A cellular automata-based mathematical model for thymocyte development.
Directory of Open Access Journals (Sweden)
Hallan Souza-e-Silva
Full Text Available Intrathymic T cell development is an important process necessary for the normal formation of cell-mediated immune responses. Importantly, such a process depends on interactions of developing thymocytes with cellular and extracellular elements of the thymic microenvironment. Additionally, it includes a series of oriented and tunely regulated migration events, ultimately allowing mature cells to cross endothelial barriers and leave the organ. Herein we built a cellular automata-based mathematical model for thymocyte migration and development. The rules comprised in this model take into account the main stages of thymocyte development, two-dimensional sections of the normal thymic microenvironmental network, as well as the chemokines involved in intrathymic cell migration. Parameters of our computer simulations with further adjusted to results derived from previous experimental data using sub-lethally irradiated mice, in which thymus recovery can be evaluated. The model fitted with the increasing numbers of each CD4/CD8-defined thymocyte subset. It was further validated since it fitted with the times of permanence experimentally ascertained in each CD4/CD8-defined differentiation stage. Importantly, correlations using the whole mean volume of young normal adult mice revealed that the numbers of cells generated in silico with the mathematical model fall within the range of total thymocyte numbers seen in these animals. Furthermore, simulations made with a human thymic epithelial network using the same mathematical model generated similar profiles for temporal evolution of thymocyte developmental stages. Lastly, we provided in silico evidence that the thymus architecture is important in the thymocyte development, since changes in the epithelial network result in different theoretical profiles for T cell development/migration. This model likely can be used to predict thymocyte evolution following therapeutic strategies designed for recovery of the
Automata-Based CSL Model Checking
DEFF Research Database (Denmark)
Zhang, Lijun; Jansen, David N.; Nielson, Flemming;
2011-01-01
For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we...... probability can then be approximated in polynomial time (using uniformization). This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to be incorrect in general. In fact, it works only for stratified CTMCs...
Fluctuation in option pricing using cellular automata based market models
Gao, Yuying; Beni, Gerardo
2005-05-01
A new agent-based Cellular Automaton (CA) computational algorithm for option pricing is proposed. CAs have been extensively used in modeling complex dynamical systems but not in modeling option prices. Compared with traditional tools, which rely on guessing volatilities to calculate option prices, the CA model is directly addressing market mechanisms and simulates price fluctuation from aggregation of actions made by interacting individual market makers in a large population. This paper explores whether CA models can provide reasonable good answers to pricing European options. The Black-Scholes model and the Binomial Tree model are used for comparison. Comparison reveals that CA models perform reasonably well in pricing options, reproducing overall characteristics of random walk based model, while at the same time providing plausible results for the 'fat-tail' phenomenon observed in many markets. We also show that the binomial tree model can be obtained from a CA rule. Thus, CA models are suitable tools to generalize the standard theories of option pricing.
Simple Cellular Automata-Based Linear Models for the Shrinking Generator
Fúster-Sabater, Amparo
2010-01-01
Structural properties of two well-known families of keystream generators, Shrinking Generators and Cellular Automata, have been analyzed. Emphasis is on the equivalence of the binary sequences obtained from both kinds of generators. In fact, Shrinking Generators (SG) can be identified with a subset of linear Cellular Automata (mainly rule 90, rule 150 or a hybrid combination of both rules). The linearity of these cellular models can be advantageously used in the cryptanalysis of those keystream generators.
An Automata-Based Symbolic Approach for Verifying Programs on Relaxed Memory Models
Linden, Alexander; Wolper, Pierre
2010-01-01
This paper addresses the problem of verifying programs for the relaxed memory models implemented in modern processors. Specifically, it considers the TSO (Total Store Order) relaxation, which corresponds to the use of store buffers. The proposed approach proceeds by using finite automata to symbolically represent the possible contents of the store buffers. Store, load and commit operations then correspond to operations on these finite automata. The advantage of this approa...
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... framework, which has been used for designing modelling courses, analysing students’ modelling activities, identifying learning obstacles in the modelling process and to guide the teachers interaction with the students during their work. This will be illustrated with an example from a developmental project...
VERIFICATION OF PARALLEL AUTOMATA-BASED PROGRAMS
Directory of Open Access Journals (Sweden)
M. A. Lukin
2014-01-01
Full Text Available The paper deals with an interactive method of automatic verification for parallel automata-based programs. The hierarchical state machines can be implemented in different threads and can interact with each other. Verification is done by means of Spin tool and includes automatic Promela model construction, conversion of LTL-formula to Spin format and counterexamples in terms of automata. Interactive verification gives the possibility to decrease verification time and increase the maximum size of verifiable programs. Considered method supports verification of the parallel system for hierarchical automata that interact with each other through messages and shared variables. The feature of automaton model is that each state machine is considered as a new data type and can have an arbitrary bounded number of instances. Each state machine in the system can run a different state machine in a new thread or have nested state machine. This method was implemented in the developed Stater tool. Stater shows correct operation for all test cases.
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Mosquito population dynamics from cellular automata-based simulation
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
Automata-Based Programming Technology Extension for Generation of JML Annotated Java Card Code
Andrey, A.
2008-01-01
This paper gives an overview of the ongoing research project which concerns generation of dependable Java Card code. According to the automata-based programming technology, code is generated from a high-level application behavior description which is based on finite state machines. An extra benefit from the use of such description is the possibility of generation of formal application specification in Java Modeling Language. Conformance of the code against its specification could be checked b...
Teaching Mathematical Modeling in Mathematics Education
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Developing mathematical modelling competence
DEFF Research Database (Denmark)
Blomhøj, Morten; Jensen, Tomas Højgaard
2003-01-01
In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....
Mathematical modelling techniques
Aris, Rutherford
1995-01-01
""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Mathematical models of morphogenesis
Directory of Open Access Journals (Sweden)
Dilão Rui
2015-01-01
Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.
Mathematical modelling of metabolism
DEFF Research Database (Denmark)
Gombert, Andreas Karoly; Nielsen, Jens
2000-01-01
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....
Principles of mathematical modeling
Dym, Clive
2004-01-01
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...
Concepts of mathematical modeling
Meyer, Walter J
2004-01-01
Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec
Mathematical models of hysteresis
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
Mathematical modeling in psychological researches
Directory of Open Access Journals (Sweden)
Aleksandra Zyolko
2013-04-01
Full Text Available The author considers the nature of mathematical modeling and its significance in psychological researches. The author distinguishes the types of mathematical models: deterministic, stochastic models and synergetic models. The system approach is proposed as an instrument of implementation of mathematical modelling in psychological research.
Finite mathematics models and applications
Morris, Carla C
2015-01-01
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.
Authenticity of Mathematical Modeling
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Mathematical Modelling in European Education
Ferri, Rita Borromeo
2013-01-01
Teaching and learning of mathematical modelling has become a key competence within school curricula and educational standards in many countries of the world. The term mathematical modelling, its meaning, and how it can be implemented in mathematics lessons have been intensively discussed during several Conferences of the European Society for…
Mathematical modeling with multidisciplinary applications
Yang, Xin-She
2013-01-01
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
Mathematical Models for Elastic Structures
Villaggio, Piero
1997-10-01
During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.
Mathematical Model for Hit Phenomena
Ishii, Akira; Hayashi, Takefumi; Matsuda, Naoya; Nakagawa, Takeshi; Arakaki, Hisashi; Yoshida, Narihiko
2010-01-01
The mathematical model for hit phenomena in entertainments is presented as a nonlinear, dynamical and non-equilibrium phenomena. The purchase intention for each person is introduced and direct and indirect communications are expressed as two-body and three-body interaction in our model. The mathematical model is expressed as coupled nonlinear differential equations. The important factor in the model is the decay time of rumor for the hit. The calculated results agree very well with revenues of recent 25 movies.
An introduction to mathematical modeling
Bender, Edward A
2000-01-01
Employing a practical, ""learn by doing"" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields - including science, engineering, and operations research - to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The
Mathematical Models of Waiting Time.
Gordon, Sheldon P.; Gordon, Florence S.
1990-01-01
Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
Mathematical Models of Gene Regulation
Mackey, Michael C.
2004-03-01
This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.
Mathematical modelling of membrane separation
DEFF Research Database (Denmark)
Vinther, Frank
This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...... and the rejection coefficient. The second model is a stationary model for the flux of solvent and solute in a hollow fibre membrane. In the model we solve the time independent equations for transport of solvent and solute within the hollow fibre. Furthermore, the flux of solute and solvent through the membrane...
Mathematical Modeling: A Bridge to STEM Education
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
Mathematics teachers’ ideas about mathematical models: a diverse landscape
Alfredo Bautista; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers??? ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers??? written responses to three open-ended questions through content analysis. A varied landscape of ideas was identified. Teachers referred to different entities as constituting models, expresse...
Mathematical modeling of biological processes
Friedman, Avner
2014-01-01
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
Mathematical Model for Photovoltaic Cells
Wafaa ABD EL-BASIT; Ashraf Mosleh ABD El–MAKSOOD; Fouad Abd El-Moniem Saad SOLIMAN
2013-01-01
The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V) and (P-V) characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the ...
Mathematical models of bipolar disorder
Daugherty, D; Roque-Urrea, T; Urrea-Roque, J; DE TROYER, J; Wirkus, S; Porter, M. A.
2009-01-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using ...
Mathematical Models of Bipolar Disorder
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Snyder, Jessica; Wirkus, Stephen; Mason A. Porter
2003-01-01
We use limit cycle oscillators to model Bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about one percent of the United States adult population. We consider two nonlinear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individual...
Logical Tree of Mathematical Modeling
Directory of Open Access Journals (Sweden)
László Pokorádi
2015-04-01
Full Text Available During setting up a mathematical model, it can be very important and dicult task to choose input parametersthat should be known for solution of this problem. A similar problem might come up when someone wants to carryout an engineering calculation task. A very essential aim technical education is developing of good logical engineeringthinking. One main part of this thinking is to determine the potential sets of required input parameters of anengineering calculation. This paper proposes a logical tree based method to determine the required parameters of amathematical model. The method gives a lively description about needed data base, and computational sequence forus to get to determine the set of required output parameter. The shown method is named LogTreeMM - Logical Treeof Mathematical Modeling.
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Mathematical Model of Age Aggression
Golovinski, P. A.
2013-01-01
We formulate a mathematical model of competition for resources between representatives of different age groups. A nonlinear kinetic integral-differential equation of the age aggression describes the process of redistribution of resources. It is shown that the equation of the age aggression has a stationary solution, in the absence of age-dependency in the interaction of different age groups. A numerical simulation of the evolution of resources for different initial distributions has done. It ...
Mathematical models of granular matter
Mariano, Paolo; Giovine, Pasquale
2008-01-01
Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
Mathematical modeling of laser lipolysis
Directory of Open Access Journals (Sweden)
Reynaud Jean
2008-02-01
Full Text Available Abstract Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s give similar skin surface temperature (max: 41°C. These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction
Mathematical Modeling: A Bridge to STEM Education
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may contribute to theoretical conceptualization of STEM education by specifically addressing the professional competencies that teachers need. The discussio...
Mathematical modeling of kidney transport.
Layton, Anita T
2013-01-01
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.
Mathematical Modeling in Combustion Science
Takeno, Tadao
1988-01-01
An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.
Mathematical models of bipolar disorder
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
Explorations in Elementary Mathematical Modeling
Directory of Open Access Journals (Sweden)
Mazen Shahin
2010-06-01
Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
An Asynchronous Cellular Automata-Based Adaptive Illumination Facility
Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito
The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.
Automata-Based Analysis of Stage Suspended Boom Systems
Anping He; Jinzhao Wu; Shihan Yang; Yongquan Zhou; Juan Wang
2013-01-01
A stage suspended boom system is an automatic steeve system orchestrated by the PLC (programmable logic controller). Security and fault-recovering are two important properties. In this paper, we analyze and verify the boom system formally. We adopt the hybrid automaton to model the boom system. The forward reachability is used to verify the properties with the reachable states. We also present a case study to illustrate the feasibility of the proposed verification.
The Design of ADAT: A Tool for Assessing Automata-Based Assignments
Directory of Open Access Journals (Sweden)
Zarina Shukur
2008-01-01
Full Text Available This study describes the design of an automatic assessment system for assessing an automata-based assignment. Automata concept is taught in several undergraduate computing courses such as Theory of Computation, Automata and Formal Languages and Compilers. We take two elements into consideration when assessing the student's answers; static element and dynamic element. The static element involves the number of states (initial and final as well and the number of transitions. Whilst the dynamic aspect involves executing the automata against several test data. In this work, we rely heavily on the JFLAP for drawing and executing the automata.
Mathematical models in biological discovery
Walter, Charles
1977-01-01
When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...
Mathematical models of viscous friction
Buttà, Paolo; Marchioro, Carlo
2015-01-01
In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...
Mathematical model for classification of EEG signals
Ortiz, Victor H.; Tapia, Juan J.
2015-09-01
A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.
Mathematical modeling in biomedical imaging
2012-01-01
This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools. It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.
Building fire zone model with symbolic mathematics
Institute of Scientific and Technical Information of China (English)
武红梅; 郜冶; 周允基
2009-01-01
To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.
Mathematical modeling of Echinococcus multilocularis transmission
Ishikawa, Hirofumi
2008-01-01
A mathematical model for the transmission cycle of Echinococcus multilocularis would be useful for estimating its prevalence, and the model simulation can be instrumental in designing various control strategies. This review focuses on the epidemiological factors in the E. multilocularis transmission cycle and the recent advances of mathematical models for E. multilocularis transmission.
Computacional-representantional model of mathematics (crmmath)
Toro Carvajal, Luis Alberto
2016-01-01
This paper presents the so-called computational representational model of mathematics (MCRMATH), its theoretical importance for mathematics education and its relation with the use of technology tools in mathematics teaching. To do this, from a cognitive point of view, we conduct a research study of representations and we explain the computational-representational model of mind (CRMM).
Mathematical Model for Photovoltaic Cells
Directory of Open Access Journals (Sweden)
Wafaa ABD EL-BASIT
2013-11-01
Full Text Available The study of photovoltaic systems in an efficient manner requires a precise knowledge of the (I-V and (P-V characteristic curves of photovoltaic modules. So, the aim of the present paper is to estimate such characteristics based on different operating conditions. In this concern, a simple one diode mathematical model was implemented using MATLAB script. The output characteristics of PV cell depend on the environmental conditions. For any solar cell, the model parameters are function of the irradiance and the temperature values of the site where the panel is placed. In this paper, the numerical values of the equivalent circuit parameters are generated by the program. As well, the dependence of the cells electrical parameters are analyzed under the influence of different irradiance and temperature levels. The variation of slopes of the (I–V curves of a cell at short-circuit and open-circuit conditions with intensity of illumination in small span of intensity and different temperature levels have been applied to determine the cell parameters, shunt resistance, series resistance. The results show that the efficiency of solar cells has an inverse relationship with temperature, irradiance levels are affected by the change of the photo-generation current and the series resistance in the single diode model.
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
2016-01-01
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.
Towards the mathematical modelling of human behavior
Jódar Sánchez, Lucas Antonio; Cortés López, Juan Carlos; Acedo Rodríguez, Luis
2011-01-01
Jódar Sánchez, LA.; Cortés López, JC.; Acedo Rodríguez, L. (2011). Towards the mathematical modelling of human behavior. Mathematical and Computer Modelling. 54(7):1625-1625. doi:10.1016/j.mcm.2010.10.009. Senia 1625 1625 54 7
Scaffolding Mathematical Modelling with a Solution Plan
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Mathematical Modelling as a Professional Task
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Mathematical modelling of scour: A review
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2007-01-01
A review is presented of mathematical modelling of scour around hydraulic and marine structures. Principal ideas, general features and procedures are given. The paper is organized in three sections: the first two sections deal with the mathematical modelling of scour around piers/piles and pipeli...
Mathematical Model of Gravitational and Electrostatic Forces
Krouglov, A
2006-01-01
Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared.
Mineral potential mapping with mathematical geological models
Porwal, A.K.
2006-01-01
Mathematical geological models are being increasingly used by natural resources delineation and planning agencies for mapping areas of mineral potential in order to optimize land use in accordance with socio-economic needs of the society. However, a key problem in spatial-mathematical-model-based mi
Mathematical modeling in soil science
Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel
2015-04-01
Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.
Rival approaches to mathematical modelling in immunology
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
CCABC: Cyclic Cellular Automata Based Clustering For Energy Conservation in Sensor Networks
Banerjee, Indrajit; Rahaman, Hafizur
2011-01-01
Sensor network has been recognized as the most significant technology for next century. Despites of its potential application, wireless sensor network encounters resource restriction such as low power, reduced bandwidth and specially limited power sources. This work proposes an efficient technique for the conservation of energy in a wireless sensor network (WSN) by forming an effective cluster of the network nodes distributed over a wide range of geographical area. The clustering scheme is developed around a specified class of cellular automata (CA) referred to as the modified cyclic cellular automata (mCCA). It sets a number of nodes in stand-by mode at an instance of time without compromising the area of network coverage and thereby conserves the battery power. The proposed scheme also determines an effective cluster size where the inter-cluster and intra-cluster communication cost is minimum. The simulation results establish that the cyclic cellular automata based clustering for energy conservation in sens...
A mathematical model for iodine kinetics
International Nuclear Information System (INIS)
A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case
ECONOMIC-MATHEMATICAL CLUSTER’S MODELS
Directory of Open Access Journals (Sweden)
Nikolay Dmitriyevich Naydenov
2015-11-01
Full Text Available The article describes the economic and mathematical models of cluster formations: a model city on the line, the model of network competition consumers one-agent cluster model, the multi-agent playing model of cluster growth, the model comprehensive income cluster members, the artificial neural networks, the balance cluster model, the stability of the cluster model. The article shows that the economic-mathematical modeling processes, clustering as the method allows to improve forecasting, planning and evaluation of the level of clustering in the region.Purpose. Show the level of development of economic and mathematical models as a tool for the analysis of clusters of integration associations in the regions.Methodology. Economic-mathematical modeling, analysis, synthesis, comparison, statistical surveys.Results. The high activity of research in the field of economic and mathematical modeling of cluster formations revealed. The essential characteristics of cluster formations using economic and mathematical models investigated.Practical implications. The economic policy of the regions, countries and municipalities.
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
Mathematical Models in Danube Water Quality
Directory of Open Access Journals (Sweden)
Valerian Antohe
2009-01-01
Full Text Available The mathematical shaping in the study of water quality has become a branch of environmental engineering. The comprehension and effective application of mathematical models in studying environmental phenomena keep up with the results in the domain of mathematics and the development of specialized software as well. Integrated software programs simulate and predict extreme events, propose solutions, analyzing and processing data in due time. This paper presents a browsing through some mathematical categories of processing the statistical data, examples and their analysis concerning the degree of water pollution downstream the river Danube.
A mathematical model of symmetry based on mathematical definition
Institute of Scientific and Technical Information of China (English)
刘玉生; 杨将新; 吴昭同; 高曙明
2002-01-01
Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disignd/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance beeanse of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: ( 1 ) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements ; after which, the mathematical models of syrmmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.
A mathematical model of symmetry based on mathematical definition
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Tolerance is imperative for seamless integration of CAD/CAM(Computer Aided Disign/Computer Aided Manufacture) which is just a text attribute and has no semantics in present CAD systems. There are many tolerance types, the relations between which are very complicated. In addition, the different principles of tolerance make study of tolerance difficult; and there may be various meanings or interpretation for the same type of tolerance because of the literal definition. In this work, latest unambiguous mathematical definition was applied to study, explain and clarify: (1) the formation and representation of tolerance zone, and (2) the formation and representation of variational elements; after which, the mathematical models of symmetry of different tolerance principles and different interpretations were derived. An example is given to illustrate the application of these models in tolerance analysis.
Mathematical models in biology bringing mathematics to life
Ferraro, Maria; Guarracino, Mario
2015-01-01
This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...
Teaching mathematical modelling through project work
DEFF Research Database (Denmark)
Blomhøj, Morten; Kjeldsen, Tinne Hoff
2006-01-01
The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...
Mathematical modeling a chemical engineer's perspective
Rutherford, Aris
1999-01-01
Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus
Mathematical modeling in biomedical imaging
2009-01-01
This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.
Mathematical Modeling of Chemical Stoichiometry
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Applied mathematics: Models, Discretizations, and Solvers
Institute of Scientific and Technical Information of China (English)
D.E. Keyes
2007-01-01
@@ Computational plasma physicists inherit decades of developments in mathematical models, numerical algorithms, computer architecture, and software engineering, whose recent coming together marks the beginning of a new era of large-scale simulation.
Students’ mathematical learning in modelling activities
DEFF Research Database (Denmark)
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....
Mathematical model of cylindrical form tolerance
Institute of Scientific and Technical Information of China (English)
蔡敏; 杨将新; 吴昭同
2004-01-01
Tolerance is essential for integration of CAD and CAM.Unfortunately,the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression,processing and data transferring with computers.How to interpret its semantics is becoming a focus of relevant studies.This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994,established the mathematical model of form tolerance for cylindrical feature.First,each tolerance in the national standard was established by vector equation.Then on the foundation of tolerance's mathematical definition theory,each tolerance zone's mathematical model was established by inequality based on degrees of feature.At last the variance area of each tolerance zone is derived.This model can interpret the semantics of form tolerance exactly and completely.
Mathematical model of cylindrical form tolerance
Institute of Scientific and Technical Information of China (English)
蔡敏; 杨将新; 吴昭同
2004-01-01
Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
On the mathematical modeling of aeolian saltation
DEFF Research Database (Denmark)
Jensen, Jens Ledet; Sørensen, Michael
1983-01-01
The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...
Mathematical Models of Tuberculosis Reactivation and Relapse
Directory of Open Access Journals (Sweden)
Robert Steven Wallis
2016-05-01
Full Text Available The natural history of human infection with Mycobacterium tuberculosis (Mtb is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiology of tuberculosis in patients treated with tumor necrosis factor antagonists, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic.
Mathematical modeling and optimization of complex structures
Repin, Sergey; Tuovinen, Tero
2016-01-01
This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimiz...
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Mathematical models and methods for planet Earth
Locatelli, Ugo; Ruggeri, Tommaso; Strickland, Elisabetta
2014-01-01
In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
Ciltas, Alper; Isik, Ahmet
2013-01-01
The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…
Mathematical model in economic environmental problems
Energy Technology Data Exchange (ETDEWEB)
Nahorski, Z. [Polish Academy of Sciences, Systems Research Inst. (Poland); Ravn, H.F. [Risoe National Lab. (Denmark)
1996-12-31
The report contains a review of basic models and mathematical tools used in economic regulation problems. It starts with presentation of basic models of capital accumulation, resource depletion, pollution accumulation, and population growth, as well as construction of utility functions. Then the one-state variable model is discussed in details. The basic mathematical methods used consist of application of the maximum principle and phase plane analysis of the differential equations obtained as the necessary conditions of optimality. A summary of basic results connected with these methods is given in appendices. (au) 13 ills.; 17 refs.
Mathematical model of electrotaxis in osteoblastic cells
Vanegas-Acosta, J.C.; Garzón-Alvarado, D.A.; Zwamborn, A.P.M.
2012-01-01
Electrotaxis is the cell migration in the presence of an electric field (EF). This migration is parallel to the EF vector and overrides chemical migration cues. In this paper we introduce a mathematical model for the electrotaxis in osteoblastic cells. The model is evaluated using different EF stren
Mathematical modelling of magnetically targeted drug delivery
Energy Technology Data Exchange (ETDEWEB)
Grief, Andrew D. [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: andrew.grief@nottingham.ac.uk; Richardson, Giles [Theoretical Mechanics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: giles.richardson@nottingham.ac.uk
2005-05-15
A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.
Mathematical human modelling for impact loading
Happee, R.; Hoof, J.F.A.M. van; Lange, R. de
2001-01-01
Mathematical modeling of the human body is widely used for automotive crash-safety research and design. Simulations have contributed to a reduction of injury numbers by optimization of vehicle structures and restraint systems. Currently, such simulations are largely performed using occupant models b
Mathematical human body modelling for impact loading
Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.
1999-01-01
Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b
THE INSTRUCTIONAL DESIGN MODEL FOR MATHEMATICS EDUCATION
Özdemir, Emine; UYANGÖR, Sevinç MERT
2011-01-01
In this study, to present an instructional model by considering the existing models of instructional design (Addie, ARCS Motivation, Dick and Carey, ASSURE, Seels and Glasgow, Smith and Ragan, Universal, with the elaboration theory of Gerlach and Ely design models) with the nature of mathematics education and to reveal analysis, design, development, implementation, evaluation, and to revise levels with lower levels of the instructional design model were aimed. In this study, the qualitative c...
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
This progress report contains notes on four aspects of hydrological modelling. The first three describe the development of transport models for solute moving with groundwater in fractured rock and the application of the models to field experiments in Cornwall, UK and Chalk River, Canada. The fourth section describes network models which have been used to estimate hydrodynamic dispersion and are in process of being extended to three dimensional systems. (author)
Mathematical modelling of membrane separation
Vinther, Frank; Brøns, Morten; Meyer, Anne S.
2015-01-01
Denne afhandling omhandler matematisk modellering af membranseparation. Afhandlingen består af indledende teori omhandlende membranseparation, ligninger fra fluiddynamik og egenskaber for dextran, som er det stof der ønskes separeret. Ydermere består den af tre separate matematiske modeller, med hver deres tilgang til membranseparation.Den første model er en statistisk model, som undersøger sammenhængen mellem molekyleform og sandsynligheden for at det givne molekyle penetrerer ind i membrane...
On the mathematical modeling of memristors
Radwan, Ahmed Gomaa
2012-10-06
Since the fourth fundamental element (Memristor) became a reality by HP labs, and due to its huge potential, its mathematical models became a necessity. In this paper, we provide a simple mathematical model of Memristors characterized by linear dopant drift for sinusoidal input voltage, showing a high matching with the nonlinear SPICE simulations. The frequency response of the Memristor\\'s resistance and its bounding conditions are derived. The fundamentals of the pinched i-v hysteresis, such as the critical resistances, the hysteresis power and the maximum operating current, are derived for the first time.
A mathematical model for Neanderthal extinction
Flores, J C
1997-01-01
A simple mathematical homogeneous model of competition is used to describe Neanderthal extinction in Europe. It considers two interacting species, Neanderthals and Early Modern Men, in the same ecological niche. Using paleontological data we claim that the parameter of similarity, between both species, fluctuates between 0.992 and 0.997. An extension of the model including migration (diffusion) is also discussed nevertheless, extinction of Neanderthal seems unavoidable. Numerical analysis of travelling wave solution (fronts) comfirms the extinction. The wave-front-velocity is estimated from linear analysis and numerical simulations confirm this estimation. We conjecture a mathematical formulation for the principle of exclusion between competitive interacting species (Gause).
Mathematical Modelling of Unmanned Aerial Vehicles
Directory of Open Access Journals (Sweden)
Saeed Sarwar
2013-04-01
Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV
Mathematical modelling of unmanned aerial vehicles
International Nuclear Information System (INIS)
UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Mathematical efficiency modeling of static power converters
Hoff Dupont, Fabrício; Zaragoza Bertomeu, Jordi; Rech, Cassiano; Pinheiro, José Renes
2015-01-01
This paper presents a review and a comparative analysis between mathematical models for the efficiency of power converters. Two different types of models are considered, being one for converters subject solely for output power variations, and a second one also considering input voltage variations. Both cases are particularly important for systems fed by renewable sources as photovoltaic panels or wind turbines. Knowledge of the appropriate models is of interest in the dev...
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2014-01-01
Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomag...
Identification of the noise using mathematical modelling
Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav
2016-03-01
In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.
Optimization and mathematical modeling in computer architecture
Sankaralingam, Karu; Nowatzki, Tony
2013-01-01
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t
Mathematical modeling of the flash converting process
Energy Technology Data Exchange (ETDEWEB)
Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)
1996-12-31
An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)
Mathematical modelling of fracture hydrology
International Nuclear Information System (INIS)
This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
Mathematical Modeling of Multienzyme Biosensor System
SP. Ganesan; K Saravanakumar; Rajendran, L.
2014-01-01
A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate), potassium dihydrogen phosphate (inhibitor), oxygen (co-substrate), glucose (product 1), and hydrogen peroxide (product 3) is obtained in terms of rate constant using modified Adomian decomposition method (M...
Mathematical Modeling of Magnetic Regenerator Refrigeration Systems
Salarvand, Navid
2009-01-01
ABSTRACT: Active magnetic regenerative refrigeration (AMRR) systems are designed based on magnetocaloric effect of some special solid materials, such as Gadolinium-Silicon-Germanium, Ferrum-Rhodium, etc. During the last three decades, a variety of cooling systems have been proposed using magnetic materials at room temperature. In this thesis, an AMRR system using FeRh as refrigerant is studied. For the simulation, a one-dimensional, time-varying mathematical model is developed. This model co...
A mathematical model of leptin resistance
Jacquier, Marine; Soula, Hédi A; Crauste, Fabien
2015-01-01
International audience Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in ro...
Models and structures: mathematical physics
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems.
Optimization of mathematical models for thematic maps
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The thematic map is a major class of maps designed to demonstrate particular features or concepts,functioning as an indispensable tool in geographical research.The process of thematic mapping is one into which geographical research goes deeply and broadly.The key activity and course of thematic map production is the use of mathematical models to create thematic data layers.Therefore,the selection and optimization of mathematical models is in the forefront of thematic map research.The theoretical foundations,mechanisms and methods of mathematical model optimization are expounded in this paper,including two approaches,the phase by phase mode and the multi-aim scheme balance mode.Case studies in eco-environment mapping and emergency mapping are described and analyzed,with a hierarchical analysis method being used in the model optimization for eco-environment fragility and sensitivity assessment mapping in Beibuwan (Guangxi) District,the dynamic system (DS) method being used in the model optimization for ecological security adjustment mapping in Xishuang Banna,Yunnan province,and the multi-phase mode being used in the models for forest fire and infectious diseases mapping.
Mathematical Modelling of Turbidity Currents
Fay, G. L.; Fowler, A.; Howell, P.
2011-12-01
A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.
Electrorheological fluids modeling and mathematical theory
Růžička, Michael
2000-01-01
This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.
Models of Non-Life Insurance Mathematics
Directory of Open Access Journals (Sweden)
Constanta Nicoleta BODEA
2008-01-01
Full Text Available In this communication we will discuss two regression credibility models from Non Ã¢Â€Â“ Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter q. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. Mathematics Subject Classification: 62P05.
Mathematical modeling of microbial growth in milk
Directory of Open Access Journals (Sweden)
Jhony Tiago Teleken
2011-12-01
Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Building Mathematical Models of Simple Harmonic and Damped Motion.
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
Lim, L. L.; Tso, T. -Y.; Lin, F. L.
2009-01-01
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…
Mathematical Modeling of an Automobile Damper
Directory of Open Access Journals (Sweden)
N. B. Kate, T. A. Jadhav
2013-10-01
Full Text Available - In an automotive industry, to reduce product development time and increase quality of product, it is essential to reduce the number of physical prototypes and rely more on precise & reliable design for the final design of vehicles. This paper presents a mathematical model for the damping force of the hydraulic shock absorber which is implemented to analyse the shock absorbers mounting brackets attached to the vehicle structure. Physical testing results indicate that the considered shock absorber’s mathematical model is reliable and can be used to calculate the durability target life of mounting brackets. Thus this presented methodology can be utilized as an effective way to reduce time and cost in design and development of automotive components.
Mathematical modelling of leprosy and its control.
Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik
2015-03-01
Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital. PMID:25765193
Topics in the mathematical modelling of nanotoxicology
Jones, Zofia
2012-01-01
Over the last ten years questions related to the safety of nanoparticles and their possible toxic effects have become well-established. The government's Health and Safety Laboratories (HSL) at Buxton are currently attempting to determine their possible toxicity in the workplace. It is their responsibility to establish what levels are exposure can be considered safe in the workplace. This project is a CASE studentship with HSL and aims to start developing mathematical models relating to nan...
A mathematical model of the Mafia game
Migdał, Piotr
2010-01-01
Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure de...
Özkan Hıdıroğlu, Yeliz; Hıdıroğlu, Çağlar Naci
2016-01-01
The aim of the study is to examine epistemological beliefs in explaining the mathematical modelling approaches of mathematics teachers. In the study, basically dominated by a qualitative approach, quantitative and qualitative data were gathered concurrently from 35 mathematics teachers who work in Ġzmir and after analysis process while interpreting the findings they were combined and compared. Qualitative data were gathered from written answer sheets of mathematics teachers on mat...
Mathematical modelling of wood and briquettes torrefaction
Energy Technology Data Exchange (ETDEWEB)
Felfli, Felix Fonseca; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos; Soler, Pedro Beaton [Universidad de Oriente, Santiago de Cuba (Cuba). Fac. de Ingenieria Mecanica. Centro de Estudios de Eficiencia Energetica; Rocha, Jose Dilcio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)
2004-07-01
A mathematical model valid for the torrefaction of wood logs and biomass briquettes is presented. The model described both chemical and physical processes, which take place in a moist piece of wood heated at temperatures between 503 and 573 K. Calibration measurements of the temperature profile and mass loss, were performed on dry cylinders of wood samples during torrefaction in an inert atmosphere at 503, 533, and 553 K. The calculated data shows a good agreement with experiments. The model can be a useful tool to estimate projecting and operating parameters for torrefaction furnaces such as minimum time of torrefaction, energy consumption and the mass yield. (author)
Basic Perforator Flap Hemodynamic Mathematical Model
Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.
2016-01-01
Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.
Mathematical models of breast and ovarian cancers.
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-07-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061
Mathematical analysis of a muscle architecture model.
Navallas, Javier; Malanda, Armando; Gila, Luis; Rodríguez, Javier; Rodríguez, Ignacio
2009-01-01
Modeling of muscle architecture, which aims to recreate mathematically the physiological structure of the muscle fibers and motor units, is a powerful tool for understanding and modeling the mechanical and electrical behavior of the muscle. Most of the published models are presented in the form of algorithms, without mathematical analysis of mechanisms or outcomes of the model. Through the study of the muscle architecture model proposed by Stashuk, we present the analytical tools needed to better understand these models. We provide a statistical description for the spatial relations between motor units and muscle fibers. We are particularly concerned with two physiological quantities: the motor unit fiber number, which we expect to be proportional to the motor unit territory area; and the motor unit fiber density, which we expect to be constant for all motor units. Our results indicate that the Stashuk model is in good agreement with the physiological evidence in terms of the expectations outlined above. However, the resulting variance is very high. In addition, a considerable 'edge effect' is present in the outer zone of the muscle cross-section, making the properties of the motor units dependent on their location. This effect is relevant when motor unit territories and muscle cross-section are of similar size.
Study on mathematical model of steam coal blending
Institute of Scientific and Technical Information of China (English)
高洪阁; 李白英; 刘泽常; 尹增德
2002-01-01
It is necessary to set up a new mathematical model of steam coal blending instead of the old model. Indexes such as moisture content, ash content, volatile matter, sulfur content and heating value in the new mathematical model have linear relation. The new mathematical model can also predict ash-fusion temperature precisely by considering coal ash ratio in steam coal blending, therefore it is possible to obtain linear relation of ash-fusion temperature between single coal and steam coal blending. The new mathematical model can improve precision of steam coal blending and perfect the old mathematical model of steam coal blending.
Laser filamentation mathematical methods and models
Lorin, Emmanuel; Moloney, Jerome
2016-01-01
This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as...... means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a preliminary...
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt to...... parameters must be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map...... as means for extracting a global summary map from a trained model. Such summary maps provides the investigator with an overview of brain locations of importance to the model’s predictions. The sensitivity map proves as a versatile technique for model visualization. Furthermore, we perform a...
Mathematical Modeling of Multienzyme Biosensor System
Directory of Open Access Journals (Sweden)
SP. Ganesan
2014-01-01
Full Text Available A mathematical model of hybrid inhibitor biosensor system is discussed. This model consists of five nonlinear partial differential equations for bisubstrate sensitive amperometric system. Simple and closed form of analytical expressions for concentration of glucose-6-phosphate (substrate, potassium dihydrogen phosphate (inhibitor, oxygen (co-substrate, glucose (product 1, and hydrogen peroxide (product 3 is obtained in terms of rate constant using modified Adomian decomposition method (MADM. In this study, behavior of biokinetic parameters is analyzed using this theoretical result. The obtained analytical results (concentrations are compared with the numerical results and are found to be in satisfactory agreement.
Mathematical methods and models in composites
Mantic, Vladislav
2014-01-01
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.
Mathematical Model of the Processoof Pearlite Austenitization
Directory of Open Access Journals (Sweden)
Olejarczyk-Wożeńska I.
2014-10-01
Full Text Available The paper presents a mathematical model of the pearlite - austenite transformation. The description of this process uses the diffusion mechanism which takes place between the plates of ferrite and cementite (pearlite as well as austenite. The process of austenite growth was described by means of a system of differential equations solved with the use of the finite difference method. The developed model was implemented in the environment of Delphi 4. The proprietary program allows for the calculation of the rate and time of the transformation at an assumed temperature as well as to determine the TTT diagram for the assigned temperature range.
MATHEMATICAL MODEL OF THE MICROBIAL FLOODING
Institute of Scientific and Technical Information of China (English)
Lei Guang-lun; Zhang Zhong-zhi; Chen Yue-ming
2003-01-01
On the basis of growth kinetics of microorganism and the principle of material balance, equations were derived to describe microbial growth, nutrient consumption, metabolites production and their transport in formation. The changes in porosity, permeability, oil viscosity and capillary force were also described as the main facturs of microbial flooding. For reservoirs with black oil properties, three-dimensional three-phase mathematical models with the cosidaration of multi-microbial components were established to depict microbial flooding oil. With this model, calculated results are in good agreement with experimental data.
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Assessment of Primary 5 Students' Mathematical Modelling Competencies
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Mathematical Modeling of Extinction of Inhomogeneous Populations.
Karev, G P; Kareva, I
2016-04-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed of clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the "unobserved heterogeneity," i.e., the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of "internal population time" is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical model of the Amazon Stirling engine
Energy Technology Data Exchange (ETDEWEB)
Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br
2010-07-01
The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)
Solar Panel Mathematical Modeling Using Simulink
Directory of Open Access Journals (Sweden)
Chandani Sharma
2014-05-01
Full Text Available For decades, electricity is a key driver of socio-economy development. Nowadays, in the context of competition there is a direct relationship between electricity generation and sustainable development of the country. This paper presents distinct use of a Photovoltaic array offering great potential as source of electricity. The simulation uses One-diode equivalent circuit in order to investigate I-V and P-V characteristics. The GUI model is designed with Simulink block libraries. The goals of proposed model are to perform a systematic analysis, modeling and evaluation of the key subsystems for obtaining Maximum Power Point of a solar cell. Effect of increasing number of cells is described at Standard Test Conditions by mathematical modeling of equations. It is desirable to achieve maximum power output at a minimum cost under various operating conditions. Index Terms—
Mathematical Modeling of Diaphragm Pneumatic Motors
Directory of Open Access Journals (Sweden)
Fojtášek Kamil
2014-03-01
Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.
Line—Art and Its Mathematical Models
Institute of Scientific and Technical Information of China (English)
徐迎庆; 汉斯·德灵格; 等
1998-01-01
In this paper,the authors describe the principles of Straight Line Strokes illustration,present the mathematical model of the principles,and show how a great number of lines can be implemented as main part of an automated drawing system named Line-Art.Different from traditional drawing art.Line-Art enerates pictures without curves,colors,ink marks,brushes,and oil paint,but only with Straight Line Strokes.Generated pictures are composed,clipped,and plotted.The paper also introduces how to use the initial value problem of the ordinary differential equation to describe a drawing art,e.g.Line-Art.
A MATHEMATICAL MODEL OF RESERVOIR SEDIMENTATION
Institute of Scientific and Technical Information of China (English)
HUANG Jinchi
2001-01-01
Reliable quantitative estimation of bed aggradation or degradation is important for river-training and water management projects. With the development of water resources, sediment problems associated with a dam are becoming more severe. This paper describes some special problems in mathematical model for calculation of degradation and aggradation in a reservoir. The main efforts of this study are on the treatment of some physical processes of fine sediment transport (＜0.05 mm). Problems in a reservoir are obviously different from a natural stream, such as the turbid current flow, orifice sediment flushing;and the initiation and consolidation of cohesive sediment deposition. The case of Liujiaxia Reservoir,which is located in the upper reaches of the Yellow River, is employed to verify the model. The results show that the model is applicable in the evaluation of an engineering planing with plenty of fine sediment movement.
Mathematical modeling of the Phoenix Rising pathway.
Directory of Open Access Journals (Sweden)
Chad Liu
2014-02-01
Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra
Jung, Hyunyi; Mintos, Alexia; Newton, Jill
2015-01-01
This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…
Building Mathematics Achievement Models in Four Countries Using TIMSS 2003
Wang, Ze; Osterlind, Steven J.; Bergin, David A.
2012-01-01
Using the Trends in International Mathematics and Science Study 2003 data, this study built mathematics achievement models of 8th graders in four countries: the USA, Russia, Singapore and South Africa. These 4 countries represent the full spectrum of mathematics achievement. In addition, they represent 4 continents, and they include 2 countries…
Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.
Teacher education for Mathematical Literacy: A modelling approach
Directory of Open Access Journals (Sweden)
Bruce Brown
2006-10-01
Full Text Available The introduction of Mathematical Literacy into the Further Education and Training (FET curriculum in South Africa has brought with it formidable challenges to teacher education in this field. This paper attempts to unravel some pertinent issues arising in the training of Mathematical Literacy teachers, using an approach based on mathematical modelling. It does this by discussing the design and implementation of an ACE(ML, an Advanced Certificate in Education, specialising in Mathematical Literacy teaching.
Models for harnessing the Internet in mathematics education
Kissane, Barry
2012-01-01
In recent years, the Internet has increasingly been used to provide significant resources for student to learn mathematics and to learn about mathematics, as well as significant resources for teachers to support these. Effective access to and use of these has been hampered in practice by limited facilities in schools and the limited experience of many mathematics teachers with the Internet for mathematical purposes. This paper offers models for understanding the effective use of Internet reso...
Rudolph, Lee
2012-01-01
In this book Lee Rudolph brings together international contributors who combine psychological and mathematical perspectives to analyse how qualitative mathematics can be used to create models of social and psychological processes. Bridging the gap between the fields with an imaginative and stimulating collection of contributed chapters, the volume updates the current research on the subject, which until now has been rather limited, focussing largely on the use of statistics. Qualitative Mathematics for the Social Sciences contains a variety of useful illustrative figures, in
Mathematical models for therapeutic approaches to control HIV disease transmission
Roy, Priti Kumar
2015-01-01
The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...
Laser interaction with biological material mathematical modeling
Kulikov, Kirill
2014-01-01
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
Knowledge Map: Mathematical Model and Dynamic Behaviors
Institute of Scientific and Technical Information of China (English)
Hai Zhuge; Xiang-Feng Luo
2005-01-01
Knowledge representation and reasoning is a key issue of the Knowledge Grid. This paper proposes a Knowledge Map (KM) model for representing and reasoning causal knowledge as an overlay in the Knowledge Grid. It extends Fuzzy Cognitive Maps (FCMs) to represent and reason not only simple cause-effect relations, but also time-delay causal relations, conditional probabilistic causal relations and sequential relations. The mathematical model and dynamic behaviors of KM are presented. Experiments show that, under certain conditions, the dynamic behaviors of KM can translate between different states. Knowing this condition, experts can control or modify the constructed KM while its dynamic behaviors do not accord with their expectation. Simulations and applications show that KM is more powerful and natural than FCM in emulating real world.
A mathematical model of aerosol holding chambers
DEFF Research Database (Denmark)
Zak, M; Madsen, J; Berg, E;
1999-01-01
A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......, Ontario, Canada), NebuChamber (Astra, Södirtälje, Sweden) and Nebuhaler (Astra) adapted for babies. The dose of fluticasone proportionate delivered by the Babyhaler (Glaxco Wellcome, Oxbridge, Middlesex, UK) was 80% of that predicted, probably because of incomplete priming of this spacer. Of the above...
A Mathematical Model for Cisplatin Cellular Pharmacodynamics
Directory of Open Access Journals (Sweden)
Ardith W. El-Kareh
2003-03-01
Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.
Common Mathematical Model of Fatigue Characteristics
Directory of Open Access Journals (Sweden)
Z. Maléř
2004-01-01
Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Mathematical model of tumor-immune surveillance.
Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de
2016-09-01
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches. PMID:27317864
Mathematical problems in modeling artificial heart
Directory of Open Access Journals (Sweden)
Ahmed N. U.
1995-01-01
Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.
The use of mathematical models in teaching wastewater treatment engineering
DEFF Research Database (Denmark)
Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
Mathematical Modeling of the Origins of Life
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Mathematical Model for the Continuous Vacuum Drying
Institute of Scientific and Technical Information of China (English)
DAI Hui-liang
2002-01-01
An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.
Mathematical analysis of epidemiological models with heterogeneity
Energy Technology Data Exchange (ETDEWEB)
Van Ark, J.W.
1992-01-01
For many diseases in human populations the disease shows dissimilar characteristics in separate subgroups of the population; for example, the probability of disease transmission for gonorrhea or AIDS is much higher from male to female than from female to male. There is reason to construct and analyze epidemiological models which allow this heterogeneity of population, and to use these models to run computer simulations of the disease to predict the incidence and prevalence of the disease. In the models considered here the heterogeneous population is separated into subpopulations whose internal and external interactions are homogeneous in the sense that each person in the population can be assumed to have all average actions for the people of that subpopulation. The first model considered is an SIRS models; i.e., the Susceptible can become Infected, and if so he eventually Recovers with temporary immunity, and after a period of time becomes Susceptible again. Special cases allow for permanent immunity or other variations. This model is analyzed and threshold conditions are given which determine whether the disease dies out or persists. A deterministic model is presented; this model is constructed using difference equations, and it has been used in computer simulations for the AIDS epidemic in the homosexual population in San Francisco. The homogeneous version and the heterogeneous version of the differential-equations and difference-equations versions of the deterministic model are analyzed mathematically. In the analysis, equilibria are identified and threshold conditions are set forth for the disease to die out if the disease is below the threshold so that the disease-free equilibrium is globally asymptotically stable. Above the threshold the disease persists so that the disease-free equilibrium is unstable and there is a unique endemic equilibrium.
Mathematical modeling of endovenous laser treatment (ELT
Directory of Open Access Journals (Sweden)
Wassmer Benjamin
2006-04-01
Full Text Available Abstract Background and objectives Endovenous laser treatment (ELT has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV and Small Saphenous Vein (SSV. Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. Study design/materials and methods The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA. Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. Results In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm, a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm played only a minor influence on these results. Discussion and conclusion The parameters
Mathematical Modeling Social Responsibility for Dynamic Organizations
Directory of Open Access Journals (Sweden)
Farzaneh Chavoshbashi
2012-03-01
Full Text Available Dynamic organizations as accountable organizations, for transparency and accountability to its stakeholders to stakeholders for their toward performance there should express their commitment to social responsibility are through their values and ensure that this commitment throughout the organization are now and thus will have a social responsibility for their mutual benefit, so there is more and more coherent in their ethical approach takes advantage and the community and stakeholders and the organization will have better performance and strengths. Because of interest in social responsibility, in this paper dynamic model is presented for Corporate Social Responsibility of Bionic organization. Model presented a new model is inspired by chaos theory and natural systems theory based on bifurcation in creation to be all natural systems, realizing the value of responsibility as one of the fundamental values of social and institutional development that the relationship between business and work environment in the global market economy and range will be specified. First Social Responsibility factors identified, then experts and scholars determine the weight of the components and technical coefficient for modeling and paired comparison has been done using MATLAB mathematical Software.
Mathematical Model for the Mineralization of Bone
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
Mathematics in Nature Modeling Patterns in the Natural World
Adam, John A
2011-01-01
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature.Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathem
An introduction to mathematical modeling a course in mechanics
Oden, Tinsley J
2011-01-01
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...
A mathematical model of glutathione metabolism
Directory of Open Access Journals (Sweden)
James S Jill
2008-04-01
Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.
Mathematical model insights into arsenic detoxification
Directory of Open Access Journals (Sweden)
Nijhout H Frederik
2011-08-01
Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic
Mathematical Manipulative Models: In Defense of “Beanbag Biology”
Jungck, John R.; Gaff, Holly; Weisstein, Anton E
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process—1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets—we demonstrate a process that we have shared i...
Mathematical model “The electric line - wind farm”
Merenco V.
2008-01-01
It is considered the problem of finding of the mathematical model of a circuit “electric line – wind farm” with the purpose of analysis of operating modes by a method of mathematical simulation. The mathematical model is based on a method of characteristics, takes into account heterogeneity of a circuit and allows realizing various modes and changes in structure of a circuit simple change of values of sizes set as the concentrated parameters.
Manual on mathematical models in isotope hydrogeology
International Nuclear Information System (INIS)
Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs
Mathematical modelling: From school to university
Directory of Open Access Journals (Sweden)
Ansie Harding
2009-09-01
Full Text Available The outcomes based education (OBE system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The ﬁrst students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE system. In a previous study student performance in mathematics admission tests for 2005-2007 was investigated and it was found that students who had had partial exposure to OBE performed worse than had been the case with their predecessors in the categories of modelling and ratio problems. As a result, this study was conducted to investigate how the 2009 intake of students performed in a modelling course at university level. A report is presented which deals with student performance in the course, problems experienced, the effect of remedial intervention on performance and whether students of the OBE system are adequately prepared for mathematical modelling at university level. This study focuses on performance in a ﬁrst year course in mathematical modelling at the University of Pretoria. The course is problem based and is technology intensive, requiring use of the software package Matlab. For investigative purposes the papers of semester tests 1 and 2 of 2005 were used unchanged for tests in 2009. Students of 2009 did not have access to the 2005 papers and the same lecturer taught students of both groups. The lecturer also noted personal experiences in respect of students and was able to draw reasonable comparisons between the 2009 students and previous groups because of her years of involvement with the course. The entrance requirement of 60% for matric mathematics in 2005 was increased to 70% in 2009. Results indicate that the pass percentage decreased in
Mathematical Modelling for Micropiles Embedded in Salt Rock
Rădan (Toader) Georgiana; Rădulescu Nicoleta; Oancea Gheorghe
2016-01-01
This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated...
Mathematics Teacher TPACK Standards and Development Model
Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis
2009-01-01
What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…
Modeling anaphora in informal mathematical dialogue
Wolska, Magdalena; Ivana Kruijff-Korbayová
2006-01-01
We analyze anaphoric phenomena in the context of building an input understanding component for a conversational system for tutoring mathematics. In this paper, we report the results of data analysis of two sets of corpora of dialogs on mathematical theorem proving. We exemplify anaphoric phenomena, identify factors relevant to anaphora resolution in our domain and extensions to the input interpretation component to support it.
Modelling Mathematical Reasoning in Physics Education
Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche
2012-01-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…
Mathematical Models and Economic Forecasting: Some Uses and Mis-Uses of Mathematics in Economics
David Hendry
2011-01-01
We consider three 'cases studies' of the uses and mis-uses of mathematics in economics and econometrics. The first concerns economic forecasting, where a mathematical analysis is essential, and is independent of the specific forecasting model and how the process being forecast behaves. The second concerns model selection with more candidate variables than the number of observations. Again, an understanding of the properties of extended general-to-specific procedures is impossible without adva...
Mathematical modeling of Chikungunya fever control
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Mathematical modeling of moving boundary problems in thermal energy storage
Solomon, A. D.
1980-01-01
The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.
Mathematical Manipulative Models: In Defense of "Beanbag Biology"
Jungck, John R.; Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…
Numerical Treatment of the Mathematical Models for Water Pollution
Directory of Open Access Journals (Sweden)
F. B. Agusto
2007-01-01
Full Text Available To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.
Numerical Treatment of the Mathematical Models for Water Pollution
Agusto, F. B.; O. M. Bamigbola
2007-01-01
To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.
Students' Approaches to Learning a New Mathematical Model
Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy
2013-01-01
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…
Models for Decision Making: From Applications to Mathematics... and Back
Crama, Yves
2010-01-01
In this inaugural lecture, I describe some facets of the interplay between mathematics and management science, economics, or engineering, as they come together in operations research models. I intend to illustrate, in particular, the complex and fruitful process through which fundamental combinatorial models find applications in management science, which in turn foster the development of new and challenging mathematical questions.
Mathematical modeling of biomass fuels formation process.
Gaska, Krzysztof; Wandrasz, Andrzej J
2008-01-01
The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.
MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR
Directory of Open Access Journals (Sweden)
S. YU. Buryak
2014-03-01
Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes
Mathematical models in marketing a collection of abstracts
Funke, Ursula H
1976-01-01
Mathematical models can be classified in a number of ways, e.g., static and dynamic; deterministic and stochastic; linear and nonlinear; individual and aggregate; descriptive, predictive, and normative; according to the mathematical technique applied or according to the problem area in which they are used. In marketing, the level of sophistication of the mathe matical models varies considerably, so that a nurnber of models will be meaningful to a marketing specialist without an extensive mathematical background. To make it easier for the nontechnical user we have chosen to classify the models included in this collection according to the major marketing problem areas in which they are applied. Since the emphasis lies on mathematical models, we shall not as a rule present statistical models, flow chart models, computer models, or the empirical testing aspects of these theories. We have also excluded competitive bidding, inventory and transportation models since these areas do not form the core of ·the market...
Mathematical model of radon activity measurements
Energy Technology Data Exchange (ETDEWEB)
Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)
2015-07-01
Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)
A mathematical model of the Mafia game
Migdal, Piotr
2010-01-01
Mafia (also called Werewolf) is a party game. The participants are divided into two competing groups: citizens and a mafia. The objective is to eliminate the opponent group. The game consists of two consecutive phases (day and night) and a certain set of actions (e.g. lynching during day). The mafia members have additional powers (knowing each other, killing during night) whereas the citizens are more numerous. We propose a simple mathematical model of the game, which is essentially a pure death process with discrete time. We find closed-form formulas for mafia winning chances $w(n,m)$ as well as for evolution of the game. Moreover, we investigate discrete properties of results, as well as its continuous-time approximation. I turns out that a relatively small number of the mafia members $m$ (among $n$ players) give $50:50$ winning chances, i.e. $m\\approx\\sqrt{n}$. Furthermore, the game strongly depends on the parity of the total number of players.
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Symmetrization of mathematical model of charge transport in semiconductors
Directory of Open Access Journals (Sweden)
Alexander M. Blokhin
2002-11-01
Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.
Generalized Mathematical Model for Hot Rolling Process of Plate
Institute of Scientific and Technical Information of China (English)
Zhenshan CUI; Bingye XU
2003-01-01
A generalized mathematical model is developed to predict the changes of temperature, rolling pressure, strain,strain rate, and austenite grain size for plate hot rolling and cooling processes. The model is established mainly by incorporating analytical an
Using cell replication data in mathematical modeling in carcinogenesis.
Portier, C.J.; Kopp-Schneider, A; Sherman, C D
1993-01-01
Risk estimation involves the application of quantitative models of dose versus response to carcinogenicity data. Recent advances in biology, computing, and mathematics have led to the application of mathematically complicated, mechanistically based models of carcinogenesis to the estimation of risks. This paper focuses on two aspects of this application, distinguishing between models using available data and the development of new models to keep pace with research developments.
Methods and models in mathematical biology deterministic and stochastic approaches
Müller, Johannes
2015-01-01
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
Typhoid transmission: a historical perspective on mathematical model development.
Bakach, Iurii; Just, Matthew R; Gambhir, Manoj; Fung, Isaac Chun-Hai
2015-11-01
Mathematical models of typhoid transmission were first developed nearly half a century ago. To facilitate a better understanding of the historical development of this field, we reviewed mathematical models of typhoid and summarized their structures and limitations. Eleven models, published in 1971 to 2014, were reviewed. While models of typhoid vaccination are well developed, we highlight the need to better incorporate water, sanitation and hygiene interventions into models of typhoid and other foodborne and waterborne diseases. Mathematical modeling is a powerful tool to test and compare different intervention strategies which is important in the world of limited resources. By working collaboratively, epidemiologists and mathematicians should build better mathematical models of typhoid transmission, including pharmaceutical and non-pharmaceutical interventions, which will be useful in epidemiological and public health practice.
Mathematical modeling and computational intelligence in engineering applications
Silva Neto, Antônio José da; Silva, Geraldo Nunes
2016-01-01
This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.
Physical vs. Mathematical Models in Rock Mechanics
Morozov, I. B.; Deng, W.
2013-12-01
One of the less noted challenges in understanding the mechanical behavior of rocks at both in situ and lab conditions is the character of theoretical approaches being used. Currently, the emphasis is made on spatial averaging theories (homogenization and numerical models of microstructure), empirical models for temporal behavior (material memory, compliance functions and complex moduli), and mathematical transforms (Laplace and Fourier) used to infer the Q-factors and 'relaxation mechanisms'. In geophysical applications, we have to rely on such approaches for very broad spatial and temporal scales which are not available in experiments. However, the above models often make insufficient use of physics and utilize, for example, the simplified 'correspondence principle' instead of the laws of viscosity and friction. As a result, the commonly-used time- and frequency dependent (visco)elastic moduli represent apparent properties related to the measurement procedures and not necessarily to material properties. Predictions made from such models may therefore be inaccurate or incorrect when extrapolated beyond the lab scales. To overcome the above challenge, we need to utilize the methods of micro- and macroscopic mechanics and thermodynamics known in theoretical physics. This description is rigorous and accurate, uses only partial differential equations, and allows straightforward numerical implementations. One important observation from the physical approach is that the analysis should always be done for the specific geometry and parameters of the experiment. Here, we illustrate these methods on axial deformations of a cylindrical rock sample in the lab. A uniform, isotropic elastic rock with a thermoelastic effect is considered in four types of experiments: 1) axial extension with free transverse boundary, 2) pure axial extension with constrained transverse boundary, 3) pure bulk expansion, and 4) axial loading harmonically varying with time. In each of these cases, an
Teaching Writing and Communication in a Mathematical Modeling Course
Linhart, Jean Marie
2014-01-01
Writing and communication are essential skills for success in the workplace or in graduate school, yet writing and communication are often the last thing that instructors think about incorporating into a mathematics course. A mathematical modeling course provides a natural environment for writing assignments. This article is an analysis of the…
Mathematics in the Biology Classroom: A Model of Interdisciplinary Education
Hodgson, Ted; Keck, Robert; Patterson, Richard; Maki, Dan
2005-01-01
This article describes an interdisciplinary course that develops essential mathematical modeling skills within an introductory biology setting. The course embodies recent recommendations regarding the need for interdisciplinary, inquiry-based mathematical preparation of undergraduates in the biological sciences. Evaluation indicates that the…
An Assessment Model for Proof Comprehension in Undergraduate Mathematics
Mejia-Ramos, Juan Pablo; Fuller, Evan; Weber, Keith; Rhoads, Kathryn; Samkoff, Aron
2012-01-01
Although proof comprehension is fundamental in advanced undergraduate mathematics courses, there has been limited research on what it means to understand a mathematical proof at this level and how such understanding can be assessed. In this paper, we address these issues by presenting a multidimensional model for assessing proof comprehension in…
Economic-mathematical methods and models under uncertainty
Aliyev, A G
2013-01-01
Brief Information on Finite-Dimensional Vector Space and its Application in EconomicsBases of Piecewise-Linear Economic-Mathematical Models with Regard to Influence of Unaccounted Factors in Finite-Dimensional Vector SpacePiecewise Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence in Three-Dimensional Vector SpacePiecewise-Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence on a PlaneBases of Software for Computer Simulation and Multivariant Prediction of Economic Even at Uncertainty Conditions on the Base of N-Comp
A New Activity-Based Cost (ABC) Mathematical Model
Institute of Scientific and Technical Information of China (English)
JIANG Shuo; SONG Lei
2003-01-01
Along with the product price competition growing intensely, it is apparently important for reasonably distributing and counting cost. But, in sharing indirect cost, traditional cost accounting unveils the limitations increasingly, especially in authenticity of cost information. And the accounting theory circles and industry circles begin seeking one kind of new accurate cost calculation method, and the activity-based cost (ABC) method emerges as the times require. In this paper, we will build its mathematical model by the basic principle of ABC, and will improve its mathematical model further. We will establish its comparison mathematical model and make the ABC method go a step further to its practical application.
Mathematical Model of Extrinsic Blood Coagulation Cascade Dynamic System
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The blood coagulation system is very important to life. This paper presents a mathematical blood coagulation model for the extrinsic pathway. This model simulates clotting factor VIII, which plays an important role in the coagulation mechanism. The mathematical model is used to study the equilibrium stability, orbit structure, attractors and global stability behavior, with conclusions in accordance with the physiological phenomena. Moreover, the results provide information about blood related illnesses, which can be used for further study of the coagulation mechanism.
Mathematical modeling of a convective textile drying process
Johann, G; E. A. Silva; O.C. Motta Lima; N.C. Pereira
2014-01-01
This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The s...
Mathematics of tsunami: modelling and identification
Krivorotko, Olga; Kabanikhin, Sergey
2015-04-01
Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of
The possibilities of a modelling perspective for school mathematics
Directory of Open Access Journals (Sweden)
Dirk Wessels
2009-09-01
complex teaching methodology requires in-depth thinking about the role of the teacher, the role of the learner, the nature of the classroom culture, the nature of the negotiation of meaning between the teacher and individuals or groups, the nature of selected problems and material, as well as the kind of integrative assessment used in the mathematics classroom. Modelling is closely related to the problem-centred teaching approach, but it also smoothly relates to bigger and longer mathematical tasks. This article gives a theoretical exposition of the scope and depth of mathematical modelling. It is possible to introduce modelling at every school phase in our educational sytem. Modelling in school mathematics seems to make the learning of mathematics more effective. The mastering of problem solving and modelling strategies has deﬁnitely changed the orientation, the competencies and performances of learners at each school level. It would appear from research that learners like the application side of mathematics and that they want to see it in action. Genuine real life problems should be selected, which is why a modelling perspective is so important for the teaching and mastering of mathematics. Modelling should be integrated into the present curriculum because learners will then get full access to involvement in the classroom, to mathematisation, to doing problems, to criticising arguments, to ﬁnding proofs, to recognising concepts and to obtaining the ability to abstract these from the realistic situation. Modelling should be given a full opportunity in mathematics teacher education so that our learners can get the full beneﬁt of it. This will put the mathematical performances of learners in our country on a more solid base, which will make our learners more competitive at all levels in the future.
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
On the mathematical modelling of measurement
Barzilai, Jonathan
2006-01-01
The operations of linear algebra, calculus, and statistics are routinely applied to measurement scales but certain mathematical conditions must be satisfied in order for these operations to be applicable. We call attention to the conditions that lead to construction of measurement scales that enable these operations.
[Mathematical model of value of population].
Sha, J; Wang, S
1983-09-29
The authors define the value of population as an economic concept and present mathematical formulas for calculating this value. Included in this theoretical discussion are different kinds of surplus value of population and the social significance of population value. PMID:12279805
Modeling Students' Interest in Mathematics Homework
Xu, Jianzhong; Yuan, Ruiping; Xu, Brian; Xu, Melinda
2016-01-01
The authors examine the factors influencing mathematics homework interest for Chinese students and compare the findings with a recent study involving U.S. students. The findings from multilevel analyses revealed that some predictors for homework interest functioned similarly (e.g., affective attitude toward homework, learning-oriented reasons,…
Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors
Directory of Open Access Journals (Sweden)
Zoran Benić
2016-01-01
Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.
Mathematical Modelling for Micropiles Embedded in Salt Rock
Directory of Open Access Journals (Sweden)
Rădan (Toader Georgiana
2016-03-01
Full Text Available This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated based with the in-situ tests results for axially loaded micropiles, embedded in salt rock. The paper presents the results obtained with the three software, the calibration and validation models.
Mathematical modelling with case studies using Maple and Matlab
Barnes, B
2014-01-01
Introduction to Mathematical ModelingMathematical models An overview of the book Some modeling approaches Modeling for decision makingCompartmental Models Introduction Exponential decay and radioactivity Case study: detecting art forgeries Case study: Pacific rats colonize New Zealand Lake pollution models Case study: Lake Burley Griffin Drug assimilation into the blood Case study: dull, dizzy, or dead? Cascades of compartments First-order linear DEs Equilibrium points and stability Case study: money, money, money makes the world go aroundModels of Single PopulationsExponential growth Density-
Mechanical-mathematical modeling for landslide process
Svalova, V.
2009-04-01
500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.
MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model.
Arabie, Phipps
1980-01-01
A new computing algorithm, MAPCLUS (Mathematical Programming Clustering), for fitting the Shephard-Arabie ADCLUS (Additive Clustering) model is presented. Details and benefits of the algorithm are discussed. (Author/JKS)
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Mathematical modeling of electromechanical processes in a brushless DC motor
Directory of Open Access Journals (Sweden)
V.I. Tkachuk
2014-03-01
Full Text Available On the basis of initial assumptions, a mathematical model that describes electromechanical processes in a brushless DC electric motor with a salient-pole stator and permanent-magnet excitation is created.
Mathematical modelling of water radiolysis kinetics under reactor conditions
International Nuclear Information System (INIS)
Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted
RECENT MATHEMATICAL STUDIES IN THE MODELING OF OPTICS AND ELECTROMAGNETICS
Institute of Scientific and Technical Information of China (English)
Gang Bao
2004-01-01
This work is concerned with mathematical modeling, analysis, and computation of optics and electromagnetics, motivated particularly by optical and microwave applications.The main technical focus is on Maxwell's equations in complex linear and nonlinear media.
A mathematical look at a physical power prediction model
DEFF Research Database (Denmark)
Landberg, L.
1998-01-01
This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot....... The article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning...
Eringen, A Cemal
2013-01-01
Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th
A mathematical model of pulmonary gas exchange under inflammatory stress
Reynolds, Angela; Ermentrout, G. Bard; Clermont, Gilles
2010-01-01
During a severe local or systemic inflammatory response, immune mediators target lung tissue. This process may lead to acute lung injury and impaired diffusion of gas molecules. Although several mathematical models of gas exchange have been described, none simulate acute lung injury following inflammatory stress. In view of recent laboratory and clinical progress in the understanding of the pathophysiology of acute lung injury, such a mathematical model would be useful. We first derived a par...
The Mathematical Modelling of Heat Transfer in Electrical Cables
Bugajev Andrej; Jankevičiūtė Gerda; Tumanova Natalija
2014-01-01
This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes ...
Mathematical modelling and numerical simulation of oil pollution problems
2015-01-01
Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics, together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems. The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...
Mathematical modelling: From school to university
Ansie Harding
2009-01-01
The outcomes based education (OBE) system is characterised by controversy and the 2008 matric results that rendered admission to an unusually large number of students did nothing to silence critics. The ﬁrst students who completed their full cycle of school education in the OBE system entered universities in 2009 and their preparedness for university mathematics as well as their performance at university level are important as indicaters for estimating the success or otherwise of the OBE syst...
Michelsen, Claus
2015-01-01
Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students' achievement and attitude in both physics and mathematics. But although there…
BUILDING MATHEMATICAL MODELS IN DYNAMIC PROGRAMMING
Directory of Open Access Journals (Sweden)
LIANA RODICA PATER
2012-05-01
Full Text Available In short, we can say that dynamic programming is a method of optimization of systems, using their mathematical representation in phases or sequences or as we say, periods. Such systems are common in economic studies at the implementation of programs on the most advanced techniques, such as for example that involving cosmic navigation. Another concept that is involved in the study of dynamic programs is the economic horizon (number of periods or phases that a dynamic program needs. This concept often leads to the examination of the convergence of certain variables on infinite horizon. In many cases from the real economy by introducing updating, dynamic programs can be made convergent.
Mathematical modelling, problem solving, project and ethnomathematics: Confluent points
Salett Biembengut, Maria
2015-01-01
This paper presents a documental study about the con-fluent points among mathematical modelling, problem solving, project and ethnomathematics as methods of research and mathematics teaching. As a result, the study has shown that there are elements that bind these methods structurally together as research methods. Starting from the fact that education should promote knowledge this study provides evidence for these methods. Thus in each one of them, it is required knowledge from the student ab...
Mathematical Modeling of the Induced Mutation Process in Bacterial Cells
Belov, Oleg V.; Krasavin, Evgeny A.; Parkhomenko, Alexander Yu.
2010-01-01
A mathematical model of the ultraviolet (UV) irradiation-induced mutation process in bacterial cells Escherichia coli is developed. Using mathematical approaches, the whole chain of events is tracked from a cell exposure to the damaging factor to mutation formation in the DNA chain. An account of the key special features of the regulation of this genetic network allows predicting the effects induced by the cell exposure to certain UV energy fluence.
Postcorrection and mathematical model of life in Extended Everett's Concept
Mensky, Michael B.
2007-01-01
Extended Everett's Concept (EEC) recently developed by the author to explain the phenomenon of consciousness is considered. A mathematical model is proposed for the principal feature of consciousness assumed in EEC, namely its ability (in the state of sleep, trance or meditation, when the explicit consciousness is disabled) to obtain information from all alternative classical realities (Everett's worlds) and select the favorable realities. To represent this ability, a mathematical operation c...
Identification of Chemical Reactor Plant’s Mathematical Model
Directory of Open Access Journals (Sweden)
Pyakillya Boris
2015-01-01
Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.
A mathematical model on germinal center kinetics andtermination
DEFF Research Database (Denmark)
Kesmir, Can; De Boer, R.J.
1999-01-01
We devise a mathematical model to study germinal center (GC) kinetics. Earlier models for GC kinetics areextended by explicitly modeling 1) the cell division history of centroblasts, 2) the Ag uptake by centrocytes,and 3) T cell dynamics. Allowing for T cell kinetics and T-B cell interactions, we...
Mathematical Modelling and Experimental Analysis of Early Age Concrete
DEFF Research Database (Denmark)
Hauggaard-Nielsen, Anders Boe
1997-01-01
lead to cracks in the later cooling phase. The matrial model has intrigate couplings between the involved mechanics, and in the thesis special emphasize is put on the creep behaviour. The mathematical models are based on experimental analysis and numerical implementation of the models in a finite...
PP/MMT Nanocomposite: Mathematic Modelling of Layered Nanofiller
Directory of Open Access Journals (Sweden)
Dagmar Merinska
2012-01-01
Full Text Available The comparison of calculated data from proposed mathematic model and experimentally obtained data of PP/clay nanocomposites was done with the focus on the layered shape of MMT platelets. Based on the well-known Kerner's model and the Halpin-Tsai' equation with the use of some described presumption, the mathematic model for PP/clay nanocomposite was proposed. Data from the measurement of prepared PP/clay samples were taken and compared with the calculated ones from the proposed model. The good agreement was found.
Cellular automata-based artificial life system of horizontal gene transfer
Directory of Open Access Journals (Sweden)
Ji-xin Liu
2016-02-01
Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.
Mathematical Modeling and Dimension Reduction in Dynamical Systems
DEFF Research Database (Denmark)
Elmegård, Michael
thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise......Processes that change in time are in mathematics typically described by differential equations. These may be applied to model everything from weather forecasting, brain patterns, reaction kinetics, water waves, finance, social dynamics, structural dynamics and electrodynamics to name only a few...... and wear which decrease the life time of machines. From the modelling point of view these systems are often particularly rich in nonlinear dynamics. In the present study a mathematical model is derived. Amongst other outcomes the model was successfully applied to predict a nonlinear phenomenon, namely...
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Directory of Open Access Journals (Sweden)
Ali Sarhadi
2012-01-01
Full Text Available In economic Grid environments, the producers (resource owners and consumers (resource users have different goals, objectives, strategies, and supply-and-demand patterns. Mechanism based on economic models is an effective approach to solve the problem of grid resources management. Grid resource valuation and allocation is one of the fundamental problems in grid resource management. The essence of this problem is how to allocate and valuation resources for achieving the goal of a highly efficient utilization of resources in response to current resource valuations. Pricing policies are based on the demand from the users and the supply of resources is the main driver in the competitive, economic market model. In this paper, we present a new method of resource allocation and valuation based on the learning automata algorithms in order to maximize the benefit for both grid providers and grid users. We formulate the problem as an environment that learning automata's allocate best resource based on its complete time for proffered application. After allocate of resource, valuation of it based on its complete time is done. With this method the valuation of resource is based on their suitability for jobs execution. Using computer simulations, it is shown that the proposed methodology have higher performance in comparing with existing methods.
International Nuclear Information System (INIS)
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed
Mathematical Models of the Sinusoidal Screen Family
Directory of Open Access Journals (Sweden)
Tajana Koren
2011-06-01
Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
MATHEMATICAL MODELING FOR DURABILITY CHARACTERISTICS OF FLY ASH CONCRETE
Directory of Open Access Journals (Sweden)
JINO JOHN
2012-01-01
Full Text Available This paper presents the results obtained from the mathematical modeling for the durability characteristics of fly ash concrete. A mathematical model is employed to predict the saturated water absorption, permeability, sorpitivity and acid resistance of the concrete containing fly ash as a replacement of cement at a range of 0%, 10%, 20%, 30%, 40% and 50 %. This model is valid for mixes with cement quantity 208 to 416 kg/m3, water cement ratio 0.38 to 0.76, flyash 0 to 208 kg/m3 and cement/ total aggregate ratio varying from 0.11 to 0.22. Fly ash content and water cement ratio are the main parameters which influence the durability characteristics. The predicted mathematical model for saturated water absorption, permeability, sorpitivity and acid resistance produced accurate results for the respective ages when compared with the experimental results.
What Is Known about Elementary Grades Mathematical Modelling
Directory of Open Access Journals (Sweden)
Micah S. Stohlmann
2016-01-01
Full Text Available Mathematical modelling has often been emphasized at the secondary level, but more research is needed at the elementary level. This paper serves to summarize what is known about elementary mathematical modelling to guide future research. A targeted and general literature search was conducted and studies were summarized based on five categories: content of mathematical modelling intervention, assessment data collected, unit of analysis studied, population, and effectiveness. It was found that there were three main units of analysis into which the studies could be categorized: representational and conceptual competence, models created, and student beliefs. The main findings from each of these units of analysis are discussed along with future research that is needed.
Solutions manual to accompany finite mathematics models and applications
Morris, Carla C
2015-01-01
A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr
Analysis of mathematical model for micromechanical vibratory wheel gyroscope
Institute of Scientific and Technical Information of China (English)
LUO Yue-sheng; FAN Chong-jin; TAN Zhen-fan
2003-01-01
By the sketch of structure of MVWG,the working laws of this kind of gyroscope were explained.To the aid of Euler′s Dynamics Equation,a mathematical model of the gyroscope was constructed,and then by the basic working laws of MVWG the model was simplified.Under the conditions of the three axial direction rotations and general rotation,the mathematical model was resolved.And finally by the solutions, the working laws of the gyroscope, the working disparity among all sorts of gyrations and the influences from the gyrations in the axial directions were analysed.
Predictive control applied to an evaporator mathematical model
Directory of Open Access Journals (Sweden)
Daniel Alonso Giraldo Giraldo
2010-07-01
Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.
AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks
Energy Technology Data Exchange (ETDEWEB)
Bronevetsky, G; Laguna, I; Bagchi, S; de Supinski, B R; Ahn, D; Schulz, M
2010-03-23
Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. This growing scale makes debugging the applications that run on them a daunting challenge. Few debugging tools perform well at this scale and most provide an overload of information about the entire job. Developers need tools that quickly direct them to the root cause of the problem. This paper presents AutomaDeD, a tool that identifies which tasks of a large-scale application first manifest a bug at a specific code region at a specific point during program execution. AutomaDeD creates a statistical model of the application's control-flow and timing behavior that organizes tasks into groups and identifies deviations from normal execution, thus significantly reducing debugging effort. In addition to a case study in which AutomaDeD locates a bug that occurred during development of MVAPICH, we evaluate AutomaDeD on a range of bugs injected into the NAS parallel benchmarks. Our results demonstrate that detects the time period when a bug first manifested itself with 90% accuracy for stalls and hangs and 70% accuracy for interference faults. It identifies the subset of processes first affected by the fault with 80% accuracy and 70% accuracy, respectively and the code region where where the fault first manifested with 90% and 50% accuracy, respectively.
Mathematical modeling of a rotary hearth coke calciner
Hilde C. Meisingset; Jens G. Balchen
1995-01-01
A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this p...
Mathematical Modeling of Vascular Tumor Growth and Development
Cooper, Michele
2010-01-01
Mathematical modeling of cancer is of significant interest due to its potential to aid in our understanding of the disease, including investigation into which factors are most important in the progression of cancer. With this knowledge and model different paths of treatment can be examined; (e.g. simulation of different treatment techniques followed by the more costly venture of testing on animal models). Significant work has been done in the field of cancer modeling with models ranging from ...
Mathematical modeling of a rotary hearth coke calciner
Directory of Open Access Journals (Sweden)
Hilde C. Meisingset
1995-10-01
Full Text Available A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.
Mathematical modelling of slow drug release from collagen matrices
Erichsen, Birgitte Riisøen
2014-01-01
This master's thesis is about controlled drug release, which is a relatively new area of mathematical modelling. In this thesis there have been two major focuses. The first is to further understand the model for drug release from collagen matrices developed earlier by solving it with a different numerical scheme, and the second to develop a new model based on a different geometry. Both models are based on mass conservation and Fick's law, and are therefore possible to compare. The two models ...
Mathematical model of desublimation process of volatile metal fluorides
Smolkin, P. А.; Buynovskiy, А. S.; Lazarchuk, V. V.; Matveev, А. А.; Sofronov, V. L.
2007-01-01
Mathematical model for calculation of optimal temperature desublimation in metal fluorides and the number of desublimation stages has been developed; it permits achieving the degree of base product recovery from gas-vapour mixture nearly to 100 %. Experimental checking of modeling results at uranium hexafluoride desublimation shows a good correlation with the theoretical data.
Metaphors and Models in Translation between College and Workplace Mathematics
Williams, Julian; Wake, Geoff
2007-01-01
We report a study of repairs in communication between workers and visiting outsiders (students, researchers or teachers). We show how cultural models such as metaphors and mathematical models facilitated explanations and repair work in inquiry and pedagogical dialogues. We extend previous theorisations of metaphor by Black; Lakoff and Johnson;…
Mathematical model of bisubject qualimetric arbitrary objects evaluation
Morozova, A.
2016-04-01
An analytical basis and the process of formalization of arbitrary objects bisubject qualimetric evaluation mathematical model information spaces are developed. The model is applicable in solving problems of control over both technical and socio-economic systems for objects evaluation using systems of parameters generated by different subjects taking into account their performance and priorities of decision-making.
Analysis of rear end impact using mathematical human modelling
Happee, R.; Meijer, R.; Horst, M.J. van der; Ono, K.; Yamazaki, K.
2000-01-01
At TNO an omni-directional mathematical human body model has been developed. Until now this human model has been validated for frontal and lateral loading using response data of volunteer and post mortem human subject (PMHS) sled tests. For rearward loading it has been validated for high speed impac
Preparation of mathematical model of electronic regulator to calculation researches
Лисовал, А. А.
2008-01-01
The stage of design of microprocessor regulator for a diesel with supercharger is presented: the development of a dynamic mathematical model of an electronic regulator. Adequacy of the created model is confirmed during realization of her in the software environment of MATLAB/Simulink. Il. 6. Bibliogr. 7 names.
Mathematical Models for Room Air Distribution - Addendum
DEFF Research Database (Denmark)
Nielsen, Peter V.
1982-01-01
A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...
Mathematical Models for Room Air Distribution
DEFF Research Database (Denmark)
Nielsen, Peter V.
1982-01-01
A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...
Mathematical models of a diffusion-convection in porous media
Directory of Open Access Journals (Sweden)
Anvarbek M. Meirmanov
2012-06-01
Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.
Mathematical models of regulatory mechanisms of sleep-wake rhythms.
Nakao, M; Karashima, A; Katayama, N
2007-05-01
Studies of regulatory mechanisms of sleep-wake rhythms have benefited greatly from mathematical modeling. There are two major frameworks of modeling: one integrates homeostatic and circadian regulations and the other consists of multiple interacting oscillators. In this article, model constructions based on these respective frameworks and their characteristics are reviewed. The two-process model and the multioscillator model are explained in detail. An appropriate mathematical abstraction is also shown to provide a viewpoint unifying the model structures, which might seem to be distinct. Recently acquired knowledge of neural regulatory mechanisms of sleep-wake rhythm has prompted modeling at the neural network level. Such a detailed model is also reviewed, and could be used to explore a possible neural mechanism underlying a pathological state of sleep-wake rhythm. PMID:17364138
CHOOSING A MATHEMATICAL MODEL OF HEAT SUPPLY NETWORK ROUTE
Directory of Open Access Journals (Sweden)
V. N. Melkumov
2012-02-01
Full Text Available Problem statement. Modern computational technologies allow to develop mathematical modelsfor choosing optimal topology and construction routes of heat supply networks taking into accounta large amount of influencing factors. Important pivots when developing a mathematical model arethe choice of source data representation, of the model of choosing the optimal topology and routeand the computational algorithms for model implementation at computing facilities. The difficultyof choosing a computational method, aside from the nature of topological models, is complicatedby a large amount of limiting factors. This is the reason why the choice of forms of representationof mathematical models and the efficiency of computational methods of their solution is actualwhen used in practical applications.Results. A mathematical model of the cost of construction of heat supply networks has been developedwhich, as opposed to traditional models, leaves the necessary degrees of freedom for determiningacceptable and optimal topology and construction route for account of using multicriterionoptimization. A method of weighted summation has been proposed for usage for combiningraster maps corresponding to different routing criteria.Conclusions. The considered method allows to take account of the whole system of factors influencingthe construction route of heat supply network and to conduct route optimization basedon several criteria, which allows to choose the optimal topology and construction route under theinfluence of multiple external and internal factors.
Modeling eBook acceptance: A study on mathematics teachers
Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad
2014-12-01
The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.
A full body mathematical model of an oil palm harvester
Tumit, NP; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh Y., M.; Arumugam, Manohar; Ismail I., A.; Abdul Hafiz A., R.
2015-09-01
The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. This paper is an extension model of previous biomechanical model representing a harvester movement during harvesting a Fresh Fruit Bunch (FFB) from a palm oil tree. The ten segment model consists of foot, leg, trunk, the head and the arms segment. Finally, the inverse dynamic equations are represented in a matrix form.
Mathematically modelling proportions of Japanese populations by industry
Hirata, Yoshito
2016-10-01
I propose a mathematical model for temporal changes of proportions for industrial sectors. I prove that the model keeps the proportions for the primary, the secondary, and the tertiary sectors between 0 and 100% and preserves their total as 100%. The model fits the Japanese historical data between 1950 and 2005 for the population proportions by industry very well. The model also predicts that the proportion for the secondary industry becomes negligible and becomes less than 1% at least around 2080.
Mathematical model of seed germination process
International Nuclear Information System (INIS)
An analytical model of seed germination process was described. The model based on proposed working hypothesis leads - by analogy - to a law corresponding with Verhulst-Pearl's law, known from the theory of population kinetics. The model was applied to describe the germination kinetics of tomato seeds, Promyk field cultivar, biostimulated by laser treatment. Close agreement of experimental and model data was obtained
Mathematical modelling of undrained clay behavior
Prevost, J. H.; Noeg, K.
1976-01-01
The proposed general analytical model describes the anisotropic, elastoplastic, path-dependent, stress-strain properties of inviscid saturated clays under undrained conditions. Model parameters are determined by using results from strain-controlled simple shear tests on a saturated clay. The model's accuracy is evaluated by applying it to predict the results of other tests on the same clay, including monotonic and cyclic loading. The model explains the very anisotropic shear strength behavior observed for weak marine clays.
Mathematical model in controlling dengue transmission with sterile mosquito strategies
Aldila, D.; Nuraini, N.; Soewono, E.
2015-09-01
In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population
A mathematical look at a physical power prediction model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.
Mathematical modelling in the computer-aided process planning
Mitin, S.; Bochkarev, P.
2016-04-01
This paper presents new approaches to organization of manufacturing preparation and mathematical models related to development of the computer-aided multi product process planning (CAMPP) system. CAMPP system has some peculiarities compared to the existing computer-aided process planning (CAPP) systems: fully formalized developing of the machining operations; a capacity to create and to formalize the interrelationships among design, process planning and process implementation; procedures for consideration of the real manufacturing conditions. The paper describes the structure of the CAMPP system and shows the mathematical models and methods to formalize the design procedures.
Mass Extinction in a Simple Mathematical Biological Model
Tokita, K; Tokita, Kei; Yasutomi, Ayumu
1997-01-01
Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we construct a general model of ecosystems. The present model shows mass extinction by its own extinction dynamics when the system initially has a large number of species ( diversity). The extinction dynamics shows several significant features such as a power law in basin size distribution, induction time, etc. The present theory can be a mathematical foundation of the species-area effect in the paleontologic theory for mass extinction.
Rock Burst Mechanics: Insight from Physical and Mathematical Modelling
Vacek, J.; J. Chocholoušová
2008-01-01
Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps) to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the pot...
Mathematical model for spreading dynamics of social network worms
International Nuclear Information System (INIS)
In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks
International Workshop on Mathematical Modeling of Tumor-Immune Dynamics
Kim, Peter; Mallet, Dann
2014-01-01
This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...
MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
Directory of Open Access Journals (Sweden)
Daniele Penteado Rosa
2015-06-01
Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol
Mathematical modeling of the human knee joint
Energy Technology Data Exchange (ETDEWEB)
Ricafort, Juliet [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Biomedical Engineering
1996-05-01
A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.
Mathematical model of the dynamics of psychotherapy
Larry S. Liebovitch; Peluso, Paul R.; Norman, Michael D.; Su, Jessica; Gottman, John M.
2011-01-01
The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationshi...
A Mathematical Model for Segmenting ECG Signals
Feier, Horea; Roşu, Doina; Falniţǎ, Lucian; Roşu, Şerban; Pater, Liana
2010-09-01
This paper deals with the behavior of the modulus of the continuous wavelet transform (CWT) for some known mother wavelets like the Morlet wavelet and the Mexican Hat. By exploiting these properties, the models presented can behave as a segmentation/ recognition signal processing tool by modeling the temporal structure of the observed surface ECG.
Undergraduate Research: Mathematical Modeling of Mortgages
Choi, Youngna; Spero, Steven
2010-01-01
In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…
A Mathematical Model for Freeze-Drying
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the experiments on freeze-drying carrot and potato slabs, the effects of some parameters, such as heating temperature and pressure on the freeze-drying process are examined. A simple model of freeze-drying is established to predict drying time and the mass variations of materials during the drying. The experimental results agree well with those calculated by the model.
A Mathematical model of copper corrosion
Clarelli, Fabrizio; Natalini, Roberto
2012-01-01
A new partial differential model for monitoring and detecting copper corrosion products (mainly brochantite and cuprite) is proposed to provide predictive tools suitable for describing the evolution of damage induced on bronze specimens by sulfur dioxide (SO_2) pollution. This model is characterized by the movement of a double free boundary. Numerical simulations show a nice agreement with experimental result.
Molecular modeling: An open invitation for applied mathematics
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
Development of a revised mathematical model of the gastrointestinal tract
International Nuclear Information System (INIS)
The objectives of this research are as follows. First, to incorporate new biological data into a revised mathematical adult gastrointestinal tract model that includes: ingestion in both liquid and solid forms; consideration of absorption in the stomach, small intestine, ascending colon, transverse colon or not at all; gender and age of the adult; and whether the adult is a smoker or not. Next, to create a computer program in basic language for calculating residence times in each anatomical section of the GI tract for commonly used radionuclides. Also, to compare and contrast the new model with the ICRP 30 GI tract model in terms of physiological concepts, mathematical concepts, and revised residence times for several commonly used radionuclides. Finally, to determine whether the new model is sufficiently better than the current model to warrant its use as a replacement for the Eve model
A Computational and Mathematical Model for Device Induced Thrombosis
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James
2015-11-01
Based on the Sorenson's model of thrombus formation, a new mathematical model describing the process of thrombus growth is developed. In this model the blood is treated as a Newtonian fluid, and the transport and reactions of the chemical and biological species are modeled using CRD (convection-reaction-diffusion) equations. A computational fluid dynamic (CFD) solver for the mathematical model is developed using the libraries of OpenFOAM. Applying the CFD solver, several representative benchmark problems are studied: rapid thrombus growth in vivo by injecting Adenosine diphosphate (ADP) using iontophoretic method and thrombus growth in rectangular microchannel with a crevice which usually appears as a joint between components of devices and often becomes nidus of thrombosis. Very good agreements between the numerical and the experimental results validate the model and indicate its potential to study a host of complex and practical problems in the future, such as thrombosis in blood pumps and artificial lungs.
Mathematical analysis and numerical simulation of a model of morphogenesis.
Muñoz, Ana I; Tello, José Ignacio
2011-10-01
We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy.
Li, Xuefang; Xu, Jian-Xin
2016-10-01
Pancreatic cancer is one of the most deadly types of cancer since it typically spreads rapidly and can seldom be detected in its early stage. Pancreatic cancer therapy is thus a challenging task, and appropriate prognosis or assessment for pancreatic cancer therapy is of critical importance. In this work, based on available clinical data in Niu et al. (2013) we develop a mathematical prognosis model that can predict the overall survival of pancreatic cancer patients who receive immunotherapy. The mathematical model incorporates pancreatic cancer cells, pancreatic stellate cells, three major classes of immune effector cells CD8+ T cells, natural killer cells, helper T cells, and two major classes of cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ). The proposed model describes the dynamic interaction between tumor and immune cells. In order for the model to be able to generate appropriate prognostic results for disease progression, the distribution and stability properties of equilibria in the mathematical model are computed and analysed in absence of treatments. In addition, numerical simulations for disease progression with or without treatments are performed. It turns out that the median overall survival associated with CIK immunotherapy is prolonged from 7 to 13months compared with the survival without treatment, this is consistent with the clinical data observed in Niu et al. (2013). The validity of the proposed mathematical prognosis model is thus verified. Our study confirms that immunotherapy offers a better prognosis for pancreatic cancer patients. As a direct extension of this work, various new therapy methods that are under exploration and clinical trials could be assessed or evaluated using the newly developed mathematical prognosis model. PMID:27338302
SARS epidemical forecast research in mathematical model
Institute of Scientific and Technical Information of China (English)
DING Guanghong; LIU Chang; GONG Jianqiu; WANG Ling; CHENG Ke; ZHANG Di
2004-01-01
The SIJR model, simplified from the SEIJR model, is adopted to analyze the important parameters of the model of SARS epidemic such as the transmission rate, basic reproductive number. And some important parameters are obtained such as the transmission rate by applying this model to analyzing the situation in Hong Kong, Singapore and Canada at the outbreak of SARS. Then forecast of the transmission of SARS is drawn out here by the adjustment of parameters (such as quarantined rate) in the model. It is obvious that inflexion lies on the crunode of the graph, which indicates the big difference in transmission characteristics between the epidemic under control and not under control. This model can also be used in the comparison of the control effectiveness among different regions. The results from this model match well with the actual data in Hong Kong, Singapore and Canada and as a by-product, the index of the effectiveness of control in the later period can be acquired. It offers some quantitative indexes, which may help the further research in epidemic diseases.
Physical and Mathematical Modeling in Experimental Papers.
Möbius, Wolfram; Laan, Liedewij
2015-12-17
An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations.
MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING
Ricardo Nolasco de Carvalho; Marcelo Almeida Cunha Ferreira; Dagoberto Brandão Santos; Ronaldo Antônio Neves Marques Barbosa
2013-01-01
The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained i...
Mathematical modeling of recombinant Escherichia coli aerobic batch fermentations
Costa, Rafael S; Rocha, I; Ferreira, E. C.
2008-01-01
In this work, three competing unstructured mathematical models for the biomass growth by recombinant E. coli strains with different acetate inhibition kinetics terms were evaluated for batch processes at constant temperature and pH. The models considered the dynamics of biomass growth, acetate accumulation, substrate consumption, Green Fluorescence Protein (GFP) production and three metabolic pathways for E. coli. Parameter estimation and model validation was carried out usi...
System and mathematical modeling of quadrotor dynamics
Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.
2015-05-01
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
Mathematical Modelling of Metabolic Regulation in Aging
Directory of Open Access Journals (Sweden)
Mark T. Mc Auley
2015-04-01
Full Text Available The underlying cellular mechanisms that characterize aging are complex and multifaceted. However, it is emerging that aging could be regulated by two distinct metabolic hubs. These hubs are the pathway defined by the mammalian target of rapamycin (mTOR and that defined by the NAD+-dependent deacetylase enzyme, SIRT1. Recent experimental evidence suggests that there is crosstalk between these two important pathways; however, the mechanisms underpinning their interaction(s remains poorly understood. In this review, we propose using computational modelling in tandem with experimentation to delineate the mechanism(s. We briefly discuss the main modelling frameworks that could be used to disentangle this relationship and present a reduced reaction pathway that could be modelled. We conclude by outlining the limitations of computational modelling and by discussing opportunities for future progress in this area.
Economics, Mathematical Models, and Environmental Policy
Conrad, John M.
1987-01-01
This paper briefly reviews several models of externality which provide the theoretical basis of environmental economics. An externality may be defined as a situation where the output or action of a firm or individual affects the production possibilities or welfare of another firm or individual who has no direct control over the initial level of the output or activity. Pollution, resulting from the disposal of residual wastes, is a classic example of externality. Three static models examine th...
Mathematical models for interpretation of tracer data in groundwater hydrology
International Nuclear Information System (INIS)
The Advisory Group Meeting had the overall objective of discussing in detail the methodologies and approaches in the development of mathematical models for quantitative evaluations of tracer data in groundwater hydrology and reviewing the recent advances in this field. A separate abstract was prepared for each of the eight papers
Mathematical modeling of clearing liquid drop diffusion after intradermal injection
Stolnitz, Mikhail M.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.
2007-05-01
The mathematical model of clearing agent diffusion after intradermal injection has been developed. Skin was presented as multilayer medium, but one layer with proper boundary conditions is considered. Analytical solution of the boundary problem for small and large time intervals is obtained.
Unlocking pathogen genotyping information for public health by mathematical modeling
M. Kretzschmar; M.G. M. Gomes; R.A. Coutinho; J.S. Koopman
2010-01-01
Molecular typing and mathematical modeling have gone through rapid development in the past decade. Both offer new insights into the epidemiology of infectious diseases, thereby contributing to a better understanding of transmission dynamics. Infectious disease surveillance and control benefit from t
Mathematical models and dynamic characteristics of the WWER-440 unit
International Nuclear Information System (INIS)
Dynamic characteristics of the WWER-440 unit are determined. Using suitable mathematical models the dynamic properties of the reactor fuel channel, steam generator and individual parts of the secondary circuit were investigated. General relations of the corresponding transfer function and its numerical value are calculated as well as the transfer functions of different configurations of two parallel lines of the secondary circuit. (author)
Mathematical Model of Lifetime Duration at Insulation of Electrical Machines
Directory of Open Access Journals (Sweden)
Mihaela Răduca
2009-10-01
Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.
Conceptualizing professional development in mathematics: elements of a model
Sztajn, Paola; Campbell, Mathew; Yoon, Kwang Suk
2011-01-01
This theoretical paper discusses the concept of models for mathematics professional development. After examining the related literature, we propose a definition of this concept that includes four elements: goals, theories, contexts, and structure. We present aspects of professional development that comprise each element.
Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum
DEFF Research Database (Denmark)
Rasmussen, Tina
Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...
Model answers in pure mathematics for a-level students
Pratt, GA; Schofield, C W
1967-01-01
Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet
Mathematical modeling of a convective textile drying process
Directory of Open Access Journals (Sweden)
G. Johann
2014-12-01
Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.
Mathematical Model of Hot Metal Desulfurization by Powder Injection
Directory of Open Access Journals (Sweden)
Yolanda Cepeda Rodríguez
2012-01-01
Full Text Available Although there have been a numerous number of studies on mathematical model of hot metal desulfurization by deep injection of calcium carbide, the research field as a whole is not well integrated. This paper presents a model that takes into account the kinetics, thermodynamics, and transport processes to predict the sulfur levels in the hot metal throughout a blow. The model could be utilized to assess the influence of the treatment temperature, rate of injection, gas flow rate, and initial concentration of sulfur on the desulfurization kinetics. In the second part of this paper an analysis of the industrial data for injection of calcium carbide using this model is described. From a mathematical model that describes the characteristics of a system, it is possible to predict the behavior of the variables involved in the process, resulting in savings of time and money. Discretization is realized through the finite difference method combined with interpolation in the border domain by Taylor series.
Mathematical models of ecology and evolution
DEFF Research Database (Denmark)
Zhang, Lai
2012-01-01
dynamics but as a trade-o promotes species survival by shortening juvenile delay between birth and the onset of reproduction. Paper II compares the size-spectrum and food-web representations of communities using two traits (body size and habitat location) based unstructured population model of Lotka......) based size-structured population model, that is, interference in foraging, maintenance, survival, and recruitment. Their impacts on the ecology and evolution of size-structured populations and communities are explored. Ecologically, interference aects population demographic properties either negatively...... interference mechanisms, survival interference is more likely to produce large communities with complex trophic patterns through gradual evolution and successive speciation...
Mathematical modeling to predict residential solid waste generation
International Nuclear Information System (INIS)
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R2 were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total
Affinity and Hostility in Divided Communities: a Mathematical Model
Thron, Christopher
2015-01-01
We propose, develop, and analyze a mathematical model of intergroup attitudes in a community that is divided between two distinct social groups (which may be distinguished by religion, ethnicity, or some other socially distinguishing factor). The model is based on very simple premises that are both intuitive and justified by sociological research. We investigate the behavior of the model in various special cases, for various model configurations. We discuss the stability of the model, and the continuous or discontinuous dependence of model behavior on various parameters. Finally, we discuss possible implications for strategies to improve intergroup affinity, and to defuse tension and prevent deterioration of intergroup relationships.
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Mathematical models for space shuttle ground systems
Tory, E. G.
1985-01-01
Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.
Using Archeological Data to Model Mathematics
Yanik, H. Bahadir; Kurz, Terri L.; Memis, Yasin
2014-01-01
The purpose of this investigation is to describe an implementation of a modeling task using mock data from an ancient archeological find. Students discover the relationship between the height of a person and his or her stride length. Qualitative data from student discussions document thinking and reasoning.
Managing mathematical modelling by guiding and monitoring
Scholten, H.; Beulens, A.J.M.
2006-01-01
This case study discusses how a knowledge base can be used to solve complex multi-disciplinary problems through a model based approach in the water management sector. We learn how successful execution and completion of multi-disciplinary complex projects can be supported through a knowledge-based sy
Physical and mathematical modelling of extrusion processes
DEFF Research Database (Denmark)
Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.;
2000-01-01
The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...
Innovative mathematical modeling in environmental remediation
Energy Technology Data Exchange (ETDEWEB)
Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
2013-05-01
There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models
Mathematical modelling of triple arterial stenoses.
Ang, K C; Mazumdar, J
1995-06-01
This paper examines the effects of triple stenoses (ie. three stenoses in series) in a reasonably large artery. The model developed is axi-symmetric and blood is assumed to be a Newtonian fluid. The governing equations are the Navier-Stokes equations and the continuity equation. These equations are solved using the Finite Element Method and the FIDAP computational fluid dynamics (C.F.D.) package. Various combinations of differing degrees of stenosis in the triplet are considered. Pressure drop profiles and streamline plots of the solutions to these models show that the effects of milder stenoses are diminished in the presence of more severe ones. Also, a pressure recovery is observed whenever a mild stenosis follows a more severe stenosis in multiply stenosed arteries.
Mathematical Modeling on Open Limestone Channel
Bandstra, Joel; Wu, Naiyi
2014-01-01
Acid mine drainage (AMD) is the outflow of acidic water from metal mines or coal mines. When exposed to air and water, metal sulfides from the deposits of the mines are oxidized and produce acid, metal ions and sulfate, which lower the pH value of the water. An open limestone channel (OLC) is a passive and low cost way to neutralize AMD. The dissolution of calcium into the water increases the pH value of the solution. A differential equation model is numerically solved to predict the variation of concentration of each species in the OLC solution. The diffusion of Calcium due to iron precipitates is modeled by a linear equation. The results give the variation of pH value and the concentration of Calcium.
Solar Panel Mathematical Modeling Using Simulink
Chandani Sharma; Anamika Jain
2014-01-01
For decades, electricity is a key driver of socio-economy development. Nowadays, in the context of competition there is a direct relationship between electricity generation and sustainable development of the country. This paper presents distinct use of a Photovoltaic array offering great potential as source of electricity. The simulation uses One-diode equivalent circuit in order to investigate I-V and P-V characteristics. The GUI model is designed with Simulink block librarie...
Voltammetry: mathematical modelling and Inverse Problem
Koshev, N A; Kuzina, V V
2016-01-01
We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.
Mathematical modeling of gas turbine cooled elements
Energy Technology Data Exchange (ETDEWEB)
Pashayev, A.; Askerov, D.; Sadiqov, R.; Samedov, A. [Academy of Aviation, Baku (Azerbaijan). Dept. of Mathematical Modeling and Design of Gas Turbine Engines
2007-07-01
The profile section of a gas turbine blade with convective cooling was modelled. Converging quadrature processes were used to determine the stationary and quasi-stationary temperature field of the profile part of the blade. Profiles were visualized using the least squares method along with automatic conjecture, device spline, smooth replenishment, and neural nets. Heat exchange boundary conditions were characterized using the finite difference method; finite element analysis (FEA); the Monte Carlo method; and the boundary integral equations method (BIEM). Boundary conditions included the heat quantity assigned by convection of the cooler transmitted by heat conduction of the blade material to the surface of cooling channels. Errors were investigated using a quadratures method and Tikhonov regularization. A Kirchhoff permutation was used to linearize tasks. The developed equation was then transformed into a Laplace equation. The model was then compared with experimental investigations to validate heat and hydraulic characteristics, as well as the temperature field of the blade cross section. It was concluded that the model can be used to assess the reliability of gas turbine engine designs. 3 refs., 1 fig.
Mathematical modeling of elastic inverted pendulum control system
Institute of Scientific and Technical Information of China (English)
Chao XU; Xin YU
2004-01-01
Inverted pendulums are important objects of theoretical investigation and experiment in the area of control theory and engineering.The researches concentrate on the rigid finite dimensional models which are described by ordinary differential equations(ODEs).Complete rigidity is the approximation of practical models;Elasticity should be introduced into mathematical models in the analysis of system dynamics and integration of highly precise controller.A new kind of inverted pendulum,elastic inverted pendulum was proposed,and elasticity was considered.Mathematical model was derived from Hamiltonian principle and variational methods,which were formulated by the coupling of partial differential equations(PDE) and ODE.Because of infinite dimensional,system analysis and control of elastic inverted pendulum is more sophisticated than the rigid one.
Physical and mathematical modeling of antimicrobial photodynamic therapy
Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang
2014-07-01
Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.
Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data
Institute of Scientific and Technical Information of China (English)
Xiao-bo Li
2009-01-01
Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.
Experimentally supported mathematical modeling of continuous baking processes
DEFF Research Database (Denmark)
Stenby Andresen, Mette
The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing...... the heat and mass transfer in butter cookies during baking was formulated. The model was solved numerically by the use of a finite element method. Model optimization and validation was successfully carried out against experimental data obtained in the new pilot plant oven. The effect of the baking tray...
On the treatment of airline travelers in mathematical models.
Directory of Open Access Journals (Sweden)
Michael A Johansson
Full Text Available The global spread of infectious diseases is facilitated by the ability of infected humans to travel thousands of miles in short time spans, rapidly transporting pathogens to distant locations. Mathematical models of the actual and potential spread of specific pathogens can assist public health planning in the case of such an event. Models should generally be parsimonious, but must consider all potentially important components of the system to the greatest extent possible. We demonstrate and discuss important assumptions relative to the parameterization and structural treatment of airline travel in mathematical models. Among other findings, we show that the most common structural treatment of travelers leads to underestimation of the speed of spread and that connecting travel is critical to a realistic spread pattern. Models involving travelers can be improved significantly by relatively simple structural changes but also may require further attention to details of parameterization.
Mathematical Modelling of Surfactant Self-assembly at Interfaces
Morgan, C. E.
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.
Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes
Yang, Xin-She; Karamanoglu, Mehmet; Luan, Tao; Koziel, Slawomir
2014-01-01
Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furtherm...
Mathematical models of a liquid filtration from reservoirs
Anvarbek Meirmanov; Nelly Erygina; Saltanbek Mukhambetzhanov
2014-01-01
This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reser...
Mathematical model of induced flow on the airplane vertical tail
Rotaru, Constantin; Cîrciu, Ionicǎ; Edu, Raluca Ioana
2016-06-01
In this paper is presented a mathematical model of the flow around the vertical tail of an airplane, based on the general elements of the aerodynamic design, with details leading to the separate formulation of the Fourier coefficients in the series solution of the Prandtl's lifting-line equation. Numerical results are obtained in Maple soft environment, for a standard configuration of an airplane geometry. The results include the discussion of the vortex model for the sidewash gradient on the vertical stabilizer.
Mathematical modeling of human behaviors during catastrophic events
Verdière, Nathalie; Lanza, Valentina; Charrier, Rodolphe; Provitolo, Damienne; Dubos-Paillard, Edwige; Bertelle, Cyrille; Aziz-Alaoui, Moulay
2014-01-01
In this paper, we introduce a new approach for modeling the human collective behaviors in the speci c scenario of a sudden catastrophe, this catastrophe can be natural (i.e. earthquake, tsunami) or technological (nuclear event). The novelty of our work is to propose a mathematical model taking into account di erent concurrent behaviors in such situation and to include the processes of transition from one behavior to the other during the event. Here, we focus more on the sequence of behaviors ...
MATHEMATICAL MODEL OF RIVER BED CHANGE DOWNSTREAM OF XIAOLANGDI RESERVOIR
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A mathematical model of river bed change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of computed results and measured data from 1986 to 1996. Numerical prediction of the erosion and deposition downstream of the Xiaolangdi Reservoir in its first operation year was carried out, and a series of suggestions were given for reservoir operation mode in its early operation period.
Mathematical Modeling of Competition in Sponsored Search Market
Liu, Jian; Chiu, Dah Ming
2010-01-01
Sponsored search mechanisms have drawn much attention from both academic community and industry in recent years since the seminal papers of [13] and [14]. However, most of the existing literature concentrates on the mechanism design and analysis within the scope of only one search engine in the market. In this paper we propose a mathematical framework for modeling the interaction of publishers, advertisers and end users in a competitive market. We first consider the monopoly market model and ...
Mathematical models of a liquid filtration from reservoirs
Directory of Open Access Journals (Sweden)
Anvarbek Meirmanov
2014-02-01
Full Text Available This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reservoir.
Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki
2014-01-01
This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.
Mathematical model of a cell size checkpoint.
Directory of Open Access Journals (Sweden)
Marco Vilela
Full Text Available How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed.
Mathematical modeling in biology: A critical assessment
International Nuclear Information System (INIS)
The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented 'lead forward' of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. 'Autistic', monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve 'selfish' problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally 'top.down' (deductive) and 'bottom up' (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Energy Technology Data Exchange (ETDEWEB)
Du, Qiang [Pennsylvania State Univ., State College, PA (United States)
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next
Mathematical Viscosity Models for Ternary Metallic and Silicate Melts
Institute of Scientific and Technical Information of China (English)
FU Yuan-kun; MENG Xian-min; GUO Han-jie
2004-01-01
The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou's general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO2, CaO-FeO-SiO2 and FeO-MnO-SiO2 silicate slag systems were used to verify the model.
Semantic Web Based Efficient Search Using Ontology and Mathematical Model
Directory of Open Access Journals (Sweden)
K.Palaniammal
2014-01-01
Full Text Available The semantic web is the forthcoming technology in the world of search engine. It becomes mainly focused towards the search which is more meaningful rather than the syntactic search prevailing now. This proposed work concerns about the semantic search with respect to the educational domain. In this paper, we propose semantic web based efficient search using ontology and mathematical model that takes into account the misleading, unmatched kind of service information, lack of relevant domain knowledge and the wrong service queries. To solve these issues in this framework is designed to make three major contributions, which are ontology knowledge base, Natural Language Processing (NLP techniques and search model. Ontology knowledge base is to store domain specific service ontologies and service description entity (SDE metadata. The search model is to retrieve SDE metadata as efficient for Education lenders, which include mathematical model. The Natural language processing techniques for spell-check and synonym based search. The results are retrieved and stored in an ontology, which in terms prevents the data redundancy. The results are more accurate to search, sensitive to spell check and synonymous context. This paper reduces the user’s time and complexity in finding for the correct results of his/her search text and our model provides more accurate results. A series of experiments are conducted in order to respectively evaluate the mechanism and the employed mathematical model.
Mathematical analysis of intermittent gas injection model in oil production
Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.
2016-02-01
Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.
Mathematical Properties Relevant to Geomagnetic FieldModeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2010-01-01
Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers to as a geomagn......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers...... to as a geomagnetic field model. Such models can be used to produce maps.More importantly, they form the basis for the geophysical interpretation of the geomagnetic field, by providing the possibility of separating fields produced by various sources and extrapolating those fields to places where they cannot...... be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered...
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Analysing the Competency of Mathematical Modelling in Physics
Redish, Edward F
2016-01-01
A primary goal of physics is to create mathematical models that allow both predictions and explanations of physical phenomena. We weave maths extensively into our physics instruction beginning in high school, and the level and complexity of the maths we draw on grows as our students progress through a physics curriculum. Despite much research on the learning of both physics and math, the problem of how to successfully teach most of our students to use maths in physics effectively remains unsolved. A fundamental issue is that in physics, we don't just use maths, we think about the physical world with it. As a result, we make meaning with math-ematical symbology in a different way than mathematicians do. In this talk we analyze how developing the competency of mathematical modeling is more than just "learning to do math" but requires learning to blend physical meaning into mathematical representations and use that physical meaning in solving problems. Examples are drawn from across the curriculum.
The mathematical model of a LUNG simulator
Directory of Open Access Journals (Sweden)
František Šolc
2014-12-01
Full Text Available The paper discusses the design, modelling, implementation and testing of a specific LUNG simulator,. The described research was performed as a part of the project AlveoPic – Advanced Lung Research for Veterinary Medicine of Particles for Inhalation. The simulator was designed to establish a combined study programme comprising Biomedical Engineering Sciences (FEEC BUT and Healthcare and Rehabilitation Technology (FH Technikum Wien. The simulator is supposed to be an advanced laboratory equipment which should enhance the standard of the existing research activities within the above-mentioned study programs to the required level. Thus, the proposed paper introduces significant technical equipment for the laboratory education of students at both FH Technikum Wien and the Faculty of Electrical Engineering and Communication, Brno University of Technology. The apparatuses described here will be also used to support cooperative research activities. In the given context, the authors specify certain technical solutions and parameters related to artificial lungs, present the electrical equipment of the system, and point out the results of the PC-based measurement and control.
Mathematical modeling of earth's dynamical systems a primer
Slingerland, Rudy
2011-01-01
Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...
Mathematical modeling applied to the left ventricle of heart
Ranjbar, Saeed
2014-01-01
Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...
Mathematical models in cell biology and cancer chemotherapy
Eisen, Martin
1979-01-01
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...
Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification
Directory of Open Access Journals (Sweden)
Grzegorz Mikułowski
2016-01-01
Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.
Chitera, Nancy
2011-01-01
In this article, the author presents a discussion of how mathematics teacher educators model school mathematics teaching in initial teacher training colleges, as they prepare the student teachers to teach mathematics in multilingual classrooms in Malawi. In particular, the article examines the instructional practices that mathematics teacher…
Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience
Charpin, J. P. F.; O'Hara, S.; Mackey, D.
2013-01-01
In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…
Mathematical models with singularities a zoo of singular creatures
Torres, Pedro J
2015-01-01
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
A review of mathematical models in economic environmental problems
DEFF Research Database (Denmark)
Nahorski, Z.; Ravn, H.F.
2000-01-01
The paper presents a review of mathematical models used,in economic analysis of environmental problems. This area of research combines macroeconomic models of growth, as dependent on capital, labour, resources, etc., with environmental models describing such phenomena like natural resources...... exhaustion or pollution accumulation and degradation. In simpler cases the models can be treated analytically and the utility function can be optimized using, e.g., such tools as the maximum principle. In more complicated cases calculation of the optimal environmental policies requires a computer solution....
Michelsen, Claus
2015-07-01
Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students’ achievement and attitude in both physics and mathematics. But although there are overwhelming amounts of literature on modeling in science and mathematics education, the interdisciplinary position is seldom addressed explicitly. Furthermore, there has been a striking lack of exposure of the question of how future teachers, who are largely educated in a mono-disciplinary fashion, can best become equipped to introduce genuinely interdisciplinary teaching activities to their future pupils. This paper presents some preliminary reflections upon a graduate course, which aims to prepare future physics and mathematics teachers for interdisciplinary teaching, and which has been designed on the basis of influential theoretical expositions of the concept of interdisciplinarity.
Mathematical Modeling and Analysis of Multirobot Cooperative Hunting Behaviors
Directory of Open Access Journals (Sweden)
Yong Song
2015-01-01
Full Text Available This paper presents a mathematical model of multirobot cooperative hunting behavior. Multiple robots try to search for and surround a prey. When a robot detects a prey it forms a following team. When another “searching” robot detects the same prey, the robots form a new following team. Until four robots have detected the same prey, the prey disappears from the simulation and the robots return to searching for other prey. If a following team fails to be joined by another robot within a certain time limit the team is disbanded and the robots return to searching state. The mathematical model is formulated by a set of rate equations. The evolution of robot collective hunting behaviors represents the transition between different states of robots. The complex collective hunting behavior emerges through local interaction. The paper presents numerical solutions to normalized versions of the model equations and provides both a steady state and a collaboration ratio analysis. The value of the delay time is shown through mathematical modeling to be a strong factor in the performance of the system as well as the relative numbers of the searching robots and the prey.
Preventing clonal evolutionary processes in cancer: Insights from mathematical models.
Rodriguez-Brenes, Ignacio A; Wodarz, Dominik
2015-07-21
Clonal evolutionary processes can drive pathogenesis in human diseases, with cancer being a prominent example. To prevent or treat cancer, mechanisms that can potentially interfere with clonal evolutionary processes need to be understood better. Mathematical modeling is an important research tool that plays an ever-increasing role in cancer research. This paper discusses how mathematical models can be useful to gain insights into mechanisms that can prevent disease initiation, help analyze treatment responses, and aid in the design of treatment strategies to combat the emergence of drug-resistant cells. The discussion will be done in the context of specific examples. Among defense mechanisms, we explore how replicative limits and cellular senescence induced by telomere shortening can influence the emergence and evolution of tumors. Among treatment approaches, we consider the targeted treatment of chronic lymphocytic leukemia (CLL) with tyrosine kinase inhibitors. We illustrate how basic evolutionary mathematical models have the potential to make patient-specific predictions about disease and treatment outcome, and argue that evolutionary models could become important clinical tools in the field of personalized medicine.
Mathematical and computer modeling of component surface shaping
Lyashkov, A.
2016-04-01
The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.
Mathematical Model of Asynchronous Machine in MATLAB Simulink
Directory of Open Access Journals (Sweden)
A A Ansari
2010-05-01
Full Text Available Different mathematical models have been used over the years to examine different problems associated with induction motors. These range from the simple equivalent circuit models to more complex d,q models and abc models which allow the inclusion of various forms of impedance and/or voltage unbalance. Recently, hybrid models have been developed which allow the inclusion of supply side unbalance but with the computational economy of the d,q models. This paper presents these models with typical results and provides guidelines for their use The dynamic simulation of small power induction motor based on mathematical modelling is proposed in this paper. The dynamic simulation is one of the key steps in the validation of the design process of the motor drive systems and it is needed for eliminating inadvertent design mistakes and the resulting error in the prototype construction and testing. This paper demonstrates the simulation of steady-state performance of induction motor by MATLAB Program Threephase induction motor is modeled and simulated with SIMULINK model.
Directory of Open Access Journals (Sweden)
Esra BUKOVA GÜZEL
2010-05-01
Full Text Available The purpose of this study is to examine the relationships between pre-service mathematics teachers’ achievements in calculus course and their mathematical modelling approaches. This case study has been conducted with twelve pre-service teachers from the Department of Secondary School Mathematics Education who have different academic achievement levels. While the study group has been formed, the mean of five written exams given in Calculus-I course has been taken into account. According to the mean of these exams, four participants have been equally chosen from groups which have higher, average and low achievement. Data have been collected through using mathematical modelling problems. While the problems have been analyzed, the mathematical modelling processes in literature have been taken into account, and a five-step scoring system has been developed by the researchers of the study. The results of study have shown that academic achievement of the pre-service teachers affected their mathematical modelling approaches to some extend. With this study, it has been aimed to provide contribution to the researches the purpose of which is to improve mathematical modelling approaches.
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations
Nonlinear Mathematical Modeling in Pneumatic Servo Position Applications
Directory of Open Access Journals (Sweden)
Antonio Carlos Valdiero
2011-01-01
Full Text Available This paper addresses a new methodology for servo pneumatic actuators mathematical modeling and selection from the dynamic behavior study in engineering applications. The pneumatic actuator is very common in industrial application because it has the following advantages: its maintenance is easy and simple, with relatively low cost, self-cooling properties, good power density (power/dimension rate, fast acting with high accelerations, and installation flexibility. The proposed fifth-order nonlinear mathematical model represents the main characteristics of this nonlinear dynamic system, as servo valve dead zone, air flow-pressure relationship through valve orifice, air compressibility, and friction effects between contact surfaces in actuator seals. Simulation results show the dynamic performance for different pneumatic cylinders in order to see which features contribute to a better behavior of the system. The knowledge of this behavior allows an appropriate choice of pneumatic actuator, mainly contributing to the success of their precise control in several applications.
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Modified Mathematical Model For Neutralization System In Stirred Tank Reactor
Directory of Open Access Journals (Sweden)
Ahmmed Saadi Ibrehem
2011-05-01
Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in
Mathematical modeling of sedimentation process of nanoparticles in gradient medium
Ezhenkova, S. I.; Chivilikhin, S. A.
2015-11-01
Mathematical model describing the motion of a light ray in the medium with a varying index of refraction formed by particles settling in a liquid has been built. We have received size distribution of particles settling in a liquid; calculated the light ray's trajectory in the medium; investigated the dependence of the light ray's trajectory on the initial particles concentration; received the solution of the equation of convective diffusion for nanoparticles.
Mathematical modeling and simulation of nanopore blocking by precipitation
Wolfram, M-T
2010-10-29
High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.
Mathematical modeling of sediment transport jn estuaries and coastal regions
Institute of Scientific and Technical Information of China (English)
窦国仁; 董凤舞; 窦希萍; 李禔来
1995-01-01
Based on the suspended sediment transport equation and transport capacity formula under the action of tidal currents and wind waves, a horizontal 2-D mathematical model of suspended sediment transport for estuaries and coastal regions is established. The verification of calculations shows that the sediment concentration distribution and sea bed deformation in the estuaries and coastal regions can be successfully simulated. Therefore, a new method for studying and solving the sediment problems in the estuarine and coastal engineering is presented.
Mathematical modeling and analysis of insulin clearance in vivo
Koschorreck, Markus; Gilles, Ernst Dieter
2008-01-01
Background Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. ...
Mathematical modeling and analysis of insulin clearance in vivo
Koschorreck, M.; Gilles, E. D.
2008-01-01
Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor acti...
Mathematical modeling and analysis of insulin clearance in vivo
Koschorreck, M.; Gilles, E.
2008-01-01
Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes...
Two Mathematical Models for Generation of Crowned Tooth Surface
Laszlo Kelemen; Jozsef Szente
2014-01-01
Gear couplings are mechanical components to connect shaft ends and eliminate the misalignments. The most important element of the gear coupling is the hub which is an external gear having crowned teeth. The crowned teeth on the hub are typically produced by hobbing. The resulting tooth surface depends on several parameters. It is influenced by the size of the hob and the feed. In this paper two mathematical models of the crowned tooth surface are introduced for the generation of the idealized...
Mathematical Model of the Jet Engine Fuel System
Klimko Marek
2015-01-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Mathematical Model of the Jet Engine Fuel System
Directory of Open Access Journals (Sweden)
Klimko Marek
2015-01-01
Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.
Territorial intrusion risk and antipredator behaviour: a mathematical model.
Díaz-Uriarte, R.
2001-01-01
In territorial animals that hide to avoid predators, a predatory attack creates a conflict because a hiding animal cannot defend its territory from conspecific intruders. When intruders are persistent, a past conspecific intrusion informs a territorial resident that future intrusions by the same animal are likely. Using a mathematical model, I examine the effects that past territorial intrusions can have on antipredator behaviour. Past territorial intrusions rarely affect a resident animal's ...
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Mathematical analysis techniques for modeling the space network activities
Foster, Lisa M.
1992-01-01
The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.
Mathematical modelling of drying food products: application to tropical fruits
Shahari, Nor Azni
2012-01-01
Drying is an old traditional method of removing liquid from inside material, suchas wood, food, paper, ceramics, building materials, textiles, granular products, pharmaceutical and electronic devices. The kinetics of this liquid removal depends on the material properties of the solid phase as well as on cellular structure. The aim of this project is to understand the effect of complex interaction of heat, moisture and shrinkage to create a detailed mathematical modelling to quantify the ...
Mathematical model of delay lines based on magnetostatic waves
Directory of Open Access Journals (Sweden)
E. V. Kudinov
2010-12-01
Full Text Available On the example of the delay line have demonstrated the possibility of applying the principle of decomposition to construct mathematical models of microwave devices using magnetostatic waves (MSW in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications
Mathematical model of processes of reactor with gasified fluidized bed
International Nuclear Information System (INIS)
An original scheme of steam generator with gasifying fluidized bed has been presented as a possible solution for reconstruction of furnace with pulverized burning of coal. The method is effective when applied in combination with desulfurization for the purpose of reducing the CO2 emissions level. A mathematical model has been developed, which determines the correlation primary (fluidizing) and (burning out) secondary air with sufficient for the practice accuracy
Mathematical modeling for digestible protein in animal feeds for tilapia
Luiz Vítor Oliveira Vidal; Wilson Massamitu Furuya; Elias Nunes Martins; Tadeu Orlandi Xavier; Mariana Michelato; Themis Sakaguti Graciano
2012-01-01
The objective of this study was to formulate mathematical models to estimate digestible protein in some animal feeds for tilapia. Literature results of the proximate composition of crude protein, ether extract, and mineral matter, as well as digestible protein obtained in biological assays, were used. The data were subjected to multiple linear stepwise backward regression. Path analysis was performed to measure the direct and indirect effects of each independent variable on the dependent one....
Mathematical model of delay lines based on magnetostatic waves
E. V. Kudinov
2010-01-01
On the example of the delay line have demonstrated the possibility of applying the principle of decomposition to construct mathematical models of microwave devices using magnetostatic waves (MSW) in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications
Mathematical Model of Oxygen Transport in Tuberculosis Granulomas
Datta, Meenal; Via, Laura E.; Chen, Wei; Baish, James W.; Xu, Lei; Barry, Clifton E.; Jain, Rakesh K.
2015-01-01
Pulmonary granulomas—the hallmark of Mycobacterium tuberculosis (MTB) infection—are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis–Me...
Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells
Black, J. P.
2013-10-22
In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.
A MATHEMATICAL HEAT TRANSFER MODEL IN STATIC AND CONTINUOUS CASTING
Institute of Scientific and Technical Information of China (English)
R. Ghasemzadeh
2004-01-01
The application of a heat flow model to describe the thermal characteristics of freezing alloys with narrow mushy zones from a refrigerated mould wall was outlined. The extension of the model was to treat the continuous casting of metals with low thermal conductivity,such as steels, which will be outlined. The model was based on the mathematical expedient for replacing thermal resistance of the metal/mould interface by virtual adjuncts of metal/mould material. It provided a good description of the pool profile and the technique exhibits advantages in terms of both computation and versatility of application.
Mathematical modelling of the combustion of a single wood particle
Energy Technology Data Exchange (ETDEWEB)
Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)
2006-01-15
A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)
Mathematical model for the gasification of coal under pressure
Energy Technology Data Exchange (ETDEWEB)
Biba, V.; Macak, J.; Kloss, E.; Malecha, J.
1978-01-01
A mathematical model for the the high-pressure gasification of solid fuels in the charged layer is presented which permits the quantitative description of the the static behavior of the generator. Deals with the parameters of reaction kinetics and of the transfer of matter and energy which are necessary for developing the model of a fixed-bed reactor. To obtain a practical model, simplifications are needed which concern the gasification, degasification, and drying processes. They are dealt with individually. For calculating the concentration and temperature profiles for the solid and gas phases along the gasification bed height, a system of differential equations was obtained which was supplemented by some algebraic equations.
Generalized Mathematical Model Predicting the Mechanical Processing Topography
Leonov, S. L.; Markov, A. M.; Belov, A. B.; Sczygol, N.
2016-04-01
We propose a unified approach for the construction of mathematical models for the formation of surface topography and calculation of its roughness parameters for different methods of machining processes. The approach is based on a process of geometric copy tool in the material which superimposes plastico-elastic deformation, oscillatory occurrences in processing and random components of the profile. The unified approach makes it possible to reduce the time forcreation of simulated stochastic model for a specific type of processing and guarantee the accuracy of geometric parameters calculation of the surface. We make an application example of generalized model for calculation of roughness density distribution Ra in external sharpening.
The limitations of mathematical modeling in high school physics education
Forjan, Matej
The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems
Mathematical modelling of steam generator and design of temperature regulator
Energy Technology Data Exchange (ETDEWEB)
Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)
1999-07-01
The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)
Mathematical model of the dynamics of countercurrent chromatography
Institute of Scientific and Technical Information of China (English)
陆向红; 任其龙; 吴平东
2002-01-01
A mathematical model of the dynamic behavior of countercurrent chromatography was proposed, and the model parameters, including the partition coefficient, the axial dispersion coefficient, the intraparticle diffusion coefficient and the external mass ransfer coefficient were calculated by the method of chromatogram moment analysis. Comparison of the experimental chromatograms of caffeine and theophylline determined in this work with the simulated curves computed by the proposed model showed fairly good agreement. Further, the difference between the average identified the partition coefficients by chromatogram moment analysis and the experimental values was small also, and the relationship between the external mass transfer rate and the linear velocity was similar to that obtained with solid-liquid chromatography.
Mathematically modelling and controlling prostate cancer under intermittent hormone therapy
Institute of Scientific and Technical Information of China (English)
Yoshito Hirata; Gouhei Tanaka; Nicholas Bruchovsky; Kazuyuki Aihara
2012-01-01
In this review,we summarize our recently developed mathematical models that predict the effects of intermittent androgen suppression therapy on prostate cancer (PCa).Although hormone therapy for PCa shows remarkable results at the beginning of treatment,cancer cells frequently acquire the ability to grow without androgens during long-term therapy,resulting in an eventual relapse.To circumvent hormone resistance,intermittent androgen suppression was investigated as an alternative treatment option.However,at the present time,it is not possible to select an optimal schedule of on- and off-treatment cycles for any given patient.In addition,clinical trials have revealed that intermittent androgen suppression is effective for some patients but not for others.To resolve these two problems,we have developed mathematical models for PCa under intermittent androgen suppression.The mathematical models not only explain the mechanisms of intermittent androgen suppression but also provide an optimal treatment schedule for the on- and off-treatment periods.
Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J
2016-01-01
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...
A New Mathematical Modeling Technique for Pull Production Control Systems
Directory of Open Access Journals (Sweden)
O. Srikanth
2013-12-01
Full Text Available The Kanban Control System widely used to control the release of parts of multistage manufacturing system operating under a pull production control system. Most of the work on Kanban Control System deals with multi-product manufacturing system. In this paper, we are proposing a regression modeling technique in a multistage manufacturing system is to be coordinates the release of parts into each stage of the system with the arrival of customer demands for final products. And also comparing two variants stages of the Kanban Control System model and combines with mathematical and Simulink model for the production coordination of parts in an assembly manufacturing systems. In both variants, the production of a new subassembly is authorized only when an assembly Kanban is available. Assembly kanbans become available when finished product is consumed. A simulation environment for the product line system has to generate with the proposed model and the mathematical model have to give implementation against the simulation model in the working platform of MATLAB. Both the simulation and model outputs have provided an in depth analysis of each of the resulting control system for offering model of a product line system.
Mathematical Modelling of Cation Transport and Regulation in Yeast.
Kahm, Matthiasé; Kschischo, Maik
2016-01-01
Mathematical modelling of ion transport is a strategy to understand the complex interplay between various ionic species and their transporters. Such models should provide new insights and suggest new interesting experiments. Two essential variables in models for ion transport and control are the membrane potential and the intracellular pH, which generates an additional layer of complexity absent from many other models of biochemical reaction pathways. The aim of this text is to introduce the reader to the basic principles and assumptions of modelling in this field. A simplified model of potassium transport will be used as an example and will be derived in a step by step manner. This forms the basis for understanding the advantages and limitations of more complex models. These are briefly reviewed at the end of this chapter.
Mathematical models of Ebola-Consequences of underlying assumptions.
Feng, Zhilan; Zheng, Yiqiang; Hernandez-Ceron, Nancy; Zhao, Henry; Glasser, John W; Hill, Andrew N
2016-07-01
Mathematical models have been used to study Ebola disease transmission dynamics and control for the recent epidemics in West Africa. Many of the models used in these studies are based on the model of Legrand et al. (2007), and most failed to accurately project the outbreak's course (Butler, 2014). Although there could be many reasons for this, including incomplete and unreliable data on Ebola epidemiology and lack of empirical data on how disease-control measures quantitatively affect Ebola transmission, we examine the underlying assumptions of the Legrand model, and provide alternate formulations that are simpler and provide additional information regarding the epidemiology of Ebola during an outbreak. We developed three models with different assumptions about disease stage durations, one of which simplifies to the Legrand model while the others have more realistic distributions. Control and basic reproduction numbers for all three models are derived and shown to provide threshold conditions for outbreak control and prevention. PMID:27130854
Cook, D. P.; Evans, J. W.
1995-02-01
This first of two related articles describes a mathematical model for electromagnetic casting in three dimensions, i.e., where the dependent variables are functions of all three spatial coordinates. It is shown how the method of inductances can be extended to three dimensions in order to solve Maxwell's equations for the electromagnetic field in and around the caster. The principal task here is the calculation of the inductances between loops of irregular shape, and the method by which this is done is described. The computations are self-consistent ones in that the free surface of the molten metal is adjusted in response to the supporting electromagnetic forces which are themselves dependent on the shape of that surface. The computed electromagnetic forces are input into a second phase of the calculation where melt flow is computed in three dimensions using the finite element package FIDAP.
Mathematical modeling of the neuron morphology using two dimensional images.
Rajković, Katarina; Marić, Dušica L; Milošević, Nebojša T; Jeremic, Sanja; Arsenijević, Valentina Arsić; Rajković, Nemanja
2016-02-01
In this study mathematical analyses such as the analysis of area and length, fractal analysis and modified Sholl analysis were applied on two dimensional (2D) images of neurons from adult human dentate nucleus (DN). Using mathematical analyses main morphological properties were obtained including the size of neuron and soma, the length of all dendrites, the density of dendritic arborization, the position of the maximum density and the irregularity of dendrites. Response surface methodology (RSM) was used for modeling the size of neurons and the length of all dendrites. However, the RSM model based on the second-order polynomial equation was only possible to apply to correlate changes in the size of the neuron with other properties of its morphology. Modeling data provided evidence that the size of DN neurons statistically depended on the size of the soma, the density of dendritic arborization and the irregularity of dendrites. The low value of mean relative percent deviation (MRPD) between the experimental data and the predicted neuron size obtained by RSM model showed that model was suitable for modeling the size of DN neurons. Therefore, RSM can be generally used for modeling neuron size from 2D images.
Analyzing electrical activities of pancreatic β cells using mathematical models.
Cha, Chae Young; Powell, Trevor; Noma, Akinori
2011-11-01
Bursts of repetitive action potentials are closely related to the regulation of glucose-induced insulin secretion in pancreatic β cells. Mathematical studies with simple β-cell models have established the central principle that the burst-interburst events are generated by the interaction between fast membrane excitation and slow cytosolic components. Recently, a number of detailed models have been developed to simulate more realistic β cell activity based on expanded findings on biophysical characteristics of cellular components. However, their complex structures hinder our intuitive understanding of the underlying mechanisms, and it is becoming more difficult to dissect the role of a specific component out of the complex network. We have recently developed a new detailed model by incorporating most of ion channels and transporters recorded experimentally (the Cha-Noma model), yet the model satisfies the charge conservation law and reversible responses to physiological stimuli. Here, we review the mechanisms underlying bursting activity by applying mathematical analysis tools to representative simple and detailed models. These analyses include time-based simulation, bifurcation analysis and lead potential analysis. In addition, we introduce a new steady-state I-V (ssI-V) curve analysis. We also discuss differences in electrical signals recorded from isolated single cells or from cells maintaining electrical connections within multi-cell preparations. Towards this end, we perform simulations with our detailed pancreatic β-cell model.
Postcorrection and mathematical model of life in Extended Everett's Concept
Mensky, Michael B
2007-01-01
Extended Everett's Concept (EEC) recently developed by the author to explain the phenomenon of consciousness is considered. A mathematical model is proposed for the principal feature of consciousness assumed in EEC, namely its ability (in the state of sleep, trance or meditation, when the explicit consciousness is disabled) to obtain information from all alternative classical realities (Everett's worlds) and select the favorable realities. To represent this ability, a mathematical operation called postcorrection is introduced, which corrects the present state to guarantee certain characteristics of the future state. Evolution of living matter is thus determined by goals (first of all by the goal of survival) as well as by causes. The resulting theory, in a way symmetrical in time direction, follows from a sort of antropic principle. Possible criteria for postcorrection and corresponding phenomena in the sphere of life are classified. Both individual and collective criteria of survival are considered as well a...
Mathematical modeling and signal processing in speech and hearing sciences
Xin, Jack
2014-01-01
The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.
Mathematical modeling of mechanical vibration assisted conductivity imaging
Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je
2014-01-01
This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...
Mathematical and numerical models for eddy currents and magnetostatics with selected applications
Rappaz, Jacques
2013-01-01
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem
Mathematical modelling of dextran filtration through hollow fibre membranes
DEFF Research Database (Denmark)
Vinther, Frank; Pinelo, Manuel; Brøns, Morten;
2014-01-01
In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within...... the hollow fibre is modelled by solving the Navier-Stokes equation along with the continuity equation for both the solute and the solvent. The flux of solute and solvent through the membrane are given by the solution diffusion model, since ultrafiltration occurs at high rejections. For a given set...... of parameters describing the characteristics of the membrane, effect on the observed and the intrinsic rejection of the membrane are investigated for the different working parameters: inlet velocity, molecular weight, and transmembrane pressure. Furthermore, the model investigates the effect of a concentration...
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
A Mathematical Theory of the Gauged Linear Sigma Model
Fan, Huijun; Ruan, Yongbin
2015-01-01
We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.
The Erosion of Well-being: a Heuristic Mathematical Model
Thron, Chris
2015-01-01
This paper presents a heuristic mathematical model of the changes over time in the statistical distribution of well-being of individuals in a society. The model predicts that when individuals overvalue the more overtly conspicuous aspects of well-being in their lifestyle choices, then under certain conditions the average well-being of the overall population may experience continuous decline. We investigate the influence of various effects, including the incidence of personal misfortune, heterogeneity in the population, and economic and/or technological progress.
Mathematical model for light scanning system based on circular laser
Institute of Scientific and Technical Information of China (English)
Peiquan Xu; Shun Yao; Fenggui Lu; Xinhua Tang; Wei Zhang
2005-01-01
A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built.This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams,escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.
Comments on the mathematical modelling of a vertebrobasilar stenosis
Directory of Open Access Journals (Sweden)
Balazs ALBERT
2016-09-01
Full Text Available In the present paper the case of a stenosis on the basilar artery is investigated. To analyze the problem CT angiography and MRI angiography were performed. To model this real case a non-Newtonian mathematical model was taken into account for the blood flow, while the vessel walls of the arteries and the arterioles were considered to have viscoelastic and elastic behavior, respectively – as we presented already in previous papers [1], [2]. Using COMSOL Multiphysics 3.3 we performed some numerical simulations to obtain some results with regard to blood velocity, blood pressure and streamlines.
Establishment of mathematical moment model in twin casting rolling rolls
Institute of Scientific and Technical Information of China (English)
孙斌煜; 苑世剑; 张洪; 杜艳平; 张芳萍
2002-01-01
In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.
A novel mathematical model for coverage in wireless sensor network
Institute of Scientific and Technical Information of China (English)
YAN Zhen-ya; ZHENG Bao-yu
2006-01-01
Coverage problem is one of the fundamental issues in the design of wireless sensor network, which has a great impact on the performance of sensor network. In this article,coverage problem was investigated using a mathematical model named Birth-death process. In this model, sensor nodes joining into networks at every period of time is considered as the rebirth of network and the quitting of sensor nodes from the networks is considered as the death of the network. In the end, an analytical solution is used to investigate the appropriate rate to meet the coverage requirement.
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Directory of Open Access Journals (Sweden)
Cecilia Noecker
2015-03-01
Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral
Mathematical modeling of variables involved in dissolution testing.
Gao, Zongming
2011-11-01
Dissolution testing is an important technique used for development and quality control of solid oral dosage forms of pharmaceutical products. However, the variability associated with this technique, especially with USP apparatuses 1 and 2, is a concern for both the US Food and Drug Administration and pharmaceutical companies. Dissolution testing involves a number of variables, which can be divided into four main categories: (1) analyst, (2) dissolution apparatus, (3) testing environment, and (4) sample. Both linear and nonlinear models have been used to study dissolution profiles, and various mathematical functions have been used to model the observed data. In this study, several variables, including dissolved gases in the dissolution medium, off-center placement of the test tablet, environmental vibration, and various agitation speeds, were modeled. Mathematical models including Higuchi, Korsmeyer-Peppas, Weibull, and the Noyes-Whitney equation were employed to study the dissolution profile of 10 mg prednisone tablets (NCDA #2) using the USP paddle method. The results showed that the nonlinear models (Korsmeyer-Peppas and Weibull) accurately described the entire dissolution profile. The results also showed that dissolution variables affected dissolution rate constants differently, depending on whether the tablets disintegrated or dissolved. PMID:21702052
Review on Mathematical and Mechanical Models of the Vocal Cord
Directory of Open Access Journals (Sweden)
L. Cveticanin
2012-01-01
Full Text Available A review on mathematical and mechanical models of the vocal cords is given. The basic model is a two-mass nonlinear oscillator system which is accepted to be the basic one for mechanical description in voice production. The model is not only extended into three, five, and more mass systems, systems with time variable parameters and three-dimensional systems, but also simplified into one-mass system with coupled two-direction deflection and damping functions. The corresponding mathematical models are the systems of coupled second-order differential equations which describe the vibrations of the symmetric and asymmetric vocal folds. The models give the conditions for the regular and irregular motions like bifurcation and deterministic chaos in vocal folds. The obtained results are of special interest for detecting the pathology of vocal cords, when there are no visual effects of disease. Based on the results given in the paper, the objectives for future investigation in this matter are given.
Research of inverse mathematical model to high-speed trains
Institute of Scientific and Technical Information of China (English)
朱涛; 肖守讷; 马卫华; 阳光武
2014-01-01
Operation safety and stability of the train mainly depend on the interaction between the wheel and rail. Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. Since wheel/rail contact forces of high-speed train are very difficult to measure directly, a new estimation process for wheel/rail contact forces was introduced in this work. Based on the state space equation, dynamic programming methods and the Bellman principle of optimality, the main theoretical derivation of the inversion mathematical model was given. The new method overcomes the weakness of large fluctuations which exist in current inverse techniques. High-speed vehicle was chosen as the research object, accelerations of axle box as input conditions, 10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established, respectively. Under 250 km/h, the vertical and lateral wheel/rail forces were identified. From the time domain and frequency domain, the comparison of the results between inverse and SIMPACK models were given. The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.
Mathematical model and simulation of partial penetrated weld pool
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The qualitative analysis on the behavior of partial penetrated weld pool transferring from pulsed peak current to base current in pulsed TIG welding is carried out in this paper. Based on the analysis results, the mathematical models for 3D liquid surface shape of partial penetrated weld pool in pulsed TIG welding are created including surface potential energy model, gravitational energy model and volumetric potential energy. The numerical simulation with these models and the experiments on low carbon steel are carried out using the software Surface Evolver. The simulation results and model are then amended with experimental results. Two important characteristic quantities, the liquid metal coverage ratio and the stripping width of liquid metal, are put forward in this paper, which paves a way for further weld pool full penetration control.
A Mathematical Model to Improve the Performance of Logistics Network
Directory of Open Access Journals (Sweden)
Muhammad Izman Herdiansyah
2012-01-01
Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization
Variational Data Assimilation Technique in Mathematical Modeling of Ocean Dynamics
Agoshkov, V. I.; Zalesny, V. B.
2012-03-01
Problems of the variational data assimilation for the primitive equation ocean model constructed at the Institute of Numerical Mathematics, Russian Academy of Sciences are considered. The model has a flexible computational structure and consists of two parts: a forward prognostic model, and its adjoint analog. The numerical algorithm for the forward and adjoint models is constructed based on the method of multicomponent splitting. The method includes splitting with respect to physical processes and space coordinates. Numerical experiments are performed with the use of the Indian Ocean and the World Ocean as examples. These numerical examples support the theoretical conclusions and demonstrate the rationality of the approach using an ocean dynamics model with an observed data assimilation procedure.
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Mathematical model of various statements of C-type Language
Directory of Open Access Journals (Sweden)
Manoj Kumar Srivastav
2013-12-01
Full Text Available Some of the important components of high level languages are statements, keywords, variable declarations, arrays, user defined functions etc. In case of object oriented programming language we use class, object, inheritance, operator overloading, function overloading, polymorphism etc. There are some common category of statements such as control statement, loop statements etc. Pointers are also one important concept in C-language. User defined functions, function subprograms or subroutines are also important concepts in different programming languages. The language like ALGOL was developed using Chomsky context free grammar. The similar concept used in C-type languages. The high level languages are now based on mathematical derivations and logic. Most of the components of any high level language can be obtained from simple mathematical logic and derivations. In the present study the authors have tried to give some unified mathematical model of few statements, arrays, user defined functions of C-language. However, the present method may further be extended to any other high level language.
Mathematical models of tumor heterogeneity and drug resistance
Greene, James
In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of
Synthesising 30 years of mathematical modelling of Echinococcus transmission.
Directory of Open Access Journals (Sweden)
Jo-An M Atkinson
Full Text Available BACKGROUND: Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models. METHODOLOGY/PRINCIPAL FINDINGS: A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1 the inclusion of a 'latent' class and/or time delay from host exposure to infectiousness; 2 an age structure for animal hosts; 3 the presence of density-dependent constraints; 4 accounting for seasonality; 5 stochastic parameters; and 6 inclusion of spatial and risk structures. CONCLUSIONS/SIGNIFICANCE: This review discusses the conditions under
Aspects of Mathematical Modelling Applications in Science, Medicine, Economics and Management
Hosking, Roger J
2008-01-01
The construction of mathematical models is an essential scientific activity. Mathematics has long been associated with developments in the exact sciences and engineering, but more recently mathematical modelling has been used to investigate complex systems that arise in many other fields. The contributors to this book demonstrate the application of mathematics to modern research topics in ecology and environmental science, health and medicine, phylogenetics and neural networks, theoretical chemistry, economics and management.
On the mathematical modeling of memristor, memcapacitor, and meminductor
Radwan, Ahmed G
2015-01-01
This book introduces the basic fundamentals, models, emulators and analyses of mem-elements in the circuit theory with applications. The book starts reviewing the literature on mem-elements, models and their recent applications. It presents mathematical models, numerical results, circuit simulations, and experimental results for double-loop hysteresis behavior of mem-elements. The authors introduce a generalized memristor model in the fractional-order domain under different input and different designs for emulator-based mem-elements, with circuit and experimental results. The basic concept of memristive-based relaxation-oscillators in the circuit theory is also covered. The reader will moreover find in this book information on memristor-based multi-level digital circuits, memristor-based multi-level multiplier and memcapacitor-based oscillators and synaptic circuits.
Selection of productivity improvement techniques via mathematical modeling
Directory of Open Access Journals (Sweden)
Mahassan M. Khater
2011-07-01
Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.
Conceptual and mathematical modeling of the Hanford groundwater flow regime
Energy Technology Data Exchange (ETDEWEB)
Arnett, R.C.; Deju, R.A.; Nelson, R.W.; Cole, C.R.; Gephart, R.E.
1976-10-01
Disposal of radioactive wastes to surface disposal sites at the Hanford Atomic Reservation has resulted in some radioactive and chemical contamination of the underlying groundwater flow systems. In support of the Hanford groundwater management effort a preliminary conceptual model of the groundwater system has been formulated as a first step in understanding possible contaminant movement. The mathematical modeling capabilities needed for better understanding and prediction of such contaminant movement are discussed in this paper and the state-of-the-art in groundwater modeling as related to Hanford is summarized with emphasis upon computer solution methods. An inventory of potentially applicable codes available both at Hanford and elsewhere is included. The areas where groundwater modeling capability is lacking are outlined, and the steps needed to overcome such deficiencies are discussed.
Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector
Directory of Open Access Journals (Sweden)
Thomas Semenou
2015-01-01
Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.
A New Mathematical Model for Coanda Effect Velocity Approximation
Directory of Open Access Journals (Sweden)
Valeriu DRĂGAN
2012-12-01
Full Text Available This paper addresses the problem of obtaining a set of mathematical equations that can accurately describe the velocity flow field near a cylindrical surface influenced by the Coandă effect. The work is relevant since the current state of the art Reynolds Averaged Navier Stokes models with curvature correction do not completely describe the properties of the flow in accordance with the experimental data. Semi-empirical equations are therefore deduced based on experimental and theoretical state of the art. The resulting model is validated over a wider range of geometric layouts than any other existing semi-empirical model of its kind. The applications of this model are numerous, from super circulation wing calculations to fluidic devices such as actuators or fluidic diodes.
MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING
Directory of Open Access Journals (Sweden)
Ricardo Nolasco de Carvalho
2013-10-01
Full Text Available The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained in hot torsion simulations. For this, the thermomechanical cycles are simplified considering the equipment limitations in reproduce some strain, strain rates and cooling rates developed industrially. Samples for optical microscopy were obtained by interruption of simulations after selected steps of process. After adjustment of each model with results from simulation, the final microstructures are compared with those obtained in industrial scale. In general, good correlations are observed.
Melatonin in Epilepsy: A New Mathematical Model of Diurnal Secretion
Kijonka, Marek; Pęcka, Marcin; Sokół, Maria
2016-01-01
Purpose. The main objective of the study was to create a mathematical model that describes the melatonin circadian secretion and, then the functionality of the model was tested by a comparison of the melatonin secretions in children with and without epilepsy. Material and Methods. The patients were divided into the epilepsy group (EG, n = 52) and the comparison group (CG, n = 30). The melatonin level was assessed by a radioimmunoassay method. The diurnal melatonin secretion was described using a nonlinear least squares method. Spearman's rank correlation coefficient was chosen to estimate the dependence of the acquired data. The model reproduces blood concentration profiles and its parameters were statistically analyzed using the Mann-Whitney-Wilcoxon test and logistic regression. Results. The correlation analysis performed for the EG and CG groups showed moderate correlations between age and the melatonin secretion model parameters. Patients with epilepsy are characterized by an increased phase shift of melatonin release. PMID:27478439
Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J
2011-07-01
The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.
Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit
Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie
2015-09-01
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity
Mathematical modeling of the magnetization transfer effect in tissues
Yarnykh, V.
2016-02-01
The term magnetization transfer (MT) describes a group of molecular processes causing incoherent exchange of magnetic energy between water and macromolecules in biological objects. Magnetic resonance imaging (MRI) can be sensitized to the MT effect using various magnetization preparation techniques. Since its introduction in early 90s, MT MRI has been used in various applications as a tool for quantitative or semi-quantitative tissue characterization and modification of tissue contrast. This review article provides an overview of biophysical mechanisms of MT in tissues, in-depth mathematical consideration of the widely used two-pool model of MT, and a summary of experimental methods used to study MT phenomena.
Mathematical Modeling and Simulation Introduction for Scientists and Engineers
Velten, Kai
2008-01-01
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra—all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently di
On the general structure of mathematical models for physical systems
Delphenich, D H
2011-01-01
It is proposed that the mathematical models for any physical systems that are based in first principles, such as conservation laws or balance principles, have some common elements, namely, a space of kinematical states, a space of dynamical states, a constitutive law that associates dynamical states with kinematical states, as well as a duality principle. The equations of motion or statics then come about from, on the one hand, specifying the integrability of the kinematical state, and on the other hand, specifying a statement that is dual to it for the dynamical states. Examples are given from various fundamental physical systems.
Geometrically nonlinear creeping mathematic models of shells with variable thickness
Directory of Open Access Journals (Sweden)
V.M. Zhgoutov
2012-08-01
Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.
Mathematical model of thermal destruction of polymer composition materials
Directory of Open Access Journals (Sweden)
В. В. Клюс
1999-09-01
Full Text Available Considered is the process of heat propagation in armored plastic both under moderate temperatures and binder thermal destruction. Worked out is the method of determining kinematic parameters of the thermal destruction process and thermophysical characteristics of materials when chemical reaction is going on in then. As the result a mathematical model was built which allows to carry out tests of polymer composition materials with the help of computer and to exercise optimal collection of components which would meet the desired conditions
Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor
A.O. Ibeje
2013-01-01
The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...
A mathematical model of human thymidine kinase 2 activity
DEFF Research Database (Denmark)
Radivoyevitch, Tom; Munch-Petersen, Birgitte; Wang, Liya;
2011-01-01
_ The mitochondrial enzyme thymidine kinase 2 (TK2) phosphorylates deoxythymidine (dT) and deoxycytidine (dC) to form dTMP and dCMP, which in cells rapidly become the negative-feedback end-products dTTP and dCTP. TK2 kinetic activity exhibits Hill coefficients of ∼0.5 (apparent negative...... cooperativity) for dT and ∼1 for dC. We present a mathematical model of TK2 activity that is applicable if TK2 exists as two monomer forms in equilibrium....
Mathematical modeling for the pathogenesis of Alzheimer's disease.
Directory of Open Access Journals (Sweden)
Ishwar K Puri
Full Text Available Despite extensive research, the pathogenesis of neurodegenerative Alzheimer's disease (AD still eludes our comprehension. This is largely due to complex and dynamic cross-talks that occur among multiple cell types throughout the aging process. We present a mathematical model that helps define critical components of AD pathogenesis based on differential rate equations that represent the known cross-talks involving microglia, astroglia, neurons, and amyloid-β (Aβ. We demonstrate that the inflammatory activation of microglia serves as a key node for progressive neurodegeneration. Our analysis reveals that targeting microglia may hold potential promise in the prevention and treatment of AD.
A Mathematical Model for Voigt Poro-Visco-Plastic Deformation
Yang, Xin-She
2010-01-01
A mathematical model for poro-visco-plastic compaction and pressure solution in porous sediments has been formulated using the Voigt-type rheological constitutive relation as derived from experimental data. The governing equations reduce to a nonlinear hyperbolic heat conduction equation in the case of slow deformation where permeability is relatively high and the pore fluid pressure is nearly hydrostatic, while travelling wave exists in the opposite limit where over-pressuring occurs and the pore fluid pressure is almost quasi-lithostatic. Full numerical simulation using a finite element method agree well with the approximate analytical solutions.
Mathematical Model of Suspension Filtration and Its Analytical Solution
Directory of Open Access Journals (Sweden)
Normahmad Ravshanov
2013-01-01
Full Text Available The work develops advanced mathematical model and computing algorithm to analyze, predict and identify the basic parameters of filter units and their variation ranges. Numerical analytic solution of liquid ionized mixtures filtration was got on their basis. Computing experiments results are presented in graphics form. Calculation results analysis enables to determine the optimum performance of filter units, used for liquid ionized mixtures filtration, food preparation, drug production and water purification. Selection of the most suitable parameters contributes to the improvement of economic and technological efficiency of production and filter units working efficiency.
Mathematical Modeling of Bacteria Communication in Continuous Cultures
Directory of Open Access Journals (Sweden)
Maria Vittoria Barbarossa
2016-05-01
Full Text Available Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on gene regulatory networks, which control and regulate the production of signaling molecules in the environment. In the past years, mathematical modeling of quorum sensing has provided an understanding of key components of such networks, including several feedback loops involved. This paper presents a simple system of delay differential equations (DDEs for quorum sensing of Pseudomonas putida with one positive feedback plus one (delayed negative feedback mechanism. Results are shown concerning fundamental properties of solutions, such as existence, uniqueness, and non-negativity; the last feature is crucial for mathematical models in biology and is often violated when working with DDEs. The qualitative behavior of solutions is investigated, especially the stationary states and their stability. It is shown that for a certain choice of parameter values, the system presents stability switches with respect to the delay. On the other hand, when the delay is set to zero, a Hopf bifurcation might occur with respect to one of the negative feedback parameters. Model parameters are fitted to experimental data, indicating that the delay system is sufficient to explain and predict the biological observations.
Mathematical models for Enterococcus faecalis recovery after microwave water disinfection.
Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Pramanik, Saroj K; Sowers, Louise; Williams, Arthur L
2009-12-01
Microwave water disinfection is a rapid purification technique which can give billions of people access to clean drinking water. However, better understanding of bacterial recovery after microwave heating over time is necessary to determine parameters such as delayed bacterial growth rates and maximum bacterial yields. Mathematical models for Enterococcus faecalis recovery after microwave treatment in optimum growth conditions were developed for times up to 5 minutes using an optical absorbance method. Microwave times below 3 minutes (2,450 MHz, 130W) showed that bacterial recovery maintained a time-dependent sigmoidal form which included a maximum value. At microwave times greater than three minutes, bacterial recovery, with a time-dependent exponential form, significantly decreased and did not reach the maximum value within the interval of observance (0-8 hours). No bacterial growth was found after 6 minutes of microwave treatment. The prepared mathematical models were produced by transforming the given variables to the logistic or exponential functions. We found that time-dependent maximum growth rates and lag times could be approximated with second order polynomial functions. The determined models can be used as a template to illustrate bacterial survival during water purification using microwave irradiation, in both commercial and industrial processes.
Mathematical modelling of digit specification by a sonic hedgehog gradient
Woolley, Thomas E.
2013-11-26
Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.
The development of a mathematical model of a hybrid airship
Abdul Ghaffar, Alia Farhana
The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.
PREFACE: Physics-Based Mathematical Models for Nanotechnology
Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten
2008-03-01
stain-resistant clothing, but with thousands more anticipated. The focus of this interdisciplinary workshop was on determining what kind of new theoretical and computational tools will be needed to advance the science and engineering of nanomaterials and nanostructures. Thanks to the stimulating environment of the BIRS, participants of the workshop had plenty of opportunity to exchange new ideas on one of the main topics of this workshop—physics-based mathematical models for the description of low-dimensional semiconductor nanostructures (LDSNs) that are becoming increasingly important in technological innovations. The main objective of the workshop was to bring together some of the world leading experts in the field from each of the key research communities working on different aspects of LDSNs in order to (a) summarize the state-of-the-art models and computational techniques for modeling LDSNs, (b) identify critical problems of major importance that require solution and prioritize them, (c) analyze feasibility of existing mathematical and computational methodologies for the solution of some such problems, and (d) use some of the workshop working sessions to explore promising approaches in addressing identified challenges. With the possibility of growing practically any shape and size of heterostructures, it becomes essential to understand the mathematical properties of quantum-confined structures including properties of bulk states, interface states, and surface states as a function of shape, size, and internal strain. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially in relation to geometry and material-combination optimization of device properties such as electronic, optical, and magnetic properties. The problems that were addressed at this meeting are of immense importance in determining such quantum-mechanical properties and the group of invited participants covered very well all the relevant disciplines
A New Model for the Integration of Science and Mathematics: The Balance Model
Kiray, S. Ahmet
2012-01-01
The aim of this study is to develop an integrated scientific and mathematical model that is suited to the background of Turkish teachers. The dimensions of the model are given and compared to the models which have been previously developed and the findings of earlier studies on the topic. The model is called the balance, reflecting the…
A Mathematical Model of Tumor Volume Changes during Radiotherapy
Directory of Open Access Journals (Sweden)
Ping Wang
2013-01-01
Full Text Available Purpose. To develop a clinically viable mathematical model that quantitatively predicts tumor volume change during radiotherapy in order to provide treatment response assessment for prognosis, treatment plan optimization, and adaptation. Method and Materials. The correction factors containing hypoxia, DNA single strand breaks, potentially lethal damage, and other factors were used to develop an improved cell survival model based on the popular linear-quadratic model of cell survival in radiotherapy. The four-level cell population model proposed by Chvetsov et al. was further simplified by removing the initial hypoxic fraction and reoxygenation parameter, which are hard to obtain in routine clinics, such that an easy-to-use model can be developed for clinical applications. The new model was validated with data of nine lung and cervical cancer patients. Results. Out of the nine cases, the new model can predict tumor volume change in six cases with a correlation index R2 greater than 0.9 and the rest of three with R2 greater than 0.85. Conclusion. Based on a four-level cell population model, a more practical and simplified cell survival curve was proposed to model the tumor volume changes during radiotherapy. Validation study with patient data demonstrated feasibility and clinical usefulness of the new model in predicting tumor volume change in radiotherapy.
Evolvable mathematical models: A new artificial Intelligence paradigm
Grouchy, Paul
We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.
HP Memristor mathematical model for periodic signals and DC
Radwan, Ahmed Gomaa
2012-07-28
In this paper mathematical models of the HP Memristor for DC and periodic signal inputs are provided. The need for a rigid model for the Memristor using conventional current and voltage quantities is essential for the development of many promising Memristors\\' applications. Unlike the previous works, which focuses on the sinusoidal input waveform, we derived rules for any periodic signals in general in terms of voltage and current. Square and triangle waveforms are studied explicitly, extending the formulas for any general square wave. The limiting conditions for saturation are also provided in case of either DC or periodic signals. The derived equations are compared to the SPICE model of the Memristor showing a perfect match.
MATHEMATICAL MODELLING OF DEGRADATION AND FLUVIAL PROCESS DOWNSTREAM RESERVOIRS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
To research into the problem of degradation and fluvial process downstream reservoirs and its influence on flood control and navigation, a 1-D mathematical model of degradation and fluvial process downstream the reservoir was established in this paper. The non-equilibrium transport of non-uniform suspended load, the non-uniform bedload transport and bed material sorting were considered in the model. Some techniques were suggested for some problems in calculation, such as the effective suspended load carrying capacity of the different reaches of bed materials, the coefficient of suspended load carrying capacity, the recovering coefficient of carrying capacity, the mixed layer thickness, the bedload transport width, bifurcation and confluence of main and branch channel, and the distribution of deposition and erosion along the cross section, etc. The model was tested by the data of degradation downstream the Danjiangkou reservoir on the Hanjiang River and the data of degradation downstream the Gezhouba Project on the Yangtze River.
BASIC THEORY AND MATHEMATICAL MODELING OF URBAN RAINSTORM WATER LOGGING
Institute of Scientific and Technical Information of China (English)
LI Da-ming; ZHANG Hong-ping; LI Bing-fei; XIE Yi-yang; LI Pei-yan; HAN Su-qin
2004-01-01
In this paper, a mathematical model for the urban rainstorm water logging was established on the basis of one- and two-dimensional unsteady flow theory and the technique of non-structural irregular grid division. The continuity equation was discretized with the finite volume method. And the momentum equations were differently simplified and discretized for different cases. A method of "special passage" was proposed to deal with small-scale rivers and open channels. The urban drainage system was simplified and simulated in the model. The method of "open slot" was applied to coordinate the alternate calculation of open channel flow and pressure flow in drainage pipes. The model has been applied in Tianjin City and the verification is quite satisfactory.
Analysis of a Mathematical Model of Ischemic Cutaneous wounds
Friedman, Avner; Xue, Chuan
2009-01-01
Chronic wounds represent a major public health problem affecting 6.5 million people in the United States. Ischemia represents a serious complicating factor in wound healing. In this paper we analyze a recently developed mathematical model of ischemic dermal wounds. The model consists of a coupled system of partial differential equations in the partially healed region, with the wound boundary as a free boundary. The extracellular matrix (ECM) is assumed to be viscoelastic, and the free boundary moves with the velocity of the ECM at the boundary of the open wound. The model equations involve the concentrations of oxygen, cytokines, and the densities of several types of cells. The ischemic level is represented by a parameter which appears in the boundary conditions, 0 <= gamma < 1; gamma near 1 corresponds to extreme ischemia and gamma = 0 corresponds to normal non-ischemic conditions. We establish global existence and uniqueness of the free boundary problem and study the dependence of the free boundary on...
Computational mathematics models, methods, and analysis with Matlab and MPI
White, Robert E
2004-01-01
Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...
Turing instabilities in a mathematical model for signaling networks
Rätz, Andreas
2011-01-01
GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction-diffusion system in the inner volume to a reaction-diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction-diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.
A Mathematical Model for the Dynamics and Synchronization of Cows
Sun, Jie; Porter, Mason A; Dawkins, Marian S
2010-01-01
We formulate a mathematical model for daily activities of a cow (eating, lying down, and standing) in terms of a piecewise affine dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop an exact integrative form as a discrete-time mapping. We then couple multiple cow "oscillators" together to study synchrony and cooperation in cattle herds. We comment on the relevant biology and discuss extensions of our model. With this abstract approach, we not only investigate equations with interesting dynamics but also develop interesting biological predictions. In particular, our model illustrates that it is possible for cows to synchronize \\emph{less} when the coupling is increased.
Mathematical modeling of the glucose-insulin system
DEFF Research Database (Denmark)
Palumbo, Pasquale; Ditlevsen, Susanne; Bertuzzi, Alessandro;
2013-01-01
Mathematical modeling of the glucose–insulin feedback system is necessary to the understanding of the homeostatic control, to analyze experimental data, to identify and quantify relevant biophysical parameters, to design clinical trials and to evaluate diabetes prevention or disease modification...... therapies. Much work has been made over the last 30 years, and the time now seems ripe to provide a omprehensive review. The one here proposed is focused on the most important clinical/experimental tests performed to understand the mechanism of glucose homeostasis. The review proceeds from models of...... pancreatic insulin production, with a oarser/finer level of detail ranging over cellular and subcellular scales, to short-term organ/tissue models accounting for the intra-venous and the oral glucose tolerance tests as well as for the euglycemic hyperinsulinemic clamp, to total-body, long-term diabetes...
A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
NARESHA RAM
2009-04-01
Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.
Mathematical model of sugar uptake in fermenting yeasted dough.
Loveday, S M; Winger, R J
2007-07-25
Fermentation prior to freezing significantly reduces the shelf life of frozen dough, measured as a decline in proofing power. Changes during fermentation caused by yeast metabolism have previously been described empirically on a dough weight basis and have not been mathematically modeled. In this work, yeast metabolites were quantified in fermenting dough and their concentrations were estimated in the aqueous environment around yeast cells. The osmotic pressure in the aqueous phase increases by 23% during 3 h of fermentation, which depresses the freezing point by 1 degrees C. The rise in osmotic pressure and the accumulation of ethanol may affect phase equilibria in the dough, baking properties, and the shelf life of frozen dough. Predictive modeling equations fitted sugar concentration data accurately. It was found that the preference of baker's yeast for glucose over fructose was stronger in fermenting dough than in liquid fermentations. The usefulness of the model in industrial bakery formulation work was demonstrated. PMID:17595109
Directory of Open Access Journals (Sweden)
Dinh An Nguyen
2012-07-01
Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.
Mathematical Formulation Requirements and Specifications for the Process Models
International Nuclear Information System (INIS)
The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
A mathematical model of bipolar radiofrequency-induced thermofusion.
Wagenpfeil, J; Nold, B; Fischer, K; Neugebauer, A; Rothmund, R; Krämer, B; Brucker, S; Mischinger, J; Schwentner, C; Schenk, M; Wallwiener, D; Stenzl, A; Enderle, M; Sawodny, O; Ederer, M
2014-01-01
Bipolar radiofrequency-induced thermofusion has become a widely accepted method successfully used in open and particularly in minimally-invasive surgery for the sealing of blood vessels and tissue of up to several millimeters diameter. Despite its wide-spread application, the thermofusion process itself is not well understood on a quantitative and dynamic level, and manufacturers largely rely on trial-and-error methods to improve existing instruments. To predict the effect of alternative generator control strategies and to allow for a more systematic approach to improve thermofusion instruments, a mathematical model of the thermofusion process is developed. The system equations describe the spatial and temporal evolution of the tissue temperature due to Joule heating and heat transfer, and the loss of tissue water due to vaporization. The resulting effects on the tissue properties, most importantly the electrical resistivity, heat capacity and thermal conductivity, are considered as well. Experimental results indicate that the extent of the lateral thermal damage is directly affected by Joule heating of the lateral tissue. The experimental findings are supported by simulation results using the proposed mathematical model of thermofusion. PMID:25571285
Mathematical models for foam-diverted acidizing and their applications
Institute of Scientific and Technical Information of China (English)
Li Songyan; Li Zhaomin; Lin Riyi
2008-01-01
Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing.Based on gas trapping theory and the mass conservation equation,mathematical models were developed for foam-diverted acidizing,which can be achieved by a foam slug followed by acid injection or by continuous injection of foamed acid.The design method for foam-diverted acidizing was also given.The mathematical models were solved by a computer program.Computed results show that the total formation skin factor,wellhead pressure and bottomhole pressure increase with foam injection,but decrease with acid injection.Volume flow rate in a highpermeability layer decreases,while that in a low-permeability layer increases,thus diverting acid to the low-permeability layer from the high-permeability layer.Under the same formation conditions,for foamed acid treatment the operation was longer,and wellhead and bottomhole pressures are higher.Field application shows that foam slug can effectively block high permeability layers,and improve intake profile noticeably.
A new mathematical model in space optimization: A case study
Abdullah, Kamilah; Kamis, Nor Hanimah; Sha'ari, Nor Shahida; Muhammad Halim, Nurul Suhada; Hashim, Syaril Naqiah
2013-04-01
Most of higher education institutions provide certain area known as learning centre for their students to study or having group discussions. However, some of the learning centers are not provided by optimum number of tables and seats to accommodate the students sufficiently. This study proposed a new mathematical model in optimizing the number of tables and seats at Laman Najib, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) Shah Alam. An improvement of space capacity with maximum number of students who can facilitate the Laman Najib at the same time has been made by considering the type and size of tables that are appropriate for student's discussions. Our finding is compared with the result of Simplex method of linear programming to ensure that our new model is valid and consistent with other existing approaches. As a conclusion, we found that the round-type tables with six seats provide the maximum number of students who can use Laman Najib for their discussions or group studying. Both methods are also practical to use as alternative approaches in solving other space optimization problems.
The Mathematical Modelling of Heat Transfer in Electrical Cables
Directory of Open Access Journals (Sweden)
Bugajev Andrej
2014-05-01
Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.
Mathematical model and software for control of commissioning blast furnace
Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.
2016-09-01
Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.
Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons
Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo
2015-01-01
Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (ICa) and calcium-dependent potassium (IKCa) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (Ih) and ICa (in association with IKCa) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that Ih and IKCa affect the resonant properties of PD neurons. However, ICa only has an amplifying effect on the resonance amplitude of these neurons. PMID:25960999
Mathematical and computational modeling and simulation fundamentals and case studies
Moeller, Dietmar P F
2004-01-01
Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...
APPLICATION OF GIS AND MATHEMATICAL MODELING IN MARITIME CRISIS SITUATIONS
Directory of Open Access Journals (Sweden)
Nenad Mladineo
2010-12-01
Full Text Available This paper aims to propose a decision support system for maritime crisis situation, due to fact that Croatia has decided to implement Directive 2002/59/EC to define places of refuge for ships in need of assistance off their coasts, or to develop techniques for providing assistance to such ships. In order to fulfill this Directive it is necessary to build an effective Decision Support System (DSS based on GIS and mathematical modeling. The basic module of the proposed system is GIS, for all levels of DSS, that comprise information subsystems about spatial and other data and serves the other modules with data and information. Starting points for analysis are shipping corridors, and 380 potential locations for places of refuge designated in the official navigational pilot book. Multicriteria analysis, with GIS-generated input data, has been used to establish "worthiness" of a place of refuge for each ship category, taking into account kinds of accident. Proposed mathematical models facilitate optimal usage of "available intervention resources".
MATHEMATICAL MODEL SUGGESTED FOR THE STUDY OF THE KNEE MECHANICS
Directory of Open Access Journals (Sweden)
Marius GRĂMADĂ
2012-07-01
Full Text Available Knowing the operated the knee biomechanical behavior is important during the life of the endoprosthesis,lifestyle changes and medical rehabilitation. One of the main causes of failure of a primary total prosthetic knee joint isthe instability. From the moment of its implantation, the endoprosthesis is subjected to external forces, which tend todestabilize it, while the muscles and pericapsulare ligaments oppose it. Theoretically there is a relationship between theexternal disturbing force, respectively ligament tension and the knee frontal plane deviation. The purpose of this paperis to test several mathematical models describing the biomechanical behavior of knee ligaments in relation todeviation. On a group of 39 patients we measured the torque of the joint capsule in relation to the deviation using apressure sensor tensor and a torque screwdriver, and we analyzed these data using a statistical program. We havedemonstrated the existence of this relationship as a function of degree 2 and we made predictions based on itcalculating ligament torque and ligament stiffness at 0 and 5 degrees of deviation. The conclusion of this study showsthat there is a strong relationship between ligament torque and deviation knee, which can be described mathematically.This model can be used to study the knee operated and improve the prosthetic devices.
Mathematical models of the AIDS epidemic: An historical perspective
Energy Technology Data Exchange (ETDEWEB)
Stanley, E.A.
1988-01-01
Researchers developing mathematical models of the spreading of HIV, the Human Immunodeficiency Virus that causes AIDS, hope to achieve a number of goals. These goals may be classified rather broadly into three categories: understanding, prediction, and control. Understanding which are the key biological and sociological processes spreading this epidemic and leading to the deaths of those infected will allow AIDS researchers to collect better data and to identify ways of slowing the epidemic. Predicting the groups at risk and future numbers of ill people will allow an appropriate allocation of health-care resources. Analysis and comparison of proposed control methods will point out unexpected consequences and allow a better design of these programs. The processes which lead to the spread of HIV are biologically and sociologically complex. Mathematical models allow us to organize our knowledge into a coherent picture and examine the logical consequences, therefore they have the potential to be extremely useful in the search to control this disease. 24 refs., 3 figs.
Mathematical Modeling of Plant Metabolism―From Reconstruction to Prediction
Directory of Open Access Journals (Sweden)
Thomas Nägele
2012-09-01
Full Text Available Due to their sessile lifestyle, plants are exposed to a large set of environmental cues. In order to cope with changes in environmental conditions a multitude of complex strategies to regulate metabolism has evolved. The complexity is mainly attributed to interlaced regulatory circuits between genes, proteins and metabolites and a high degree of cellular compartmentalization. The genetic model plant Arabidopsis thaliana was intensely studied to characterize adaptive traits to a changing environment. The availability of genetically distinct natural populations has made it an attractive system to study plant-environment interactions. The impact on metabolism caused by changing environmental conditions can be estimated by mathematical approaches and deepens the understanding of complex biological systems. In combination with experimental high-throughput technologies this provides a promising platform to develop in silico models which are not only able to reproduce but also to predict metabolic phenotypes and to allow for the interpretation of plant physiological mechanisms leading to successful adaptation to a changing environment. Here, we provide an overview of mathematical approaches to analyze plant metabolism, with experimental procedures being used to validate their output, and we discuss them in the context of establishing a comprehensive understanding of plant-environment interactions.
The academic merits of modelling in higher mathematics education: A case study
J. Perrenet; I. Adan
2010-01-01
Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively f
A Structural Equation Model Explaining 8th Grade Students' Mathematics Achievements
Yurt, Eyüp; Sünbül, Ali Murat
2014-01-01
The purpose of this study is to investigate, via a model, the explanatory and predictive relationships among the following variables: Mathematical Problem Solving and Reasoning Skills, Sources of Mathematics Self-Efficacy, Spatial Ability, and Mathematics Achievements of Secondary School 8th Grade Students. The sample group of the study, itself…
Fluid flow induced calcium response in osteoblasts: mathematical modeling.
Su, J H; Xu, F; Lu, X L; Lu, T J
2011-07-28
Fluid flow in the bone lacuno-canalicular network can induce dynamic fluctuation of intracellular calcium concentration ([Ca(2+)](i)) in osteoblasts, which plays an important role in bone remodeling. There has been limited progress in the mathematical modeling of this process probably due to its complexity, which is controlled by various factors such as Ca(2+) channels and extracellular messengers. In this study we developed a mathematical model to describe [Ca(2+)](i) response induced by fluid shear stress (SS) by integrating the major factors involved and analyzed the effects of different experimental setups (e.g. [Ca(2+)](i) baseline, pretreatment with ATP). In this model we considered the ATP release process and the activities of multiple ion channels and purinergic receptors. The model was further verified quantitatively by comparing the simulation results with experimental data reported in literature. The results showed that: (i) extracellular ATP concentration has more significant effect on [Ca(2+)](i) baseline (73% increase in [Ca(2+)](i) with extracellular ATP concentration varying between 0 and 10 μM), as compared to that induced by SS (25% variation in [Ca(2+)](i) with SS varying from 0 to 3.5 Pa); (ii) Pretreatment with ATP-medium results in different [Ca(2+)](i) response as compared to the control group (ATP-free medium) under SS; (iii) Relative [Ca(2+)](i) fluctuation over baseline is more reliable to show the [Ca(2+)](i) response process than the absolute [Ca(2+)](i) response peak. The developed model may improve the experimental design and facilitate our understanding of the mechanotransduction process in osteoblasts. PMID:21665208
Mathematical Model Creation for Cancer Chemo-Immunotherapy
Directory of Open Access Journals (Sweden)
Lisette de Pillis
2009-01-01
Full Text Available One of the most challenging tasks in constructing a mathematical model of cancer treatment is the calculation of biological parameters from empirical data. This task becomes increasingly difficult if a model involves several cell populations and treatment modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy and chemotherapy of tumours: Modelling, applications and biological interpretations, J. Theor. Biol. 238 (2006, pp. 841–862; involves tumour cells, specific and non-specific immune cells (natural killer (NK cells, CD8+T cells and other lymphocytes and employs chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8+T-cell infusion as treatment modalities. Despite the overall success of the aforementioned model, the problem of illustrating the effects of IL-2 on a growing tumour remains open. In this paper, we update the model of de Pillis et al. and then carefully identify appropriate values for the parameters of the new model according to recent empirical data. We determine new NK and tumour antigen-activated CD8+T-cell count equilibrium values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent CD8+T-cell self-regulations. Finally, we show that the potential patient-specific efficacy of immunotherapy may be dependent on experimentally determinable parameters.
Mathematical finance theory review and exercises from binomial model to risk measures
Gianin, Emanuela Rosazza
2013-01-01
The book collects over 120 exercises on different subjects of Mathematical Finance, including Option Pricing, Risk Theory, and Interest Rate Models. Many of the exercises are solved, while others are only proposed. Every chapter contains an introductory section illustrating the main theoretical results necessary to solve the exercises. The book is intended as an exercise textbook to accompany graduate courses in mathematical finance offered at many universities as part of degree programs in Applied and Industrial Mathematics, Mathematical Engineering, and Quantitative Finance.
Sür Büşra; Delice Ali
2016-01-01
When it is taken into account that educational environments include communication processes between teachers and students, the existence of mathematical communication processes in math classes can also be mentioned. In this communication process, mathematic is considered as a lingua franca which ensure mutual understanding and using mathematical sentences - setting up a model, making a logical inferences, using mathematical symbols and abstraction are behaviors being expected from communicato...
Hoskinson, Anne-Marie
2010-01-01
Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity…
A mathematical model of cancer cells with phenotypic plasticity
Directory of Open Access Journals (Sweden)
Da Zhou
2015-12-01
Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot
Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
Ferrer, Jordi; Prats, Clara; López, Daniel; Vives-Rego, Josep
2009-08-31
Predictive microbiology is the area of food microbiology that attempts to forecast the quantitative evolution of microbial populations over time. This is achieved to a great extent through models that include the mechanisms governing population dynamics. Traditionally, the models used in predictive microbiology are whole-system continuous models that describe population dynamics by means of equations applied to extensive or averaged variables of the whole system. Many existing models can be classified by specific criteria. We can distinguish between survival and growth models by seeing whether they tackle mortality or cell duplication. We can distinguish between empirical (phenomenological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors and constraints on the microbial community. Recently, the use of spatially explicit Individual-based Models (IbMs) has spread through predictive microbiology, due to the current technological capacity of performing measurements on single individual cells and thanks to the consolidation of computational modelling. Spatially explicit IbMs are bottom-up approaches to microbial communities that build bridges between the description of micro-organisms at the cell level and macroscopic observations at the population level. They provide greater insight into the mesoscale phenomena that link unicellular and population levels. Every model is built in response to a particular question and with different aims. Even so, in this research we conducted a SWOT (Strength, Weaknesses, Opportunities and Threats) analysis of the different approaches (population continuous modelling and Individual-based Modelling), which we hope will be helpful for current and future
Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
Ferrer, Jordi; Prats, Clara; López, Daniel; Vives-Rego, Josep
2009-08-31
Predictive microbiology is the area of food microbiology that attempts to forecast the quantitative evolution of microbial populations over time. This is achieved to a great extent through models that include the mechanisms governing population dynamics. Traditionally, the models used in predictive microbiology are whole-system continuous models that describe population dynamics by means of equations applied to extensive or averaged variables of the whole system. Many existing models can be classified by specific criteria. We can distinguish between survival and growth models by seeing whether they tackle mortality or cell duplication. We can distinguish between empirical (phenomenological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors and constraints on the microbial community. Recently, the use of spatially explicit Individual-based Models (IbMs) has spread through predictive microbiology, due to the current technological capacity of performing measurements on single individual cells and thanks to the consolidation of computational modelling. Spatially explicit IbMs are bottom-up approaches to microbial communities that build bridges between the description of micro-organisms at the cell level and macroscopic observations at the population level. They provide greater insight into the mesoscale phenomena that link unicellular and population levels. Every model is built in response to a particular question and with different aims. Even so, in this research we conducted a SWOT (Strength, Weaknesses, Opportunities and Threats) analysis of the different approaches (population continuous modelling and Individual-based Modelling), which we hope will be helpful for current and future
Mathematical model of temephos resistance in Aedes aegypti mosquito population
Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.
2014-03-01
Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.
Mathematical model of MMR inversion for geophysical data
Directory of Open Access Journals (Sweden)
Suabsagun Yooyuanyong
2007-09-01
Full Text Available In this paper, we present an analysis of the solution to a number of geophysical inverse problems which are generally non-unique. The mathematical inverse problem that arises is commonly ill-posed in the sense that small changes in the data lead to large changes in the solution. We conduct the inversion algorithm to explore the conductivity for the ground structure. The algorithm uses the data in the form of magnetic field measurements for magnetometric resistivity (MMR. The inversion example is performed to investigate the conductivity ground profile that best fits the observed data. The result is compared with the true model and discussed to show the efficiency of the method. The model for the inversion example with the apparent conductivity and the true conductivity are plotted to show the convergence of the algorithm.
Mathematical modelling of unglazed solar collectors under extreme operating conditions
DEFF Research Database (Denmark)
Bunea, M.; Perers, Bengt; Eicher, S.;
2015-01-01
Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model...... is developed and evaluated considering, the condensation/frost effect and rain heat gains or losses. Also wind speed and long wave irradiation on both sides of the collector are treated. Results show important heat gains for unglazed solar collectors without solar irradiation. Up to 50% of additional heat gain...
PEM fuel cell systems performance optimisation using the mathematical modeling
International Nuclear Information System (INIS)
PEM fuel cell systems and technologies have emerged as viable energy conversion devices for terrestrial applications (stationary and mobile). They offer huge economical and environmental potentials in the next generation power systems, but they are still more expensive than most conventional power conversion devices. Therefore, there is a need to optimize these technologies from the performance and costs point of view. Mathematical modeling proved to be the most important tool for PEM fuel cell optimization, providing the best solution for design, operating condition, experimentation and exploitation. This paper proposes a study for fluid flow channels optimization in order to improve the performance of PEM fuel cell systems. Thus, we run simulations using 3 types of geometries for the flowing channels: serpentine, parallel and spiral channel in order to find the optimum flowing geometry. Concluding, we can consider the modeling like an important alternative for fuel cell optimization and for exploitation/experimentation costs reduction. (authors)
Mathematical Model of the Biosensors Acting in a Trigger Mode
Baronas, Romas; Kulys, Juozas; Ivanauskas, Feliksas
2004-01-01
A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme). Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme). The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times) in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.
Mathematical Model of the Biosensors Acting in a Trigger Mode
Directory of Open Access Journals (Sweden)
Feliksas Ivanauskas
2004-05-01
Full Text Available Abstract: A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme. Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme. The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.
Application of a Mathematical Model to an Advertisement Reservation Problem
Directory of Open Access Journals (Sweden)
Ozlem COSGUN
2013-01-01
Full Text Available Television networks provide TV programs free of charge to the public. However, they acquire their revenue by telecasting advertisements in the midst of continuing programs or shows. A key problem faced by the TV networks in Turkey is how to accept and televise the advertisements reserved by a client on a specified advertisement break which we called “Advertisement Reservation Problem” (ARP. The problem is complicated by limited time inventory, by different rating points for different target groups, competition avoidance and the relationship between TV networks and clients. In this study we have developed a mathematical model for advertisement reservation problem and extended this model for some cases encountered in real business life. We have also discussed how these cases affect the decisions of a TV network. Mixed integer linear programming approach is proposed to solve these problems. This approach has been implemented to a case taken from one of the biggest TV networks of Turkey.