WorldWideScience

Sample records for automated 3-d voxel

  1. Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint

    Science.gov (United States)

    Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.

    2017-09-01

    For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.

  2. Multi Voxel Descriptor for 3D Texture Retrieval

    Directory of Open Access Journals (Sweden)

    Hero Yudo Martono

    2016-08-01

    Full Text Available In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.

  3. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Science.gov (United States)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (pareas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  4. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P [Nuclear Medicine Dpt, University Hospital of Larissa, Larissa (Greece); Papatriantafyllou, J; Karageorgiou, C [Neurology Dpt, General Hospital ' G. Gennimatas' , Athens (Greece); Sifakis, N; Zerva, C [Nuclear Medicine Dpt, ' Alexandra' University Hospital, Athens (Greece)], E-mail: vanvalot@yahoo.gr

    2009-05-15

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76{+-}6.51 years, education 11.81{+-}4.25 years, MMSE 16.69{+-}9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25{+-}10.48 years, education 10{+-}4.6 years, MMSE 12.5{+-}3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  5. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    International Nuclear Information System (INIS)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P; Papatriantafyllou, J; Karageorgiou, C; Sifakis, N; Zerva, C

    2009-01-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  6. Automated 3-D Radiation Mapping

    International Nuclear Information System (INIS)

    Tarpinian, J. E.

    1991-01-01

    This work describes an automated radiation detection and imaging system which combines several state-of-the-art technologies to produce a portable but very powerful visualization tool for planning work in radiation environments. The system combines a radiation detection system, a computerized radiation imaging program, and computerized 3-D modeling to automatically locate and measurements are automatically collected and imaging techniques are used to produce colored, 'isodose' images of the measured radiation fields. The isodose lines from the images are then superimposed over the 3-D model of the area. The final display shows the various components in a room and their associated radiation fields. The use of an automated radiation detection system increases the quality of radiation survey obtained measurements. The additional use of a three-dimensional display allows easier visualization of the area and associated radiological conditions than two-dimensional sketches

  7. Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–Eulerian PDE approach using partial volume maps

    Science.gov (United States)

    Acosta, Oscar; Bourgeat, Pierrick; Zuluaga, Maria A.; Fripp, Jurgen; Salvado, Olivier; Ourselin, Sébastien

    2010-01-01

    Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computational efficiency needed for clinical applications and large database studies. In contrast, voxel-based approaches, are computationally efficient, but lack accuracy. The aim of this paper is to propose a novel voxel-based method based upon the Laplacian definition of thickness that is both accurate and computationally efficient. A framework was developed to estimate and integrate the partial volume information within the thickness estimation process. Firstly, in a Lagrangian step, the boundaries are initialized using the partial volume information. Subsequently, in an Eulerian step, a pair of partial differential equations are solved on the remaining voxels to finally compute the thickness. Using partial volume information significantly improved the accuracy of the thickness estimation on synthetic phantoms, and improved reproducibility on real data. Significant differences in the hippocampus and temporal lobe between healthy controls (NC), mild cognitive impaired (MCI) and Alzheimer’s disease (AD) patients were found on clinical data from the ADNI database. We compared our method in terms of precision, computational speed and statistical power against the Eulerian approach. With a slight increase in computation time, accuracy and precision were greatly improved. Power analysis demonstrated the ability of our method to yield statistically significant results when comparing AD and NC. Overall, with our method the number of samples is reduced by 25% to find significant differences between the two groups. PMID:19648050

  8. Voxel Datacubes for 3D Visualization in Blender

    Science.gov (United States)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  9. Automated robust generation of compact 3D statistical shape models

    Science.gov (United States)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  10. VOXEL- AND GRAPH-BASED POINT CLOUD SEGMENTATION OF 3D SCENES USING PERCEPTUAL GROUPING LAWS

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2017-05-01

    Full Text Available Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

  11. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  12. Automated finite element modelling of 3D woven textiles

    OpenAIRE

    Zeng, Xuesen; Long, A.C.; Clifford, M.J.; Probst-Schendzielorz, S.; Schmitt, M.W.

    2011-01-01

    The advance of 3D fabric technology allows tailored material structure in different directions for optimised performance. 3D fabrics open up increasing applications in automotive, medical, energy and many other areas. This paper explores highly automated techniques to simulate 3D fabric geometry and mechanical behaviour. The basis of the work starts from TexGen,an open source software package developed at the University of Nottingham. A complex variety of 3D fabrics can be defined as subclass...

  13. 3D Architecture Viewpoints on Service Automation

    NARCIS (Netherlands)

    Gu, Q.; Cuadrado, F.; Lago, P.; Duenas, J.C.

    2013-01-01

    Service-oriented architecture is an emerging paradigm for the execution of business-oriented as well as technical infrastructure processes by means of services. Automating the execution of services is of paramount importance in order to fulfill the needs of companies. However we have found that

  14. Automated Extraction of 3D Trees from Mobile LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Y. Yu

    2014-06-01

    Full Text Available This paper presents an automated algorithm for extracting 3D trees directly from 3D mobile light detection and ranging (LiDAR data. To reduce both computational and spatial complexities, ground points are first filtered out from a raw 3D point cloud via blockbased elevation filtering. Off-ground points are then grouped into clusters representing individual objects through Euclidean distance clustering and voxel-based normalized cut segmentation. Finally, a model-driven method is proposed to achieve the extraction of 3D trees based on a pairwise 3D shape descriptor. The proposed algorithm is tested using a set of mobile LiDAR point clouds acquired by a RIEGL VMX-450 system. The results demonstrate the feasibility and effectiveness of the proposed algorithm.

  15. Voxel tree modeling for estimating leaf area density and woody material volume using 3-D LIDAR data

    Directory of Open Access Journals (Sweden)

    F. Hosoi

    2013-10-01

    Full Text Available In this work, the main focus is on voxel tree modeling using 3-D lidar data for accurate leaf area density (LAD and woody material volume estimation. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Parts of the LAD profiles that were underestimated even when data from both lidars were combined were interpolated by using a Gaussian function, yielding improved results. A laser beam coverage index, Ω, incorporating the lidar's laser beam settings and a laser beam attenuation factor, was proposed. This index showed general applicability to explain the LAD estimation error for LAD measurements using different types of lidars. In addition, we proposed a method for accurate woody material volume estimation based on a 3-D voxel-based solid modeling of the tree from portable scanning lidar data. The solid model was composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. By using the model, the woody material volume of not only the whole target tree but also of any part of the target tree can be directly calculated easily and accurately by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.

  16. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Automated building of organometallic complexes from 3D fragments.

    Science.gov (United States)

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  18. Automating 3D reconstruction using a probabilistic grammar

    Science.gov (United States)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    3D reconstruction of objects from point clouds with a laser scanner is still a laborious task in many applications. Automating 3D process is an ongoing research topic and suffers from the complex structure of the data. The main difficulty is due to lack of knowledge of real world objects structure. In this paper, we accumulate such structure knowledge by a probabilistic grammar learned from examples in the same category. The rules of the grammar capture compositional structures at different levels, and a feature dependent probability function is attached for every rule. The learned grammar can be used to parse new 3D point clouds, organize segment patches in a hierarchal way, and assign them meaningful labels. The parsed semantics can be used to guide the reconstruction algorithms automatically. Some examples are given to explain the method.

  19. A voxelation-corrected non-stationary 3D cluster-size test based on random field theory.

    Science.gov (United States)

    Li, Huanjie; Nickerson, Lisa D; Zhao, Xuna; Nichols, Thomas E; Gao, Jia-Hong

    2015-09-01

    Cluster-size tests (CSTs) based on random field theory (RFT) are commonly adopted to identify significant differences in brain images. However, the use of RFT in CSTs rests on the assumption of uniform smoothness (stationarity). When images are non-stationary, CSTs based on RFT will likely lead to increased false positives in smooth regions and reduced power in rough regions. An adjustment to the cluster size according to the local smoothness at each voxel has been proposed for the standard test based on RFT to address non-stationarity, however, this technique requires images with a large degree of spatial smoothing, large degrees of freedom and high intensity thresholding. Recently, we proposed a voxelation-corrected 3D CST based on Gaussian random field theory that does not place constraints on the degree of spatial smoothness. However, this approach is only applicable to stationary images, requiring further modification to enable use for non-stationary images. In this study, we present modifications of this method to develop a voxelation-corrected non-stationary 3D CST based on RFT. Both simulated and real data were used to compare the voxelation-corrected non-stationary CST to the standard cluster-size adjusted non-stationary CST based on RFT and the voxelation-corrected stationary CST. We found that voxelation-corrected stationary CST is liberal for non-stationary images and the voxelation-corrected non-stationary CST performs better than cluster-size adjusted non-stationary CST based on RFT under low smoothness, low intensity threshold and low degrees of freedom. Published by Elsevier Inc.

  20. Free and open-source automated 3-D microscope.

    Science.gov (United States)

    Wijnen, Bas; Petersen, Emily E; Hunt, Emily J; Pearce, Joshua M

    2016-11-01

    Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, noninterchangeable stages. This paper presents a low-cost, open-source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high-depth images over unprecedented areas and complex geometries. The repeatability is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open-source microscope stage costs less than 3-9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  1. Third generation anthropomorphic physical phantom for mammography and DBT: incorporating voxelized 3D printing and uniform chest wall QC region

    Science.gov (United States)

    Zhao, Christine; Solomon, Justin; Sturgeon, Gregory M.; Gehm, Michael E.; Catenacci, Matthew; Wiley, Benjamin J.; Samei, Ehsan; Lo, Joseph Y.

    2017-03-01

    Physical breast phantoms provide a standard method to test, optimize, and develop clinical mammography systems, including new digital breast tomosynthesis (DBT) systems. In previous work, we produced an anthropomorphic phantom based on 500x500x500 μm breast CT data using commercial 3D printing. We now introduce an improved phantom based on a new cohort of virtual models with 155x155x155 μm voxels and fabricated through voxelized 3D printing and dithering, which confer higher resolution and greater control over contrast. This new generation includes a uniform chest wall extension for evaluating conventional QC metrics. The uniform region contains a grayscale step wedge, chest wall coverage markers, fiducial markers, spheres, and metal ink stickers of line pairs and edges to assess contrast, resolution, artifact spread function, MTF, and other criteria. We also experimented with doping photopolymer material with calcium, iodine, and zinc to increase our current contrast. In particular, zinc was discovered to significantly increase attenuation beyond 100% breast density with a linear relationship between zinc concentration and attenuation or breast density. This linear relationship was retained when the zinc-doped material was applied in conjunction with 3D printing. As we move towards our long term goal of phantoms that are indistinguishable from patients, this new generation of anthropomorphic physical breast phantom validates our voxelized printing process, demonstrates the utility of a uniform QC region with features from 3D printing and metal ink stickers, and shows potential for improved contrast via doping.

  2. Automated Identification of Fiducial Points on 3D Torso Images

    Directory of Open Access Journals (Sweden)

    Manas M. Kawale

    2013-01-01

    Full Text Available Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D coordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we deeply miss her insight and her fellowship.

  3. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation

    Directory of Open Access Journals (Sweden)

    Laurent Trassoudaine

    2013-03-01

    Full Text Available Segmentation and classification of urban range data into different object classes have several challenges due to certain properties of the data, such as density variation, inconsistencies due to missing data and the large data size that require heavy computation and large memory. A method to classify urban scenes based on a super-voxel segmentation of sparse 3D data obtained from LiDAR sensors is presented. The 3D point cloud is first segmented into voxels, which are then characterized by several attributes transforming them into super-voxels. These are joined together by using a link-chain method rather than the usual region growing algorithm to create objects. These objects are then classified using geometrical models and local descriptors. In order to evaluate the results, a new metric that combines both segmentation and classification results simultaneously is presented. The effects of voxel size and incorporation of RGB color and laser reflectance intensity on the classification results are also discussed. The method is evaluated on standard data sets using different metrics to demonstrate its efficacy.

  4. Periodic additive noises reduction in 3D images used in building of voxel phantoms through an efficient implementation of the 3D FFT: zipper artifacts filtering

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H. de; Lima, Fernando R.A.; Vieira, Jose W.; Leal Neto, Viriato

    2009-01-01

    The anthropomorphic models used in computational dosimetry are predominantly build from scanning CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) image stacks obtained of patients or volunteers. The building of these stacks (usually called of voxel phantoms or tomography phantoms) requires computer processing to be used in an exposure computational model. Noises present in these stacks can be confused with significant structures. In a 3D image with periodic additive noise in the frequency domain, the noise is fully added to its central slice. The discrete Fourier transform is the fundamental mathematical tool that allows the switch of the spatial domain for the frequency domain, and vice versa. The FFT (fast Fourier transform) algorithm is an ideal computational tool for this switch in domain with efficiency. This paper presents a new methodology for implementation in managed C++ language (Microsoft Visual Studio R .NET) of the fast Fourier transform of 3D digital images (FFT3D) using, essentially, the trigonometric recombination. The reduction of periodic additive noise consists in filtering only the central slice of 3D image in the frequency domain and transforms it back into the spatial domain through the inverse FFT3D. An example of application of this method it is the zipper artifacts filtering in images of MRI. These processes were implemented in the software DIP (Digital Image Processing). (author)

  5. Automating the determination of 3D protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  6. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  7. Automated reconstruction of 3D models from real environments

    Science.gov (United States)

    Sequeira, V.; Ng, K.; Wolfart, E.; Gonçalves, J. G. M.; Hogg, D.

    This paper describes an integrated approach to the construction of textured 3D scene models of building interiors from laser range data and visual images. This approach has been implemented in a collection of algorithms and sensors within a prototype device for 3D reconstruction, known as the EST (Environmental Sensor for Telepresence). The EST can take the form of a push trolley or of an autonomous mobile platform. The Autonomous EST (AEST) has been designed to provide an integrated solution for automating the creation of complete models. Embedded software performs several functions, including triangulation of the range data, registration of video texture, registration and integration of data acquired from different capture points. Potential applications include facilities management for the construction industry and creating reality models to be used in general areas of virtual reality, for example, virtual studios, virtualised reality for content-related applications (e.g., CD-ROMs), social telepresence, architecture and others. The paper presents the main components of the EST/AEST, and presents some example results obtained from the prototypes. The reconstructed model is encoded in VRML format so that it is possible to access and view the model via the World Wide Web.

  8. Automated curved planar reformation of 3D spine images

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  9. Automated Recognition of 3D Features in GPIR Images

    Science.gov (United States)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  10. Automated full-3D digitization system for documentation of paintings

    Science.gov (United States)

    Karaszewski, Maciej; Adamczyk, Marcin; Sitnik, Robert; Michoński, Jakub; Załuski, Wojciech; Bunsch, Eryk; Bolewicki, Paweł

    2013-05-01

    In this paper, a fully automated 3D digitization system for documentation of paintings is presented. It consists of a specially designed frame system for secure fixing of painting, a custom designed, structured light-based, high-resolution measurement head with no IR and UV emission. This device is automatically positioned in two axes (parallel to the surface of digitized painting) with additional manual positioning in third, perpendicular axis. Manual change of observation angle is also possible around two axes to re-measure even partially shadowed areas. The whole system is built in a way which provides full protection of digitized object (moving elements cannot reach its vicinity) and is driven by computer-controlled, highly precise servomechanisms. It can be used for automatic (without any user attention) and fast measurement of the paintings with some limitation to their properties: maximum size of the picture is 2000mm x 2000mm (with deviation of flatness smaller than 20mm) Measurement head is automatically calibrated by the system and its possible working volume starts from 50mm x 50mm x 20mm (10000 points per square mm) and ends at 120mm x 80mm x 60mm (2500 points per square mm). The directional measurements obtained with this system are automatically initially aligned due to the measurement head's position coordinates known from servomechanisms. After the whole painting is digitized, the measurements are fine-aligned with color-based ICP algorithm to remove any influence of possible inaccuracy of positioning devices. We present exemplary digitization results along with the discussion about the opportunities of analysis which appear for such high-resolution, 3D computer models of paintings.

  11. Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis.

    Science.gov (United States)

    Agarwal, Richa; Diaz, Oliver; Lladó, Xavier; Gubern-Mérida, Albert; Vilanova, Joan C; Martí, Robert

    2018-03-01

    Mammography is the gold standard screening technique in breast cancer, but it has some limitations for women with dense breasts. In such cases, sonography is usually recommended as an additional imaging technique. A traditional sonogram produces a two-dimensional (2D) visualization of the breast and is highly operator dependent. Automated breast ultrasound (ABUS) has also been proposed to produce a full 3D scan of the breast automatically with reduced operator dependency, facilitating double reading and comparison with past exams. When using ABUS, lesion segmentation and tracking changes over time are challenging tasks, as the three-dimensional (3D) nature of the images makes the analysis difficult and tedious for radiologists. The goal of this work is to develop a semi-automatic framework for breast lesion segmentation in ABUS volumes which is based on the Watershed algorithm. The effect of different de-noising methods on segmentation is studied showing a significant impact ([Formula: see text]) on the performance using a dataset of 28 temporal pairs resulting in a total of 56 ABUS volumes. The volumetric analysis is also used to evaluate the performance of the developed framework. A mean Dice Similarity Coefficient of [Formula: see text] with a mean False Positive ratio [Formula: see text] has been obtained. The Pearson correlation coefficient between the segmented volumes and the corresponding ground truth volumes is [Formula: see text] ([Formula: see text]). Similar analysis, performed on 28 temporal (prior and current) pairs, resulted in a good correlation coefficient [Formula: see text] ([Formula: see text]) for prior and [Formula: see text] ([Formula: see text]) for current cases. The developed framework showed prospects to help radiologists to perform an assessment of ABUS lesion volumes, as well as to quantify volumetric changes during lesions diagnosis and follow-up.

  12. Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia.

    Science.gov (United States)

    Huppertz, Hans-Jürgen; Wellmer, Jörg; Staack, Anke Maren; Altenmüller, Dirk-Matthias; Urbach, Horst; Kröll, Judith

    2008-05-01

    To evaluate the potential diagnostic value of a novel magnetic resonance image (MRI) postprocessing technique in subtle forms of subcortical band heterotopia (SBH). The method was introduced to improve the visualization of blurred gray-white matter junctions associated with focal cortical dysplasia but was found to be applicable also to SBH. In the voxel-based MRI analysis presented here, T1-weighted MRI volume data sets are normalized and segmented using standard algorithms of SPM5. The distribution of gray and white matter is analyzed on a voxelwise basis and compared with a normal database of 150 controls. Based on this analysis, a three-dimensional feature map is created that highlights brain areas if their signal intensities fall within the range between normal gray and white matter and differ from the normal database in this respect. The method was applied to the MRI data of 378 patients with focal epilepsy in three different epilepsy centers. SBH was diagnosed in seven patients with five of them showing subtle forms of SBH that had gone unrecognized in conventional visual analysis of MRI and were only detected by MRI postprocessing. In contrast to distinct double cortex syndrome, these patients had partial double cortex with SBH mostly confined to posterior brain regions. The results of this study suggest that a considerable part of cases with SBH might remain unrecognized by conventional MRI. Voxel-based MRI analysis may help to identify subtle forms and appears to be a valuable additional diagnostic tool in the evaluation of patients with cryptogenic epilepsy.

  13. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  14. Automating Information Extraction from 3-D Scan Data

    National Research Council Canada - National Science Library

    Bradtmiller, Bruce

    1998-01-01

    ... and 7.2, newly developed software for extracting body measurements from 3-D scans. Investigators used traditional methods to measure 123 male and female subjects for 21 dimensions associated with the sizing and design of military clothing...

  15. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    Science.gov (United States)

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels

  16. Automation of 3D micro object handling process

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard

    2007-01-01

    Most of the micro objects in industrial production are handled with manual labour or in semiautomatic stations. Manual labour usually makes handling and assembly operations highly flexible, but slow, relatively imprecise and expensive. Handling of 3D micro objects poses special challenges due to ...

  17. 3-D ion distribution and evolution in storm-time RC Retrieved from TWINS ENA by differential voxel CT technique

    Science.gov (United States)

    Ma, S.; Yan, W.; Xu, L.

    2013-12-01

    The quantitative retrieval of the 3-D spatial distribution of the parent energetic ions of ENA from a 2-D ENA image is a quite challenge task. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission of NASA is the first constellation to perform stereoscopic magnetospheric imaging of energetic neutral atoms (ENA) from a pair of spacecraft flying on two widely-separated Molniya orbits. TWINS provides a unique opportunity to retrieve the 3-D distribution of ions in the ring current (RC) by using a volumetric pixel (voxel) CT inversion method. In this study the voxel CT method is implemented for a series of differential ENA fluxes averaged over about 6 to 7 sweeps (corresponding to a time period of about 9 min.) at different energy levels ranging from 5 to 100 keV, obtained simultaneously by the two satellites during the main phase of a great magnetic storm with minimum Sym-H of -156 nT on 24-25 October 2011. The data were selected to span a period about 50 minutes during which a large substorm was undergoing its expansion phase first and then recovery. The ENA species of O and H are distinguished for some time-segments by analyzing the signals of pulse heights of second electrons emitted from the carbon foil and impacted on the MCP detector in the TWINS sensors. In order to eliminate the possible influence on retrieval induced by instrument bias error, a differential voxel CT technique is applied. The flux intensity of the ENAs' parent ions in the RC has been obtained as a function of energy, L value, MLT sector and latitude, along with their time evolution during the storm-time substorm expansion phase. Forward calculations proved the reliability of the retrieved results. It shows that the RC is highly asymmetric, with a major concentration in the midnight to dawn sector for equatorial latitudes. Halfway through the substorm expansion there occurred a large enhancement of equatorial ion flux at lower energy (5 keV) in the dusk sector, with narrow extent

  18. Fast, Automated, Photo realistic, 3D Modeling of Building Interiors

    Science.gov (United States)

    2016-09-12

    Conference on 3D Vision, Lyon, France, October 2015. [Adobe PDF] [2] R. Zhang and A. Zakhor, "Automatic Identification of Window Regions on Indoor Point...February 11, 2015 - Avideh Zakhor Featured in ARPA-E Inspiring Innovators Showcase November 13, 2014 - SWARM Lab Seminar: "Professor Zakhor’s talk on...a warehouse-sized retail shopping center. Each planar region given a random color. Generated with resolution of 10 cm. Final Report for ARO

  19. Lithological, grain-size and architectural trends in the holocene Rhine-Meuse delta-insights from 3D voxel models

    NARCIS (Netherlands)

    Stafleu, J.; Busschers, F.S.

    2014-01-01

    TNO Geological Survey of the Netherlands systematically produces 3D voxel models for answering subsurface related questions. The unique combination of vast amounts of borehole data and the voxelbased approach makes the models valuable new sources for exploring the Quaternary fluvial record. The

  20. Automated quality characterization of 3D printed bone scaffolds

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-07-01

    Full Text Available Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner microstructures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

  1. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Raya, J.G. [New York University Langone Medical Center, Center for Biomedical Imaging, New York, NY (United States); Pietschmann, M. [Ludwig-Maximilians-University Hospital Munich, Department of Orthopedic Surgery, Munich (Germany); Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R. [Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin (Germany); Hering, K.G. [Miner' s Hospital, Department of Diagnostic Radiology, Dortmund (Germany); Glaser, C. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); RZM Zentrum, Munich (Germany)

    2015-06-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  2. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms.

    Directory of Open Access Journals (Sweden)

    Kristin Verena Kaltdorf

    2017-01-01

    Full Text Available Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i in embryonic Danio rerio 4 and 8 days past fertilization (dpf and (ii to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ wild-type and its septin mutant (unc-59(e261. We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261 on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement. This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter. Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles and specificity (true vesicles as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual

  3. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms.

    Science.gov (United States)

    Kaltdorf, Kristin Verena; Schulze, Katja; Helmprobst, Frederik; Kollmannsberger, Philip; Dandekar, Thomas; Stigloher, Christian

    2017-01-01

    Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation

  4. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  5. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  6. Computer-aided Detection of Cancer in Automated 3D Breast Ultrasound

    NARCIS (Netherlands)

    Tan, T.; Platel, B.; Mus, R.; Tabar, L.; Mann, R.; Karssemeijer, N.

    2013-01-01

    Automated 3D breast ultrasound (ABUS) has gained a lot of interest and may become widely used in screening of dense breasts, where sensitivity of mammography is poor. However, reading ABUS images is time consuming, and subtle abnormalities may be missed. Therefore, we are developing a computer aided

  7. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    Science.gov (United States)

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification.

    Science.gov (United States)

    Rawat, Siddharth; Komatsu, Satoru; Markman, Adam; Anand, Arun; Javidi, Bahram

    2017-03-20

    We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier. The 3D printed prototype can serve as a low-cost alternative for the developing world, where access to laboratory facilities for disease diagnosis are limited. Additionally, a cell phone sensor is used to capture the digital holograms. This enables the user to send the acquired holograms over the internet to a computational device located remotely for cellular identification and classification (analysis). The 3D printed system presented in this paper can be used as a low-cost, stable, and field-portable digital holographic microscope as well as an automated cell identification system. To the best of our knowledge, this is the first research paper presenting automatic cell identification using a low-cost 3D printed digital holographic microscopy setup based on common path shearing interferometry.

  9. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  10. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.

    Science.gov (United States)

    Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F

    2018-01-12

    Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was

  11. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.

    Science.gov (United States)

    Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard

    2018-03-02

    Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  12. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation

    Directory of Open Access Journals (Sweden)

    Florian Rist

    2018-03-01

    Full Text Available Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r2 = 0.95 for berry number compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  13. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.

    Science.gov (United States)

    Wahabzada, Mirwaes; Paulus, Stefan; Kersting, Kristian; Mahlein, Anne-Katrin

    2015-08-08

    Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven approach for plant organ segmentation. The automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture. An automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds first insights into plant data can be deviated - even from non-labelled data. This approach is applicable to different plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping scenarios and will support the evaluation of the performance of different plant

  14. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  15. Framework for Automated GD&T Inspection Using 3D Scanner

    Science.gov (United States)

    Pathak, Vimal Kumar; Singh, Amit Kumar; Sivadasan, M.; Singh, N. K.

    2016-08-01

    Geometric Dimensioning and Tolerancing (GD&T) is a typical dialect that helps designers, production faculty and quality monitors to convey design specifications in an effective and efficient manner. GD&T has been practiced since the start of machine component assembly but without overly naming it. However, in recent times industries have started increasingly emphasizing on it. One prominent area where most of the industries struggle with is quality inspection. Complete inspection process is mostly human intensive. Also, the use of conventional gauges and templates for inspection purpose highly depends on skill of workers and quality inspectors. In industries, the concept of 3D scanning is not new but is used only for creating 3D drawings or modelling of physical parts. However, the potential of 3D scanning as a powerful inspection tool is hardly explored. This study is centred on designing a procedure for automated inspection using 3D scanner. Linear, geometric and dimensional inspection of the most popular test bar-stepped bar, as a simple example was also carried out as per the new framework. The new generation engineering industries would definitely welcome this automated inspection procedure being quick and reliable with reduced human intervention.

  16. Framework for Automated GD&T Inspection Using 3D Scanner

    Science.gov (United States)

    Pathak, Vimal Kumar; Singh, Amit Kumar; Sivadasan, M.; Singh, N. K.

    2018-04-01

    Geometric Dimensioning and Tolerancing (GD&T) is a typical dialect that helps designers, production faculty and quality monitors to convey design specifications in an effective and efficient manner. GD&T has been practiced since the start of machine component assembly but without overly naming it. However, in recent times industries have started increasingly emphasizing on it. One prominent area where most of the industries struggle with is quality inspection. Complete inspection process is mostly human intensive. Also, the use of conventional gauges and templates for inspection purpose highly depends on skill of workers and quality inspectors. In industries, the concept of 3D scanning is not new but is used only for creating 3D drawings or modelling of physical parts. However, the potential of 3D scanning as a powerful inspection tool is hardly explored. This study is centred on designing a procedure for automated inspection using 3D scanner. Linear, geometric and dimensional inspection of the most popular test bar-stepped bar, as a simple example was also carried out as per the new framework. The new generation engineering industries would definitely welcome this automated inspection procedure being quick and reliable with reduced human intervention.

  17. Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound.

    Science.gov (United States)

    Tan, Tao; Mordang, Jan-Jurre; van Zelst, Jan; Grivegnée, André; Gubern-Mérida, Albert; Melendez, Jaime; Mann, Ritse M; Zhang, Wei; Platel, Bram; Karssemeijer, Nico

    2015-04-01

    Automated 3D breast ultrasound (ABUS) has gained interest in breast imaging. Especially for screening women with dense breasts, ABUS appears to be beneficial. However, since the amount of data generated is large, the risk of oversight errors is substantial. Computer aided detection (CADe) may be used as a second reader to prevent oversight errors. When CADe is used in this fashion, it is essential that small cancers are detected, while the number of false positive findings should remain acceptable. In this work, the authors improve their previously developed CADe system in the initial candidate detection stage. The authors use a large number of 2D Haar-like features to differentiate lesion structures from false positives. Using a cascade of GentleBoost classifiers that combines these features, a likelihood score, highly specific for small cancers, can be efficiently computed. The likelihood scores are added to the previously developed voxel features to improve detection. The method was tested in a dataset of 414 ABUS volumes with 211 cancers. Cancers had a mean size of 14.72 mm. Free-response receiver operating characteristic analysis was performed to evaluate the performance of the algorithm with and without using the aforementioned Haar-like feature likelihood scores. After the initial detection stage, the number of missed cancer was reduced by 18.8% after adding Haar-like feature likelihood scores. The proposed technique significantly improves our previously developed CADe system in the initial candidate detection stage.

  18. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  19. Automated 3-D echocardiography analysis compared with manual delineations and SPECT MUGA.

    Science.gov (United States)

    Sanchez-Ortiz, Gerardo I; Wright, Gabriel J T; Clarke, Nigel; Declerck, Jérôme; Banning, Adrian P; Noble, J Alison

    2002-09-01

    A major barrier for using 3-D echocardiography for quantitative analysis of heart function in routine clinical practice is the absence of accurate and robust segmentation and tracking methods necessary to make the analysis automatic. In this paper, we present an automated three-dimensional (3-D) echocardiographic acquisition and image-processing methodology for assessment of left ventricular (LV) function. We combine global image information provided by a novel multiscale fuzzy-clustering segmentation algorithm, with local boundaries obtained with phase-based acoustic feature detection. We then use the segmentation results to fit and track the LV endocardial surface using a 3-D continuous transformation. To our knowledge, this is the first report of a completely automated method. The protocol is evaluated in a small clinical case study (nine patients). We compare ejection fractions (EFs) computed with the new approach to those obtained using the standard clinical technique, single-photon emission computed tomography multigated acquisition. Errors on six datasets were found to be within six percentage points. A further two, with poor image quality, improved upon EFs from manually delineated contours, and the last failed due to artifacts in the data. Volume-time curves were derived and the results compared to those from manual segmentation. Improvement over an earlier published version of the method is noted.

  20. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    International Nuclear Information System (INIS)

    Lee, Woonghee; Petit, Chad M.; Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L.

    2016-01-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  1. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing.

    Science.gov (United States)

    Wittbrodt, Jonas N; Liebel, Urban; Gehrig, Jochen

    2014-05-01

    The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods.

  2. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data.

    Science.gov (United States)

    Lee, Woonghee; Petit, Chad M; Cornilescu, Gabriel; Stark, Jaime L; Markley, John L

    2016-06-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27-98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  3. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States); Petit, Chad M. [University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics (United States); Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-06-15

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  4. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    Science.gov (United States)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  5. Automated 3D-Objectdocumentation on the Base of an Image Set

    Directory of Open Access Journals (Sweden)

    Sebastian Vetter

    2011-12-01

    Full Text Available Digital stereo-photogrammetry allows users an automatic evaluation of the spatial dimension and the surface texture of objects. The integration of image analysis techniques simplifies the automation of evaluation of large image sets and offers a high accuracy [1]. Due to the substantial similarities of stereoscopic image pairs, correlation techniques provide measurements of subpixel precision for corresponding image points. With the help of an automated point search algorithm in image sets identical points are used to associate pairs of images to stereo models and group them. The found identical points in all images are basis for calculation of the relative orientation of each stereo model as well as defining the relation of neighboured stereo models. By using proper filter strategies incorrect points are removed and the relative orientation of the stereo model can be made automatically. With the help of 3D-reference points or distances at the object or a defined distance of camera basis the stereo model is orientated absolute. An adapted expansion- and matching algorithm offers the possibility to scan the object surface automatically. The result is a three dimensional point cloud; the scan resolution depends on image quality. With the integration of the iterative closest point- algorithm (ICP these partial point clouds are fitted to a total point cloud. In this way, 3D-reference points are not necessary. With the help of the implemented triangulation algorithm a digital surface models (DSM can be created. The texturing can be made automatically by the usage of the images that were used for scanning the object surface. It is possible to texture the surface model directly or to generate orthophotos automatically. By using of calibrated digital SLR cameras with full frame sensor a high accuracy can be reached. A big advantage is the possibility to control the accuracy and quality of the 3d-objectdocumentation with the resolution of the images. The

  6. Algorithms of control parameters selection for automation of FDM 3D printing process

    Directory of Open Access Journals (Sweden)

    Kogut Paweł

    2017-01-01

    Full Text Available The paper presents algorithms of control parameters selection of the Fused Deposition Modelling (FDM technology in case of an open printing solutions environment and 3DGence ONE printer. The following parameters were distinguished: model mesh density, material flow speed, cooling performance, retraction and printing speeds. These parameters are independent in principle printing system, but in fact to a certain degree that results from the selected printing equipment features. This is the first step for automation of the 3D printing process in FDM technology.

  7. 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors.

    Science.gov (United States)

    Narayanaswamy, Arunachalam; Wang, Yu; Roysam, Badrinath

    2011-09-01

    The accuracy and reliability of automated neurite tracing systems is ultimately limited by image quality as reflected in the signal-to-noise ratio, contrast, and image variability. This paper describes a novel combination of image processing methods that operate on images of neurites captured by confocal and widefield microscopy, and produce synthetic images that are better suited to automated tracing. The algorithms are based on the curvelet transform (for denoising curvilinear structures and local orientation estimation), perceptual grouping by scalar voting (for elimination of non-tubular structures and improvement of neurite continuity while preserving branch points), adaptive focus detection, and depth estimation (for handling widefield images without deconvolution). The proposed methods are fast, and capable of handling large images. Their ability to handle images of unlimited size derives from automated tiling of large images along the lateral dimension, and processing of 3-D images one optical slice at a time. Their speed derives in part from the fact that the core computations are formulated in terms of the Fast Fourier Transform (FFT), and in part from parallel computation on multi-core computers. The methods are simple to apply to new images since they require very few adjustable parameters, all of which are intuitive. Examples of pre-processing DIADEM Challenge images are used to illustrate improved automated tracing resulting from our pre-processing methods.

  8. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Directory of Open Access Journals (Sweden)

    Andrew J. Capel

    2017-01-01

    Full Text Available Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  9. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  10. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.

    Science.gov (United States)

    Pouch, Alison M; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M; Sehgal, Chandra M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2013-01-01

    The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry.

  11. Automated Reconstruction of Walls from Airborne LIDAR Data for Complete 3d Building Modelling

    Science.gov (United States)

    He, Y.; Zhang, C.; Awrangjeb, M.; Fraser, C. S.

    2012-07-01

    Automated 3D building model generation continues to attract research interests in photogrammetry and computer vision. Airborne Light Detection and Ranging (LIDAR) data with increasing point density and accuracy has been recognized as a valuable source for automated 3D building reconstruction. While considerable achievements have been made in roof extraction, limited research has been carried out in modelling and reconstruction of walls, which constitute important components of a full building model. Low point density and irregular point distribution of LIDAR observations on vertical walls render this task complex. This paper develops a novel approach for wall reconstruction from airborne LIDAR data. The developed method commences with point cloud segmentation using a region growing approach. Seed points for planar segments are selected through principle component analysis, and points in the neighbourhood are collected and examined to form planar segments. Afterwards, segment-based classification is performed to identify roofs, walls and planar ground surfaces. For walls with sparse LIDAR observations, a search is conducted in the neighbourhood of each individual roof segment to collect wall points, and the walls are then reconstructed using geometrical and topological constraints. Finally, walls which were not illuminated by the LIDAR sensor are determined via both reconstructed roof data and neighbouring walls. This leads to the generation of topologically consistent and geometrically accurate and complete 3D building models. Experiments have been conducted in two test sites in the Netherlands and Australia to evaluate the performance of the proposed method. Results show that planar segments can be reliably extracted in the two reported test sites, which have different point density, and the building walls can be correctly reconstructed if the walls are illuminated by the LIDAR sensor.

  12. Automated single-voxel proton MRS: technical development and multisite verification.

    Science.gov (United States)

    Webb, P G; Sailasuta, N; Kohler, S J; Raidy, T; Moats, R A; Hurd, R E

    1994-04-01

    To improve clinical utility, an integrated method has been developed to automatically acquire and process single-voxel in vivo proton spectra on a 1.5 T clinical scanner. This method includes automated adjustment of linear shims using a very rapid modified simplex method, automated water suppression, and applies a water referencing scheme to correct for phase and residual eddy current effects. No operator intervention is required for the acquisition and processing of these pure-absorption spectra. This method was tested in a preliminary multisite trial to determine intersite and intrasite variability of metabolite ratio measurements. In a sample of over 100 examinations, the standard deviation of the ratios NAA:Cr, Cho:Cr, and ml:Cr were found to be under 15% when using this method, a substantially narrower range than has been found in studies relying on manual adjustment of the instrument and/or manual processing. This result indicates that automated setting of acquisition and processing parameters is of critical importance in the clinical application of in vivo spectroscopy.

  13. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions

    Directory of Open Access Journals (Sweden)

    Johann Christian Rose

    2016-12-01

    Full Text Available In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.

  14. AUTOMATED FEATURE BASED TLS DATA REGISTRATION FOR 3D BUILDING MODELING

    Directory of Open Access Journals (Sweden)

    K. Kitamura

    2012-07-01

    Full Text Available In this paper we present a novel method for the registration of point cloud data obtained using terrestrial laser scanner (TLS. The final goal of our investigation is the automated reconstruction of CAD drawings and the 3D modeling of objects surveyed by TLS. Because objects are scanned from multiple positions, individual point cloud need to be registered to the same coordinate system. We propose in this paper an automated feature based registration procedure. Our proposed method does not require the definition of initial values or the placement of targets and is robust against noise and background elements. A feature extraction procedure is performed for each point cloud as pre-processing. The registration of the point clouds from different viewpoints is then performed by utilizing the extracted features. The feature extraction method which we had developed previously (Kitamura, 2010 is used: planes and edges are extracted from the point cloud. By utilizing these features, the amount of information to process is reduced and the efficiency of the whole registration procedure is increased. In this paper, we describe the proposed algorithm and, in order to demonstrate its effectiveness, we show the results obtained by using real data.

  15. Automated 3D ultrasound elastography of the breast: a phantom validation study

    International Nuclear Information System (INIS)

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Hansen, Hendrik H G; De Korte, Chris L; Milkowski, Andy

    2016-01-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s −1 ) and by three protocols: Go–Go (pre- and post-volumes with identical start and end positions), Go–Return (similar to Go–Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go–Go protocol was shown to be superior with better strain image quality (CNR e and SNR e ) than Go–Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go–Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go–Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to

  16. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    Science.gov (United States)

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on

  17. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kurugol, Sila, E-mail: sila.kurugol@childrens.harvard.edu; Come, Carolyn E.; Diaz, Alejandro A.; Ross, James C.; Washko, George R.; San Jose Estepar, Raul [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Kinney, Greg L.; Black-Shinn, Jennifer L.; Hokanson, John E. [Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado 80045 (United States); Budoff, Matthew J. [Los Angeles Biomedical Research Center at Harbor and UCLA Medical Center, Torrance, California 90502 (United States)

    2015-09-15

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular

  18. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    Science.gov (United States)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  19. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Stefan Paulus

    2014-07-01

    Full Text Available Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0:99 for the leaf area and R2 = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  20. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    Directory of Open Access Journals (Sweden)

    Philip J. Kitson

    2016-12-01

    Full Text Available An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis.

  1. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.

    Science.gov (United States)

    Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.

  2. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound.

    Science.gov (United States)

    Pouch, Alison M; Yushkevich, Paul A; Jackson, Benjamin M; Jassar, Arminder S; Vergnat, Mathieu; Gorman, Joseph H; Gorman, Robert C; Sehgal, Chandra M

    2012-02-01

    Precise 3D modeling of the mitral valve has the potential to improve our understanding of valve morphology, particularly in the setting of mitral regurgitation (MR). Toward this goal, the authors have developed a user-initialized algorithm for reconstructing valve geometry from transesophageal 3D ultrasound (3D US) image data. Semi-automated image analysis was performed on transesophageal 3D US images obtained from 14 subjects with MR ranging from trace to severe. Image analysis of the mitral valve at midsystole had two stages: user-initialized segmentation and 3D deformable modeling with continuous medial representation (cm-rep). Semi-automated segmentation began with user-identification of valve location in 2D projection images generated from 3D US data. The mitral leaflets were then automatically segmented in 3D using the level set method. Second, a bileaflet deformable medial model was fitted to the binary valve segmentation by Bayesian optimization. The resulting cm-rep provided a visual reconstruction of the mitral valve, from which localized measurements of valve morphology were automatically derived. The features extracted from the fitted cm-rep included annular area, annular circumference, annular height, intercommissural width, septolateral length, total tenting volume, and percent anterior tenting volume. These measurements were compared to those obtained by expert manual tracing. Regurgitant orifice area (ROA) measurements were compared to qualitative assessments of MR severity. The accuracy of valve shape representation with cm-rep was evaluated in terms of the Dice overlap between the fitted cm-rep and its target segmentation. The morphological features and anatomic ROA derived from semi-automated image analysis were consistent with manual tracing of 3D US image data and with qualitative assessments of MR severity made on clinical radiology. The fitted cm-reps accurately captured valve shape and demonstrated patient-specific differences in valve

  3. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  4. 3D deeply supervised network for automated segmentation of volumetric medical images.

    Science.gov (United States)

    Dou, Qi; Yu, Lequan; Chen, Hao; Jin, Yueming; Yang, Xin; Qin, Jing; Heng, Pheng-Ann

    2017-10-01

    While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events

    Science.gov (United States)

    Javidi, Bahram; Yeom, Seokwon; Moon, Inkyu; Daneshpanah, Mehdi

    2006-05-01

    In this paper, we present an overview of three-dimensional (3D) optical imaging techniques for real-time automated sensing, visualization, and recognition of dynamic biological microorganisms. Real time sensing and 3D reconstruction of the dynamic biological microscopic objects can be performed by single-exposure on-line (SEOL) digital holographic microscopy. A coherent 3D microscope-based interferometer is constructed to record digital holograms of dynamic micro biological events. Complex amplitude 3D images of the biological microorganisms are computationally reconstructed at different depths by digital signal processing. Bayesian segmentation algorithms are applied to identify regions of interest for further processing. A number of pattern recognition approaches are addressed to identify and recognize the microorganisms. One uses 3D morphology of the microorganisms by analyzing 3D geometrical shapes which is composed of magnitude and phase. Segmentation, feature extraction, graph matching, feature selection, and training and decision rules are used to recognize the biological microorganisms. In a different approach, 3D technique is used that are tolerant to the varying shapes of the non-rigid biological microorganisms. After segmentation, a number of sampling patches are arbitrarily extracted from the complex amplitudes of the reconstructed 3D biological microorganism. These patches are processed using a number of cost functions and statistical inference theory for the equality of means and equality of variances between the sampling segments. Also, we discuss the possibility of employing computational integral imaging for 3D sensing, visualization, and recognition of biological microorganisms illuminated under incoherent light. Experimental results with several biological microorganisms are presented to illustrate detection, segmentation, and identification of micro biological events.

  6. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    (4.5%) subset #4 model (subsets #4 and #8 concern IgG CLL, in itself a rarity for CLL). These findings support that the innovative workflow described here enables robust clustering of 3D models produced from Ig sequences from patients with CLL. Furthermore, they indicate that CLL classification based...... study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...

  7. AUTOMATED 3D ROAD SIGN MAPPING WITH STEREOVISION-BASED MOBILE MAPPING EXPLOITING DISPARITY INFORMATION FROM DENSE STEREO MATCHING

    Directory of Open Access Journals (Sweden)

    S. Cavegn

    2012-07-01

    Full Text Available This paper presents algorithms and investigations on the automated detection, classification and mapping of road signs which systematically exploit depth information from stereo images. This approach was chosen due to recent progress in the development of stereo matching algorithms enabling the generation of accurate and dense depth maps. In comparison to mono imagery-based approaches, depth maps also allow 3D mapping of the objects. This is essential for efficient inventory and for future change detection purposes. Test measurements with the mobile mapping system by the Institute of Geomatics Engineering of the FHNW University of Applied Sciences and Arts Northwestern Switzerland demonstrated that the developed algorithms for the automated 3D road sign mapping perform well, even under difficult to poor lighting conditions. Approximately 90% of the relevant road signs with predominantly red, blue and yellow colors in Switzerland can be detected, and 85% can be classified correctly. Furthermore, fully automated mapping with a 3D accuracy of better than 10 cm is possible.

  8. From SFM to 3d Print: Automated Workflow Addressed to Practitioner Aimed at the Conservation and Restauration

    Science.gov (United States)

    Inzerillo, L.; Di Paola, F.

    2017-08-01

    In In the last years there has been an increasing use of digital techniques for conservation and restoration purposes. Among these, a very dominant rule is played by the use of digital photogrammetry packages (Agisoft Photoscan, 3D Zephir) which allow to obtain in few steps 3D textured models of real objects. Combined with digital documentation technologies digital fabrication technologies can be employed in a variety of ways to assist in heritage documentation, conservation and dissemination. This paper will give to practitioners an overview on the state of the art available technologies and a feasible workflow for optimizing point cloud and polygon mesh datasets for the purpose of fabrication using 3D printing. The goal is to give an important contribute to confer an automation aspect at the whole processing. We tried to individuate a workflow that should be applicable to several types of cases apart from small precautions. In our experimentation we used a DELTA WASP 2040 printer with PLA easyfil.

  9. BranchAnalysis2D/3D automates morphometry analyses of branching structures.

    Science.gov (United States)

    Srinivasan, Aditya; Muñoz-Estrada, Jesús; Bourgeois, Justin R; Nalwalk, Julia W; Pumiglia, Kevin M; Sheen, Volney L; Ferland, Russell J

    2018-01-15

    Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models

    International Nuclear Information System (INIS)

    Fonseca, Telma Cristina Ferreira

    2009-01-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C ++ programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  11. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  12. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...

  13. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs. Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  14. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Science.gov (United States)

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  15. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds.

    Science.gov (United States)

    Dorninger, Peter; Pfeifer, Norbert

    2008-11-17

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  16. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    Norbert Pfeifer

    2008-11-01

    Full Text Available Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  17. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    International Nuclear Information System (INIS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-01-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  18. Sequencing Heuristics for Storing and Retrieving Unit Loads in 3D Compact Automated Warehousing Systems

    NARCIS (Netherlands)

    Y. Yu (Yugang); M.B.M. de Koster (René)

    2011-01-01

    textabstractSequencing unit load retrieval requests has been studied extensively in literature for conventional single-deep automated warehousing systems. A proper sequence can greatly reduce the makespan when carrying out a group of such requests. Although the sequencing problem is NP-hard some

  19. Deposit3D: a tool for automating structure depositions to the Protein Data Bank

    International Nuclear Information System (INIS)

    Badger, J.; Hendle, J.; Burley, S. K.; Kissinger, C. R.

    2005-01-01

    This paper describes a Python script that may be used to gather all required structure-annotation information into an mmCIF file for upload through the RCSB PDB ADIT structure-deposition interface. Almost all successful protein structure-determination projects in the public sector culminate in a structure deposition to the Protein Data Bank (PDB). In order to expedite the deposition proces, Deposit3D has been developed. This command-line script calculates or gathers all the required structure-deposition information and outputs this data into a mmCIF file for subsequent upload through the RCSB PDB ADIT interface. Deposit3D might be particularly useful for structural genomics pipeline projects because it allows workers involved with various stages of a structure-determination project to pool their different categories of annotation information before starting a deposition session

  20. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    OpenAIRE

    Khorshed, Reema?A.; Hawkins, Edwin?D.; Duarte, Delfim; Scott, Mark?K.; Akinduro, Olufolake?A.; Rashidi, Narges?M.; Spitaler, Martin; Lo?Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is ...

  1. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    Science.gov (United States)

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  2. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    OpenAIRE

    Wittbrodt, Jonas N.; Liebel, Urban; Gehrig, Jochen

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. ...

  3. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.

    Science.gov (United States)

    Singh, P K; Hernandez-Herrera, P; Labate, D; Papadakis, M

    2017-10-01

    Despite the significant advances in the development of automated image analysis algorithms for the detection and extraction of neuronal structures, current software tools still have numerous limitations when it comes to the detection and analysis of dendritic spines. The problem is especially challenging in in vivo imaging, where the difficulty of extracting morphometric properties of spines is compounded by lower image resolution and contrast levels native to two-photon laser microscopy. To address this challenge, we introduce a new computational framework for the automated detection and quantitative analysis of dendritic spines in vivo multi-photon imaging. This framework includes: (i) a novel preprocessing algorithm enhancing spines in a way that they are included in the binarized volume produced during the segmentation of foreground from background; (ii) the mathematical foundation of this algorithm, and (iii) an algorithm for the detection of spine locations in reference to centerline trace and separating them from the branches to whom spines are attached to. This framework enables the computation of a wide range of geometric features such as spine length, spatial distribution and spine volume in a high-throughput fashion. We illustrate our approach for the automated extraction of dendritic spine features in time-series multi-photon images of layer 5 cortical excitatory neurons from the mouse visual cortex.

  4. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments

    DEFF Research Database (Denmark)

    Theis, Corinna; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2013-01-01

    and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules...... comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22495 3D modules in all PDB files results in 977 internal loop...

  5. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data

    Directory of Open Access Journals (Sweden)

    Wenting Luo

    2016-04-01

    Full Text Available Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU. The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with kinematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.

  6. Modular high power diode lasers with flexible 3D multiplexing arrangement optimized for automated manufacturing

    Science.gov (United States)

    Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens

    2018-02-01

    A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.

  7. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm.

    Science.gov (United States)

    Maglietta, Rosalia; Amoroso, Nicola; Boccardi, Marina; Bruno, Stefania; Chincarini, Andrea; Frisoni, Giovanni B; Inglese, Paolo; Redolfi, Alberto; Tangaro, Sabina; Tateo, Andrea; Bellotti, Roberto

    The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice's index of [Formula: see text] ([Formula: see text]) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi.

  8. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    Science.gov (United States)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  9. Automated 3D Volumetry of the Pulmonary Arteries based on Magnetic Resonance Angiography Has Potential for Predicting Pulmonary Hypertension.

    Directory of Open Access Journals (Sweden)

    Fabian Rengier

    Full Text Available To demonstrate feasibility of automated 3D volumetry of central pulmonary arteries based on magnetic resonance angiography (MRA, to assess pulmonary artery volumes in patients with pulmonary hypertension compared to healthy controls, and to investigate the potential of the technique for predicting pulmonary hypertension.MRA of pulmonary arteries was acquired at 1.5T in 20 patients with pulmonary arterial hypertension and 21 healthy normotensive controls. 3D model-based image analysis software was used for automated segmentation of main, right and left pulmonary arteries (MPA, RPA and LPA. Volumes indexed to vessel length and mean, minimum and maximum diameters along the entire vessel course were assessed and corrected for body surface area (BSA. For comparison, diameters were also manually measured on axial reconstructions and double oblique multiplanar reformations. Analyses were performed by two cardiovascular radiologists, and by one radiologist again after 6 months.Mean volumes of MPA, RPA and LPA for patients/controls were 5508 ± 1236/3438 ± 749, 3522 ± 934/1664 ± 468 and 3093 ± 692/1812 ± 474 μl/(cm length x m2 BSA (all p<0.001. Mean, minimum and maximum diameters along the entire vessel course were also significantly increased in patients compared to controls (all p<0.001. Intra- and interobserver agreement were excellent for both volume and diameter measurements using 3D segmentation (intraclass correlation coefficients 0.971-0.999, p<0.001. Area under the curve for predicting pulmonary hypertension using volume was 0.998 (95% confidence interval 0.990-1.0, p<0.001, compared to 0.967 using manually measured MPA diameter (95% confidence interval 0.910-1.0, p<0.001.Automated MRA-based 3D volumetry of central pulmonary arteries is feasible and demonstrated significantly increased volumes and diameters in patients with pulmonary arterial hypertension compared to healthy controls. Pulmonary artery volume may serve as a superior

  10. Automated 3D Volumetry of the Pulmonary Arteries based on Magnetic Resonance Angiography Has Potential for Predicting Pulmonary Hypertension.

    Science.gov (United States)

    Rengier, Fabian; Wörz, Stefan; Melzig, Claudius; Ley, Sebastian; Fink, Christian; Benjamin, Nicola; Partovi, Sasan; von Tengg-Kobligk, Hendrik; Rohr, Karl; Kauczor, Hans-Ulrich; Grünig, Ekkehard

    2016-01-01

    To demonstrate feasibility of automated 3D volumetry of central pulmonary arteries based on magnetic resonance angiography (MRA), to assess pulmonary artery volumes in patients with pulmonary hypertension compared to healthy controls, and to investigate the potential of the technique for predicting pulmonary hypertension. MRA of pulmonary arteries was acquired at 1.5T in 20 patients with pulmonary arterial hypertension and 21 healthy normotensive controls. 3D model-based image analysis software was used for automated segmentation of main, right and left pulmonary arteries (MPA, RPA and LPA). Volumes indexed to vessel length and mean, minimum and maximum diameters along the entire vessel course were assessed and corrected for body surface area (BSA). For comparison, diameters were also manually measured on axial reconstructions and double oblique multiplanar reformations. Analyses were performed by two cardiovascular radiologists, and by one radiologist again after 6 months. Mean volumes of MPA, RPA and LPA for patients/controls were 5508 ± 1236/3438 ± 749, 3522 ± 934/1664 ± 468 and 3093 ± 692/1812 ± 474 μl/(cm length x m2 BSA) (all p<0.001). Mean, minimum and maximum diameters along the entire vessel course were also significantly increased in patients compared to controls (all p<0.001). Intra- and interobserver agreement were excellent for both volume and diameter measurements using 3D segmentation (intraclass correlation coefficients 0.971-0.999, p<0.001). Area under the curve for predicting pulmonary hypertension using volume was 0.998 (95% confidence interval 0.990-1.0, p<0.001), compared to 0.967 using manually measured MPA diameter (95% confidence interval 0.910-1.0, p<0.001). Automated MRA-based 3D volumetry of central pulmonary arteries is feasible and demonstrated significantly increased volumes and diameters in patients with pulmonary arterial hypertension compared to healthy controls. Pulmonary artery volume may serve as a superior predictor for

  11. FROM SFM TO 3D PRINT: AUTOMATED WORKFLOW ADDRESSED TO PRACTITIONER AIMED AT THE CONSERVATION AND RESTAURATION

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available In In the last years there has been an increasing use of digital techniques for conservation and restoration purposes. Among these, a very dominant rule is played by the use of digital photogrammetry packages (Agisoft Photoscan, 3D Zephir which allow to obtain in few steps 3D textured models of real objects. Combined with digital documentation technologies digital fabrication technologies can be employed in a variety of ways to assist in heritage documentation, conservation and dissemination. This paper will give to practitioners an overview on the state of the art available technologies and a feasible workflow for optimizing point cloud and polygon mesh datasets for the purpose of fabrication using 3D printing. The goal is to give an important contribute to confer an automation aspect at the whole processing. We tried to individuate a workflow that should be applicable to several types of cases apart from small precautions. In our experimentation we used a DELTA WASP 2040 printer with PLA easyfil.

  12. SU-F-J-93: Automated Segmentation of High-Resolution 3D WholeBrain Spectroscopic MRI for Glioblastoma Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Schreibmann, E; Shu, H [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA (United States); Cordova, J; Gurbani, S; Holder, C; Cooper, L; Shim, H [Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (United States)

    2016-06-15

    Purpose: We report on an automated segmentation algorithm for defining radiation therapy target volumes using spectroscopic MR images (sMRI) acquired at nominal voxel resolution of 100 microliters. Methods: Wholebrain sMRI combining 3D echo-planar spectroscopic imaging, generalized auto-calibrating partially-parallel acquisitions, and elliptical k-space encoding were conducted on 3T MRI scanner with 32-channel head coil array creating images. Metabolite maps generated include choline (Cho), creatine (Cr), and N-acetylaspartate (NAA), as well as Cho/NAA, Cho/Cr, and NAA/Cr ratio maps. Automated segmentation was achieved by concomitantly considering sMRI metabolite maps with standard contrast enhancing (CE) imaging in a pipeline that first uses the water signal for skull stripping. Subsequently, an initial blob of tumor region is identified by searching for regions of FLAIR abnormalities that also display reduced NAA activity using a mean ratio correlation and morphological filters. These regions are used as starting point for a geodesic level-set refinement that adapts the initial blob to the fine details specific to each metabolite. Results: Accuracy of the segmentation model was tested on a cohort of 12 patients that had sMRI datasets acquired pre, mid and post-treatment, providing a broad range of enhancement patterns. Compared to classical imaging, where heterogeneity in the tumor appearance and shape across posed a greater challenge to the algorithm, sMRI’s regions of abnormal activity were easily detected in the sMRI metabolite maps when combining the detail available in the standard imaging with the local enhancement produced by the metabolites. Results can be imported in the treatment planning, leading in general increase in the target volumes (GTV60) when using sMRI+CE MRI compared to the standard CE MRI alone. Conclusion: Integration of automated segmentation of sMRI metabolite maps into planning is feasible and will likely streamline acceptance of this

  13. Automated fault extraction and classification using 3-D seismic data for the Ekofisk field development

    Energy Technology Data Exchange (ETDEWEB)

    Signer, C.; Nickel, M.; Randen, T.; Saeter, T.; Soenneland, H.H.

    1998-12-31

    Mapping of fractures is important for the prediction of fluid flow in many reservoir types. The fluid flow depends mainly on the efficiency of the reservoir seals. Improved spatial mapping of the open and closed fracture systems will allow a better prediction of the fluid flow pattern. The primary objectives of this paper is to present fracture characterization at the reservoir scale combined with seismic facies mapping. The complexity of the giant Ekofisk field on the Norwegian continental shelf provides an ideal framework for testing the validity and the applicability of an automated seismic fault and fracture detection and mapping tool. The mapping of the faults can be based on seismic attribute grids, which means that attribute-responses related to faults are extracted along key horizons which were interpreted in the reservoir interval. 3 refs., 3 figs.

  14. AUTOMATED VOXEL MODEL FROM POINT CLOUDS FOR STRUCTURAL ANALYSIS OF CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    G. Bitelli

    2016-06-01

    Full Text Available In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy that was hit by an earthquake in 2012.

  15. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    International Nuclear Information System (INIS)

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H.

    1996-01-01

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog's chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data

  16. A machine learning pipeline for automated registration and classification of 3D lidar data

    Science.gov (United States)

    Rajagopal, Abhejit; Chellappan, Karthik; Chandrasekaran, Shivkumar; Brown, Andrew P.

    2017-05-01

    Despite the large availability of geospatial data, registration and exploitation of these datasets remains a persis- tent challenge in geoinformatics. Popular signal processing and machine learning algorithms, such as non-linear SVMs and neural networks, rely on well-formatted input models as well as reliable output labels, which are not always immediately available. In this paper we outline a pipeline for gathering, registering, and classifying initially unlabeled wide-area geospatial data. As an illustrative example, we demonstrate the training and test- ing of a convolutional neural network to recognize 3D models in the OGRIP 2007 LiDAR dataset using fuzzy labels derived from OpenStreetMap as well as other datasets available on OpenTopography.org. When auxiliary label information is required, various text and natural language processing filters are used to extract and cluster keywords useful for identifying potential target classes. A subset of these keywords are subsequently used to form multi-class labels, with no assumption of independence. Finally, we employ class-dependent geometry extraction routines to identify candidates from both training and testing datasets. Our regression networks are able to identify the presence of 6 structural classes, including roads, walls, and buildings, in volumes as big as 8000 m3 in as little as 1.2 seconds on a commodity 4-core Intel CPU. The presented framework is neither dataset nor sensor-modality limited due to the registration process, and is capable of multi-sensor data-fusion.

  17. AN AUTOMATED METHOD FOR 3D ROOF OUTLINE GENERATION AND REGULARIZATION IN AIRBONE LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    S. N. Perera

    2012-07-01

    Full Text Available In this paper, an automatic approach for the generation and regularization of 3D roof boundaries in Airborne Laser scanner data is presented. The workflow is commenced by segmentation of the point clouds. A classification step and a rule based roof extraction step are followed the planar segmentation. Refinement on roof extraction is performed in order to minimize the effect due to urban vegetation. Boundary points of the connected roof planes are extracted and fitted series of straight line segments. Each line is then regularized with respect to the dominant building orientation. We introduce the usage of cycle graphs for the best use of topological information. Ridge-lines and step-edges are basically extracted to recognise correct topological relationships among the roof faces. Inner roof corners are geometrically fitted based on the closed cycle graphs. Outer boundary is reconstructed using the same concept but with the outer most cycle graph. In here, union of the sub cycles is taken. Intermediate line segments (outer bounds are intersected to reconstruct the roof eave lines. Two test areas with two different point densities are tested with the developed approach. Performance analysis of the test results is provided to demonstrate the applicability of the method.

  18. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-01-04

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  19. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    Science.gov (United States)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  20. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement

    Science.gov (United States)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter

    2012-02-01

    Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.

  1. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models; Desenvolvimento de um sistema computacional para o planejamento radioterapico com a tecnica IMRT aplicado ao codigo MCNP com interface grafica 3D para modelos de voxel

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Telma Cristina Ferreira

    2009-07-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  2. Pattern of cerebral hyperperfusion in Alzheimer's disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: initial experience

    Directory of Open Access Journals (Sweden)

    Ding B

    2014-03-01

    Full Text Available Bei Ding,1 Hua-wei Ling,1 Yong Zhang,2 Juan Huang,1 Huan Zhang,1 Tao Wang,3 Fu Hua Yan11Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 2Applied Science Laboratory, GE Healthcare, 3Department of Gerontology, Shanghai Mental Health Center, Shanghai, People's Republic of ChinaPurpose: A three-dimensional (3D continuous pulse arterial spin labeling (ASL technique was used to investigate cerebral blood flow (CBF changes in patients with Alzheimer's disease (AD, amnestic mild cognitive impairment (aMCI, and age- and sex-matched healthy controls.Materials and methods: Three groups were recruited for comparison, 24 AD patients, 17 MCI patients, and 21 age- and sex-matched control subjects. Three-dimensional ASL scans covering the entire brain were acquired with a 3.0 T magnetic resonance scanner. Spatial processing was performed with statistical parametric mapping 8. A second-level one-way analysis of variance analysis (threshold at P<0.05 was performed on the preprocessed ASL data. An average whole-brain CBF for each subject was also included as group-level covariates for the perfusion data, to control for individual CBF variations.Results: Significantly increased CBF was detected in bilateral frontal lobes and right temporal subgyral regions in aMCI compared with controls. When comparing AD with aMCI, the major hyperperfusion regions were the right limbic lobe and basal ganglia regions, including the putamen, caudate, lentiform nucleus, and thalamus, and hypoperfusion was found in the left medial frontal lobe, parietal cortex, the right middle temporo-occipital lobe, and particularly, the left anterior cingulate gyrus. We also found decreased CBF in the bilateral temporo-parieto-occipital cortices and left limbic lobe in AD patients, relative to the control group. aMCI subjects showed decreased blood flow in the left occipital lobe, bilateral inferior temporal cortex, and right middle temporal cortex

  3. PONDEROSA-C/S: client-server based software package for automated protein 3D structure determination.

    Science.gov (United States)

    Lee, Woonghee; Stark, Jaime L; Markley, John L

    2014-11-01

    Peak-picking Of Noe Data Enabled by Restriction Of Shift Assignments-Client Server (PONDEROSA-C/S) builds on the original PONDEROSA software (Lee et al. in Bioinformatics 27:1727-1728. doi: 10.1093/bioinformatics/btr200, 2011) and includes improved features for structure calculation and refinement. PONDEROSA-C/S consists of three programs: Ponderosa Server, Ponderosa Client, and Ponderosa Analyzer. PONDEROSA-C/S takes as input the protein sequence, a list of assigned chemical shifts, and nuclear Overhauser data sets ((13)C- and/or (15)N-NOESY). The output is a set of assigned NOEs and 3D structural models for the protein. Ponderosa Analyzer supports the visualization, validation, and refinement of the results from Ponderosa Server. These tools enable semi-automated NMR-based structure determination of proteins in a rapid and robust fashion. We present examples showing the use of PONDEROSA-C/S in solving structures of four proteins: two that enable comparison with the original PONDEROSA package, and two from the Critical Assessment of automated Structure Determination by NMR (Rosato et al. in Nat Methods 6:625-626. doi: 10.1038/nmeth0909-625 , 2009) competition. The software package can be downloaded freely in binary format from http://pine.nmrfam.wisc.edu/download_packages.html. Registered users of the National Magnetic Resonance Facility at Madison can submit jobs to the PONDEROSA-C/S server at http://ponderosa.nmrfam.wisc.edu, where instructions, tutorials, and instructions can be found. Structures are normally returned within 1-2 days.

  4. TOWARD AUTOMATED FAÇADE TEXTURE GENERATION FOR 3D PHOTOREALISTIC CITY MODELLING WITH SMARTPHONES OR TABLET PCS

    Directory of Open Access Journals (Sweden)

    S. Wang

    2012-07-01

    Full Text Available An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS, camera, global positioning system (GPS, and gyroscope (G-sensors can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.

  5. Development of Fully Automated Serial-Sectioning 3D Microscope and Topological Approach to Pearlite and Dual-Phase Microstructure in Steels

    Science.gov (United States)

    Adachi, Yoshitaka; Sato, Naoko; Ojima, Mayumi; Nakayama, Makoto; Wang, Yuan-Tsung

    Using a newly developed fully automated serial-sectioning three-dimensional (3D) microscope, Genus_3D, and a conventional dual-beam SEM, we examined ferrite-martensite dual-phase and eutectoid pearlite microstructures. In particular, we consider the topology and differential geometry. Genus, Euler characteristics, Gaussian curvature, and mean curvatures were obtained from 3D reconstructions. A variation in the martensite morphology in dual-phase steel, i.e., connectivity, was examined to understand the ductile fracture mechanism. In addition, we investigated the 3D morphological variation of lamellar cementite in pearlite during spheroidizing. This 3D observation revealed many holes and fissures in cementite lamellae, which potentially accelerate the spheroidization. The disintegration of lamellar structure into particles was discussed with respect to surface area change per unit volume and local surface morphology (i.e., curvature).

  6. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    International Nuclear Information System (INIS)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori; Nozaki, Atsushi; Rettmann, Dan; Abe, Osamu

    2017-01-01

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  7. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    Energy Technology Data Exchange (ETDEWEB)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Nozaki, Atsushi [MR Applications and Workflow Asia Pacific GE Healthcare Japan, Tokyo (Japan); Rettmann, Dan [MR Applications and Workflow GE Healthcare, Rochester, MN (United States); Abe, Osamu [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2017-08-15

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  8. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes.

    Science.gov (United States)

    Stewart, Adam Michael; Grieco, Fabrizio; Tegelenbosch, Ruud A J; Kyzar, Evan J; Nguyen, Michael; Kaluyeva, Aleksandra; Song, Cai; Noldus, Lucas P J J; Kalueff, Allan V

    2015-11-30

    Expanding the spectrum of organisms to model human brain phenotypes is critical for our improved understanding of the pathobiology of neuropsychiatric disorders. Given the clear limitations of existing mammalian models, there is an urgent need for low-cost, high-throughput in-vivo technologies for drug and gene discovery. Here, we introduce a new automated method for generating 3D (X,Y,Z) swim trajectories in adult zebrafish (Danio rerio), to improve their neurophenotyping. Based on the Track3D module of EthoVision XT video tracking software (Noldus Information Technology), this tool enhances the efficient, high-throughput 3D analyses of zebrafish behavioral responses. Applied to adult zebrafish behavior, this 3D method is highly sensitive to various classes of psychotropic drugs, including selected psychostimulant and hallucinogenic agents. Our present method offers a marked advance in the existing 2D and 3D methods of zebrafish behavioral phenotyping, minimizing research time and recording high-resolution, automatically synchronized videos with calculated, high-precision object positioning. Our novel approach brings practical simplicity and 'integrative' capacity to the often complex and error-prone quantification of zebrafish behavioral phenotypes. Illustrating the value of 3D swim path reconstructions for identifying experimentally-evoked phenotypic profiles, this method fosters innovative, ethologically relevant, and fully automated small molecule screens using adult zebrafish. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [{sup 11}C]PIB uptake using 30-min scanning data

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Sargo [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Kemppainen, Nina M. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Neurology, Turku (Finland); Kailajaervi, Marita [University of Turku, Department of Pharmacology and Clinical Research Services Turku (CRST), Turku (Finland); GE Healthcare, Turku Imanet, Turku (Finland); Leinonen, Mika [4-Pharma Ltd, Turku (Finland); Scheinin, Mika [University of Turku, Department of Pharmacology and Clinical Research Services Turku (CRST), Turku (Finland)

    2009-10-15

    Positron emission tomography (PET) with {sup 11}C-labelled Pittsburgh compound B ([{sup 11}C]PIB) enables the quantitation of {beta}-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [{sup 11}C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [{sup 11}C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [{sup 11}C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [{sup 11}C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [{sup 11}C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  10. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [11C]PIB uptake using 30-min scanning data

    International Nuclear Information System (INIS)

    Aalto, Sargo; Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O.; Kemppainen, Nina M.; Kailajaervi, Marita; Leinonen, Mika; Scheinin, Mika

    2009-01-01

    Positron emission tomography (PET) with 11 C-labelled Pittsburgh compound B ([ 11 C]PIB) enables the quantitation of β-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [ 11 C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [ 11 C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [ 11 C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [ 11 C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [ 11 C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  11. In Vivo Brain Rosette Spectroscopic Imaging (RSI) with LASER Excitation, Constant Gradient Strength Readout, and Automated LCModel Quantification for all Voxels

    Science.gov (United States)

    Schirda, Claudiu V.; Zhao, Tiejun; Andronesi, Ovidiu C.; Lee, Yoojin; Pan, Jullie W.; Mountz, James M.; Hetherington, Hoby P.; Boada, Fernando E.

    2017-01-01

    Purpose To optimize the Rosette trajectories for high-sensitivity in vivo brain spectroscopic imaging and reduced gradient demands. Methods Using LASER localization, a rosette based sampling scheme for in vivo brain spectroscopic imaging data on a 3 Tesla (T) system is described. The two-dimensional (2D) and 3D rosette spectroscopic imaging (RSI) data were acquired using 20 × 20 in-plane resolution (8 × 8 mm2), and 1 (2D) −18 mm (1.1 cc) or 12 (3D) −8 mm partitions (0.5 cc voxels). The performance of the RSI acquisition was compared with a conventional spectroscopic imaging (SI) sequence using LASER localization and 2D or 3D elliptical phase encoding (ePE). Quantification of the entire RSI data set was performed using an LCModel based pipeline. Results The RSI acquisitions took 32 s for the 2D scan, and as short as 5 min for the 3D 20 × 20 × 12 scan, using a maximum gradient strength Gmax = 5.8 mT/m and slew-rate Smax = 45 mT/m/ms. The Bland-Altman agreement between RSI and ePE CSI, characterized by the 95% confidence interval for their difference (RSI-ePE), is within 13% of the mean (RSI+ePE)/2. Compared with the 3D ePE at the same nominal resolution, the effective RSI voxel size was three times smaller while the measured signal-to-noise ratio sensitivity, after normalization for differences in effective size, was 43% greater. Conclusion 3D LASER-RSI is a fast, high-sensitivity spectroscopic imaging sequence, which can acquire medium-to-high resolution SI data in clinically acceptable scan times (5–10 min), with reduced stress on the gradient system. PMID:26308482

  12. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  13. Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric.

    Science.gov (United States)

    Jendeberg, Johan; Geijer, Håkan; Alshamari, Muhammed; Lidén, Mats

    2018-01-24

    To compare the ability of different size estimates to predict spontaneous passage of ureteral stones using a 3D-segmentation and to investigate the impact of manual measurement variability on the prediction of stone passage. We retrospectively included 391 consecutive patients with ureteral stones on non-contrast-enhanced CT (NECT). Three-dimensional segmentation size estimates were compared to the mean of three radiologists' measurements. Receiver-operating characteristic (ROC) analysis was performed for the prediction of spontaneous passage for each estimate. The difference in predicted passage probability between the manual estimates in upper and lower stones was compared. The area under the ROC curve (AUC) for the measurements ranged from 0.88 to 0.90. Between the automated 3D algorithm and the manual measurements the 95% limits of agreement were 0.2 ± 1.4 mm for the width. The manual bone window measurements resulted in a > 20 percentage point (ppt) difference between the readers in the predicted passage probability in 44% of the upper and 6% of the lower ureteral stones. All automated 3D algorithm size estimates independently predicted the spontaneous stone passage with similar high accuracy as the mean of three readers' manual linear measurements. Manual size estimation of upper stones showed large inter-reader variations for spontaneous passage prediction. • An automated 3D technique predicts spontaneous stone passage with high accuracy. • Linear, areal and volumetric measurements performed similarly in predicting stone passage. • Reader variability has a large impact on the predicted prognosis for stone passage.

  14. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

    Science.gov (United States)

    Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F

    2017-06-15

    High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Validation of the BacT/ALERT®3D automated culture system for the detection of microbial contamination of epithelial cell culture medium.

    Science.gov (United States)

    Plantamura, E; Huyghe, G; Panterne, B; Delesalle, N; Thépot, A; Reverdy, M E; Damour, O; Auxenfans, Céline

    2012-08-01

    Living tissue engineering for regenerative therapy cannot withstand the usual pharmacopoeia methods of purification and terminal sterilization. Consequently, these products must be manufactured under aseptic conditions at microbiologically controlled environment facilities. This study was proposed to validate BacT/ALERT(®)3D automated culture system for microbiological control of epithelial cell culture medium (ECCM). Suspensions of the nine microorganisms recommended by the European Pharmacopoeia (Chap. 2.6.27: "Microbiological control of cellular products"), plus one species from oral mucosa and two negative controls with no microorganisms were prepared in ECCM. They were inoculated in FA (anaerobic) and SN (aerobic) culture bottles (Biomérieux, Lyon, France) and incubated in a BacT/ALERT(®)3D automated culture system. For each species, five sets of bottles were inoculated for reproducibility testing: one sample was incubated at the French Health Products Agency laboratory (reference) and the four others at Cell and Tissue Bank of Lyon, France. The specificity of the positive culture bottles was verified by Gram staining and then subcultured to identify the microorganism grown. The BacT/ALERT(®)3D system detected all the inoculated microorganisms in less than 2 days except Propionibacterium acnes which was detected in 3 days. In conclusion, this study demonstrates that the BacT/ALERT(®)3D system can detect both aerobic and anaerobic bacterial and fungal contamination of an epithelial cell culture medium consistent with the European Pharmacopoeia chapter 2.6.27 recommendations. It showed the specificity, sensitivity, and precision of the BacT/ALERT(®)3D method, since all the microorganisms seeded were detected in both sites and the uncontaminated medium ECCM remained negative at 7 days.

  16. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  17. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  18. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Kotsianos-Hermle, D. [Department of Clinical Radiology, University of Munich (Germany)], E-mail: dorothea.hermle@med.uni-muenchen.de; Hiltawsky, K.M. [General Electric, Global Research, Garching (Germany); Wirth, S.; Fischer, T. [Department of Clinical Radiology, University of Munich (Germany); Friese, K. [Department of Gynaecology, University of Munich (Germany); Reiser, M. [Department of Clinical Radiology, University of Munich (Germany)

    2009-07-15

    Objectives: Our aim was to investigate the diagnostic potential of an automated ultrasound (US) breast scanner prototype and compare it with manual US and mammography. Methods: Ninety-seven patients with a total of 107 breast lesions had mammograms, manual US and an automated breast US scan. Multiplanar reconstructions in coronal, axial and the sagittal view were reconstructed from the automated dataset and visualized. After biopsy, all lesions were confirmed histologically. The data were evaluated according to the BIRADS (Breast Imaging Reporting and Data System) classification. The sensitivity and specificity were analyzed. Results: The BIRADS criterion 'margin' was significantly related to the overall BIRADS classification, independently of the US method being used. The sensitivity of mammography was significantly lower than of each US method (Fisher's exact test with p < 0.05). There were no significant differences between the US methods. Conclusions: The reconstructed third (axial) image plane of the whole breast, which corresponds to a craniocaudal mammogram, can give additional information about both, site and differential diagnosis of a lesion. Although image quality was sufficient, automated US is not good enough to replace manual US at this time.

  19. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound.

    Science.gov (United States)

    Kotsianos-Hermle, D; Hiltawsky, K M; Wirth, S; Fischer, T; Friese, K; Reiser, M

    2009-07-01

    Our aim was to investigate the diagnostic potential of an automated ultrasound (US) breast scanner prototype and compare it with manual US and mammography. Ninety-seven patients with a total of 107 breast lesions had mammograms, manual US and an automated breast US scan. Multiplanar reconstructions in coronal, axial and the sagittal view were reconstructed from the automated dataset and visualized. After biopsy, all lesions were confirmed histologically. The data were evaluated according to the BIRADS (Breast Imaging Reporting and Data System) classification. The sensitivity and specificity were analyzed. The BIRADS criterion "margin" was significantly related to the overall BIRADS classification, independently of the US method being used. The sensitivity of mammography was significantly lower than of each US method (Fisher's exact test with p<0.05). There were no significant differences between the US methods. The reconstructed third (axial) image plane of the whole breast, which corresponds to a craniocaudal mammogram, can give additional information about both, site and differential diagnosis of a lesion. Although image quality was sufficient, automated US is not good enough to replace manual US at this time.

  20. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds

    Science.gov (United States)

    Yang, Bisheng; Fang, Lina; Li, Jonathan

    2013-05-01

    Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive "scanning lines", which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech's Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.

  1. Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT

    International Nuclear Information System (INIS)

    Ohshima, Shunsuke; Yamamoto, Shuji; Yamaji, Taiki

    2008-01-01

    The objective of this study was to develop a computing tool for full-automatic segmentation of body fat distributions on volumetric CT images. We developed an algorithm to automatically identify the body perimeter and the inner contour that separates visceral fat from subcutaneous fat. Diaphragmatic surfaces can be extracted by model-based segmentation to match the bottom surface of the lung in CT images for determination of the upper limitation of the abdomen. The functions for quantitative evaluation of abdominal obesity or obesity-related metabolic syndrome were implemented with a prototype three-dimensional (3D) image processing workstation. The volumetric ratios of visceral fat to total fat and visceral fat to subcutaneous fat for each subject can be calculated. Additionally, color intensity mapping of subcutaneous areas and the visceral fat layer is quite obvious in understanding the risk of abdominal obesity with the 3D surface display. Preliminary results obtained have been useful in medical checkups and have contributed to improved efficiency in checking obesity throughout the whole range of the abdomen with 3D visualization and analysis. (author)

  2. Feasibility of rapid and automated importation of 3D echocardiographic left ventricular (LV) geometry into a finite element (FEM) analysis model.

    Science.gov (United States)

    Verhey, Janko F; Nathan, Nadia S

    2004-10-08

    Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS. In this prospective study TomTec LV Analysis TEE Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen, written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein.

  3. Feasibility of rapid and automated importation of 3D echocardiographic left ventricular (LV geometry into a finite element (FEM analysis model

    Directory of Open Access Journals (Sweden)

    Nathan Nadia S

    2004-10-01

    Full Text Available Abstract Background Finite element method (FEM analysis for intraoperative modeling of the left ventricle (LV is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS©. Methods In this prospective study TomTec LV Analysis TEE© Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen©, written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. Results This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. Conclusion For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein.

  4. Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree

    International Nuclear Information System (INIS)

    Sauret, V.; Bailey, A.G.

    1999-01-01

    Detailed information on biological branching networks (optical nerves, airways or blood vessels) is often required to improve the analysis of 3D medical imaging data. A semi-automated algorithm has been developed to obtain the full 3D topology and dimensions (direction cosine, length, diameter, branching and gravity angles) of branching networks using their CT images. It has been tested using CT images of a simple Perspex branching network and applied to the CT images of a human cast of the airway tree. The morphology and topology of the computer derived network were compared with the manually measured dimensions. Good agreement was found. The airways dimensions also compared well with previous values quoted in literature. This algorithm can provide complete data set analysis much more quickly than manual measurements. Its use is limited by the CT resolution which means that very small branches are not visible. New data are presented on the branching angles of the airway tree. (author)

  5. 3D morphometry using automated aortic segmentation in native MR angiography: an alternative to contrast enhanced MRA?

    Science.gov (United States)

    Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik

    2014-04-01

    Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.

  6. Semi-automated landmark-based 3D analysis reveals new morphometric characteristics in the trochlear dysplastic femur.

    Science.gov (United States)

    Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Van Cauter, Sofie; Audenaert, Emmanuel; Claessens, Tom; Verdonk, Peter

    2014-11-01

    The authors hypothesise that the trochlear dysplastic distal femur is not only characterised by morphological changes to the trochlea. The purpose of this study is to describe the morphological characteristics of the trochlear dysplastic femur in and outside the trochlear region with a landmark-based 3D analysis. Arthro-CT scans of 20 trochlear dysplastic and 20 normal knees were used to generate 3D models including the cartilage. To rule out size differences, a set of landmarks were defined on the distal femur to isotropically scale the 3D models to a standard size. A predefined series of landmark-based reference planes were applied on the distal femur. With these landmarks and reference planes, a series of previously described characteristics associated with trochlear dysplasia as well as a series of morphometric characteristics were measured. For the previously described characteristics, the analysis replicated highly significant differences between trochlear dysplastic and normal knees. Furthermore, the analysis showed that, when knee size is taken into account, the cut-off values of the trochlear bump and depth would be 1 mm larger in the largest knees compared to the smallest knees. For the morphometric characteristics, the analysis revealed that the trochlear dysplastic femur is also characterised by a 10% smaller intercondylar notch, 6-8% larger posterior condyles (lateral-medial) in the anteroposterior direction and a 6% larger medial condyle in the proximodistal direction compared to a normal femur. This study shows that knee size is important in the application of absolute metric cut-off values and that the posterior femur also shows a significantly different morphology.

  7. Automated simulation and evaluation of autostereoscopic multiview 3D display designs by time-sequential and wavelength-selective filter barrier

    Science.gov (United States)

    Kuhlmey, Mathias; Jurk, Silvio; Duckstein, Bernd; de la Barré, René

    2015-09-01

    A novel simulation tool has been developed for spatial multiplexed 3D displays. Main purpose of our software is the 3D display design with optical image splitter in particular lenticular grids or wavelength-selective barriers. As a result of interaction of image splitter with ray emitting displays a spatial light-modulator generating the autostereoscopic image representation was modeled. Based on the simulation model the interaction of optoelectronic devices with the defined spatial planes is described. Time-sequential multiplexing enables increasing the resolution of such 3D displays. On that reason the program was extended with an intermediate data cumulating component. The simulation program represents a stepwise quasi-static functionality and control of the arrangement. It calculates and renders the whole display ray emission and luminance distribution on viewing distance. The degree of result complexity will increase by using wavelength-selective barriers. Visible images at the viewer's eye positon were determined by simulation after every switching operation of optical image splitter. The summation and evaluation of the resulting data is processed in correspondence to the equivalent time sequence. Hereby the simulation was expanded by a complex algorithm for automated search and validation of possible solutions in the multi-dimensional parameter space. For the multiview 3D display design a combination of ray-tracing and 3D rendering was used. Therefore the emitted light intensity distribution of each subpixel will be evaluated by researching in terms of color, luminance and visible area by using different content distribution on subpixel plane. The analysis of the accumulated data will deliver different solutions distinguished by standards of evaluation.

  8. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  9. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    Science.gov (United States)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  10. Speeding up 3D speckle tracking using PatchMatch

    Science.gov (United States)

    Zontak, Maria; O'Donnell, Matthew

    2016-03-01

    Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.

  11. Open-Source Assisted Laboratory Automation through Graphical User Interfaces and 3D Printers: Application to Equipment Hyphenation for Higher-Order Data Generation.

    Science.gov (United States)

    Siano, Gabriel G; Montemurro, Milagros; Alcaráz, Mirta R; Goicoechea, Héctor C

    2017-10-17

    Higher-order data generation implies some automation challenges, which are mainly related to the hidden programming languages and electronic details of the equipment. When techniques and/or equipment hyphenation are the key to obtaining higher-order data, the required simultaneous control of them demands funds for new hardware, software, and licenses, in addition to very skilled operators. In this work, we present Design of Inputs-Outputs with Sikuli (DIOS), a free and open-source code program that provides a general framework for the design of automated experimental procedures without prior knowledge of programming or electronics. Basically, instruments and devices are considered as nodes in a network, and every node is associated both with physical and virtual inputs and outputs. Virtual components, such as graphical user interfaces (GUIs) of equipment, are handled by means of image recognition tools provided by Sikuli scripting language, while handling of their physical counterparts is achieved using an adapted open-source three-dimensional (3D) printer. Two previously reported experiments of our research group, related to fluorescence matrices derived from kinetics and high-performance liquid chromatography, were adapted to be carried out in a more automated fashion. Satisfactory results, in terms of analytical performance, were obtained. Similarly, advantages derived from open-source tools assistance could be appreciated, mainly in terms of lesser intervention of operators and cost savings.

  12. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.

    Science.gov (United States)

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-08-19

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  13. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    Directory of Open Access Journals (Sweden)

    Chunlei Xia

    2015-08-01

    Full Text Available In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  14. Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation

    International Nuclear Information System (INIS)

    Street, Ethan; Hadjiiski, Lubomir; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Mukherji, Suresh K.; Chan, Heang-Ping

    2007-01-01

    The authors have developed a semiautomatic system for segmentation of a diverse set of lesions in head and neck CT scans. The system takes as input an approximate bounding box, and uses a multistage level set to perform the final segmentation. A data set consisting of 69 lesions marked on 33 scans from 23 patients was used to evaluate the performance of the system. The contours from automatic segmentation were compared to both 2D and 3D gold standard contours manually drawn by three experienced radiologists. Three performance metric measures were used for the comparison. In addition, a radiologist provided quality ratings on a 1 to 10 scale for all of the automatic segmentations. For this pilot study, the authors observed that the differences between the automatic and gold standard contours were larger than the interobserver differences. However, the system performed comparably to the radiologists, achieving an average area intersection ratio of 85.4% compared to an average of 91.2% between two radiologists. The average absolute area error was 21.1% compared to 10.8%, and the average 2D distance was 1.38 mm compared to 0.84 mm between the radiologists. In addition, the quality rating data showed that, despite the very lax assumptions made on the lesion characteristics in designing the system, the automatic contours approximated many of the lesions very well

  15. Clinical feasibility of 3D automated coronary atherosclerotic plaque quantification algorithm on coronary computed tomography angiography: Comparison with intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Bok [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); Myongji Hospital, Division of Cardiology, Cardiovascular Center, Goyang (Korea, Republic of); Lee, Byoung Kwon [Yonsei University College of Medicine, Division of Cardiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Shin, Sanghoon [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); National Health Insurance Corporation Ilsan Hospital, Division of Cardiology, Goyang (Korea, Republic of); Heo, Ran; Chang, Hyuk-Jae; Chung, Namsik [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); Yonsei University Health System, Division of Cardiology, Severance Cardiovascular Hospital, Seoul (Korea, Republic of); Arsanjani, Reza [Cedars-Sinai Medical Center, Departments of Imaging and Medicine, Cedars-Sinai Heart Institute, Los Angeles, CA (United States); Kitslaar, Pieter H. [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Medis medical Imaging Systems B.V., Leiden (Netherlands); Broersen, Alexander; Dijkstra, Jouke [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Ahn, Sung Gyun [Yonsei University Wonju Severance Christian Hospital, Division of Cardiology, Wonju (Korea, Republic of); Min, James K. [New York-Presbyterian Hospital, Institute for Cardiovascular Imaging, Weill-Cornell Medical College, New York, NY (United States); Hong, Myeong-Ki; Jang, Yangsoo [Yonsei University Health System, Division of Cardiology, Severance Cardiovascular Hospital, Seoul (Korea, Republic of)

    2015-10-15

    To evaluate the diagnostic performance of automated coronary atherosclerotic plaque quantification (QCT) by different users (expert/non-expert/automatic). One hundred fifty coronary artery segments from 142 patients who underwent coronary computed tomography angiography (CCTA) and intravascular ultrasound (IVUS) were analyzed. Minimal lumen area (MLA), maximal lumen area stenosis percentage (%AS), mean plaque burden percentage (%PB), and plaque volume were measured semi-automatically by expert, non-expert, and fully automatic QCT analyses, and then compared to IVUS. Between IVUS and expert QCT analysis, the correlation coefficients (r) for the MLA, %AS, %PB, and plaque volume were excellent: 0.89 (p < 0.001), 0.84 (p < 0.001), 0.91 (p < 0.001), and 0.94 (p < 0.001), respectively. There were no significant differences in the mean parameters (all p values >0.05) except %AS (p = 0.01). The automatic QCT analysis showed comparable performance to non-expert QCT analysis, showing correlation coefficients (r) of the MLA (0.80 vs. 0.82), %AS (0.82 vs. 0.80), %PB (0.84 vs. 0.73), and plaque volume (0.84 vs. 0.79) when they were compared to IVUS, respectively. Fully automatic QCT analysis showed clinical utility compared with IVUS, as well as a compelling performance when compared with semiautomatic analyses. (orig.)

  16. Evaluation of left atrial function by multidetector computed tomography before left atrial radiofrequency-catheter ablation: Comparison of a manual and automated 3D volume segmentation method

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Florian, E-mail: florian.wolf@meduniwien.ac.a [Department of Radiology, Medical University of Vienna, Vienna (Austria); Ourednicek, Petr [Philips Medical Systems, Prague (Czech Republic); Loewe, Christian [Department of Radiology, Medical University of Vienna, Vienna (Austria); Richter, Bernhard; Goessinger, Heinz David; Gwechenberger, Marianne [Department of Cardiology, Medical University of Vienna, Vienna (Austria); Plank, Christina; Schernthaner, Ruediger Egbert; Toepker, Michael; Lammer, Johannes [Department of Radiology, Medical University of Vienna, Vienna (Austria); Feuchtner, Gudrun M. [Department of Radiology, Innsbruck Medical University, Innsbruck (Austria); Institute of Diagnostic Radiology, University Hospital Zurich (Switzerland)

    2010-08-15

    Introduction: The purpose of this study was to compare a manual and automated 3D volume segmentation tool for evaluation of left atrial (LA) function by 64-slice multidetector-CT (MDCT). Methods and materials: In 33 patients with paroxysmal atrial fibrillation a MDCT scan was performed before radiofrequency-catheter ablation. Atrial function (minimal volume (LAmin), maximal volume (LAmax), stroke volume (SV), ejection fraction (EF)) was evaluated by two readers using a manual and an automatic tool and measurement time was evaluated. Results: Automated LA volume segmentation failed in one patient due to low LA enhancement (103HU). Mean LAmax, LAmin, SV and EF were 127.7 ml, 93 ml, 34.7 ml, 27.1% by the automated, and 122.7 ml, 89.9 ml, 32.8 ml, 26.3% by the manual method with no significant difference (p > 0.05) and high Pearsons correlation coefficients (r = 0.94, r = 0.94, r = 0.82 and r = 0.85, p < 0.0001), respectively. The automated method was significantly faster (p < 0.001). Interobserver variability was low for both methods with Pearson's correlation coefficients between 0.98 and 0.99 (p < 0.0001). Conclusions: Evaluation of LA volume and function with 64-slice MDCT is feasible with a very low interobserver variability. The automatic method is as accurate as the manual method but significantly less time consuming permitting a routine use in clinical practice before RF-catheter ablation.

  17. Accuracy and reproducibility of aortic annular measurements obtained from echocardiographic 3D manual and semi-automated software analyses in patients referred for transcatheter aortic valve implantation: implication for prosthesis size selection.

    Science.gov (United States)

    Stella, Stefano; Italia, Leonardo; Geremia, Giulia; Rosa, Isabella; Ancona, Francesco; Marini, Claudia; Capogrosso, Cristina; Giglio, Manuela; Montorfano, Matteo; Latib, Azeem; Margonato, Alberto; Colombo, Antonio; Agricola, Eustachio

    2018-02-06

    A 3D transoesophageal echocardiography (3D-TOE) reconstruction tool has recently been introduced. The system automatically configures a geometric model of the aortic root and performs quantitative analysis of these structures. We compared the measurements of the aortic annulus (AA) obtained by semi-automated 3D-TOE quantitative software and manual analysis vs. multislice computed tomography (MSCT) ones. One hundred and seventy-five patients (mean age 81.3 ± 6.3 years, 77 men) who underwent both MSCT and 3D-TOE for annulus assessment before transcatheter aortic valve implantation were analysed. Hypothetical prosthetic valve sizing was evaluated using the 3D manual, semi-automated measurements using manufacturer-recommended CT-based sizing algorithm as gold standard. Good correlation between 3D-TOE methods vs. MSCT measurements was found, but the semi-automated analysis demonstrated slightly better correlations for AA major diameter (r = 0.89), perimeter (r = 0.89), and area (r = 0.85) (all P 0.80). The 3D-TOE semi-automated analysis of AA is feasible and reliable and can be used in clinical practice as an alternative to MSCT for AA assessment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

  18. A semi-automated 2D/3D marker-based registration algorithm modelling prostate shrinkage during radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Budiharto, Tom; Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Verstraete, Jan; Heuvel, Frank Van den; Depuydt, Tom; Oyen, Raymond; Haustermans, Karin

    2009-01-01

    Background and purpose: Currently, most available patient alignment tools based on implanted markers use manual marker matching and rigid registration transformations to measure the needed translational shifts. To quantify the particular effect of prostate gland shrinkage, implanted gold markers were tracked during a course of radiotherapy including an isotropic scaling factor to model prostate shrinkage. Materials and methods: Eight patients with prostate cancer had gold markers implanted transrectally and seven were treated with (neo) adjuvant androgen deprivation therapy. After patient alignment to skin tattoos, orthogonal electronic portal images (EPIs) were taken. A semi-automated 2D/3D marker-based registration was performed to calculate the necessary couch shifts. The registration consists of a rigid transformation combined with an isotropic scaling to model prostate shrinkage. Results: The inclusion of an isotropic shrinkage model in the registration algorithm cancelled the corresponding increase in registration error. The mean scaling factor was 0.89 ± 0.09. For all but two patients, a decrease of the isotropic scaling factor during treatment was observed. However, there was almost no difference in the translation offset between the manual matching of the EPIs to the digitally reconstructed radiographs and the semi-automated 2D/3D registration. A decrease in the intermarker distance was found correlating with prostate shrinkage rather than with random marker migration. Conclusions: Inclusion of shrinkage in the registration process reduces registration errors during a course of radiotherapy. Nevertheless, this did not lead to a clinically significant change in the proposed table translations when compared to translations obtained with manual marker matching without a scaling correction

  19. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  20. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  1. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    Science.gov (United States)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  2. Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation

    Science.gov (United States)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Peterfy, Charles G.; Genant, Harry K.

    2001-07-01

    In osteoarthritis, articular cartilage loses integrity and becomes thinned. This usually occurs at sites which bear weight during normal use. Measurement of such loss from MRI scans, requires precise and reproducible techniques, which can overcome the difficulties of patient repositioning within the scanner. In this study, we combine a previously described technique for segmentation of cartilage from MRI of the knee, with a technique for 3D image registration that matches localized regions of interest at followup and baseline. Two patients, who had recently undergone meniscal surgery, and developed lesions during the 12 month followup period were examined. Image registration matched regions of interest (ROI) between baseline and followup, and changes within the cartilage lesions were estimate to be about a 16% reduction in cartilage volume within each ROI. This was more than 5 times the reproducibility of the measurement, but only represented a change of between 1 and 2% in total femoral cartilage volume. Changes in total cartilage volume may be insensitive for quantifying changes in cartilage morphology. A combined used of automated image segmentation, with 3D image registration could be a useful tool for the precise and sensitive measurement of localized changes in cartilage from MRI of the knee.

  3. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    Science.gov (United States)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  4. Automated quantification of myocardial salvage in a rat model of ischemia-reperfusion injury using 3D high-resolution magnetic resonance imaging (MRI).

    Science.gov (United States)

    Grieve, Stuart M; Mazhar, Jawad; Callaghan, Fraser; Kok, Cindy Y; Tandy, Sarah; Bhindi, Ravinay; Figtree, Gemma A

    2014-07-23

    Quantification of myocardial "area at risk" (AAR) and myocardial infarction (MI) zone is critical for assessing novel therapies targeting myocardial ischemia-reperfusion (IR) injury. Current "gold-standard" methods perfuse the heart with Evan's Blue and stain with triphenyl tetrazolium chloride (TTC), requiring manual slicing and analysis. We aimed to develop and validate a high-resolution 3-dimensional (3D) magnetic resonance imaging (MRI) method for quantifying MI and AAR. Forty-eight hours after IR was induced, rats were anesthetized and gadopentetate dimeglumine was administered intravenously. After 10 minutes, the coronary artery was re-ligated and a solution containing iron oxide microparticles and Evan's Blue was infused (for comparison). Hearts were harvested and transversally sectioned for TTC staining. Ex vivo MR images of slices were acquired on a 9.4-T magnet. T2* data allowed visualization of AAR, with microparticle-associated signal loss in perfused regions. T1 data demonstrated gadolinium retention in infarcted zones. Close correlation (r=0.92 to 0.94; P<0.05) of MRI and Evan's Blue/TTC measures for both AAR and MI was observed when the combined techniques were applied to the same heart slice. However, 3D MRI acquisition and analysis of whole heart reduced intra-observer variability compared to assessment of isolated slices, and allowed automated segmentation and analysis, thus reducing interobserver variation. Anatomical resolution of 81 μm(3) was achieved (versus ≈2 mm with manual slicing). This novel, yet simple, MRI technique allows precise assessment of infarct and AAR zones. It removes the need for tissue slicing and provides opportunity for 3D digital analysis at high anatomical resolution in a streamlined manner accessible for all laboratories already performing IR experiments. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    Science.gov (United States)

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  6. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Ahmed Serag

    2017-01-01

    Full Text Available Fetal brain magnetic resonance imaging (MRI is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  7. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches

    NARCIS (Netherlands)

    Nada, R.M.; Maal, T.J.J.; Breuning, K.H.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.

    2011-01-01

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans.

  8. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogisu, Kimihiro; Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Department of Radiology, Hokkaido (Japan); Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Division of Ultrahigh Field MRI, Iwate (Japan); Sakushima, Ken; Yabe, Ichiro; Sasaki, Hidenao [Hokkaido University Hospital, Department of Neurology, Hokkaido (Japan); Terae, Satoshi; Nakanishi, Mitsuhiro [Hokkaido University Hospital, Department of Radiology, Hokkaido (Japan)

    2013-06-15

    Neuromelanin-sensitive MRI has been reported to be used in the diagnosis of Parkinson's disease (PD), which results from loss of dopamine-producing cells in the substantia nigra pars compacta (SNc). In this study, we aimed to apply a 3D turbo field echo (TFE) sequence for neuromelanin-sensitive MRI and to evaluate the diagnostic performance of semi-automated method for measurement of SNc volume in patients with PD. We examined 18 PD patients and 27 healthy volunteers (control subjects). A 3D TFE technique with off-resonance magnetization transfer pulse was used for neuromelanin-sensitive MRI on a 3T scanner. The SNc volume was semi-automatically measured using a region-growing technique at various thresholds (ranging from 1.66 to 2.48), with the signals measured relative to that for the superior cerebellar peduncle. Receiver operating characteristic (ROC) analysis was performed at all thresholds. Intra-rater reproducibility was evaluated by intraclass correlation coefficient (ICC). The average SNc volume in the PD group was significantly smaller than that in the control group at all the thresholds (P < 0.01, student t test). At higher thresholds (>2.0), the area under the curve of ROC (Az) increased (0.88). In addition, we observed balanced sensitivity and specificity (0.83 and 0.85, respectively). At lower thresholds, sensitivity tended to increase but specificity reduced in comparison with that at higher thresholds. ICC was larger than 0.9 when the threshold was over 1.86. Our method can distinguish the PD group from the control group with high sensitivity and specificity, especially for early stage of PD. (orig.)

  9. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Science.gov (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. Pattern of cerebral hyperperfusion in Alzheimer's disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: initial experience

    OpenAIRE

    Ding, Bei; Ling,Hua Wei; Huang,Juan; Zhang,Huan; Wang,Tao; Yan,Fu Hua; Zhang,Yong

    2014-01-01

    Bei Ding,1 Hua-wei Ling,1 Yong Zhang,2 Juan Huang,1 Huan Zhang,1 Tao Wang,3 Fu Hua Yan11Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 2Applied Science Laboratory, GE Healthcare, 3Department of Gerontology, Shanghai Mental Health Center, Shanghai, People's Republic of ChinaPurpose: A three-dimensional (3D) continuous pulse arterial spin labeling (ASL) technique was used to investigate cerebral blood flow (CBF) changes in patients with Alzh...

  11. Quantification of 3D myocardium motion in gated SPECT

    International Nuclear Information System (INIS)

    Gutierrez, Marco A.; Furuie, Sergio S.; Melo, Candido P.; Meneghetti, Jose C.; Moura, Lincoln

    1996-01-01

    A method to quantify 3 D left ventricle motion by the optical flow technique extended to the voxel space is described. The left ventricle wall motion is represented by a series of 3 D velocity vector which is computed automatically by the proposed method for each voxel on the sequence of cardiac volumes

  12. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin

    Directory of Open Access Journals (Sweden)

    Mohsen Ghafoorian

    2017-01-01

    In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN. We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  13. Automated 3D analysis of pre-procedural MDCT to predict annulus plane angulation and C-arm positioning: benefit on procedural outcome in patients referred for TAVR.

    Science.gov (United States)

    Samim, Mariam; Stella, Pieter R; Agostoni, Pierfrancesco; Kluin, Jolanda; Ramjankhan, Faiez; Budde, Ricardo P J; Sieswerda, Gertjan; Algeri, Emanuela; van Belle, Camille; Elkalioubie, Ahmed; Juthier, Francis; Belkacemi, Anouar; Bertrand, Michel E; Doevendans, Pieter A; Van Belle, Eric

    2013-02-01

    The aim of this study was to determine whether pre-procedural analysis of multidetector row computed tomography (MDCT) scans could accurately predict the "line of perpendicularity" (LP) of the aortic annulus and corresponding C-arm angulations required for prosthesis delivery and impact the outcome of the procedure. Optimal positioning of the transcatheter aortic prosthesis is paramount to transcatheter aortic valve replacement (TAVR) procedural success. All patients referred for TAVR at our center underwent a routine pre-procedural MDCT scan. A 3-dimensional (3D) analysis using software dedicated to define the LP of the aortic annulus and the corresponding C-arm positioning was performed in 71 consecutive patients. In 35 patients, the results of the MDCT analysis were not available at the time of the procedure (angiography cohort). In that cohort the position of the C-arm was determined during the procedure using ad-hoc angiography. In 36 patients, the MDCT analysis was performed pre-procedure and results were available at the time of the procedure (MDCT cohort). In that cohort the position of the C-arm was derived from the MDCT analysis rather than by ad-hoc angiography. Intraobserver and interobserver reproducibility of MDCT analysis to predict the LP of the aortic annulus were excellent (kappa = 1 and 0.94, respectively). Patient variations of the LP ranged >70°. Compared with the angiography cohort, the MDCT cohort was associated with a significant decrease in implantation time (p = 0.0001), radiation exposure (p = 0.02), amount of contrast (p = 0.001), and risk of acute kidney injury (p = 0.03). Additionally, the combined rate of valve malposition and aortic regurgitation was also reduced (6% vs. 23%, p = 0.03). Automated 3D analysis of pre-implantation MDCT accurately predicts the LP of the aortic annulus and the corresponding C-arm position required for TAVR. With this approach, the implantation of the balloon-expandable prosthetic valve can be performed

  14. A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Schutyser, F.A.C.; Barth, E.L.; Groeve, P. De; Mey, A. De

    2006-01-01

    The purpose of this study was to present a new innovative three-dimensional (3-D) cephalometric method. Part I deals with the set-up and validation of a voxel-based semi-automatic 3-D cephalometric reference system. The CT data (DICOM 3.0 files) of 20 control patients with normal skeletal

  15. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  16. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    Science.gov (United States)

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  17. A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Hongxing Liu

    2013-01-01

    Full Text Available As an important component of urban vegetation, street trees play an important role in maintenance of environmental quality, aesthetic beauty of urban landscape, and social service for inhabitants. Acquiring accurate and up-to-date inventory information for street trees is required for urban horticultural planning, and municipal urban forest management. This paper presents a new Voxel-based Marked Neighborhood Searching (VMNS method for efficiently identifying street trees and deriving their morphological parameters from Mobile Laser Scanning (MLS point cloud data. The VMNS method consists of six technical components: voxelization, calculating values of voxels, searching and marking neighborhoods, extracting potential trees, deriving morphological parameters, and eliminating pole-like objects other than trees. The method is validated and evaluated through two case studies. The evaluation results show that the completeness and correctness of our method for street tree detection are over 98%. The derived morphological parameters, including tree height, crown diameter, diameter at breast height (DBH, and crown base height (CBH, are in a good agreement with the field measurements. Our method provides an effective tool for extracting various morphological parameters for individual street trees from MLS point cloud data.

  18. Voxel Advanced Digital-manufacturing for Earth & Regolith in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will...

  19. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  20. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  1. Automated assessment of breast tissue density in non-contrast 3D CT images without image segmentation based on a deep CNN

    Science.gov (United States)

    Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast 75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.

  2. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    Science.gov (United States)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile

  3. Reversible 3-D decorrelation of medical images.

    Science.gov (United States)

    Roos, P; Viergever, M A

    1993-01-01

    Two methods, namely, differential pulse code modulation (DPCM) and hierarchical interpolation (HINT), are considered. It is shown that HINT cannot be extended straightforwardly to 3-D images as contrasted with DPCM. A 3-D HINT is therefore proposed which is based on a combination of 2-D and 3-D filters. Both decorrelation methods were applied to three-dimensional computed tomography (CT), magnetic resonance (MR), and single-photon-emission CT (SPECT) images. It was found that a 3-D approach is optimal for some studies, while for other studies 2-D or even 1-D decorrelation performs better. The optimal dimensionality of DPCM is related to the magnitudes of the local correlation coefficients (CCs). However, the nonlocal nature of HINT makes the local correlation coefficients useless as indicators of the dimensionality; a better candidate is the image voxel size. For images with cubic or nearly cubic voxels 3-D HINT is generally optimal. For images in which the slice thickness is large compared to the pixel size a 2-D (intraslice) HINT is best. In general, the increase in efficiency obtained by extending 2-D decorrelation method to 3-D is small.

  4. A study of integration methods of aerial imagery and LIDAR data for a high level of automation in 3D building reconstruction

    Science.gov (United States)

    Seo, Suyoung; Schenk, Toni F.

    2003-04-01

    This paper describes integration methods to increase the level of automation in building reconstruction. Aerial imagery has been used as a major source in mapping fields and, in recent years, LIDAR data became popular as another type of mapping resources. Regarding to their performances, aerial imagery has abilities to delineate object boundaries but leaves many missing parts of boundaries during feature extraction. LIDAR data provide direct information about heights of object surfaces but have limitation for boundary localization. Efficient methods using complementary characteristics of two sensors are described to generate hypotheses of building boundaries and localize the object features. Tree structures for grid contours of LIDAR data are used for interpretation of contours. Buildings are recognized by analyzing the contour trees and modeled with surface patches with LIDAR data. Hypotheses of building models are generated as combination of wing models and verified by assessing the consistency between the corresponding data sets. Experiments using aerial imagery and laser data are presented. Our approach shows that the building boundaries are successfully recognized through our contour analysis approach and the inference from contours and our modeling method using wing model increase the level of automation in hypothesis generation/verification steps.

  5. Europeana and 3D

    Science.gov (United States)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  6. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  8. Novel 3D modeling methods for virtual fabrication and EDA compatible design of MEMS via parametric libraries

    International Nuclear Information System (INIS)

    Schröpfer, Gerold; Lorenz, Gunar; Rouvillois, Stéphane; Breit, Stephen

    2010-01-01

    This paper provides a brief summary of the state-of-the-art of MEMS-specific modeling techniques and describes the validation of new models for a parametric component library. Two recently developed 3D modeling tools are described in more detail. The first one captures a methodology for designing MEMS devices and simulating them together with integrated electronics within a standard electronic design automation (EDA) environment. The MEMS designer can construct the MEMS model directly in a 3D view. The resulting 3D model differs from a typical feature-based 3D CAD modeling tool in that there is an underlying behavioral model and parametric layout associated with each MEMS component. The model of the complete MEMS device that is shared with the standard EDA environment can be fully parameterized with respect to manufacturing- and design-dependent variables. Another recent innovation is a process modeling tool that allows accurate and highly realistic visualization of the step-by-step creation of 3D micro-fabricated devices. The novelty of the tool lies in its use of voxels (3D pixels) rather than conventional 3D CAD techniques to represent the 3D geometry. Case studies for experimental devices are presented showing how the examination of these virtual prototypes can reveal design errors before mask tape out, support process development before actual fabrication and also enable failure analysis after manufacturing.

  9. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  10. Open 3D Projects

    OpenAIRE

    Felician ALECU

    2010-01-01

    Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  11. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  12. Refined 3d-3d correspondence

    Science.gov (United States)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  13. Development and application of an automated analysis method for individual cerebral perfusion single photon emission tomography images

    CERN Document Server

    Cluckie, A J

    2001-01-01

    Neurological images may be analysed by performing voxel by voxel comparisons with a group of control subject images. An automated, 3D, voxel-based method has been developed for the analysis of individual single photon emission tomography (SPET) scans. Clusters of voxels are identified that represent regions of abnormal radiopharmaceutical uptake. Morphological operators are applied to reduce noise in the clusters, then quantitative estimates of the size and degree of the radiopharmaceutical uptake abnormalities are derived. Statistical inference has been performed using a Monte Carlo method that has not previously been applied to SPET scans, or for the analysis of individual images. This has been validated for group comparisons of SPET scans and for the analysis of an individual image using comparison with a group. Accurate statistical inference was obtained independent of experimental factors such as degrees of freedom, image smoothing and voxel significance level threshold. The analysis method has been eval...

  14. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  15. Reliability of a semi-automated 3D-CT measuring method for tunnel diameters after anterior cruciate ligament reconstruction: A comparison between soft-tissue single-bundle allograft vs. autograft.

    Science.gov (United States)

    Robbrecht, Cedric; Claes, Steven; Cromheecke, Michiel; Mahieu, Peter; Kakavelakis, Kyriakos; Victor, Jan; Bellemans, Johan; Verdonk, Peter

    2014-10-01

    Post-operative widening of tibial and/or femoral bone tunnels is a common observation after ACL reconstruction, especially with soft-tissue grafts. There are no studies comparing tunnel widening in hamstring autografts versus tibialis anterior allografts. The goal of this study was to observe the difference in tunnel widening after the use of allograft vs. autograft for ACL reconstruction, by measuring it with a novel 3-D computed tomography based method. Thirty-five ACL-deficient subjects were included, underwent anatomic single-bundle ACL reconstruction and were evaluated at one year after surgery with the use of 3-D CT imaging. Three independent observers semi-automatically delineated femoral and tibial tunnel outlines, after which a best-fit cylinder was derived and the tunnel diameter was determined. Finally, intra- and inter-observer reliability of this novel measurement protocol was defined. In femoral tunnels, the intra-observer ICC was 0.973 (95% CI: 0.922-0.991) and the inter-observer ICC was 0.992 (95% CI: 0.982-0.996). In tibial tunnels, the intra-observer ICC was 0.955 (95% CI: 0.875-0.985). The combined inter-observer ICC was 0.970 (95% CI: 0.987-0.917). Tunnel widening was significantly higher in allografts compared to autografts, in the tibial tunnels (p=0.013) as well as in the femoral tunnels (p=0.007). To our knowledge, this novel, semi-automated 3D-computed tomography image processing method has shown to yield highly reproducible results for the measurement of bone tunnel diameter and area. This series showed a significantly higher amount of tunnel widening observed in the allograft group at one-year follow-up. Level II, Prospective comparative study. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Voxel-Based LIDAR Analysis and Applications

    Science.gov (United States)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  17. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  18. 3D Ground Mapping

    OpenAIRE

    Poverud, Therese Tokle; Christensen, Ole Petter; Jacop, Asadullah; Mpoyi, Giresse Kadima; Mann, Harjit Laly Singh; Albert, Ngenzi; Dalset, Bjørnar

    2015-01-01

    Utført i samarbeid med Cube AS Cube AS wants a system for 3D mapping of terrain using an UAV (unmanned aerial vehicle). We chose to equip the UAV with a camera to take aerial photos that are processed through image processing software to produce detailed, digital 3D maps.

  19. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  20. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT.

    Science.gov (United States)

    Montoya, J C; Li, Y; Strother, C; Chen, G-H

    2018-03-22

    Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose. A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types (vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity, precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical 3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts. Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%-99.1%). No residual signal from osseous structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity compared with 37% (23/62) of the 3D rotational angiographies. Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation exposure

  1. Voxels: volume-enclosing microstructures

    International Nuclear Information System (INIS)

    Gagler, Rob; Bugacov, Alejandro; Koel, Bruce E; Will, Peter M

    2008-01-01

    This paper presents results on the development and fabrication of hollow 3D, programmable-volume, micro-scale, artificial, non-biological volume cells or voxels. The standardized silicon wafer processing method PolyMUMPs® was used to construct a variety of polysilicon devices capable of being folded from two-dimensional shapes into three-dimensional regular solids with dimensions in the order of 40–80 µm per side. Folding of the devices was performed by a combination of magnetic and surface tension forces in water. Complete closure of pyramidal structures with dimensions down to 40 µm per side was achieved, as well as folding of five-sided boxes and half-dodecahedrons (lotuses) with dimensions down to 40 µm per side

  2. Voxels: volume-enclosing microstructures

    Science.gov (United States)

    Gagler, Rob; Bugacov, Alejandro; Koel, Bruce E.; Will, Peter M.

    2008-05-01

    This paper presents results on the development and fabrication of hollow 3D, programmable-volume, micro-scale, artificial, non-biological volume cells or voxels. The standardized silicon wafer processing method PolyMUMPs® was used to construct a variety of polysilicon devices capable of being folded from two-dimensional shapes into three-dimensional regular solids with dimensions in the order of 40-80 µm per side. Folding of the devices was performed by a combination of magnetic and surface tension forces in water. Complete closure of pyramidal structures with dimensions down to 40 µm per side was achieved, as well as folding of five-sided boxes and half-dodecahedrons (lotuses) with dimensions down to 40 µm per side.

  3. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  4. TISKALNIK 3D DLP

    OpenAIRE

    Debeljak, Mitja

    2016-01-01

    Diplomska naloga opisuje različne vrste 3D tiskalnikov in izdelavo 3D tiskalnika s tehnologijo digitalnega svetlobnega procesa (Digital Light Processing ali DLP) za potrebe podjetja Doorson d.o.o. V nalogi je opisan postopek izdelave, deljen na mehanski, elektro in programski del ter podrobnejša predstavitev komponent, med katere kot pomembnejše sodijo Raspberry Pi in koračni motor. Prikazana je primerjava obstoječega 3D tiskalnika s tehnologijo ciljnega nalaganja (Fused Deposition Modeling a...

  5. Intracranial Volume Quantification from 3D Photography

    OpenAIRE

    Tu, Liyun; Porras, Antonio R.; Ensel, Scott; Tsering, Deki; Paniagua, Beatriz; Enquobahrie, Andinet; Oh, Albert; Keating, Robert; Rogers, Gary F.; Linguraru, Marius George

    2017-01-01

    3D photography offers non-invasive, radiation-free, and anesthetic-free evaluation of craniofacial morphology. However, intracranial volume (ICV) quantification is not possible with current non-invasive imaging systems in order to evaluate brain development in children with cranial pathology. The aim of this study is to develop an automated, radiation-free framework to estimate ICV. Pairs of computed tomography (CT) images and 3D photographs were aligned using registration. We used the real I...

  6. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  7. Automated Analysis of 3D Stress Echocardiography

    NARCIS (Netherlands)

    K.Y.E. Leung (Esther)

    2009-01-01

    markdownabstract__Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle,

  8. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  9. Impresora 3D

    OpenAIRE

    Moreno, Iveth; Serracín, Pilar

    2017-01-01

    La idea de llevar a la realidad un objeto dibujado en un software de diseño asistido por computadora, da lugar a la creación de las impresoras 3D. Los orígenes de la impresión 3D se dieron para los años 80, y desde aquella época hasta hoy en día, este tipo de impresión ha contribuido en diversos campos del saber, que van desde la ingeniería hasta la medicina. En sus inicios las impresoras 3D además de costosas, eran de uso exclusivo para la creación de piezas de prototipado con una fuerte apl...

  10. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  11. Support-free interior carving for 3D printing

    Directory of Open Access Journals (Sweden)

    Yue Xie

    2017-03-01

    Full Text Available Recent interior carving methods for functional design necessitate a cumbersome cut-and-glue process in fabrication. We propose a method to generate interior voids which not only satisfy the functional purposes but are also support-free during the 3D printing process. We introduce a support-free unit structure for voxelization and derive the wall thicknesses parametrization for continuous optimization. We also design a discrete dithering algorithm to ensure the printability of ghost voxels. The interior voids are iteratively carved by alternating the optimization and dithering. We apply our method to optimize the static and rotational stability, and print various results to evaluate the efficacy. Keywords: Interior carving, Support-free, Voxels dithering, Shape optimization, 3D printing

  12. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From......Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...

  13. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  14. DELTA 3D PRINTER

    OpenAIRE

    ȘOVĂILĂ Florin; ȘOVĂILĂ Claudiu; BAROIU Nicuşor

    2016-01-01

    3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been...

  15. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently......, several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...

  16. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  17. 3D base: a geometrical data base system for the analysis and visualisation of 3D-shapes obtained from parallel serial sections including three different geometrical representations

    NARCIS (Netherlands)

    Verbeek, F. J.; de Groot, M. M.; Huijsmans, D. P.; Lamers, W. H.; Young, I. T.

    1993-01-01

    In this paper we discuss a geometrical data base that includes three different geometrical representations of one and the same reconstructed 3D shape: the contour-pile, the voxel enumeration, and the triangulation of a surface. The data base is tailored for 3D shapes obtained from plan-parallel

  18. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  19. High speed display algorithm for 3D medical images using Multi Layer Range Image

    International Nuclear Information System (INIS)

    Ban, Hideyuki; Suzuki, Ryuuichi

    1993-01-01

    We propose high speed algorithm that display 3D voxel images obtained from medical imaging systems such as MRI. This algorithm convert voxel image data to 6 Multi Layer Range Image (MLRI) data, which is an augmentation of the range image data. To avoid the calculation for invisible voxels, the algorithm selects at most 3 MLRI data from 6 in accordance with the view direction. The proposed algorithm displays 256 x 256 x 256 voxel data within 0.6 seconds using 22 MIPS Workstation without a special hardware such as Graphics Engine. Real-time display will be possible on 100 MIPS class Workstation by our algorithm. (author)

  20. Twin Peaks - 3D

    Science.gov (United States)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  2. 3D Audio System

    Science.gov (United States)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  3. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    Science.gov (United States)

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases.

  4. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  5. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  6. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks

    DEFF Research Database (Denmark)

    Zhang, Rujing; Larsen, Niels Bent

    2017-01-01

    the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically stable hydrogel...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D......Three-dimensional (3D) in vitro models capturing both the structural and dynamic complexity of the in vivo situation are in great demand as an alternative to animal models. Despite tremendous progress in engineering complex tissue/organ models in the past decade, approaches that support...

  7. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    International Nuclear Information System (INIS)

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-01-01

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. Conclusions: The proposed needle segmentation

  8. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    , therefore, we’ve drawn conclusions and recommendations for future editions of the event, also generalizable to other experiences of gamification especially in events. This report details the methodology and working elements from the design phase, human resources and organization of production......This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...... proposed new ones (viralization of the event on social networks and improvement of the integration of international attendees). On the other hand we defined a set of research objectives related to the study of gamification in an eminently social place like an event. Most of the goals have been met and...

  9. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    Science.gov (United States)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  10. Fabricating 3D figurines with personalized faces.

    Science.gov (United States)

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.

  11. A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system.

    Science.gov (United States)

    Swennen, Gwen R J; Schutyser, Filip; Barth, Enno-Ludwig; De Groeve, Pieter; De Mey, Albert

    2006-03-01

    The purpose of this study was to present a new innovative three-dimensional (3-D) cephalometric method. Part I deals with the set-up and validation of a voxel-based semi-automatic 3-D cephalometric reference system. The CT data (DICOM 3.0 files) of 20 control patients with normal skeletal relationships were used for this study. To investigate accuracy and reliability of the 3-D cephalometric reference system (Maxilimtrade mark, version 1.3.0) a total of 42 (14 horizontal, 14 vertical and 14 transversal) orthogonal measurements were performed on each patient twice by each of two investigators. The intra-observer measurement error was less then 0.88 mm, 0.76 mm and 0.84 mm for horizontal, vertical and transversal orthogonal measurements, respectively. The inter-observer measurement error was less as 0.78 mm, 0.86 mm and 1.26 mm for horizontal, vertical and transversal orthogonal measurements, respectively. Squared correlation coefficients showed a high intra-observer and inter-observer reliability. The presented 3-D cephalometric reference system proved to be accurate and reliable and can therefore be used for 3-D cephalometric hard and soft tissue analysis.

  12. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.

  13. AR based ornament design system for 3D printing

    Directory of Open Access Journals (Sweden)

    Hiroshi Aoki

    2015-01-01

    Full Text Available In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

  14. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  15. 3D pulmonary nodules detection using fast marching segmentation ...

    African Journals Online (AJOL)

    This paper proposes an automated computer aided diagnosis system for detection of pulmonary nodules based on three dimensional (3D) structures. Lung ... The proposed detection methodology can give the accuracy of 92%. Keywords: lung cancer; pulmonary nodule; fast marching; 3D features; random forest classifier.

  16. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Science.gov (United States)

    Nada, Rania M; Maal, Thomas J J; Breuning, K Hero; Bergé, Stefaan J; Mostafa, Yehya A; Kuijpers-Jagtman, Anne Marie

    2011-02-09

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  17. 3D ultrasound imaging : Fast and cost-effective morphometry of musculoskeletal tissue

    NARCIS (Netherlands)

    Weide, Guido; Van Der Zwaard, Stephan; Huijing, Peter A.; Jaspers, Richard T.; Harlaar, Jaap

    2017-01-01

    The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows

  18. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  19. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  20. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  1. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  2. Lunaserv Global Explorer, 3D

    Science.gov (United States)

    Miconi, C. E.; Estes, N. M.; Bowman-Cisneros, E.; Robinson, M. S.

    2015-06-01

    Lunaserv Global Explorer 3D is a platform independent, planetary data visualization application, which serves high resolution base-map imagery and terrain from web map service data sources, and displays it on a 3D spinning-globe interface.

  3. The Future Is 3D

    Science.gov (United States)

    Carter, Luke

    2015-01-01

    3D printers are a way of producing a 3D model of an item from a digital file. The model builds up in successive layers of material placed by the printer controlled by the information in the computer file. In this article the author argues that 3D printers are one of the greatest technological advances of recent times. He discusses practical uses…

  4. The 3D additivist cookbook

    NARCIS (Netherlands)

    Allahyari, Morehshin; Rourke, Daniel; Rasch, Miriam

    The 3D Additivist Cookbook, devised and edited by Morehshin Allahyari & Daniel Rourke, is a free compendium of imaginative, provocative works from over 100 world-leading artists, activists and theorists. The 3D Additivist Cookbook contains .obj and .stl files for the 3D printer, as well as critical

  5. 3-D contextual Bayesian classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....

  6. Basic MR sequence parameters systematically bias automated brain volume estimation

    International Nuclear Information System (INIS)

    Haller, Sven; Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte; Meuli, Reto; Thiran, Jean-Philippe; Krueger, Gunnar; Lovblad, Karl-Olof; Kober, Tobias

    2016-01-01

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  7. Basic MR sequence parameters systematically bias automated brain volume estimation

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2016-11-15

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  8. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    International Nuclear Information System (INIS)

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, H.-P.; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou Chuan

    2006-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A z ) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  9. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  10. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  11. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  12. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  13. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  14. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...

  15. Qademah Fault 3D Survey

    KAUST Repository

    Hanafy, Sherif M.

    2014-01-01

    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  16. PROBADO3D – Towards an automatic multimedia indexing workflow for architectural 3D models

    OpenAIRE

    R. Berndt; I. Blümel; R. Wessel

    2010-01-01

    In this paper, we describe a repository for architectural 3D-CAD models which is currently set up at the German National Library of Science and Technology (TIB), Hannover, as part of the larger German PROBADO digital library initiative: The proposed PROBADO-framework is integrating different types of multimedia content-repositories and adding features available in text-based digital libraries. A workflow for automated content-based data analysis and indexing is proposed.

  17. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  18. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  19. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Science.gov (United States)

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  20. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    Science.gov (United States)

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dose fractionation theorem in 3-D reconstruction (tomography)

    International Nuclear Information System (INIS)

    Glaeser, R.M.

    1997-01-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens

  2. Euro3D Science Conference

    Science.gov (United States)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  4. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  5. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  6. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

    Science.gov (United States)

    O'Dell, Walter G; Gormaley, Anne K; Prida, David A

    2017-12-01

    , representing vessel diameters ranging from 1.2 to 7 mm. The linear regression fit gave a slope of 1.056 and an R 2 value of 0.989. These three metrics reflect superior agreement of the radii estimates relative to previously published results over all sizes tested. Sizing via matched Gaussian filters resulted in size underestimates of >33% over all three test vessels, while the tubularity-metric matching exhibited a sizing uncertainty of >50%. In the human chest CT data set, the vessel voxel intensity profiles with and without branch model optimization showed excellent agreement and improvement in the objective measure of image similarity. Gatortail has been demonstrated to be an automated, objective, accurate and robust method for sizing of vessels in 3D non-invasively from chest CT scans. We anticipate that Gatortail, an image-based approach to automatically compute estimates of blood vessel radii and trajectories from 3D medical images, will facilitate future quantitative evaluation of vascular response to disease and environmental insult and improve understanding of the biological mechanisms underlying vascular disease processes. © 2017 American Association of Physicists in Medicine.

  7. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  8. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  9. 5-axis 3D Printer

    OpenAIRE

    Grutle, Øyvind Kallevik

    2015-01-01

    3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...

  10. 3D-CDTI User Manual v2.1

    Science.gov (United States)

    Johnson, Walter; Battiste, Vernol

    2016-01-01

    The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.

  11. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  12. 3D Models of Immunotherapy

    Science.gov (United States)

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  13. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  14. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  15. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  16. Stereolithographic hydrogel printing of 3D microfluidic cell culture chips

    DEFF Research Database (Denmark)

    Zhang, Rujing

    that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D...... epoxy component as structural supports interfacing the external world as well as compliant PEGDA component as microfluidic channels have been manufactured and perfused. Although still in the preliminary stage, this dual-material printing approach shows the potential for constructing complex 3D...

  17. 3D Integration for Wireless Multimedia

    Science.gov (United States)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  18. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  19. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  20. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  1. PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry

    International Nuclear Information System (INIS)

    Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade

    2009-01-01

    The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)

  2. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  3. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  4. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  5. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the

  6. 3D-Pathology: a real-time system for quantitative diagnostic pathology and visualisation in 3D

    Science.gov (United States)

    Gottrup, Christian; Beckett, Mark G.; Hager, Henrik; Locht, Peter

    2005-02-01

    This paper presents the results of the 3D-Pathology project conducted under the European EC Framework 5. The aim of the project was, through the application of 3D image reconstruction and visualization techniques, to improve the diagnostic and prognostic capabilities of medical personnel when analyzing pathological specimens using transmitted light microscopy. A fully automated, computer-controlled microscope system has been developed to capture 3D images of specimen content. 3D image reconstruction algorithms have been implemented and applied to the acquired volume data in order to facilitate the subsequent 3D visualization of the specimen. Three potential application fields, immunohistology, cromogenic in situ hybridization (CISH) and cytology, have been tested using the prototype system. For both immunohistology and CISH, use of the system furnished significant additional information to the pathologist.

  7. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  8. PLOT-3D/BARC, Interactive 3-D Colour Plotting

    International Nuclear Information System (INIS)

    Balhans Jayaswal

    1989-01-01

    1 - Description of program or function: PLOT3D is a general purpose, interactive program, designed to draw three dimensional graphs, histograms, maps and stereo 3D plots, in single or multicolour, from arrays of points (x,y,z) under various options such as clipping, smoothening, shading, etc. using a built-in 3D interpolation function, and after arbitrary rotations about the three coordinate axes. 2 - Method of solution: For plotting a two variables dependent function, z(x,y) the program reads its z values in form of a matrix, z(i,j), in which the indices i and j specify the values of x and y, respectively, either by direct proportionality or through array variables, X(i) and Y(j). Thereafter, the program normalizes the data coordinates, transforms them to effect the orientation of the figure, and then draws axonometric projection using single floating horizon method for hidden lines elimination. In addition, a built-in 3D interpolation function allows numerous intermediate points to be generated and immediately plotted and thus helps in drawing 3D histograms or smoothening the plotted surface, and in shading. The program has two modes of hidden lines removal, both based on single floating horizon method. There exist five versions of this program as listed in item 7. 3 - Restrictions on the complexity of the problem: The size of z data matrix cannot exceed 115 x 115. The number of interpolations cannot exceed 1001 x 1001. In versions 4 and 5, the number of colours cannot exceed 16. In layout diagrams, the items cannot be anything but orthorhombic in shape

  9. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models.

    Science.gov (United States)

    Wörz, Stefan; Rohr, Karl

    2006-02-01

    We introduce a new approach for the localization of 3D anatomical point landmarks. This approach is based on 3D parametric intensity models which are directly fitted to 3D images. To efficiently model tip-like, saddle-like, and sphere-like anatomical structures we introduce analytic intensity models based on the Gaussian error function in conjunction with 3D rigid transformations as well as deformations. To select a suitable size of the region-of-interest (ROI) where model fitting is performed, we also propose a new scheme for automatic selection of an optimal 3D ROI size based on the dominant gradient direction. In addition, to achieve a higher level of automation we present an algorithm for automatic initialization of the model parameters. Our approach has been successfully applied to accurately localize anatomical landmarks in 3D synthetic data as well as 3D MR and 3D CT image data. We have also compared the experimental results with the results of a previously proposed 3D differential approach. It turns out that the new approach significantly improves the localization accuracy.

  10. 3D documenatation of the petalaindera: digital heritage preservation methods using 3D laser scanner and photogrammetry

    Science.gov (United States)

    Sharif, Harlina Md; Hazumi, Hazman; Hafizuddin Meli, Rafiq

    2018-01-01

    3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.

  11. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  12. Determination of radionuclide 'S' values for any voxel size, based on three-dimensional discrete Fourier Transform Convolution Method

    International Nuclear Information System (INIS)

    Gonzalez, J.; Calderon, C.; Rodriguez, M.

    2007-01-01

    The most widely extended method to determine the macroscopic non-uniform dose distribution at voxel level is the dose-point convolution method. The lack of tabulated S values for different combinations of voxel size used in SPECT and PET studies has limited the use of voxel S values as a method of choice for absorbed dose calculation at voxel level. The aim of this study was to describe and validate an approach for rapid determination of radionuclide S values for any voxel size used in SPECT or PET studies. An approach based on 3D Discrete Fourier Transform (3D-DFT) convolution method was used for generation of S values at voxel level from tabulated dose-point kernels. The method was verified by comparing our results with voxel S values derived from Monte Carlo EGS4 code radiation transport simulation and Monte Carlo volume integration methods. The method was validated by comparison of the mean dose calculation with those obtained from MCNP-4B Monte Carlo code for mathematical phantoms consisting of spheres of different size with uniform cumulated activity distribution. The voxel S values obtained by 3D-DFT convolution method shows good agreement with those derived from Monte Carlo EGS4 radiation transport simulation and Monte Carlo volume integration methods. The comparison of mean dose calculations shows an error less than 2% for selected mathematical phantoms. The voxel S values generated by 3D-DFT convolution method have a good accuracy and can be obtained in more computationally efficient manner than other published methods. The method can be used as method of choice to provide S values that correspond to any voxel geometry in SPECT or PET studies. (author)

  13. Contrast-enhanced 3D MR DSA for intracranial vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Satoru; Ishikura, Reiichi; Ando, Kumiko; Morikawa, Tsutomu; Nakao, Norio [Hyogo Coll. of Medicine, Nishinomiya (Japan); Ikeda, Jyota

    1999-12-01

    We performed serial scans of ultrafast 3D MR angiography sequence which was improved to shorten acquisition time by means of zero-filling interpolation after injection of the contrast medium and called it contrast-enhanced three-dimensional (3D) magnetic resonance (MR) digital subtraction angiography (DSA). The parameters were 3.8/1.3/35 (TR/TE/flip angle), a slab thickness of 60 mm, a voxel size of 2.3 x 1.2 x 3.7 mm, a scan time of 2.9 s. The measurement was sequentially performed for 10 to 15 times after administration of 0.1 mmol/kg of Gd-DTPA. Total acquisition time was almost 30 to 45 s. All images of each set were subtracted with precontrast images and then the maximum intensity projection (MIP) were performed. In all cases, contrast-enhanced 3D MR DSA could clearly depict sequential change of the cranial vessels from the arterial phase to the venous phase. The view from different angle on any phase could be obtained and stereoscopic view was possible. The time intensity curve was obtained from signal intensity measured on the source images. The combination of conventional 3D TOF MRA with contrast-enhanced 3D MR DSA was the useful study which could replace cerebral angiography. (author)

  14. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  15. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  16. A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Ontiveros, S.; Jiménez, R.

    2013-01-01

    presents an edge detection method for the surface extraction based on a 3D Canny algorithm with sub-voxel resolution. The advantages of this method are shown in comparison with the most commonly used technique nowadays, i.e. the local threshold definition. Both methods are applied to reference standards...

  17. 3D modelling of the shallow subsurface of Zeeland, the Netherlands

    NARCIS (Netherlands)

    Stafleu, J.; Busschers, F.S.; Maljers, D.; Menkovic, A.

    2011-01-01

    The Geological Survey of the Netherlands aims at building a 3D geological voxel model of the upper 30 m of the subsurface of the Netherlands in order to provide a sound basis for subsurface related questions on, amongst others, groundwater extraction and management, land subsidence studies,

  18. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  19. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... animationsbaseret software Real Flow. Dynamics er en fællesbetegnelse for en række digitale redskaber i 3d software, der er beregnet til at simulere virkelighedsrelaterede fænomener som væsker, vind, tyngdekraft o. lign. For det første viser disse eksperimenter, at brugen af dynamics kan ses som et generativt og...... traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...

  20. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently combin...

  1. 3D Pit Stop Printing

    Science.gov (United States)

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  2. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  3. 3D mass digitization: a milestone for archeological documentation

    Directory of Open Access Journals (Sweden)

    Pedro Santos

    2017-05-01

    Full Text Available In the heritage field, the demand for fast and efficient 3D digitization technologies for historic remains is increasing. Besides, 3D digitization has proved to be a promising approach to enable precise reconstructions of objects. Yet, unlike the digital acquisition of cultural goods in 2D widely used today, 3D digitization often still requires a significant investment of time and money. To make it more widely available to heritage institutions, the Competence Center for Cultural Heritage Digitization at the Fraunhofer Institute for Computer Graphics Research IGD has developed CultLab3D, the world’s first 3D mass digitization facility for collections of three-dimensional objects. CultLab3D is specifically designed to automate the entire 3D digitization process thus allowing to scan and archive objects on a large-scale. Moreover, scanning and lighting technologies are combined to capture the exact geometry, texture, and optical material properties of artefacts to produce highly accurate photo-realistic representations. The unique setup allows to shorten the time needed for digitization to several minutes per artefact instead of hours, as required by conventional 3D scanning methods.

  4. 3-D Imaging Systems for Agricultural Applications—A Review

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  5. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  6. Development of a physical 3D anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A.

    2011-01-01

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  7. 3D RoboMET Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

  8. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Directory of Open Access Journals (Sweden)

    Rania M Nada

    Full Text Available Superimposition of serial Cone Beam Computed Tomography (CBCT scans has become a valuable tool for three dimensional (3D assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16 for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27 for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  9. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses; Effets de l'age et du genre sur la perfusion cerebrale regionale etudiee par deux methodes d'analyse statistique voxel-par-voxel

    Energy Technology Data Exchange (ETDEWEB)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T. [Universite Catholique de Louvain, Service de Medecine Nucleaire, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Van Laere, K. [Leuven Univ. Hospital, Nuclear Medicine Div. (Belgium); Jamart, J. [Universite Catholique de Louvain, Dept. de Biostatistiques, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); D' Asseler, Y. [Ghent Univ., Medical Signal and Image Processing Dept. (MEDISIP), Faculty of applied sciences (Belgium); Minoshima, S. [Washington Univ., Dept. of Radiology, Seattle (United States)

    2009-10-15

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine {sup 99m}Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  10. Fast 3D multiple fan-beam CT systems

    Science.gov (United States)

    Kohlbrenner, Adrian; Haemmerle, Stefan; Laib, Andres; Koller, Bruno; Ruegsegger, Peter

    1999-09-01

    Two fast, CCD-based three-dimensional CT scanners for in vivo applications have been developed. One is designed for small laboratory animals and has a voxel size of 20 micrometer, while the other, having a voxel size of 80 micrometer, is used for human examinations. Both instruments make use of a novel multiple fan-beam technique: radiation from a line-focus X-ray tube is divided into a stack of fan-beams by a 28 micrometer pitch foil collimator. The resulting wedge-shaped X-ray field is the key to the instrument's high scanning speed and allows to position the sample close to the X-ray source, which makes it possible to build compact CT systems. In contrast to cone- beam scanners, the multiple fan-beam scanner relies on standard fan-beam algorithms, thereby eliminating inaccuracies in the reconstruction process. The projections from one single rotation are acquired within 2 min and are subsequently reconstructed into a 1024 X 1024 X 255 voxel array. Hence a single rotation about the sample delivers a 3D image containing a quarter of a billion voxels. Such volumetric images are 6.6 mm in height and can be stacked on top of each other. An area CCD sensor bonded to a fiber-optic light guide acts as a detector. Since no image intensifier, conventional optics or tapers are used throughout the system, the image is virtually distortion free. The scanner's high scanning speed and high resolution at moderately low radiation dose are the basis for reliable time serial measurements and analyses.

  11. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  12. Forensic 3D Scene Reconstruction

    International Nuclear Information System (INIS)

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  13. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  14. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  15. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  16. 3D printer electronics design

    OpenAIRE

    Cañete Vela, Isabel

    2014-01-01

    Nowadays, RepRap and Arduino communities have had an increasing progress. These terms are demarcated on the Open Source development model; the designs produced by these projects are released under the GNU General Public License, which promotes free universal access and distribution of it, allowing an exponential and rapid improvement. RepRap project uses Fused Additive manufacturing (FDM) technology, term used to refer to processes that make solid objects from 3D computer models. In particula...

  17. Wireless 3D Chocolate Printer

    OpenAIRE

    FROILAN G. DESTREZA; FRANCIS CARLO V. SOLLESTRE; MARJORIE V. VASQUEZ; FRANCIS B. MENDOZA

    2014-01-01

    This study is for the BSHRM Students of Batangas State University (BatStateU) ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick d...

  18. Voxel-based morphometry and voxel-based diffusion tensor analysis in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin; Lou Xin; Wang Yan

    2010-01-01

    Objective: To evaluate gray matter volume, white matter volume and FA value changes in amyatrophic lateral sclerosis (ALS) patients by voxel-based morphometry (VBM) and voxel-based diffusion tensor analysis (VBDTA). Methods: Thirty-nine definite or probable ALS patients diagnosed by El Escorial standard and 39 healthy controls were recruited and underwent conventional MR scans and the neuropsychological evaluation. The 3D FSPGR T 1 WI and DTI data were collected on GE Medical 3.0 T MRI system. The 3DT 1 structural images were normalized, segmented and smoothed, and then VBM analysis was performed. DTI data were acquired from 76 healthy controls, and FA map template was made. FA maps generated from the DTI data of ALS patients and healthy controls were normalized to the FA map template for voxel-based analysis. ANCOVA was applied, controlling with age and total intracranial volume for VBM and age for VBDDTA. A statistical threshold of P<0.01 (uncorrected) and cluster level of more than continuous 20 voxels determined significance. Results: Statistical results showed no significant difference in the global volumes of gray matter and white matter, total intracranial volumes and gray matter fraction between ALS patients and healthy controls, but the white matter fraction of ALS patients (0.29 ± 0.02) was significantly less than that of healthy controls (0.30 ± 0.02) statistically (P=0.003). There was significant reduction of gray matter volumes in bilateral superior frontal gyri and precentral gyri, right middle frontal gyrus, right middle and inferior temporal gyrus, left superior occipital gyrus and cuneus and left insula in ALS patients when compared with healthy controls; and the regional reduction of white matter volumes in ALS patients mainly located in genu of corpus callosum, bilateral medial frontal gyri, paracentral lobule and insula, right superior and middle frontal gyrus and left postcentral gyrus. VBDTA showed decrease in FA values in bilateral

  19. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  20. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    Directory of Open Access Journals (Sweden)

    Delphine Ribes

    Full Text Available In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

  1. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  2. The upcoming 3D-printing revolution in microfluidics

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-01-01

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171

  3. Interpolation of 3D slice volume data for 3D printing

    Science.gov (United States)

    Littley, Samuel; Voiculescu, Irina

    2017-03-01

    Medical imaging from CT and MRI scans has become essential to clinicians for diagnosis, treatment planning and even prevention of a wide array of conditions. The presentation of image data volumes as 2D slice series provides some challenges with visualising internal structures. 3D reconstructions of organs and other tissue samples from data with low scan resolution leads to a `stepped' appearance. This paper demonstrates how to improve 3D visualisation of features and automated preparation for 3D printing from such low resolution data, using novel techniques for morphing from one slice to the next. The boundary of the starting contour is grown until it matches the boundary of the ending contour by adapting a variant of the Fast Marching Method (FMM). Our spoke based approach generates scalar speed field for FMM by estimating distances to boundaries with line segments connecting the two boundaries. These can be regularly spaced radial spokes or spokes at radial extrema. We introduce clamped FMM by running the algorithm outwards from the smaller boundary and inwards from the larger boundary and combining the two runs to achieve FMM growth stability near the two region boundaries. Our method inserts a series of uniformly distributed intermediate contours between each pair of consecutive slices from the scan volume thus creating smoother feature boundaries. Whilst hard to quantify, our overall results give clinicians an evidently improved tangible and tactile representation of the tissues, that they can examine more easily and even handle.

  4. Use of VAP3D software for production and manipulation of synthetic radiographies of anthropomorphic models

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Vieira, Jose W.; Leal Neto, Viriato

    2011-01-01

    The Grupo de Dosimetria Numerica has developed exposure computational models (ECM) involving a Monte Carlo code and voxel phantoms to simulate various situations of internal and external exposure to ionizing radiation. Most analyses of the produced results are presented in tables and graphics formats. An alternative to this traditional way of analyzing results is to save voxels of Regions of Interest (ROI) of the phantom irradiated with information like the location of the voxel and the energy deposited in it during the simulation. Such information can be saved to a text file and later turned into 3D objects. In this paper the VAP3D software has been used to read text files produced in simulations using the ECM of DEN (Nuclear Energy Dept. - UFPE), converting them into binary files of the type RAW, and visualize them. In order to reflect the radiosensitivity of the organs and tissues suggested by ICRP-60, for conversion of text file to binary, of the energy deposited values are multiplied by the weighting factor of the tissue to which the voxel belongs. The result of the multiplication is normalized to the interval [0, 255]. The files transformed are referred herein as synthetic radiographies. In VAP3D software, it is possible to generate stacks from theses radiographies in transverse, sagittal and coronal directions. In order to illustrate the production of synthetic radiographies, some images are presented in this paper, and dosimetric results are obtained from a variety of ROIs of the phantoms of DEN for radiological exams. (author)

  5. Use of VAP3D software for production and manipulation of synthetic radiographies of anthropomorphic models

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lindeval Fernandes de, E-mail: lindeval@dmat.ufrr.b [Universidade Federal de Roraima (DMAT/UFRR), Boa Vista, RR (Brazil). Dept. de Matematica; Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Universidade de Pernambuco (EPP/UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco; Lima, Fernando R.A., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Leal Neto, Viriato [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    The Grupo de Dosimetria Numerica has developed exposure computational models (ECM) involving a Monte Carlo code and voxel phantoms to simulate various situations of internal and external exposure to ionizing radiation. Most analyses of the produced results are presented in tables and graphics formats. An alternative to this traditional way of analyzing results is to save voxels of Regions of Interest (ROI) of the phantom irradiated with information like the location of the voxel and the energy deposited in it during the simulation. Such information can be saved to a text file and later turned into 3D objects. In this paper the VAP3D software has been used to read text files produced in simulations using the ECM of DEN (Nuclear Energy Dept. - UFPE), converting them into binary files of the type RAW, and visualize them. In order to reflect the radiosensitivity of the organs and tissues suggested by ICRP-60, for conversion of text file to binary, of the energy deposited values are multiplied by the weighting factor of the tissue to which the voxel belongs. The result of the multiplication is normalized to the interval [0, 255]. The files transformed are referred herein as synthetic radiographies. In VAP3D software, it is possible to generate stacks from theses radiographies in transverse, sagittal and coronal directions. In order to illustrate the production of synthetic radiographies, some images are presented in this paper, and dosimetric results are obtained from a variety of ROIs of the phantoms of DEN for radiological exams. (author)

  6. Automatic 3D neuron tracing using all-path pruning.

    Science.gov (United States)

    Peng, Hanchuan; Long, Fuhui; Myers, Gene

    2011-07-01

    Digital reconstruction, or tracing, of 3D neuron structures is critical toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low signal-to-noise ratio (SNR) and fragmented neuron segments. Published work can handle these hard situations only by introducing global prior information, such as where a neurite segment starts and terminates. However, manual incorporation of such global information can be very time consuming. Thus, a completely automatic approach for these hard situations is highly desirable. We have developed an automatic graph algorithm, called the all-path pruning (APP), to trace the 3D structure of a neuron. To avoid potential mis-tracing of some parts of a neuron, an APP first produces an initial over-reconstruction, by tracing the optimal geodesic shortest path from the seed location to every possible destination voxel/pixel location in the image. Since the initial reconstruction contains all the possible paths and thus could contain redundant structural components (SC), we simplify the entire reconstruction without compromising its connectedness by pruning the redundant structural elements, using a new maximal-covering minimal-redundant (MCMR) subgraph algorithm. We show that MCMR has a linear computational complexity and will converge. We examined the performance of our method using challenging 3D neuronal image datasets of model organisms (e.g. fruit fly). The software is available upon request. We plan to eventually release the software as a plugin of the V3D-Neuron package at http://penglab.janelia.org/proj/v3d. pengh@janelia.hhmi.org.

  7. The resolution limits of voxelated liquid crystal networks and elastomers

    Science.gov (United States)

    Kowalski, Benjamin; White, Timothy

    Arbitrary director patterning within liquid crystal network films has assimilated functional materials responses in a monolith. Examples include complex 3D shape deformations and nonlinear mechanical responses. Fast, cheap, and rapidly reconfigurable patterning techniques are needed to fully realize the opportunity space. Here we demonstrate one-shot photopatterning at display resolution, using an off-the-shelf twisted-nematic spatial light modulator and simple projection optics. At high resolution, the inscribed director profile is dominated by elastic-mediated orientational relaxation, imposing a fundamental limit on achievable voxel size. A simple model for this effect is experimentally validated, and implications for device design are discussed.

  8. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  9. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  10. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...... profiles. For the two-color air-plasma, we measure a conical beam profile that is focused to a bell-shape at the beam waist, whereas we observe a Gaussian beam profile for the THz beam generated from the LiNbO3 crystal....

  11. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  12. A software for digital image processing used in constructions of voxels phantoms

    International Nuclear Information System (INIS)

    Vieira, Jose Wilson; Fernando Roberto de Andrade

    2008-01-01

    This paper presents, based on menus and menu items, the second version of software DIP-Digital Image Processing, that reads, edits and writes binary files containing the matrix 3D corresponding to a transversal voxels images of a certain geometry that may be a human body or other volume of interest

  13. 3D Audio Acquisition and Reproduction Systems

    OpenAIRE

    Evrard, Marc; André, Cédric; Embrechts, Jean-Jacques; Verly, Jacques

    2011-01-01

    This presentation introduces two different research projects dealing with 3D audio for 3D-stereoscopic movies. The first project “3D audio acquisition for real time applications” studies the best method for acquiring a full 3D audio soundscape on location and for processing it in real-time for further reproduction. The second project “Adding 3D sound to 3D cinema” is aimed towards the study of reproducing a 3D soundscape consistent with the visual content of a 3D-stereoscopic movie. ...

  14. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  15. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  16. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  17. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    International Nuclear Information System (INIS)

    Ozekes, Serhat; Osman, Onur; Ucan, N.

    2008-01-01

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules

  18. The effect of voxel size on the measurement of mandibular thickness in cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2014-01-01

    Full Text Available Background: Cone-beam computed tomography (CBCT is a new imaging technology that has been widely used in implantology, oral and maxillofacial surgery and orthodontics. This method provides 3-D images that are composed of voxel, which is the smallest image unit, and determines image resolution. Smaller voxel is associated with the higher resolution and also greater radiation exposure. This study was aimed to find out the effect of voxel size on the measurement of mandibular thickness. Materials and Methods: Using voxel sizes of 0.30 mm and 0.15 mm, two CBCT protocols (protocol 1: Field of view (FOV of 15 cm, 85 kVp, 42 mAs, 0.15 mm voxel, 14 s scan time; protocol 2: FOV of 15 cm, 85 kVp, 10 mAs, 0.30 mm voxel, 14 s scan time were carried out on 16 dry human mandibles with permanent dentition. Mandibular thickness was measured at seven different sites (midline region, bilateral canine regions, bilateral mental foramen regions and bilateral molar regions. Analysis of variance was used for analysis of data using the Statistical Package for the Social Sciences version 20 (SPSS Inc., Chicago, IL, USA. P 0.05. Conclusion: Considering the insignificant differences of the mandibular thickness measurements using different voxel sizes, it would be more reasonable to use 0.30 mm voxel size instead of 0.15 mm voxel size to avoid unnecessary radiation exposure.

  19. Whole-brain vascular reactivity measured by fMRI using hyperventilation and breath-holding tasks: efficacy of 3D prospective acquisition correction (3D-PACE) for head motion

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Fukatsu, Hiroshi; Ishigaki, Takeo; Maruyama, Katsuya; Takizawa, Osamu

    2004-01-01

    Functional MR imaging (fMRI) study using hyperventilation and breath-holding task has been reported to be one of the non-invasive methods to examine whole-brain vascular reactivity. The purpose of this study was to evaluate the efficacy of a method for 3D prospective detection and correction of head motion (3D-PACE) in a study of whole-brain vascular reactivity using hyperventilation and breath-holding tasks. Eight healthy volunteers were scanned using an fMRI protocol of hyperventilation and breath-holding task blocks at 3 T in separate runs with and without 3D-PACE. In two subjects, two more runs with and without 3D-PACE were repeated. The mean total number of activated voxels ± standard deviation was 26,405.3±1,822.2 in the run with 3D-PACE and 17,329.9±2,766.3 in the run without 3D-PACE (P<0.05), although there is some intersubject variation regarding the effect of 3D-PACE. In the two subjects whose performed two more runs, the number of activated voxels were smaller in the run without 3D-PACE than even in the run with 3D-PACE performed later. We conclude that 3D-PACE is beneficial for fMRI studies of whole-brain vascular reactivity induced by hyperventilation and breath-holding. (orig.)

  20. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom...... studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision...... are introduced with the array. The major disadvantage with an RC transducer, is the limited field-of-view, which is restricted to the forward looking array. It is discussed, that this drawback may be solved with a diverging lens, providing a larger field-of-view, due the the dispersion of the energy. Based...

  1. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  2. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  3. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  4. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    KAUST Repository

    Pan, Bing

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost. © 2014 Elsevier Ltd.

  5. Key factors in the design of a LED volumetric 3D display system

    Science.gov (United States)

    Lin, Yuanfang; Liu, Xu; Yao, Yi; Zhang, Xiaojie; Liu, Xiangdong; Lin, Fengchun

    2005-01-01

    Through careful consideration of key factors that impact upon voxel attributes and image quality, a volumetric three-dimensional (3D) display system employing the rotation of a two-dimensional (2D) thin active panel was developed. It was designed as a lower-cost 3D visualization platform for experimentation and demonstration. Light emitting diodes (LEDs) were arranged into a 256x64 dot matrix on a single surface of the panel, which was positioned symmetrically about the axis of rotation. The motor and necessary supporting structures were located below the panel. LEDs individually of 500 ns response time, 1.6 mm×0.8 mm×0.6 mm external dimensions, 0.38 mm×0.43 mm horizontal and vertical spacing were adopted. The system is functional, providing 512×256×64, i.e. over 8 million addressable voxels within a 292 mm×165 mm cylindrical volume at a refresh frequency in excess of 16 Hz. Due to persistence of vision, momentarily addressed voxels will be perceived and fused into a 3D image. Many static or dynamic 3D scenes were displayed, which can be directly viewed from any position with few occlusion zones and dead zones. Important depth cues like binocular disparity and motion parallax are satisfied naturally.

  6. Open-Source 3-D Platform for Low-Cost Scientific Instrument Ecosystem.

    Science.gov (United States)

    Zhang, C; Wijnen, B; Pearce, J M

    2016-08-01

    The combination of open-source software and hardware provides technically feasible methods to create low-cost, highly customized scientific research equipment. Open-source 3-D printers have proven useful for fabricating scientific tools. Here the capabilities of an open-source 3-D printer are expanded to become a highly flexible scientific platform. An automated low-cost 3-D motion control platform is presented that has the capacity to perform scientific applications, including (1) 3-D printing of scientific hardware; (2) laboratory auto-stirring, measuring, and probing; (3) automated fluid handling; and (4) shaking and mixing. The open-source 3-D platform not only facilities routine research while radically reducing the cost, but also inspires the creation of a diverse array of custom instruments that can be shared and replicated digitally throughout the world to drive down the cost of research and education further. © 2016 Society for Laboratory Automation and Screening.

  7. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  8. Sculplexity: Sculptures of Complexity using 3D printing

    Science.gov (United States)

    Reiss, D. S.; Price, J. J.; Evans, T. S.

    2013-11-01

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  9. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-10-12

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step of printing the 3D structure to embed the flexible silicon substrate; placing the flexible silicon substrate in a cavity of the first portion of the 3D structure to embed the flexible silicon substrate in the 3D structure; and resuming the step of printing the 3D structure to form the second portion of the 3D structure.

  10. Metric Evaluation Pipeline for 3d Modeling of Urban Scenes

    Science.gov (United States)

    Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.

    2017-05-01

    Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  11. METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

    Directory of Open Access Journals (Sweden)

    M. Bosch

    2017-05-01

    Full Text Available Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  12. Automated mask creation from a 3D model using Faethm.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2007-11-01

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.

  13. Photopolymers in 3D printing applications

    OpenAIRE

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  14. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  15. Solid object visualization of 3D ultrasound data

    Science.gov (United States)

    Nelson, Thomas R.; Bailey, Michael J.

    2000-04-01

    Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.

  16. 3-D imaging with MDCT

    International Nuclear Information System (INIS)

    Rubin, Geoffrey D.

    2003-01-01

    Without doubt, the greatest challenge of multidetector-row CT is dealing with 'data explosion'. For our carotid/intracranial CT angiograms, we routinely have 375 images to review (300 mm coverage reconstructed every 0.8 mm); for aortic studies we have 450-500 images (∼600 mm coverage reconstructed every 1.3 mm); and for a study of the lower extremity inflow and run-off, we may generate 900-1000 transverse reconstructions. While we could reconstruct fewer images for these data, experience with single-detector row CT scanners indicates that longitudinal resolution and disease detection is improved when at least 50% overlap of cross-sections is generated [Radiology 200 (1996) 312]. If we are to optimize our clinical protocols and take full advantage of these CT scanners, we will need to change the way that we interpret, transfer, and store CT data. Film is no longer a viable option. Workstation based review of transverse reconstructions for interpretation is a necessity, but the workstations must improve to provide efficient access to these data, and we must have a way of providing our clinicians with images that can be transported to clinics and the operating room. Alternative visualization and analysis using volumetric tools, including 3-D visualization must evolve from luxury to necessity. We cannot rest on historical precedent to interpret these near isotropically sampled volumetric data using transverse reconstructions alone [Radiology 173 (1989) 527]. Although the tools for volumetric analysis on 3-D workstations have evolved over recent years, they have probably not yet evolved to a level that routine interpretation can be performed as efficiently and accurately as transverse section review. Both hardware and software developments must occur. While current computer workstations and visualization software are certainly adequate for assessing these MDCT data volumetrically, the process is very time consuming. What follows are a description of current

  17. World Wind 3D Earth Viewing

    Science.gov (United States)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  18. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  19. Using flow information to support 3D vessel reconstruction from rotational angiography

    International Nuclear Information System (INIS)

    Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.

    2008-01-01

    For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute

  20. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T

    NARCIS (Netherlands)

    Gasch, C.K.; Hengl, Tom; Gräler, Benedikt; Meyer, Hanna; Magney, T.S.; Brown, D.J.

    2015-01-01

    The paper describes a framework for modeling dynamic soil properties in 3-dimensions and time (3D + T) using soil data collected with automated sensor networks as a case study. Two approaches to geostatistical modeling and spatio-temporal predictions are described: (1) 3D + T predictive modeling

  1. 3D printing cement based ink, and it’s application within the construction industry

    OpenAIRE

    Jianchao Zhu; Zhang Tao; Faried Mansour; Wengang Chen

    2017-01-01

    The 3D printing technology is the engine key of the third industrial revolution, after introduction of the automation in the eighteenth century and the concept of mass production in early of twentieth century. 3D printing technology now offers the magic solution to balance both the benefits, and overcome the major associated problem with the previous concept which was the need of repetition. The 3D printing technology has two main critical success factors: the printing machine and the printin...

  2. - and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws

    Science.gov (United States)

    Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.

    2017-05-01

    Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.

  3. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  4. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  5. TH-CD-206-02: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in MR Images Using Patch-Based Anatomical Signature

    International Nuclear Information System (INIS)

    Yang, X; Jani, A; Rossi, P; Mao, H; Curran, W; Liu, T

    2016-01-01

    Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentation for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be

  6. TH-CD-206-02: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in MR Images Using Patch-Based Anatomical Signature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Jani, A; Rossi, P; Mao, H; Curran, W; Liu, T [Emory University, Atlanta, GA (United States)

    2016-06-15

    Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentation for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be

  7. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  8. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  9. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  10. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  11. Nanosensor Fabrication with 3D Manufacturing Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — We use 3D manufacturing techniques to fabricate sensors based on nanomaterials. We use 3D manufacturing techniques to fabricate sensors based on nanomaterials. This...

  12. 3D Printing of Organs-On-Chips

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  13. 3D Printing of Organs-On-Chips.

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  14. 3D recovery of human gaze in natural environments

    Science.gov (United States)

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald; Mayer, Heinz

    2013-01-01

    The estimation of human attention has recently been addressed in the context of human robot interaction. Today, joint work spaces already exist and challenge cooperating systems to jointly focus on common objects, scenes and work niches. With the advent of Google glasses and increasingly affordable wearable eye-tracking, monitoring of human attention will soon become ubiquitous. The presented work describes for the first time a method for the estimation of human fixations in 3D environments that does not require any artificial landmarks in the field of view and enables attention mapping in 3D models. It enables full 3D recovery of the human view frustum and the gaze pointer in a previously acquired 3D model of the environment in real time. The study on the precision of this method reports a mean projection error ≈1.1 cm and a mean angle error ≈0.6° within the chosen 3D model - the precision does not go below the one of the technical instrument (≈1°). This innovative methodology will open new opportunities for joint attention studies as well as for bringing new potential into automated processing for human factors technologies.

  15. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  16. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Lima, Fernando R.A.

    2011-01-01

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  17. 3D vizualizace budov kampusu Albertov

    OpenAIRE

    Peterková, Tereza

    2012-01-01

    3D vizualization campus buildings Albertov Abstract This work deals with theoretical and practical aspects of 3D countryside model creation and housing development with the help of geoinformation technologies, concretely programme equipment ESRI ArcGIS and Google SketchUp. The first part of the work brings a general overview concerning the problematics of 3D simulating and the possibilities of 3D information representation. It also includes a survey of already elaborated projects focused on v...

  18. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  19. Digital Dentistry — 3D Printing Applications

    OpenAIRE

    Zaharia Cristian; Gabor Alin-Gabriel; Gavrilovici Andrei; Stan Adrian Tudor; Idorasi Laura; Sinescu Cosmin; Negruțiu Meda-Lavinia

    2017-01-01

    Three-dimensional (3D) printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS), stereolithography, fused deposition mo...

  20. MO-FG-303-03: Demonstration of Universal Knowledge-Based 3D Dose Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, S; Moore, K L [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To demonstrate a knowledge-based 3D dose prediction methodology that can accurately predict achievable radiotherapy distributions. Methods: Using previously treated plans as input, an artificial neural network (ANN) was trained to predict 3D dose distributions based on 14 patient-specific anatomical parameters including the distance (r) to planning target volume (PTV) boundary, organ-at-risk (OAR) boundary distances, and angular position ( θ,φ). 23 prostate and 49 stereotactic radiosurgery (SRS) cases with ≥1 nearby OARs were studied. All were planned with volumetric-modulated arc therapy (VMAT) to prescription doses of 81Gy for prostate and 12–30Gy for SRS. Site-specific ANNs were trained using all prostate 23 plans and using a 24 randomly-selected subset for the SRS model. The remaining 25 SRS plans were used to validate the model. To quantify predictive accuracy, the dose difference between the clinical plan and prediction were calculated on a voxel-by-voxel basis δD(r,θ,φ)=Dclin(r,θ,φ)-Dpred(r, θ,φ). Grouping voxels by boundary distance, the mean <δ Dr>=(1/N)Σ -θ,φ D(r,θ,φ) and inter-quartile range (IQR) quantified the accuracy of this method for deriving DVH estimations. The standard deviation (σ) of δ D quantified the 3D dose prediction error on a voxel-by-voxel basis. Results: The ANNs were highly accurate in predictive ability for both prostate and SRS plans. For prostate, <δDr> ranged from −0.8% to +0.6% (max IQR=3.8%) over r=0–32mm, while 3D dose prediction accuracy averaged from σ=5–8% across the same range. For SRS, from r=0–34mm the training set <δDr> ranged from −3.7% to +1.5% (max IQR=4.4%) while the validation set <δDr> ranged from −2.2% to +5.8% (max IQR=5.3%). 3D dose prediction accuracy averaged σ=2.5% for the training set and σ=4.0% over the same interval. Conclusion: The study demonstrates this technique’s ability to predict achievable 3D dose distributions for VMAT SRS and prostate. Future

  1. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  2. 3D immersive and interactive learning

    CERN Document Server

    Cai, Yiyu

    2014-01-01

    This book reviews innovative uses of 3D for immersive and interactive learning, covering gifted programs, normal stream and special needs education. Reports on curriculum-based 3D learning in classrooms, and co-curriculum-based 3D student research projects.

  3. 3D-Printable Antimicrobial Composite Resins

    NARCIS (Netherlands)

    Yue, Jun; Zhao, Pei; Gerasimov, Jennifer Y.; van de Lagemaat, Marieke; Grotenhuis, Arjen; Rustema-Abbing, Minie; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Ren, Yijin

    2015-01-01

    3D printing is seen as a game-changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D-printed materials remains lacking. Here, it is expanded on the repertoire of 3D-printable materials to include antimicrobial

  4. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  5. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  6. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  7. 3D Characterization of Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andrew William; MacDonald, A. Nicole

    2016-01-01

    A three-dimensional (3D) volume containing a recrystallizing grain and a deformed matrix in a partially recrystallized pure aluminum was characterized using the 3D electron backscattering diffraction technique. The 3D shape of a recrystallizing boundary, separating the recrystallizing grain...

  8. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  9. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  10. UAV PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING – CURRENT STATUS AND FUTURE PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    F. Remondino

    2012-09-01

    Full Text Available UAV platforms are nowadays a valuable source of data for inspection, surveillance, mapping and 3D modeling issues. New applications in the short- and close-range domain are introduced, being the UAVs a low-cost alternatives to the classical manned aerial photogrammetry. Rotary or fixed wing UAVs, capable of performing the photogrammetric data acquisition with amateur or SLR digital cameras, can fly in manual, semi-automated and autonomous modes. With a typical photogrammetric pipeline, 3D results like DSM/DTM, contour lines, textured 3D models, vector data, etc. can be produced, in a reasonable automated way. The paper reports the latest developments of UAV image processing methods for photogrammetric applications, mapping and 3D modeling issues. Automation is nowadays necessary and feasible at the image orientation, DSM generation and orthophoto production stages, while accurate feature extraction is still an interactive procedure. New perspectives are also addressed.

  11. Hitchhiker'S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Scott Quadrelli

    2016-01-01

    Full Text Available Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS. In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.

  12. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    Science.gov (United States)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  13. 3D-CT of the temporal bone area with high-speed processing

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Taku [Nagoya Univ. (Japan). Branch Hospital

    1994-12-01

    Three-dimentional (3D)-CT was introduced to represent abnormal findings in the temporal bone area utilizing a SOMATOM DRH CT scanner with accessory 3D reconstruction software and an exclusive high-speed 3D processing system, VOXEL FLINGER. In a patient with eosinophilic granuloma, a defect in the squamous part of the temporal bone was demonstrated suggesting exposure of the dura mater during surgery. In a patient with a normal ear, well-developed mastoid cavity, a part of the handle and the head of the malleus, the incudomalleal joint, the short limb, body and a part of the long limb of the incus and the round window niche were demonstrated. In a case of chronic otitis media, poorly developed mastoid cavity and a possible defect of the tip of the long limb of the incus were demonstrated, in contrast to the patient with the normal ear. 3D-CT yields objective and solid images which are useful for diagnosis, treatment planning and explanation of the pathology to patients and their family. To obtain convincing 3D images, physicians themselves have to choose exact rotation angles. It is not adequate to reconstruct original CT data using a CT computer with accessory 3D software whose processing capability is not good enough for this purpose. The conclusion is as follows: (1) it is necessary and effective to transfer original CT data into the memory of the exclusive high-speed 3D processing system and (2) process the data by the voxel memory method to establish a clinically valuable 3D-CT imaging system. (author).

  14. 3D-CT of the temporal bone area with high-speed processing

    International Nuclear Information System (INIS)

    Hattori, Taku

    1994-01-01

    Three-dimentional (3D)-CT was introduced to represent abnormal findings in the temporal bone area utilizing a SOMATOM DRH CT scanner with accessory 3D reconstruction software and an exclusive high-speed 3D processing system, VOXEL FLINGER. In a patient with eosinophilic granuloma, a defect in the squamous part of the temporal bone was demonstrated suggesting exposure of the dura mater during surgery. In a patient with a normal ear, well-developed mastoid cavity, a part of the handle and the head of the malleus, the incudomalleal joint, the short limb, body and a part of the long limb of the incus and the round window niche were demonstrated. In a case of chronic otitis media, poorly developed mastoid cavity and a possible defect of the tip of the long limb of the incus were demonstrated, in contrast to the patient with the normal ear. 3D-CT yields objective and solid images which are useful for diagnosis, treatment planning and explanation of the pathology to patients and their family. To obtain convincing 3D images, physicians themselves have to choose exact rotation angles. It is not adequate to reconstruct original CT data using a CT computer with accessory 3D software whose processing capability is not good enough for this purpose. The conclusion is as follows: 1) it is necessary and effective to transfer original CT data into the memory of the exclusive high-speed 3D processing system and 2) process the data by the voxel memory method to establish a clinically valuable 3D-CT imaging system. (author)

  15. Intelligent Open Data 3D Maps in a Collaborative Virtual World

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2015-05-01

    Full Text Available Three-dimensional (3D maps have many potential applications, such as navigation and urban planning. In this article, we present the use of a 3D virtual world platform Meshmoon to create intelligent open data 3D maps. A processing method is developed to enable the generation of 3D virtual environments from the open data of the National Land Survey of Finland. The article combines the elements needed in contemporary smart city concepts, such as the connection between attribute information and 3D objects, and the creation of collaborative virtual worlds from open data. By using our 3D virtual world platform, it is possible to create up-to-date, collaborative 3D virtual models, which are automatically updated on all viewers. In the scenes, all users are able to interact with the model, and with each other. With the developed processing methods, the creation of virtual world scenes was partially automated for collaboration activities.

  16. 2D and 3D Modeling Comparison

    OpenAIRE

    Gaidyte, Rita

    2010-01-01

    Many inventors and companies still use 2D drawings and are starting to realize a 3D design because 3D modeling can save time and money. In this project I am going to compare 2D and 3D drawings and modeling. 2D modeling and 3D modeling have advantages and disadvantages. For this comparison I made 2D and 3D models using AutoCAD, Autodesk Revit Architectural and Revit MEP software. So, I am going to compare CAD (Computer-aided design) and BIM (Building Information Modeling) technologies, beca...

  17. PRIPRAVA MODELOV ZA 3D - TISK

    OpenAIRE

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  18. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  19. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  20. 3D Printing of Fluid Flow Structures

    OpenAIRE

    Taira, Kunihiko; Sun, Yiyang; Canuto, Daniel

    2017-01-01

    We discuss the use of 3D printing to physically visualize (materialize) fluid flow structures. Such 3D models can serve as a refreshing hands-on means to gain deeper physical insights into the formation of complex coherent structures in fluid flows. In this short paper, we present a general procedure for taking 3D flow field data and producing a file format that can be supplied to a 3D printer, with two examples of 3D printed flow structures. A sample code to perform this process is also prov...

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. Markerless 3D facial motion capture system

    Science.gov (United States)

    Hwang, Youngkyoo; Kim, Jung-Bae; Feng, Xuetao; Bang, Won-Chul; Rhee, Taehyun; Kim, James D. K.; Kim, ChangYeong

    2012-03-01

    We propose a novel markerless 3D facial motion capture system using only one common camera. This system is simple and easy to transfer facial expressions of a user's into virtual world. It has robustly tracking facial feature points associated with head movements. In addition, it estimates high accurate 3D points' locations. We designed novel approaches to the followings; Firstly, for precisely 3D head motion tracking, we applied 3D constraints using a 3D face model on conventional 2D feature points tracking approach, called Active Appearance Model (AAM). Secondly, for dealing with various expressions of a user's, we designed 2D face generic models from around 5000 images data and 3D shape data including symmetric and asymmetric facial expressions. Lastly, for accurately facial expression cloning, we invented a manifold space to successfully transfer 2D low dimensional feature points to 3D high dimensional points. The manifold space is defined by eleven facial expression bases.

  3. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  4. 3-D Technology Approaches for Biological Ecologies

    Science.gov (United States)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  5. RT3D tutorials for GMS users

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T.P. [Pacific Northwest National Lab., Richland, WA (United States); Jones, N.L. [Brigham Young Univ., Provo, UT (United States)

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  6. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  7. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  8. Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2016-09-01

    Full Text Available Airborne single-photon lidar (SPL is a new technology that holds considerable potential for forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments use green wavelength (532 nm lasers, which are sensitive to background solar noise, and therefore SPL point clouds require more elaborate noise filtering than other lidar instruments to determine canopy heights, particularly in daytime acquisitions. Histogram-based aggregation is a commonly used approach for removing noise from photon counting lidar data, but it reduces the resolution of the dataset. Here we present an alternate voxel-based spatial filtering method that filters noise points efficiently while largely preserving the spatial integrity of SPL data. We develop and test our algorithms on an experimental SPL dataset acquired over Garrett County in Maryland, USA. We then compare canopy attributes retrieved using our new algorithm with those obtained from the conventional histogram binning approach. Our results show that canopy heights derived using the new algorithm have a strong agreement with field-measured heights (r2 = 0.69, bias = 0.42 m, RMSE = 4.85 m and discrete return lidar heights (r2 = 0.94, bias = 1.07 m, RMSE = 2.42 m. Results are consistently better than height accuracies from the histogram method (field data: r2 = 0.59, bias = 0.00 m, RMSE = 6.25 m; DRL: r2 = 0.78, bias = −0.06 m and RMSE = 4.88 m. Furthermore, we find that the spatial-filtering method retains fine-scale canopy structure detail and has lower errors over steep slopes. We therefore believe that automated spatial filtering algorithms such as the one presented here can support large-scale, canopy structure mapping from airborne SPL data.

  9. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Bengtsson, P.; Engstroem, L.; Westerlind, M.; Martinson, I.

    1991-01-01

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d 7 4s-3d 7 4p transitions in Br X, from which 16 levels of the previously unknown 3d 7 4s configuration could be established. We have also added 6 new 3d 7 4p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d 6 4s-3d 6 4p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  10. 3D PHOTOGRAPHS IN CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    W. Schuhr

    2013-07-01

    Full Text Available This paper on providing "oo-information" (= objective object-information on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality", 3D photography support, e.g. the recording, the visualization, the interpretation, the preservation and the restoration of architectural and archaeological objects. This also includes samples for excavation documentation, 3D coordinate calculation, 3D photographs applied for virtual museum purposes and as educational tools. In addition 3D photography is used for virtual museum purposes, as well as an educational tool and for spatial structure enhancement, which in particular holds for inscriptions and in rock arts. This paper is also an invitation to participate in a systematic survey on existing international archives of 3D photographs. In this respect it is also reported on first results, to define an optimum digitization rate for analog stereo views. It is more than overdue, in addition to the access to international archives for 3D photography, the available 3D photography data should appear in a global GIS(cloud-system, like on, e.g., google earth. This contribution also deals with exposing new 3D photographs to document monuments of importance for Cultural Heritage, including the use of 3D and single lense cameras from a 10m telescope staff, to be used for extremely low earth based airborne 3D photography, as well as for "underwater staff photography". In addition it is reported on the use of captive balloon and drone platforms for 3D photography in Cultural Heritage. It is liked to emphasize, the still underestimated 3D effect on real objects even allows, e.g., the spatial perception of extremely small scratches as well as of nuances in

  11. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  12. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  13. Pavement cracking measurements using 3D laser-scan images

    International Nuclear Information System (INIS)

    Ouyang, W; Xu, B

    2013-01-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel −1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s −1 , allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions. (paper)

  14. Advanced optical 3D scanners using DMD technology

    Science.gov (United States)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  15. SAMA: A Method for 3D Morphological Analysis.

    Science.gov (United States)

    Paulose, Tessie; Montévil, Maël; Speroni, Lucia; Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama.

  16. SAMA: A Method for 3D Morphological Analysis.

    Directory of Open Access Journals (Sweden)

    Tessie Paulose

    Full Text Available Three-dimensional (3D culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA, a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji, an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/, an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama.

  17. Educational Online 3D Workshop Simulations

    OpenAIRE

    Unver, Ertu; Taylor, Andrew

    2009-01-01

    This paper describes the stages in the development of an online 3D interactive virtual learning environment for use in art and design higher education. The 3D interactive environment enables users to experiment within virtual workshop and studio spaces independently or as multi-user groups. The environment will create opportunities for adding interactive 3D on-line teaching support materials, links to ‘live’ lectures and provides real-time distance communication learning and training experien...

  18. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  19. 3D Face Modeling based on 3D Dense Morphable Face Shape Model

    OpenAIRE

    Yongsuk Jang Kim; Sun-Tae Chung; Boogyun Kim; Seongwon Cho

    2008-01-01

    Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, th...

  20. Building Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-05-01

    Full Text Available Information extraction and three-dimensional (3D reconstruction of buildings using the vehicle-borne laser scanning (VLS system is significant for many applications. Extracting LiDAR points, from VLS, belonging to various types of building in large-scale complex urban environments still retains some problems. In this paper, a new technical framework for automatic and efficient building point extraction is proposed, including three main steps: (1 voxel group-based shape recognition; (2 category-oriented merging; and (3 building point identification by horizontal hollow ratio analysis. This article proposes a concept of “voxel group” based on the voxelization of VLS points: each voxel group is composed of several voxels that belong to one single real-world object. Then the shapes of point clouds in each voxel group are recognized and this shape information is utilized to merge voxel group. This article puts forward a characteristic nature of vehicle-borne LiDAR building points, called “horizontal hollow ratio”, for efficient extraction. Experiments are analyzed from two aspects: (1 building-based evaluation for overall experimental area; and (2 point-based evaluation for individual building using the completeness and correctness. The experimental results indicate that the proposed framework is effective for the extraction of LiDAR points belonging to various types of buildings in large-scale complex urban environments.

  1. 3-D Printed Habitat - Design Competition

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D-Printed Habitat Challenge seeks to develop the fundamental technologies necessary to manufacture habitats using indigenous materials, including recycled...

  2. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  3. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  4. 3D-tulostuksen viipalointiohjelmien vertailu

    OpenAIRE

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  5. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2016-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  6. Multi-view 3D scene reconstruction using ant colony optimization techniques

    International Nuclear Information System (INIS)

    Chrysostomou, Dimitrios; Gasteratos, Antonios; Nalpantidis, Lazaros; Sirakoulis, Georgios C

    2012-01-01

    This paper presents a new method performing high-quality 3D object reconstruction of complex shapes derived from multiple, calibrated photographs of the same scene. The novelty of this research is found in two basic elements, namely: (i) a novel voxel dissimilarity measure, which accommodates the elimination of the lighting variations of the models and (ii) the use of an ant colony approach for further refinement of the final 3D models. The proposed reconstruction procedure employs a volumetric method based on a novel projection test for the production of a visual hull. While the presented algorithm shares certain aspects with the space carving algorithm, it is, nevertheless, first enhanced with the lightness compensating image comparison method, and then refined using ant colony optimization. The algorithm is fast, computationally simple and results in accurate representations of the input scenes. In addition, compared to previous publications, the particular nature of the proposed algorithm allows accurate 3D volumetric measurements under demanding lighting environmental conditions, due to the fact that it can cope with uneven light scenes, resulting from the characteristics of the voxel dissimilarity measure applied. Besides, the intelligent behavior of the ant colony framework provides the opportunity to formulate the process as a combinatorial optimization problem, which can then be solved by means of a colony of cooperating artificial ants, resulting in very promising results. The method is validated with several real datasets, along with qualitative comparisons with other state-of-the-art 3D reconstruction techniques, following the Middlebury benchmark. (paper)

  7. Breast lesion detection and characterization with 3D features.

    Science.gov (United States)

    Sreekumari, Arathi; Shriram, K S; Vaidya, Vivek

    2016-08-01

    Automated Breast Ultrasound (ABUS) is highly effective as breast cancer screening adjunct technology. Automation can greatly enhance the efficiency of the clinician sifting through the quantum of data in ABUS volumes to spot lesions. We have implemented a fully automatic generic algorithm pipeline for detection and characterization of lesions on such 3D volumes. We compare a wide range of features for region description on their effectiveness at the dual goals of lesion detection and characterization. On multiple feature images, we compute region descriptors at lesion candidate locations obviating the need for explicit lesion segmentation. We use Random Forests classifier to evaluate candidate region descriptors for lesion detection. Further, we categorize true lesions as Malignant or other masses (e.g. Cysts). Over a database of 145 volumes, with 36 biopsy verified lesions, we achieved Area Under the Curve (AUC) values of 92.6% for lesion detection and 89% for lesion characterization.

  8. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Science.gov (United States)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  9. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  10. Voxel-based morphometry: current perspectives

    Directory of Open Access Journals (Sweden)

    Scarpazza C

    2016-07-01

    Full Text Available Cristina Scarpazza,1,2 Maria Stefania De Simone,3 1Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK; 2Department of General Psychology, University of Padua, Padua, 3Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy Abstract: Voxel-based morphometry (VBM is a widely used automated technique for the analysis of neuroanatomical images. This work, which reviews important VBM clinical findings of the last few years, is divided into two main sections. After briefly introducing VBM methodology, in the first part, VBM findings on neurological and psychiatric diseases have been discussed separately. The reported studies were divided into studies that examine the diagnostic value of VBM results and their usefulness for the differential diagnosis between two disorders; studies investigating the potential of VBM for the diagnosis in an early stage of the illness, and studies that examine the utility of VBM for predicting the transition from prodromal phase to full-blown disease. In the second part, this review focuses on the most recent findings on the single-case approach. This analysis is useful for promoting the translational impact of VBM results in clinical practice, where clinicians need to make inferences at the level of the individual patient. Finally, within the single-case approach, a paragraph is dedicated to the potential forensic applications of VBM. Indeed, if used to support and integrate results obtained with classical forensic evaluations, VBM may provide objective data that could be used to reduce controversy in forensic psychiatric evaluations of mental insanity. In this second part, particular emphasis is given to the problem of results interpretation, which should be based mainly on the presence of anatomoclinical correlation. The review finishes with a provocative note reporting an interesting result of a single-case VBM

  11. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  12. Authoring Adaptive 3D Virtual Learning Environments

    Science.gov (United States)

    Ewais, Ahmed; De Troyer, Olga

    2014-01-01

    The use of 3D and Virtual Reality is gaining interest in the context of academic discussions on E-learning technologies. However, the use of 3D for learning environments also has drawbacks. One way to overcome these drawbacks is by having an adaptive learning environment, i.e., an environment that dynamically adapts to the learner and the…

  13. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  14. Wow! 3D Content Awakens the Classroom

    Science.gov (United States)

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  15. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  16. Pathways for Learning from 3D Technology

    Science.gov (United States)

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  17. Towards sustainable and clean 3D Geoinformation

    NARCIS (Netherlands)

    Stoter, J.E.; Ledoux, H.; Zlatanova, S.; Biljecki, F.; Kolbe, T.H.; Bill, R.; Donaubauer, A.

    2016-01-01

    This paper summarises the on going research activities of the 3D Geoinformation Group at the Delft University of Technology. The main challenge underpinning the research of this group is providing clean and appropriate 3D data about our environment in order to serve a wide variety of applications.

  18. Multiway calibration in 3D QSAR

    NARCIS (Netherlands)

    Nilsson, J.; DeJong, S.; Smilde, A. K.

    1997-01-01

    We have introduced multilinear PLS in 3D QSAR and applied it to GRID descriptors from a set of benzamides with affinity to the dopamine D-3 receptor subtype, synthesized as potential drugs against schizophrenia. The key issue in 3D QSAR modelling is to obtain a predictive model that is easy to

  19. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent o...

  20. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  1. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  2. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  3. 3D-printed cereal foods

    NARCIS (Netherlands)

    Noort, M.; Bommel, K. van; Renzetti, S.

    2017-01-01

    Additive manufacturing, also known as 3D printing, is an up-and-coming production technology based on layer-by-layer deposition of material to reproduce a computer-generated 3D design. Additive manufacturing is a collective term used for a variety of technologies, such as fused deposition modeling

  4. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality...... interact by navigating, browsing, manipulating and querying the system....

  5. Recognition of 3D facial expression dynamics

    NARCIS (Netherlands)

    Sandbach, G.; Zafeiriou, S.; Pantic, Maja; Rueckert, D.

    2012-01-01

    In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order

  6. Integrated modelling for 3D GIS

    NARCIS (Netherlands)

    Pilouk, M.

    1996-01-01


    A three dimensional (3D) model facilitates the study of the real world objects it represents. A geoinformation system (GIS) should exploit the 3D model in a digital form as a basis for answering questions pertaining to aspects of the real world. With respect to the earth sciences,

  7. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    Science.gov (United States)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  8. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  9. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  10. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  11. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  12. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  13. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  14. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  15. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  16. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  17. Parallel OSEM Reconstruction Algorithm for Fully 3-D SPECT on a Beowulf Cluster.

    Science.gov (United States)

    Rong, Zhou; Tianyu, Ma; Yongjie, Jin

    2005-01-01

    In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency. This parallel implementation methodology is expected to be helpful to make fully 3-D OSEM algorithms more feasible in clinical SPECT studies.

  18. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  19. Assessment of Myocardial Viability with 3D MRI at 3 T.

    Science.gov (United States)

    Bauner, Kerstin U; Muehling, Olaf; Theisen, Daniel; Hayes, Carmel; Wintersperger, Bernd J; Reiser, Maximilian F; Huber, Armin M

    2009-06-01

    The aim of our study was to show that spatial resolution can be improved without loss of diagnostic accuracy if a 3D inversion recovery gradient-recalled echo (GRE) sequence is used instead of a segmented inversion recovery GRE at 3 T for the assessment of myocardial infarction. Fifteen patients with myocardial infarction were examined on a 3-T MR system. A segmented breath-hold 3D inversion recovery GRE technique with a voxel size of 6.3 mm(3) was compared with a breath-hold standard 2D inversion recovery GRE technique with a voxel size of 21.3 mm(3) for the detection of delayed enhancement. Contrast-to-noise ratios (CNRs) were calculated and infarct volumes were measured. Detection and transmural extent of infarctions were evaluated using kappa statistics. Total acquisition times were measured for both sequences. The CNR in the 3D technique did not show any significant difference compared with the 2D technique. The correlation coefficients of the infarct volumes determined with the 3D and 2D inversion recovery GRE studies at 3 T were r = 0.99 (p < 0.001). The assessment of the presence of hyperenhanced myocardium in all segments and the evaluation of transmurality resulted in very good agreement (kappa = 0.98 and kappa = 0.90). Total acquisition time was significantly shorter with the 3D technique (2.4 +/- 0.9 minutes) than with the 2D technique (4.9 +/- 1.5 minutes) (p < 0.001). The use of a 3D inversion recovery GRE sequence at 3 T allows accurate assessment of myocardial infarction without loss of CNR compared with the standard 2D technique. Furthermore, data acquisition time can be significantly reduced.

  20. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  1. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  2. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  3. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  4. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  5. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  6. Image-Based 3D Face Modeling System

    Directory of Open Access Journals (Sweden)

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  7. R3DO: A Plastic Recycling System For Creating 3D Printer Feedstock On-Orbit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An automated in-space recycling system for 3D printer feedstock will provide game-changing resupply benefits including but not limited to launch mass reduction,...

  8. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Graf, Norman A

    2012-01-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  9. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI

    Science.gov (United States)

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  10. 3-D reconstruction and volume modelling of the grain fabric of geological materials

    Science.gov (United States)

    Marschallinger, R.

    This paper describes three-dimensional reconstruction and volume modelling of geological materials at the macroscopic and the microscopic scale. By means of a precision lapping device, samples are eroded in plan-parallel steps, erosion intervals being adapted to the size of minerals and fabric features of interest. For reconstruction of macroscopic features, each newly eroded sample surface is recorded by a high-resolution color flatbed scanner. Supervised image classification applied to the derived images yields color based mineral recognition. At the microscopic scale, scanning is done with a microanalyzer to portray mineral phases and microchemical variation. Minerals and fabric features are three dimensionally reconstructed by stacking and interpolating the acquired raster images of successive erosion levels in a voxel array. The voxel data structure features analyical flexibility, integration of both discrete and continuous spatial variation and versatile 3-D volume model visualization.

  11. An extension to 3D topological thinning method based on LUT for colon centerline extraction.

    Science.gov (United States)

    Ding, M; Tong, Ruof; Liao, Sheng-hui; Dong, JinX

    2009-04-01

    Topological thinning is a valid but time-consuming method to calculate the centerline of human colon or other hollow organs accurately. An optimized 3D topological thinning method based on Look-up Table (LUT), which was proposed by Sadlier, proves to be effective in improving the efficiency on many occasions. However, it is still inefficient when processing some complex datasets. In this paper, we first analyze the reason causing the unstable performance, and then present an extension to Sadlier's method, which enables the rapid execution of the extraneous loops removing by avoiding unnecessary global connectivity testing. To reach this purpose, a min-heap structure is introduced to select a seed from the candidate voxels set of the final centerline, and region growing technique is used to find the voxels in the same branch with the seed. The comparison among the standard topological thinning, LUT method and the extension to LUT method indicates the extension achieves the most efficient performance.

  12. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  13. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  14. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  15. Pharmacophore definition and 3D searches.

    Science.gov (United States)

    Langer, T; Wolber, G

    2004-12-01

    The most common pharmacophore building concepts based on either 3D structure of the target or ligand information are discussed together with the application of such models as queries for 3D database search. An overview of the key techniques available on the market is given and differences with respect to algorithms used and performance obtained are highlighted. Pharmacophore modelling and 3D database search are shown to be successful tools for enriching screening experiments aimed at the discovery of novel bio-active compounds.: © 2004 Elsevier Ltd . All rights reserved.

  16. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  17. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  18. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 13.3

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. FUN3D Manual: 12.6

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of forma