and difficult to reproduce when performed manually. Methods This article proposes a methodology for Automatic Drusen Deposits Detection and quantification in Retinal Images (AD3RI by using digital image processing techniques. It includes an image pre-processing method to correct the uneven illumination and to normalize the intensity contrast with smoothing splines. The drusen detection uses a gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. The detected drusen are then fitted by Modified Gaussian functions, producing a model of the image that is used to evaluate the affected area. Twenty two images were graded by eight experts, with the aid of a custom made software and compared with AD3RI. This comparison was based both on the total area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass correlation coefficient, the sensitivity, the specificity and the kappa coefficient were calculated. Results The ground truth used in this study was the experts' average grading. In order to evaluate the proposed methodology three indicators were defined: AD3RI compared to the ground truth (A2G; each expert compared to the other experts (E2E and a standard Global Threshold method compared to the ground truth (T2G. The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and 0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient 0.58, 0.60 and 0.49, respectively. Conclusions The gradings produced by AD3RI obtained an agreement

  18. Automated Meteor Detection by All-Sky Digital Camera Systems

    Science.gov (United States)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  19. Automated Detection of Knickpoints and Knickzones Across Transient Landscapes

    Science.gov (United States)

    Gailleton, B.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Mountainous regions are ubiquitously dissected by river channels, which transmit climate and tectonic signals to the rest of the landscape by adjusting their long profiles. Fluvial response to allogenic forcing is often expressed through the upstream propagation of steepened reaches, referred to as knickpoints or knickzones. The identification and analysis of these steepened reaches has numerous applications in geomorphology, such as modelling long-term landscape evolution, understanding controls on fluvial incision, and constraining tectonic uplift histories. Traditionally, the identification of knickpoints or knickzones from fluvial profiles requires manual selection or calibration. This process is both time-consuming and subjective, as different workers may select different steepened reaches within the profile. We propose an objective, statistically-based method to systematically pick knickpoints/knickzones on a landscape scale using an outlier-detection algorithm. Our method integrates river profiles normalised by drainage area (Chi, using the approach of Perron and Royden, 2013), then separates the chi-elevation plots into a series of transient segments using the method of Mudd et al. (2014). This method allows the systematic detection of knickpoints across a DEM, regardless of size, using a high-performance algorithm implemented in the open-source Edinburgh Land Surface Dynamics Topographic Tools (LSDTopoTools) software package. After initial knickpoint identification, outliers are selected using several sorting and binning methods based on the Median Absolute Deviation, to avoid the influence sample size. We test our method on a series of DEMs and grid resolutions, and show that our method consistently identifies accurate knickpoint locations across each landscape tested.

  20. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  1. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  2. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Komeil Rokni

    2014-05-01

    Full Text Available Lake Urmia is the 20th largest lake and the second largest hyper saline lake (before September 2010 in the world. It is also the largest inland body of salt water in the Middle East. Nevertheless, the lake has been in a critical situation in recent years due to decreasing surface water and increasing salinity. This study modeled the spatiotemporal changes of Lake Urmia in the period 2000–2013 using the multi-temporal Landsat 5-TM, 7-ETM+ and 8-OLI images. In doing so, the applicability of different satellite-derived indexes including Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, and Automated Water Extraction Index (AWEI were investigated for the extraction of surface water from Landsat data. Overall, the NDWI was found superior to other indexes and hence it was used to model the spatiotemporal changes of the lake. In addition, a new approach based on Principal Components of multi-temporal NDWI (NDWI-PCs was proposed and evaluated for surface water change detection. The results indicate an intense decreasing trend in Lake Urmia surface area in the period 2000–2013, especially between 2010 and 2013 when the lake lost about one third of its surface area compared to the year 2000. The results illustrate the effectiveness of the NDWI-PCs approach for surface water change detection, especially in detecting the changes between two and three different times, simultaneously.

  3. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    Science.gov (United States)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  4. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  5. Interpreting the change detection error matrix

    NARCIS (Netherlands)

    Oort, van P.A.J.

    2007-01-01

    Two different matrices are commonly reported in assessment of change detection accuracy: (1) single date error matrices and (2) binary change/no change error matrices. The third, less common form of reporting, is the transition error matrix. This paper discuses the relation between these matrices.

  6. An automated procedure for covariation-based detection of RNA structure

    International Nuclear Information System (INIS)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs

  7. An automated procedure for covariation-based detection of RNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs.

  8. Automating dicentric chromosome detection from cytogenetic biodosimetry data.

    Science.gov (United States)

    Rogan, Peter K; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H

    2014-06-01

    We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C++/OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Automating dicentric chromosome detection from cytogenetic bio-dosimetry data

    International Nuclear Information System (INIS)

    Rogan, Peter K.; Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Caminsky, Natasha; Khan, Wahab; Samarabandu, Jagath; Knoll, Joan H.; Wilkins, Ruth; Flegal, Farrah

    2014-01-01

    We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centreline. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from features that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was re-coded in C++/OpenCV; image processing was accelerated by data and task parallelization with Message Passaging Interface and Intel Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking, GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h. (authors)

  10. Development and Evaluation of an Automated, Home-Based, Electronic Questionnaire for Detecting COPD Exacerbations

    Directory of Open Access Journals (Sweden)

    Francisco de B. Velazquez-Peña

    2015-01-01

    Full Text Available Collaboration between patients and their medical and technical experts enabled the development of an automated questionnaire for the early detection of COPD exacerbations (AQCE. The questionnaire consisted of fourteen questions and was implemented on a computer system for use by patients at home in an un-supervised environment. Psychometric evaluation was conducted after a 6-month field trial. Fifty-two patients were involved in the development of the questionnaire. Reproducibility was studied using 19 patients (ICC = 0.94. Sixteen out of the 19 subjects started the 6 month-field trial with the computer application. Cronbach’s alpha of 0.81 was achieved. In the concurrent validity analysis, a correlation of 0.80 (p = 0.002 with the CCQ was reported. The results suggest that AQCE is a valid and reliable questionnaire, showing that an automated home-based electronic questionnaire may enable early detection of exacerbations of COPD.

  11. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods

    DEFF Research Database (Denmark)

    Warby, Simon C.; Wendt, Sabrina Lyngbye; Welinder, Peter

    2014-01-01

    to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance...... of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed...... that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects....

  12. Automatic detection of surface changes on Mars - a status report

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-10-01

    Orbiter missions have acquired approximately 500,000 high-resolution visible images of the Martian surface, covering an area approximately 6 times larger than the overall area of Mars. This data abundance allows the scientific community to examine the Martian surface thoroughly and potentially make exciting new discoveries. However, the increased data volume, as well as its complexity, generate problems at the data processing stages, which are mainly related to a number of unresolved issues that batch-mode planetary data processing presents. As a matter of fact, the scientific community is currently struggling to scale the common ("one-at-a-time" processing of incoming products by expert scientists) paradigm to tackle the large volumes of input data. Moreover, expert scientists are more or less forced to use complex software in order to extract input information for their research from raw data, even though they are not data scientists themselves.Our work within the STFC and EU FP7 i-Mars projects aims at developing automated software that will process all of the acquired data, leaving domain expert planetary scientists to focus on their final analysis and interpretation. Moreover, after completing the development of a fully automated pipeline that processes automatically the co-registration of high-resolution NASA images to ESA/DLR HRSC baseline, our main goal has shifted to the automated detection of surface changes on Mars. In particular, we are developing a pipeline that uses as an input multi-instrument image pairs, which are processed by an automated pipeline, in order to identify changes that are correlated with Mars surface dynamic phenomena. The pipeline has currently been tested in anger on 8,000 co-registered images and by the time of DPS/EPSC we expect to have processed many tens of thousands of image pairs, producing a set of change detection results, a subset of which will be shown in the presentation.The research leading to these results has received

  13. Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies

    Science.gov (United States)

    den Hertog, Alice L.; Visser, Dennis W.; Ingham, Colin J.; Fey, Frank H. A. G.; Klatser, Paul R.; Anthony, Richard M.

    2010-01-01

    Background Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. Methods Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. Significance Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. PMID:20544033

  14. Simplified automated image analysis for detection and phenotyping of Mycobacterium tuberculosis on porous supports by monitoring growing microcolonies.

    Directory of Open Access Journals (Sweden)

    Alice L den Hertog

    Full Text Available BACKGROUND: Even with the advent of nucleic acid (NA amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS, as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. METHODS: Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO supports. Repeated imaging during colony growth greatly simplifies "computer vision" and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. SIGNIFICANCE: Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation.

  15. A self-adapting system for the automated detection of inter-ictal epileptiform discharges.

    Directory of Open Access Journals (Sweden)

    Shaun S Lodder

    Full Text Available PURPOSE: Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. METHODS: Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. KEY FINDINGS: Using the described method and fifteen evaluation EEGs (241 IEDs, one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. SIGNIFICANCE: The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.

  16. Automated eddy-current installation AVD-01 for detecting flaws in fuel element cans

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Martishchenko, L.G.; Popov, V.K.; Romanov, M.L.; Shlepnev, I.O.; Shmatok, V.P.

    1986-01-01

    This paper describes an automated installation for eddy-current flaw detection in thin-walled pipes with small diameter; its unified transport system makes it possible to use the installation in inspection lines and production lines of fuel elements. The article describes the structural diagrams of the installation and presents the results of investigations connected with the selection for establishing the optimum regimes and sensitivity of feedthrough transducers with focusing screens

  17. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy.

    Science.gov (United States)

    Scotland, G S; McNamee, P; Fleming, A D; Goatman, K A; Philip, S; Prescott, G J; Sharp, P F; Williams, G J; Wykes, W; Leese, G P; Olson, J A

    2010-06-01

    To assess the cost-effectiveness of an improved automated grading algorithm for diabetic retinopathy against a previously described algorithm, and in comparison with manual grading. Efficacy of the alternative algorithms was assessed using a reference graded set of images from three screening centres in Scotland (1253 cases with observable/referable retinopathy and 6333 individuals with mild or no retinopathy). Screening outcomes and grading and diagnosis costs were modelled for a cohort of 180 000 people, with prevalence of referable retinopathy at 4%. Algorithm (b), which combines image quality assessment with detection algorithms for microaneurysms (MA), blot haemorrhages and exudates, was compared with a simpler algorithm (a) (using image quality assessment and MA/dot haemorrhage (DH) detection), and the current practice of manual grading. Compared with algorithm (a), algorithm (b) would identify an additional 113 cases of referable retinopathy for an incremental cost of pound 68 per additional case. Compared with manual grading, automated grading would be expected to identify between 54 and 123 fewer referable cases, for a grading cost saving between pound 3834 and pound 1727 per case missed. Extrapolation modelling over a 20-year time horizon suggests manual grading would cost between pound 25,676 and pound 267,115 per additional quality adjusted life year gained. Algorithm (b) is more cost-effective than the algorithm based on quality assessment and MA/DH detection. With respect to the value of introducing automated detection systems into screening programmes, automated grading operates within the recommended national standards in Scotland and is likely to be considered a cost-effective alternative to manual disease/no disease grading.

  18. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  19. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    OpenAIRE

    Veldin A. Talorete Jr.; Sherwin A Guirnaldo

    2017-01-01

    This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifie...

  20. Automated detection and classification of cryptographic algorithms in binary programs through machine learning

    OpenAIRE

    Hosfelt, Diane Duros

    2015-01-01

    Threats from the internet, particularly malicious software (i.e., malware) often use cryptographic algorithms to disguise their actions and even to take control of a victim's system (as in the case of ransomware). Malware and other threats proliferate too quickly for the time-consuming traditional methods of binary analysis to be effective. By automating detection and classification of cryptographic algorithms, we can speed program analysis and more efficiently combat malware. This thesis wil...

  1. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.

    Directory of Open Access Journals (Sweden)

    Ruth Madigan

    Full Text Available Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers' behaviour during non-critical take-over situations, such as driver-initiated lane-changing or overtaking. The current driving simulator study, conducted as part of the EC-funded AdaptIVe project, addresses this issue. It uses a within-subjects design to compare drivers' lane-changing behaviour in conventional manual driving, partially automated driving (PAD and conditionally automated driving (CAD. In PAD, drivers were required to re-take control from an automated driving system in order to overtake a slow moving vehicle, while in CAD, the driver used the indicator lever to initiate a system-performed overtaking manoeuvre. Results showed that while drivers' acceptance of both the PAD and CAD systems was high, they generally preferred CAD. A comparison of overtaking positions showed that drivers initiated overtaking manoeuvres slightly later in PAD than in manual driving or CAD. In addition, when compared to conventional driving, drivers had higher deviations in lane positioning and speed, along with higher lateral accelerations during lane changes following PAD. These results indicate that even in situations which are not time-critical, drivers' vehicle control after automation is degraded compared to conventional driving.

  2. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.

    Science.gov (United States)

    Madigan, Ruth; Louw, Tyron; Merat, Natasha

    2018-01-01

    Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers' behaviour during non-critical take-over situations, such as driver-initiated lane-changing or overtaking. The current driving simulator study, conducted as part of the EC-funded AdaptIVe project, addresses this issue. It uses a within-subjects design to compare drivers' lane-changing behaviour in conventional manual driving, partially automated driving (PAD) and conditionally automated driving (CAD). In PAD, drivers were required to re-take control from an automated driving system in order to overtake a slow moving vehicle, while in CAD, the driver used the indicator lever to initiate a system-performed overtaking manoeuvre. Results showed that while drivers' acceptance of both the PAD and CAD systems was high, they generally preferred CAD. A comparison of overtaking positions showed that drivers initiated overtaking manoeuvres slightly later in PAD than in manual driving or CAD. In addition, when compared to conventional driving, drivers had higher deviations in lane positioning and speed, along with higher lateral accelerations during lane changes following PAD. These results indicate that even in situations which are not time-critical, drivers' vehicle control after automation is degraded compared to conventional driving.

  3. The effect of varying levels of vehicle automation on drivers’ lane changing behaviour

    Science.gov (United States)

    Louw, Tyron; Merat, Natasha

    2018-01-01

    Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers’ behaviour during non-critical take-over situations, such as driver-initiated lane-changing or overtaking. The current driving simulator study, conducted as part of the EC-funded AdaptIVe project, addresses this issue. It uses a within-subjects design to compare drivers’ lane-changing behaviour in conventional manual driving, partially automated driving (PAD) and conditionally automated driving (CAD). In PAD, drivers were required to re-take control from an automated driving system in order to overtake a slow moving vehicle, while in CAD, the driver used the indicator lever to initiate a system-performed overtaking manoeuvre. Results showed that while drivers’ acceptance of both the PAD and CAD systems was high, they generally preferred CAD. A comparison of overtaking positions showed that drivers initiated overtaking manoeuvres slightly later in PAD than in manual driving or CAD. In addition, when compared to conventional driving, drivers had higher deviations in lane positioning and speed, along with higher lateral accelerations during lane changes following PAD. These results indicate that even in situations which are not time-critical, drivers’ vehicle control after automation is degraded compared to conventional driving. PMID:29466402

  4. Detection of virus-specific intrathecally synthesised immunoglobulin G with a fully automated enzyme immunoassay system

    Directory of Open Access Journals (Sweden)

    Weissbrich Benedikt

    2007-05-01

    Full Text Available Abstract Background The determination of virus-specific immunoglobulin G (IgG antibodies in cerebrospinal fluid (CSF is useful for the diagnosis of virus associated diseases of the central nervous system (CNS and for the detection of a polyspecific intrathecal immune response in patients with multiple sclerosis. Quantification of virus-specific IgG in the CSF is frequently performed by calculation of a virus-specific antibody index (AI. Determination of the AI is a demanding and labour-intensive technique and therefore automation is desirable. We evaluated the precision and the diagnostic value of a fully automated enzyme immunoassay for the detection of virus-specific IgG in serum and CSF using the analyser BEP2000 (Dade Behring. Methods The AI for measles, rubella, varicella-zoster, and herpes simplex virus IgG was determined from pairs of serum and CSF samples of patients with viral CNS infections, multiple sclerosis and of control patients. CSF and serum samples were tested simultaneously with reference to a standard curve. Starting dilutions were 1:6 and 1:36 for CSF and 1:1386 and 1:8316 for serum samples. Results The interassay coefficient of variation was below 10% for all parameters tested. There was good agreement between AIs obtained with the BEP2000 and AIs derived from the semi-automated reference method. Conclusion Determination of virus-specific IgG in serum-CSF-pairs for calculation of AI has been successfully automated on the BEP2000. Current limitations of the assay layout imposed by the analyser software should be solved in future versions to offer more convenience in comparison to manual or semi-automated methods.

  5. Improved automated lumen contour detection by novel multifrequency processing algorithm with current intravascular ultrasound system.

    Science.gov (United States)

    Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2013-02-01

    The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.

  6. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images.

    Science.gov (United States)

    Seghier, Mohamed L; Kolanko, Magdalena A; Leff, Alexander P; Jäger, Hans R; Gregoire, Simone M; Werring, David J

    2011-03-23

    Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.

  7. Detecting change-points in extremes

    KAUST Repository

    Dupuis, D. J.

    2015-01-01

    Even though most work on change-point estimation focuses on changes in the mean, changes in the variance or in the tail distribution can lead to more extreme events. In this paper, we develop a new method of detecting and estimating the change-points in the tail of multiple time series data. In addition, we adapt existing tail change-point detection methods to our specific problem and conduct a thorough comparison of different methods in terms of performance on the estimation of change-points and computational time. We also examine three locations on the U.S. northeast coast and demonstrate that the methods are useful for identifying changes in seasonally extreme warm temperatures.

  8. A nationwide web-based automated system for early outbreak detection and rapid response in China

    Directory of Open Access Journals (Sweden)

    Yilan Liao

    2011-03-01

    Full Text Available Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and to transmit that information either in real-time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country.

  9. Sensor for detecting changes in magnetic fields

    Science.gov (United States)

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  10. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care.

    Science.gov (United States)

    Pires, Ramon; Carvalho, Tiago; Spurling, Geoffrey; Goldenstein, Siome; Wainer, Jacques; Luckie, Alan; Jelinek, Herbert F; Rocha, Anderson

    2015-01-01

    Diabetic Retinopathy (DR) is a complication of diabetes mellitus that affects more than one-quarter of the population with diabetes, and can lead to blindness if not discovered in time. An automated screening enables the identification of patients who need further medical attention. This study aimed to classify retinal images of Aboriginal and Torres Strait Islander peoples utilizing an automated computer-based multi-lesion eye screening program for diabetic retinopathy. The multi-lesion classifier was trained on 1,014 images from the São Paulo Eye Hospital and tested on retinal images containing no DR-related lesion, single lesions, or multiple types of lesions from the Inala Aboriginal and Torres Strait Islander health care centre. The automated multi-lesion classifier has the potential to enhance the efficiency of clinical practice delivering diabetic retinopathy screening. Our program does not necessitate image samples for training from any specific ethnic group or population being assessed and is independent of image pre- or post-processing to identify retinal lesions. In this Aboriginal and Torres Strait Islander population, the program achieved 100% sensitivity and 88.9% specificity in identifying bright lesions, while detection of red lesions achieved a sensitivity of 67% and specificity of 95%. When both bright and red lesions were present, 100% sensitivity with 88.9% specificity was obtained. All results obtained with this automated screening program meet WHO standards for diabetic retinopathy screening.

  11. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care.

    Directory of Open Access Journals (Sweden)

    Ramon Pires

    Full Text Available Diabetic Retinopathy (DR is a complication of diabetes mellitus that affects more than one-quarter of the population with diabetes, and can lead to blindness if not discovered in time. An automated screening enables the identification of patients who need further medical attention. This study aimed to classify retinal images of Aboriginal and Torres Strait Islander peoples utilizing an automated computer-based multi-lesion eye screening program for diabetic retinopathy. The multi-lesion classifier was trained on 1,014 images from the São Paulo Eye Hospital and tested on retinal images containing no DR-related lesion, single lesions, or multiple types of lesions from the Inala Aboriginal and Torres Strait Islander health care centre. The automated multi-lesion classifier has the potential to enhance the efficiency of clinical practice delivering diabetic retinopathy screening. Our program does not necessitate image samples for training from any specific ethnic group or population being assessed and is independent of image pre- or post-processing to identify retinal lesions. In this Aboriginal and Torres Strait Islander population, the program achieved 100% sensitivity and 88.9% specificity in identifying bright lesions, while detection of red lesions achieved a sensitivity of 67% and specificity of 95%. When both bright and red lesions were present, 100% sensitivity with 88.9% specificity was obtained. All results obtained with this automated screening program meet WHO standards for diabetic retinopathy screening.

  12. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.

    Science.gov (United States)

    Rajalakshmi, Ramachandran; Subashini, Radhakrishnan; Anjana, Ranjit Mohan; Mohan, Viswanathan

    2018-06-01

    To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist's grading. Three hundred and one patients with type 2 diabetes underwent retinal photography with Remidio 'Fundus on phone' (FOP), a smartphone-based device, at a tertiary care diabetes centre in India. Grading of DR was performed by the ophthalmologists using International Clinical DR (ICDR) classification scale. STDR was defined by the presence of severe non-proliferative DR, proliferative DR or diabetic macular oedema (DME). The retinal photographs were graded using a validated AI DR screening software (EyeArt TM ) designed to identify DR, referable DR (moderate non-proliferative DR or worse and/or DME) or STDR. The sensitivity and specificity of automated grading were assessed and validated against the ophthalmologists' grading. Retinal images of 296 patients were graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) patients, respectively. The AI software showed 95.8% (95% CI 92.9-98.7) sensitivity and 80.2% (95% CI 72.6-87.8) specificity for detecting any DR and 99.1% (95% CI 95.1-99.9) sensitivity and 80.4% (95% CI 73.9-85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 (p < 0.001) and k = 0.75 (p < 0.001), respectively. Automated AI analysis of FOP smartphone retinal imaging has very high sensitivity for detecting DR and STDR and thus can be an initial tool for mass retinal screening in people with diabetes.

  13. An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess Brain Maturation.

    Science.gov (United States)

    Dereymaeker, Anneleen; Pillay, Kirubin; Vervisch, Jan; Van Huffel, Sabine; Naulaers, Gunnar; Jansen, Katrien; De Vos, Maarten

    2017-09-01

    Sleep state development in preterm neonates can provide crucial information regarding functional brain maturation and give insight into neurological well being. However, visual labeling of sleep stages from EEG requires expertise and is very time consuming, prompting the need for an automated procedure. We present a robust method for automated detection of preterm sleep from EEG, over a wide postmenstrual age ([Formula: see text] age) range, focusing first on Quiet Sleep (QS) as an initial marker for sleep assessment. Our algorithm, CLuster-based Adaptive Sleep Staging (CLASS), detects QS if it remains relatively more discontinuous than non-QS over PMA. CLASS was optimized on a training set of 34 recordings aged 27-42 weeks PMA, and performance then assessed on a distinct test set of 55 recordings of the same age range. Results were compared to visual QS labeling from two independent raters (with inter-rater agreement [Formula: see text]), using Sensitivity, Specificity, Detection Factor ([Formula: see text] of visual QS periods correctly detected by CLASS) and Misclassification Factor ([Formula: see text] of CLASS-detected QS periods that are misclassified). CLASS performance proved optimal across recordings at 31-38 weeks (median [Formula: see text], median MF 0-0.25, median Sensitivity 0.93-1.0, and median Specificity 0.80-0.91 across this age range), with minimal misclassifications at 35-36 weeks (median [Formula: see text]). To illustrate the potential of CLASS in facilitating clinical research, normal maturational trends over PMA were derived from CLASS-estimated QS periods, visual QS estimates, and nonstate specific periods (containing QS and non-QS) in the EEG recording. CLASS QS trends agreed with those from visual QS, with both showing stronger correlations than nonstate specific trends. This highlights the benefit of automated QS detection for exploring brain maturation.

  14. Updating National Topographic Data Base Using Change Detection Methods

    Science.gov (United States)

    Keinan, E.; Felus, Y. A.; Tal, Y.; Zilberstien, O.; Elihai, Y.

    2016-06-01

    The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA), the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS) classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.

  15. Automated detection of a prostate Ni-Ti stent in electronic portal images

    OpenAIRE

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-01-01

      Udgivelsesdato: DEC  Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is ba...

  16. Automated detection of analyzable metaphase chromosome cells depicted on scanned digital microscopic images

    Science.gov (United States)

    Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin

    2010-02-01

    Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of

  17. Filament Chirality over an Entire Cycle Determined with an Automated Detection Module -- a Neat Surprise!

    Science.gov (United States)

    Martens, Petrus C.; Yeates, A. R.; Mackay, D.; Pillai, K. G.

    2013-07-01

    Using metadata produced by automated solar feature detection modules developed for SDO (Martens et al. 2012) we have discovered some trends in filament chirality and filament-sigmoid relations that are new and in part contradict the current consensus. Automated detection of solar features has the advantage over manual detection of having the detection criteria applied consistently, and in being able to deal with enormous amounts of data, like the 1 Terabyte per day that SDO produces. Here we use the filament detection module developed by Bernasconi, which has metadata from 2000 on, and the sigmoid sniffer, which has been producing metadata from AIA 94 A images since October 2011. The most interesting result we find is that the hemispheric chirality preference for filaments (dextral in the north, and v.v.), studied in detail for a three year period by Pevtsov et al. (2003) seems to disappear during parts of the decline of cycle 23 and during the extended solar minimum that followed. Moreover the hemispheric chirality rule seems to be much less pronounced during the onset of cycle 24. For sigmoids we find the expected correlation between chirality and handedness (S or Z) shape but not as strong as expected.

  18. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  19. Automated 3D-Printed Unibody Immunoarray for Chemiluminescence Detection of Cancer Biomarker Proteins

    Science.gov (United States)

    Tang, C. K.; Vaze, A.; Rusling, J. F.

    2017-01-01

    A low cost three-dimensional (3D) printed clear plastic microfluidic device was fabricated for fast, low cost automated protein detection. The unibody device features three reagent reservoirs, an efficient 3D network for passive mixing, and an optically transparent detection chamber housing a glass capture antibody array for measuring chemiluminescence output with a CCD camera. Sandwich type assays were built onto the glass arrays using a multi-labeled detection antibody-polyHRP (HRP = horseradish peroxidase). Total assay time was ~30 min in a complete automated assay employing a programmable syringe pump so that the protocol required minimal operator intervention. The device was used for multiplexed detection of prostate cancer biomarker proteins prostate specific antigen (PSA) and platelet factor 4 (PF-4). Detection limits of 0.5 pg mL−1 were achieved for these proteins in diluted serum with log dynamic ranges of four orders of magnitude. Good accuracy vs ELISA was validated by analyzing human serum samples. This prototype device holds good promise for further development as a point-of-care cancer diagnostics tool. PMID:28067370

  20. Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease

    Directory of Open Access Journals (Sweden)

    Jing Wu

    2016-01-01

    Full Text Available In macular spectral domain optical coherence tomography (SD-OCT volumes, detection of the foveal center is required for accurate and reproducible follow-up studies, structure function correlation, and measurement grid positioning. However, disease can cause severe obscuring or deformation of the fovea, thus presenting a major challenge in automated detection. We propose a fully automated fovea detection algorithm to extract the fovea position in SD-OCT volumes of eyes with exudative maculopathy. The fovea is classified into 3 main appearances to both specify the detection algorithm used and reduce computational complexity. Based on foveal type classification, the fovea position is computed based on retinal nerve fiber layer thickness. Mean absolute distance between system and clinical expert annotated fovea positions from a dataset comprised of 240 SD-OCT volumes was 162.3 µm in cystoid macular edema and 262 µm in nAMD. The presented method has cross-vendor functionality, while demonstrating accurate and reliable performance close to typical expert interobserver agreement. The automatically detected fovea positions may be used as landmarks for intra- and cross-patient registration and to create a joint reference frame for extraction of spatiotemporal features in “big data.” Furthermore, reliable analyses of retinal thickness, as well as retinal structure function correlation, may be facilitated.

  1. Automated acoustic analysis in detection of spontaneous swallows in Parkinson's disease.

    Science.gov (United States)

    Golabbakhsh, Marzieh; Rajaei, Ali; Derakhshan, Mahmoud; Sadri, Saeed; Taheri, Masoud; Adibi, Peyman

    2014-10-01

    Acoustic monitoring of swallow frequency has become important as the frequency of spontaneous swallowing can be an index for dysphagia and related complications. In addition, it can be employed as an objective quantification of ingestive behavior. Commonly, swallowing complications are manually detected using videofluoroscopy recordings, which require expensive equipment and exposure to radiation. In this study, a noninvasive automated technique is proposed that uses breath and swallowing recordings obtained via a microphone located over the laryngopharynx. Nonlinear diffusion filters were used in which a scale-space decomposition of recorded sound at different levels extract swallows from breath sounds and artifacts. This technique was compared to manual detection of swallows using acoustic signals on a sample of 34 subjects with Parkinson's disease. A speech language pathologist identified five subjects who showed aspiration during the videofluoroscopic swallowing study. The proposed automated method identified swallows with a sensitivity of 86.67 %, a specificity of 77.50 %, and an accuracy of 82.35 %. These results indicate the validity of automated acoustic recognition of swallowing as a fast and efficient approach to objectively estimate spontaneous swallow frequency.

  2. Comparing a Perceptual and an Automated Vision-Based Method for Lie Detection in Younger Children.

    Science.gov (United States)

    Serras Pereira, Mariana; Cozijn, Reinier; Postma, Eric; Shahid, Suleman; Swerts, Marc

    2016-01-01

    The present study investigates how easily it can be detected whether a child is being truthful or not in a game situation, and it explores the cue validity of bodily movements for such type of classification. To achieve this, we introduce an innovative methodology - the combination of perception studies (in which eye-tracking technology is being used) and automated movement analysis. Film fragments from truthful and deceptive children were shown to human judges who were given the task to decide whether the recorded child was being truthful or not. Results reveal that judges are able to accurately distinguish truthful clips from lying clips in both perception studies. Even though the automated movement analysis for overall and specific body regions did not yield significant results between the experimental conditions, we did find a positive correlation between the amount of movement in a child and the perception of lies, i.e., the more movement the children exhibited during a clip, the higher the chance that the clip was perceived as a lie. The eye-tracking study revealed that, even when there is movement happening in different body regions, judges tend to focus their attention mainly on the face region. This is the first study that compares a perceptual and an automated method for the detection of deceptive behavior in children whose data have been elicited through an ecologically valid paradigm.

  3. Automated volumetry for unilateral hippocampal sclerosis detection in patients with temporal lobe epilepsy.

    Science.gov (United States)

    Martins, Cristina; Moreira da Silva, Nadia; Silva, Guilherme; Rozanski, Verena E; Silva Cunha, Joao Paulo

    2016-08-01

    Hippocampal sclerosis (HS) is the most common cause of temporal lobe epilepsy (TLE) and can be identified in magnetic resonance imaging as hippocampal atrophy and subsequent volume loss. Detecting this kind of abnormalities through simple radiological assessment could be difficult, even for experienced radiologists. For that reason, hippocampal volumetry is generally used to support this kind of diagnosis. Manual volumetry is the traditional approach but it is time consuming and requires the physician to be familiar with neuroimaging software tools. In this paper, we propose an automated method, written as a script that uses FSL-FIRST, to perform hippocampal segmentation and compute an index to quantify hippocampi asymmetry (HAI). We compared the automated detection of HS (left or right) based on the HAI with the agreement of two experts in a group of 19 patients and 15 controls, achieving 84.2% sensitivity, 86.7% specificity and a Cohen's kappa coefficient of 0.704. The proposed method is integrated in the "Advanced Brain Imaging Lab" (ABrIL) cloud neurocomputing platform. The automated procedure is 77% (on average) faster to compute vs. the manual volumetry segmentation performed by an experienced physician.

  4. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  5. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya

    DEFF Research Database (Denmark)

    Juul Bøgelund Hansen, Morten; Abramoff, M. D.; Folk, J. C.

    2015-01-01

    Objective Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased...... workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields...... predictive value of IDP versus the human grader as reference standard. Results Altogether 3,460 participants were included. 113 had DED, giving a prevalence of 3.3%(95% CI, 2.7-3.9%). Sensitivity of the IDP to detect DED as by the human grading was 91.0%(95% CI, 88.0-93.4%). The IDP ability to detect DED...

  6. Automated detection of acute haemorrhagic stroke in non-contrasted CT images

    International Nuclear Information System (INIS)

    Meetz, K.; Buelow, T.

    2007-01-01

    An efficient treatment of stroke patients implies a profound differential diagnosis that includes the detection of acute haematoma. The proposed approach provides an automated detection of acute haematoma, assisting the non-stroke expert in interpreting non-contrasted CT images. It consists of two steps: First, haematoma candidates are detected applying multilevel region growing approach based on a typical grey value characteristic. Second, true haematomas are differentiated from partial volume artefacts, relying on spatial features derived from distance-based histograms. This approach achieves a specificity of 77% and a sensitivity of 89.7% in detecting acute haematoma in non-contrasted CT images when applied to a set of 25 non-contrasted CT images. (orig.)

  7. Computer-aided detection and automated CT volumetry of pulmonary nodules

    International Nuclear Information System (INIS)

    Marten, Katharina; Engelke, Christoph

    2007-01-01

    With use of multislice computed tomography (MSCT), small pulmonary nodules are being detected in vast numbers, constituting the majority of all noncalcified lung nodules. Although the prevalence of lung cancers among such lesions in lung cancer screening populations is low, their isolation may contribute to increased patient survival. Computer-aided diagnosis (CAD) has emerged as a diverse set of diagnostic tools to handle the large number of images in MSCT datasets and most importantly, includes automated detection and volumetry of pulmonary nodules. Current CAD systems can significantly enhance experienced radiologists' performance and outweigh human limitations in identifying small lesions and manually measuring their diameters, augment observer consistency in the interpretation of such examinations and may thus help to detect significantly higher rates of early malignomas and give more precise estimates on chemotherapy response than can radiologists alone. In this review, we give an overview of current CAD in lung nodule detection and volumetry and discuss their relative merits and limitations. (orig.)

  8. An automated technique to determine spatio-temporal changes in ...

    Indian Academy of Sciences (India)

    into two regions, island and water, by means of colour space segmentations. ... containing a multi-resolution analysis approach based on wavelets, road junction detection ..... To view GIS data in the table, an SQL select statement can be used.

  9. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    International Nuclear Information System (INIS)

    Drukker, Karen; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-01

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V ® ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation

  10. Automated Detection of Selective Logging in Amazon Forests Using Airborne Lidar Data and Pattern Recognition Algorithms

    Science.gov (United States)

    Keller, M. M.; d'Oliveira, M. N.; Takemura, C. M.; Vitoria, D.; Araujo, L. S.; Morton, D. C.

    2012-12-01

    Selective logging, the removal of several valuable timber trees per hectare, is an important land use in the Brazilian Amazon and may degrade forests through long term changes in structure, loss of forest carbon and species diversity. Similar to deforestation, the annual area affected by selected logging has declined significantly in the past decade. Nonetheless, this land use affects several thousand km2 per year in Brazil. We studied a 1000 ha area of the Antimary State Forest (FEA) in the State of Acre, Brazil (9.304 ○S, 68.281 ○W) that has a basal area of 22.5 m2 ha-1 and an above-ground biomass of 231 Mg ha-1. Logging intensity was low, approximately 10 to 15 m3 ha-1. We collected small-footprint airborne lidar data using an Optech ALTM 3100EA over the study area once each in 2010 and 2011. The study area contained both recent and older logging that used both conventional and technologically advanced logging techniques. Lidar return density averaged over 20 m-2 for both collection periods with estimated horizontal and vertical precision of 0.30 and 0.15 m. A relative density model comparing returns from 0 to 1 m elevation to returns in 1-5 m elevation range revealed the pattern of roads and skid trails. These patterns were confirmed by ground-based GPS survey. A GIS model of the road and skid network was built using lidar and ground data. We tested and compared two pattern recognition approaches used to automate logging detection. Both segmentation using commercial eCognition segmentation and a Frangi filter algorithm identified the road and skid trail network compared to the GIS model. We report on the effectiveness of these two techniques.

  11. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    Science.gov (United States)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  12. Foreign object detection and removal to improve automated analysis of chest radiographs

    International Nuclear Information System (INIS)

    Hogeweg, Laurens; Sánchez, Clara I.; Melendez, Jaime; Maduskar, Pragnya; Ginneken, Bram van; Story, Alistair; Hayward, Andrew

    2013-01-01

    Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The method is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A z value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis

  13. Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection.

    Science.gov (United States)

    Mathieson, Sean R; Livingstone, Vicki; Low, Evonne; Pressler, Ronit; Rennie, Janet M; Boylan, Geraldine B

    2016-10-01

    Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it may also affect electrographic seizure morphology. This may alter the performance of a novel seizure detection algorithm (SDA) developed by our group. The objectives of this study were to compare the morphology of seizures before and after phenobarbital administration in neonates and to determine the effect of any changes on automated seizure detection rates. The EEGs of 18 term neonates with seizures both pre- and post-phenobarbital (524 seizures) administration were studied. Ten features of seizures were manually quantified and summary measures for each neonate were statistically compared between pre- and post-phenobarbital seizures. SDA seizure detection rates were also compared. Post-phenobarbital seizures showed significantly lower amplitude (pphenobarbital reduces both the amplitude and propagation of seizures which may help to explain electroclinical uncoupling of seizures. The seizure detection rate of the algorithm was unaffected by these changes. The results suggest that users should not need to adjust the SDA sensitivity threshold after phenobarbital administration. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  15. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  16. A fully automated contour detection algorithm the preliminary step for scatter and attenuation compensation in SPECT

    International Nuclear Information System (INIS)

    Younes, R.B.; Mas, J.; Bidet, R.

    1988-01-01

    Contour detection is an important step in information extraction from nuclear medicine images. In order to perform accurate quantitative studies in single photon emission computed tomography (SPECT) a new procedure is described which can rapidly derive the best fit contour of an attenuated medium. Some authors evaluate the influence of the detected contour on the reconstructed images with various attenuation correction techniques. Most of the methods are strongly affected by inaccurately detected contours. This approach uses the Compton window to redetermine the convex contour: It seems to be simpler and more practical in clinical SPECT studies. The main advantages of this procedure are the high speed of computation, the accuracy of the contour found and the programme's automation. Results obtained using computer simulated and real phantoms or clinical studies demonstrate the reliability of the present algorithm. (orig.)

  17. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    Science.gov (United States)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  18. Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs.

    Science.gov (United States)

    Chakrabarty, Lipi; Joshi, Gopal Datt; Chakravarty, Arunava; Raman, Ganesh V; Krishnadas, S R; Sivaswamy, Jayanthi

    2016-07-01

    To describe and evaluate the performance of an automated CAD system for detection of glaucoma from color fundus photographs. Color fundus photographs of 2252 eyes from 1126 subjects were collected from 2 centers: Aravind Eye Hospital, Madurai and Coimbatore, India. The images of 1926 eyes (963 subjects) were used to train an automated image analysis-based system, which was developed to provide a decision on a given fundus image. A total of 163 subjects were clinically examined by 2 ophthalmologists independently and their diagnostic decisions were recorded. The consensus decision was defined to be the clinical reference (gold standard). Fundus images of eyes with disagreement in diagnosis were excluded from the study. The fundus images of the remaining 314 eyes (157 subjects) were presented to 4 graders and their diagnostic decisions on the same were collected. The performance of the system was evaluated on the 314 images, using the reference standard. The sensitivity and specificity of the system and 4 independent graders were determined against the clinical reference standard. The system achieved an area under receiver operating characteristic curve of 0.792 with a sensitivity of 0.716 and specificity of 0.717 at a selected threshold for the detection of glaucoma. The agreement with the clinical reference standard as determined by Cohen κ is 0.45 for the proposed system. This is comparable to that of the image-based decisions of 4 ophthalmologists. An automated system was presented for glaucoma detection from color fundus photographs. The overall evaluation results indicated that the presented system was comparable in performance to glaucoma classification by a manual grader solely based on fundus image examination.

  19. Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices.

    Science.gov (United States)

    Golden, J P; Verbarg, J; Howell, P B; Shriver-Lake, L C; Ligler, F S

    2013-02-15

    A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose-response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. Published by Elsevier B.V.

  20. Automated night/day standoff detection, tracking, and identification of personnel for installation protection

    Science.gov (United States)

    Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert

    2013-06-01

    The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.

  1. Flexible Method for the Automated Offline-Detection of Artifacts in Multi-Channel Electroencephalogram Recordings

    DEFF Research Database (Denmark)

    Waser, Markus; Garn, Heinrich; Benke, Thomas

    2017-01-01

    . However, these preprocessing steps do not allow for complete artifact correction. We propose a method for the automated offline-detection of remaining artifacts after preprocessing in multi-channel EEG recordings. In contrast to existing methods it requires neither adaptive parameters varying between...... recordings nor a topography template. It is suited for short EEG segments and is flexible with regard to target applications. The algorithm was developed and tested on 60 clinical EEG samples of 20 seconds each that were recorded both in resting state and during cognitive activation to gain a realistic...

  2. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    Science.gov (United States)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  3. Evaluation of automated nucleic acid extraction methods for virus detection in a multicenter comparative trial

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Hakhverdyan, M.

    2009-01-01

    between the results obtained for the different automated extraction platforms. In particular, the limit of detection was identical for 9/12 and 8/12 best performing robots (using dilutions of BVDV infected-serum and cell culture material, respectively), which was similar to a manual extraction method used......Five European veterinary laboratories participated in an exercise to compare the performance of nucleic acid extraction robots. Identical sets of coded samples were prepared using serial dilutions of bovine viral diarrhoea virus (BVDV) from serum and cell culture propagated material. Each...

  4. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  5. Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

    2002-12-01

    This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

  6. Total least squares for anomalous change detection

    Science.gov (United States)

    Theiler, James; Matsekh, Anna M.

    2010-04-01

    A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.

  7. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  8. Automated high-pressure titration system with in situ infrared spectroscopic detection

    International Nuclear Information System (INIS)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.; Benezeth, Pascale

    2014-01-01

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO 2 (scCO 2 ) to generate an infrared calibration curve and determine the solubility of water in CO 2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO 2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO 2 hydration, and ATR measurements provided insights into competitive residency of water and CO 2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg 2 SiO 4 ) in water-bearing scCO 2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO 2 , a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the

  9. Microscope image based fully automated stomata detection and pore measurement method for grapevines

    Directory of Open Access Journals (Sweden)

    Hiranya Jayakody

    2017-11-01

    Full Text Available Abstract Background Stomatal behavior in grapevines has been identified as a good indicator of the water stress level and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However, most of the current approaches involve manual measurement of stomatal features. The main aim of this research is to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope images as the input. The proposed approach, which employs machine learning and image processing techniques, can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological features. Results First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a combination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata detection approach was compared with an existing fully automated template matching technique and a semi-automatic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletonization method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmentation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further comparisons made with manually traced stoma openings indicated that the proposed method is able to estimate stomata morphological features with accuracies of 89.03% for area

  10. Errors detected in pediatric oral liquid medication doses prepared in an automated workflow management system.

    Science.gov (United States)

    Bledsoe, Sarah; Van Buskirk, Alex; Falconer, R James; Hollon, Andrew; Hoebing, Wendy; Jokic, Sladan

    2018-02-01

    The effectiveness of barcode-assisted medication preparation (BCMP) technology on detecting oral liquid dose preparation errors. From June 1, 2013, through May 31, 2014, a total of 178,344 oral doses were processed at Children's Mercy, a 301-bed pediatric hospital, through an automated workflow management system. Doses containing errors detected by the system's barcode scanning system or classified as rejected by the pharmacist were further reviewed. Errors intercepted by the barcode-scanning system were classified as (1) expired product, (2) incorrect drug, (3) incorrect concentration, and (4) technological error. Pharmacist-rejected doses were categorized into 6 categories based on the root cause of the preparation error: (1) expired product, (2) incorrect concentration, (3) incorrect drug, (4) incorrect volume, (5) preparation error, and (6) other. Of the 178,344 doses examined, 3,812 (2.1%) errors were detected by either the barcode-assisted scanning system (1.8%, n = 3,291) or a pharmacist (0.3%, n = 521). The 3,291 errors prevented by the barcode-assisted system were classified most commonly as technological error and incorrect drug, followed by incorrect concentration and expired product. Errors detected by pharmacists were also analyzed. These 521 errors were most often classified as incorrect volume, preparation error, expired product, other, incorrect drug, and incorrect concentration. BCMP technology detected errors in 1.8% of pediatric oral liquid medication doses prepared in an automated workflow management system, with errors being most commonly attributed to technological problems or incorrect drugs. Pharmacists rejected an additional 0.3% of studied doses. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. Performance evaluation of three automated identification systems in detecting carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    He, Qingwen; Chen, Weiyuan; Huang, Liya; Lin, Qili; Zhang, Jingling; Liu, Rui; Li, Bin

    2016-06-21

    Carbapenem-resistant Enterobacteriaceae (CRE) is prevalent around the world. Rapid and accurate detection of CRE is urgently needed to provide effective treatment. Automated identification systems have been widely used in clinical microbiology laboratories for rapid and high-efficient identification of pathogenic bacteria. However, critical evaluation and comparison are needed to determine the specificity and accuracy of different systems. The aim of this study was to evaluate the performance of three commonly used automated identification systems on the detection of CRE. A total of 81 non-repetitive clinical CRE isolates were collected from August 2011 to August 2012 in a Chinese university hospital, and all the isolates were confirmed to be resistant to carbapenems by the agar dilution method. The potential presence of carbapenemase genotypes of the 81 isolates was detected by PCR and sequencing. Using 81 clinical CRE isolates, we evaluated and compared the performance of three automated identification systems, MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, which are commonly used in China. To identify CRE, the comparator methodology was agar dilution method, while the PCR and sequencing was the comparator one to identify CPE. PCR and sequencing analysis showed that 48 of the 81 CRE isolates carried carbapenemase genes, including 23 (28.4 %) IMP-4, 14 (17.3 %) IMP-8, 5 (6.2 %) NDM-1, and 8 (9.9 %) KPC-2. Notably, one Klebsiella pneumoniae isolate produced both IMP-4 and NDM-1. One Klebsiella oxytoca isolate produced both KPC-2 and IMP-8. Of the 81 clinical CRE isolates, 56 (69.1 %), 33 (40.7 %) and 77 (95.1 %) were identified as CRE by MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, respectively. The sensitivities/specificities of MicroScan WalkAway, Phoenix 100 and Vitek 2 were 93.8/42.4 %, 54.2/66.7 %, and 75.0/36.4 %, respectively. The MicroScan WalkAway and Viteck2 systems are more reliable in clinical identification of

  12. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Rands, Anthony D.; Losee, Scott C. [Torion Technologies, American Fork, UT 84003 (United States); Holt, Brian C. [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Williams, John R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Lammert, Stephen A. [Torion Technologies, American Fork, UT 84003 (United States); Robison, Richard A. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 (United States); Tolley, H. Dennis [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Lee, Milton L., E-mail: milton_lee@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2013-05-02

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  13. Automated Detection of Branch Shaking Locations for Robotic Cherry Harvesting Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Suraj Amatya

    2017-10-01

    Full Text Available Automation in cherry harvesting is essential to reduce the demand for seasonal labor for cherry picking and reduce the cost of production. The mechanical shaking of tree branches is one of the widely studied and used techniques for harvesting small tree fruit crops like cherries. To automate the branch shaking operation, different methods of detecting branches and cherries in full foliage canopies of the cherry tree have been developed previously. The next step in this process is the localization of shaking positions in the detected tree branches for mechanical shaking. In this study, a method of locating shaking positions for automated cherry harvesting was developed based on branch and cherry pixel locations determined using RGB images and 3D camera images. First, branch and cherry regions were located in 2D RGB images. Depth information provided by a 3D camera was then mapped on to the RGB images using a standard stereo calibration method. The overall root mean square error in estimating the distance to desired shaking points was 0.064 m. Cherry trees trained in two different canopy architectures, Y-trellis and vertical trellis systems, were used in this study. Harvesting testing was carried out by shaking tree branches at the locations selected by the algorithm. For the Y-trellis system, the maximum fruit removal efficiency of 92.9% was achieved using up to five shaking events per branch. However, maximum fruit removal efficiency for the vertical trellis system was 86.6% with up to four shakings per branch. However, it was found that only three shakings per branch would achieve a fruit removal percentage of 92.3% and 86.4% in Y and vertical trellis systems respectively.

  14. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Li, Dan; Rands, Anthony D.; Losee, Scott C.; Holt, Brian C.; Williams, John R.; Lammert, Stephen A.; Robison, Richard A.; Tolley, H. Dennis; Lee, Milton L.

    2013-01-01

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  15. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    Science.gov (United States)

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  16. Automated Selection of Hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer.

    Science.gov (United States)

    Lu, Hao; Papathomas, Thomas G; van Zessen, David; Palli, Ivo; de Krijger, Ronald R; van der Spek, Peter J; Dinjens, Winand N M; Stubbs, Andrew P

    2014-11-25

    In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67 Labelling Index (LI) are of critical importance. In addition to intratumoral heterogeneity in proliferative rate i.e. levels of Ki67 expression within a given ACC, lack of uniformity and reproducibility in the method of quantification of Ki67 LI may confound an accurate assessment of Ki67 LI. We have implemented an open source toolset, Automated Selection of Hotspots (ASH), for automated hotspot detection and quantification of Ki67 LI. ASH utilizes NanoZoomer Digital Pathology Image (NDPI) splitter to convert the specific NDPI format digital slide scanned from the Hamamatsu instrument into a conventional tiff or jpeg format image for automated segmentation and adaptive step finding hotspots detection algorithm. Quantitative hotspot ranking is provided by the functionality from the open source application ImmunoRatio as part of the ASH protocol. The output is a ranked set of hotspots with concomitant quantitative values based on whole slide ranking. We have implemented an open source automated detection quantitative ranking of hotspots to support histopathologists in selecting the 'hottest' hotspot areas in adrenocortical carcinoma. To provide wider community easy access to ASH we implemented a Galaxy virtual machine (VM) of ASH which is available from http://bioinformatics.erasmusmc.nl/wiki/Automated_Selection_of_Hotspots . The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_216.

  17. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  18. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Science.gov (United States)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  19. An automated and integrated framework for dust storm detection based on ogc web processing services

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data

  20. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    International Nuclear Information System (INIS)

    Wardaya, P D

    2014-01-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result

  1. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    Science.gov (United States)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  2. Accuracy of automated software-guided detection of significant coronary artery stenosis by CT angiography: comparison with invasive catheterisation

    International Nuclear Information System (INIS)

    Anders, Katharina; Uder, Michael; Achenbach, Stephan; Petit, Isabel; Daniel, Werner G.; Pflederer, Tobias

    2013-01-01

    True automated detection of coronary artery stenoses might be useful whenever expert evaluation is not available, or as a ''second reader'' to enhance diagnostic confidence. We evaluated the accuracy of a PC-based stenosis detection tool alone and combined with expert interpretation. One hundred coronary CT angiography datasets were evaluated with the automated software alone, by manual interpretation (axial images, multiplanar reformations and maximum intensity projections in free double-oblique planes), and by expert interpretation aware of the automated findings. Stenoses ≥ 50 % were noted per-vessel and per-patient, and compared with invasive angiography. Automated post-processing was successful in 90 % of patients (88 % of vessels). When excluding uninterpretable datasets, per-patient sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 89 %, 79 %, 74 % and 92 % (per-vessel: 82 %, 85 %, 48 % and 96 %). All 100 datasets were evaluable by expert interpretation. Per-patient sensitivity, specificity, PPV and NPV were 95 %, 95 %, 93 % and 97 % (per-vessel: 89 %,98 %, 88 % and 98 %). Knowing the results of automated interpretation did not improve the performance of expert readers. Automated off-line post-processing of coronary CT angiography shows adequate sensitivity, but relatively low specificity in coronary stenosis detection. It does not increase accuracy of expert interpretation. Failure of post-processing in 10 % of all patients necessitates additional manual image work-up. (orig.)

  3. Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Timo Melkas

    2012-10-01

    Full Text Available Changes to stems caused by natural forces and timber harvesting constitute an essential input for many forestry-related applications and ecological studies, especially forestry inventories based on the use of permanent sample plots. Conventional field measurement is widely acknowledged as being time-consuming and labor-intensive. More automated and efficient alternatives or supportive methods are needed. Terrestrial laser scanning (TLS has been demonstrated to be a promising method in forestry field inventories. Nevertheless, the applicability of TLS in recording changes in the structure of forest plots has not been studied in detail. This paper presents a fully automated method for detecting changes in forest structure over time using bi-temporal TLS data. The developed method was tested on five densely populated forest plots including 137 trees and 50 harvested trees in point clouds. The present study demonstrated that 90 percent of tree stem changes could be automatically located from single-scan TLS data. These changes accounted for 92 percent of the changed basal area. The results indicate that the processing of TLS data collected at different times to detect tree stem changes can be fully automated.

  4. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  5. The "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code” Modules

    Science.gov (United States)

    Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.

    2010-05-01

    We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.

  6. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya.

    Science.gov (United States)

    Hansen, Morten B; Abràmoff, Michael D; Folk, James C; Mathenge, Wanjiku; Bastawrous, Andrew; Peto, Tunde

    2015-01-01

    Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields Reading Centre on the population of Nakuru Study from Kenya. Retinal images were taken from participants of the Nakuru Eye Disease Study in Kenya in 2007/08 (n = 4,381 participants [NW6 Topcon Digital Retinal Camera]). First, human grading was performed for the presence or absence of DR, and for those with DR this was sub-divided in to referable or non-referable DR. The automated IDP software was deployed to identify those with DR and also to categorize the severity of DR. The primary outcomes were sensitivity, specificity, and positive and negative predictive value of IDP versus the human grader as reference standard. Altogether 3,460 participants were included. 113 had DED, giving a prevalence of 3.3% (95% CI, 2.7-3.9%). Sensitivity of the IDP to detect DED as by the human grading was 91.0% (95% CI, 88.0-93.4%). The IDP ability to detect DED gave an AUC of 0.878 (95% CI 0.850-0.905). It showed a negative predictive value of 98%. The IDP missed no vision threatening retinopathy in any patients and none of the false negative cases met criteria for treatment. In this epidemiological sample, the IDP's grading was comparable to that of human graders'. It therefore might be feasible to consider inclusion into usual epidemiological grading.

  7. UPDATING NATIONAL TOPOGRAPHIC DATA BASE USING CHANGE DETECTION METHODS

    Directory of Open Access Journals (Sweden)

    E. Keinan

    2016-06-01

    Full Text Available The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA, the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.

  8. Radiologists' Performance for Detecting Lesions and the Interobserver Variability of Automated Whole Breast Ultrasound

    International Nuclear Information System (INIS)

    Kim, Sung Hun; Kang, Bong Joo; Choi, Byung Gil; Choi, Jae Jung; Lee, Ji Hye; Song, Byung Joo; Choe, Byung Joo; Park, Sarah; Kim, Hyunbin

    2013-01-01

    To compare the detection performance of the automated whole breast ultrasound (AWUS) with that of the hand-held breast ultrasound (HHUS) and to evaluate the interobserver variability in the interpretation of the AWUS. AWUS was performed in 38 breast cancer patients. A total of 66 lesions were included: 38 breast cancers, 12 additional malignancies and 16 benign lesions. Three breast radiologists independently reviewed the AWUS data and analyzed the breast lesions according to the BI-RADS classification. The detection rate of malignancies was 98.0% for HHUS and 90.0%, 88.0% and 96.0% for the three readers of the AWUS. The sensitivity and the specificity were 98.0% and 62.5% in HHUS, 90.0% and 87.5% for reader 1, 88.0% and 81.3% for reader 2, and 96.0% and 93.8% for reader 3, in AWUS. There was no significant difference in the radiologists' detection performance, sensitivity and specificity (p > 0.05) between the two modalities. The interobserver agreement was fair to good for the ultrasonographic features, categorization, size, and the location of breast masses. AWUS is thought to be useful for detecting breast lesions. In comparison with HHUS, AWUS shows no significant difference in the detection rate, sensitivity and the specificity, with high degrees of interobserver agreement

  9. Low power multi-camera system and algorithms for automated threat detection

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak; Chen, Yang; Van Buer, Darrel J.; Martin, Kevin

    2013-05-01

    A key to any robust automated surveillance system is continuous, wide field-of-view sensor coverage and high accuracy target detection algorithms. Newer systems typically employ an array of multiple fixed cameras that provide individual data streams, each of which is managed by its own processor. This array can continuously capture the entire field of view, but collecting all the data and back-end detection algorithm consumes additional power and increases the size, weight, and power (SWaP) of the package. This is often unacceptable, as many potential surveillance applications have strict system SWaP requirements. This paper describes a wide field-of-view video system that employs multiple fixed cameras and exhibits low SWaP without compromising the target detection rate. We cycle through the sensors, fetch a fixed number of frames, and process them through a modified target detection algorithm. During this time, the other sensors remain powered-down, which reduces the required hardware and power consumption of the system. We show that the resulting gaps in coverage and irregular frame rate do not affect the detection accuracy of the underlying algorithms. This reduces the power of an N-camera system by up to approximately N-fold compared to the baseline normal operation. This work was applied to Phase 2 of DARPA Cognitive Technology Threat Warning System (CT2WS) program and used during field testing.

  10. Automated lung module detection at low-dose CT: preliminary experience

    International Nuclear Information System (INIS)

    Goo, Jin-Mo; Lee, Jeong-Won; Lee, Hyun-Ju; Kim, Seung-Wan; Kim, Jong-Hyo; Im, Jung-Gi

    2003-01-01

    To determine the usefulness of a computer-aided diagnosis (CAD) system for the automated detection of lung nodules at low-dose CT. A CAD system developed for detecting lung nodules was used to process the data provided by 50 consecutive low-dose CT scans. The results of an initial report, a second look review by two chest radiologists, and those obtained by the CAD system were compared, and by reviewing all of these, a gold standard was established. By applying the gold standard, a total of 52 nodules were identified (26 with a diameter ≤ 5 mm; 26 with a diameter > 5 mm). Compared to an initial report, four additional nodules were detected by the CAD system. Three of these, identified only at CAD, formed part of the data used to derive the gold standard. For the detection of nodules > 5 mm in diameter, sensitivity was 77% for the initial report, for the second look review, and 88% for the second look review,and 65% for the CAD system. There were 8.0 ± 5.2 false-positive CAD results per CT study. These preliminary results indicate that a CAD system may improve the detection of pulmonary nodules at low-dose CT

  11. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  12. Radiologists' Performance for Detecting Lesions and the Interobserver Variability of Automated Whole Breast Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hun; Kang, Bong Joo; Choi, Byung Gil; Choi, Jae Jung; Lee, Ji Hye [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Song, Byung Joo; Choe, Byung Joo [Department of General Surgery, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Park, Sarah [Department of Internal Medicine, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kim, Hyunbin [CMC Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2013-07-01

    To compare the detection performance of the automated whole breast ultrasound (AWUS) with that of the hand-held breast ultrasound (HHUS) and to evaluate the interobserver variability in the interpretation of the AWUS. AWUS was performed in 38 breast cancer patients. A total of 66 lesions were included: 38 breast cancers, 12 additional malignancies and 16 benign lesions. Three breast radiologists independently reviewed the AWUS data and analyzed the breast lesions according to the BI-RADS classification. The detection rate of malignancies was 98.0% for HHUS and 90.0%, 88.0% and 96.0% for the three readers of the AWUS. The sensitivity and the specificity were 98.0% and 62.5% in HHUS, 90.0% and 87.5% for reader 1, 88.0% and 81.3% for reader 2, and 96.0% and 93.8% for reader 3, in AWUS. There was no significant difference in the radiologists' detection performance, sensitivity and specificity (p > 0.05) between the two modalities. The interobserver agreement was fair to good for the ultrasonographic features, categorization, size, and the location of breast masses. AWUS is thought to be useful for detecting breast lesions. In comparison with HHUS, AWUS shows no significant difference in the detection rate, sensitivity and the specificity, with high degrees of interobserver agreement.

  13. FahamecV1:A Low Cost Automated Metaphase Detection System

    Directory of Open Access Journals (Sweden)

    H. Yilmaz

    2017-12-01

    Full Text Available In this study, FahamecV1 is introduced and investigated as a low cost and high accuracy solution for metaphase detection. Chromosome analysis is performed at the metaphase stage and high accuracy and automated detection of the metaphase stage plays an active role in decreasing analysis time. FahamecV1 includes an optic microscope, a motorized microscope stage, an electronic control unit, a camera, a computer and a software application. Printing components of the motorized microscope stage (using a 3D printer is of the main reasons for cost reduction. Operations such as stepper motor calibration, are detection, focusing, scanning, metaphase detection and saving of coordinates into a database are automatically performed. To detect metaphases, a filter named Metafilter is developed and applied. Average scanning time per preparate is 77 sec/cm2. True positive rate is calculated as 95.1%, true negative rate is calculated as 99.0% and accuracy is calculated as 98.8%.

  14. Intelligent Machine Vision for Automated Fence Intruder Detection Using Self-organizing Map

    Directory of Open Access Journals (Sweden)

    Veldin A. Talorete Jr.

    2017-03-01

    Full Text Available This paper presents an intelligent machine vision for automated fence intruder detection. A series of still captured images that contain fence events using Internet Protocol cameras was used as input data to the system. Two classifiers were used; the first is to classify human posture and the second one will classify intruder location. The system classifiers were implemented using Self-Organizing Map after the implementation of several image segmentation processes. The human posture classifier is in charge of classifying the detected subject’s posture patterns from subject’s silhouette. Moreover, the Intruder Localization Classifier is in charge of classifying the detected pattern’s location classifier will estimate the location of the intruder with respect to the fence using geometric feature from images as inputs. The system is capable of activating the alarm, display the actual image and depict the location of the intruder when an intruder is detected. In detecting intruder posture, the system’s success rate of 88%. Overall system accuracy for day-time intruder localization is 83% and an accuracy of 88% for night-time intruder localization

  15. A new framework for analysing automated acoustic species-detection data: occupancy estimation and optimization of recordings post-processing

    Science.gov (United States)

    Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.

    2018-01-01

    The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.

  16. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Examining change detection approaches for tropical mangrove monitoring

    Science.gov (United States)

    Myint, Soe W.; Franklin, Janet; Buenemann, Michaela; Kim, Won; Giri, Chandra

    2014-01-01

    This study evaluated the effectiveness of different band combinations and classifiers (unsupervised, supervised, object-oriented nearest neighbor, and object-oriented decision rule) for quantifying mangrove forest change using multitemporal Landsat data. A discriminant analysis using spectra of different vegetation types determined that bands 2 (0.52 to 0.6 μm), 5 (1.55 to 1.75 μm), and 7 (2.08 to 2.35 μm) were the most effective bands for differentiating mangrove forests from surrounding land cover types. A ranking of thirty-six change maps, produced by comparing the classification accuracy of twelve change detection approaches, was used. The object-based Nearest Neighbor classifier produced the highest mean overall accuracy (84 percent) regardless of band combinations. The automated decision rule-based approach (mean overall accuracy of 88 percent) as well as a composite of bands 2, 5, and 7 used with the unsupervised classifier and the same composite or all band difference with the object-oriented Nearest Neighbor classifier were the most effective approaches.

  18. Brain correlates of automatic visual change detection.

    Science.gov (United States)

    Cléry, H; Andersson, F; Fonlupt, P; Gomot, M

    2013-07-15

    A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and prospects.

    Science.gov (United States)

    Muszynski, C; Happillon, T; Azudin, K; Tylcz, J-B; Istrate, D; Marque, C

    2018-05-08

    Preterm birth is a major public health problem in developed countries. In this context, we have conducted research into outpatient monitoring of uterine electrical activity in women at risk of preterm delivery. The objective of this preliminary study was to perform automated detection of uterine contractions (without human intervention or tocographic signal, TOCO) by processing the EHG recorded on the abdomen of pregnant women. The feasibility and accuracy of uterine contraction detection based on EHG processing were tested and compared to expert decision using external tocodynamometry (TOCO) . The study protocol was approved by local Ethics Committees under numbers ID-RCB 2016-A00663-48 for France and VSN 02-0006-V2 for Iceland. Two populations of women were included (threatened preterm birth and labour) in order to test our system of recognition of the various types of uterine contractions. EHG signal acquisition was performed according to a standardized protocol to ensure optimal reproducibility of EHG recordings. A system of 18 Ag/AgCl surface electrodes was used by placing 16 recording electrodes between the woman's pubis and umbilicus according to a 4 × 4 matrix. TOCO was recorded simultaneously with EHG recording. EHG signals were analysed in real-time by calculation of the nonlinear correlation coefficient H 2 . A curve representing the number of correlated pairs of signals according to the value of H 2 calculated between bipolar signals was then plotted. High values of H 2 indicated the presence of an event that may correspond to a contraction. Two tests were performed after detection of an event (fusion and elimination of certain events) in order to increase the contraction detection rate. The EHG database contained 51 recordings from pregnant women, with a total of 501 contractions previously labelled by analysis of the corresponding tocographic recording. The percentage recognitions obtained by application of the method based on coefficient H 2 was

  20. Automation of Classical QEEG Trending Methods for Early Detection of Delayed Cerebral Ischemia: More Work to Do.

    Science.gov (United States)

    Wickering, Ellis; Gaspard, Nicolas; Zafar, Sahar; Moura, Valdery J; Biswal, Siddharth; Bechek, Sophia; OʼConnor, Kathryn; Rosenthal, Eric S; Westover, M Brandon

    2016-06-01

    The purpose of this study is to evaluate automated implementations of continuous EEG monitoring-based detection of delayed cerebral ischemia based on methods used in classical retrospective studies. We studied 95 patients with either Fisher 3 or Hunt Hess 4 to 5 aneurysmal subarachnoid hemorrhage who were admitted to the Neurosciences ICU and underwent continuous EEG monitoring. We implemented several variations of two classical algorithms for automated detection of delayed cerebral ischemia based on decreases in alpha-delta ratio and relative alpha variability. Of 95 patients, 43 (45%) developed delayed cerebral ischemia. Our automated implementation of the classical alpha-delta ratio-based trending method resulted in a sensitivity and specificity (Se,Sp) of (80,27)%, compared with the values of (100,76)% reported in the classic study using similar methods in a nonautomated fashion. Our automated implementation of the classical relative alpha variability-based trending method yielded (Se,Sp) values of (65,43)%, compared with (100,46)% reported in the classic study using nonautomated analysis. Our findings suggest that improved methods to detect decreases in alpha-delta ratio and relative alpha variability are needed before an automated EEG-based early delayed cerebral ischemia detection system is ready for clinical use.

  1. Performance Evaluation of an Automated ELISA System for Alzheimer's Disease Detection in Clinical Routine.

    Science.gov (United States)

    Chiasserini, Davide; Biscetti, Leonardo; Farotti, Lucia; Eusebi, Paolo; Salvadori, Nicola; Lisetti, Viviana; Baschieri, Francesca; Chipi, Elena; Frattini, Giulia; Stoops, Erik; Vanderstichele, Hugo; Calabresi, Paolo; Parnetti, Lucilla

    2016-07-22

    The variability of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers undermines their full-fledged introduction into routine diagnostics and clinical trials. Automation may help to increase precision and decrease operator errors, eventually improving the diagnostic performance. Here we evaluated three new CSF immunoassays, EUROIMMUNtrademark amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and total tau (t-tau), in combination with automated analysis of the samples. The CSF biomarkers were measured in a cohort consisting of AD patients (n = 28), mild cognitive impairment (MCI, n = 77), and neurological controls (OND, n = 35). MCI patients were evaluated yearly and cognitive functions were assessed by Mini-Mental State Examination. The patients clinically diagnosed with AD and MCI were classified according to the CSF biomarkers profile following NIA-AA criteria and the Erlangen score. Technical evaluation of the immunoassays was performed together with the calculation of their diagnostic performance. Furthermore, the results for EUROIMMUN Aβ1-42 and t-tau were compared to standard immunoassay methods (INNOTESTtrademark). EUROIMMUN assays for Aβ1-42 and t-tau correlated with INNOTEST (r = 0.83, p ratio measured with EUROIMMUN was the best parameter for AD detection and improved the diagnostic accuracy of Aβ1-42 (area under the curve = 0.93). In MCI patients, the Aβ1-42/Aβ1-40 ratio was associated with cognitive decline and clinical progression to AD.The diagnostic performance of the EUROIMMUN assays with automation is comparable to other currently used methods. The variability of the method and the value of the Aβ1-42/Aβ1-40 ratio in AD diagnosis need to be validated in large multi-center studies.

  2. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    Science.gov (United States)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  3. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  4. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis.

    Science.gov (United States)

    Dulay, Samuel B; Gransee, Rainer; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K

    2014-09-15

    Tularemia is a highly infectious zoonotic disease caused by a Gram-negative coccoid rod bacterium, Francisella tularensis. Tularemia is considered as a life-threatening potential biological warfare agent due to its high virulence, transmission, mortality and simplicity of cultivation. In the work reported here, different electrochemical immunosensor formats for the detection of whole F. tularensis bacteria were developed and their performance compared. An anti-Francisella antibody (FB11) was used for the detection that recognises the lipopolysaccharide found in the outer membrane of the bacteria. In the first approach, gold-supported self-assembled monolayers of a carboxyl terminated bipodal alkanethiol were used to covalently cross-link with the FB11 antibody. In an alternative second approach F(ab) fragments of the FB11 antibody were generated and directly chemisorbed onto the gold electrode surface. The second approach resulted in an increased capture efficiency and higher sensitivity. Detection limits of 4.5 ng/mL for the lipopolysaccharide antigen and 31 bacteria/mL for the F. tularensis bacteria were achieved. Having demonstrated the functionality of the immunosensor, an electrode array was functionalised with the antibody fragment and integrated with microfluidics and housed in a tester set-up that facilitated complete automation of the assay. The only end-user intervention is sample addition, requiring less than one-minute hands-on time. The use of the automated microfluidic set-up not only required much lower reagent volumes but also the required incubation time was considerably reduced and a notable increase of 3-fold in assay sensitivity was achieved with a total assay time from sample addition to read-out of less than 20 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition

    Science.gov (United States)

    Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H.

    2013-09-01

    Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA) to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS) has guided geospatial data processing in a Service Oriented Architecture (SOA) platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  6. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    Science.gov (United States)

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  7. AN ARCHITECTURE FOR AUTOMATED FIRE DETECTION EARLY WARNING SYSTEM BASED ON GEOPROCESSING SERVICE COMPOSITION

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS has guided geospatial data processing in a Service Oriented Architecture (SOA platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  8. An automated quantitative DNA image cytometry system detects abnormal cells in cervical cytology with high sensitivity.

    Science.gov (United States)

    Wong, O G; Ho, M W; Tsun, O K; Ng, A K; Tsui, E Y; Chow, J N; Ip, P P; Cheung, A N

    2018-03-26

    To evaluate the performance of an automated DNA-image-cytometry system as a tool to detect cervical carcinoma. Of 384 liquid-based cervical cytology samples with available biopsy follow-up were analyzed by both the Imager System and a high-risk HPV test (Cobas). The sensitivity and specificity of Imager System for detecting biopsy proven high-grade squamous intraepithelial lesion (HSIL, cervical intraepithelial neoplasia [CIN]2-3) and carcinoma were 89.58% and 56.25%, respectively, compared to 97.22% and 23.33% of HPV test but additional HPV 16/18 genotyping increased the specificity to 69.58%. The sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions among atypical squamous cells of undetermined significance samples were 80.00% and 70.53%, respectively, compared to 100% and 11.58% of HPV test whilst the HPV 16/18 genotyping increased the specificity to 77.89%. Among atypical squamous cells-cannot exclude HSIL, the sensitivity and specificity of Imager System for predicting HSIL+ (CIN2-3+) lesions upon follow up were 82.86% and 33.33%%, respectively, compared to 97.14% and 4.76% of HPV test and the HPV 16/18 genotyping increased the specificity to 19.05%. Among low-grade squamous intraepithelial lesion cases, the sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions were 66.67% and 35.71%%, respectively, compared to 66.67% and 29.76% of HPV test while HPV 16/18 genotyping increased the specificity to 79.76%. The overall results of imager and high-risk HPV test agreed in 69.43% (268) of all samples. The automated imager system and HPV 16/18 genotyping can enhance the specificity of detecting HSIL+ (CIN2-3+) lesions. © 2018 John Wiley & Sons Ltd.

  9. Automated analysis of retinal images for detection of referable diabetic retinopathy.

    Science.gov (United States)

    Abràmoff, Michael D; Folk, James C; Han, Dennis P; Walker, Jonathan D; Williams, David F; Russell, Stephen R; Massin, Pascale; Cochener, Beatrice; Gain, Philippe; Tang, Li; Lamard, Mathieu; Moga, Daniela C; Quellec, Gwénolé; Niemeijer, Meindert

    2013-03-01

    The diagnostic accuracy of computer detection programs has been reported to be comparable to that of specialists and expert readers, but no computer detection programs have been validated in an independent cohort using an internationally recognized diabetic retinopathy (DR) standard. To determine the sensitivity and specificity of the Iowa Detection Program (IDP) to detect referable diabetic retinopathy (RDR). In primary care DR clinics in France, from January 1, 2005, through December 31, 2010, patients were photographed consecutively, and retinal color images were graded for retinopathy severity according to the International Clinical Diabetic Retinopathy scale and macular edema by 3 masked independent retinal specialists and regraded with adjudication until consensus. The IDP analyzed the same images at a predetermined and fixed set point. We defined RDR as more than mild nonproliferative retinopathy and/or macular edema. A total of 874 people with diabetes at risk for DR. Sensitivity and specificity of the IDP to detect RDR, area under the receiver operating characteristic curve, sensitivity and specificity of the retinal specialists' readings, and mean interobserver difference (κ). The RDR prevalence was 21.7% (95% CI, 19.0%-24.5%). The IDP sensitivity was 96.8% (95% CI, 94.4%-99.3%) and specificity was 59.4% (95% CI, 55.7%-63.0%), corresponding to 6 of 874 false-negative results (none met treatment criteria). The area under the receiver operating characteristic curve was 0.937 (95% CI, 0.916-0.959). Before adjudication and consensus, the sensitivity/specificity of the retinal specialists were 0.80/0.98, 0.71/1.00, and 0.91/0.95, and the mean intergrader κ was 0.822. The IDP has high sensitivity and specificity to detect RDR. Computer analysis of retinal photographs for DR and automated detection of RDR can be implemented safely into the DR screening pipeline, potentially improving access to screening and health care productivity and reducing visual loss

  10. Growth Curve Analysis and Change-Points Detection in Extremes

    KAUST Repository

    Meng, Rui

    2016-05-15

    The thesis consists of two coherent projects. The first project presents the results of evaluating salinity tolerance in barley using growth curve analysis where different growth trajectories are observed within barley families. The study of salinity tolerance in plants is crucial to understanding plant growth and productivity. Because fully-automated smarthouses with conveyor systems allow non-destructive and high-throughput phenotyping of large number of plants, it is now possible to apply advanced statistical tools to analyze daily measurements and to study salinity tolerance. To compare different growth patterns of barley variates, we use functional data analysis techniques to analyze the daily projected shoot areas. In particular, we apply the curve registration method to align all the curves from the same barley family in order to summarize the family-wise features. We also illustrate how to use statistical modeling to account for spatial variation in microclimate in smarthouses and for temporal variation across runs, which is crucial for identifying traits of the barley variates. In our analysis, we show that the concentrations of sodium and potassium in leaves are negatively correlated, and their interactions are associated with the degree of salinity tolerance. The second project studies change-points detection methods in extremes when multiple time series data are available. Motived by the scientific question of whether the chances to experience extreme weather are different in different seasons of a year, we develop a change-points detection model to study changes in extremes or in the tail of a distribution. Most of existing models identify seasons from multiple yearly time series assuming a season or a change-point location remains exactly the same across years. In this work, we propose a random effect model that allows the change-point to vary from year to year, following a given distribution. Both parametric and nonparametric methods are developed

  11. UAS imaging for automated crop lodging detection: a case study over an experimental maize field

    Science.gov (United States)

    Chu, Tianxing; Starek, Michael J.; Brewer, Michael J.; Masiane, Tiisetso; Murray, Seth C.

    2017-05-01

    Lodging has been recognized as one of the major destructive factors for crop quality and yield, particularly in corn. A variety of contributing causes, e.g. disease and/or pest, weather conditions, excessive nitrogen, and high plant density, may lead to lodging before harvesting season. Traditional lodging detection strategies mainly rely on ground data collection, which is insufficient in efficiency and accuracy. To address this problem, this research focuses on the use of unmanned aircraft systems (UAS) for automated detection of crop lodging. The study was conducted over an experimental corn field at the Texas A and M AgriLife Research and Extension Center at Corpus Christi, Texas, during the growing season of 2016. Nadir-view images of the corn field were taken by small UAS platforms equipped with consumer grade RGB and NIR cameras on a per week basis, enabling a timely observation of the plant growth. 3D structural information of the plants was reconstructed using structure-from-motion photogrammetry. The structural information was then applied to calculate crop height, and rates of growth. A lodging index for detecting corn lodging was proposed afterwards. Ground truth data of lodging was collected on a per row basis and used for fair assessment and tuning of the detection algorithm. Results show the UAS-measured height correlates well with the ground-measured height. More importantly, the lodging index can effectively reflect severity of corn lodging and yield after harvesting.

  12. Automated detection of pain from facial expressions: a rule-based approach using AAM

    Science.gov (United States)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  13. Automated detection of exudates and macula for grading of diabetic macular edema.

    Science.gov (United States)

    Akram, M Usman; Tariq, Anam; Khan, Shoab A; Javed, M Younus

    2014-04-01

    Medical systems based on state of the art image processing and pattern recognition techniques are very common now a day. These systems are of prime interest to provide basic health care facilities to patients and support to doctors. Diabetic macular edema is one of the retinal abnormalities in which diabetic patient suffers from severe vision loss due to affected macula. It affects the central vision of the person and causes total blindness in severe cases. In this article, we propose an intelligent system for detection and grading of macular edema to assist the ophthalmologists in early and automated detection of the disease. The proposed system consists of a novel method for accurate detection of macula using a detailed feature set and Gaussian mixtures model based classifier. We also present a new hybrid classifier as an ensemble of Gaussian mixture model and support vector machine for improved exudate detection even in the presence of other bright lesions which eventually leads to reliable classification of input retinal image in different stages of macular edema. The statistical analysis and comparative evaluation of proposed system with existing methods are performed on publicly available standard retinal image databases. The proposed system has achieved average value of 97.3%, 95.9% and 96.8% for sensitivity, specificity and accuracy respectively on both databases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar

    Science.gov (United States)

    Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff

    2017-09-01

    For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.

  15. Comparing a perceptual and an automated vision-based method for lie detection in younger children

    Directory of Open Access Journals (Sweden)

    Mariana Serras Pereira

    2016-12-01

    Full Text Available The present study investigates how easily it can be detected whether a child is being truthful or not in a game situation, and it explores the cue validity of bodily movements for such type of classification. To achieve this, we introduce an innovative methodology – the combination of perception studies (in which one uses eye-tracking technology and automated movement analysis. Film fragments from truthful and deceptive children were shown to human judges who were given the task to decide whether the recorded child was being truthful or not. Results reveal that judges are able to accurately distinguish truthful clips from lying clips in both perception studies. Even though the automated movement analysis for overall and specific body regions did not yield significant results between the experimental conditions, we did find a positive correlation between the amount of movement in a child and the perception of lies, i.e., the more movement the children exhibited during a clip, the higher the chance that the clip was perceived as a lie. The eye-tracking study revealed that, even when there is movement happening on different body regions, judges tend to focus their attention mainly on the face region.

  16. Detection of cut-off point for rapid automized naming test in good readers and dyslexics

    Directory of Open Access Journals (Sweden)

    Zahra Soleymani

    2014-01-01

    Full Text Available Background and Aim: Rapid automized naming test is an appropriate tool to diagnose learning disability even before teaching reading. This study aimed to detect the cut-off point of this test for good readers and dyslexics.Methods: The test has 4 parts including: objects, colors, numbers and letters. 5 items are repeated on cards randomly for 10 times. Children were asked to name items rapidly. We studied 18 dyslexic students and 18 age-matched good readers between 7 and 8 years of age at second and third grades of elementary school; they were recruited by non-randomize sampling into 2 groups: children with developmental dyslexia from learning disabilities centers with mean age of 100 months, and normal children with mean age of 107 months from general schools in Tehran. Good readers selected from the same class of dyslexics.Results: The area under the receiver operating characteristic curve was 0.849 for letter naming, 0.892 for color naming, 0.971 for number naming, 0.887 for picture naming, and 0.965 totally. The overall sensitivity and specificity was 1 and was 0.79, respectively. The highest sensitivity and specificity were related to number naming (1 and 0.90, respectively.Conclusion: Findings showed that the rapid automized naming test could diagnose good readers from dyslexics appropriately.

  17. DEEP LEARNING AND IMAGE PROCESSING FOR AUTOMATED CRACK DETECTION AND DEFECT MEASUREMENT IN UNDERGROUND STRUCTURES

    Directory of Open Access Journals (Sweden)

    F. Panella

    2018-05-01

    Full Text Available This work presents the combination of Deep-Learning (DL and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information. As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.

  18. AUTOMATED DETECTION OF OIL DEPOTS FROM HIGH RESOLUTION IMAGES: A NEW PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    A. O. Ok

    2015-03-01

    Full Text Available This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired in a time series manner (between the years 1995 and 2012. The results reveal that our approach is capable of detecting circle objects in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures the success of our approach compared to a state-of-the-art approach.

  19. Imaging, object detection, and change detection with a polarized multistatic GPR array

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  20. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  1. Detecting change in stochastic sound sequences.

    Directory of Open Access Journals (Sweden)

    Benjamin Skerritt-Davis

    2018-05-01

    Full Text Available Our ability to parse our acoustic environment relies on the brain's capacity to extract statistical regularities from surrounding sounds. Previous work in regularity extraction has predominantly focused on the brain's sensitivity to predictable patterns in sound sequences. However, natural sound environments are rarely completely predictable, often containing some level of randomness, yet the brain is able to effectively interpret its surroundings by extracting useful information from stochastic sounds. It has been previously shown that the brain is sensitive to the marginal lower-order statistics of sound sequences (i.e., mean and variance. In this work, we investigate the brain's sensitivity to higher-order statistics describing temporal dependencies between sound events through a series of change detection experiments, where listeners are asked to detect changes in randomness in the pitch of tone sequences. Behavioral data indicate listeners collect statistical estimates to process incoming sounds, and a perceptual model based on Bayesian inference shows a capacity in the brain to track higher-order statistics. Further analysis of individual subjects' behavior indicates an important role of perceptual constraints in listeners' ability to track these sensory statistics with high fidelity. In addition, the inference model facilitates analysis of neural electroencephalography (EEG responses, anchoring the analysis relative to the statistics of each stochastic stimulus. This reveals both a deviance response and a change-related disruption in phase of the stimulus-locked response that follow the higher-order statistics. These results shed light on the brain's ability to process stochastic sound sequences.

  2. Lake Chapala change detection using time series

    Science.gov (United States)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  3. Nationwide Hybrid Change Detection of Buildings

    Science.gov (United States)

    Hron, V.; Halounova, L.

    2016-06-01

    The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  4. Phase II: Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1554-98

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cellomics, Inc. (formerly BioDx and Biological Detection, Inc.) to develop an automated system for detecting human sperm aneuploidy. Aneuploidy (an abnormal number of chromosomes) is one of the major categories of chromosomally abnormal sperm, which results in chromosomally defective pregnancies and babies. An automated system would be used for testing the effects of toxic agents and for other research and clinical applications. This collaborated effort was funded by a National Institutes of Environmental Health Services, Phase II, Small Business Innovation Research Program (SBIR) grant to Cellornics (Contract No. N44-ES-82004).

  5. Organizational changes and automation: Towards a customer-oriented business organization for energy distribution companies: Part 1

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1994-01-01

    Automation offers great opportunities in the efforts of energy utilities in the Netherlands to reorganize towards more customer-oriented businesses. However, automation in itself is not enough. First, the organizational structure has to be changed considerably. Various energy utilities have already started on it. The restructuring principle is the same everywhere, but the way it is implemented differs widely

  6. Detecting significant changes in protein abundance

    Directory of Open Access Journals (Sweden)

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  7. PLAT: An Automated Fault and Behavioural Anomaly Detection Tool for PLC Controlled Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Arup Ghosh

    2016-01-01

    Full Text Available Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.

  8. PLAT: An Automated Fault and Behavioural Anomaly Detection Tool for PLC Controlled Manufacturing Systems.

    Science.gov (United States)

    Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun; Wang, Gi-Nam

    2016-01-01

    Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.

  9. Fully automated left ventricular contour detection for gated radionuclide angiography, (1)

    International Nuclear Information System (INIS)

    Hosoba, Minoru; Wani, Hidenobu; Hiroe, Michiaki; Kusakabe, Kiyoko.

    1984-01-01

    A fully automated practical method has been developed to detect the left ventricular (LV) contour from gated pool images. Ejection fraction and volume curve can be computed accurately without operater variance. The characteristics of the method are summarized as follows: 1. Optimal design of the filter that works on Fourier domain, can be achieved to improve the signal to noise ratio. 2. New algorithm which use the cosine and sine transform images has been developed for the separating ventricle from atrium and defining center of LV. 3. Contrast enhancement by optimized square filter. 4. Radial profiles are generated from the center of LV and smoothed by fourth order Fourier series approximation. The crossing point with local threshold value searched from the center of the LV is defined as edge. 5. LV contour is obtained by conecting all the edge points defined on radial profiles by fitting them to Fourier function. (author)

  10. Transferring x-ray based automated threat detection between scanners with different energies and resolution

    Science.gov (United States)

    Caldwell, M.; Ransley, M.; Rogers, T. W.; Griffin, L. D.

    2017-10-01

    A significant obstacle to developing high performance Deep Learning algorithms for Automated Threat Detection (ATD) in security X-ray imagery, is the difficulty of obtaining large training datasets. In our previous work, we circumvented this problem for ATD in cargo containers, using Threat Image Projection and data augmentation. In this work, we investigate whether data scarcity for other modalities, such as parcels and baggage, can be ameliorated by transforming data from one domain so that it approximates the appearance of another. We present an ontology of ATD datasets to assess where transfer learning may be applied. We define frameworks for transfer at the training and testing stages, and compare the results for both methods against ATD where a common data source is used for training and testing. Our results show very poor transfer, which we attribute to the difficulty of accurately matching the blur and contrast characteristics of different scanners.

  11. A thesis on the Development of an Automated SWIFT Edge Detection Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    Throughout the world, scientists and engineers such as those at Los Alamos National Laboratory, perform research and testing unique only to applications aimed towards advancing technology, and understanding the nature of materials. With this testing, comes a need for advanced methods of data acquisition and most importantly, a means of analyzing and extracting the necessary information from such acquired data. In this thesis, I aim to produce an automated method implementing advanced image processing techniques and tools to analyze SWIFT image datasets for Detonator Technology at Los Alamos National Laboratory. Such an effective method for edge detection and point extraction can prove to be advantageous in analyzing such unique datasets and provide for consistency in producing results.

  12. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

    Science.gov (United States)

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

  13. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    Directory of Open Access Journals (Sweden)

    Humayun Irshad

    2013-01-01

    Full Text Available Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM, and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. Results: The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS dataset provided for an International Conference on Pattern Recognition (ICPR 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Conclusions: Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and

  14. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J., E-mail: chris.thompson@pnnl.gov; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Benezeth, Pascale [Géosciences Environnement Toulouse (GET), CNRS-Université de Toulouse, 31400 Toulouse (France)

    2014-04-15

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO{sub 2} (scCO{sub 2}) to generate an infrared calibration curve and determine the solubility of water in CO{sub 2} at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO{sub 2} at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO{sub 2} hydration, and ATR measurements provided insights into competitive residency of water and CO{sub 2} on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg{sub 2}SiO{sub 4}) in water-bearing scCO{sub 2} at 50 °C and 90 bar. Immediately after water dissolved in the scCO{sub 2}, a thin film of adsorbed water formed on the mineral surface

  15. Automated detection of heuristics and biases among pathologists in a computer-based system.

    Science.gov (United States)

    Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-08-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.

  16. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    Science.gov (United States)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  17. Communication Behaviour-Based Big Data Application to Classify and Detect HTTP Automated Software

    Directory of Open Access Journals (Sweden)

    Manh Cong Tran

    2016-01-01

    Full Text Available HTTP is recognized as the most widely used protocol on the Internet when applications are being transferred more and more by developers onto the web. Due to increasingly complex computer systems, diversity HTTP automated software (autoware thrives. Unfortunately, besides normal autoware, HTTP malware and greyware are also spreading rapidly in web environment. Consequently, network communication is not just rigorously controlled by users intention. This raises the demand for analyzing HTTP autoware communication behaviour to detect and classify malicious and normal activities via HTTP traffic. Hence, in this paper, based on many studies and analysis of the autoware communication behaviour through access graph, a new method to detect and classify HTTP autoware communication at network level is presented. The proposal system includes combination of MapReduce of Hadoop and MarkLogic NoSQL database along with xQuery to deal with huge HTTP traffic generated each day in a large network. The method is examined with real outbound HTTP traffic data collected through a proxy server of a private network. Experimental results obtained for proposed method showed that promised outcomes are achieved since 95.1% of suspicious autoware are classified and detected. This finding may assist network and system administrator in inspecting early the internal threats caused by HTTP autoware.

  18. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Adal, Kedir M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sidebe, Desire [Univ. of Burgundy, Dijon (France); Ali, Sharib [Univ. of Burgundy, Dijon (France); Chaum, Edward [Univ. of Tennessee, Knoxville, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meriaudeau, Fabrice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  19. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    Science.gov (United States)

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. NATIONWIDE HYBRID CHANGE DETECTION OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. Hron

    2016-06-01

    Full Text Available The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  1. The Impact of Automation on Employment: Just the Usual Structural Change?

    Directory of Open Access Journals (Sweden)

    Ben Vermeulen

    2018-05-01

    Full Text Available We study the projected impact of automation on employment in the forthcoming decade, both at the macro-level and in actual (types of sectors. Hereto, we unite an evolutionary economic model of multisectoral structural change with labor economic theory. We thus get a comprehensive framework of how displacement of labor in sectors of application is compensated by intra- and intersectoral countervailing effects and notably mopped up by newly created, labor-intensive sectors. We use several reputable datasets with expert projections on employment in occupations affected by automation (and notably by the introduction of robotics and AI to pinpoint which and how sectors and occupations face employment shifts. This reveals how potential job loss due to automation in “applying” sectors is counterbalanced by job creation in “making” sectors as well in complementary and quaternary, spillover sectors. Finally, we study several macro-level scenarios on employment and find that mankind is facing “the usual structural change” rather than the “end of work”. We provide recommendations on policy instruments that enhance the dynamic efficiency of structural change.

  2. Automated detection of malaria pigment: feasibility for malaria diagnosing in an area with seasonal malaria in northern Namibia

    NARCIS (Netherlands)

    de Langen, Adrianus J.; van Dillen, Jeroen; de Witte, Piet; Mucheto, Samson; Nagelkerke, Nico; Kager, Piet

    2006-01-01

    OBJECTIVE: To evaluate the feasibility of automated malaria detection with the Cell-Dyn 3700 (Abbott Diagnostics, Santa Clara, CA, USA) haematology analyser for diagnosing malaria in northern Namibia. METHODS: From April to June 2003, all patients with a positive blood smear result and a subset of

  3. Detectable perfusion changes in MAG3 studies

    International Nuclear Information System (INIS)

    Shuter, B.; Bernar, A.; Roach, P.

    1998-01-01

    Full text: The use of 120 MBq 99m Tc-MAG 3 instead of 600 MBq 99m Tc-DTPA in renal imaging has degraded the images obtained during the perfusion phase. An increase of the minimum detectable change (MDC) in blood flow (BF) would also be expected. In transplant patients, renal BF is an important factor in patient management and the MDC should be small to allow early detection of reduced perfusion. We determined the mean and coefficient of variation (CoV: standard deviation/mean) of three renal perfusion indices as a function of counts in the time-activity curves (TACs). Transplant patients were given a dose of about 300 MBq of 99m Tc-MAG3 and images acquired at 8 fps for 60s. TACs made up from 8, 4, 2 or I images per second allowed calculation of renal perfusion indices as if doses of 300, 150, 75 and 38 MBq had been administered. Perfusion indices based on area under the TACs up to the arterial peak (API), the maximum slopes of the TACs (SPI) and the maximum slope of renal TAC and height of arterial TAC (BPI) were calculated by our routine renal software package. As the administered dose decreased, the CoV rose for all indices, least for BPI and most for API. BPI CoV increased from ∼10% at 300 MBq to 20% at 75 MBq, but API CoV rose from 6% to 46%. Mean BPI was stable over the dose range, but mean API showed a systematic increase of about 50% over the 300 MBq result. We conclude that at 120 MBq the MDC (expressed as 2*CoV) in BF is 30-60%, whereas at 600 MBq it may be as low as 10%, allowing earlier confident detection of a change in BF. The BPI was the preferred perfusion index as its mean value changed little and it had the least CoV at lower activities. The data also imply that relative kidney perfusion in the one individual will be much less accurate with 120 MBq of MAG 3

  4. Automated detection and labeling of high-density EEG electrodes from structural MR images

    Science.gov (United States)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work

  5. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  6. Automated multi-radionuclide separation and analysis with combined detection capability

    Science.gov (United States)

    Plionis, Alexander Asterios

    The radiological dispersal device (RDD) is a weapon of great concern to those agencies responsible for protecting the public from the modern age of terrorism. In order to effectively respond to an RDD event, these agencies need to possess the capability to rapidly identify the radiological agents involved in the incident and assess the uptake of each individual victim. Since medical treatment for internal radiation poisoning is radionuclide-specific, it is critical to identify and quantify the radiological uptake of each individual victim. This dissertation describes the development of automated analytical components that could be used to determine and quantify multiple radionuclides in human urine bioassays. This is accomplished through the use of extraction chromatography that is plumbed in-line with one of a variety of detection instruments. Flow scintillation analysis is used for 90Sr and 210Po determination, flow gamma analysis is used assess 60 Co and 137Cs, and inductively coupled plasma mass spectrometry is used to determine actinides. Detection limits for these analytes were determined for the appropriate technique and related to their implications for health physics.

  7. Automated detection of lung nodules in low-dose computed tomography

    International Nuclear Information System (INIS)

    Cascio, D.; Cheran, S.C.; Chincarini, A.; De Nunzio, G.; Delogu, P.; Fantacci, M.E.; Gargano, G.; Gori, I.; Retico, A.; Masala, G.L.; Preite Martinez, A.; Santoro, M.; Spinelli, C.; Tarantino, T.

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (∝300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan. (orig.)

  8. Automated volumetry of temporal horn of lateral ventricle for detection of Alzheimer's disease in CT scan

    Science.gov (United States)

    Takahashi, Noriyuki; Kinoshita, Toshibumi; Ohmura, Tomomi; Matsuyama, Eri; Toyoshima, Hideto

    2018-02-01

    The rapid increase in the incidence of Alzheimer's disease (AD) has become a critical issue in low and middle income countries. In general, MR imaging has become sufficiently suitable in clinical situations, while CT scan might be uncommonly used in the diagnosis of AD due to its low contrast between brain tissues. However, in those countries, CT scan, which is less costly and readily available, will be desired to become useful for the diagnosis of AD. For CT scan, the enlargement of the temporal horn of the lateral ventricle (THLV) is one of few findings for the diagnosis of AD. In this paper, we present an automated volumetry of THLV with segmentation based on Bayes' rule on CT images. In our method, first, all CT data sets are normalized into an atlas by using linear affine transformation and non-linear wrapping techniques. Next, a probability map of THLV is constructed in the normalized data. Then, THLV regions are extracted based on Bayes' rule. Finally, the volume of the THLV is evaluated. This scheme was applied to CT scans from 20 AD patients and 20 controls to evaluate the performance of the method for detecting AD. The estimated THLV volume was markedly increased in the AD group compared with the controls (P < .0001), and the area under the receiver operating characteristic curve (AUC) was 0.921. Therefore, this computerized method may have the potential to accurately detect AD on CT images.

  9. Speech activity detection for the automated speaker recognition system of critical use

    Directory of Open Access Journals (Sweden)

    M. M. Bykov

    2017-06-01

    Full Text Available In the article, the authors developed a method for detecting speech activity for an automated system for recognizing critical use of speeches with wavelet parameterization of speech signal and classification at intervals of “language”/“pause” using a curvilinear neural network. The method of wavelet-parametrization proposed by the authors allows choosing the optimal parameters of wavelet transformation in accordance with the user-specified error of presentation of speech signal. Also, the method allows estimating the loss of information depending on the selected parameters of continuous wavelet transformation (NPP, which allowed to reduce the number of scalable coefficients of the LVP of the speech signal in order of magnitude with the allowable degree of distortion of the local spectrum of the LVP. An algorithm for detecting speech activity with a curvilinear neural network classifier is also proposed, which shows the high quality of segmentation of speech signals at intervals "language" / "pause" and is resistant to the presence in the speech signal of narrowband noise and technogenic noise due to the inherent properties of the curvilinear neural network.

  10. Automated oestrus detection using multimetric behaviour recognition in seasonal-calving dairy cattle on pasture.

    Science.gov (United States)

    Brassel, J; Rohrssen, F; Failing, K; Wehrend, A

    2018-06-11

    To evaluate the performance of a novel accelerometer-based oestrus detection system (ODS) for dairy cows on pasture, in comparison with measurement of concentrations of progesterone in milk, ultrasonographic examination of ovaries and farmer observations. Mixed-breed lactating dairy cows (n=109) in a commercial, seasonal-calving herd managed at pasture under typical farming conditions in Ireland, were fitted with oestrus detection collars 3 weeks prior to mating start date. The ODS performed multimetric analysis of eight different motion patterns to generate oestrus alerts. Data were collected during the artificial insemination period of 66 days, commencing on 16 April 2015. Transrectal ultrasonographic examinations of the reproductive tract and measurements of concentrations of progesterone in milk were used to confirm oestrus events. Visual observations by the farmer and the number of theoretically expected oestrus events were used to evaluate the number of false negative ODS alerts. The percentage of eligible cows that were detected in oestrus at least once (and were confirmed true positives) was calculated for the first 21, 42 and 63 days of the insemination period. During the insemination period, the ODS generated 194 oestrus alerts and 140 (72.2%) were confirmed as true positives. Six confirmed oestrus events recognised by the farmer did not generate ODS alerts. The positive predictive value of the ODS was 72.2 (95% CI=65.3-78.4)%. To account for oestrus events not identified by the ODS or the farmer, four theoretical missed oestrus events were added to the false negatives. Estimated sensitivity of the automated ODS was 93.3 (95% CI=88.1-96.8)%. The proportion of eligible cows that were detected in oestrus during the first 21 days of the insemination period was 92/106 (86.8%), and during the first 42 and 63 days of the insemination period was 103/106 (97.2%) and 105/106 (99.1%), respectively. The ODS under investigation was suitable for oestrus detection in

  11. Attribute and topology based change detection in a constellation of previously detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  12. Detection of early behavioral markers of Huntington's disease in R6/2 mice employing an automated social home cage

    DEFF Research Database (Denmark)

    Rudenko, Olga; Tkach, Vadim; Berezin, Vladimir

    2009-01-01

    developed behavior screening system, the IntelliCage, allows automated testing of mouse behavior in the home cage employing individual recognition of animals living in social groups. The present study validates the ability of the IntelliCage system to detect behavioral and cognitive dysfunction in R6/2 mice......Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder, for which no known cure or effective treatment exists. To facilitate the search for new potential treatments of HD, an automated system for analyzing the behavior of transgenic HD mice is urgently needed. A recently...

  13. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    International Nuclear Information System (INIS)

    Girolamo, D.; Yuan, F. G.; Girolamo, L.

    2015-01-01

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies

  14. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  15. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    Science.gov (United States)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  16. Topographic attributes as a guide for automated detection or highlighting of geological features

    Science.gov (United States)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans

  17. Sink detection on tilted terrain for automated identification of glacial cirques

    Science.gov (United States)

    Prasicek, Günther; Robl, Jörg; Lang, Andreas

    2016-04-01

    Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks

  18. Performance evaluation of an automated single-channel sleep–wake detection algorithm

    Directory of Open Access Journals (Sweden)

    Kaplan RF

    2014-10-01

    Full Text Available Richard F Kaplan,1 Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard R Bootzin3 1General Sleep Corporation, Euclid, OH, USA; 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA; 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: A need exists, from both a clinical and a research standpoint, for objective sleep measurement systems that are both easy to use and can accurately assess sleep and wake. This study evaluates the output of an automated sleep–wake detection algorithm (Z-ALG used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition and analysis system against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Overnight laboratory PSG studies from 99 subjects (52 females/47 males, 18–60 years, median age 32.7 years, including both normal sleepers and those with a variety of sleep disorders, were assessed. PSG data obtained from the differential mastoids (A1–A2 were assessed by Z-ALG, which determines sleep versus wake every 30 seconds using low-frequency, intermediate-frequency, and high-frequency and time domain EEG features. PSG data were independently scored by two to four certified PSG technologists, using standard Rechtschaffen and Kales guidelines, and these score files were combined on an epoch-by-epoch basis, using a majority voting rule, to generate a single score file per subject to compare against the Z-ALG output. Both epoch-by-epoch and standard sleep indices (eg, total sleep time, sleep efficiency, latency to persistent sleep, and wake after sleep onset were compared between the Z-ALG output and the technologist consensus score files. Results: Overall, the sensitivity and specificity for detecting sleep using the Z-ALG as compared to the technologist consensus are 95.5% and 92.5%, respectively, across all subjects, and the positive predictive value and the

  19. SU-G-201-03: Automation of High Dose Rate Brachytherapy Quality Assurance: Development of a Radioluminescent Detection System for Simultaneous Detection of Activity, Timing, and Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C; Xing, L; Fahimian, B [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: Accuracy of positioning, timing and activity is of critical importance for High Dose Rate (HDR) brachytherapy delivery. Respective measurements via film autoradiography, stop-watches and well chambers can be cumbersome, crude or lack dynamic source evaluation capabilities. To address such limitations, a single device radioluminescent detection system enabling automated real-time quantification of activity, position and timing accuracy is presented and experimentally evaluated. Methods: A radioluminescent sheet was fabricated by mixing Gd?O?S:Tb with PDMS and incorporated into a 3D printed device where it was fixated below a CMOS digital camera. An Ir-192 HDR source (VS2000, VariSource iX) with an effective active length of 5 mm was introduced using a 17-gauge stainless steel needle below the sheet. Pixel intensity values for determining activity were taken from an ROI centered on the source location. A calibration curve relating intensity values to activity was generated and used to evaluate automated activity determination with data gathered over 6 weeks. Positioning measurements were performed by integrating images for an entire delivery and fitting peaks to the resulting profile. Timing measurements were performed by evaluating source location and timestamps from individual images. Results: Average predicted activity error over 6 weeks was .35 ± .5%. The distance between four dwell positions was determined by the automated system to be 1.99 ± .02 cm. The result from autoradiography was 2.00 ± .03 cm. The system achieved a time resolution of 10 msec and determined the dwell time to be 1.01 sec ± .02 sec. Conclusion: The system was able to successfully perform automated detection of activity, positioning and timing concurrently under a single setup. Relative to radiochromic and radiographic film-based autoradiography, which can only provide a static evaluation positioning, optical detection of temporary radiation induced luminescence enables dynamic

  20. Potential fire detection based on Kalman-driven change detection

    CSIR Research Space (South Africa)

    Van Den Bergh, F

    2009-07-01

    Full Text Available A new active fire event detection algorithm for data collected with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, based on the extended Kalman filter, is introduced. Instead of using the observed temperatures of the spatial...

  1. Fully Automated Detection of Corticospinal Tract Damage in Chronic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2014-01-01

    Full Text Available Structural integrity of the corticospinal tract (CST after stroke is closely linked to the degree of motor impairment. However, current methods for measurement of fractional atrophy (FA of CST based on region of interest (ROI are time-consuming and open to bias. Here, we used tract-based spatial statistics (TBSS together with a CST template with healthy volunteers to quantify structural integrity of CST automatically. Two groups of patients after ischemic stroke were enrolled, group 1 (10 patients, 7 men, and Fugl-Meyer assessment (FMA scores ⩽ 50 and group 2 (12 patients, 12 men, and FMA scores = 100. CST of FAipsi, FAcontra, and FAratio was compared between the two groups. Relative to group 2, FA was decreased in group 1 in the ipsilesional CST (P<0.01, as well as the FAratio (P<0.01. There was no significant difference between the two subgroups in the contralesional CST (P=0.23. Compared with contralesional CST, FA of ipsilesional CST decreased in group 1 (P<0.01. These results suggest that the automated method used in our study could detect a surrogate biomarker to quantify the CST after stroke, which would facilitate implementation of clinical practice.

  2. Statistical techniques for automating the detection of anomalous performance in rotating machinery

    International Nuclear Information System (INIS)

    Piety, K.R.; Magette, T.E.

    1978-01-01

    Surveillance techniques which extend the sophistication existing in automated systems monitoring in industrial rotating equipment are described. The monitoring system automatically established limiting criteria during an initial learning period of a few days; and subsequently, while monitoring the test rotor during an extended period of normal operation, experienced a false alarm rate of 0.5%. At the same time, the monitoring system successfully detected all fault types that introduced into the test setup. Tests on real equipment are needed to provide final verification of the monitoring techniques. There are areas that would profit from additional investigation in the laboratory environment. A comparison of the relative value of alternate descriptors under given fault conditions would be worthwhile. This should be pursued in conjunction with extending the set of fault types available, e.g., lecaring problems. Other tests should examine the effects of using fewer (more coarse) intervals to define the lumped operational states. finally, techniques to diagnose the most probable fault should be developed by drawing upon the extensive data automatically logged by the monitoring system

  3. Toward automated selective retina treatment (SRT): an optical microbubble detection technique

    Science.gov (United States)

    Seifert, Eric; Park, Young-Gun; Theisen-Kunde, Dirk; Roh, Young-Jung; Brinkmann, Ralf

    2018-02-01

    Selective retina therapy (SRT) is an ophthalmological laser technique, targeting the retinal pigment epithelium (RPE) with repetitive microsecond laser pulses, while causing no thermal damage to the neural retina, the photoreceptors as well as the choroid. The RPE cells get damaged mechanically by microbubbles originating, at the intracellular melanosomes. Beneficial effects of SRT on Central Serous Retinopathy (CSR) and Diabetic Macula Edema (DME) have already been shown. Variations in the transmission of the anterior eye media and pigmentation variation of RPE yield in intra- and inter- individual thresholds of the pulse energy required for selective RPE damage. Those selective RPE lesions are not visible. Thus, dosimetry-systems, designed to detect microbubbles as an indicator for RPE cell damage, are demanded elements to facilitate SRT application. Therefore, a technique based on the evaluation of backscattered treatment light has been developed. Data of 127 spots, acquired during 10 clinical treatments of CSR patients, were assigned to a RPE cell damage class, validated by fluorescence angiography (FLA). An algorithm has been designed to match the FLA based information. A sensitivity of 0.9 with a specificity close to 1 is achieved. The data can be processed within microseconds. Thus, the process can be implemented in existing SRT lasers with an automatic pulse wise increasing energy and an automatic irradiation ceasing ability to enable automated treatment close above threshold to prevent adverse effects caused by too high pulse energy. Alternatively, a guidance procedure, informing the treating clinician about the adequacy of the actual settings, is possible.

  4. Automated Detection of Binucleated Cell and Micronuclei using CellProfiler 2.0 Software

    Directory of Open Access Journals (Sweden)

    DWI RAMADHANI

    2013-12-01

    Full Text Available Micronucleus assay in human peripheral lymphocytes usually used to assess chromosomal damage. Manual scoring of micronuclei can be time consuming and large numbers of binucleated cells have to be analyzed to obtain statistically relevant data. Automation of the micronuclei analysis using image processing analysis software can provide a faster and more reliable analysis of micronucleus assay. Here the used of CellProfiler an open access cell image analysis software for automatic detection of binucleated cells and micronuclei were reported. We aimed to know whether there was a significant difference in the number of binucleated cells and micronuclei that obtained by manual and CellProfiler counting. Wilcoxon Rank test was used for statistical analysis to test H0 hypothesis that there was no significant difference in the number of binucleated cells and micronuclei that obtained by manual and CellProfiler counting. We analyzed 135 images for both manual and CellProfiler counting. Our results showed that there was no significant difference between manual and CellProfiler counting for binucleated cells (P = 0.851 and for micronuclei (P = 0.917. In conclusion, the binucleated cells and micronuclei counting using CellProfiler were comparable but not better than manual counting.

  5. Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies

    Science.gov (United States)

    Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.

    2016-02-01

    Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.

  6. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection

    Science.gov (United States)

    Magalhães, F.; Cunha, A.; Caetano, E.

    2012-04-01

    In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.

  7. Automating Phase Change Lines and Their Labels Using Microsoft Excel(R).

    Science.gov (United States)

    Deochand, Neil

    2017-09-01

    Many researchers have rallied against drawn in graphical elements and offered ways to avoid them, especially regarding the insertion of phase change lines (Deochand, Costello, & Fuqua, 2015; Dubuque, 2015; Vanselow & Bourret, 2012). However, few have offered a solution to automating the phase labels, which are often utilized in behavior analytic graphical displays (Deochand et al., 2015). Despite the fact that Microsoft Excel® is extensively utilized by behavior analysts, solutions to resolve issues in our graphing practices are not always apparent or user-friendly. Considering the insertion of phase change lines and their labels constitute a repetitious and laborious endeavor, any minimization in the steps to accomplish these graphical elements could offer substantial time-savings to the field. The purpose of this report is to provide an updated way (and templates in the supplemental materials) to add phase change lines with their respective labels, which stay embedded to the graph when they are moved or updated.

  8. A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system.

    Science.gov (United States)

    Enjeti, Anoop; Granter, Neil; Ashraf, Asma; Fletcher, Linda; Branford, Susan; Rowlings, Philip; Dooley, Susan

    2015-10-01

    An automated cartridge-based detection system (GeneXpert; Cepheid) is being widely adopted in low throughput laboratories for monitoring BCR-ABL1 transcript in chronic myelogenous leukaemia. This Australian study evaluated the longitudinal performance specific characteristics of the automated system.The automated cartridge-based system was compared prospectively with the manual qRT-PCR-based reference method at SA Pathology, Adelaide, over a period of 2.5 years. A conversion factor determination was followed by four re-validations. Peripheral blood samples (n = 129) with international scale (IS) values within detectable range were selected for assessment. The mean bias, proportion of results within specified fold difference (2-, 3- and 5-fold), the concordance rate of major molecular remission (MMR) and concordance across a range of IS values on paired samples were evaluated.The initial conversion factor for the automated system was determined as 0.43. Except for the second re-validation, where a negative bias of 1.9-fold was detected, all other biases fell within desirable limits. A cartridge-specific conversion factor and efficiency value was introduced and the conversion factor was confirmed to be stable in subsequent re-validation cycles. Concordance with the reference method/laboratory at >0.1-≤10 IS was 78.2% and at ≤0.001 was 80%, compared to 86.8% in the >0.01-≤0.1 IS range. The overall and MMR concordance were 85.7% and 94% respectively, for samples that fell within ± 5-fold of the reference laboratory value over the entire period of study.Conversion factor and performance specific characteristics for the automated system were longitudinally stable in the clinically relevant range, following introduction by the manufacturer of lot specific efficiency values.

  9. Automated detection of extradural and subdural hematoma for contrast-enhanced CT images in emergency medical care

    Science.gov (United States)

    Hara, Takeshi; Matoba, Naoto; Zhou, Xiangrong; Yokoi, Shinya; Aizawa, Hiroaki; Fujita, Hiroshi; Sakashita, Keiji; Matsuoka, Tetsuya

    2007-03-01

    We have been developing the CAD scheme for head and abdominal injuries for emergency medical care. In this work, we have developed an automated method to detect typical head injuries, rupture or strokes of brain. Extradural and subdural hematoma region were detected by comparing technique after the brain areas were registered using warping. We employ 5 normal and 15 stroke cases to estimate the performance after creating the brain model with 50 normal cases. Some of the hematoma regions were detected correctly in all of the stroke cases with no false positive findings on normal cases.

  10. An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection.

    Science.gov (United States)

    Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong

    2011-06-01

    The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.

  11. A machine learning system for automated whole-brain seizure detection

    Directory of Open Access Journals (Sweden)

    P. Fergus

    2016-01-01

    Full Text Available Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain, manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 30 years. Electroencephalograms have been integral to these studies, as the recordings that they produce can capture the brain’s electrical signals. The diagnosis of epilepsy is usually made by a neurologist, but can be difficult to make in the early stages. Supporting para-clinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and instigate treatment earlier. However, electroencephalogram capture and interpretation is time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity generalised across different regions of the brain and across multiple subjects may be a solution. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 342 records (171 seizures and 171 non-seizures. Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier.

  12. [Application of optical flow dynamic texture in land use/cover change detection].

    Science.gov (United States)

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better

  13. Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit.

    Science.gov (United States)

    Ni, Yizhao; Lingren, Todd; Hall, Eric S; Leonard, Matthew; Melton, Kristin; Kirkendall, Eric S

    2018-05-01

    Timely identification of medication administration errors (MAEs) promises great benefits for mitigating medication errors and associated harm. Despite previous efforts utilizing computerized methods to monitor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study, we developed a real-time MAE detection system and evaluated its performance prior to system integration into institutional workflows. Our prospective observational study included automated MAE detection of 10 high-risk medications and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children's Hospital Medical Center during a 4-month period. The automated system extracted real-time medication use information from the institutional electronic health records and identified MAEs using logic-based rules and natural language processing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of patient exposure to potential harm. System performance was validated using a physician-generated gold standard of MAE events, and results were compared with those of current practice (incident reporting and trigger tools). Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Compared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3% to 85.3% (P = .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to reduce patient exposure to harm, from 256 min to 35 min (P patient exposure to potential harm following MAE events.

  14. Automated lesion detection on MRI scans using combined unsupervised and supervised methods

    International Nuclear Information System (INIS)

    Guo, Dazhou; Fridriksson, Julius; Fillmore, Paul; Rorden, Christopher; Yu, Hongkai; Zheng, Kang; Wang, Song

    2015-01-01

    Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain lesions from a T1-weighted 3D MRI. The proposed method combines the advantages of both unsupervised and supervised methods. First, unsupervised methods perform a unified segmentation normalization to warp images from the native space into a standard space and to generate probability maps for different tissue types, e.g., gray matter, white matter and fluid. This allows us to construct an initial lesion probability map by comparing the normalized MRI to healthy control subjects. Then, we perform non-rigid and reversible atlas-based registration to refine the probability maps of gray matter, white matter, external CSF, ventricle, and lesions. These probability maps are combined with the normalized MRI to construct three types of features, with which we use supervised methods to train three support vector machine (SVM) classifiers for a combined classifier. Finally, the combined classifier is used to accomplish lesion detection. We tested this method using T1-weighted MRIs from 60 in-house stroke patients. Using leave-one-out cross validation, the proposed method can achieve an average Dice coefficient of 73.1 % when compared to lesion maps hand-delineated by trained neurologists. Furthermore, we tested the proposed method on the T1-weighted MRIs in the MICCAI BRATS 2012 dataset. The proposed method can achieve an average Dice coefficient of 66.5 % in comparison to the expert annotated tumor maps provided in MICCAI BRATS 2012 dataset. In addition, on these two test datasets, the proposed method shows competitive performance to three state-of-the-art methods, including Stamatakis et al., Seghier et al., and Sanjuan et al. In this paper, we introduced a novel automated procedure for lesion detection from T1-weighted MRIs by combining both an unsupervised and a

  15. Automated novelty detection in the WISE survey with one-class support vector machines

    Science.gov (United States)

    Solarz, A.; Bilicki, M.; Gromadzki, M.; Pollo, A.; Durkalec, A.; Wypych, M.

    2017-10-01

    Wide-angle photometric surveys of previously uncharted sky areas or wavelength regimes will always bring in unexpected sources - novelties or even anomalies - whose existence and properties cannot be easily predicted from earlier observations. Such objects can be efficiently located with novelty detection algorithms. Here we present an application of such a method, called one-class support vector machines (OCSVM), to search for anomalous patterns among sources preselected from the mid-infrared AllWISE catalogue covering the whole sky. To create a model of expected data we train the algorithm on a set of objects with spectroscopic identifications from the SDSS DR13 database, present also in AllWISE. The OCSVM method detects as anomalous those sources whose patterns - WISE photometric measurements in this case - are inconsistent with the model. Among the detected anomalies we find artefacts, such as objects with spurious photometry due to blending, but more importantly also real sources of genuine astrophysical interest. Among the latter, OCSVM has identified a sample of heavily reddened AGN/quasar candidates distributed uniformly over the sky and in a large part absent from other WISE-based AGN catalogues. It also allowed us to find a specific group of sources of mixed types, mostly stars and compact galaxies. By combining the semi-supervised OCSVM algorithm with standard classification methods it will be possible to improve the latter by accounting for sources which are not present in the training sample, but are otherwise well-represented in the target set. Anomaly detection adds flexibility to automated source separation procedures and helps verify the reliability and representativeness of the training samples. It should be thus considered as an essential step in supervised classification schemes to ensure completeness and purity of produced catalogues. The catalogues of outlier data are only available at the CDS via anonymous ftp to http

  16. Automated detection and measurement of isolated retinal arterioles by a combination of edge enhancement and cost analysis.

    Directory of Open Access Journals (Sweden)

    José A Fernández

    Full Text Available Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter. We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.

  17. Orthogonal transformations for change detection, Matlab code

    DEFF Research Database (Denmark)

    2005-01-01

    Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data.......Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data....

  18. Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.

    Directory of Open Access Journals (Sweden)

    Yan Nei Law

    Full Text Available In countries with high tuberculosis (TB burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB from respiratory specimens.To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO staining, as well as direct smears with AO and Ziehl-Neelsen (ZN staining, using mycobacterial culture results as gold standard.Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated.Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5% and slight improvement in sensitivity while requiring only limited manual workload.Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement

  19. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images.

    Science.gov (United States)

    Burns, Joseph E; Yao, Jianhua; Summers, Ronald M

    2017-09-01

    Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.

  20. Automated image-based colon cleansing for laxative-free CT colonography computer-aided polyp detection

    International Nuclear Information System (INIS)

    Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.; Summer, Ronald M.

    2011-01-01

    Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided doses over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.

  1. Flow cytometric-membrane potential detection of sodium channel active marine toxins: application to ciguatoxins in fish muscle and feasibility of automating saxitoxin detection.

    Science.gov (United States)

    Manger, Ronald; Woodle, Doug; Berger, Andrew; Dickey, Robert W; Jester, Edward; Yasumoto, Takeshi; Lewis, Richard; Hawryluk, Timothy; Hungerford, James

    2014-01-01

    Ciguatoxins are potent neurotoxins with a significant public health impact. Cytotoxicity assays have allowed the most sensitive means of detection of ciguatoxin-like activity without reliance on mouse bioassays and have been invaluable in studying outbreaks. An improvement of these cell-based assays is presented here in which rapid flow cytometric detection of ciguatoxins and saxitoxins is demonstrated using fluorescent voltage sensitive dyes. A depolarization response can be detected directly due to ciguatoxin alone; however, an approximate 1000-fold increase in sensitivity is observed in the presence of veratridine. These results demonstrate that flow cytometric assessment of ciguatoxins is possible at levels approaching the trace detection limits of our earlier cytotoxicity assays, however, with a significant reduction in analysis time. Preliminary results are also presented for detection of brevetoxins and for automation and throughput improvements to a previously described method for detecting saxitoxins in shellfish extracts.

  2. Comparison of automated processing of flocked swabs with manual processing of fiber swabs for detection of nasal carriage of Staphylococcus aureus.

    Science.gov (United States)

    Jones, Gillian; Matthews, Roger; Cunningham, Richard; Jenks, Peter

    2011-07-01

    The sensitivity of automated culture of Staphylococcus aureus from flocked swabs versus that of manual culture of fiber swabs was prospectively compared using nasal swabs from 867 patients. Automated culture from flocked swabs significantly increased the detection rate, by 13.1% for direct culture and 10.2% for enrichment culture.

  3. Comparison of Automated Processing of Flocked Swabs with Manual Processing of Fiber Swabs for Detection of Nasal Carriage of Staphylococcus aureus▿‡

    Science.gov (United States)

    Jones, Gillian; Matthews, Roger; Cunningham, Richard; Jenks, Peter

    2011-01-01

    The sensitivity of automated culture of Staphylococcus aureus from flocked swabs versus that of manual culture of fiber swabs was prospectively compared using nasal swabs from 867 patients. Automated culture from flocked swabs significantly increased the detection rate, by 13.1% for direct culture and 10.2% for enrichment culture. PMID:21525218

  4. Automated indexing of Internet stories for health behavior change: weight loss attitude pilot study.

    Science.gov (United States)

    Manuvinakurike, Ramesh; Velicer, Wayne F; Bickmore, Timothy W

    2014-12-09

    Automated health behavior change interventions show promise, but suffer from high attrition and disuse. The Internet abounds with thousands of personal narrative accounts of health behavior change that could not only provide useful information and motivation for others who are also trying to change, but an endless source of novel, entertaining stories that may keep participants more engaged than messages authored by interventionists. Given a collection of relevant personal health behavior change stories gathered from the Internet, the aim of this study was to develop and evaluate an automated indexing algorithm that could select the best possible story to provide to a user to have the greatest possible impact on their attitudes toward changing a targeted health behavior, in this case weight loss. An indexing algorithm was developed using features informed by theories from behavioral medicine together with text classification and machine learning techniques. The algorithm was trained using a crowdsourced dataset, then evaluated in a 2×2 between-subjects randomized pilot study. One factor compared the effects of participants reading 2 indexed stories vs 2 randomly selected stories, whereas the second factor compared the medium used to tell the stories: text or animated conversational agent. Outcome measures included changes in self-efficacy and decisional balance for weight loss before and after the stories were read. Participants were recruited from a crowdsourcing website (N=103; 53.4%, 55/103 female; mean age 35, SD 10.8 years; 65.0%, 67/103 precontemplation; 19.4%, 20/103 contemplation for weight loss). Participants who read indexed stories exhibited a significantly greater increase in self-efficacy for weight loss compared to the control group (F1,107=5.5, P=.02). There were no significant effects of indexing on change in decisional balance (F1,97=0.05, P=.83) and no significant effects of medium on change in self-efficacy (F1,107=0.04, P=.84) or decisional

  5. Fully automated atlas-based hippocampal volumetry for detection of Alzheimer's disease in a memory clinic setting.

    Science.gov (United States)

    Suppa, Per; Anker, Ulrich; Spies, Lothar; Bopp, Irene; Rüegger-Frey, Brigitte; Klaghofer, Richard; Gocke, Carola; Hampel, Harald; Beck, Sacha; Buchert, Ralph

    2015-01-01

    Hippocampal volume is a promising biomarker to enhance the accuracy of the diagnosis of dementia due to Alzheimer's disease (AD). However, whereas hippocampal volume is well studied in patient samples from clinical trials, its value in clinical routine patient care is still rather unclear. The aim of the present study, therefore, was to evaluate fully automated atlas-based hippocampal volumetry for detection of AD in the setting of a secondary care expert memory clinic for outpatients. One-hundred consecutive patients with memory complaints were clinically evaluated and categorized into three diagnostic groups: AD, intermediate AD, and non-AD. A software tool based on open source software (Statistical Parametric Mapping SPM8) was employed for fully automated tissue segmentation and stereotactical normalization of high-resolution three-dimensional T1-weighted magnetic resonance images. Predefined standard masks were used for computation of grey matter volume of the left and right hippocampus which then was scaled to the patient's total grey matter volume. The right hippocampal volume provided an area under the receiver operating characteristic curve of 84% for detection of AD patients in the whole sample. This indicates that fully automated MR-based hippocampal volumetry fulfills the requirements for a relevant core feasible biomarker for detection of AD in everyday patient care in a secondary care memory clinic for outpatients. The software used in the present study has been made freely available as an SPM8 toolbox. It is robust and fast so that it is easily integrated into routine workflow.

  6. Automatic registration of remote sensing images based on SIFT and fuzzy block matching for change detection

    Directory of Open Access Journals (Sweden)

    Cai Guo-Rong

    2011-10-01

    Full Text Available This paper presents an automated image registration approach to detecting changes in multi-temporal remote sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT and has two phases. The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, Structured Local Binary Haar Pattern (SLBHP combined with a fuzzy similarity measure is then used to build a new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more effective in dealing with scale, rotation and illumination changes.

  7. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  8. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  9. Accelerated Lane-Changing Trajectory Planning of Automated Vehicles with Vehicle-to-Vehicle Collaboration

    Directory of Open Access Journals (Sweden)

    Haijian Bai

    2017-01-01

    Full Text Available Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC. Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.

  10. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  11. Automated detection of alveolar arches for nasoalveolar molding in cleft lip and palate treatment

    Directory of Open Access Journals (Sweden)

    Bauer Franz X.

    2016-09-01

    Full Text Available Nasoalveolar moulding (NAM has become a widely accepted and evidence-based treatment strategy for newborns with cleft lip and palate (CLP, attempting to reduce the cleft gap and to form an appropriately shaped alveolar arch by an intraoral patient-specific NAM plate and to erect the usually flattened nostrils towards a natural nose wing occurrence. The generation of such an appropriately shaped NAM plate requires, besides 3d information of the patient’s initially cleft lip and palate, an estimated target model of the maxilla. Previous studies showed the applicability of curve-based approaches to describe the maxilla during early infancy. We have developed an automated algorithm implemented with the programming language Python, describing the alveolar arch by an approximated ellipse. Therefore, the digitalized data sets of human maxillae were aligned to a global coordinate system with a total least square method and subsequently analyzed with the curvature-based algebraic point set surfaces (APSS algorithm. The gathered information of height ratio and curvature allows the detection of points on the alveolar segments and therewith the fit of an ellipse describing the human maxilla. In 84.5% of 193 maxilla impressions of healthy newborns the fitted ellipses described the course of the maxilla within defined margins. Applying the algorithm to 38 newborns suffering from unilateral cleft lip and palate in 76.3% the fitted ellipses bridge the CLP alveolar segments, so that a harmonic alveolar arch can be deduced. Describing the alveolar arch by one or multiple ellipses allows (i to automatically measure the dimensions of the maxilla, (ii to derive a growth model during early infancy, (iii to derive a healthy harmonic arch from CLP alveolar segments and (iv to automatically generate a basic NAM device on the basis of the virtually modified maxilla.

  12. Evaluation of a CLEIA automated assay system for the detection of a panel of tumor markers.

    Science.gov (United States)

    Falzarano, Renato; Viggiani, Valentina; Michienzi, Simona; Longo, Flavia; Tudini, Silvestra; Frati, Luigi; Anastasi, Emanuela

    2013-10-01

    Tumor markers are commonly used to detect a relapse of disease in oncologic patients during follow-up. It is important to evaluate new assay systems for a better and more precise assessment, as a standardized method is currently lacking. The aim of this study was to assess the concordance between an automated chemiluminescent enzyme immunoassay system (LUMIPULSE® G1200) and our reference methods using seven tumor markers. Serum samples from 787 subjects representing a variety of diagnoses, including oncologic, were analyzed using LUMIPULSE® G1200 and our reference methods. Serum values were measured for the following analytes: prostate-specific antigen (PSA), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 15-3 (CA15-3), carbohydrate antigen 19-9 (CA19-9), and cytokeratin 19 fragment (CYFRA 21-1). For the determination of CEA, AFP, and PSA, an automatic analyzer based on chemiluminescence was applied as reference method. To assess CYFRA 21-1, CA125, CA19-9, and CA15-3, an immunoradiometric manual system was employed. Method comparison by Passing-Bablok analysis resulted in slopes ranging from 0.9728 to 1.9089 and correlation coefficients from 0.9977 to 0.9335. The precision of each assay was assessed by testing six serum samples. Each sample was analyzed for all tumor biomarkers in duplicate and in three different runs. The coefficients of variation were less than 6.3 and 6.2 % for within-run and between-run variation, respectively. Our data suggest an overall good interassay agreement for all markers. The comparison with our reference methods showed good precision and reliability, highlighting its usefulness in clinical laboratory's routine.

  13. Epigenetic changes detected in micropropagated hop plants.

    Science.gov (United States)

    Peredo, Elena L; Arroyo-García, Rosa; Revilla, M Angeles

    2009-07-01

    Micropropagation is a widely used technique in hops (Humulus lupulus L.). However, to the best of our knowledge, the genetic and epigenetic stability of the microplants has never been tested before. In the present study, two hop accessions were established in vitro and micropropagated for 2 years. The genetic and epigenetic stability of the in vitro plants was analyzed with several molecular techniques: random amplified DNA polymorphism (RAPD), retrotransposon microsatellite amplified polymorphism (REMAP), and methylation-sensitive amplification polymorphism (MSAP). No genetic variation among control and treated plants was found, even after 12 cycles of micropropagation. Epigenetic variation was detected, first, when field and in vitro samples were compared. Nearly a 30% of the detected fragments presented the same pattern of alterations in all the vitroplants. Second, lower levels of epigenetic variation were detected among plants from the different subcultures. Part of this detected variation seemed to be accumulated along the 12 sequential subcultures tested.

  14. Activity Level Change Detection for Persistent Surveillance

    National Research Council Canada - National Science Library

    Liu, F; Bush, L. A

    2004-01-01

    .... Instead of traditional target tracking, this approach utilizes GMTI data as moving spots on the ground to estimate the level of activities and detect unusual activities such as military deployments...

  15. Detecting Holocene changes in thermohaline circulation

    OpenAIRE

    Keigwin, L. D.; Boyle, E. A.

    2000-01-01

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  16. Change Detection in Naturalistic Pictures among Children with Autism

    Science.gov (United States)

    Burack, Jacob A.; Joseph, Shari; Russo, Natalie; Shore, David I.; Porporino, Mafalda; Enns, James T.

    2009-01-01

    Persons with autism often show strong reactions to changes in the environment, suggesting that they may detect changes more efficiently than typically developing (TD) persons. However, Fletcher-Watson et al. (Br J Psychol 97:537-554, 2006) reported no differences between adults with autism and TD adults with a change-detection task. In this study,…

  17. Real-time change detection for countering improvised explosive devices

    NARCIS (Netherlands)

    Wouw, van de D.W.J.M.; Rens, van K.; Lint, van R.H.; Jaspers, Egbert; With, de P.H.N.; Loce, R.P.; Saber, E.

    2014-01-01

    We explore an automatic real-time change detection system to assist military personnel during transport and surveillance, by detection changes in the environment with respect to a previous operation. Such changes may indicate the presence of Improvised Explosive Devices (IEDs), which can then be

  18. The role of iconic memory in change-detection tasks.

    Science.gov (United States)

    Becker, M W; Pashler, H; Anstis, S M

    2000-01-01

    In three experiments, subjects attempted to detect the change of a single item in a visually presented array of items. Subjects' ability to detect a change was greatly reduced if a blank interstimulus interval (ISI) was inserted between the original array and an array in which one item had changed ('change blindness'). However, change detection improved when the location of the change was cued during the blank ISI. This suggests that people represent more information of a scene than change blindness might suggest. We test two possible hypotheses why, in the absence of a cue, this representation fails to produce good change detection. The first claims that the intervening events employed to create change blindness result in multiple neural transients which co-occur with the to-be-detected change. Poor detection rates occur because a serial search of all the transient locations is required to detect the change, during which time the representation of the original scene fades. The second claims that the occurrence of the second frame overwrites the representation of the first frame, unless that information is insulated against overwriting by attention. The results support the second hypothesis. We conclude that people may have a fairly rich visual representation of a scene while the scene is present, but fail to detect changes because they lack the ability to simultaneously represent two complete visual representations.

  19. The impact of automation on organizational changes in a community hospital clinical microbiology laboratory.

    Science.gov (United States)

    Camporese, Alessandro

    2004-06-01

    The diagnosis of infectious diseases and the role of the microbiology laboratory are currently undergoing a process of change. The need for overall efficiency in providing results is now given the same importance as accuracy. This means that laboratories must be able to produce quality results in less time with the capacity to interpret the results clinically. To improve the clinical impact of microbiology results, the new challenge facing the microbiologist has become one of process management instead of pure analysis. A proper project management process designed to improve workflow, reduce analytical time, and provide the same high quality results without losing valuable time treating the patient, has become essential. Our objective was to study the impact of introducing automation and computerization into the microbiology laboratory, and the reorganization of the laboratory workflow, i.e. scheduling personnel to work shifts covering both the entire day and the entire week. In our laboratory, the introduction of automation and computerization, as well as the reorganization of personnel, thus the workflow itself, has resulted in an improvement in response time and greater efficiency in diagnostic procedures.

  20. Using a forehead reflectance pulse oximeter to detect changes in sympathetic tone.

    Science.gov (United States)

    Wendelken, Suzanne M; McGrath, Susan P; Akay, Metin; Blike, George T

    2004-01-01

    The extreme conditions of combat and multi-casualty rescue often make field triage difficult and put the medic or first responder at risk. In an effort to improve field triage, we have developed an automated remote triage system called ARTEMIS (automated remote triage and emergency management information system) for use in the battlefield or disaster zone. Common to field injuries is a sudden change in arterial pressure resulting from massive blood loss or shock. In effort to stabilize the arterial pressure, the sympathetic system is strongly activated and sympathetic tone is increased. This preliminary research seeks to empirically demonstrate that a forehead reflectance pulse oximeter is a viable sensor for detecting sudden changes in sympathetic tone. We performed the classic supine-standing experiment and collected the raw waveform, the photoplethysmogram (PPG), continuously using a forehead reflectance pulse oximeter. The resulting waveform was processed in Matlab using various spectral analysis techniques (FFT and AR). Our preliminary results show that a relative ratio analysis (low frequency power/high frequency power) for both the raw PPG signal and its derived pulse statistics (height, beat-to-beat interval) is a useful technique for detecting change in sympathetic tone resulting from positional change.

  1. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    Science.gov (United States)

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  2. Sustained change blindness to incremental scene rotation: a dissociation between explicit change detection and visual memory.

    Science.gov (United States)

    Hollingworth, Andrew; Henderson, John M

    2004-07-01

    In a change detection paradigm, the global orientation of a natural scene was incrementally changed in 1 degree intervals. In Experiments 1 and 2, participants demonstrated sustained change blindness to incremental rotation, often coming to consider a significantly different scene viewpoint as an unchanged continuation of the original view. Experiment 3 showed that participants who failed to detect the incremental rotation nevertheless reliably detected a single-step rotation back to the initial view. Together, these results demonstrate an important dissociation between explicit change detection and visual memory. Following a change, visual memory is updated to reflect the changed state of the environment, even if the change was not detected.

  3. Towards a fully automated lab-on-a-disc system integrating sample enrichment and detection of analytes from complex matrices

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga

    the technology on a large scale from fulfilling its potential for maturing into applied technologies and products. In this work, we have taken the first steps towards realizing a capable and truly automated “sample-to-answer” analysis system, aimed at small molecule detection and quantification from a complex...... sample matrix. The main result is a working prototype of a microfluidic system, integrating both centrifugal microfluidics for sample handling, supported liquid membrane extraction (SLM) for selective and effective sample treatment, as well as in-situ electrochemical detection. As a case study...

  4. Illumination Invariant Change Detection (iicd): from Earth to Mars

    Science.gov (United States)

    Wan, X.; Liu, J.; Qin, M.; Li, S. Y.

    2018-04-01

    Multi-temporal Earth Observation and Mars orbital imagery data with frequent repeat coverage provide great capability for planetary surface change detection. When comparing two images taken at different times of day or in different seasons for change detection, the variation of topographic shades and shadows caused by the change of sunlight angle can be so significant that it overwhelms the real object and environmental changes, making automatic detection unreliable. An effective change detection algorithm therefore has to be robust to the illumination variation. This paper presents our research on developing and testing an Illumination Invariant Change Detection (IICD) method based on the robustness of phase correlation (PC) to the variation of solar illumination for image matching. The IICD is based on two key functions: i) initial change detection based on a saliency map derived from pixel-wise dense PC matching and ii) change quantization which combines change type identification, motion estimation and precise appearance change identification. Experiment using multi-temporal Landsat 7 ETM+ satellite images, Rapid eye satellite images and Mars HiRiSE images demonstrate that our frequency based image matching method can reach sub-pixel accuracy and thus the proposed IICD method can effectively detect and precisely segment large scale change such as landslide as well as small object change such as Mars rover, under daily and seasonal sunlight changes.

  5. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  6. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...... with a Gaussian kernel successfully finds the change observations in a case where nonlinearities are introduced artificially....

  7. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat; Ruebel, O.; Weber, G.; Hamann, B.

    2010-01-01

    scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis

  8. A dual-process account of auditory change detection.

    Science.gov (United States)

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  9. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.

    Directory of Open Access Journals (Sweden)

    Sheldon L Reeves

    2016-09-01

    Full Text Available Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies.

  10. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.

    Science.gov (United States)

    Reeves, Sheldon L; Fleming, Kelsey E; Zhang, Lin; Scimemi, Annalisa

    2016-09-01

    Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies.

  11. Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma.

    Science.gov (United States)

    Panda, Rashmi; Puhan, N B; Rao, Aparna; Padhy, Debananda; Panda, Ganapati

    2018-06-01

    Retinal nerve fiber layer defect (RNFLD) provides an early objective evidence of structural changes in glaucoma. RNFLD detection is currently carried out using imaging modalities like OCT and GDx which are expensive for routine practice. In this regard, we propose a novel automatic method for RNFLD detection and angular width quantification using cost effective redfree fundus images to be practically useful for computer-assisted glaucoma risk assessment. After blood vessel inpainting and CLAHE based contrast enhancement, the initial boundary pixels are identified by local minima analysis of the 1-D intensity profiles on concentric circles. The true boundary pixels are classified using random forest trained by newly proposed cumulative zero count local binary pattern (CZC-LBP) and directional differential energy (DDE) along with Shannon, Tsallis entropy and intensity features. Finally, the RNFLD angular width is obtained by random sample consensus (RANSAC) line fitting on the detected set of boundary pixels. The proposed method is found to achieve high RNFLD detection performance on a newly created dataset with sensitivity (SN) of 0.7821 at 0.2727 false positives per image (FPI) and the area under curve (AUC) value is obtained as 0.8733. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    Science.gov (United States)

    Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

    2009-02-01

    The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

  13. A cellular automation model for the change of public attitude regarding nuclear energy

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    1991-01-01

    A cellular automation model was constructed to investigate how public opinion on nuclear energy in Japan depends upon the information environment and personal communication between people. From simulation with this model, the following become clear; (i) society is a highly non-linear system with a self-organizing potential: (ii) in a society composed of one type of constituent member with homogeneous characteristics, the trend of public opinion is substantially changed only when the effort to ameliorate public acceptance over a long period of time, by means such as education, persuasion and advertisement, exceeds a certain threshold, and (iii) in the case when the amount of information on nuclear risk released from the newsmedia is reduced continuously from now on, the acceptability of nuclear energy is significantly improved so far as the extent of the reduction exceeds a certain threshold. (author)

  14. A cellular automation model for the change of public attitude regarding nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Teruaki (CRC Research Inst., Chiba (Japan))

    1991-01-01

    A cellular automation model was constructed to investigate how public opinion on nuclear energy in Japan depends upon the information environment and personal communication between people. From simulation with this model, the following become clear; (i) society is a highly non-linear system with a self-organizing potential: (ii) in a society composed of one type of constituent member with homogeneous characteristics, the trend of public opinion is substantially changed only when the effort to ameliorate public acceptance over a long period of time, by means such as education, persuasion and advertisement, exceeds a certain threshold, and (iii) in the case when the amount of information on nuclear risk released from the newsmedia is reduced continuously from now on, the acceptability of nuclear energy is significantly improved so far as the extent of the reduction exceeds a certain threshold. (author).

  15. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload.

    Science.gov (United States)

    Soto-Pedre, Enrique; Navea, Amparo; Millan, Saray; Hernaez-Ortega, Maria C; Morales, Jesús; Desco, Maria C; Pérez, Pablo

    2015-02-01

    To assess the safety and workload reduction of an automated 'disease/no disease' grading system for diabetic retinopathy (DR) within a systematic screening programme. Single 45° macular field image per eye was obtained from consecutive patients attending a regional primary care based DR screening programme in Valencia (Spain). The sensitivity and specificity of automated system operating as 'one or more than one microaneurysm detection for disease presence' grader were determined relative to a manual grading as gold standard. Data on age, gender and diabetes mellitus were also recorded. A total of 5278 patients with diabetes were screened. The median age and duration of diabetes was 69 years and 6.9 years, respectively. Estimated prevalence of DR was 15.6%. The software classified 43.9% of the patients as having no DR and 26.1% as having ungradable images. Detection of DR was achieved with 94.5% sensitivity (95% CI 92.6- 96.5) and 68.8% specificity (95%CI 67.2-70.4). The overall accuracy of the automated system was 72.5% (95%CI 71.1-73.9). The present retinal image processing algorithm that can act as prefilter to flag out images with pathological lesions can be implemented in practice. Our results suggest that it could be considered when implementing DR screening programmes. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. An automated approach for early detection of diabetic retinopathy using SD-OCT images.

    Science.gov (United States)

    ElTanboly, Ahmed H; Palacio, Agustina; Shalaby, Ahmed M; Switala, Andrew E; Helmy, Omar; Schaal, Shlomit; El-Baz, Ayman

    2018-01-01

      This study was to demonstrate the feasibility of an automatic approach for early detection of diabetic retinopathy (DR) from SD-OCT images. These scans were prospectively collected from 200 subjects through the fovea then were automatically segmented, into 12 layers. Each layer was characterized by its thickness, tortuosity, and normalized reflectivity. 26 diabetic patients, without DR changes visible by funduscopic examination, were matched with 26 controls, according to age and sex, for purposes of statistical analysis using mixed effects ANOVA. The INL was narrower in diabetes (p = 0.14), while the NFL (p = 0.04) and IZ (p = 0.34) were thicker. Tortuosity of layers NFL through the OPL was greater in diabetes (all p diabetes. In turn, carries the promise to a reliable non-invasive diagnostic tool for early detection of DR.

  17. Detecting Change-Point via Saddlepoint Approximations

    Institute of Scientific and Technical Information of China (English)

    Zhaoyuan LI; Maozai TIAN

    2017-01-01

    It's well-known that change-point problem is an important part of model statistical analysis.Most of the existing methods are not robust to criteria of the evaluation of change-point problem.In this article,we consider "mean-shift" problem in change-point studies.A quantile test of single quantile is proposed based on saddlepoint approximation method.In order to utilize the information at different quantile of the sequence,we further construct a "composite quantile test" to calculate the probability of every location of the sequence to be a change-point.The location of change-point can be pinpointed rather than estimated within a interval.The proposed tests make no assumptions about the functional forms of the sequence distribution and work sensitively on both large and small size samples,the case of change-point in the tails,and multiple change-points situation.The good performances of the tests are confirmed by simulations and real data analysis.The saddlepoint approximation based distribution of the test statistic that is developed in the paper is of independent interest and appealing.This finding may be of independent interest to the readers in this research area.

  18. Explicit behavioral detection of visual changes develops without their implicit neurophysiological detectability

    Directory of Open Access Journals (Sweden)

    Pessi eLyyra

    2012-03-01

    Full Text Available Change blindness is a failure of explicitly detecting changes between consecutively presented images when separated, e.g., by a brief blank screen. There is a growing body of evidence of implicit detection of even explicitly undetectable changes, pointing to the possibility of the implicit change detection as a prerequisite for its explicit counterpart. We recorded event-related potentials (ERPs of the electroencephalography in adults during an oddball-variant of change blindness flicker paradigm. In this variant, rare pictures with a change were interspersed with frequent pictures with no change. In separate stimulus blocks, the blank screen between the change and no-change picture was either of 100 ms or 500 ms in duration. In both stimulus conditions the participants eventually explicitly detect the changed pictures, the blank screen of the longer duration only requiring in average 10 % longer exposure to the picture series until the ability emerged. However, during the change blindness, ERPs were displaced towards negative polarity at 200–260 ms after the stimulus onset (visual mismatch negativity only with the blank screens of the shorter ISI. Our finding of ‘implicit change blindness’ for pictorial material that, nevertheless, successfully prepares the visual system for explicit change detection suggests that implicit change detection may not be a necessary condition for explicit change detection and that they may recruit at least partially distinct memory mechanisms.

  19. Automated Bayesian model development for frequency detection in biological time series

    Directory of Open Access Journals (Sweden)

    Oldroyd Giles ED

    2011-06-01

    Full Text Available Abstract Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and

  20. Automated Bayesian model development for frequency detection in biological time series.

    Science.gov (United States)

    Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J

    2011-06-24

    A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time

  1. Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network

    Science.gov (United States)

    Hiramatsu, Yuya; Muramatsu, Chisako; Kobayashi, Hironobu; Hara, Takeshi; Fujita, Hiroshi

    2017-03-01

    Breast cancer screening with mammography and ultrasonography is expected to improve sensitivity compared with mammography alone, especially for women with dense breast. An automated breast volume scanner (ABVS) provides the operator-independent whole breast data which facilitate double reading and comparison with past exams, contralateral breast, and multimodality images. However, large volumetric data in screening practice increase radiologists' workload. Therefore, our goal is to develop a computer-aided detection scheme of breast masses in ABVS data for assisting radiologists' diagnosis and comparison with mammographic findings. In this study, false positive (FP) reduction scheme using deep convolutional neural network (DCNN) was investigated. For training DCNN, true positive and FP samples were obtained from the result of our initial mass detection scheme using the vector convergence filter. Regions of interest including the detected regions were extracted from the multiplanar reconstraction slices. We investigated methods to select effective FP samples for training the DCNN. Based on the free response receiver operating characteristic analysis, simple random sampling from the entire candidates was most effective in this study. Using DCNN, the number of FPs could be reduced by 60%, while retaining 90% of true masses. The result indicates the potential usefulness of DCNN for FP reduction in automated mass detection on ABVS images.

  2. Application of Novel Software Algorithms to Spectral-Domain Optical Coherence Tomography for Automated Detection of Diabetic Retinopathy.

    Science.gov (United States)

    Adhi, Mehreen; Semy, Salim K; Stein, David W; Potter, Daniel M; Kuklinski, Walter S; Sleeper, Harry A; Duker, Jay S; Waheed, Nadia K

    2016-05-01

    To present novel software algorithms applied to spectral-domain optical coherence tomography (SD-OCT) for automated detection of diabetic retinopathy (DR). Thirty-one diabetic patients (44 eyes) and 18 healthy, nondiabetic controls (20 eyes) who underwent volumetric SD-OCT imaging and fundus photography were retrospectively identified. A retina specialist independently graded DR stage. Trained automated software generated a retinal thickness score signifying macular edema and a cluster score signifying microaneurysms and/or hard exudates for each volumetric SD-OCT. Of 44 diabetic eyes, 38 had DR and six eyes did not have DR. Leave-one-out cross-validation using a linear discriminant at missed detection/false alarm ratio of 3.00 computed software sensitivity and specificity of 92% and 69%, respectively, for DR detection when compared to clinical assessment. Novel software algorithms applied to commercially available SD-OCT can successfully detect DR and may have potential as a viable screening tool for DR in future. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:410-417.]. Copyright 2016, SLACK Incorporated.

  3. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    Directory of Open Access Journals (Sweden)

    Christoph eSchmitz

    2014-05-01

    Full Text Available Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D cell counting approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38–99% and false-positive rates from 3.6–82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

  4. Stochastic Change Detection based on an Active Fault Diagnosis Approach

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2007-01-01

    The focus in this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow to obtain a fast change detection/isolation by considering the output or an err...

  5. Unsupervised Speaker Change Detection for Broadcast News Segmentation

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Mølgaard, Lasse Lohilahti; Hansen, Lars Kai

    2006-01-01

    This paper presents a speaker change detection system for news broadcast segmentation based on a vector quantization (VQ) approach. The system does not make any assumption about the number of speakers or speaker identity. The system uses mel frequency cepstral coefficients and change detection...

  6. Regularisation in multi- and hyperspectral remote sensing change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2005-01-01

    Change detection methods for multi- and hypervariate data look for differences in data acquired over the same area at different points in time. These differences may be due to noise or differences in (atmospheric etc.) conditions at the two acquisition time points. To prevent a change detection m...

  7. Automated studies of radiation-induced changes in 3T3 cell motility and morphology

    International Nuclear Information System (INIS)

    Thurston, G.; Palcic, B.

    1985-01-01

    The most common endpoint in radiobiological studies is cell survival, as measured by colony forming ability. There is substantial experimental evidence that cell survival is related to the amount of radiation damage to the DNA. Radiation induces other changes in cell behaviour and morphology that may not be due to DNA damage alone. For example, low doses of radiation (<100 rads) were found to alter the ''phagokinetic tracks'' of moving 3T3 cells. They reported abnormal cell motility as demonstrated by a more random pattern of motion. 3T3 cells were also noted to show changes in morphology after exposure to x-rays. The fibroblast adhesion routine is disrupted by low doses of radiation (cell settling, microspike extension, lamellipodia flow, then cell spreading). An automated microscope system, DMIPS, is being used to automatically track 3T3 cells as they move and to correlate their movement with their morphology. An effort is being made to quantitate, for a large number of cells, the changes in 3T3 cell motility induced by radiation. The DMIPS procedure is compared to the gold dust technique

  8. Changes in corneal sensation, epithelial damage, and tear function after descemet stripping automated endothelial keratoplasty.

    Science.gov (United States)

    Hirayama, Yumiko; Satake, Yoshiyuki; Hirayama, Masatoshi; Shimazaki-Den, Seika; Konomi, Kenji; Shimazaki, Jun

    2013-09-01

    To study the ocular surface changes in eyes after Descemet stripping automated endothelial keratoplasty (DSAEK) compared with those after penetrating keratoplasty (PKP). This prospective study compared the changes in 31 eyes of 28 patients who underwent DSAEK (DSAEK group) with those in 15 disease-matched eyes of 15 patients who underwent PKP (PKP group). Corneal epithelial integrity was evaluated using a fluorescein staining score. Corneal sensation was measured with a Cochet-Bonnet esthesiometer. Tear function was evaluated using the Schirmer test, tear clearance test, tear function index, and tear break-up time. The postoperative fluorescein staining score was significantly higher in the PKP group than in the DSAEK group (P = 0.02). Postoperative corneal sensation was significantly better in the DSAEK group than in the PKP group (P sensation after DSAEK was significantly better than the preoperative value (P = 0.02). There were no statistically significant changes in the Schirmer test, tear clearance test, tear function index, or break-up time before and after the surgery in both the DSAEK and PKP groups. No significant differences were observed between the DSAEK and PKP groups after the surgery. Corneal sensation was preserved, and epithelial damage was less severe after DSAEK compared with PKP. Preservation of corneal sensation may contribute to the early recovery of visual function and long-term maintenance of ocular surface health after DSAEK.

  9. Automated Detection of Geomorphic Features in LiDAR Point Clouds of Various Spatial Density

    Science.gov (United States)

    Dorninger, Peter; Székely, Balázs; Zámolyi, András.; Nothegger, Clemens

    2010-05-01

    LiDAR, also referred to as laser scanning, has proved to be an important tool for topographic data acquisition. Terrestrial laser scanning allows for accurate (several millimeter) and high resolution (several centimeter) data acquisition at distances of up to some hundred meters. By contrast, airborne laser scanning allows for acquiring homogeneous data for large areas, albeit with lower accuracy (decimeter) and resolution (some ten points per square meter) compared to terrestrial laser scanning. Hence, terrestrial laser scanning is preferably used for precise data acquisition of limited areas such as landslides or steep structures, while airborne laser scanning is well suited for the acquisition of topographic data of huge areas or even country wide. Laser scanners acquire more or less homogeneously distributed point clouds. These points represent natural objects like terrain and vegetation and artificial objects like buildings, streets or power lines. Typical products derived from such data are geometric models such as digital surface models representing all natural and artificial objects and digital terrain models representing the geomorphic topography only. As the LiDAR technology evolves, the amount of data produced increases almost exponentially even in smaller projects. This means a considerable challenge for the end user of the data: the experimenter has to have enough knowledge, experience and computer capacity in order to manage the acquired dataset and to derive geomorphologically relevant information from the raw or intermediate data products. Additionally, all this information might need to be integrated with other data like orthophotos. In all theses cases, in general, interactive interpretation is necessary to determine geomorphic structures from such models to achieve effective data reduction. There is little support for the automatic determination of characteristic features and their statistical evaluation. From the lessons learnt from automated

  10. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models.......This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can...

  11. Detecting evolutionary forces in language change.

    Science.gov (United States)

    Newberry, Mitchell G; Ahern, Christopher A; Clark, Robin; Plotkin, Joshua B

    2017-11-09

    Both language and genes evolve by transmission over generations with opportunity for differential replication of forms. The understanding that gene frequencies change at random by genetic drift, even in the absence of natural selection, was a seminal advance in evolutionary biology. Stochastic drift must also occur in language as a result of randomness in how linguistic forms are copied between speakers. Here we quantify the strength of selection relative to stochastic drift in language evolution. We use time series derived from large corpora of annotated texts dating from the 12th to 21st centuries to analyse three well-known grammatical changes in English: the regularization of past-tense verbs, the introduction of the periphrastic 'do', and variation in verbal negation. We reject stochastic drift in favour of selection in some cases but not in others. In particular, we infer selection towards the irregular forms of some past-tense verbs, which is likely driven by changing frequencies of rhyming patterns over time. We show that stochastic drift is stronger for rare words, which may explain why rare forms are more prone to replacement than common ones. This work provides a method for testing selective theories of language change against a null model and reveals an underappreciated role for stochasticity in language evolution.

  12. Automated cerebellar segmentation: Validation and application to detect smaller volumes in children prenatally exposed to alcohol

    Directory of Open Access Journals (Sweden)

    Valerie A. Cardenas

    2014-01-01

    Discussion: These results demonstrate excellent reliability and validity of automated cerebellar volume and mid-sagittal area measurements, compared to manual measurements. These data also illustrate that this new technology for automatically delineating the cerebellum leads to conclusions regarding the effects of prenatal alcohol exposure on the cerebellum consistent with prior studies that used labor intensive manual delineation, even with a very small sample.

  13. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analy...

  14. Results of a multivariate approach to automated oestrus and mastitis detection

    NARCIS (Netherlands)

    Mol, de R.M.; Kroeze, G.H.; Achten, J.M.F.H.; Maatje, K.; Rossing, W.

    1997-01-01

    In modern dairy farming sensors can be used to measure on-line milk yield, milk temperature, electrical conductivity of quarter milk, concentrate intake and the cow's activity. Together with information from the management information system (MIS), the sensor data can be used for the automated

  15. Automated Leak Detection Of Buried Tanks Using Geophysical Methods At The Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Calendine, S.; Schofield, J.S.; Levitt, M.T.; Fink, J.B.; Rucker, D.F.

    2011-01-01

    At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

  16. Saliency predicts change detection in pictures of natural scenes.

    Science.gov (United States)

    Wright, Michael J

    2005-01-01

    It has been proposed that the visual system encodes the salience of objects in the visual field in an explicit two-dimensional map that guides visual selective attention. Experiments were conducted to determine whether salience measurements applied to regions of pictures of outdoor scenes could predict the detection of changes in those regions. To obtain a quantitative measure of change detection, observers located changes in pairs of colour pictures presented across an interstimulus interval (ISI). Salience measurements were then obtained from different observers for image change regions using three independent methods, and all were positively correlated with change detection. Factor analysis extracted a single saliency factor that accounted for 62% of the variance contained in the four measures. Finally, estimates of the magnitude of the image change in each picture pair were obtained, using nine separate visual filters representing low-level vision features (luminance, colour, spatial frequency, orientation, edge density). None of the feature outputs was significantly associated with change detection or saliency. On the other hand it was shown that high-level (structural) properties of the changed region were related to saliency and to change detection: objects were more salient than shadows and more detectable when changed.

  17. Detection of Hydrological changes of Wujiang River

    Science.gov (United States)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  18. Land cover change detection in West Jilin using ETM+ images

    Institute of Scientific and Technical Information of China (English)

    Edward M.Osei,Jr.; ZHOU Yun-xuan

    2004-01-01

    In order to assess the information content and accuracy ofLandsat ETM+ digital images in land cover change detection,change-detection techniques of image differencing,normalized difference vegetation index,principal components analysis and tasseled-cap transformation were applied to yield 13 images. These images were thresholded into change and no change areas. The thresholded images were then checked in terms of various accuracies. The experiment results show that kappa coefficients of the 13 images range from 48.05 ~78.09. Different images do detect different types of changes. Images associated with changes in the near-infrared-reflectance or greenness detects crop-type changes and changes between vegetative and non-vegetative features. A unique means of using only Landsat imagery without reference data for the assessment of change in arid land are presented. Images of 12th June, 2000 and 2nd June, 2002 are used to validate the means. Analyses of standard accuracy and spatial agreement are performed to compare the new images (hereafter called "change images" ) representing the change between the two dates. Spatial agreement evaluates the conformity in the classified "change pixels" and "no-change pixels" at the same location on different change images and comprehensively examines the different techniques. This method would enable authorities to monitor land degradation efficiently and accurately.

  19. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  20. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    Directory of Open Access Journals (Sweden)

    Kramme Stefanie

    2008-05-01

    Full Text Available Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is the gold standard for diagnosis but is inadequate for early case detection. In order to serve as a diagnostic tool in an eventual biological weapon attack or in local epidemics we developed a real-time 5'nuclease based PCR assay with an internal control system. To facilitate high-throughput an automated extraction procedure was evaluated. Results To determine the minimum number of copies that are detectable at 95% chance probit analysis was used. Limit of detection in blood was 2,881 copies/ml [95%CI, 2,188–4,745 copies/ml] with a manual extraction procedure and 4,235 copies/ml [95%CI, 3,143–7,428 copies/ml] with a fully automated extraction procedure, respectively. To demonstrate clinical application a total of 72 specimens of animal origin were compared with respect to manual and automated extraction. A strong correlation between both methods was observed rendering both methods suitable. Testing of 247 follow up specimens of animal origin from a local Q-fever epidemic rendered real-time PCR more sensitive than conventional PCR. Conclusion A sensitive and thoroughly evaluated real-time PCR was established. Its high-throughput mode may show a useful approach to rapidly screen samples in local outbreaks for other organisms relevant for humans or animals. Compared to a conventional PCR assay sensitivity of real-time PCR was higher after testing samples from a local Q-fever outbreak.

  1. One new method for road data shape change detection

    Science.gov (United States)

    Tang, Luliang; Li, Qingquan; Xu, Feng; Chang, Xiaomeng

    2009-10-01

    Similarity is a psychological cognition; this paper defines the Difference Distance and puts forward the Similarity Measuring Model for linear spatial data (SMM-L) based on the integration of the Distance View and the Feature Set View which are the views for similarity cognition. Based on the study of the relationship between the spatial data change and the similarity, a change detection algorithm for linear spatial data is developed, and a test on road data change detection is realized.

  2. Automated Detection of Malarial Retinopathy in Digital Fundus Images for Improved Diagnosis in Malawian Children with Clinically Defined Cerebral Malaria

    Science.gov (United States)

    Joshi, Vinayak; Agurto, Carla; Barriga, Simon; Nemeth, Sheila; Soliz, Peter; MacCormick, Ian J.; Lewallen, Susan; Taylor, Terrie E.; Harding, Simon P.

    2017-02-01

    Cerebral malaria (CM), a complication of malaria infection, is the cause of the majority of malaria-associated deaths in African children. The standard clinical case definition for CM misclassifies ~25% of patients, but when malarial retinopathy (MR) is added to the clinical case definition, the specificity improves from 61% to 95%. Ocular fundoscopy requires expensive equipment and technical expertise not often available in malaria endemic settings, so we developed an automated software system to analyze retinal color images for MR lesions: retinal whitening, vessel discoloration, and white-centered hemorrhages. The individual lesion detection algorithms were combined using a partial least square classifier to determine the presence or absence of MR. We used a retrospective retinal image dataset of 86 pediatric patients with clinically defined CM (70 with MR and 16 without) to evaluate the algorithm performance. Our goal was to reduce the false positive rate of CM diagnosis, and so the algorithms were tuned at high specificity. This yielded sensitivity/specificity of 95%/100% for the detection of MR overall, and 65%/94% for retinal whitening, 62%/100% for vessel discoloration, and 73%/96% for hemorrhages. This automated system for detecting MR using retinal color images has the potential to improve the accuracy of CM diagnosis.

  3. Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG

    International Nuclear Information System (INIS)

    Palmu, Kirsi; Vanhatalo, Sampsa; Stevenson, Nathan; Wikström, Sverre; Hellström-Westas, Lena; Palva, J Matias

    2010-01-01

    We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cross-validation. The mean sensitivity of the optimized algorithm was 97% (range 91–100%) and specificity 95% (76–100%). The optimized algorithm makes it possible to systematically study brain state fluctuations of preterm infants. (note)

  4. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study.

    Science.gov (United States)

    Wesselink, Christiaan; Jansonius, Nomdo M

    2017-09-01

    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  5. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection

    Directory of Open Access Journals (Sweden)

    Alessandra Spada Durante

    Full Text Available Abstract Introduction: The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. Objective: To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. Methods: The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group; and 31 adults with normal hearing (control group. An automated system of detection, analysis, and recording of cortical responses (HEARLab® was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000 Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing threshold (BT. The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. Results: The cortical

  6. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    Science.gov (United States)

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  7. Fast-FISH Detection and Semi-Automated Image Analysis of Numerical Chromosome Aberrations in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Arif Esa

    1998-01-01

    Full Text Available A new fluorescence in situ hybridization (FISH technique called Fast-FISH in combination with semi-automated image analysis was applied to detect numerical aberrations of chromosomes 8 and 12 in interphase nuclei of peripheral blood lymphocytes and bone marrow cells from patients with acute myelogenous leukemia (AML and chronic lymphocytic leukemia (CLL. Commercially available α-satellite DNA probes specific for the centromere regions of chromosome 8 and chromosome 12, respectively, were used. After application of the Fast-FISH protocol, the microscopic images of the fluorescence-labelled cell nuclei were recorded by the true color CCD camera Kappa CF 15 MC and evaluated quantitatively by computer analysis on a PC. These results were compared to results obtained from the same type of specimens using the same analysis system but with a standard FISH protocol. In addition, automated spot counting after both FISH techniques was compared to visual spot counting after standard FISH. A total number of about 3,000 cell nuclei was evaluated. For quantitative brightness parameters, a good correlation between standard FISH labelling and Fast-FISH was found. Automated spot counting after Fast-FISH coincided within a few percent to automated and visual spot counting after standard FISH. The examples shown indicate the reliability and reproducibility of Fast-FISH and its potential for automatized interphase cell diagnostics of numerical chromosome aberrations. Since the Fast-FISH technique requires a hybridization time as low as 1/20 of established standard FISH techniques, omitting most of the time consuming working steps in the protocol, it may contribute considerably to clinical diagnostics. This may especially be interesting in cases where an accurate result is required within a few hours.

  8. 2006 Automation Survey: The Systems Are Changing. But School Libraries Aren't

    Science.gov (United States)

    Fuller, Daniel

    2006-01-01

    This article presents the findings of the 2006 School Library Journal-San Jose State University Automation Survey. The study takes a close look at the systems that media specialists are using, how they are using them, and what librarians want from their future automation programs. The findings reveal that while respondents were satisfied with…

  9. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound.

    Science.gov (United States)

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Theotokas, Ioannis; Zoumpoulis, Pavlos; Hazle, John D; Kagadis, George C

    2015-07-01

    Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.

  10. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    Science.gov (United States)

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  11. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

    Directory of Open Access Journals (Sweden)

    Haobo Lyu

    2016-06-01

    Full Text Available When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-class changes. The proposed method relies on an improved Long Short-Term Memory (LSTM model to acquire and record the change information of long-term sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule from the information concerning binary changes or multi-class changes. Three gates are utilized to control the input, output and update of the LSTM model for optimization. In addition, the learned rule can be applied to detect changes and transfer the change rule from one learned image to another new target multi-temporal image. In this study, binary experiments, transfer experiments and multi-class change experiments are exploited to demonstrate the superiority of our method. Three contributions of this work can be summarized as follows: (1 the proposed method can learn an effective change rule to provide reliable change information for multi-temporal images; (2 the learned change rule has good transferability for detecting changes in new target images without any extra learning process, and the new target images should have a multi-spectral distribution similar to that of the training images; and (3 to the authors’ best knowledge, this is the first time that deep learning in recurrent neural networks is exploited for change detection. In addition, under the framework of the proposed method, changes can be detected under both binary detection and multi-class change detection.

  12. Perspective Effects during Reading: Evidence from Text Change-Detection

    Science.gov (United States)

    Bohan, Jason; Filik, Ruth

    2018-01-01

    We report two text change-detection studies in which we investigate the influence of reading perspective on text memory. In Experiment 1 participants read from the perspective of one of two characters in a series of short stories, and word changes were either semantically close or distant. Participants correctly reported more changes to…

  13. Iterative User Interface Design for Automated Sequential Organ Failure Assessment Score Calculator in Sepsis Detection.

    Science.gov (United States)

    Aakre, Christopher Ansel; Kitson, Jaben E; Li, Man; Herasevich, Vitaly

    2017-05-18

    The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation. The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated SOFA score calculator with subsequent usability evaluation study. First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35 baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability was evaluated by clinician end users with the Computer Systems Usability Questionnaire. The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33). Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability of survey items in the domains of system usability, information quality, and interface quality. Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA score calculator that reduced clinician workload and met clinicians' needs at the point of care. Emerging interoperable platforms may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as "apps." A user-centered design process and usability evaluation should be considered during creation of these tools. ©Christopher Ansel Aakre, Jaben E Kitson, Man Li, Vitaly Herasevich. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 18.05.2017.

  14. PLAYER POSITION DETECTION AND MOVEMENT PATTERN RECOGNITION FOR AUTOMATED TACTICAL ANALYSIS IN BADMINTON

    OpenAIRE

    KOKUM GAYANATH WEERATUNGA

    2018-01-01

    This thesis documents the development of a comprehensive approach to automate badminton tactical analysis. First, a computer algorithm was developed to automatically track badminton players moving on a court. Next, a machine learning algorithm was developed to analyse these movements and understand their underlying tactical implications. Both algorithms were tested and validated using video footage recorded at International badminton tournaments. The results demonstrate that the combination o...

  15. Automated analysis technique developed for detection of ODSCC on the tubes of OPR1000 steam generator

    International Nuclear Information System (INIS)

    Kim, In Chul; Nam, Min Woo

    2013-01-01

    A steam generator (SG) tube is an important component of a nuclear power plant (NPP). It works as a pressure boundary between the primary and secondary systems. The integrity of a SG tube can be assessed by an eddy current test every outage. The eddy current technique(adopting a bobbin probe) is currently the main technique used to assess the integrity of the tubing of a steam generator. An eddy current signal analyst for steam generator tubes continuously analyzes data over a given period of time. However, there are possibilities that the analyst conducting the test may get tired and cause mistakes, such as: missing indications or not being able to separate a true defect signal from one that is more complicated. This error could lead to confusion and an improper interpretation of the signal analysis. In order to avoid these possibilities, many countries of opted for automated analyses. Axial ODSCC (outside diameter stress corrosion cracking) defects on the tubes of OPR1000 steam generators have been found on the tube that are in contract with tube support plates. In this study, automated analysis software called CDS (computer data screening) made by Zetec was used. This paper will discuss the results of introducing an automated analysis system for an axial ODSCC on the tubes of an OPR1000 steam generator.

  16. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  18. Adaptive 4d Psi-Based Change Detection

    Science.gov (United States)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  19. Unsupervised Multi-Scale Change Detection from SAR Imagery for Monitoring Natural and Anthropogenic Disasters

    Science.gov (United States)

    Ajadi, Olaniyi A.

    Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition.. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to

  20. Evaluation of an automated spike-and-wave complex detection algorithm in the EEG from a rat model of absence epilepsy.

    Science.gov (United States)

    Bauquier, Sebastien H; Lai, Alan; Jiang, Jonathan L; Sui, Yi; Cook, Mark J

    2015-10-01

    The aim of this prospective blinded study was to evaluate an automated algorithm for spike-and-wave discharge (SWD) detection applied to EEGs from genetic absence epilepsy rats from Strasbourg (GAERS). Five GAERS underwent four sessions of 20-min EEG recording. Each EEG was manually analyzed for SWDs longer than one second by two investigators and automatically using an algorithm developed in MATLAB®. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the manual (reference) versus the automatic (test) methods. The results showed that the algorithm had specificity, sensitivity, PPV and NPV >94%, comparable to published methods that are based on analyzing EEG changes in the frequency domain. This provides a good alternative as a method designed to mimic human manual marking in the time domain.

  1. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle.

    Science.gov (United States)

    Reith, S; Hoy, S

    2018-02-01

    Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will

  2. Automated JPSS VIIRS GEO code change testing by using Chain Run Scripts

    Science.gov (United States)

    Chen, W.; Wang, W.; Zhao, Q.; Das, B.; Mikles, V. J.; Sprietzer, K.; Tsidulko, M.; Zhao, Y.; Dharmawardane, V.; Wolf, W.

    2015-12-01

    The Joint Polar Satellite System (JPSS) is the next generation polar-orbiting operational environmental satellite system. The first satellite in the JPSS series of satellites, J-1, is scheduled to launch in early 2017. J1 will carry similar versions of the instruments that are on board of Suomi National Polar-Orbiting Partnership (S-NPP) satellite which was launched on October 28, 2011. The center for Satellite Applications and Research Algorithm Integration Team (STAR AIT) uses the Algorithm Development Library (ADL) to run S-NPP and pre-J1 algorithms in a development and test mode. The ADL is an offline test system developed by Raytheon to mimic the operational system while enabling a development environment for plug and play algorithms. The Perl Chain Run Scripts have been developed by STAR AIT to automate the staging and processing of multiple JPSS Sensor Data Record (SDR) and Environmental Data Record (EDR) products. JPSS J1 VIIRS Day Night Band (DNB) has anomalous non-linear response at high scan angles based on prelaunch testing. The flight project has proposed multiple mitigation options through onboard aggregation, and the Option 21 has been suggested by the VIIRS SDR team as the baseline aggregation mode. VIIRS GEOlocation (GEO) code analysis results show that J1 DNB GEO product cannot be generated correctly without the software update. The modified code will support both Op21, Op21/26 and is backward compatible with SNPP. J1 GEO code change version 0 delivery package is under development for the current change request. In this presentation, we will discuss how to use the Chain Run Script to verify the code change and Lookup Tables (LUTs) update in ADL Block2.

  3. Development and evaluation of automated systems for detection and classification of banded chromosomes: current status and future perspectives

    International Nuclear Information System (INIS)

    Wang Xingwei; Zheng Bin; Wood, Marc; Li Shibo; Chen Wei; Liu Hong

    2005-01-01

    Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed

  4. Development and evaluation of automated systems for detection and classification of banded chromosomes: current status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingwei [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Zheng Bin [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Wood, Marc [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Li Shibo [Department of Pediatrics, University of Oklahoma Medical Center, Oklahoma City, OK (United States); Chen Wei [Department of Physics and Engineering, University of Central Oklahoma, Edmond, OK (United States); Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States)

    2005-08-07

    Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed.

  5. Detecting and Attributing Health Burdens to Climate Change.

    Science.gov (United States)

    Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair

    2017-08-07

    Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.

  6. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  7. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT.

    Science.gov (United States)

    Burns, Joseph E; Yao, Jianhua; Muñoz, Hector; Summers, Ronald M

    2016-01-01

    To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14-88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a

  8. Fast Change Point Detection for Electricity Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berkeley, UC; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

    2013-08-25

    Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

  9. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  10. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  11. On the pilot's behavior of detecting a system parameter change

    Science.gov (United States)

    Morizumi, N.; Kimura, H.

    1986-01-01

    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.

  12. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    Science.gov (United States)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  13. Interoperable cross-domain semantic and geospatial framework for automatic change detection

    Science.gov (United States)

    Kuo, Chiao-Ling; Hong, Jung-Hong

    2016-01-01

    With the increasingly diverse types of geospatial data established over the last few decades, semantic interoperability in integrated applications has attracted much interest in the field of Geographic Information System (GIS). This paper proposes a new strategy and framework to process cross-domain geodata at the semantic level. This framework leverages the semantic equivalence of concepts between domains through bridge ontology and facilitates the integrated use of different domain data, which has been long considered as an essential superiority of GIS, but is impeded by the lack of understanding about the semantics implicitly hidden in the data. We choose the task of change detection to demonstrate how the introduction of ontology concept can effectively make the integration possible. We analyze the common properties of geodata and change detection factors, then construct rules and summarize possible change scenario for making final decisions. The use of topographic map data to detect changes in land use shows promising success, as far as the improvement of efficiency and level of automation is concerned. We believe the ontology-oriented approach will enable a new way for data integration across different domains from the perspective of semantic interoperability, and even open a new dimensionality for the future GIS.

  14. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points.......A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-ban