WorldWideScience

Sample records for autologous mesenchymal stem

  1. Neurogenic Bladder Repair Using Autologous Mesenchymal Stem Cells.

    Science.gov (United States)

    Mahajan, Pradeep V; Subramanian, Swetha; Danke, Amit; Kumar, Anand

    2016-01-01

    The normal function of the urinary bladder is to store and expel urine in a coordinated, controlled fashion, the activity of which is regulated by the central and peripheral nervous systems. Neurogenic bladder is a term applied to a malfunctioning urinary bladder due to neurologic dysfunction or insult emanating from internal or external trauma, disease, or injury. This report describes a case of neurogenic bladder following laminectomy procedure and long-standing diabetes mellitus with neuropathy treated with autologous cellular therapy. The differentiation potential and paracrine effects of mesenchymal stem cells on bladder function have been highlighted. PMID:27656308

  2. Regeneration of the vocal fold using autologous mesenchymal stem cells.

    Science.gov (United States)

    Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Omori, Koichi; Kojima, Hisayoshi; Magrufov, Akhmar; Hiratsuka, Yasuyuki; Hirano, Shigeru; Ito, Juichi; Shimizu, Yasuhiko

    2003-11-01

    The aim of this study was to regenerate the injured vocal fold by means of selective cultured autologous mesenchymal stem cells (MSCs). Eight adult beagle dogs were used for this experiment. Selective incubation of MSCs from bone marrow was done. These MSCs were submitted to 3-dimensional incubation in 1% hydrochloric acid atelocollagen. Three-dimensional incubated MSCs were injected into the left vocal fold, and atelocollagen only was injected into the right vocal fold of the same dog as a control. Four days after injection, the posterior parts of the vocal folds were incised. The regeneration of the vocal fold was estimated by morphological and histologic evaluations. Our results showed that 3-dimensional incubated MSCs were useful in the regeneration of the injured vocal fold. This study shows that damaged tissues such as an injured vocal fold would be able to be regenerated by tissue engineering. PMID:14653358

  3. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  4. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  5. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  6. Autologous mesenchymal stem cells transplantation in adriamycin-induced cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Geng-shan; LI Guo-cao; ZHOU Qing; LI Wen-qiang; XU Hong-xin

    2005-01-01

    @@ Recent studies have suggested benefits of mesenchymal stem cells (MSCs) transplantation for the regeneration of cardiac tissue and function improvement of regionally infracted myocardium, but its effects on global heart failure is still little known. This study suggested the capacity of MSCs to transdifferentiate to cardiac cells in a nonischemic cardiomyopathic setting, and the effect of the cells on heart function.

  7. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor;

    2012-01-01

    Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...

  8. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  9. Autologous serum can induce mesenchymal stem cells into hepatocyte-like cells

    Institute of Scientific and Technical Information of China (English)

    Yang Yi; Huo Jianhua; Qu Bo; Wu Shenli; Zhang Mingyu; Wang Zuoren

    2008-01-01

    Objective: To investigate whether the rabbit serum after radiofrequency ablation to liver tumor can induce mesenchymal stem cells (MSCs) differentiating into hepatocyte-like cells in order to find a new source and culture process for repairing liver injury. Methods: A tumor piece of 1 mm×1 mm×1 mm was transplanted into a tunnel at right liver of rabbits. The model of liver tumor was established after 2-3 weeks. The serum was collected from rabbits 72 h after being subjected to radiofrequency ablation of the liver tumor. Mesenchymal stem cells were isolated from rabbit bone marrow and cultured in DMEM containing autologous rabbit serum. Three kinds of media (L-DMEM) were tested respectively: ① containing 10% fetal calf serum (FCS);② containing 30% rabbit autologous serum after radiofrequency ablation of the liver tumor (ASRF); ③ containing 30% rabbit autologous serum (AS). MSCs were cultured on 12-well plates until passage 2 and examined under the light and electron microscopy at indicted intervals. The expression of albumin and CK18 was detected using immunofluorescence to identify the characteristics of differentiated cells. Results: MSCs performed differently in the presence of fetal calf serum, rabbit autologous serum and rabbit autologous serum after radiofrequency ablation of the liver tumor. Induced by the serum after radiofrequency ablation to liver tumor for 7 d, the spindle-shaped MSCs turned into round shaped and resembled hepatocyte-like cells. The reactions were not found in MSCs cultured in FCS and AS groups. After induction for 14 d, slender microvilli, cell-cell junction structure and cholangiole emerged, and the differentiated cells expressed albumin and CK18. All those could not been observed in 10% FCS and 30% autologous serum groups. Conclusion: Mesenchymal stem cells differentiate into hepatocyte-like cells in the serum after radiofrequency ablation of liver tumor, providing us a potential cell source and culture process for clinical

  10. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  11. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  12. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  13. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; MU, HONG; Shen, Zhongyang; SONG, ZHUOLUN; Chen, Xiaobo; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  14. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    Science.gov (United States)

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  15. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses.

    Science.gov (United States)

    Shaw, S W Steven; Bollini, Sveva; Nader, Khalil Abi; Gastaldello, Annalisa; Gastadello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H Bobby; Qasim, Waseem; De Coppi, Paolo; David, Anna L

    2011-01-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep (n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.

  16. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions

    NARCIS (Netherlands)

    Conze, Philipp; van Schie, Hans Tm; Staszyk, Carsten; Conrad, Sabine; Skutella, Thomas; Hopster, Klaus; Rohn, Karl; Stadler, Peter; Geburek, Florian; van Weeren, René

    2014-01-01

    AIMS: To investigate whether autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) treatment of tendon lesions increases neovascularization during tendon healing. MATERIALS & METHODS: A standardized surgical model was used to create lesions in both front limb superficial digital flexor

  17. Autologous mesenchymal stem cell–derived dopaminergic neurons function in parkinsonian macaques

    Science.gov (United States)

    Hayashi, Takuya; Wakao, Shohei; Kitada, Masaaki; Ose, Takayuki; Watabe, Hiroshi; Kuroda, Yasumasa; Mitsunaga, Kanae; Matsuse, Dai; Shigemoto, Taeko; Ito, Akihito; Ikeda, Hironobu; Fukuyama, Hidenao; Onoe, Hirotaka; Tabata, Yasuhiko; Dezawa, Mari

    2012-01-01

    A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson’s disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson’s disease. PMID:23202734

  18. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  19. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  20. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  1. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  2. Cardiac atrioventricular conduction improved by autologous transplantation of mesenchymal stem cells in canine atrioventricular block models

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Ren; Jielin Pu; Shu Zhang; Liang Meng; Fangzheng Wang

    2007-01-01

    Objective Atrioventricular block (AVB) is a common and serious arrhythmia. At present, there is no perfect method of treatment for this kind of arrhythmia. The purpose of this study was to regenerate cardiac atrioventricular conduction by autologous transplantation of bone marrow mesenchymal stem cells (MSCs), and explore new methods for therapy of atrioventricular block. Methods Eleven Mongrel canines were randomized to MSCs transplantation (n=6) or control (n=5) group. The models of permanent and complete AVB in 11 canines were established by ablating His bundle with radiofrequency technique. At 4 weeks after AVB, bone marrow was aspirated from the iliac crest. MSCs were isolated and culture-expanded by means of gradient centrifugal and adherence to growth technique, and differentiated by 5-azacytidine in vitro. Differentiated MSCs (1ml, 1.5×107cells) labeled with BrdU were autotransplanted into His bundle area of canines by direct injection in the experimental group, and 1ml DMEM in the control group. At 1-12 weeks after operation,the effects of autologous MSCs transplantation on AVB models were evaluated by electrocardiogram, pathologic and immunohistochemical staining technique. Results Compared with the control group, there was a distinct improvement in atrioventricular conduction function in the experimental group. MSCs transplanted in His bundle were differentiated into analogous conduction system cells and endothelial cells in vivo, and established gap junction with host cardiomyocytes. Conclusions The committed-induced MSCs transplanted into His bundle area could differentiate into analogous conduction system cells and improve His conduction function in canine AVB models.

  3. Reconstruction of beagle hemi-mandibular defects with allogenic mandibular scaffolds and autologous mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    ChangKui Liu

    Full Text Available Massive bone allografts are frequently used in orthopedic reconstructive surgery, but carry a high failure rate of approximately 25%. We tested whether treatment of graft with mesenchymal stem cells (MSCs can increase the integration of massive allografts (hemi-mandible in a large animal model.Thirty beagle dogs received surgical left-sided hemi-mandibular defects, and then divided into two equal groups. Bony defects of the control group were reconstructed using allografts only. Those of the experimental group were reconstructed using allogenic mandibular scaffold-loaded autologous MSCs. Beagles from each group were killed at 4 (n = 4, 12 (n = 4, 24 (n = 4 or 48 weeks (n = 3 postoperatively. CT and micro-CT scans, histological analyses and the bone mineral density (BMD of transplants were used to evaluate defect reconstruction outcomes.Gross and CT examinations showed that the autologous bone grafts had healed in both groups. At 48 weeks, the allogenic mandibular scaffolds of the experimental group had been completely replaced by new bone, which has a smaller surface area to that of the original allogenic scaffold, whereas the scaffold in control dogs remained the same size as the original allogenic scaffold throughout. At 12 weeks, the BMD of the experimental group was significantly higher than the control group (p<0.05, and all micro-architectural parameters were significantly different between groups (p<0.05. Histological analyses showed almost all transplanted allogeneic bone was replaced by new bone, principally fibrous ossification, in the experimental group, which differed from the control group where little new bone formed.Our study demonstrated the feasibility of MSC-loaded allogenic mandibular scaffolds for the reconstruction of hemi-mandibular defects. Further studies are needed to test whether these results can be surpassed by the use of allogenic mandibular scaffolds loaded with a combination of MSCs and osteoinductive growth

  4. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy.

    Science.gov (United States)

    Liu, Tao; Mu, Hong; Shen, Zhongyang; Song, Zhuolun; Chen, Xiaobo; Wang, Yuliang

    2016-03-01

    Adipose tissue‑derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70% partial hepatectomy (PH) group; repeat PH (R‑PH) group and R‑PH/ADSC group, subjected to R‑PH and treated with autologous ADSCs via portal vein injection. In each group, the rats were sacrificed at different time points postoperatively in order to evaluate the changes in liver function and to estimate the liver regenerative response. The expression of proliferating cell nuclear antigen (PCNA) labeling index in the liver was measured using immunohistochemistry. The expression levels of hepatocyte growth factor (HGF) mRNA were measured using reverse transcription polymerase chain reaction. The results showed that regeneration of the remaining liver following R‑PH was significantly promoted by ADSC transplantation, as shown by a significant increase in liver to body weight ratio and the PCNA labeling index at 24 h post‑hepatectomy. Additionally, ADSC transplantation markedly inhibited the elevation of serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin, increased HGF content and also attenuated hepatic vacuolar degeneration 24 h postoperatively. Furthermore, the liver was found to almost fully recover from hepatocellular damage due to hepatectomy among the three groups at 168 h postoperatively. These results indicated that autologous ADSC transplantation enhanced the regenerative capacity of the remnant liver tissues in the early phase following R‑PH. PMID:26783183

  5. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model.

    Directory of Open Access Journals (Sweden)

    Zongyang Sun

    Full Text Available PURPOSE: Bone regeneration through distraction osteogenesis (DO is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. MATERIALS AND METHODS: Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs; enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. RESULTS: From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4-5.8×10(7 autologous BM-MSCs (undifferentiated or differentiated were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds

  6. AKT-modified autologous intracoronary mesenchymal stem cells prevent remodeling and repair in swine infarcted myocardium

    Institute of Scientific and Technical Information of China (English)

    YU Yun-sheng; SHEN Zhen-ya; YE Wen-xue; HUANG Hao-yue; HUA Fei; CHEN Yi-huan; CHEN Ke; LAO Wei-jie; TAO Li

    2010-01-01

    Background Transplantation of adult bone marrow-derived mesenchymal stem cells (MSCs) has been proposed as a strategy for cardiac repair following myocardial damage. However cell transplantation strategies to replace lost myocardium are limited by the inability to deliver large numbers of cells that resist peritransplantation graft cell death. Accordingly, we set out to isolate and expand adult swine bone marrow-derived MSCs, and to engineer these cells to overexpress AKT1 (protein kinase B), to test the hypothesis that AKT1 -engineered MSCs are more resistant to apoptosis and can enhance cardiac repair after transplantation into the ischemic swine heart.Methods The CDS (regulation domain of AKT1) AKT1-cDNA fragment was amplified, and MSCs were transfected following synthesis with a pCDH1-AKT1 shuttling plasmid. Western blotting analysis and real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed. Myocardial infarction (Ml) models were constructed in Meishan pigs, and cardiac function was evaluated by magnetic resonance imaging (MRI) measurements and echocardiography 4 weeks later. All pigs were assigned to four groups: control (A), DMEM (B), MSC (C), and AKT-transfected (D). MSCs were transfected with the AKT1 gene, and autologous BrdU-labeled stem cells (1 × 107/5 ml) were injected into left anterior descending coronary atery (LAD) of the infarct heart in groups C and D. In group B, DMEM was injected using the same approach. In group A, there was no injection following LAD occlusion. After 4 weeks, cardiac function and regional perfusion measurements were repeated by MRI and echocardiography, and histological characteristics of the hearts were assessed. Connecxin-43 (CX-43), BrdU, and von Willebrand factor (VWF) immunoreactivity was tested using enzyme linked immunosorbent assay (ELISA). Vascular endothelial growth factor (VEGF), transforming growth factor-(31 (TGF-p1) were analyzed at the same time.Results AKT1-cDNA was cloned into p

  7. Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing–remitting multiple sclerosis model

    OpenAIRE

    Marin-Bañasco, Carmen; García, Margarita Suardíaz; Guerrero, Issac Hurtado; Sánchez, Rafael Maldonado; Estivill-Torrús, Guillermo; Fernández, Laura Leyva; Fernández, Oscar Fernández

    2014-01-01

    Introduction Mesenchymal stem cells (MSCs) are a multipotent population of adult stem cells, which may represent a promising therapeutic approach for neurological autoimmune diseases such as multiple sclerosis. The mouse is the most used species for obtaining and studying the characteristics of MSC and their potential as autologous transplants in pre-clinical models. However, conflicting data have been published disclosing intraspecies variations. The choice of the mouse strain and the tissue...

  8. Science Letters: Brain natriuretic peptide: A potential indicator of cardiomyogenesis after autologous mesenchymal stem cell transplantation?

    Institute of Scientific and Technical Information of China (English)

    LI Nan; WANG Jian-an

    2006-01-01

    We observed in a pilot study that there was a transient elevation of brain natriuretic peptide (BNP) level shortly after the transplantation in the patient with ischemic heart failure, which is unexplainable by the simultaneous increase of the cardiac output and six-minute walk distance. Similar findings were observed in the phase I trial. We postulated on the basis of the finding of Fukuda in vitro that this transient elevation of BNP level against the improvement of cardiac function and exercise capacity might indicate cardiomyogenesis in patients after mesenchymal stem cell transplantation. Further study is warranted to verify the hypothesis.

  9. Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model.

    Science.gov (United States)

    Adamzyk, Carina; Kachel, Paul; Hoss, Mareike; Gremse, Felix; Modabber, Ali; Hölzle, Frank; Tolba, Rene; Neuss, Sabine; Lethaus, Bernd

    2016-08-01

    Polyetherketoneketone (PEKK) a high performance thermoplastic polymer that is FDA-approved for cranio- and maxillo-facial as well as spineal surgery. We studied the viability, growth and osteogenic differentiation of bone marrow-derived human and sheep mesenchymal stem cells (MSC) in combination with a 3D scaffold made of PEKK using different cell-based assays. To investigate if autologous MSC, either undifferentiated or osteogenically pre-differentiated, augmented bone formation after implantation, we implanted cell-seeded 3D PEKK scaffolds into calvarial defects in sheep for 12 weeks. The volume and quality of newly formed bone were investigated using micro-computer tomography (micro-CT) and histological stainings. Our results show that the 3D PEKK scaffolds were cyto- and bio-compatible. They allowed for adherence, growth and osteogenic differentiation of human and ovine MSC. However, bone healing seemed unaffected by whether the scaffolds were seeded with MSC. Considerable amounts of newly formed bone were found in all PEKK treated groups, but a fibrous capsule was formed around the implants regardless of cell seeding with MSC. PMID:27328894

  10. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sara Llufriu

    Full Text Available Uncontrolled studies of mesenchymal stem cells (MSCs in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL on magnetic resonance imaging (MRI at 6 months and at the end of the study.Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS 3.0-6.5 were randomized to receive IV 1-2×10(6 bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite, and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects.At baseline 9 patients were randomized to receive MSCs (n = 5 or placebo (n = 4. One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1-8.8 vs 12.3, 95% CI = 4.4-34.5, p = 0.064, and at the end of study to reduced mean GEL (-2.8±5.9 vs 3±5.4, p = 0.075. No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+ cells in blood of MSCs treated patients.Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266.

  11. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  12. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture.

    Science.gov (United States)

    Muir, Peter; Hans, Eric C; Racette, Molly; Volstad, Nicola; Sample, Susannah J; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L; Bloom, Debra D; Bleedorn, Jason A; Hao, Zhengling; Amene, Ermias; Suresh, M; Hematti, Peiman

    2016-01-01

    Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response

  13. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture

    Science.gov (United States)

    Muir, Peter; Hans, Eric C.; Racette, Molly; Volstad, Nicola; Sample, Susannah J.; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L.; Bloom, Debra D.; Bleedorn, Jason A.; Hao, Zhengling; Amene, Ermias; Suresh, M.; Hematti, Peiman

    2016-01-01

    Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response

  14. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Chen Guojun

    2013-01-01

    Full Text Available Abstract Background Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. Methods To assess neural stem cell–like (NSC-like cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2 × 107 cells into the subarachnoid cavity and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. Results We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at month 3 (the score increase was 42.6, 95% CI: 9.8–75.3, P=.011 and month 6 (the score increase was 58.6, 95% CI: 25.8–91.4, P=.001 post-treatment compared with the baseline scores. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. Conclusion Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical

  15. Autologous mesenchymal stem cells applied on the pressure ulcers had produced a surprising outcome in a severe case of neuromyelitis optica.

    Science.gov (United States)

    Dulamea, Adriana Octaviana; Sirbu-Boeti, Mirela-Patricia; Bleotu, Coralia; Dragu, Denisa; Moldovan, Lucia; Lupescu, Ioana; Comi, Giancarlo

    2015-11-01

    Recent studies provided evidence that mesenchymal stem cells (MSCs) have regenerative potential in cutaneous repair and profound immunomodulatory properties making them a candidate for therapy of neuroimmunologic diseases. Neuromyelitis optica (NMO) is an autoimmune, demyelinating central nervous system disorder characterized by a longitudinally extensive spinal cord lesion. A 46-year-old male diagnosed with NMO had relapses with paraplegia despite treatment and developed two stage IV pressure ulcers (PUs) on his legs. The patient consented for local application of autologous MSCs on PUs. MSCs isolated from the patient's bone marrow aspirate were multiplied in vitro during three passages and embedded in a tridimensional collagen-rich matrix which was applied on the PUs. Eight days after MSCs application the patient showed a progressive healing of PUs and improvement of disability. Two months later the patient was able to walk 20 m with bilateral assistance and one year later he started to walk without assistance. For 76 months the patient had no relapse and no adverse event was reported. The original method of local application of autologous BM-MSCs contributed to healing of PUs. For 6 years the patient was free of relapses and showed an improvement of disability. The association of cutaneous repair, sustained remission of NMO and improvement of disability might be explained by a promotion/optimization of recovery mechanisms in the central nervous system even if alternative hypothesis should be considered. Further studies are needed to assess the safety and efficacy of mesenchymal stem cells in NMO treatment. PMID:26807122

  16. Effects of Tongxinluo-facilitated cellular cardiomyoplasty with autologous bone marrow-mesenchymal stem cells on postinfarct swine hearts

    Institute of Scientific and Technical Information of China (English)

    QIAN Hai-yan; LU Min-jie; ZHAO Shi-hua; YANG Yue-jin; HUANG Ji; GAO Run-lin; DOU Ke-fei; YANG Guo-sheng; LI Jian-jun; SHEN Rui; HE Zuo-xiang

    2007-01-01

    Background Treatment of ischemic heart disease remains an important challenge, though there have been enormous progresses in cardiovascular therapeutics. This study was conducted to evaluate whether Tongxinluo (TXL) treatment around the transplantation of mesenchymal stem cells (MSCs) can improve survival and subsequent activities of implanted cells in swine hearts with acute myocardial infarction (AMI) and reperfusion.Methods Twenty-eight Chinese mini-pigs were divided into four groups including a control group (n=7); group 2,administration of low-dose TXL alone from the 3rd day prior to AMI to the 4th day post transplantation (n=7); group 3,MSCs alone (n=7) and group 4, TXL + MSCs (n=7). AMI models were made by occlusion of the left anterior descending coronary artery for 90 minutes. Autologous bone marrow-MSCs (3×107 cells/animal) were then injected into the post-infarct myocardium immediately after AMI and reperfusion. The survival and differentiation of implanted cells in vivo were detected by immunofluorescent analysis. The data of cardiac function were obtained at baseline (1 week after transplantation) and endpoint (6 weeks after transplantation) by single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Apoptosis was detected by TUNEL assay and the oxidative stress level was investigated in the post-infarct myocardium at endpoint.Results At endpoint, there was less fibrosis and inflammatory cell infiltration with more surviving myocardium in group 4 than in the control group. In group 4 the survival and differentiation of implanted MSCs were significantly improved more than that seen in group 3 alone (P<0.0001); the capillary density was also significantly greater than in the control group,group 2 or 3 both in the infarcted zone (P<0.0001) and the peri-infarct zone (P<0.0001). MRI showed that parameters at baseline were not significantly different between the 4 groups. At endpoint, regional wall thickening and the

  17. Autologous mesenchymal stem cells applied on the pressure ulcers had produced a surprising outcome in a severe case of neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Adriana Octaviana Dulamea

    2015-01-01

    Full Text Available Recent studies provided evidence that mesenchymal stem cells (MSCs have regenerative potential in cutaneous repair and profound immunomodulatory properties making them a candidate for therapy of neuroimmunologic diseases. Neuromyelitis optica (NMO is an autoimmune, demyelinating central nervous system disorder characterized by a longitudinally extensive spinal cord lesion. A 46-year-old male diagnosed with NMO had relapses with paraplegia despite treatment and developed two stage IV pressure ulcers (PUs on his legs. The patient consented for local application of autologous MSCs on PUs. MSCs isolated from the patient′s bone marrow aspirate were multiplied in vitro during three passages and embedded in a tridimensional collagen-rich matrix which was applied on the PUs. Eight days after MSCs application the patient showed a progressive healing of PUs and improvement of disability. Two months later the patient was able to walk 20 m with bilateral assistance and one year later he started to walk without assistance. For 76 months the patient had no relapse and no adverse event was reported. The original method of local application of autologous BM-MSCs contributed to healing of PUs. For 6 years the patient was free of relapses and showed an improvement of disability. The association of cutaneous repair, sustained remission of NMO and improvement of disability might be explained by a promotion/optimization of recovery mechanisms in the central nervous system even if alternative hypothesis should be considered. Further studies are needed to assess the safety and efficacy of mesenchymal stem cells in NMO treatment.

  18. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  19. Local transplantation of osteogenic pre-differentiated autologous adipose-derived mesenchymal stem cells may accelerate non-union fracture healing with limited pro-metastatic potency.

    Science.gov (United States)

    Han, Duanyang; Han, Na; Zhang, Peixun; Jiang, Baoguo

    2015-01-01

    Fracture non-union is a serious complication in orthopedic clinical practice. Mesenchymal stem cells are believed to play a vital role in fracture healing process. Among various origins of mesenchymal stem cell, adipose derived stem cells hold great promise especially in clinical milieu. However, the wide spread application of mesenchymal stem cell based therapy is impeded by the pro-metastasis nature of the mesenchymal stem cell itself. Based on the findings from previous studies, we hypothesize that local transplanted osteogenic pre-differentiatiated adipose stem cell may promote the non-union fracture healing. Moreover, the pre-differnetiation stem cells by down-regulating the expression of CCL5 and CCL2. This novel osteogenic pre-differnetiation technique may help clinical orthopedists to resolve the refractory non-union cases and shed new light on other stem cell based therapies to counteract to avoid the pro-metastasis nature of the mesenchymal stem cells. PMID:25785146

  20. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  1. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    陈绍良; 方五旺; 钱钧; 叶飞; 刘煜昊; 单守杰; 张俊杰; 林松; 廖联明; 赵春华

    2005-01-01

    Background The infarct size determines the long-term prognosis of patients with acute myocardial infarction (AMI). There is a growing interest in repairing scar area by transplanting bone marrow stem cells. However, effectiveness of intracoronary injection of bone marrow mesenchymal stem cells (BMSCs) in patients with AMI still remains unclear.Methods Sixty-nine patients with AMI ,after percutaneous coronary intervention (PCI) were randomly divided into intracoronary injection of BMSCs (n=34) and saline (control group, n=35) groups. Serial single positron emission computer tomography (SPECT) , cardiac echo and cardiac electromechanical mapping were done at the designed time intervals until six months after transplantation of BMSCs or injection of saline.Results The proportion with functional defect decreased significantly in the BMSCs patients after three months [(13±5)%] compared with that pre-transplantation [(32±11)%] and the control group [(28±10)%] at three month follow-up (P0.05]. Left ventricular ejection fraction (LVEF) three months after transplantation in BMSCs group increased significantly compared with that pre-implantation and with that of the control group at three months post'injection [(67±11)% vs (49±9)% and (53±8)%, P<0.05 respectively]. SPECT scan results showed that perfusion defect was improved significantly in BMSCs group at three-month follow-up compared with that in the control group [(134±66)cm2 vs (185±87)cm2, P<0.01]. At the same time, left ventricular end-diastolic volume [(136±31)ml vs (162±27)ml, P<0.05] and end-systolic volume [(63±20)ml vs (88±19)ml, P<0.05] decreased synchronously. The ratio of end-systolic pressure to end-systolic volume [Psyst/ESV, (2.84±1.30)mmHg/ml vs (1.72±1.23)mmHg/ml, P<0.05] increased significantly. Cardiac electromechnical mapping demonstrated significant improvement at three months after implantation of BMSCs compared with that preinjection in both cardiac mechanical capability as left line

  2. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    陈绍良; 方五旺; 钱钧; 叶飞; 刘煜昊; 单守杰; 张俊杰; 林松; 廖联明; 赵春华

    2004-01-01

    Background The infarct size determines the long-term prognosis of patients with acute myocardial infarction (AMI). There is a growing interest in repairing scar area by transplanting bone marrow stem cells. However, effectiveness of intracoronary injection of bone marrow mesenchymal stem cells (BMSCs) in patients with AMI still remains unclear.Methods Sixty-nine patients with AMI after percutaneous coronary intervention (PCI) were randomly divided into intracoronary injection of BMSCs (n=34) and saline (control group, n=35) groups. Serial single positron emission computer tomography (SPECT), cardiac echo and cardiac electromechanical mapping were done at the designed time intervals until six months after transplantation of BMSCs or injection of saline. Results The proportion with functional defect decreased significantly in the BMSCs patients after three months [(13±5)%] compared with that pre-transplantation [(32±11)%] and the control group [(28±10)%] at three month follow-up (P0.05]. Left ventricular ejection fraction (LVEF) three months after transplantation in BMSCs group increased significantly compared with that pre-implantation and with that of the control group at three months post-injection [(67±11)% vs (49±9)% and (53±8)%, P<0.05 respectively]. SPECT scan results showed that perfusion defect was improved significantly in BMSCs group at three-month follow-up compared with that in the control group [(134±66)cm2 vs (185±87)cm2, P<0.01]. At the same time, left ventricular end-diastolic volume [(136±31) ml vs (162±27) ml, P<0.05] and end-systolic volume [(63±20) ml vs (88±19) ml, P<0.05] decreased synchronously. The ratio of end-systolic pressure to end-systolic volume [Psyst/ESV, (2.84±1.30) mmHg/ml vs (1.72±1.23) mmHg/ml, P<0.05] increased significantly. Cardiac electromechnical mapping demonstrated significant improvement at three months after implantation of BMSCs compared with that pre-injection in both cardiac mechanical capability as left

  3. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl;

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-i...

  4. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

    OpenAIRE

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-01-01

    Introduction Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. Case presentation A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a ...

  5. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  6. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    Science.gov (United States)

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  7. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  8. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  9. Sweet Syndrome After Autologous Stem Cell Transplant.

    Science.gov (United States)

    Alkan, Ali; İdemen, Celal; Okçu Heper, Aylin; Utkan, Güngör

    2016-02-01

    Sweet syndrome (acute febrile neutrophilic dermatosis) is a rare clinical entity characterized by skin lesions, neutrophilia, fever, and neutrophilic infiltration of the dermis. It may be a consequence of malignant disease, comorbidities, or drugs. We present a case of acute febrile neutrophilic dermatosis in a patient after autologous stem cell transplant. PMID:25748978

  10. Autologous Bone Marrow Mesenchymal Stem Cells Associated with Tantalum Rod Implantation and Vascularized Iliac Grafting for the Treatment of End-Stage Osteonecrosis of the Femoral Head

    Directory of Open Access Journals (Sweden)

    Dewei Zhao

    2015-01-01

    Full Text Available Tantalum rod implantation with vascularized iliac grafting has been reported to be an effective method for the treatment of young patients with osteonecrosis of the femoral head (ONFH to avert the need for total hip arthroplasty (THA. However, there have been unsatisfactory success rates for end-stage ONFH. The authors describe a modified technique using bone marrow mesenchymal stem cells (BMMSCs associated with porous tantalum rod implantation combined with vascularized iliac grafting for the treatment of end-stage ONFH. A total of 24 patients (31 hips with end-stage ONFH were treated with surgery; ARCO IIIc stage was observed in 19 hips and ARCO IV stage was observed in 12 hips. All patients were followed for a mean time of 64.35 ± 13.03 months (range 26–78. Operations on only five hips were converted to THA. The joint-preserving success rate of the entire group was 89.47% for ARCO stage IIIc and 75% for ARCO stage IV. The mean Harris hip score of the 31 hips improved significantly from 38.74 ± 5.88 points (range 22–50 to 77.23 ± 14.75 points (range 33–95. This intervention was safe and effective in delaying or avoiding total hip replacement for end-stage ONFH.

  11. Uses of mesenchymal stem cells

    OpenAIRE

    M. Delgado; González-Rey, Elena; Büscher, Dirk

    2008-01-01

    The invention relates to the use of mesenchymal stem cells (MSCs) for treating systemic infiammatory response syndrome (SIRS) in a subject. The invention provides compositions, uses and methods for the treatment of SIRS.

  12. Repair of Segmental Load-Bearing Bone Defect by Autologous Mesenchymal Stem Cells and Plasma-Derived Fibrin Impregnated Ceramic Block Results in Early Recovery of Limb Function

    Directory of Open Access Journals (Sweden)

    Min Hwei Ng

    2014-01-01

    Full Text Available Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC and partially demineralized allogeneic bone block (ALLO. Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32, MIC (1.28 ± 0.24, and negative controls (0. Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1% compared to ALLO (5% ± 2.5% and MIC (26% ± 5.2%. Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa compared to those treated with ALLO (15.15 ± 3.57 MPa and MIC (23.28 ± 6.14 MPa. In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.

  13. 自体骨髓间充质神经干细胞移植治疗帕金森病的疗效观察%Transplanting autologous mesenchymal stem cells in the treatment of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    刘定华; 顾鲁军; 韩伯军; 王庆广; 洪珊珊; 高恒; 万美荣; 叶英

    2016-01-01

    Objective To explore the curative effect and safety of transplanting autologous mesenchymal stem cells to patients with Parkinson's disease.Methods Forty-two patients with Parkinson's disease were selected and randomly divided into a control group and a research group,each of 21.Both groups were given routine treatment and rehabilitation,but the research group was additionally provided with autologous bone marrow mesenchymal stem cell transplantation.Bone marrow mesenchymal stem cells were isolated from the patients,cultured and transplanted back into the patients totally 4 times at intervals of 5 to 10 days.Before the treatment and 4 weeks and 3 months later,the clinical functioning of both groups was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS).Four weeks and 3 months after the treatment,the peripheral blood expression of vascular endothelial growth factor (VEGF),the expression of interleukin 10 (IL-10) and the expression of CSF tumor necrosis factor alpha (TNF-α) in cerebrospinal fluid were compared between the 2 groups.Results The average UPDRS score of the research group decreased from (41.26± 17.92) at four weeks to (33.67± 17.77) at 3 months after the treatment,both significantly lower than before the treatment,and significantly lower than the scores of the control group at the same time points [(47.13±18.35) and (39.03±16.50)].During the treatment,no severe adverse reactions were observed among the research group.Moreover,after the treatment the blood expression of VEGF and the expression of IL-10 in cerebrospinal fluid were significantly improved in the research group,while that of TNF-α was significantly reduced compared to before the treatment.nclusions The transplantation of autologous mesenchymal stem cells can safely promote nerve function in Parkinson's disease patients.It is worth applying in clinical practice.%目的 探讨自体骨髓间充质神经干细胞移植治疗帕金森病的疗效及安全性.方法

  14. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving. PMID:24750320

  15. Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update

    OpenAIRE

    Saeed, Hamid; Ahsan, Muhammad; Saleem, Zikria; Iqtedar, Mehwish; Islam, Muhammad; Danish, Zeeshan; Khan, Asif Manzoor

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/ser...

  16. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    OpenAIRE

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of th...

  17. In Vivo Study of Ligament-Bone Healing after Anterior Cruciate Ligament Reconstruction Using Autologous Tendons with Mesenchymal Stem Cells Affinity Peptide Conjugated Electrospun Nanofibrous Scaffold

    Directory of Open Access Journals (Sweden)

    Jingxian Zhu

    2013-01-01

    Full Text Available Electrospinning nanofibrous scaffold was commonly used in tissue regeneration recently. Nanofibers with specific topological characteristics were reported to be able to induce osteogenic differentiation of MSCs. In this in vivo study, autologous tendon grafts with lattice-like nanofibrous scaffold wrapping at two ends of autologous tendon were used to promote early stage of ligament-bone healing after rabbit ACL reconstruction. To utilize native MSCs from bone marrow, an MSCs specific affinity peptide E7 was conjugated to nanofibrous meshes. After 3 months, H-E assessment and specific staining of collagen type I, II, and III showed direct ligament-bone insertion with typical four zones (bone, calcified fibrocartilage, fibrocartilage, and ligament in bioactive scaffold reconstruction group. Diameters of bone tunnel were smaller in nanofibrous scaffold conjugated E7 peptide group than those in control group. The failure load of substitution complex also indicated a stronger ligament-bone insertion healing using bioactive scaffold. In conclusion, lattice-like nanofibrous scaffold with specific MSCs affinity peptide has great potential in promoting early stage of ligament-bone healing after ACL reconstruction.

  18. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: A case report

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-08-01

    Full Text Available Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC and bone marrow derived hematopoietic stem cells (HSC-BM. Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study.

  19. 骨髓间充质干细胞移植治疗杜氏型进行性肌营养不良症344例临床疗效分析%Clinical study of concurrent transplantation of autologous mesenchymal stem cells and umbilical cord mesenchymal stem cells in patients with Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    崔激平; 杨晓凤; 王红梅; 吴雁翔; 吕乃武; 张轶斌; 许忆峰; 单鸿; 周金旭

    2011-01-01

    [ Objective ] To discuss the clinical effect of transplantation of autologous mesenchymal stem cells and umbilical cord mesenchymal stem cells (CMSC) with in patients with Duchenne muscular dystrophy. [Methods ]Totally 344 patients who were diagnosed with Duchenne muscular dystrophy received a whole year treatment with autologous MSCs and cord blood mesenchymal stem cells transplantation from June 2007 to June 2008 in our center.Parameters before and after treatment were compared. Granulocyte-colony stimulating factor (G-CSF) was infused into all patients, and bone marrow was collected following 4 days of mobilization. Bone marrow mononuclear cells (MNC) were isolated by Percoll gradient centrifugation. The amount of MNC was (5.72±1.89) ×l08, the content of CD34+ cells was (2.67±1.22)%, and the content of CD133+ cells was (1.79±0.73)%. The MNC was cultured for 7~10 days and MSCs were got at last. The amount of MSCs was (1.90±0.96) ×108. MSCs were transplanted into all the limbs by intramuscular injection.[Results] One year after transplantation, increased rate of muscle force of the patients was 85% of the patients. [ Conclusion] It was indicated that transplantation of autologous bone marrow stem cells for Duchenne muscular dystrophy can enhance the bare-handed muscle force and activities of daily living and improve values of serum creatine kinase, lactic acid dehydrogenase and creatinine.%目的 探讨自体骨髓间充质干细胞(MSCs)及脐带间充质干细胞移植治疗杜氏型进行性肌营养不良症的临床疗效.方法 2007年6月~2008年6月该科室应用自体MSCs移植对344例杜氏型肌营养不良症患者进行治疗,采用治疗前后对照方法进行研究.骨髓间充质干细胞制备:对344例患者皮下注射粒细胞集落刺激因子,剂量为每日每公斤体重5~10μg,动员骨髓干细胞,共4 d,4 d后采集骨髓,将采集的骨髓通过Percoll梯度离心,提取单个核细胞(MNC),总量为(5.72±1.89)X108

  20. The short-term curative effects of autologous bone marrow mesenchymal stem cells transplantation on patients with primary brain stem injury%自体骨髓间充质干细胞移植治疗原发性脑干损伤的近期效果观察

    Institute of Scientific and Technical Information of China (English)

    肖以磊; 李忠民; 朱建新; 耿凤阳; 郭传军; 庞月玖; 陈秋兰; 张志逖; 种宗雷

    2012-01-01

    目的 观察自体骨髓间充质干细胞移植治疗原发性脑干损伤的近期有效性和安全性.方法 2007年7月至2010年7月我院收治原发性脑干损伤患者54例.移植组30例患者通过蛛网膜下腔注射方式行自体骨髓间充质干细胞移植,选择同时期入院但未行干细胞移植患者24例作为对照组.两组患者移植后1个月进行NIHSS评分,移植后6个月进行疗效比较.同期检测血常规、凝血机制、生化全项、肿瘤标记物.结果 移植后1个月,移植组患者NIHSS评分与对照组比较差异有统计学意义[分别为(10.86 ±7.48)、(18.26±8.74)分,t=2.681,P<0.05];移植后6个月进行疗效比较差异有统计学意义(Z=2.306,P <0.05).随访各项血液检查结果未出现明显异常.结论 自体骨髓间充质干细胞移植治疗原发性脑干损伤安全且近期疗效确定,远期疗效尚待进一步观察.%Objective To explore the short-term curative effect and safety of autologous bone marrow mesenchymal stem cells transplantation in patients with primary brain stem injury.Methods Fifty-four cases with primary brain stem injury were hospitalized during Jul.2007 to Jul.2010 at Liaocheng Brain Hospital,Shandong Province.All cases were randomized into transplantation group( n =30)or control group( n =24 ).The transplantation group was treated with autologous bone marrow mesenchymal stem cell transplantation by subarachnoid space injection (n =30).The control group were selected from primary brain stem injury patients without stem cell transplantation who were hospitalized at the same period with patients from the transplantation group.Respectively,National Institutes of Health Stroke Scale (NIHSS) score was employed to evaluate the condition of patients in the two groups one month after treatment,and Glasgow Outcome Scale (GOS) score was used to evaluate curative effects of the two groups at sixth months after treatment.Meanwhile,some other parameters were observed

  1. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  2. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May;

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  3. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  4. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  5. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  6. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  7. 自体骨髓间充质干细胞经动脉介入移植治疗犬糖尿病%Intra-arterial transplantation of autologous bone marrow mesenchymal stem cells for treatment of diabetes in dogs

    Institute of Scientific and Technical Information of China (English)

    王立梅; 崔晓兰; 丁明超; 窦立冬; 李倩倩; 王意忠

    2012-01-01

    背景:目前多数研究倾向于将骨髓间充质干细胞经静脉移植等方法移植入糖尿病动物模型体内,而缺少将骨髓间充质干细胞经动脉介入移植入糖尿病动物模型胰腺内的相关研究.目的:用自体骨髓间充质干细胞经动脉介入移植入糖尿病犬胰腺内,观察骨髓间充质干细胞的分布、分化、对糖尿病的治疗效果及安全性.方法:将30只家犬随机分为骨髓间充质干细胞组(治疗组,n=13),糖尿病模型对照组(模型组,n=10)和对照组(n=7).治疗组及模型组通过静脉注射四氧嘧啶建立糖尿病模型.造模后,治疗组进行胰岛素治疗,同时进行自体骨髓间充质干细胞的动脉介入移植.模型组仅接受胰岛素治疗,对照组则不接受任何治疗.结果与结论:与模型组比较,治疗组于移植后第12周的胰岛素用量明显减少(P < 0.05),血清C-肽水平明显升高(P < 0.05).治疗组于移植后第4周及12周的组织病理切片显示,心脏、肝脏、脾脏、肺脏、肾脏的组织结构清晰,均未发生坏死、纤维化,与模型组及对照组比较,移植后各器官组织形态无明显异常改变.移植后第4周,骨髓间充质干细胞主要分布在胰腺及肾脏内,免疫荧光发现胰腺内存在CM-DiI和胰岛素共表达细胞.表明将骨髓间充质干细胞经动脉介入移植入糖尿病犬胰腺内来治疗糖尿病的方法,是安全有效的.%BACKGROUND: At present, most researchers focus on intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) into diabetic animal models. There are few studies that describe transplantation of BMSCs into the pancreas of diabetic animal models via arterial intervention.OBJECTIVE: To investigate the distribution and differentiation of autologous BMSCs transplanted into the pancreas of a dog model of diabetes via the arterial intervention as well as the therapeutic effects and safety.METHODS: 30 dogs were randomly divided into BMSCs group

  8. Autologous stem cell transplantation in the treatment of Hodgkin's disease

    OpenAIRE

    Tarabar Olivera; Tukić Ljiljana; Stamatović Dragana; Balint Bela; Elez Marija; Ostojić Gordana; Tatomirović Željka; Marjanović Slobodan

    2009-01-01

    Background/Aim. High-dose chemotherapy with autologous stem cell transplantacion (ASCT) has shown to produce long-term disease-free survival in patients with chemotherapysensitive Hodgkin disease. The aim of the study was to evaluate efficacy of ASCT in the treatment of Hodgkin's disease. Methods. Between May 1997 and September 2008, 34 patients with Hodgkin's disease in median age of 25 (range 16-60) years, underwent ASCT. Autologous SCT were performed as consolidation therapy in one poor-ri...

  9. Cultura autóloga de células-tronco mesenquimais de tecido adiposo para o tratamento de rítides faciais Autologous mesenchymal stem cells culture from adipose tissue for treatment of facial rhytids

    Directory of Open Access Journals (Sweden)

    César Claudio-da-Silva

    2009-08-01

    Full Text Available OBJETIVO: Testar o efeito das c élulas tronco mesenquimais (CTM de tecido adiposo no preenchimento cutâneo de rítides na região naso-labial. MÉTODOS: Foram coletados 50 cc de gordura da região infra-umbilical e 20 mL de sangue periférico de 15 voluntárias do sexo feminino para obtenção das CTM e de plasma autólogo, respectivamente. As voluntárias foram agrupadas de acordo com as estratégias de injeções intra-dérmicas: grupo (1 somente o ácido hialurônico; grupo (2 somente as CTM; grupo (3 CTM associadas ao ácido hialurônico. Tratando-se de um estudo prospectivo e qualitativo o acompanhamento das voluntárias era mensal através de fotografias. RESULTADOS: No grupo (1 foi observado um efeito de preenchimento imediato ao contrário do grupo (2 onde o efeito de preenchimento pleno foi alcançado aproximadamente após dois meses. No grupo (3 o preenchimento ocorreu de maneira mais efetiva e também progressiva, devido à combinação dos efeitos de curto e de longo prazo gerados pelo ácido hialurônico e pelas CTM, respectivamente. CONCLUSÃO: As CTM quando associadas ao ácido hialurônico foram capazes de promover o preenchimento de sulcos profundos, com melhora progressiva do tônus da pele e diminuição das linhas de expressão.OBJECTIVE: To test the effect of mesenchymal stem cells (MSC from adipose tissue on the dermal filling for nasolabial rhytids correction. MEHTODS: 50 cc of infraumbilical fat and 20 ml of peripheral blood were harvested to isolate MSC and autologous plasma from 15 female volunteers, respectively. The volunteers were grouped in according to the following strategies of intra-dermal injection: Group (I only hyaluronic acid; Group (II only MSC; Group (III MSC combined with hyaluronic acid. For this qualitative and prospective study photographic monitoring was done monthly. RESULTS: In the group (I we observed an immediate effect of filling; in the group (II the effect of filling was reached after

  10. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  11. Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Mundra, Vaibhav; Gerling, Ivan C.; Mahato, Ram I.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomdulators has been explored in cell/organ t...

  12. Mesenchymal stem cells in regenerative rehabilitation

    OpenAIRE

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this re...

  13. Mesenchymal Stem Cells in Cardiology.

    Science.gov (United States)

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  14. Mesenchymal stem cells in regenerative rehabilitation

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  15. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind;

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  16. Autologous bone marrow mesenchymal stem cells combined with hydroxyapatite/tricalcium phosphate complex in the spinal fusion%自体骨髓富集间质干细胞与羟基磷灰石磷酸三钙材料复合在脊柱融合中的应用

    Institute of Scientific and Technical Information of China (English)

    闫伟; 杨莉; 凌梅; 甘嘉亮

    2016-01-01

    背景:脊柱融合过程中使用一定的骨移植材料可以达到促进骨融合、增强脊柱稳定性的效果。目的:探讨自体骨髓富集的间质干细胞复合羟基磷灰石磷酸三钙在脊柱融合中的应用效果。方法:回顾性分析64例行脊柱融合患者的临床资料,按照植骨融合材料的不同分为对照组(32例)和观察组(32例),分别予以自体髂骨移植和自体骨髓富集的间质干细胞复合羟基磷灰石磷酸三钙移植。治疗后随访12个月,对两组患者腰背疼痛、脊柱融合、伤椎复位情况等进行评估。结果与结论:治疗后两组患者 LBOS 评分、LBOS 评分优良率、脊柱融合 Lenke 分级、Cobb 角经比较差异无显著性意义(P >0.05)。两组患者均未出现感染和炎症表现,内固定物对皮肤无刺激现象。两组患者凝血功能、肾功能、炎性因子相关指标均处于正常水平,差异无显著性意义(P >0.05)。试验结果表明,自体骨髓富集的间质干细胞复合羟基磷灰石磷酸三钙应用于脊柱融合可以获得与自体髂骨移植基本相当的临床效果。%BACKGROUND: The use of bone graft materials can promote bone fusion and enhance the stability of the spine during the spinal fusion. OBJECTIVE: To investigate the effect of autologous bone marrow mesenchymal stem cel s with hydroxyapatite/ tricalcium phosphate in the spinal fusion. METHODS: A retrospective analysis of clinical data of 64 patients with spinal fusion was carried out, and these patients were divided into two groups (n=32 per group): control group undergoing autogenous iliac bone grafting and observation group undergoing autologous bone marrow mesenchymal stem cel s combined with hydroxyapatite/tricalcium phosphate. Al patients were fol owed up for 12 months, and their recovery conditions about low back pain, spinal fusion and vertebral reset were assessed. RESULTS AND CONCLUSION: The low-back outcome scale scores and excel

  17. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration

    Directory of Open Access Journals (Sweden)

    Anna Bajek

    2011-01-01

    Full Text Available Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow.

  18. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M;

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  19. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  20. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  1. Turning Stem Cells into Mesenchymal Tissues

    OpenAIRE

    Tiziano Barberi; Willis, Lucy M.; Socci, Nicholas D.; Lorenz Studer

    2005-01-01

    BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilinea...

  2. 钽棒植入联合自体骨髓间充质干细胞移植治疗早期股骨头缺血性坏死%Early Clinical Results of Implantation of Tantalum Rod Combined Transplantation of Autologous Bone Marrow Mesenchy-mal Stem Cells for Early Stage of Avascular Necrosis of Femoral Head

    Institute of Scientific and Technical Information of China (English)

    梁红锁; 黄克; 李林; 张波; 韦程寿

    2014-01-01

    Objective:To study the effects of implantation of tantalum rod and transplantation of autologous bone mar-row mesenchymal stem cells for early stage of avascular necrosis of femoral head .Methods:27 patients with avascular necrosis of femoral head in the early stage were treated with implantation of tantalum rod and transplantation of autolo-gous bone marrow mesenchymal stem cells .Results:The average period of follow-up was thirteen months (7 ~ 24 months) .Pain of all patients disappeared .The movement range of the hip joint was normal or approximate to normal . Except two cases evolved to stage of ARCOⅢ ,X-ray showed that cystic degeneration disappeared .The Harris score was 54 .2 ± 7 .1 before operation and it increased significantly to 83 .9 ± 8 .6 after operation .Conclusion:It has the ad-vantage to minimal damage of implantation of tantalum rod and transplantation of autologous bone marrow mesenchy-mal stem cells for early stage of avascular necrosis of femoral head .It is an effective way for the treatment of femoral head necrosis .The short-term efficacy is good .%目的:观察钽棒植入联合自体骨髓间充质干细胞移植治疗早期股骨头缺血性坏死的临床疗效。方法:对27例ARCOⅠ、Ⅱ期的ANFH患者采用股骨头髓芯减压后植入钽棒并联合自体骨髓间充质干细胞移植。结果:所有患者经过7~24个月(平均13个月)的随访,关节疼痛基本消失,活动范围接近或恢复正常,除2例患者进展为ARCOⅢ期外,其余股骨头均无塌陷,影像学检查结果示股骨头囊性变消失,Harris评分由术前的(54.2±7.1)分提高到术后(83.9±8.6)分。结论:钽棒植入联合自体骨髓间充质干细胞移植治疗早期股骨头缺血性坏死,具有创伤小、疗效确切等优点,近期临床疗效良好。

  3. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    Science.gov (United States)

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  4. Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion

    OpenAIRE

    Sheyn, D; Rüthemann, M; Mizrahi, O; Kallai, I; Zilberman, Y.; Tawackoli, W; Kanim, L E A; Zhao, L; Bae, H; Pelled, G.; Snedeker, J G; Gazit, D.

    2010-01-01

    Most spine fusion procedures involve the use of prosthetic fixation devices combined with autologous bone grafts rather than biological treatment. We had shown that spine fusion could be achieved by injection of bone morphogenetic protein-2 (BMP-2)-expressing mesenchymal stem cells (MSCs) into the paraspinal muscle. In this study, we hypothesized that posterior spinal fusion achieved using genetically modified MSCs would be mechanically comparable to that realized using a mechanical fixation....

  5. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  6. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette;

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  7. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZHAO Robert ChunHua

    2009-01-01

    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. About 35% -5% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. It is associated with considerable morbidity and mortality, particularly in patients who do not respond to primary therapy, which usually consists of glucocorticoids(steroids). Most of the available second-line and third-line treatments for sterold-refractory acute GVHD induce severe immunodeficiency, which is commonly accompanied by lethal infectious complications. Mesenchymal stem cells (MSCs) have been shown to mediate immunomodulatory effects. The recently elucidated immunosuppreseive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants, MSCs have been used in patients with steroid-refractory acute GVHD, and encouraging responses have been obtained in many studies. The utility of MSCs for the treatment of GVHD is becoming clear.

  8. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  9. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  10. Autologous bone marrow stem cell transplantation for the treatment of postoperative hand infection with a skin defect in diabetes mellitus: A case report.

    Science.gov (United States)

    Liu, Yihong; Liu, Yuchen; Wang, Pujie; Tian, Haoming; Ai, Jianzhong; Liu, Yangbo; Zhou, Yi; Liu, Zhongwen; Guo, Wenjun; Yang, Shenke

    2014-06-01

    Among stem cells, autologous mesenchymal stem cells (MSCs) are ideal for transplantation by virtue of limited rejection reactions and marked proliferative ability. This study presents a novel method by which MSCs were harvested from the bone marrow of a patient who presented with severe post-traumatic infection and a non-healing skin defect in the hand, secondary to uncontrolled diabetes mellitus (DM). An autologous MSC suspension was injected into the persistent skin defect after stabilizing the blood glucose level and appropriate infection control. During the course of a regular 18-month postoperative follow-up, the patient exhibited immediate recovery with no transplant-associated complications, as well as no evidence of tumorigenicity. Thus, transplantation of autologous MSCs may play a role in the clinical application of stem cells, particularly for treatment of skin defects following surgery in cases of DM and for those caused by various other traumas.

  11. Treatment of severe post-traumatic bone defects with autologous stem cells loaded on allogeneic scaffolds.

    Science.gov (United States)

    Vulcano, Ettore; Murena, Luigi; Cherubino, Paolo; Falvo, Daniele A; Rossi, Antonio; Baj, Andreina; Toniolo, Antonio

    2012-12-01

    Mesenchymal stem cells may differentiate into angiogenic and osteoprogenitor cells. The effectiveness of autologous pluripotent mesenchymal cells for treating bone defects has not been investigated in humans. We present a case series to evaluate the rationale of using nucleated cells from autologous bone marrow aspirates in the treatment of severe bone defects that failed to respond to traditional treatments. Ten adult patients (mean age, 49.6-years-old) with severe bone defects were included in this study. Lower limb bone defects were >or=5 cm3 in size, and upper limb defects .or=2 cm3. Before surgery, patients were tested for antibodies to common pathogens. Treatment consisted of bone allogeneic scaffold enriched with bone marrow nucleated cells harvested from the iliac crest and concentrated using an FDA-approved device. Postsurgery clinical and radiographic follow-up was performed at 1, 3, 6, and 12 months. To assess viability, morphology, and immunophenotype, bone marrow nucleated cells were cultured in vitro, tested for sterility, and assayed for the possible replication of adventitious (contaminating) viruses. In 9 of 10 patients, both clinical and radiographic healing of the bone defect along with bone graft integration were observed (mean time, 5.6 months); one patient failed to respond. No post-operative complications were observed. Bone marrow nucleated cells were enriched 4.49-fold by a single concentration step, and these enriched cells were free of microbial contamination. The immunophenotype of adherent cells was compatible with that of mesenchymal stem cells. We detected the replication of Epstein-Barr virus in 2/10 bone marrow cell cultures tested. Hepatitis B virus, cytomegalovirus, parvovirus B19, and endogenous retrovirus HERV-K replication were not detected. Overall, 470 to 1,150 million nucleated cells were grafted into each patient. This case series, with a mean follow-up of almost 2 years, demonstrates that an allogeneic bone scaffold

  12. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  13. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    OpenAIRE

    Pravin D. Potdar; Rambhadur P Subedi

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem...

  14. Clinical observation of ameliorating motor function in 332 cases with Duchenne muscular dystrophies by autologous bone marrow mesenchymal stem cells transplantation%自体骨髓间充质干细胞移植改善进行性肌营养不良症患者运动功能的研究

    Institute of Scientific and Technical Information of China (English)

    许忆峰; 杨晓凤; 吴雁翔; 王红梅; 张轶斌; 吕乃武; 单鸿; 崔激平; 周金旭

    2011-01-01

    Objective To investigate whether treatment with autologous bone marrow mesenchymal stem cells transplantation can ameliorate the motor function in patients with Duchenne muscular dystrophies.Method Following the agreement of Ethics Committee of the 463 Hospital of Chinese PLA , a total of 332 cases with Duchenne muscular dystrophy (DMD) (all were male) , aged 6-18 years , with the course of disease of 2-18 years were enrolled from the Department of Cell treatment Center of the 463 Hospital of Chinese PLA from December 2007 to May 2009. Granulocyte-colony stimulating factor ( G-CSF) was injected subcutaneously , and bone marrow was collected 4 days later.Bone marrow mononuclear cells were isolated and cultured for 10-14 davs by Percoll gradient centrifugation. Cell suspension [ (2-3) x 1010/L] was prepared and transplanted into all over the body by intravenous injection and intramuscular injection in the four extremities. The amount of mononuclear cells was ( 1.99 ±1.18) x 108 and the amount of mesenchymal cells was (1.77 ± 0.84) x 108. Result Twelve months after transplantation, the improvement rates of bare-handed muscle force and activities of daily living (ADL) were 46.1% and 81.8% respectively. Motor function was ameliorated by 70.8%. Conclusion Transplantation of autologous bone marrow mesenchymal stem cells treated for DMD can enhance the hare-handed muscle force and activities of daily living and ameliorate motor function.%目的:探讨自体骨髓间充质干细胞移植临床治疗进行性肌营养不良症能否改善患者运动功能.方法:经解放军第四六三医院伦理委员会同意,纳入2007年12月至2009年5月在细胞治疗中心住院的具有完整随访资料的杜氏型肌营养不良症患者332例,均为男性,年龄6~18岁,平均(9.4±6.1)岁;病程2~ 18年,平均(6.9±5.7)年.患者皮下注射粒细胞集落刺激因子,动员4 d后采集骨髓,Percoll梯度离心培养骨髓单个核细胞10~14 d.配制浓度为(2

  15. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  16. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Devang M. Patel

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.

  17. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sandra Fernandes

    2015-03-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

  18. A SAGE View of Mesenchymal Stem Cells

    OpenAIRE

    Phinney, Donald G.

    2009-01-01

    Mesenchymal stem cells (MSCs) were initially defined by their capacity to differentiate into connective tissue cell lineages and support hematopoiesis. More recently, MSCs have demonstrated some degree of therapeutic efficacy in a broad range of diseases including neurological and auto-immune disorders, stroke, diabetes, and chronic inflammatory conditions. An emerging paradigm suggests that MSCs alter the tissue microenvironment via paracrine signaling to induce angiogenesis, alter immune ce...

  19. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations

    OpenAIRE

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P.; Stryhn, Henrik; McDuffee, Laurie A.

    2015-01-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow asp...

  20. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  1. Safety in mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Matthie Robert

    2014-01-01

    Full Text Available To date, adult stem cell therapy has some achievements in the treatment of chronic disease. However, some risks in stem cell transplantation still serve as high barriers obstructing the pulling of these therapies into clinical use. Tumorigenecity is of almost concern after it is injected into patients. However, all clinical studies indexed in PubMed showed that there were no cases of tumor after transplantation. Especially in recent study published in Cell Death and Disease, Wang et al. (2013 showed that long-term cultured mesenchymal stem cells could develop the genomic mutations but cannot undergo malignant transformation. Moreover, the study also revealed these stem cells as capable of forming tumors. This commentary assesses the data generated to date, and discusses the conclusions drawn from various studies. [Biomed Res Ther 2014; 1(1.000: 21-24

  2. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  3. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Robert; ChunHua

    2009-01-01

    Acute graft-versus-host disease(GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues.About 35%-50% of hematopoietic stem cell transplant(HSCT) recipients will develop acute GVHD.It is associated with considerable morbidity and mortality,particularly in patients who do not respond to primary therapy,which usually consists of glucocorticoids(steroids).Most of the available second-line and third-line treatments for steroid-refractory acute GVHD induce severe immunodeficiency,which is commonly accompanied by lethal infectious complications.Mesenchymal stem cells(MSCs) have been shown to mediate immunomodulatory effects.The recently elucidated immunosuppressive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants,MSCs have been used in patients with steroid-refractory acute GVHD,and encouraging responses have been obtained in many studies.The utility of MSCs for the treatment of GVHD is becoming clear.

  4. An ethical framework for the disposal of autologous stem cells.

    Science.gov (United States)

    Petrini, Carlo

    2013-01-01

    The disposal of haematopoietic stem cells stored for autologous transplantation purposes becomes a problem for hospitals when the conditions for their preservation cease to exist. When these cells have been stored for a considerable time the problem often becomes an ethical one involving informed consent and is linked to at least two simultaneous circumstances: (i) the indications regarding disposal contained in available informed consent papers are either absent or too generic; (ii) the person who provided the sample can no longer be traced. This article proposes and discusses some of the ethical criteria for addressing this problem on the basis of the so-called "principles" of North American bioethics, and compares them with some of the principles and values proposed in other models of bioethics. PMID:23412868

  5. Adult Mesenchymal Stem Cells and Radiation Injury.

    Science.gov (United States)

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  6. The secretome of mesenchymal stem cells: potential implications for neuroregeneration.

    Science.gov (United States)

    Paul, Gesine; Anisimov, Sergey V

    2013-12-01

    Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.

  7. Autologous transplantation of bone marrow mesenchymal stem cells to improve ocular surface in severely damaged cases%自体骨髓间充质干细胞移植改善重度眼表损伤临床观察

    Institute of Scientific and Technical Information of China (English)

    陈洁; 潘志强; 骆非; 接英; 彭秀军

    2011-01-01

    Objective To evaluate the effect of autologous bone marrow mesenchymal stem cells (BMSC) in treating severely damaged ocular surface.Methods Four cases of corneal chemical burn and two cases of Stenven-Johnson Syndrome were enrolled in this study.The BMSCs were obtained and cultured in vitro.The cells were harvested afler 14 days and confirmed to be BMSCs.Then the cells were placed on an amniotic membrane (AM) and expanded until 90% confluence formation before using.After the abnormal conjunctival and corneal tissues were removed from the cornea,the AM coated autologous BMSCs were transplanted onto the corneal surface.Aftersurgery,antibiotics,steroid and lubricant eye drops were used and patients were examined by slit-lamp and impression cytology.Results In all the six treated eyes,the entire corneal epithelium was intact one week after surgery.The visual acuity improved in three eyes,two eyes kept at the same level and decreased in one eye.The ocular surface was smooth,but the new blood vessels didn't show significant reduction.After twelve weeks,the epithelial cells phenotype and goblet cells appeared on corneal surface.Conclusions Autologous BMSCs can improve ocular surface condition in severely damaged patients,which show potential use for treating limbal deficiency.%目的 评价自体骨髓间充质干细胞在严重眼表损伤移植后的治疗效果.方法 选取了化学烧伤4例,Stevens-Johnson综合征2例.骨髓间充质干细胞取自患者,细胞培养14 d后,经细胞检测鉴定为骨髓间充质干细胞,将细胞种植在羊膜表面,细胞扩增融合达90%后使用.手术切除表面结膜化组织达角膜缘外3 mm,将羊膜上培养的自体骨髓间充质干细胞移植到角膜及角膜缘表面,术后予抗生素、激素、人工泪液点眼治疗;病人定期随访,进行裂隙灯显微镜及印迹细胞学检查.结果 6例患眼均覆盖了含有自体骨髓间充质干细胞的羊膜片,术后1周角膜上皮完整.3

  8. Standard operating procedure for the good manufacturing practice-compliant production of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Roseti, Livia; Serra, Marta; Bassi, Alessandra

    2015-01-01

    According to the European Regulation (EC 1394/2007), Mesenchymal Stem Cells expanded in culture for clinical use are considered as Advanced Therapy Medicinal Products. As a consequence, they must be produced in compliance with Good Manufacturing Practice in order to ensure safety, reproducibility, and efficacy. Here, we report a Standard Operating Procedure describing the Good Manufacturing Practice-compliant production of Bone Marrow-derived Mesenchymal Stem Cells suitable for autologous implantation in humans. This procedure can be considered as a template for the development of investigational medicinal Mesenchymal Stem Cells-based product protocols to be enclosed in the dossier required for a clinical trial approval. Possible clinical applications concern local uses in the regeneration of bone tissue in nonunion fractures or in orthopedic and maxillofacial diseases characterized by a bone loss.

  9. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  10. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Elham Zomorodian

    2012-01-01

    Full Text Available While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs, adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs, as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.

  11. Mesenchymal stem cells for therapeutic purposes.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe

    2009-05-15

    Mesenchymal stem cells (MSC) are multipotent adult stem cells harboring a wide range of differentiations and non-human leukocyte antigen-restricted immunosuppressive properties that lead to an increasing use of MSC in immunomodulation and in regenerative medicine. To produce MSC, definitive standards are still lacking. Whatever the starting material used (e.g., bone marrow, adipose tissue, or cord blood), numerous parameters including cell plating density, number of passages, and culture medium, play a major role in the culture process and have to be determined. To date, the different production processes have been effective, and based on phenotypic analysis and differentiation potential, a first set of simple controls have been defined. However, controls of the final product should provide precise data on efficacy and safety. The next challenge will be to develop production processes that reach good manufacturing practices goals and to define more accurate control methods of cultivated MSC.

  12. Busulfan,cyclophosphamide and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    张春阳

    2013-01-01

    Objective To evaluate the efficacy and safety of dose-reduced intravenous busulfan,cyclophosphamide and etoposide(BCV)as conditioning for autologous stem cell transplantation(ASCT)in multiple myeloma(MM)

  13. Autologous hematopoietic stem cell transplantation in autoimmune diseases.

    Science.gov (United States)

    Annaloro, Claudio; Onida, Francesco; Lambertenghi Deliliers, Giorgio

    2009-12-01

    The term 'autoimmune diseases' encompasses a spectrum of diseases whose clinical manifestations and, possibly, biological features vary widely. The results of conventional treatment are considered unsatisfactory in aggressive forms, with subsets of patients having short life expectancies. Relying on wide experimental evidence and more feeble clinical data, some research groups have used autologous hematopoietic stem cell transplantation (HSCT) in the most disabling autoimmune diseases with the aim of resetting the patient's immune system. Immunoablative conditioning regimens are preferred over their myeloablative counterparts, and some form of in vivo and/or ex vivo T-cell depletion is generally adopted. Despite 15 years' experience, published controlled clinical trials are still lacking, with the evidence so far available coming from pilot studies and registry surveys. In multiple sclerosis, clinical improvement, or at least lasting disease stabilization, can be achieved in the majority of the patients; nevertheless, the worst results are observed in patients with progressive disease, where no benefit can be expected from conventional therapy. Concerning rheumatologic diseases, wide experience has been acquired in systemic sclerosis, with long-term improvements in cutaneous disease being frequently reported, although visceral involvement remains unchanged at best. Autografting has proved to be barely effective in rheumatoid arthritis and quite toxic in juvenile idiopathic arthritis, whereas it leads to clinical remission and the reversal of visceral impairment in the majority of patients with systemic lupus erythematosus. A promising indication is Crohn's disease, in which long-term endoscopic remission is frequently observed. Growing experience with autologous HCST in autoimmune diseases has progressively reduced concerns about transplant-related mortality and secondary myelodysplasia/leukemia. Therefore, a sustained complete remission seems to be within the

  14. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  15. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rene Rodriguez; Ruth Rubio; Pablo Menendez

    2012-01-01

    Because of their unique properties,multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications.Overall,compelling evidence supports the long-term safety of ex vivo expanded human MSCs,which do not seem to transform spontaneously.However,experimental data reveal a link between MSCs and cancer,and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions.Interestingly,solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas.This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis,which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer,eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell.Unfortunately,still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs.Here,we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.

  16. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    OpenAIRE

    Forlenza, Christopher J.; Kushner, Brian H.; Nancy Kernan; Farid Boulad; Heather Magnan; Leonard Wexler; Wolden, Suzanne L.; LaQuaglia, Michael P.; Shakeel Modak

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT), a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days) + thiotepa (300 mg/m2/day fo...

  17. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  18. Use of adipose tissue as a source of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Jezierska-Woźniak

    2010-07-01

    Full Text Available Enormous expectations are associated with stem cells with regard to cell therapy and tissue engineering. Stem cells have unlimited potential for self-renewal and develop into various cell types. For the mesodermal tissue engineering such a source of cells is the bone marrow stroma. However, isolation of the bone marrow requires general or spinal anesthesia and yields low number of mesodermal stem cells (MSCs upon processing (1 MSC per 105 adherent stromal cells. An alternative source of autologous stem cells seems to be, apart from bone marrow: periosteum, muscular tissue or synovial membrane and adipose tissue. The adipose tissue is derived from the embryonic mesenchyme, contains a large number of stromal stem cells and is relatively easy to obtain in large quantities. It covers a widespread area of human body, and can be classified as white and brown adipose tissue in terms of location and function. Specimens of the adipose tissue are usually obtained from elective, laparoscopic or liposuction surgeries. Stromal stem cells, isolated from this tissue, exhibit characteristics common to mesodermal tissues, including: adherence to plastic, formation of fibroblastic- like colonies, extensive proliferative capacity, ability to differentiate into several mesodermal lineages (including bone, cartilage, muscle and fat, and expression of several common cell surface antigens. Recent evidence suggest that these cells can also form non-mesodermal tissues – neuron-like cells. The aim of this publication is to describe the application of the adipose tissue as a source of mesenchymal stem cells based on current literature data.

  19. [Immunoregulatory role of mesenchymal stem cells in bone reparation processes].

    Science.gov (United States)

    Zubov, D O

    2008-01-01

    Bone marrow contains mesenchymal stem cells (MSC) including osteoblast progenitor cells. When culturedunder conditions promoting an osteoblastic phenotype,MSC proliferate to form colonies that produce alkaline phosphatase and, subsequently, a mature osteoblastic phenotype. Transplantation of cultured autologous MSC to patients with non-healing bone fractures gives a good result leading to complete bone fracture consolidation. The aim of the study is to determine a quantitative production of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha by cultured uncommitted and committed osteogenic MSC. The results showed that the cytokine profile consisting of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha is secreted by cultured MSC. The secretion of IL-1beta and IL-2 by cultured MSC together with hyper production of IL-6 (up to 276.5 pg/ml, pactivators of bone resorption, inflammation and some immunological reactions in the process of altered osteoreparation. PMID:18756772

  20. Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update.

    Science.gov (United States)

    Saeed, Hamid; Ahsan, Muhammad; Saleem, Zikria; Iqtedar, Mehwish; Islam, Muhammad; Danish, Zeeshan; Khan, Asif Manzoor

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed. Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all instances, term MSCs is used throughout the review. PMID:27084089

  1. Isolation and characterization of equine amnion mesenchymal stem cells

    OpenAIRE

    Coli, Alessandra; Nocchi, Francesca; Lamanna, Roberta; Iorio, Mariacarla; Lapi, Simone; Urciuoli, Patrizia; Scatena, Fabrizio; Giannessi, Elisabetta; Stornelli, Maria Rita; Passeri, Simona

    2011-01-01

    The amnion is a particular tissue whose cells show features of multipotent stem cells proposed for use in cellular therapy and regenerative medicine. From equine amnion collected after the foal birth we have isolated MSCs (mesenchymal stem cells), namely EAMSCs (equine amnion mesenchymal stem cells), from the mesoblastic layer. The cells were grown in α-MEM (α-modified minimum essential medium) and the effect of EGF (epidermal growth factor) supplementation was evaluated. To assess the growth...

  2. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  3. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives

    Directory of Open Access Journals (Sweden)

    Zomer HD

    2015-09-01

    Full Text Available Helena D Zomer,1 Atanásio S Vidane,1 Natalia N Gonçalves,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil Abstract: Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells. Keywords: cell transplantation, cell therapy, iPS, MSC

  4. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases. PMID:19523328

  5. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  6. Mesenchymal stem cells: A new diagnostic tool?

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Mesenchymal stem cells (MSCs) are progenitor cellscapable of self-renewal that can differentiate inmultiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypicalterations. In recent years, preclinical andclinical studies have focused on MSC analysis andunderstanding the potential use of these cells as atherapy in a wide range of pathologies, and manyapplications have been tested. Clinical trials usingMSCs have been performed (e.g. , for cardiac events,stroke, multiple sclerosis, blood diseases, auto-immunedisorders, ischemia, and articular cartilage and bonepathologies), and for many genetic diseases, thesecells are considered an important resource. Consideringof the biology of MSCs, these cells may also be usefultools for understanding the physiopathology of differentdiseases, and they can be used to develop specificbiomarkers for a broad range of diseases. In thiseditorial, we discuss the literature related to the use ofMSCs for diagnostic applications and we suggest newtechnologies to improve their employment.

  7. Mechanical regulation of mesenchymal stem cell differentiation.

    Science.gov (United States)

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed.

  8. Mesenchymal Stem Cells: Angels or Demons?

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  9. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar, Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  10. Disseminated Fusarium infection in autologous stem cell transplant recipient

    OpenAIRE

    Vivian Iida Avelino-Silva; Jessica Fernandes Ramos; Fabio Eudes Leal; Leonardo Testagrossa; Yana Sarkis Novis

    2015-01-01

    Disseminated infection by Fusariumis a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusariuminfection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  11. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.;

    2008-01-01

    used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... compliant medium for MSC cultivation, expansion and differentiation. The expanded and differentiated MSCs can be used in autologous mesenchymal stromal cell therapy in patients with ischaemic heart disease Udgivelsesdato: 2008......OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...

  12. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  13. AUTOTRANSPLANTATION OF MESENCHYMAL STEM CELLS FROM ADIPOSE TISSUE – INNOVATIVE PATHOGENETIC METHOD OF TREATMENT OF PATIENTS WITH INCISIONAL HERNIAS (FIRST CASES REPORT

    Directory of Open Access Journals (Sweden)

    V. G. Bogdan

    2012-01-01

    Full Text Available In the article a complex technology of receiving a biological transplant with autologous mesenchymal stem cells from the adipose tissue is presented. Possibility of successful clinical performance of reconstruction of extensive defects of anterior belly wall with the use of a multicomponent biological transplant with autologous mesenchy- mal stem cells from the adipose tissue, differentiated in the fibroblast direction is shown. The use of the proposed method of plasticity promotes the improvement of quality of surgical treatment, expansies the scope of cellular technologies in practical health care, improves the patients quality of life in the postoperative period. 

  14. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  15. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  16. Mesenchymal stem cell therapy for heart disease.

    Science.gov (United States)

    Gnecchi, Massimiliano; Danieli, Patrizia; Cervio, Elisabetta

    2012-08-19

    Mesenchymal stem cells (MSC) are adult stem cells with capacity for self-renewal and multi-lineage differentiation. Initially described in the bone marrow, MSC are also present in other organs and tissues. From a therapeutic perspective, because of their easy preparation and immunologic privilege, MSC are emerging as an extremely promising therapeutic agent for tissue regeneration and repair. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSC to engraft and differentiate into cardiomyocytes and vascular cells. Most importantly, engrafted MSC secrete a wide array of soluble factors that mediate beneficial paracrine effects and may greatly contribute to cardiac repair. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. In this review we will focus on the current understanding of MSC biology and MSC mechanism of action in cardiac repair. PMID:22521741

  17. Mesenchymal stem cells for clinical application.

    Science.gov (United States)

    Sensebé, L; Krampera, M; Schrezenmeier, H; Bourin, P; Giordano, R

    2010-02-01

    Mesenchymal Stem Cells/Multipotent Marrow Stromal Cells (MSC) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. Conflicting data show that MSCs could be pluripotent and able to differentiate into tissues and cells of non-mesodermic origin as neurons or epithelial cells. Moreover, MSCs exhibit non-HLA restricted immunosuppressive properties. This wide range of properties leads to increasing uses of MSC for immunomodulation or tissue repair. Based on their immunosuppressive properties MSC are used particularly in the treatment of graft versus host disease, For tissue repair, MSCs can work by different ways from cell replacement to paracrine effects through the release of cytokines and to regulation of immune/inflammatory responses. In regenerative medicine, trials are in progress or planed for healing/repair of different tissue or organs as bone, cartilage, vessels, myocardium, or epithelia. Although it has been demonstrated that ex-vivo expansion processes using fetal bovine serum, recombinant growth factors (e.g. FGF2) or platelet lysate are feasible, definitive standards to produce clinical-grade MSC are still lacking. MSCs have to be produced according GMP and regulation constraints. For answering to the numerous challenges in this fast developing field of biology and medicine, integrative networks linking together research teams, cell therapy laboratories and clinical teams are needed.

  18. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  19. Membranous nephropathy in autologous hematopoietic stem cell transplant: autologous graft-versus-host disease or autoimmunity induction?

    Science.gov (United States)

    Abudayyeh, Ala; Truong, Luan D.; Beck, Laurence H.; Weber, Donna M.; Rezvani, Katy; Abdelrahim, Maen

    2015-01-01

    With the increasing utility of hematopoietic stem cell transplantation (SCT) as a treatment for cancer and noncancerous disorders, more challenges and complications associated with SCT have emerged. Renal injury immediately after transplant is common and well understood, but long-term renal injury is becoming more evident. Chronic graft-versus-host disease (GVHD) is a known long-term complication of SCT, and membranous nephropathy (MN) is emerging as the most common cause of SCT-associated glomerular pathology. In this case report, we present a patient who developed features of anti-PLA2R antibody-negative MN following autologous SCT. The renal injury responded well to steroids and further response to rituximab therapy was noted, suggesting antibody-mediated autoimmune glomerular disease. We also present a review of the literature on autologous GVHD and the role of T and B cells in induction of autoimmunity by SCT. PMID:26251713

  20. HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.

    Science.gov (United States)

    Govoni, K E

    2015-03-01

    Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.

  1. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    OpenAIRE

    Wataru Sonoyama; Yi Liu; Dianji Fang; Takayoshi Yamaza; Byoung-Moo Seo; Chunmei Zhang; He Liu; Stan Gronthos; Cun-Yu Wang; Songlin Wang; Songtao Shi

    2006-01-01

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This wo...

  2. Fatal CMV-Infection after Autologous Stem Cell Transplantation in Refractory Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    László Váróczy

    2012-01-01

    Full Text Available High-dose chemotherapy followed by autologous stem cell transplantation can be a rescue for patients with severe refractory systemic lupus erythematosus (SLE. However, the procedure might have fatal complications including infections and bleeding. We report on a young female patient with SLE whose disease started in her early childhood. After many years, severe renal, neurological, and bone marrow involvement developed that did not respond to conventional therapy. She was selected for autologous stem cell transplantation. A successful peripheral stem cell apheresis was performed in March 2006. The nonselected graft was reinfused in August 2006 after a conditioning chemotherapy containing high-dose cyclophosphamide and antithymocyte globulin. Engraftment was detected within 11 days. On the 38th posttransplant day, severe cytomegalovirus (CMV infection developed that included pneumonitis, hepatitis, and pancytopenia. The patient died in a week due to multiorgan failure. With her case, we want to call the attention to this rare, but lethal complication of the autologous transplantation.

  3. Mesenchymal stem cell implantation in atrophic nonunion of the long bones

    Science.gov (United States)

    Phedy, P.; Kholinne, E.; Djaja, Y. P.; Kusnadi, Y.; Merlina, M.; Yulisa, N. D.

    2016-01-01

    Objectives To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Methods Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment. Results Post-operative pain evaluation showed no significant differences between the two groups. The treatment group demonstrated faster initial radiographic and functional improvements. Statistically significant differences in functional scores were present during the first (p = 0.002), second (p = 0.005) and third (p = 0.01) month. Both groups achieved similar outcomes by the end of one-year follow-up. No immunologic or neoplastic side effects were reported. Conclusions All cases of nonunion of a long bone presented in this study were successfully treated using autologous BM-MSCs. The combination of autologous BM-MSCs and HA granules is a safe method for treating nonunion. Patients treated with BM-MSCs had faster initial radiographic and functional improvements. By the end of 12 months, both groups had similar outcomes. Cite this article: H.D. Ismail, P. Phedy, E. Kholinne, Y. P. Djaja, Y. Kusnadi, M. Merlina, N. D. Yulisa. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: A translational study. Bone Joint Res 2016;5:287–293. DOI: 10.1302/2046-3758.57.2000587. PMID:27412657

  4. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation.

    Science.gov (United States)

    Friedman, Robb; Betancur, Monica; Boissel, Laurent; Tuncer, Hande; Cetrulo, Curtis; Klingemann, Hans

    2007-12-01

    The Wharton's jelly of the umbilical cord is rich in mesenchymal stem cells (UC-MSCs) that fulfill the criteria for MSCs. Here we describe a novel, simple method of obtaining and cryopreserving UC-MSCs by extracting the Wharton's jelly from a small piece of cord, followed by mincing the tissue and cryopreserving it in autologous cord plasma to prevent exposure to allogeneic or animal serum. This direct freezing of cord microparticles without previous culture expansion allows the processing and freezing of umbilical cord blood (UCB) and UC-MSCs from the same individual on the same day on arrival in the laboratory. UC-MSCs produce significant concentrations of hematopoietic growth factors in culture and augment hematopoietic colony formation when co-cultured with UCB mononuclear cells. Mice undergoing transplantation with limited numbers of human UCB cells or CD34(+) selected cells demonstrated augmented engraftment when UC-MSCs were co-transplanted. We also explored whether UC-MSCs could be further manipulated by transfection with plasmid-based vectors. Electroporation was used to introduce cDNA and mRNA constructs for GFP into the UC-MSCs. Transfection efficiency was 31% for cDNA and 90% for mRNA. These data show that UC-MSCs represent a reliable, easily accessible, noncontroversial source of MSCs. They can be prepared and cryopreserved under good manufacturing practices (GMP) conditions and are able to enhance human hematopoietic engraftment in SCID mice. Considering their cytokine production and their ability to be easily transfected with plasmid-based vectors, these cells should have broad applicability in human cell-based therapies. PMID:18022578

  5. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  6. Mesenchymal stem cell therapy and lung diseases.

    Science.gov (United States)

    Akram, Khondoker M; Samad, Sohel; Spiteri, Monica; Forsyth, Nicholas R

    2013-01-01

    Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event. PMID:22772131

  7. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    Science.gov (United States)

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  8. Autologous CD34~+ and CD133~+ stem cells transplantation in patients with end stage liver disease

    Institute of Scientific and Technical Information of China (English)

    Hosny; Salama; Abdel-Rahman; N; Zekri; Abeer; A; Bahnassy; Eman; Medhat; Hanan; A; Halim; Ola; S; Ahmed; Ghada; Mohamed; Sheren; A; Al; Alim; Ghada; M; Sherif

    2010-01-01

    AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver diseases were randomized into two groups.Group 1,comprising 90 patients,received granulocyte colony stimulating factor for five days followed by autologous CD34 + and CD133 + stem cell infusion in the portal vein.Group 2,comprising 50 patients,received regular liver treatment only and served a...

  9. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  10. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  11. Viscoelastic behaviour of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leong Kam W

    2008-07-01

    Full Text Available Abstract Background In this study, we have investigated the viscoelastic behaviour of individual human adult bone marrow-derived mesenchymal stem cells (hMSCs and the role of F-actin filaments in maintaining these properties, using micropipette aspiration technique together with a standard linear viscoelastic solid model. Results Under a room temperature of 20°C, the instantaneous and equilibrium Young's modulus, E0 and E∞, were found to be 886 ± 289 Pa and 372 ± 125 Pa, respectively, while the apparent viscosity, μ, was 2710 ± 1630 Pa·s. hMSCs treated with cytochalasin D up to 20 μM at 20°C registered significant drop of up to 84% in stiffness and increase of up to 255% in viscosity. At the physiological temperature of 37°C, E0 and E∞ have decreased by 42–66% whereas μ has increased by 95%, compared to the control. Majority of the hMSCs behave as viscoelastic solid with a rapid initial increase in aspiration length and it gradually levels out with time. Three other types of non-typical viscoelastic behavior of hMSCs were also seen. Conclusion hMSCs behave as viscoelastic solid. Its viscoelstic behaviour are dependent on the structural integrity of the F-actin filaments and temperature.

  12. Mesenchymal stem cells and inflammatory lung diseases.

    Science.gov (United States)

    Iyer, S S; Co, C; Rojas, M

    2009-03-01

    Mesenchymal stem cells (MSCs) are emerging as a therapeutic modality in various inflammatory disease states. A number of ongoing randomized Phase I/II clinical trials are evaluating the effects of allogeneic MSC infusion in patients with multiple sclerosis, graft-versus-host disease, Crohn's disease, and severe chronic myocardial ischemia. MSCs are also being considered as a potential therapy in patients with inflammatory lung diseases. Several studies, including our own, have demonstrated compelling benefits from the administration of MSCs in animal models of lung injury. These studies are leading to growing interest in the therapeutic use of MSCs in inflammatory lung diseases. In this Review, we describe how the immunoregulatory effects of MSCs can confer substantial protection in the setting of lung diseases such as acute lung injury, chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. We also address potential pitfalls related to the therapeutic use of MSCs in fibrotic lung diseases such as idiopathic pulmonary fibrosis. In addition, we identify emerging areas for MSC- based therapies in modulating oxidative stress and in attenuating inflammation in alcohol-related acute lung injury. PMID:19352305

  13. Mesenchymal stem cells: from experiment to clinic

    Directory of Open Access Journals (Sweden)

    Otto William R

    2011-09-01

    Full Text Available Abstract There is currently much interest in adult mesenchymal stem cells (MSCs and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.

  14. 经冠状动脉自体骨髓间充质干细胞移植治疗急性心肌梗死:3个月疗效随访%Intracoronary transplantation of autologous bone marrow mesenchymal stem cells in the treatment of acute myocardial infarction: A 3-month follow-up on the therapeutic effect

    Institute of Scientific and Technical Information of China (English)

    林松; 吴承权; 何晓红; 段宝祥; 陈绍良; 叶飞; 方五旺; 马玉玲; 单守杰; 周陵; 张俊杰; 王峰

    2006-01-01

    ,(44±18)%,P<0.05);代谢缺损面积治疗后较治疗前明显减少((33±17)%,(43±21)%,P<0.05);治疗前共有199个节段血流灌注及糖代谢缺损匹配,判定为坏死心肌,治疗后79个节段血流灌注代谢明显改善,仍有120个节段血流灌注、糖代谢无明显改善(P<0.05).⑥超声心动图结果:患者术后射血分数值术后显著大于术前[(53±8)%,(42±7)%,P<0.05].结论:经冠状动脉途径植入人骨髓间充质干细胞治疗心肌梗死,方法简单易行,治疗后梗死面积明显减少,坏死区域心肌血流灌注、代谢改善,术前判定为无存活心肌节段术后明显减少,患者心功能得到改善.%BACKGROUND: The area of myocardial infarction is the determinative factor of acute myocardial infarction prognosis. Amelioration of blood transportation and replacement therapy can reduce infarction area. Bone marrow mesenchymal stem cells can differentiate into cardiovascular tissue and are easy to obtain. After cultured and expanded in vitro, they can become the ideal cells for cardiovascular replacement therapy.OBJECTIVE: To evaluate the therapeutic effect of intracoronary transplantation of bone marrow mesenchymal stem cells in the treatment of myocardial infarction. DESIGN: Self-control observation taking the patients as subjects.SETTING: Department of Cardiology, Department of Nuclear Medicine,Echocardiogram Room, Nanjing First Hospital Affiliated to Nanjing Medical University.PARTICIPANTS: Totally 20 patients with acute myocardial infarction who received the therapy of bone marrow mesenchymal stem cells transplantation in the Department of Cardiology, Nanjing First Hospital Affiliated to Nanjing Medical University during March 2003 to March 2004 were recurited. Informed consents were obtained from the patients, and the complete postoperative follow up was over 3 months. The patients include 15 male and 5 female, and they were aged (64±10) years.METHODS: All the patients underwent

  15. MRI assessment of acute myocardial infarction with transplantation of autologous mesenchymal stem cells in swine:an experimental study%MRI评价骨髓问质干细胞治疗猪急性心肌梗死效果的实验研究

    Institute of Scientific and Technical Information of China (English)

    陆敏杰; 赵世华; 钱海燕; 蒋世良; 韦云青; 闫朝武; 杨跃进; 刘玉清

    2008-01-01

    目的 应用MRI评价经冠状动脉途径移植猪自体骨髓间质干细胞(BM-MSCs)治疗急性心肌梗死(AMI)的治疗效果.方法 8月龄中华小型猪14只[(27±3)kg],平均分成移植组与对照组.胶圈套扎左前降支第一对角支分叉以远90 min后松开,建成AMI模型.心肌梗死后1周进行细胞移植,将干细胞悬液(移植组:1×106/ml × 10 ml)或无血清培养液(DMEM)(对照组10 ml)经微导管注入前降支.AMI术后1周(基线)和MSCs移植后6周(终点)各行1次MR扫描,评价移植前后心脏形态、功能、心肌灌注及延迟增强.第2次MR扫描后立即处死动物,分别行冰冻切片、石蜡切片和电镜观察.结果 与对照组比较,移植组在移植6周后左心室整体功能较前明显改善,实验组与对照组比较,左心室平均射血分数(EF)值从(42.7±7.5)%升至(50.1±10.1)%(P<0.01),左心室节段运动异常数平均减少4个(P<0.01)、梗死面积减少3.2 cm2(P<0.01),心脏重量指数增加4.1 g/m2(P<0.05).病理证实移植组梗死区和梗死周边的病变情况显著轻于对照组,有大量存活心肌,纤维化程度显著减轻;并且可见核大、边集,胞质丰富的幼稚细胞;在梗死区和梗死周边区组织的冰冻切片上可见4-6-二脒基二苯基吲哚(DAPI)阳性的移植细胞存活.免疫荧光检测进一步表明大部分DAPI阳性细胞表达心肌特异性肌钙蛋白T(troponin T),并且表达间隙连接蛋白43(connexin 43).部分DAPI阳性细胞表达平滑肌肌动蛋白(smooth muscle actin)和血管性血友病因子(Von Willebrand),移植组梗死周边区毛细血管密度显著高于对照组[分别为(8.7±2.0)、(4.9±1.3)个/高倍镜](P<0.01).结论 MRI可作为猪BM-MSCs在体移植前后评价其治疗效果的可靠影像检查方法 .%Objective To investigate the effects of autologous bone marrow-derived mesenchymal stem cells (MSCs)transplantation on acute myocardial infarction in swine models using MRI. Methods

  16. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells

    OpenAIRE

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-01-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental ...

  17. New perspectives in human stem cell therapeutic research

    OpenAIRE

    Trounson Alan

    2009-01-01

    Abstract Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action o...

  18. Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell.

    Science.gov (United States)

    Ge, Lite; Jiang, Miao; Duan, Da; Wang, Zijun; Qi, Linyu; Teng, Xiaohua; Zhao, Zhenyu; Wang, Lei; Zhuo, Yi; Chen, Ping; He, Xijing; Lu, Ming

    2016-01-01

    Nasal olfactory mucosa mesenchymal stem cells (OM-MSCs) have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement. However, the secreted proteomics of OM-MSCs have not been reported yet. Here, proteins secreted by OM-MSCs cultured in serum-free conditions were separated on SDS-PAGE and identified by LC-MS/MS. As a result, a total of 274 secreted proteins were identified. These molecules are known to be important in neurotrophy, angiogenesis, cell growth, differentiation, and apoptosis, and inflammation which were highly correlated with the repair of central nervous system. The proteomic profiling of the OM-MSCs secretome might provide new insights into their nature in the neural recovery. However, proteomic analysis for clinical biomarkers of OM-MSCs needs to be further studied. PMID:26949398

  19. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  20. Impact of autologous bone marrow mesenchymal stem cell mobilization on neurological function recovery after minimally invasive surgery with cerebral hemorrhage%脑出血微创术后自体骨髓间充质干细胞动员对神经功能恢复的影响

    Institute of Scientific and Technical Information of China (English)

    胡炜; 胡维; 杨枫

    2014-01-01

    目的:观察脑出血大鼠微创术后骨髓间充质干细胞(BMSCs)动员对神经功能的影响。方法将45只大鼠建立脑出血模型后,随机分为两组,对照组(n=20,行微创引流手术)和治疗组(n=25,微创引流手术后3~5 d开始BMSCs动员)。术前当天及术后2、4、8周行Garcia神经功能量表评分,术前当天、术后2周测定外周血CD133+、CD34+细胞数,术前及术后2、4、8周行肝肾功能检查。结果两组术后Garcia量表分值均显著高于术前(P<0.05),治疗组术后各时间点Garcia神经功能量表分值显著高于对照组(P<0.05)。术后2周,治疗组外周血CD133+、CD34+细胞在单核细胞(MNCs)中的比例明显高于对照组(P<0.05)。BMSCs 动员后肝肾功能检查指标均正常。结论大鼠脑出血微创术后早期进行 BMSCs 动员,没有肝肾功能损伤,并可促进神经功能恢复。%Objective To observe the impact of autologous bone marrow mesenchymal stem cells (BMSCs) mobilization on neurological function recovery after cerebral hemorrhage minimally invasive surgery in rats.Methods After experimental intracerebral hemorrhage models was established, 45 SD rats were divided into two groups randomly, control group rats (20 rats, minimal invasive hematoma aspiration after modeling) and treated group (25 rats, begin BMSCs mobilization after aspiration 3-5 days). Garcia scales were performed at pre-modeling and 1, 4, 8 weeks post aspiration, CD133+, CD34+cell counts were measured in peripheral blood at pre-modeling and 2 weeks post aspiration, liver and renal function were performed in each group at 1, 3 months post BMSCs mobilization.Results Postoperative Garcia scores were significantly higher than those preoperative (P<0.05) in two groups, postoperative Garcia scores in treated group were significantly higher (P<0.05) than those in control group. Two weeks postoperation, the proportion of CD133+, CD34+ cells in

  1. Efficacy of autologous transplantation of bone marrow derived mesenchymal stem cells in the treatment of decompensated liver cirrhosis%自体骨髓间充质干细胞移植治疗失代偿期肝硬化的临床疗效观察

    Institute of Scientific and Technical Information of China (English)

    吴锋; 蒲春文; 张勇

    2015-01-01

    Objective To explore the therapeutic efficacy and safety of autologous transplantation of bone marrow (BM) derived mesenchymal stem cells (BMSCs) in the treatment of decompensated liver cirrhosis. Methods Total of 17 patients with decompensated live cirrhosis were enrolled in the study. About 200 ml BM was obtained from each patient to isolate the MSCs. The BMSCS were isolated and purified by the density centrifugation method in our stem cell laboratory. The purified BMSCs (20 ml, suspended in normal saline) were transplanted into the liver via left hepatic artery. The improvement in symptoms, signs, and blood biochemistry were observed. Results Four weeks after transplantation, 16 (94.1%) patients showed improvement in fatigue, 14 (82.4%) patients had better appetite, and for 12 (70.5%) patients, the ascites decreased or disappeared after one year. No serious adverse reactions and serious postoperative complications occurred. There was a significant decrease in the serum levels of ALT and AST 8 weeks after transplantation (P = 0.0093, 0.0173). Twelve weeks after transplantation, there was significant improvement in the levels of albumin (ALB), cholinesterase (CHE), prothrombin time (PT), prothrombin activity (PTA) and fibrinogen (FIB) (P = 0.039, 0.028, 0.034, 0.041, 0.031, respectively). However, no significant changes were found in serum bilirubin level and the percentage of CD3, CD4, and CD8 (P = 0.895). One year after MSC transplantation, there was a significant improvement in the severity of fibrosis as indicated by improved hepatic fibrosis markers (P = 0.016, 0.049, 0.028, 0.021, respectively). One months after treatment, there was a decrease in the oblique occipital frontal diameter of the hepatic left lobe, and an increase in the superior inferior diameter of the hepatic left lobe by the ultrasonic examination (P = 0.0451, 0.0428). However, the oblique occipital frontal diameter of the right hepatic lobe showed no significant changes. Six months after

  2. Micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix scaffold to treat articular cartilage defects in the knee of pigs%微骨折与自体骨髓间充质干细胞外基质支架修复猪膝关节软骨缺损

    Institute of Scientific and Technical Information of China (English)

    李祥全; 唐成; 宋科荣; 金成哲

    2014-01-01

    BACKGROUND:Micro-fracture surgery method is simple, easy to operate, which is an effective way to treat articular cartilage defects, but there are stil some problems such as regenerated fibrocartilage and regenerated cartilage degradation. Scholars have focused on the use of various methods to improve the micro-fracture effect on repairing cartilage defects. OBJECTIVE:To explore the effects of micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix (aBMSC-dECM) scaffold for treating cartilage defects in minipig models. METHODS:Bone marrow was extracted from the minipigs and bone marrow mesenchymal stem cells were obtained. aBMSC-dECM membranes were col ected. Cross-linking and freeze-drying technology were used to make the three-dimensional porous aBMSC-dECM scaffold. Ful thickness cartilage defects, 2 mm in depth and 6 mm in diameter, were created on the femoral condyles and trochlea grooves of the two knees of the minipigs. The right knees were treated with micro-fracture as control and the left were treated with micro-fracture enhanced by aBMSC-dECM scaffold. Six months later, histological examination and Wakitani score were used to evaluate the cartilage regeneration, and glycosaminoglycans and DNA contents in the regenerative tissue were determined. RESULTS AND CONCLUSION:After 6 months, the tissue treated by micro-fracture enhanced by aBMSC-dECM scaffold got better surface and integrated with the surrounding cartilage. Safranin O and fast green staining and Masson staining showed that the regenerated cartilage of the left knee, with abundant matrix and dense bone trabeculae, was better than that of the right. Wakitani score of the left knee was higher than that of the right. Glycosaminoglycans content of the left knee was much more than that of the right, while the DNA content was lower in the left knee than the right knee. Better results were observed in the left knee undergoing micro-fracture enhanced by a

  3. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up

    NARCIS (Netherlands)

    Bjorkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Beksac, M.; Bosi, A.; Milone, G.; Corradini, P.; Goldschmidt, H.; Witte, T.J.M. de; Morris, C.; Niederwieser, D.; Gahrton, G.

    2011-01-01

    PURPOSE: Results of allogeneic stem-cell transplantation (allo) in myeloma are controversial. In this trial autologous stem-cell transplantation (auto) followed by reduced-intensity conditioning matched sibling donor allo (auto-allo) was compared with auto only in previously untreated multiple myelo

  4. [Advances in the mechanism of mesenchymal stem cells in promoting wound healing].

    Science.gov (United States)

    Zhu, Wenjing; Sun, Haobo; Lyu, Guozhong

    2015-12-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair. Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines. This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  5. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  6. Immunophenotypic characterization of ovine mesenchymal stem cells.

    Science.gov (United States)

    Khan, Mohammad R; Chandrashekran, Anil; Smith, Roger K W; Dudhia, Jayesh

    2016-05-01

    The clinical potential of multipotent mesenchymal stem cells (MSCs) has led to the essential development of analytical tools such as antibodies against membrane-bound proteins for the immunophenotypic characterization of human and rodent cells. Such tools are frequently lacking for emerging large animal models like the sheep that have greater relevance for the study of human musculoskeletal diseases. The present study identified a set of commercial nonspecies specific monoclonal antibodies for the immunophenotypic characterization of ovine MSCs. A protocol combining the less destructive proteolytic activity of accutase and EDTA was initially developed for the detachment of cells from plastic with minimum loss of cell surface antigens. A range of commercially available antibodies against human or rodent MSC antigens were then tested in single and multistain-based assays for their cross-reactivity to bone marrow derived ovine MSCs. Antibody clones cross-reactive to ovine CD73 (96.9% ± 5.9), CD90 (99.6% ± 0.3), CD105 (99.1 ± 1.5), CD271 (97.7 ± 2.0), and MHC1 (94.0% ± 7.2) antigens were identified using previously reported CD29, CD44, and CD166 as positive controls. Multistaining analysis indicated the colocalization of these antigens on MSCs. Furthermore, antibody clones identified to cross-react against white blood cell antigens exhibited either negative (CD117 (0.1% ± 0.1)) or low (MHCII (10.5% ± 16.0); CD31 (14.6% ± 4.2), and CD45 (39.4% ± 31.8)) cross-reactivity with ovine MSCs. The validation of these antibody clones to sheep MSC antigens is essential for studies utilizing this large animal model for stem cell-based therapies. © 2016 International Society for Advancement of Cytometry. PMID:27077783

  7. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  8. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Guang-Ping Ruan

    Full Text Available INTRODUCTION: Renal interstitial fibrosis (RIF is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. METHODS: A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP. These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. RESULTS: Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05 were observed in serum creatinine (SCr (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L and blood urea nitrogen (BUN (119 ± 22 µmol/L to 97 ± 13 µmol/L, indicating improvement in renal function. CONCLUSIONS: We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.

  9. Autologous stem cell transplantation in treatment of aggressive non-Hodgkin's lymphoma

    NARCIS (Netherlands)

    Kluin-Nelemans, Hanneke

    2002-01-01

    There is no doubt that autologous stem cell transplantation is useful for patients with relapsed aggressive non-Hodgkin's lymphoma if they are responsive to the chemotherapy given before the transplantation. A small subset of patients with primary refractory disease still profits from this high dose

  10. File list: His.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...027442,SRX376722,SRX376723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  11. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027439,SRX1027441,SRX1027449,SRX1027452,SRX1027451,SRX1027440 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  12. File list: DNS.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  13. File list: His.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX318103,SRX228666,SRX228665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  14. File list: ALL.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: ALL.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Mesenchymal_stem_cells mm9 All antigens Others Mesenchymal stem ce...X228662,SRX228660,SRX228665,SRX228678,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: ALL.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  18. File list: Pol.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  19. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX228669,SRX228666,SRX228664 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  20. File list: Oth.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  1. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...76722,SRX376723,SRX1027442 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  2. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  3. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228679,SRX228676,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: Pol.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  9. File list: ALL.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  10. Loss of quiescence and impaired function of CD34+/CD38low cells one year following autologous stem cell transplantation

    OpenAIRE

    Woolthuis, Carolien M.; Brouwers-Vos, Annet Z.; Huls, Gerwin; de Wolf, Joost Th. M.; Schuringa, Jan Jacob; Vellenga, Edo

    2013-01-01

    Patients who have undergone autologous stem cell transplantation are subsequently more susceptible to chemotherapy-induced bone marrow toxicity. In the present study, bone marrow primitive progenitor cells were examined one year after autologous stem cell transplantation and compared with normal bone marrow and mobilized peripheral blood stem cells. Post-transplantation bone marrow contained a significantly lower percentage of quiescent cells in the CD34+/CD38low fraction compared to normal b...

  11. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  12. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  13. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes

    Science.gov (United States)

    Ma, Oscar Ka-Fai; Chan, Koon Ho

    2016-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.

  14. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes.

    Science.gov (United States)

    Ma, Oscar Ka-Fai; Chan, Koon Ho

    2016-09-26

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression. PMID:27679683

  15. Isolation and culture of umbilical vein mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D.T. Covas

    2003-09-01

    Full Text Available Bone marrow contains a population of stem cells that can support hematopoiesis and can differentiate into different cell lines including adipocytes, osteocytes, chondrocytes, myocytes, astrocytes, and tenocytes. These cells have been denoted mesenchymal stem cells. In the present study we isolated a cell population derived from the endothelium and subendothelium of the umbilical cord vein which possesses morphological, immunophenotypical and cell differentiation characteristics similar to those of mesenchymal stem cells isolated from bone marrow. The cells were isolated from three umbilical cords after treatment of the umbilical vein lumen with collagenase. The cell population isolated consisted of adherent cells with fibroblastoid morphology which, when properly stimulated, gave origin to adipocytes and osteocytes in culture. Immunophenotypically, this cell population was found to be positive for the CD29, CD13, CD44, CD49e, CD54, CD90 and HLA-class 1 markers and negative for CD45, CD14, glycophorin A, HLA-DR, CD51/61, CD106, and CD49d. The characteristics described are the same as those presented by bone marrow mesenchymal stem cells. Taken together, these findings indicate that the umbilical cord obtained from term deliveries is an important source of mesenchymal stem cells that could be used in cell therapy protocols.

  16. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far.

  17. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    Science.gov (United States)

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL). PMID:27000734

  18. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    Science.gov (United States)

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL).

  19. Autologous tissue patch rich in stem cells created in the subcutaneous tissue

    Institute of Scientific and Technical Information of China (English)

    Ignacio; Garcia-Gomez; Krishnamurthy; P; Gudehithlu; Jose; A; L; Arruda; Ashok; K; Singh

    2015-01-01

    AIM:To investigate whether we could create natural autologous tissue patches in the subcutaneous space for organ repair. METHODS: We implanted the following three types of inert foreign bodies in the subcutaneous tissue of rats to produce autologous tissue patches of different geometries:(1) a large-sized polyvinyl tube(L = 25 mm,internal diameter = 7 mm) sealed at both ends by heat application for obtaining a large flat piece of tissue patch for organ repair;(2) a fine polyvinyl tubing(L = 25 mm,internal diameter = 3 mm) for creating cylindrically shaped grafts for vascular or nerve repair; and(3) a slurry of polydextran particle gel for inducing a bladder-like tissue. Implantation of inert materials was carried out by making a small incision on one or either side of the thoracic-lumbar region of rats. Subcutaneous pockets were created by blunt dissection around the incision into which the inert bodies were inserted(1 or 2 per rat). The incisions were closed with silk sutures,and the animals were allowed to recover. In case of the polydextran gel slurry 5 m L of the slurry was injected in the subcutaneous space using an 18 gauge needle. After implanting the foreign bodies a newly regenerated encapsulating tissue developed around the foreign bodies. The tissues were harvested after 4-42 d of implantation and studied by gross examination,histology,and histochemistry for organization,vascularity,and presence of mesenchymal stem cells(MSCs)(CD271+CD34+ cells). RESULTS: Implanting a large cylindrically shaped polyvinyl tube resulted in a large flat sheet of tissue that could be tailored to a specific size and shape for use as a tissue patch for repairing large organs. Implanting a smaller sized polyvinyl tube yielded a cylindrical tissue that could be useful for repairing nerves and blood vessels. This type of patch could be obtained in different lengths by varying the length of the implanted tube. Implanting a suspension of inert polydextran suspension gave rise to a

  20. Current applications of mesenchymal stem cells for tissue replacement in otolaryngology-head and neck surgery

    Science.gov (United States)

    King, Suzanne N; Hanson, Summer E; Hematti, Peiman; Thibeault, Susan L

    2012-01-01

    Cellular therapy utilizing adult mesenchymal stromal/stem cells (MSCs) may very well revolutionize the treatment of a variety of head and neck diseases through the restoration of normal structure and function. Transplanting allogeneic or autologous MSCs into damaged tissues can serve multiple regenerative functions through their self-renewal, differentiation capacity, immune modulation and secretion of bioactive molecules. Further, trophic factors expressed by MSCs have been shown to influence their microenvironment through the promotion of extracellular matrix remodeling, angiogenesis and wound healing needed to regenerate or replace injured tissues. Although clinical applications of MSC based therapies in Otolaryngology-Head and Neck Surgery are still in their infancy, efforts are being made to understand and exploit MSCs for tissue repair as well as engineering strategies. In this review, we highlight pre clinical and clinical investigations employing MSC based therapies for the reconstruction of bone, cartilage, soft tissue and vocal fold defects. PMID:23671810

  1. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins.

    Science.gov (United States)

    Clough, Bret H; McCarley, Matthew R; Krause, Ulf; Zeitouni, Suzanne; Froese, Jeremiah J; McNeill, Eoin P; Chaput, Christopher D; Sampson, H Wayne; Gregory, Carl A

    2015-01-01

    Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.

  2. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  3. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun;

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  4. Impairment of mesenchymal stem cells derived from oral leukoplakia

    OpenAIRE

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The s...

  5. Collagen scaffold remodeling by human mesenchymal stem cells

    OpenAIRE

    Han, SJ; Chan, BP

    2011-01-01

    Type I collagen has been widely used as scaffold for tissue engineering because of its excellent biocompatibility and negligible immunogenicity. We previously have developed a collagen microencapsulation technology entrapping many cells including human mesenchymal stem cells (hMSCs) in microspheres made of nanofibrous collagen meshwork. Nevertheless, little is understood about how stem cells interact with and remodel the collagen meshwork. This study aims to investigate collagen remodeling by...

  6. Immunomodulation by Mesenchymal Stem Cells in Veterinary Species

    OpenAIRE

    Carrade, Danielle D.; Borjesson, Dori L.

    2013-01-01

    Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. ...

  7. Isolation and culture of umbilical vein mesenchymal stem cells

    OpenAIRE

    D.T. Covas; J.L.C. Siufi; A.R.L. Silva; M. D. Orellana

    2003-01-01

    Bone marrow contains a population of stem cells that can support hematopoiesis and can differentiate into different cell lines including adipocytes, osteocytes, chondrocytes, myocytes, astrocytes, and tenocytes. These cells have been denoted mesenchymal stem cells. In the present study we isolated a cell population derived from the endothelium and subendothelium of the umbilical cord vein which possesses morphological, immunophenotypical and cell differentiation characteristics similar to tho...

  8. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  9. Mesenchymal stem cell therapy in proteoglycan induced arthritis

    NARCIS (Netherlands)

    Swart, J. F.; de Roock, S.; Hofhuis, F. M.; Rozemuller, H.; van den Broek, T.; Moerer, P.; Broere, F.; van Wijk, F.; Kuis, W.; Prakken, B. J.; Martens, a.c.m; Wulffraat, N. M.

    2015-01-01

    Objectives: To explore the immunosuppressive effect and mechanism of action of intraperitoneal (ip) and intra-articular (ia) mesenchymal stem cell (MSC) injection in proteoglycan induced arthritis (PGIA). Methods: MSC were administered ip or ia after establishment of arthritis. We used serial biolum

  10. Human mesenchymal stem cells: from basic biology to clinical applications

    DEFF Research Database (Denmark)

    Abdallah, B M; Kassem, M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are bein...

  11. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid;

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  12. Current view of mesenchymal stem cells biology (brief review

    Directory of Open Access Journals (Sweden)

    Maslova O. A.

    2012-06-01

    Full Text Available Although mesenchymal stem cells (MSC are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed.

  13. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  14. Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche

    OpenAIRE

    Tian Li; Yaojiong Wu

    2011-01-01

    Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.

  15. Optimized patient-trajectory for patients undergoing treatment with high-dose chemotherapy and autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Bartels, Frederik Reith; Smith, Nicholas Simon; Gørløv, Jette Sønderskov;

    2015-01-01

    PURPOSE: Before, during and after autologous hematopoietic stem cell transplantation (HD-ASCT) patients suffer from significant loss of physical function, and experience multiple complications during and after hospitalization. Studies regarding safety and feasibility of physical exercise...

  16. Analysis of the efficacy and prognosis on first-line autologous hematopoietic stem cell transplantation of patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    邹徳慧

    2013-01-01

    Objective To explore the efficacy and prognosis of first-line autologous hematopoietic stem cell transplantation(ASCT) for newly diagnosed patients with multiple myeloma(MM).Methods From January 2005 to

  17. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: A pilot study

    Directory of Open Access Journals (Sweden)

    Sudesh Prabhakar

    2012-01-01

    Full Text Available Background: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with no effective treatment. Stem cell therapy may be one of the promising treatment options for such patients. Aim: To assess the feasibility, efficacy and safety of autologous bone marrow-derived stem cells in patients of ALS. Settings and Design: We conducted an open-label pilot study of autologous bone marrow-derived stem cells in patients with ALS attending the Neurology Clinic of a tertiary care referral centre. Materials and Methods: Ten patients with ALS with mean revised ALS Functional Rating Scale (ALSFRS-R score of 30.2 (± 10.58 at baseline received intrathecal autologous bone marrow-derived stem cells. Primary end point was improvement in the ALSFRS-R score at 90, 180, 270 and 365 days post therapy. Secondary endpoints included ALSFRS-R subscores, time to 4-point deterioration, median survival and reported adverse events. Paired t-test was used to compare changes in ALSFRS-R from baseline and Kaplan-Meier analysis was used for survival calculations. Results: There was no significant deterioration in ALSFRS-R composite score from baseline at one-year follow-up (P=0.090. The median survival post procedure was 18.0 months and median time to 4-point deterioration was 16.7 months. No significant adverse events were reported. Conclusion: Autologous bone marrow-derived stem cell therapy is safe and feasible in patients of ALS. Short-term follow-up of ALSFRS-R scores suggests a trend towards stabilization of disease. However, the benefit needs to be confirmed in the long-term follow-up period.

  18. Mesenchymal Stem Cells: Rising Concerns over Their Application in Treatment of Type One Diabetes Mellitus.

    Science.gov (United States)

    Hashemian, Seyed Jafar; Kouhnavard, Marjan; Nasli-Esfahani, Ensieh

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes.

  19. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Webster Keith A

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSC are pluripotent cells, present in the bone marrow and other tissues that can differentiate into cells of all germ layers and may be involved in tissue maintenance and repair in adult organisms. Because of their plasticity and accessibility these cells are also prime candidates for regenerative medicine. The contribution of stem cell aging to organismal aging is under debate and one theory is that reparative processes deteriorate as a consequence of stem cell aging and/or decrease in number. Age has been linked with changes in osteogenic and adipogenic potential of MSCs. Results Here we report on changes in global gene expression of cultured MSCs isolated from the bone marrow of mice at ages 2, 8, and 26-months. Microarray analyses revealed significant changes in the expression of more than 8000 genes with stage-specific changes of multiple differentiation, cell cycle and growth factor genes. Key markers of adipogenesis including lipoprotein lipase, FABP4, and Itm2a displayed age-dependent declines. Expression of the master cell cycle regulators p53 and p21 and growth factors HGF and VEGF also declined significantly at 26 months. These changes were evident despite multiple cell divisions in vitro after bone marrow isolation. Conclusions The results suggest that MSCs are subject to molecular genetic changes during aging that are conserved during passage in culture. These changes may affect the physiological functions and the potential of autologous MSCs for stem cell therapy.

  20. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells fo

  1. Characterization of mesenchymal stem cells derived from equine adipose tissue

    OpenAIRE

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  2. Labeling of mesenchymal stem cells by bioconjugated quantum dots.

    Science.gov (United States)

    Shah, Bhranti S; Clark, Paul A; Moioli, Eduardo K; Stroscio, Michael A; Mao, Jeremy J

    2007-10-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.

  3. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  4. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    Science.gov (United States)

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD.

  5. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  6. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  7. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  8. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  9. Autologous peripheral blood stem cell transplantation in children and adolescents with non-Hodgkin lymphoma

    OpenAIRE

    Gui, Wei; Su, Liping; He, Jianxia; WANG, LIEYANG; Guan, Tao

    2015-01-01

    The aim of this study was to evaluate the effect and safety of autologous peripheral blood stem cell transplantation (APBSCT) in children and adolescents with non-Hodgkin lymphoma (NHL). Ten patients with NHL were analyzed retrospectively. In all the patients, lymph node enlargement was most frequently detected. Patients with a mediastinal mass presented with a cough, palpitation and shortness of breath. Extranodal patients presented with abdominal pain, inability to walk and vaginal bleeding...

  10. Stomatitis-Related Pain in Women with Breast Cancer Undergoing Autologous Hematopoietic Stem Cell Transplant

    OpenAIRE

    Fall-Dickson, Jane M.; Mock, Victoria; Berk, Ronald A.; Grimm, Patricia M.; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. Hypotheses tested were that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two ...

  11. A Rat Model of Autologous Oral Mucosal Epithelial Transplantation for Corneal Limbal Stem Cell Failure

    Institute of Scientific and Technical Information of China (English)

    Weihua Li; Qiaoli Li; Wencong Wang; Kaijing Li; Shiqi Ling; Yuanzhe Yang; Lingyi Liang

    2014-01-01

    Purpose:.To establish an animal model of autologous oral mucosa grafting for limbal stem cell deficiency. Methods:.The study was carried from August to October 2012. Fourteen SD rats were randomly and evenly allocated to study group A and control group B. Limbal stem cell defi-ciency was established by alkali burn in the right eye of each rat in both groups. Rats in group A received autologous oral mucosa strip transplantation following the chemical burn. Rats in group B did not receive surgery after the chemical burn. Topical antibiotics and dexamethasone were used in all rats. Corneal clarity,.corneal fluorescein staining,.oral mucosal graft survival, and complications at postoperative days 1,3,7, 14 were observed. Results:.The oral mucosa strip graft was detached in one rat in group A. Reepithelialization was observed starting from the graft position and was completed within 14 days in the re-maining 6 eyes in group A. However, persistent corneal ep-ithelium defect was observed in all eyes in group B, among which corneal melting and perforation was observed in 2 eyes and corneal opacification with neovascularization was ob-served in the remaining 5 eyes. Conclusion:.Autologous oral mucosa strip grafting for limbal stem cell deficiency can be achieved by a rat model following chemical burn. The fate of the transplanted oral mucosal ep-ithelial cells warrants further study. (Eye Science 2014; 29:1-5).

  12. Autologous bone marrow stem cells--properties and advantages.

    Science.gov (United States)

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  13. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Hatzfeld, Jacques A.

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  14. Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells.

    Science.gov (United States)

    Crop, Meindert J; Korevaar, Sander S; de Kuiper, Ronella; IJzermans, Jan N M; van Besouw, Nicole M; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2011-01-01

    There is growing interest in the use of mesenchymal stem cells (MSCs) to improve the outcome of organ transplantation. The immunogenicity of MSCs is, however, unclear and is important for the efficacy of MSC therapy and for potential sensitization against donor antigens. We investigated the susceptibility of autologous and allogeneic MSCs for lysis by CD8(+) T-lymphocytes and NK cells in a kidney transplant setting. MSCs were derived from adipose tissue of human kidney donors and were CD90(+), CD105(+), CD166(+), and HLA class I(+). They showed differentiation ability and immunosuppressive capacity. Lysis of MSCs by peripheral blood mononuclear cells (PBMCs), FACS-sorted CD8(+) T cells, and NK cells was measured by europium release assay. Allogeneic MSCs were susceptible for lysis by cytotoxic CD8(+) T cells and NK cells, while autologous MSCs were lysed by NK cells only. NK cell-mediated lysis was inversely correlated with the expression of HLA class I on MSCs. Lysis of autologous MSCs was not dependent on culturing of MSCs in FBS, and MSCs in suspension as well as adherent to plastic were lysed by NK cells. Pretransplant recipient PBMCs did not lyse donor MSCs, but PBMCs isolated 3, 6, and 12 months after transplantation showed increasing lysing ability. After 12 months, CD8(+) T-cell-mediated lysis of donor MSCs persisted, indicating there was no evidence for desensitization against donor MSCs. Lysis of MSCs is important to take into account when MSCs are considered for clinical application. Our results suggest that the HLA background of MSCs and timing of MSC administration are important for the efficacy of MSC therapy. PMID:21396164

  15. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  16. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  17. Umbilical cord mesenchymal stem cell transplantation ameliorates burn-induced acute kidney injury in rats.

    Science.gov (United States)

    Lu, Gang; Huang, Sha; Chen, Yongbin; Ma, Kui

    2013-09-01

    Excessive systemic inflammation following burns could lead to acute kidney injury (AKI). Mesenchymal stromal cells (MSCs) suppress immune cell responses and have beneficial effects in various inflammatory-related immune disorders. However, autologous MSCs are not vital enough for the treatment because of the severely burned patients' deleterious condition. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be a suitable substitute cell candidate but no data are available on the therapeutic effectiveness of UC-MSCs transplantation for burn injury and its consequences. In this study, UC-MSCs or ulinastatin was administered intravenously in the rats with burn trauma, and the therapeutic effects of UC-MSCs on the survival of severe burn-induced AKI rats and functional protection of kidney were analyzed. Results showed that UC-MSCs promoted the survival and prevented commitment to apoptosis of resident kidney cells and reduced organ microscopic damage in kidneys after thermal trauma. Thus, our study demonstrates that intravenously delivered UC-MSCs protected the host from death caused by kidney injury subsequent to severe burn, identifying UC-MSCs transplantation may be an attractive candidate for cell-based treatments for burns and induced organ damage. PMID:24043673

  18. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore the effectiveness of autologous peripheral hematopoietic stem-cell transplantation in the treatment of refractory pemphigus.A 35-year-old male patient presented with a 4-year history of recurrent bullae on his trunk and extremities.The diagnosis of pemphigus was made on the basis of the clinical,histologic and immunofluorescence findings.The patient had shown resistance to conventional therapy with glucocorticoid and immunosuppressive agents.Two months before admission,he complained of hip joint pain.X-ray and CT scan revealed aseptic necrosis of the femoral head.Stem-cell mobilization was achieved by treatment with cyclophosphamide,granulocyte colony-stimulating factor (G-CSF)and rituximab.Peripheral blood stem cells were collected via leukapheresis and cryopreserved for later use.Immunoablation was accomplished by using cyclophosphamide(200 mg/kg;divided into 50 mg/kg on days-5,-4,-3,and-2),antithymocyte globulin(ATG;10 mg/kg;divided into 2.5 mg/kg on days-6,-5,-4,and-3),and rituximab (1200 mg/d;divided into 600 mg/d on days 0 and 7).Autologous peripheral hematopoietic stem cell transplantation was followed by reconstitution of the immune system which was monitored by flow cytometry.The glucocorticoid was withdrawn immediately after transplantation.The pemphigus titer turned negative 6 weeks after transplantation and remained negative.The patient was in complete drug-free remission with no evidence of residual clinical or serological activity of pemphigus during 1 year of followup.The patient's response suggests that autologous peripheral hematopoietic stem cell transplantation may be a potential "cure" for refractory pemphigus.However,further studies are needed to evaluate the risk-benefit ratio of this approach in patients with pemphigus showing resistance to conventional therapy.

  19. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction

    OpenAIRE

    Rostamzadeh; Anjomshoa; Kurd; Chai; Jahangiri; Nilforoushzadeh; Zare

    2015-01-01

    Context Stem cell therapy, especially in the segment of mesenchymal stem cells (MSCs), is one of the most promising areas of regenerative medicine. Evidence Acquisition According to research conducted by various researchers, Wharton’s Jelly mesenchymal stem cells (WJMSCs) have several advantages compared to others sources, in regenerative medicine: WJMSCs are more primary cells; WJMSCs can be easily isolated and without invasive p...

  20. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in the present study, we applied adipose tissue-derived MSCs to osteoarthritis treatment. This study aimed to evaluate the clinical efficiency of autologous adipose tissue-derived MSC transplantation in patients with confirmed osteoarthritis at grade II and III. Adipose tissue was isolated from the belly, and used for extraction of the stromal vascular fraction (SVF. The SVF was mixed with activated platelet- rich plasma before injection. The clinical efficiencies were evaluated by the pain score (VAS, Lysholm score, and MRI findings. We performed the procedure in 21 cases from 2012 to 2013. All 21 patients showed improved joint function after 8.5 months. The pain score decreased from 7.6+/-0.5 before injection to 3.5+/-0.7 at 3 months and 1.5+/-0.5 at 6 months after injection. The Lysholm score increased from 61+/-11 before injection to 82+/-8.1 after injection. Significant improvements were noted in MRI findings, with increased thickness of the cartilage layer. Moreover, there were no side-effects or complications related to microorganism infection, graft rejection, or tumorigenesis. These results provide a new opportunity for osteoarthritis treatment. Level of evidence: IV. [Biomed Res Ther 2014; 1(1.000: 02-08

  1. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacry...

  2. Safety of Mesenchymal Stem Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Youwei Wang

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.

  3. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    OpenAIRE

    Jung, Younghun; Kim, Jin Koo; SHIOZAWA, YUSUKE; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Paul H Krebsbach

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also kno...

  4. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    OpenAIRE

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communicat...

  5. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review

    NARCIS (Netherlands)

    Vonk, L.A.; Windt, de T.S.; Slaper-Cortenbach, Ineke C.M.; Saris, D.B.F.

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, wh

  6. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why : A concise review

    NARCIS (Netherlands)

    Vonk, Lucienne A.; De Windt, Tommy S.; Slaper-Cortenbach, Ineke C M; Saris, Daniël B F

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, wh

  7. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    Directory of Open Access Journals (Sweden)

    Christopher J. Forlenza

    2015-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT, a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days + thiotepa (300 mg/m2/day for 3 days ± topotecan (2 mg/m2/day for 5 days. All patients were engrafted and there was no treatment-related mortality. Seventeen patients received radiotherapy to sites of prior or residual disease at a median of 12 weeks after transplant. Five-year event-free and overall survival were 11 ± 7% and 16 ± 8%, respectively. Two patients survive disease-free 16 and 19 years after transplant (both in complete remission before transplant. 14 patients had progression and died of disease at a median of 18 months following autologous transplant. These data do not justify the use of myeloablative chemotherapy with carboplatin plus thiotepa in patients with DSRCT. Alternative therapies should be considered for this aggressive neoplasm.

  8. Mesenchymal stem cells in diabetes treatment: progress and perspectives

    Directory of Open Access Journals (Sweden)

    Yu CHENG

    2016-08-01

    Full Text Available Diabetes is a chronic metabolic disorder caused by relative or absolute insulin deficient or reduced sensitivity of target cells to insulin. Mesenchymal stem cells (MSCs are adult stem cells with multiple differentiation potential, self-renewable and immunoregulatory properties. Accumulating evidences from clinic or animal experiments recent years showed that MSCs infusion could ameliorate hyperglycemia in diabetes. The research progress of MSCs in diabetes treatment is summarized and a corresponding perspective is herewith proposed in present paper. DOI: 10.11855/j.issn.0577-7402.2016.07.16

  9. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  10. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  11. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Science.gov (United States)

    Potdar, PD; Subedi, RP

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia. PMID:24693170

  12. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Directory of Open Access Journals (Sweden)

    Pravin D. Potdar

    2011-01-01

    Full Text Available Acute Lymphocytic Leukemia (ALL is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia.

  13. Bone marrow mesenchymal stem cell transplantation combined with core decompression and bone grafting in the repair of osteonecrosis of femoral head

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Wang Nan; Yang Li-feng; Ma Ji; Li Zhi

    2015-01-01

    BACKGROUND: Core decompression alone for osteonecrosis of femoral head easily causes fovea of femoral head and colapse of inner microstructure. Therefore, autologous bone is needed for filing and supporting. Moreover, bone marrow stem cel transplantation can decrease the incidence of femoral head colapse. OBJECTIVE:To discuss the clinical effects of core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels for osteonecrosis of femoral head. METHODS: A total of 33 patients were treated by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels in the Fourth Department of Bone Surgery, Central Hospital Affiliated to Shenyang Medical Colege in China from December 2012 to May 2013. RESULTS AND CONCLUSION:After the treatment by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels, Harris hip function score increased and pain disappeared in patients with osteonecrosis of femoral head. They could do various labors. Radiographs or CT examination displayed normal femoral head in 30 hips, accounting for 79%. Pain significantly reduced. Normal or slight limp walking was found in 15 hips, accounting for 40%. There were 35 hips in patients, whose walking distance was extended, accounting for 92%. 24 hips dysfunction was improved markedly, accounting for 63%. Al results suggested that core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels improved the local blood supply of femoral head, and played a positive role in promoting the necrotic bone absorption and bone repairing.

  14. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  15. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Science.gov (United States)

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  16. Bone mesenchymal stem cell sheet transplantation combined with autologous iliac bone for repair of alveolar cleft%骨髓间充质干细胞膜片复合自体髂骨移植修复牙槽嵴裂

    Institute of Scientific and Technical Information of China (English)

    沈悦; 马海英; 张彦升; 王娟; 时炳正

    2014-01-01

    BACKGROUND:Autogenous iliac bone graft for repair of alveolar cleft often cannot achieve a stable therapeutic effect, and the graft resorption rate varies with each individual that is influenced by many factors. OBJECTIVE:To observe the bone resorption after bone marrow mesenchymal stem cel sheet transplantation with autogenous iliac cancelous bone for alveolar cleft repair. METHODS:Bilateral alveolar cleft models were prepared in dogs. Using the self-control method, bone marrow mesenchymal stem cel sheet combined with autogenous iliac bone (experimental group) and autogenous iliac bone alone (control group) were respectively implanted into the bilateral alveolar clefts. Mandible CT and microCT were used to compare the bone resorption rate, bone volume fraction, trabecular thickness, trabecular separation, and bone mineral density. RESULTS AND CONCLUSION:The bone resorption rate was significantly lower in the experimental group than the control group at 3 and 6 postoperative months (P 0.05). These findings indicate that bone marrow mesenchymal stem cel sheet transplantation combined with autogenous iliac bone graft can reduce bone resorption rate and meanwhile, promote new bone formation.%背景:临床上使用自体髂骨移植方法修复牙槽嵴裂,常常不能获得稳定的治疗效果,移植骨吸收率因人而异,受到许多因素的影响。  目的:观察骨髓间充质干细胞膜片复合自体髂骨松质骨块移植修复牙槽嵴裂术后的骨吸收情况。  方法:制备实验犬双侧牙槽嵴裂模型,采用自体对照的办法,在实验犬上颌骨两侧的裂隙分别植入骨髓间充质干细胞膜片复合犬自体髂骨骨块(实验组)和单纯犬自体髂骨骨块(对照组)。通过颌骨CT及micro CT对植骨区的骨吸收率、骨体积分数、骨小梁厚度、骨小梁分离度、骨密度进行比较。  结果与结论:术后3,6个月时实验组的骨吸收率明显低于对照组,差

  17. Our Experience with Autologous Bone Marrow Stem Cell Application in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mukund K

    2009-01-01

    Full Text Available Background - Use of autologous bone marrow stem cell is a newly evolving treatment modality for end stage cardiac failure as reported in the literature. We report our experience with two patients with dilated cardiomyopathy who underwent this treatment after failure of maximal conventional therapy. Methods - A 29 year old Male patient with history of orthopnea and PND, with a diagnosis of dilated cardiomyopathy and echocardiographic evidence of severe LV dysfunction was referred for further treatment. His echo on admission showed EF of 17% and no other abnormal findings except elevated bilirubin levels. He was in NYHA functional class IV. He received intracoronary injection of autologous bone marrow stem cells in January 2009. 254X106 cells were injected with a CD34+ of 0.20%. His clinical condition stabilized and he was discharged home. He received a second injection of 22X106 in vitro expanded stem cells with a CD34+ of 0.72% in Aug 2009. He is now in NYHA class II-III with EF 24%. A 31year old Male patient with history of increasing shortness of breath, severe over the past 3-4 days was admitted for evaluation and treatment. His echo on admission showed EF of 20% and was in NYHA functional class IV. Coronary angiogram was normal and he was stabilized on maximal anti failure measures. He received intracoronary autologous bone marrow stem cell injection of 56X106 with a CD34+ of 0.53% in August 2009. His clinical condition stabilized over the next 10 days and he was discharged home. Conclusions - In our experience of two cases of dilated cardiomyopathy, safety of intracoronary injection of autologous bone marrow stem cells both isolated and in vitro expanded has been proven in both the cases with efficacy proven in one of the cases. Long term follow-up of these two cases and inclusion of more number of similar cases where all available conventional therapies have not resulted in significant improvement for such studies are planned.

  18. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series

    Directory of Open Access Journals (Sweden)

    Pak Jaewoo

    2011-07-01

    Full Text Available Abstract Introduction This is a series of clinical case reports demonstrating that a combination of percutaneously injected autologous adipose-tissue-derived stem cells, hyaluronic acid, platelet rich plasma and calcium chloride may be able to regenerate bones in human osteonecrosis, and with addition of a very low dose of dexamethasone, cartilage in human knee osteoarthritis. Case reports Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. These stem cells, along with hyaluronic acid, platelet rich plasma and calcium chloride, were injected into the right hip of a 29-year-old Korean woman and a 47-year-old Korean man. They both had a history of right hip osteonecrosis of the femoral head. For cartilage regeneration, a 70-year-old Korean woman and a 79-year-old Korean woman, both with a long history of knee pain due to osteoarthritis, were injected with stem cells along with hyaluronic acid, platelet rich plasma, calcium chloride and a nanogram dose of dexamethasone. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. Conclusions The MRI data for all the patients in this series showed significant positive changes. Probable bone formation was clear in the patients with osteonecrosis, and cartilage regeneration in the patients with osteoarthritis. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous mesenchymal stem cell injection, in conjunction with hyaluronic acid, platelet rich plasma and calcium chloride, is a promising minimally invasive therapy for osteonecrosis of femoral head and, with low-dose dexamethasone, for osteoarthritis of human knees.

  19. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Cella Luigi

    2011-08-01

    Full Text Available Abstract Purpose Bisphosphonate - related osteonecrosis of the JAW (BRONJ is a well known side effect of bisphosphonate therapies in oncologic and non oncologic patients. Since to date no definitive consensus has been reached on the treatment of BRONJ, novel strategies for the prevention, risk reduction and treatment need to be developed. We report a 75 year old woman with stage 3 BRONJ secondary to alendronate and pamidronate treatment of osteoporosis. The patient was unresponsive to recommended treatment of the disease, and her BRONJ was worsening. Since bone marrow stem cells are know as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone and other tissue, we performed autologous bone marrow stem cell transplantation into the BRONJ lesion of the patient. Methods Under local anesthesia a volume of 75 ml of bone marrow were harvested from the posterior superior iliac crest by aspiration into heparinized siringes. The cell suspension was concentrated, using Ficoll - Hypaque® centrifugation procedures, in a final volume of 6 ml. Before the injection of stem cells into the osteonecrosis, the patient underwent surgical toilet, local anesthesia was done and spongostan was applied as a carrier of stem cells suspension in the bone cavity, then 4 ml of stem cells suspension and 1 ml of patient's activated platelet-rich plasma were injected in the lesion of BRONJ. Results A week later the residual spongostan was removed and two weeks later resolution of symptoms was obtained. Then the lesion improved with progressive superficialization of the mucosal layer and CT scan, performed 15 months later, shows improvement also of bone via concentric ossification: so complete healing of BRONJ (stage 0 was obtained in our patient, and 30 months later the patient is well and without signs of BRONJ. Conclusion To our knowledge this is the first case of BRONJ successfully treated with

  20. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  1. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  2. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc.

  3. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc. PMID:26960183

  4. The beneficial effects of intracoronary autologous bone marrow stem cell transfer as an adjunct to percutaneous coronary intervention in patients with acute myocardial infarction.

    Science.gov (United States)

    Wang, Xiang; Xi, Wei-Chun; Wang, Fang

    2014-11-01

    The efficacy of post-percutaneous coronary intervention (PCI) intracoronary injection with bone marrow mesenchymal stem cells (BMSCs) in patients with acute myocardial infarction (AMI) remains controversial. Here, 58 patients with AMI undergoing PCI were randomly divided into two groups: BMSC and control groups. Autologous BSMCs were then generated in vitro from the BMSC patients. After transplantation, left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimensions (LVDd), and infarct size (IS) were evaluated in both groups. LVEF, LVDd, and IS improved after BMSC transplantation but the changes were not significantly different from those in the controls. The number of adverse events and rehospitalization rates after 1 month were significantly higher in the control group than in the BMSC group. BMSC transplantation thus benefits patients by decreasing the number of adverse events and reducing the rehospitalization rate in the early stages following PCI. PMID:24975729

  5. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    OpenAIRE

    Hilary Jane Anderson; Matthew John Dalby; Jugal eSahoo; Rein eUljin

    2016-01-01

    Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC) and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson...

  6. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair

    OpenAIRE

    Zhang, Zhiwei; Yang, Junjie; Yan, Weiya; Li, Yangxin; Shen, Zhenya; Asahara, Takayuki

    2016-01-01

    Background Exosomes derived from mesenchymal stem cells (MSCs) were proved to boost cell proliferation and angiogenic potency. We explored whether cardiac stem cells (CSCs) preconditioned with MSC exosomes could survive and function better in a myocardial infarction model. Methods and Results DiI‐labeled exosomes were internalized with CSCs. They stimulated proliferation, migration, and angiotube formation of CSCs in a dose‐dependent manner. In a rat myocardial infarction model, MSC exosome–p...

  7. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt;

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  8. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  9. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells.

    Science.gov (United States)

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

  10. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    John Michel

    2015-01-01

    Full Text Available Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs published in the last three years.

  11. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  12. The role of mesenchymal stem cells and serotonin in the development of experimental pancreatitis.

    Science.gov (United States)

    Lazebnic, L B; Lychkova, A E; Knyazev, O V

    2013-08-01

    Pancreatitis was modeled before and after preliminary transplantation of stem cells and serotonin. It was demonstrated that transplantation of mesenchymal stem cells and activation of serotoninergic system prevent the development of pancreatitis. PMID:24143388

  13. Novel therapy for type 1 diabetes: autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Li, Lirong; Gu, Weiqiong; Zhu, Dalong

    2012-12-01

    Type 1 diabetes is characterized pathologically by autoimmune insulitis-related islet β-cell destruction. Although intensive insulin therapy for patients with type 1 diabetes can correct hyperglycemia, this therapy does not prevent all diabetes-related complications. Recent studies have shown that autologous hematopoietic stem cell transplantation (HSCT) is a promising new approach for the treatment of type 1 diabetes by reconstitution of immunotolerance and preservation of islet β-cell function. Herein we discuss the therapeutic efficacy and potential mechanisms underlying the action of HSCT and other perspectives in the clinical management of type 1 diabetes.

  14. Outcome determinants for Transformed Indolent Lymphomas treated with or without Autologous Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Madsen, C; Pedersen, M B; Vase, M Ø;

    2015-01-01

    of autologous stem-cell transplantation (ASCT) is still debated. The purpose of this study was to determine whether the outcome of TIL patients improved if they, at transformation, also received ASCT. Furthermore, we investigated the outcome of cases with histologically low- and high-grade components diagnosed......%; P = 0.07; PFS 53% versus 6%; P = 0.002), regardless of prior rituximab therapy. The beneficial effect of ASCT was significantly higher in patients who had not received rituximab at IL stage. CONCLUSIONS: ASCT improved the outcome in sequential, but not composite/discordant TIL. The beneficial impact...

  15. A question of ethics: selling autologous stem cell therapies flaunts professional standards.

    Science.gov (United States)

    Munsie, Megan; Hyun, Insoo

    2014-11-01

    The idea that the body's own stem cells could act as a repair kit for many conditions, including cardiac repair, underpins regenerative medicine. While progress is being made, with hundreds of clinical trials underway to evaluate possible autologous cell-based therapies, some patients and physicians are not prepared to wait and are pursuing treatments without evidence that the proposed treatments are effective, or even safe. This article explores the inherent tension between patients, practitioners and the need to regulate the development and commercialization of new cellular therapies--even when the cells come from the patient.

  16. [Outcomes of using autologous peripheral-blood stem cells in patients with chronic lower arterial insufficiency].

    Science.gov (United States)

    Maksimov, A V; Kiiasov, A P; Plotnikov, M V; Maianskaia, S D; Shamsutdinova, I I; Gazizov, I M; Mavlikeev, M O

    2011-01-01

    Presented herein are the outcomes of using autologous peripheral blood stem cells (SCs) in patients with stage II В lower limb chronic obliterating diseases (according to A.V. Pokrovsky's classification). Autologous SCs had previously been stimulated by means of the recombinant granulocytic colony stimulating factor (G-CSF) for five days. On day six, we performed mobilization of the peripheral blood stem cells on the MSC+ unit by means of leukopheresis followed by intramuscular administration of half of the obtained dose into the affected extremity. The mean number of the transplanted mononuclears amounted to 6.73 ± 2.2 x 10(9) cells, with the number of CD34+ cells averaging 2.94 ± 2.312 x 10(7). Assessing the therapeutic outcomes at 3 and 6 months of follow-up showed a statistically significant increase in the ankle-brachial pressure index (ABPI) [being at baseline 0.59 ± 0.04, at 3 months - 0.66 ± 0.04 (P=0.001), and after 6 months - 0.73 ± .08 (P=0.035)], accompanied and followed by improved measures of the treadmill test, with the pain-free walking distance at baseline equalling 102.2 ± 11.55 m, after 3 months - 129 ± 11.13 m (P<0.001), and after 6 months - 140 ± 13.11 m=0.021 vs baseline). The findings of the immunohistochemical study confirmed the development of neoangiogenesis in the skeletal muscle and a 25 percent increase in the capillary-network density following administration of autologous stem cells into the muscle. The method of transplanting peripheral-blood autologous stem cells for treatment of patients presenting with distal forms of chronic obliterating insufficiency of the lower limbs proved safe and efficient. The findings obtained during this study made it possible to recommend extending the indications for its application at the expense of patients with critical ischaemia. PMID:21983456

  17. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nooka, Ajay K; Johnson, Heather R; Kaufman, Jonathan L; Flowers, Christopher R; Langston, Amelia; Steuer, Conor; Graiser, Michael; Ali, Zahir; Shah, Nishi N; Rangaraju, Sravanti; Nickleach, Dana; Gao, Jingjing; Lonial, Sagar; Waller, Edmund K

    2014-06-01

    Trials have shown benefits of palifermin in reducing the incidence and severity of oral mucositis in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI)-based conditioning regimens. Similar outcome data are lacking for patients receiving non-TBI-based regimens. We performed a retrospective evaluation on the pharmacoeconomic benefit of palifermin in the setting of non-TBI-based conditioning and autologous HSCT. Between January 2002 and December 2010, 524 patients undergoing autologous HSCT for myeloma (melphalan 200 mg/m²) and lymphoma (high-dose busulfan, cyclophosphamide, and etoposide) as preparative regimen were analyzed. Use of patient-controlled analgesia (PCA) was significantly lower in the palifermin-treated groups (myeloma: 13% versus 53%, P inflation (myeloma: $167,820 versus $143,200, P < .001; lymphoma: $168,570 versus $148,590, P < .001). Palifermin treatment was not associated with a difference in days to neutrophil engraftment, length of stay, and overall survival and was associated with an additional cost of $5.5K (myeloma) and $14K (lymphoma) per day of PCA avoided. Future studies are suggested to evaluate the cost-effectiveness of palifermin compared with other symptomatic treatments to reduce transplant toxicity using validated measures for pain and quality of life. PMID:24607557

  18. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    Science.gov (United States)

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  19. Differences in heat sensitivity between normal and acute myeloid leukemic stem cells : Feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts

    NARCIS (Netherlands)

    Wierenga, PK; Setroikromo, R; Kamps, G; Kampinga, HH; Vellenga, E

    2003-01-01

    Objectives. In autologous stem cell transplantation contamination of the graft with malignant cells is frequently noticed and necessitates the use of in vivo or in vitro purging modalities. The hematopoietic recovery after transplantation depends on the number of stem and progenitor cells in the tra

  20. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Cerwinka Wolfgang H

    2012-06-01

    Full Text Available Abstract To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  1. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Gao

    2014-02-01

    Full Text Available The use of amnion and amniotic fluid (AF are abundant sources of mesenchymal stem cells (MSCs that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC. The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  2. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  3. File list: InP.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Input control Others Mesenchymal stem c...ells SRX318104,SRX318102,SRX228663,SRX228662,SRX228660,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: NoD.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302072,ERX302066,ERX302075,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: NoD.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302073,ERX302070,ERX302072,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: NoD.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Mesenchymal_stem_cells mm9 No description Others Mesenchymal stem ...cells SRX694677,SRX694678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252,SRX8.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  19. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831258,SRX8.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  4. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  5. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831254,SRX8.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. Infusion of Autologous Retrodifferentiated Stem Cells into Patients with Beta-Thalassemia

    Directory of Open Access Journals (Sweden)

    Ilham Saleh Abuljadayel

    2006-01-01

    Full Text Available Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion–induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed “retrodifferentiation”, with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean

  18. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  19. Mesenchymal stem cell therapy for acute radiation syndrome.

    Science.gov (United States)

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  20. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  1. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  2. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  3. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  4. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  5. The role of autologous haemopoietic stem cell transplantation in the treatment of autoimmune disorders.

    Science.gov (United States)

    Rebeiro, P; Moore, J

    2016-01-01

    Autologous haemopoietic stem cell transplantation (HSCT) has been used for over 30 years for malignant haematological diseases, such as myeloma and lymphoma, with considerable success. More recently this procedure has been adopted as a form of high dose immunosuppression in selected patients with autoimmune diseases that are resistant to conventional therapies. Animal models have previously outlined the rationale and validity of HSCT in patients with these non-malignant, but in many cases, life-threatening conditions. Recent data have that deletion of putative autoreactive immune clones with reconstitution of a thymic driven, tolerant immune system occurs in HSCT for auto-immune patients. Two randomised control trials have confirmed that HSCT is superior to monthly cyclophosphamide in systemic sclerosis with a highly significant disease free and overall survival benefit demonstrated in the Autologous Stem cell Transplantation International Scleroderma trial. Over 2000 patients worldwide with autoimmune conditions have been treated with HSCT - the commonest indications being multiple sclerosis (MS) and systemic sclerosis. Encouraging relapse free survival of 70-80% at 4 years, in heavily pre-treated MS patients, has been demonstrated in Phase II trials. A Phase III trial in MS patients who have failed interferon is currently accruing patients. Future challenges include improvements in safety of HSCT, particularly in cardiac assessment of systemic sclerosis patients, cost-benefit analyses of HSCT compared to standard therapy and establishment of centres of excellence to continue to enhance the safety and benefit of this exciting new therapy. PMID:26524106

  6. Autologous Stem Cell Injection for Spinal Cord Injury - A Clinical Study from India.

    Directory of Open Access Journals (Sweden)

    Ravikumar R

    2007-01-01

    Full Text Available We studied 100 patients with Spinal Cord injury (SCI after Autologous Stem cell Injection in the Spinal fluid with a Follow up of 6 months post Stem cell injection. There were 69 males and 31 females; age ranging from 8 years to 55 years.? Time after Spinal Injury ranged from 11 years - 3 months (Average: 4.5 years. The Level of Injury ranged from Upper Thoracic (T1-T7 - 34 pts, Lower thoracic (T7-T12 -45 pts, Lumbar -12, Cervical-9 pts. All patients had an MRI Scan, urodynamic study and SSEP (somatosensory Evoked Potential tests before and 3 months after Stem cell Injection.80% of patients had Grade 0 power in the Lower limbs and rest had grade 1-2 power before stem cell injections. 70% of cases had complete lack of Bladder control and 95% had reduced detrusor function.We Extracted CD34 and CD 133 marked Stem cells from 100 ml of Bone marrow Aspirate using Ficoll Gradient method with Cell counting done using flowcytometry.15 ml of the Stem cell concentrate was injected into the Lumbar spinal fluid in aseptic conditions. The CD 34/CD45 counts ranged from 120-400 million cells in the total volume.6 months after Injection, 8 patients had more than 2 grades of Motor power improvement, 3 are able to walk with support. 1 patient with T12/L1 injury was able to walk without support. 12 had sensory tactile and Pain perception improvement and 8 had objective improvement in bladder control and Bladder Muscle contractility. A total of 18 patients had reported or observed improvement in Neurological status. 85% of patients who had motor Improvement had Lesions below T8. MRI, SSEP and Urodynamic Study data are gathered at regular intervals. Conclusion: This study shows that Quantitative and qualitative Improvement in the Neurological status of paralyzed patients after Spinal cord injury is possible after autologous bone marrow Stem cell Injections in select patients. There was no report of Allodynia indicating the safety of the procedure. Further studies to

  7. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha;

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods. Nontumourige......Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Results. Based on the clonogenic assay the nontumourigenic cell...

  8. Mesenchymal stem cells and chronic renal artery stenosis.

    Science.gov (United States)

    Oliveira-Sales, Elizabeth B; Boim, Mirian A

    2016-01-01

    Renal artery stenosis is the main cause of renovascular hypertension and results in ischemic nephropathy characterized by inflammation, oxidative stress, microvascular loss, and fibrosis with consequent functional failure. Considering the limited number of strategies that effectively control renovascular hypertension and restore renal function, we propose that cell therapy may be a promising option based on the regenerative and immunosuppressive properties of stem cells. This review addresses the effects of mesenchymal stem cells (MSC) in an experimental animal model of renovascular hypertension known as 2 kidney-1 clip (2K-1C). Significant benefits of MSC treatment have been observed on blood pressure and renal structure of the stenotic kidney. The mechanisms involved are discussed.

  9. Mesenchymal stem cells: a new trend for cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xin WEI; Xue YANG; Zhi-peng HAN; Fang-fang QU; Li SHAO; Yu-fang SHI

    2013-01-01

    Mesenchymal stem cells (MSCs),the major stem cells for cell therapy,have been used in the clinic for approximately 10 years.From animal models to clinical trials,MSCs have afforded promise in the treatment of numerous diseases,mainly tissue injury and immune disorders.In this review,we summarize the recent opinions on methods,timing and cell sources for MSC administration in clinical applications,and provide an overview of mechanisms that are significant in MSC-mediated therapies.Although MSCs for cell therapy have been shown to be safe and effective,there are still challenges that need to be tackled before their wide application in the clinic.

  10. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  11. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    Science.gov (United States)

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ. PMID:26650464

  12. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  13. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  14. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  15. Challenging complications of treatment – human herpes virus 6 encephalitis and pneumonitis in a patient undergoing autologous stem cell transplantation for relapsed Hodgkin's disease: a case report

    Directory of Open Access Journals (Sweden)

    Pauls Sandra

    2009-07-01

    Full Text Available Abstract Background Reactivation of human herpesvirus 6 (HHV-6 occurs frequently in patients after allogeneic stem cell transplantation and is associated with bone-marrow suppression, enteritis, pneumonitis, pericarditis and also encephalitis. After autologous stem cell transplantation or intensive polychemotherapy HHV-6 reactivation is rarely reported. Case report This case demonstrates a severe symptomatic HHV-6 infection with encephalitis and pneumonitis after autologous stem cell transplantation of a patient with relapsed Hodgkin's disease. Conclusion Careful diagnostic work up in patients with severe complications after autologous stem cell transplantation is mandatory to identify uncommon infections.

  16. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  17. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  18. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  19. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  20. Mesenchymal stem cell and osteoarthritis: a literature review

    Directory of Open Access Journals (Sweden)

    Zhaleh Shariati Sarabi

    2016-04-01

    Full Text Available The most common disease in the aged population is osteoarthritis (OA that is resulting in progressive dysfunction following isolated cartilage injuries, subchondral bone remodeling, tissue loss, marginal osteophytes, and loss of joint space. Mesenchymal stem cells (MSCs are multipotent stem cells; they are able to produce many or all joint tissues. Bone marrow and adipose tissue are rich sources of mesenchymal cells that are useful for the reconstruction of injured tissues such as bone, cartilage, or cardiac muscle. Recently, some studies have been performed on the use of the direct intra-articular injection of mononuclear cells (MNCs and MSCs as potential therapeutic targets in OA. In this review, the history of MSCs in the treatment of OA are explained. Injection of Bone Marrow Aspirates Concentrate (BMAC has significantly improved both joint pain and function in radiologic findings; some studies suggested that the injection would be even more effective in early to moderate phases of OA. Injection of MSCs in combination with growth factors may be better solution for the treatment.

  1. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    Institute of Scientific and Technical Information of China (English)

    Justin; D; Glenn; Katharine; A; Whartenby

    2014-01-01

    Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.

  2. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  3. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  4. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder

    Science.gov (United States)

    Rao, Suresh Ranga; Subbarayan, Rajasekaran; Dinesh, Murugan Girija; Arumugam, Gnanamani; Raja, Selvaraj Thirupathi Kumara

    2016-01-01

    The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application. PMID:26869025

  5. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  6. Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages.

    Science.gov (United States)

    Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Musarò, Paola; Turco, Valentina; Gnecchi, Massimiliano

    2016-01-01

    Mesenchymal stem cells (MSC) possess high plasticity and the potential to differentiate into several different cell types; this characteristic has implications for cell therapy and reparative biotechnologies. MSC have been originally isolated from the bone marrow (BM-MSC), but they have been found also in other tissues such as adipose tissue, cord blood, synovium, skeletal muscle, and lung. MSC are able to differentiate in vitro and in vivo into several cell types such as bone, osteocytes, chondrocytes, adipocytes, and skeletal myocytes, just to name a few.During the last two decades, an increasing number of studies have proven the therapeutic potential of MSC for the treatment of neurodegenerative diseases, spinal cord and brain injuries, cardiovascular diseases, diabetes mellitus, and diseases of the skeleton. Their immuno-privileged profile allows both autologous and allogeneic use. For all these reasons, the scientific appeal of MSC is constantly on the rise.The identity of MSC is currently based on three main criteria: plastic-adherence capacity, defined epitope profile, and capacity to differentiate in vitro into osteocytes, chondrocytes, and adipocytes. Here, we describe standard protocols for the differentiation of BM-MSC into the osteogenic, chondrogenic, and adipogenic lineages. PMID:27236670

  7. Mesenchymal Stem Cells for Regenerative Therapy: Optimization of Cell Preparation Protocols

    Directory of Open Access Journals (Sweden)

    Chiho Ikebe

    2014-01-01

    Full Text Available Administration of bone marrow-derived mesenchymal stem cells (MSCs is an innovative approach for the treatment of a range of diseases that are not curable by current therapies including heart failure. A number of clinical trials have been completed and many others are ongoing; more than 2,000 patients worldwide have been administered with culture-expanded allogeneic or autologous MSCs for the treatment of various diseases, showing feasibility and safety (and some efficacy of this approach. However, protocols for isolation and expansion of donor MSCs vary widely between these trials, which could affect the efficacy of the therapy. It is therefore important to develop international standards of MSC production, which should be evidence-based, regulatory authority-compliant, of good medical practice grade, cost-effective, and clinically practical, so that this innovative approach becomes an established widely adopted treatment. This review article summarizes protocols to isolate and expand bone marrow-derived MSCs in 47 recent clinical trials of MSC-based therapy, which were published after 2007 onwards and provided sufficient methodological information. Identified issues and possible solutions associated with the MSC production methods, including materials and protocols for isolation and expansion, are discussed with reference to relevant experimental evidence with aim of future clinical success of MSC-based therapy.

  8. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    International Nuclear Information System (INIS)

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease

  9. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  10. Mechanisms Underlying the Osteo- and Adipo-Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2012-01-01

    Full Text Available Human mesenchymal stem cells (hMSCs are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient’s body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.

  11. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency.

    Science.gov (United States)

    Bertolo, Alessandro; Gemperli, Armin; Gruber, Marco; Gantenbein, Benjamin; Baur, Martin; Pötzel, Tobias; Stoyanov, Jivko

    2015-01-01

    Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use. PMID:25473086

  12. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    Mohamadreza; Baghaban; Eslaminejad; Elham; Malakooty; Poor

    2014-01-01

    Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.

  13. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  14. Isolation and characterisation of peripheral blood-derived feline mesenchymal stem cells.

    Science.gov (United States)

    Sato, Keiichi; Yamawaki-Ogata, Aika; Kanemoto, Isamu; Usui, Akihiko; Narita, Yuji

    2016-10-01

    The aim of this study was to isolate mesenchymal stem cells (MSCs) from feline peripheral blood (fPB-MSCs) and to characterise the cells' in vitro properties. The mononuclear cell fractions were isolated from venous blood of cats by density gradient centrifugation and cultured on plastic dishes under various culture conditions to isolate MSCs. When these cells were cultured with 5% autologous plasma (AP) and 10% foetal bovine serum (FBS), adherent spindle shaped fibroblast-like cells (fPB-MSCs) were obtained from 15/22 (68%) cats. These cells were isolated only from medium containing both AP and FBS. The morphology of these MSCs was similar to those isolated from other species and from other feline tissues. fPB-MSCs expanded steadily up to 5-6 passages, but had increased population doubling time during passaging and almost all cells stopped proliferation at passages 7-9. These cells expressed CD44 and CD90, and were mostly negative for major histocompatibility class II and CD4. The cells could be induced to differentiate into adipogenic, osteogenic and chondrogenic cell lineages. These findings indicate that fPB-MSCs can be generated but appear to require specific culture conditions. PMID:27687950

  15. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  16. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  17. Clinical application of mesenchymal stem cells for aseptic bone necrosis

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2008-11-01

    Full Text Available Since 2007, we had started clinical trial using mesenchymal stem cell (MSCs for the treatment of aseptic bone necrosis as a first clinical trial permitted by Japanese Health, Labour and Welfare Ministry.Aseptic bone necrosis of the femoral head commonly occurs in patients with two to four decades, causing severe musculoskeletal disability. Although its diagnosis is easy with X-ray and MRI, there has been no gold standard invented for treatment of this disease. MSCs represent a stem cell population in adult tissues that can be isolated and expanded in culture, and differentiate into cells with different nature. Combination with β-tri-calcium phosphate and vascularized bone graft, we succeeded to treat bone necrosis of the femoral head.Regenerative medicine using stem cells is hopeful and shed a light on intractable disease. To become widespread, Basic, Translational, Application, and Developmental study is needed.? From an experience of cell therapy using MSCs, we started to research induced pluripotent stem cell (iPS for clinical application.

  18. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna;

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  19. Autologous stem cell transplantation versus novel drugs or conventional chemotherapy for patients with relapsed multiple myeloma after previous ASCT

    DEFF Research Database (Denmark)

    Grövdal, M; Nahi, H; Gahrton, G;

    2015-01-01

    High-dose therapy (HDT) followed by autologous stem cell transplantation (ASCT) is the most common first-line treatment for patients with multiple myeloma (MM) under 65 years of age. A second ASCT at first relapse is frequently used but is challenged by the use of novel drugs. We retrospectively...

  20. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells

    NARCIS (Netherlands)

    Delemarre, Eveline M.; Van Den Broek, Theo; Mijnheer, Gerdien; Meerding, Jenny; Wehrens, Ellen J.; Olek, Sven; Boes, Marianne; Van Herwijnen, Martijn J C; Broere, Femke; van Royen, Annet; Wulffraat, Nico W.; Prakken, Berent J.; Spierings, Eric; Van Wijk, Femke

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) is increasingly considered for patients with severe autoimmune diseases whose prognosis is poor with standard treatments. Regulatory T cells (Tregs) are thought to be important for disease remission after HSCT. However, eliciting the role of

  1. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma

    NARCIS (Netherlands)

    G. van Imhoff (Gustaaf); B. van der Holt (Bronno); M.A. MacKenzie (Marius); G.J. Ossenkoppele (Gert); P.W. Wijermans (Pierre); M.H.H. Kramer (Mark); M.B. van 't Veer (Mars); H. Schouten (Harry); M. van Marwijk Kooy (Marinus); M.H.J. van Oers (Marinus); J. Raemaekers; P. Sonneveld (Pieter); L.A.M.H. Meulendijks (L. A M H); P.M. Kluin; H.C. Kluin-Nelemans (H.); L.F. Verdonck (Leo)

    2005-01-01

    textabstractThe feasibility and efficacy of up-front high-dose sequential chemotherapy followed by autologous stem cell transplantation (ASCT) in previously untreated adults (median age 33 years; range 15-64) with Burkitt lymphoma (BL), Burkitt-like lymphoma (BLL) or lymphoblastic lymphoma (LyLy), b

  2. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma

    NARCIS (Netherlands)

    van Imhoff, GW; van der Holt, B; MacKenzie, MA; Ossenkoppele, GJ; Wijermans, PW; Kramer, MHH; van't Veer, MB; Schouten, HC; Kooy, MV; van Oers, MHJ; Raemaekers, JMM; Sonneveld, P; Meulendijks, LAMH; Kluin, PM; Kluin-Nelemans, HC; Verdonck, LF

    2005-01-01

    The feasibility and efficacy of up- front high- dose sequential chemotherapy followed by autologous stem cell transplantation ( ASCT) in previously untreated adults ( median age 33 years; range 15 - 64) with Burkitt lymphoma ( BL), Burkitt- like lymphoma ( BLL) or lymphoblastic lymphoma ( LyLy), bot

  3. Treatment of massive gastrointestinal bleeding occurred during autologous stem cell transplantation with recombinant activated factor VII and octreotide

    Directory of Open Access Journals (Sweden)

    Erman Atas

    2015-01-01

    Full Text Available After hematopoietic stem cell transplantation (HSCT, patients may suffer from bleeding. One of the bleeding type is gastrointestinal (GI which has serious morbidity and mortality in children with limited treatment options. Herein, we presented a child with upper GI bleeding post autologous HSCT controlled successfully by using recombinant activated factor VII (rFVIIa and octreotide infusion.

  4. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial

    NARCIS (Netherlands)

    Laar, J.M. van; Farge, D.; Sont, J.K.; Naraghi, K.; Marjanovic, Z.; Larghero, J.; Schuerwegh, A.J.; Marijt, E.W.; Vonk, M.C.; Schattenberg, A.V.M.B.; Matucci-Cerinic, M.; Voskuyl, A.E.; Loosdrecht, A.A. van de; Daikeler, T.; Kotter, I.; Schmalzing, M.; Martin, T.; Lioure, B.; Weiner, S.M.; Kreuter, A.; Deligny, C.; Durand, J.M.; Emery, P.; Machold, K.P.; Sarrot-Reynauld, F.; Warnatz, K.; Adoue, D.F.; Constans, J.; Tony, H.P.; Papa, N. Del; Fassas, A.; Himsel, A.; Launay, D. de; Monaco, A. Lo; Philippe, P.; Quere, I.; Rich, E.; Westhovens, R.; Griffiths, B.; Saccardi, R.; Hoogen, F.H.J. van den; Fibbe, W.E.; Socie, G.; Gratwohl, A.; Tyndall, A.

    2014-01-01

    IMPORTANCE: High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE: To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphami

  5. Preimmunization of donor lymphocytes enhances antitumor immunity of autologous hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Lymphopenia-induced homeostatic proliferation (HP) of T cells following autologous hematopoietic stem cell transplantation (HSCT) skews the T-cell repertoire by engaging tumor-associated antigens (TAAs), leading to an induction of antitumor immunity. Here, as the tumor-reactive lymphocytes preferentially proliferate during the condition of HP, we examined whether the priming of a donor lymphocytes to TAAs could enhance HP-induced antitumor immunity in autologous HSCT recipients. First, to examine whether the tumor-bearing condition of donor influences the antitumor effect of HSCT, the lymphocytes isolated from CT26 tumor-bearing mice were infused into lethally irradiated mice. The growth of tumors was substantially suppressed in the mice that received HSCT from a tumor-bearing donor compared with a naïve donor, suggesting that a fraction of donor lymphocytes from tumor-bearing mice are primed in response to TAAs and remain responsive upon transplantation. We previously reported that type I interferon (IFN) maturates the dendritic cells and promotes the priming of T cells. We then investigated whether the further priming of donor cells by IFN-α can strengthen the antitumor effect of HSCT. The intratumoral IFN-α gene transfer significantly increased the number of IFN-γ-positive lymphocytes in response to CT26 cells but not the syngeneic lymphocytes in donor mice. The infusion of primed donor lymphocytes markedly suppressed the tumor growth in recipient mice, and cured 64% of the treated mice. Autologous HSCT with the infusion of primed donor lymphocytes is a promising strategy to induce an effective antitumor immunity for solid cancers

  6. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    OpenAIRE

    Alessandra Barban; Fabio Luiz Coracin; Priscila Tavares Musqueira; Andrea Barban; Lilian Piron Ruiz; Milton Artur Ruiz; Rosaura Saboya; Frederico Luiz Dulley

    2014-01-01

    INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in ...

  7. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells.

    Science.gov (United States)

    Weber, Benedikt; Kehl, Debora; Bleul, Ulrich; Behr, Luc; Sammut, Sébastien; Frese, Laura; Ksiazek, Agnieszka; Achermann, Josef; Stranzinger, Gerald; Robert, Jérôme; Sanders, Bart; Sidler, Michele; Brokopp, Chad E; Proulx, Steven T; Frauenfelder, Thomas; Schoenauer, Roman; Emmert, Maximilian Y; Falk, Volkmar; Hoerstrup, Simon P

    2016-01-01

    Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications.

  8. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; ZHENG Jun-hua; ZHANG Yuan-yuan

    2013-01-01

    Objective This article was to review the current status of adult mesenchymal stem cells transplantation for muscle regeneration in urinary tract and propose the future prospect in this field.Data sources The data used in this review were mainly obtained from articles listed in Medline and PubMed (2000-2013).The search terms were "mesenchymal stem cells","bladder","stress urinary incontinence" and "tissue engineering".Study selection Articles regarding the adult mesenchymal stem cells for tissue engineering of bladder and stress urinary incontinence were selected and reviewed.Results Adult mesenchymal stem cells had been identified and well characterized in human bone marrow,adipose tissue,skeletal muscle and urine,and demonstrated the capability of differentiating into smooth muscle cells and skeletal muscle cells under myogenic differentiation conditions in vitro.Multiple preclinical and clinical studies indicated that adult mesenchymal stem cells could restore and maintain the structure and function of urinary muscle tissues after transplanted,and potentially improve the quality of life in patients.Conclusions Smooth or skeletal myogenic differentiation of mesenchymal stem cells with regenerative medicine technology may provide a novel approach for muscle regeneration and tissue repair in urinary tract.The long-term effect and safety of mesenchymal stem cell transplantation should be further evaluated before this approach becomes widely used in patients.

  9. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  10. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    OpenAIRE

    Kasten, P; I Beyen; Egermann, M.; AJ Suda; AA Moghaddam; Zimmermann, G; R Luginbühl

    2008-01-01

    In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC) before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM), clusters of differentiation (CD), proliferation and differentiation capacities of the MSC. A volume reduction protoc...

  11. Spinal fusion of lumbar intertransverse process in rabbits using two different densities of autologous marrow mesenchymal stem cells combined with β-TCP%两种接种密度骨髓基质干细胞复合β-TCP对兔腰椎横突间融合的效果

    Institute of Scientific and Technical Information of China (English)

    潘玮敏; 胡蕴玉; 陈俊伟; 郑芬芳; 郑振耀; 毕龙

    2009-01-01

    [目的]观察两种不同接种密度的骨髓基质干细胞(bone marrow mesenchymal stem cells ,BMSCs),在成骨诱导分化后复合β-TCP应用于兔腰椎横突间脊柱融合的术后融合效果.[方法]应用BMSCs/β-TCP复合体对随机分为两组(低密度接种组和高密度接种组)的实验兔进行腰椎横突间非去皮质骨脊柱融合术,观察两组动物术后大体腰椎融合率、影像学特征、骨矿含量(bone mineralization content,BMC),骨密度(bone mineralization density,BMD)和矿化组织体积(bone mineralization tissue volume,BMV)及组织形态学变化.[结果]与低密度接种组比较,高密度接种组术后融合率明显提高,可达到71.4%(P<0.05).显微CT图像结果显示高密度接种组横突间不仅新骨形成量多,而且融合稳固,且其BMC、BMD和BMV及新骨生成率均高于低密度接种组(P<0.05).[结论]使用接种密度为10×106 cells/ ml的人工骨具有较好的融合效果,融合率可达到71.4%,这一点为临床应用BMSCs复合生物材料体外构建人工骨应用于非去皮质骨脊柱后路融合有一定的指导意义.

  12. [Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell].

    Science.gov (United States)

    Ohata, Yasuhisa; Ozono, Keiichi

    2014-04-01

    Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several transcription factors. Among these transcription factors, runt-related transcription factor 2 (Runx2) is a crucial factor in osteoblast differentiation and controls bone formation. Differentiation toward these osteogenic lineage is controlled by a multitude of cytokines including WNTs, bone morphogenetic protein (BMP) , transforming growth factor-β (TGF-β) , hedgehog, parathyroid hormone (PTH) /parathyroid hormone related protein (PTHrP) , insulin-like growth factor-1 (IGF-1) , fibroblast growth factor (FGF) , and Notch. Although regulation of Runx2 activity is a point of convergence of many of the signal transduction routes, there is also a high degree of cross-talk between these pathways. Thus, the combined action of the signal transduction pathways induced by some cytokines determines the commitment and differentiation of mesenchymal stem cells toward the osteogenic lineage. PMID:24681495

  13. T-cell-replete haploidentical transplantation versus autologous stem cell transplantation in adult acute leukemia: a matched pair analysis.

    Science.gov (United States)

    Gorin, Norbert-Claude; Labopin, Myriam; Piemontese, Simona; Arcese, William; Santarone, Stella; Huang, He; Meloni, Giovanna; Ferrara, Felicetto; Beelen, Dietrich; Sanz, Miguel; Bacigalupo, Andrea; Ciceri, Fabio; Mailhol, Audrey; Nagler, Arnon; Mohty, Mohamad

    2015-04-01

    Adult patients with acute leukemia in need of a transplant but without a genoidentical donor are usually considered upfront for transplantation with stem cells from any other allogeneic source, rather than autologous stem cell transplantation. We used data from the European Society for Blood and Marrow Transplantation and performed a matched pair analysis on 188 T-cell-replete haploidentical and 356 autologous transplants done from January 2007 to December 2012, using age, diagnosis, disease status, cytogenetics, and interval from diagnosis to transplant as matching factors. "Haploidentical expert" centers were defined as having reported more than five haploidentical transplants for acute leukemia (median value for the study period). The median follow-up was 28 months. Multivariate analyses, including type of transplant categorized into three classes ("haploidentical regular", "haploidentical expert" and autologous), conditioning intensity (reduced intensity versus myeloablative conditioning) and the random effect taking into account associations related to matching, showed that non-relapse mortality was higher following haploidentical transplants in expert (HR: 4.7; P=0.00004) and regular (HR: 8.98; Ptransplants was lower in expert centers (HR:0.39; P=0.0003) but in regular centers was similar to that for autologous transplants. Leukemia-free survival and overall survival rates were higher following autologous transplantation than haploidentical transplants in regular centers (HR: 1.63; P=0.008 and HR: 2.31; P=0.0002 respectively) but similar to those following haploidentical transplants in expert centers. We conclude that autologous stem cell transplantation should presently be considered as a possible alternative to haploidentical transplantation in regular centers that have not developed a specific expert program.

  14. Epstein-Barr Virus–Associated Posttransplantation Lymphoproliferative Disorder after High-Dose Immunosuppressive Therapy and Autologous CD34-Selected Hematopoietic Stem Cell Transplantation for Severe Autoimmune Diseases

    OpenAIRE

    Nash, Richard A.; Dansey, Roger; Storek, Jan; Georges, George E.; Bowen, James D.; Holmberg, Leona A.; Kraft, George H.; Maureen D Mayes; McDonagh, Kevin T; Chen, Chien-Shing; DiPersio, John; LeMaistre, C. Fred; Pavletic, Steven; Sullivan, Keith M.; Sunderhaus, Julie

    2003-01-01

    High-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation (HSCT) is currently being evaluated for the control of severe autoimmune diseases. The addition of antithymocyte globulin (ATG) to high-dose chemoradiotherapy in the high-dose immunosuppressive therapy regimen and CD34 selection of the autologous graft may induce a higher degree of immunosuppression compared with conventional autologous HSCT for malignant diseases. Patients may be at higher risk...

  15. Engraftment Syndrome after Autologous Stem Cell Transplantation: An Update Unifying the Definition and Management Approach.

    Science.gov (United States)

    Cornell, Robert Frank; Hari, Parameswaran; Drobyski, William R

    2015-12-01

    Engraftment syndrome (ES) encompasses a continuum of periengraftment complications after autologous hematopoietic stem cell transplantation. ES may include noninfectious fever, skin rash, diarrhea, hepatic dysfunction, renal dysfunction, transient encephalopathy, and capillary leak features, such as noncardiogenic pulmonary infiltrates, hypoxia, and weight gain with no alternative etiologic basis other than engraftment. Given its pleiotropic clinical presentation, the transplant field has struggled to clearly define ES and related syndromes. Here, we present a comprehensive review of ES in all documented disease settings. Furthermore, we discuss the proposed risk factors, etiology, and clinical relevance of ES. Finally, our current approach to ES is included along with a proposed treatment algorithm for the management of this complication. PMID:26327628

  16. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-11-01

    Full Text Available Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  17. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-01-01

    Full Text Available

    Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  18. Update on the Role of Autologous Hematopoietic Stem Cell Transplantation in Follicular Lymphoma

    Science.gov (United States)

    Cabrero, Mónica; Redondo, Alba; Martin, Alejandro; Caballero, Dolores

    2012-01-01

    Follicular lymphoma (FL) remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb). Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS) and to increase overall survival (OS), mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT) is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen. PMID:23205262

  19. Application of autologous bone marrow stem cells in giant axonal neuropathy

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2010-01-01

    Full Text Available Giant axonal neuropathy is a rare disorder of autosomal recessive inheritance, morphologically characterized by accumulation of neurofilaments in enlargements of preterminal regions of central and peripheral axons. We present a 7-year-old girl with thick and tightly curled lackluster hair suffering from giant axonal neuropathy. The diagnosis was confirmed on the brain MRI which showed white matter abnormalities in the anterior and posterior periventricular regions as well as the cerebellar white matter. In view of the same, the patient was given intrathecal autologous bone marrow-derived stem cell therapy as part of the neuroregenerative rehabilitation therapy protocol. The patient showed functional improvements in her disability after receiving the therapy. A detailed case report is presented here with.

  20. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  1. Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

    OpenAIRE

    Choi, Moonhwan; Ban, Taehyun; Rhim, TaiYoun

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal ...

  2. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  3. Application of reticulated platelets to transfusion management during autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Parco S

    2012-01-01

    Full Text Available Sergio Parco, Fulvia VascottoInstitute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, ItalyBackground: The immature (or reticulated platelet fraction (IPF is rich in nucleic acids, especially RNA, and can be used as a predictive factor for platelet recovery in platelet immunomediated consumption or in postchemotherapy myelosuppression. Our aim was to determine if transfusions with IPF-rich solutions, during autologous peripheral blood stem cell transplantation, reduce the occurrence of bleeding and hemorrhagic complications.Patients and methods: Transfusions were administered to 40 children, affected with hematological pathologies, who underwent autologous peripheral hematopoietic progenitor cell transplantation. There were two groups of 20 patients, one group treated with IPF-poor and the other with IPF-rich solutions. In the two groups, the conditioning regimen was the same for the same pathology (hematological pathologies: 14 acute lymphoblastic leukemia; twelve acute myelocytic leukemia; four non-Hodgkin's lymphoma; two Hodgkin's lymphoma; eight solid tumors. A new automated analyzer was used to quantify the IPF: the XE2100 (Sysmex, Kobe, Japan blood cell counter with upgraded software.Results: The 20 patients who received solutions with a high percentage of IPF (3%–9% of total number of infused platelets required fewer transfusions than the 20 patients who received transfusions with a low percentage of IPF (0%–1% of total number of infused platelets: 83 versus 129 (mean of number of transfusions 4.15 versus 6.45 and a significant difference was found between the two groups by using the Mann–Whitney test (P < 0.001. The prophylactic transfusions decreased from three to two per week. There was only one case of massive hemorrhage.Conclusion: The use of IPF solutions reduces the number of transfusions and bleedings after peripheral blood stem cell transplantation in pediatric patients.Keywords: children, reticulated

  4. Chemical injury treated with autologous limbal epithelial stem cell transplantation and subconjunctival bevacizumab

    Directory of Open Access Journals (Sweden)

    Cavallini GM

    2014-08-01

    Full Text Available Gian Maria Cavallini,1 Graziella Pellegrini,2 Veronica Volante,1 Pietro Ducange,1 Michele De Maria,1 Giulio Torlai,1 Caterina Benatti,1 Matteo Forlini1 1Institute of Ophthalmology, 2Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena e Reggio Emilia, Modena, Italy Background: Limbal stem cell (LSC deficiency leads to corneal opacity due to a conjunctivalization of the corneal surface. LSC transplantation, which can be followed by corneal keratoplasty, is an effective procedure to restore corneal transparency; however, a common cause of failure of this procedure is neovascularization (NV.Methods: A 59-year-old man with a 21-year history of a corneal chemical burn caused by phosphoric acid in his left eye was examined. He presented with unilateral total LSC deficiency with severe conjunctivalization and a corrected distance visual acuity that was limited to hand motion.Results: We reported the short-term in vivo efficacy of subconjunctival bevacizumab for progressive corneal NV in a patient with LSC deficiency that underwent LSC transplantation. Four months after autologous LSC transplantation and 1 month after the second subconjunctival bevacizumab injection, the patient’s corrected distance visual acuity was 1/10.Conclusion: Subconjunctival injection of bevacizumab can reduce the corneal NV, reducing conjunctival inflammation and supporting restoration of a stable ocular surface that is able to counteract graft failure, with no toxicity for the transplanted LSC. Keywords: stem cells, bevacizumab, limbal stem cell deficiency, transplantation

  5. Mesenchymal stem cell-based therapy for type 1 diabetes.

    Science.gov (United States)

    Wu, Hao; Mahato, Ram I

    2014-03-01

    Diabetes has increasingly become a worldwide health problem, causing huge burden on healthcare system and economy. Type 1 diabetes (T1D), traditionally termed "juvenile diabetes" because of an early onset age, is affecting 5-10% of total diabetic population. Insulin injection, the predominant treatment for T1D, is effective to ameliorate the hyperglycemia but incompetent to relieve the autoimmunity and to regenerate lost islets. Islet transplantation, an experimental treatment for T1D, also suffers from limited supply of human islets and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. Mesenchymal stem cell (MSC) based cell therapy is among one of them. MSCs are a type of adult stem cells residing in bone marrow, adipose tissue, umbilical cord blood, and many other tissues. MSCs, with self-renewal potential and transdifferentiation capability, can be expanded in vitro and directed to various cell lineages with relatively less efforts. MSCs have well-characterized hypoimmunogenicity and immunomodulatory effect. All these features make MSCs attractive for treating T1D. Here, we review the properties of MSCs and some of the recent progress using MSCs as a new therapeutic in the treatment of T1D. We also discuss the strength and limitations of using MSC therapy in human trials.

  6. Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2012-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. According to the World Health Organization (WHO, an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside.

  7. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  8. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  9. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    OpenAIRE

    Phuc Van Pham; Khanh Hong-Thien Bui; Triet Dinh Duong; Nhan Thanh Nguyen; Thanh Duc Nguyen; Vien Tuong Le; Viet Thanh Mai; Nhan Lu-Chinh Phan; Dung Minh Le and Ngoc Kim Ngoc

    2014-01-01

    Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs) show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in ...

  10. Autografting of bone marrow mesenchymal stem cells alleviates streptozotocin‑induced diabetes in miniature pigs: real-time tracing with MRI in vivo.

    Science.gov (United States)

    Tang, Kuanxiao; Xiao, Xiaoyan; Liu, Dayue; Shen, Yunfeng; Chen, Yingming; Wang, Yu; Li, Baoying; Yu, Fei; Ma, Dedong; Yan, Jinhua; Liang, Hua; Yang, Daizhi; Weng, Jianping

    2014-06-01

    Cellular replacement therapy for diabetes mellitus (DM) has received much attention. In this study, we investigated the effect of transplantation of autologous bone marrow‑derived mesenchymal stem cells (ABMSCs) in streptozotocin (STZ)‑induced diabetic miniature pigs. Miniature pig BMSCs were cultured, labeled with superparamagnetic iron oxide (SPIO) and transplanted into the pancreas of diabetic miniature pigs through targeted intervention. Blood glucose levels, intravenous and oral glucose tolerance test (OGTT), serum insulin, C‑peptide and islets histology were analyzed. These transplanted cells were then identified by magnetic resonance imaging (MRI). The results showed that transplantation of ABMSCs reversed STZ‑induced diabetes in miniature pigs. Blood glucose levels, intravenous, OGTT, serum insulin and C‑peptide were significantly recovered in the diabetic minipigs with the autologous BMSC (DMAB) transplantation group. In addition, the number of islets was significantly increased in this group compared to the diabetic minipig control (DMC) group with conventional therapy. These data suggested the implantation of autologous BMSCs for type 1 diabetes treatment can partially restore the function of islet β cells and maintain blood glucose homeostasis. Transplanted autologous BMSCs may improve islet repairing by differentiating for new islets and change pancreatic microcirculation and be identified in a real‑time manner using MRI in vivo.

  11. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    Science.gov (United States)

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  12. Immunomodulatory functions of mesenchymal stem cells and possible mechanisms.

    Science.gov (United States)

    Wang, Qing; Ding, Gang; Xu, Xin

    2016-09-01

    In addition to their well-studied self-renewal capabilities and multipotent differentiation properties, mesenchymal stem cells (MSCs) have been reported to possess profound immunomodulatory functions both in vitro and in vivo. More and more studies have shown that MSCs are capable of interacting closely with almost all subsets of immune cells, such as T cells, B cells, dendritic cells, natural killer cells, macrophages, and neutrophils etc. The immunomodulatory property of MSCs may shed light on the treatment of a variety of autoimmune and inflammation-related diseases. In this article, we will review the studies on the immunomodulatory and anti-inflammatory functions of MSCs and the mechanisms responsible for the interaction between immune cells and MSCs, which could improve the development of promising approaches for cell-mediated immune therapies. PMID:26932157

  13. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  14. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  15. Mesenchymal stem cells as a therapeutic tool to treat sepsis

    Institute of Scientific and Technical Information of China (English)

    Eleuterio Lombardo; Tom van der Poll; Olga DelaRosa; Wilfried Dalemans

    2015-01-01

    Sepsis is a clinical syndrome caused by a deregulatedhost response to an infection. Sepsis is the mostfrequent cause of death in hospitalized patients.Although knowledge of the pathogenesis of sepsishas increased substantially during the last decades,attempts to design effective and specific therapiestargeting components of the derailed host responsehave failed. Therefore, there is a dramatic need fornew and mechanistically alternative therapies to treatthis syndrome. Based on their immunomodulatoryproperties, adult mesenchymal stem or stromal cells(MSCs) can be a novel therapeutic tool to treat sepsis.Indeed, MSCs reduce mortality in experimental modelsof sepsis by modulating the deregulated inflammatoryresponse against bacteria through the regulation ofmultiple inflammatory networks, the reprogrammingof macrophages and neutrophils towards a more antiinflammatoryphenotype and the release of antimicrobialpeptides. This report will review the currentknowledge on the effects of MSC treatment in preclinicalexperimental small animal models of sepsis.

  16. Mesenchymal stem cells reduce the irradiation induced lung injury

    International Nuclear Information System (INIS)

    Objective: To evaluate the role of mesenchymal stem cells (MSCs) derived from mouse bone and embryo dorsal aorta (DA) area in the treatment of irradiation induced lung injury of mouse model. Methods: The mice were divided into four groups as normal control group, irradiation group,bone MSCs treatment group and DA MSCs treatment group. Immunohistochemical Analysis of lung tissue was observed after 9 months of treatment. Results: Fibrosis and alveolar infiltration were scored in each group. The score for fibrosis and alveolar is 0. 17 in normal control group, 2 in irradiation group, 1 in bone MSCs treat group and 1.38 in DA MSCs treat group. Conclusion: The extent of irradiation Induced Lung Injury could be reduced thorough the treatment of MSCs derived from mouse bone and embryos dorsal aorta ( DA ) area. (authors)

  17. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Jerry KY Chan

    2014-10-01

    Full Text Available Osteogenesis Imperfecta (OI can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC has the potential to improve the bone structure, growth and fracture healing. In this review we give an introduction to OI and MSC, and the basis for prenatal and postnatal transplantation in OI. We also summarize the two patients with OI who has received prenatal and postnatal transplantation of MSC.The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility and reduced fracture incidence. Unfortunately, the effect is transient. For this reason postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events.So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.

  18. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy......, immunohistochemistry and western blot analysis detected autophagy in vitro and in GIOP model rats (in vivo). With the addition of the autophagy inhibitor 3methyladenine, the proliferative ability of BMSCs was further reduced, while the number of apoptotic BMSCs was significantly increased. The data suggests...

  19. Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    2012-01-01

    Full Text Available Vascularized composite allotransplantations (VCAs are not routinely performed for tissue reconstruction because of the potentially harmful adverse effects associated with lifelong administration of immunosuppressive agents. Researchers have been eagerly seeking alternative methods that circumvent the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs show promise as an immunomodulatory therapeutic agent and are currently being tested in preclinical and clinical settings as therapies for autoimmune disorders or transplant rejection. The mechanisms by which MSCs modulate the immune response are still under thorough investigation, but these most likely involve expression of local factors influencing T-cell regulation, modulation of cytokine expression (e.g., IL-10, TGF-β, TNF-, INF-γ, etc., and interactions with dendritic or antigen presenting cells. In this paper, we summarize the current understanding of immunomodulation achieved by MSC therapies and introduce a possible outline for future clinical applications in VCA.

  20. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  1. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

    DEFF Research Database (Denmark)

    Christensen, Rikke; Alsner, Jan; Sørensen, Flemming Brandt;

    2008-01-01

    Increasing evidence on cancer stem cells suggest that stem cells are susceptive to carcinogenesis and consequently can be the origin of many cancers. We have recently established a telomerase-transduced human mesenchymal stem cell line and subsequently irradiated this in order to achieve malignant...

  2. Mesenchymal stem cells are highly resistant to sulfur mustard.

    Science.gov (United States)

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. PMID:23933411

  3. Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: a pilot study.

    Science.gov (United States)

    Quimby, Jessica M; Webb, Tracy L; Gibbons, Debra S; Dow, Steven W

    2011-06-01

    The feasibility of autologous intrarenal mesenchymal stem cell (MSC) therapy in cats with chronic kidney disease (CKD) was investigated. Six cats (two healthy, four with CKD) received a single unilateral intrarenal injection of autologous bone marrow-derived or adipose tissue-derived MSC (bmMSC or aMSC) via ultrasound guidance. Minimum database and glomerular filtration rate (GFR) via nuclear scintigraphy were determined pre-injection, at 7 days and at 30 days post-injection. Intrarenal injection did not induce immediate or long-term adverse effects. Two cats with CKD that received aMSC experienced modest improvement in GFR and a mild decrease in serum creatinine concentration. Despite the possible benefits of intrarenal MSC injections for CKD cats, the number of sedations and interventions required to implement this approach would likely preclude widespread clinical application. We concluded that MSC could be transferred safely by ultrasound-guided intrarenal injection in cats, but that alternative sources and routes of MSC therapy should be investigated. PMID:21334237

  4. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential.

    Directory of Open Access Journals (Sweden)

    Barbara Mara Klinkhammer

    Full Text Available Mesenchymal stem cell (MSC transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK with CKD (CKD-RK-MSC and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD. MSCs from rats with adenine nephropathy (CKD-AD-MSC also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.

  5. The paracrine effect of mesenchymal human stem cells restored hearing in β-tubulin induced autoimmune sensorineural hearing loss.

    Science.gov (United States)

    Yoo, T J; Du, Xiaoping; Zhou, Bin

    2015-12-01

    The aim of this study was to examine the activities of hASCs (Human Adipose tissue Derived Stem Cells) on experimental autoimmune hearing loss (EAHL) and how human stem cells regenerated mouse cochlea cells. We have restored hearing in 19 years old white female with autoimmune hearing loss with autologous adipose tissue derived stem cells and we wish to understand the mechanism of restoration of hearing in animal model. BALB/c mice underwent to develop EAHL; mice with EAHL were given hASCs intraperitoneally once a week for 6 consecutive weeks. ABR were examined over time. The helper type 1 autoreactive responses and T-reg cells were examined. H&E staining or immunostaining with APC conjugated anti-HLA-ABC antibody were conducted. The organ of Corti, stria vascularis, spira ligament and spiral ganglion in stem cell group are normal. In control group, without receiving stem cells, the organ of Corti is replaced by a single layer of cells, atrophy of stria vascularis. Systemic infusion of hASCs significantly improved hearing function and protected hair cells in established EAHL. The hASCs decreased the proliferation of antigen specific Th1/Th17 cells and induced the production of anti-inflammatory cytokine interleukin10 in splenocytes. They also induced the generation of antigen specific CD4(+)CD25(+)Foxp3(+)T-reg cells. The experiment showed the restoration is due to the paracrine activities of human stem cells, since there are newly regenerated mice spiral ganglion cells, not human mesenchymal stem cells derived tissue given by intraperitoneally.

  6. Evaluation of Proliferation and Development of Mesenchymal Stem Cell on Nanoporous PLLA Membrane Scaffold

    Directory of Open Access Journals (Sweden)

    MH Porghara

    2015-08-01

    Conclusion: Due to the biodegradable and non-toxic properties of nano PLLA membrane, it could increase the adhesion and proliferation of mesenchymal stem cells and these effects will exacerbated over time.

  7. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  8. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  9. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Bühring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  10. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  11. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin;

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  12. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  13. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    Science.gov (United States)

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD. PMID:23992090

  14. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  15. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  16. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    OpenAIRE

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed AbdolReza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was d...

  17. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  18. Plerixafor for autologous stem-cell mobilization and transplantation for patients in Ontario

    Science.gov (United States)

    Kouroukis, C.T.; Varela, N.P.; Bredeson, C.; Kuruvilla, J.; Xenocostas, A.

    2016-01-01

    Background High-dose chemotherapy with autologous stem-cell transplantation (asct) is an accepted part of standard therapy for patients with hematologic malignancies. Usually, stem-cell mobilization uses granulocyte colony–stimulating factor (g-csf); however, some patients are not able to be mobilized with chemotherapy and g-csf, and such patients could be at higher risk of failing mobilization. Plerixafor is a novel mobilization agent that is absorbed quickly after subcutaneous injection and, at the recommended dose of 0.24 mg/kg, provides a sustained increase in circulating CD34+ cells for 10–18 hours. The main purpose of the present report was to evaluate the most current evidence on the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct for patients in Ontario so as to make recommendations for clinical practice and to assist Cancer Care Ontario in decision-making with respect to this intervention. Methods The medline and embase databases were systematically searched for evidence from January 1996 to March 2015, and the best available evidence was used to draft recommendations relevant to the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct. Final approval of this practice guideline report was obtained from both the Stem Cell Transplant Steering Committee and the Report Approval Panel of the Program in Evidence-Based Care. Recommendations These recommendations apply to adult patients considered for asct: ■ Adding plerixafor to g-csf is an option for initial mobilization in patients with non-Hodgkin lymphoma or multiple myeloma who are eligible for asct when chemotherapy cannot be used and only g-csf mobilization is available.■ For patients with a low peripheral blood CD34+ cell count (for example, <10/μL) at the time of anticipated stem-cell harvesting, or with an inadequate first-day apheresis collection, it is recommended that plerixafor be added to the

  19. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Shi; MAO Hong; ZHOU Ling; WANG Zhong-jing; WANG Hong-xiang

    2011-01-01

    Background Autologous peripheral stem cell transplantation was first reported in 2007 to treat type 1 diabetes mellitus (DM) and achieved encouraging effect,but whether similar outcome can be achieved in type 2 DM is not well demonstrated.The objective of this study was to determine the effect of combination of autologous bone marrow stem cell transplantation (BMT) and hyperbaric oxygen treatment on type 2 DM.Methods The study involved 31 patients with type 2 DM (aged 33 to 62 years) from January 2009 to January 2011 in the Central Hospital of Wuhan,China.Clinical variables (body mass index,duration of DM,insulin requirement,oral hypoglycemic drugs,time free from insulin,time free from oral drugs) and laboratory variables (hemoglobin A1c (HbA1c)),mononuclear cells infused,and C-peptide in four time points) were assessed.Purified bone marrow stem cells were infused into major pancreatic arteries.Follow-up was performed at the 30,90,180,360,540 and 720 days (mean 321 days) after BMT.Results Mean HbA1c values showed a significant reduction during follow-up in all patients after BMT.It decreased by more than 1.5% (from 8.7% to 7.1%) as quickly as at 30 days after BMT.Afterwards mean HbA1c fluctuated between plus or minus 0.5% until 24 months rather than declined continuously.At 90 days after the combined therapy C-peptide increased significantly compared with baseline (P <0.0001).But in other time points C-peptide was similar with baseline data (P>0.3).All patients had insulin and/or oral hypoglycemic drugs reduced to different levels.The dose of insulin of 7 patients (7/26,27%) reduced for a period of time after BMT.Conclusions Combined therapy of intrapancreatic BMT and hyperbaric oxygen treatment can improve glucose control and reduce the dose of insulin and/or oral hypoglycemic drugs in type 2 DM patients,but it only improve pancreatic β-cell function transiently.Further randomized controlled clinical trials involved more patients will be required to

  20. Observation of humoral immunity reconstitution and its relationship with infection after autologous hematopoietic stem cell transplantation for patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    刘俊茹

    2013-01-01

    Objective To study the humoral immunity reconstitution and its relationship with infection in patients with multiple myeloma(MM) after undergoing autologous hematopoietic stem cell transplantation(auto-HSCT)

  1. Clinical significance of abnormal protein bands in multiple myeloma treated with bortezmib-based induction regimen and autologous stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    王荷花

    2013-01-01

    Objective To study the clinical significance of abnormal protein bands(APB)in multiple myeloma(MM) patients treated with bortezomib-based induction regimen and autologous stem cell transplantation(ASCT)

  2. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  3. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    XU Juan; JI Bing-xin; SU Li; DONG Hui-qing; SUN Xue-jing; LIU Cong-yan

    2006-01-01

    Background Multiple sclerosis (MS) is a continuously disabling disease and it is unresponsive to high dose steroid and immunomodulation with disease progression. The autologous haematopoietic stem cell transplantation (ASCT) has been introduced in the treatment of refractory forms of multiple sclerosis. In this study, the clinical outcomes followed by ASCT were evaluated for patients with progressive MS.Methods Twenty-two patients with secondary progressive MS were treated with ASCT. Peripheral blood stem cells were obtained by leukapheresis after mobilization with granulocyte colony stimulating factor. Etoposide,melphalan, carmustin and cytosine arabinoside were administered as conditioning regimen. Outcomes were evaluated by the expanded disability status scale and progression free survival. No maintenance treatment was administered during a median follow-up of 39 months (range, 6 to 59 months).Results No death occurred following the treatment. The overall confirmed progression free survival rate was77% up to 59 months after transplantation which was significantly higher compared with pre-transplantation (P=0.000). Thirteen patients (59%) had remarkable improvement in neurological manifestations, four (18%)stabilized their disability status and five (23%) showed clinical recurrence of active symptoms.Conclusions ASCT as a therapy is safe and available. It can improve or stabilize neurological manifestations in most patients with progressive MS following failure of conventional therapy.

  4. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Norman, Krystin K; Norgaard, Zachary K; Humbert, Olivier; Tse, Collette K; Yan, Jenny J; Trimble, Richard G; Shivak, David A; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Kiem, Hans-Peter

    2016-05-19

    Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well. PMID:26980728

  5. Italian consensus conference for the outpatient autologous stem cell transplantation management in multiple myeloma.

    Science.gov (United States)

    Martino, M; Lemoli, R M; Girmenia, C; Castagna, L; Bruno, B; Cavallo, F; Offidani, M; Scortechini, I; Montanari, M; Milone, G; Postacchini, L; Olivieri, A

    2016-08-01

    Multiple myeloma (MM) is the leading indication for autologous stem cell transplantation (ASCT) worldwide. The safety and efficacy of reducing hospital stay for MM patients undergoing ASCT have been widely explored, and different outpatient models have been proposed. However, there is no agreement on the criteria for selecting patients eligible for this strategy as well as the standards for their clinical management. On the basis of this rationale, the Italian Group for Stem Cell Transplantation (GITMO) endorsed a project to develop guidelines for the management of outpatient ASCT in MM, using evidence-based knowledge and consensus-formation techniques. An expert panel convened to discuss the currently available data on the practice of outpatient ASCT management and formulated recommendations according to the supporting evidence. Evidence gaps were filled with consensus-based statements. Three main topics were addressed: (1) the identification of criteria for selecting MM patients eligible for outpatient ASCT management; (2) the definition of standard procedures for performing outpatient ASCT (model, supportive care and monitoring during the aplastic phase); (3) the definition of the standard criteria and procedures for re-hospitalization during the aplastic phase at home. Herein, we report the summary and the results of the discussion and the consensus. PMID:27042841

  6. Total Marrow Irradiation as Part of Autologous Stem Cell Transplantation for Asian Patients with Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Shih-Chiang Lin

    2013-01-01

    Full Text Available To compare the outcomes of melphalan 200 mg/m2 (HDM200 and 8 Gy total marrow irradiation (TMI delivered by helical tomotherapy plus melphalan 140 mg/m2 (HDM140 + TMI 8 Gy in newly diagnosed symptomatic multiple myeloma (MM Asian patients. Between 2007 and 2010, nine consecutive myeloma patients who were scheduled to undergo autologous stem cell transplantation (ASCT were studied. The patients received three cycles of vincristine-adriamycin-dexamethasone (VAD regimen as induction chemotherapy, and if they had a partial response, peripheral blood stem cells were collected by dexamethasone-etoposide-cyclophosphamide-cisplatin (DECP. In arm A, six patients received the HDM200. In arm B, three patients received HDM140 + TMI 8 Gy. In arm B, the neutropenic duration was slightly longer than in arm A (P=0.048. However, hematologic recovery (except for neutrophils, transfusion requirement, median duration of hospitalization, and the dose of G-CSF were similar in both arms. The median duration of overall survival and event-free survival was similar in the two arms (P=0.387. As a conditioning regiment, HDM140 + TMI 8 Gy provide another chance for MM Asian patients who were not feasible for HDM200.

  7. [High dosage therapy and autologous peripheral stem cell transplantation in breast carcinoma].

    Science.gov (United States)

    Kier, P; Ruckser, R; Buxhofer, V; Habertheuer, K H; Zelenka, P; Tatzreiter, G; Hübl, G; Kittl, E; Hauser, A; Sebesta, C; Hinterberger, W

    2000-01-01

    42 breast cancer patients were treated by high-dose chemotherapy (HDC) and autologous peripheral stem-cell transplantation (ASTx) in the Donauspital between 1992 and 1999. 24 patients had stage II/III breast cancer with high risk for relapse. The other 18 patients underwent HDC and ASTx in chemosensitive stage IV. After previous conventional chemotherapy peripheral stem-cells were harvested by one cycle of mobilisation chemotherapy (epirubicin/taxol, FEC 120 or cyclophosphamide) followed by cytokine stimulation. 16 patients were treated by a tandem transplantation (conditioning protocol for 1st ASTx was melphalan 200 mg/m2 and for 2nd transplant it was CTC: cyclophosphamide 6 g/m2; thiotepa 500 mg/m2; carboplatin 800 mg/m2). The other 26 patients received one HDC with CTC as conditioning protocol. The HDC was well tolerated by all patients, there was no transplant-related mortality. The median survival and the progression-free survival (PFS) after HDC and ASTx in stage IV breast cancer patients were 28 and 11 months, respectively. The median survival and PFS were not yet reached in stage II/III patients after 55 months. The actuarial survival and PFS in that patient group were 70% after 55 months. Our data confirm the low risk and good efficacy of HDC and ASTx in breast cancer patients. Nevertheless randomised studies are necessary to evaluate the importance of HDC compared to intensified conventional protocols without ASTx. PMID:11261276

  8. [High dosage chemotherapy with autologous stem cell transplantation in multiple myeloma].

    Science.gov (United States)

    Ruckser, R; Kier, P; Buxhofer, V; Kittl, E; Tatzreiter, G; Vedovelli, H; Zelenka, P; Hübl, G; Hinterberger, W

    2000-01-01

    Between 1992 and 1999 15 patients (pts.) suffering from multiple myeloma (MM) were treated with high-dose chemotherapy and consecutive autologous stem-cell transplantation (ASTx). 10/15 pts underwent two courses of ASTx (tandem- or double ASTx). So 25 ASTx were performed in these 15 pts. in total. All pts. were under 60 a. of age. 13/15 pts. received 6 cycles of chemotherapy on an average according to the VAD-protocol (Vincristin, Adriamycin, Dexamethason). Mobilisation of peripheral hematopoietic stem cells was performed with high-dose cyclophosphamide and hematopoietic growth-factors (CSFs). The conditioning protocol consisted of high-dose melphalan (200-225 mg/m2) in 24/25 ASTx. In one single case total body irradiation (TBI) plus melphalan 140 mg/m2 was used. 2/15 pts. died within 30 days from ASTx; one patient from interstitial pneumonia after TBI, and the other, who was in a very advanced stage of his disease with multiple pretreatment courses before ASTx. The overall survival (OS) was in the mean 68 months, the progression-free survival (PFS) after ASTx 21 m respectively. In pts. with MM high-dose melphalan (up to 225 mg/m2) without TBI plus ASTx is a safe and effective procedure when performed in the early course of the disease. PMID:11261278

  9. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  10. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  11. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    Science.gov (United States)

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  12. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  13. The sensitivity of human mesenchymal stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy

  14. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented. PMID:26140302

  15. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  16. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  17. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  18. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium

    International Nuclear Information System (INIS)

    Great hope is set in the use of mesenchymal stem cells for gene therapy and regenerative medicine. Since the frequency of this subpopulation of stem cells in bone marrow is low, mesenchymal stem cells are expanded ex vivo and manipulated prior to experimental or clinical use. Different methods for isolation and expansion are available, but the particular effect on the stem cell character is unclear. While the isolation of mesenchymal stem cells by density centrifugation followed by selection of the plastic adherent fraction is frequently used, the composition of expansion media differs. Thus, in the present study we cultured mesenchymal stem cells isolated from five healthy young volunteers in three widely used expansion media and performed a detailed analysis of the effect on morphology, proliferation, clonogenicity, passaging, differentiation and senescence. By this way we clearly show that the type of expansion medium used determines the stem cell character and time of senescence which is critical for future gene therapeutic and regenerative approaches using mesenchymal stem cells

  19. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  20. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  1. Cardiac differentiation and electrophysiology characteristics of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-wu; AI Shi-yi; L(U) An-lin; HOU Jing; HUANG Wei; LI Yao; HOU Zhao-lei; HOU Hong; DA Jing; YANG Na

    2012-01-01

    Objective To review the progress of cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells.Data sources The databases of PubMed,Springer Link,Science Direct and CNKI were retrieved for papers published from January 2000 to January 2012 with the key words of “bone marrow mesenchymal stem cells,cardiac or heart,electrophysiology or electrophysiological characteristics”.Study selection The articles concerned cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells were collected.After excluding papers that study purposes are not coincident with this review or contents duplicated,56 papers were internalized at last.Results For the treatment of myocardial infarction and myocardiac disease,the therapeutic effects of transplantation of bone marrow mesenchymal stem cells which have the ability to develop into functional myocardial cells by lots of methods have been proved by many researches.But the arrhythmogenic effect on ventricles affer transplantation of bone marrow mesenchymal stem cells derived myocardial cells is still controversial in animal models.Certainly,the low differentiation efficiency and heterogeneous development of electricial function could be the most important risk for proarrhythmia.Conclusion Many studies of cardiac differentiation of bone marrow mesenchymal stem cells have paid attention to improve the cardiac differentiation rate,and the electrophysiology characteristics of the differentiated cells should be concerned for the risk for proarrhythmia as well.

  2. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  3. Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase.

    Science.gov (United States)

    Okada, Motoi; Kim, Ha Won; Matsu-ura, Kaoru; Wang, Yi-Gang; Xu, Meifeng; Ashraf, Muhammad

    2016-01-01

    Previously, we reported that a novel subpopulation of young mesenchymal stem cells (YMSCs) existed in old bone marrow, which possessed high antiaging properties as well as excellent efficacy for cardiac repair. MicroRNAs (miRNAs) have emerged as key regulators in post-transcriptional gene expression programs, and however, it is unknown whether miRNAs directly control stem cell senescence. Here we present the first evidence that miR-195 overexpressed in old MSCs (OMSCs) induces stem cell senescence deteriorating their regenerative ability by directly deactivating telomerase reverse transcriptase (Tert), and abrogation of miR-195 can reverse stem cell aging. MiRNAs profiling analysis in YMSCs and OMSCs by microarray showed that miR-140, miR-146a/b, and miR-195 were significantly upregulated in OMSCs, which led us to hypothesize that these are age-induced miRNAs involved in stem cell senescence. Of these miRNAs, we found miR-195 directly targeted 3'-untranslated region of Tert gene by computational target prediction analysis and luciferase assay, and knockdown of miR-195 significantly increased Tert expression in OMSCs. Strikingly, miR-195 inhibition significantly induced telomere relengthening in OMSCs along with reduced expression of senescence-associated β-galactosidase. Moreover, silencing miR-195 in OMSCs by transfection of miR-195 inhibitor significantly restored antiaging factors expression including Tert and Sirt1 as well as phosphorylation of Akt and FOXO1. Notably, abrogation of miR-195 markedly restored proliferative abilities in OMSCs. Transplantation of OMSCs with knocked out miR-195 reduced infarction size and improved LV function. In conclusion, rejuvenation of aged stem cells by miR-195 inhibition would be a promising autologous therapeutic strategy for cardiac repair in the elderly patients. PMID:26390028

  4. Case of relapsed AIDS-related plasmablastic lymphoma treated with autologous stem cell transplantation and highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Hiroki Goto

    2011-03-01

    Full Text Available Plasmablastic lymphoma is a rare and aggressive malignancy strongly associated with HIV infection. The refractory/relapsed disease rate is high, and the survival rate is characteristically poor. There are no satisfactory salvage regimens for relapsed cases. We successfully performed autologous stem cell transplantation using a regimen consisting of MCNU (ranimustine, etoposide, cytarabine, and melphalan in a Japanese patient with relapsed AIDS-related plasmablastic lymphoma of the oral cavity. Highly active antiretroviral therapy continued during the therapy. Therapy-related toxicity was tolerable, and a total of 40 Gy of irradiation was administered after autologous stem cell transplantation. The patient has remained in complete remission for 16 months since transplantation.

  5. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    OpenAIRE

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  6. Function of mesenchymal stem cells following loading of gold nanotracers

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Laura M Ricles1, Seung Yun Nam1,2, Konstantin Sokolov3,1, Stanislav Y Emelianov1,3, Laura J Suggs11Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA; 3Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USABackground: Stem cells can differentiate into multiple cell types, and therefore can be used for cellular therapies, including tissue repair. However, the participation of stem cells in tissue repair and neovascularization is not well understood. Therefore, implementing a noninvasive, long-term imaging technique to track stem cells in vivo is needed to obtain a better understanding of the wound healing response. Generally, we are interested in developing an imaging approach to track mesenchymal stem cells (MSCs in vivo after delivery via a polyethylene glycol modified fibrin matrix (PEGylated fibrin matrix using MSCs loaded with gold nanoparticles as nanotracers. The objective of the current study was to assess the effects of loading MSCs with gold nanoparticles on cellular function.Methods: In this study, we utilized various gold nanoparticle formulations by varying size and surface coatings and assessed the efficiency of cell labeling using darkfield microscopy. We hypothesized that loading cells with gold nanotracers would not significantly alter cell function due to the inert and biocompatible characteristics of gold. The effect of nanoparticle loading on cell viability and cytotoxicity was analyzed using a LIVE/DEAD stain and an MTT assay. The ability of MSCs to differentiate into adipocytes and osteocytes after nanoparticle loading was also examined. In addition, nanoparticle loading and retention over time was assessed using inductively coupled plasma mass spectrometry (ICP-MS.Conclusion: Our results demonstrate that loading MSCs with gold nanotracers does not alter cell function and, based on the ICP

  7. Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies

    Directory of Open Access Journals (Sweden)

    Gong Min

    2011-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs, MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T antigen as an alternative to primary MSCs. Methods The retroviral vector SSR#69 expressing simian virus 40 large T (SV40T antigen was used to construct IMSCs. IMSCs were identified by flow cytometry to detect cell surface makers. To investigate proliferation and differentiation potential of IMSCs, cell growth curve determination and mesodermal trilineage differentiation tests were performed. Neuronal differentiation characteristics of IMSCs were detected in vitro. Before IMSCs transplantation, we excluded its tumorigenicity in nude mice firstly. The Morris water maze tests and shuttle box tests were performed five weeks after HIBD models received cells transplantation therapy. Results In this study, reversible IMSCs were constructed successfully and had the similar morphology and cell surface makers as primary MSCs. IMSCs possessed better ability of proliferation and anti-senescence compared with primary MSCs, while maintained multilineage differentiation capacity. Neural-like cells derived from IMSCs had similar expressions of neural-specific genes, protein expression patterns and resting membrane potential (RMP compared with their counterparts derived from primary MSCs. There was no bump formation in nude mice subcutaneously injected with IMSCs. IMSCs

  8. Challenges and outcomes of a randomized study of early nutrition support during autologous stem-cell transplantation

    OpenAIRE

    Kiss, N.; Seymour, J.F.; Prince, H M; Dutu, G.

    2014-01-01

    Patients undergoing myeloablative conditioning regimens and autologous stem-cell transplantation (asct) are at high risk of malnutrition. This randomized study aimed to determine if early nutrition support (commenced when oral intake is less than 80% of estimated requirements) compared with usual care (commenced when oral intake is less than 50% of estimated requirements) reduces weight loss in well-nourished patients undergoing high-nutritional-risk conditioning chemotherapy and asct.

  9. High-Dose Chemotherapy Followed by Autologous Stem Cell Transplantation for Metastatic Rhabdomyosarcoma—A Systematic Review

    OpenAIRE

    Frank Peinemann; Nicolaus Kröger; Carmen Bartel; Ulrich Grouven; Max Pittler; Rudolf Erttmann; Michael Kulig

    2011-01-01

    INTRODUCTION: Patients with metastatic rhabdomyosarcoma (RMS) have a poor prognosis. The aim of this systematic review is to investigate whether high-dose chemotherapy (HDCT) followed by autologous hematopoietic stem cell transplantation (HSCT) in patients with metastatic RMS has additional benefit or harm compared to standard chemotherapy. METHODS: Systematic literature searches were performed in MEDLINE, EMBASE, and The Cochrane Library. All databases were searched from inception to Februar...

  10. High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for adult histiocytic disorders with central nervous system involvement

    OpenAIRE

    Gaspar, Nathalie; Van Den Neste, Eric; Boudou, Pascaline; Haroche, Julien; Wechsler, Bertrand; Hoang-Xuan, Khe; Amoura, Zahir; Guillevin, Remy; Savatovski, Julien; Azar, Nabih; Piette, Jean-Charles; Leblond, Veronique

    2006-01-01

    We postulated that high-dose chemotherapy (HDC) followed by peripheral autologous hematopoietic stem cell transplantation might help to control refractory central nervous system (CNS) histiocytic disorders. Six patients with histiocytic CNS involvement were treated in this way. Two patients achieved non-active disease status, although one relapsed at 84 months. Two patients had regressive disease, one of whom progressed at 21 months. One patient had progressive disease at 14 months. One patie...

  11. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment.

    Directory of Open Access Journals (Sweden)

    Stefano Giannotti

    Full Text Available BACKGROUND: Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution. AIMS: We examined the long-term efficacy and safety of ex vivo expanded bone marrow MSCs, embedded in autologous fibrin clots, for the healing of atrophic pseudarthrosis of the upper limb. Our research work relied on three main issues: use of an entirely autologous context (cells, serum for ex vivo cell culture, scaffold components, reduced ex vivo cell expansion, and short-term MSC osteoinduction before implantation. METHODS AND FINDINGS: Bone marrow MSCs isolated from 8 patients were expanded ex vivo until passage 1 and short-term osteo-differentiated in autologous-based culture conditions. Tissue-engineered constructs designed to embed MSCs in autologous fibrin clots were locally implanted with bone grafts, calibrating their number on the extension of bone damage. Radiographic healing was evaluated with short- and long-term follow-ups (range averages: 6.7 and 76.0 months, respectively. All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation. CONCLUSIONS: Our study indicates that highly autologous treatment can be effective and safe in the long-term healing of bone non-unions. This tissue engineering approach resulted in successful clinical and functional outcomes for all patients.

  12. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    OpenAIRE

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury...

  13. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  14. Células-tronco mesenquimais Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Betânia Souza Monteiro

    2010-02-01

    Full Text Available Dentre todas as células-tronco estudadas até o presente momento, as mesenquimais (MSC destacam-se por sua elevada plasticidade, podendo originar tecidos mesodermais e não mesodermais. Além disso, possuem características imunomoduladoras e imunossupressoras que ampliam as possibilidades de utilização terapêutica. As MSC secretam uma grande variedade de citocinas pró e anti-inflamatórias e fatores de crescimento e, por meio dessas moléculas bioativas, proporcionam a modulação da resposta inflamatória, o restabelecimento do suprimento vascular e a reparação adequada do tecido, contribuindo para a homeostasia tissular e imunológica sob condições fisiológicas. Também podem induzir as demais células presentes no nicho tecidual a secretarem outros fatores solúveis que estimulam a diferenciação dessas células indiferenciadas, favorecendo o processo de reparação. A terapia celular com MSC é uma alternativa terapêutica promissora, porém a compreensão da biologia dessas células ainda é uma ciência em formação. Este artigo tem por objetivo realizar uma breve revisão sobre as células mesenquimais indiferenciadas.Of all the stem cells studied so far, the mesenchymal stem cells (MSC stand out for their high plasticity and capacity of generating mesodermal and non-mesodermal tissues. In addition, immunomodulatory and immunosuppressive features that expand possibilities for therapeutic use are present in these cells. A variety of pro and anti-inflammatory cytokines and growth factors are secrete for MSC and provide a modulation of inflammatory response, re-establishment of vascular supply and adequate repair of the tissue, contributing to tissue homeostasis under physiologic conditions. Therefore, they can induce secretion of soluble factors that stimulate their differentiation by other cells present at the niche's tissue, promoting the repair process. Cell therapy using MSC is a promises therapeutic alternative, but

  15. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells.

    Science.gov (United States)

    Muroski, Megan E; Morgan, Thomas J; Levenson, Cathy W; Strouse, Geoffrey F

    2014-10-22

    Mesenchymal stem cells (MSC) have been identified as having great potential as autologous cell therapeutics to treat traumatic brain injury and spinal injury as well as neuronal and cardiac ischemic events. All future clinical applications of MSC cell therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to systematically alter the protein expression of therapeutically beneficial biomolecules in harvested MSC cells with high fidelity in a single transfection event. We have developed a delivery platform on the basis of the use of a solid gold nanoparticle that has been surface modified to produce a fusion containing a zwitterionic, pentapeptide designed from Bax inhibiting peptide (Ku70) to enhance cellular uptake and a linearized expression vector to induce enhanced expression of brain-derived neurotrophic factor (BDNF) in rat-derived MSCs. Ku70 is observed to effect >80% transfection following a single treatment of femur bone marrow isolated rat MSCs with efficiencies for the delivery of a 6.6 kbp gene on either a Au nanoparticle (NP) or CdSe/ZnS quantum dot (QD). Gene expression is observed within 4 d by optical measurements, and secretion is observed within 10 d by Western Blot analysis. The combination of being able to selectively engineer the NP, to colocalize biological agents, and to enhance the stability of those agents has provided the strong impetus to utilize this novel class of materials to engineer primary MSCs. PMID:25198921

  16. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies.

    Science.gov (United States)

    Hofer, Heidi R; Tuan, Rocky S

    2016-01-01

    Adult mesenchymal stem cells (MSCs) represent a subject of intense experimental and biomedical interest. Recently, trophic activities of MSCs have become the topic of a number of revealing studies that span both basic and clinical fields. In this review, we focus on recent investigations that have elucidated trophic mechanisms and shed light on MSC clinical efficacy relevant to musculoskeletal applications. Innate differences due to MSC sourcing may play a role in the clinical utility of isolated MSCs. Pain management, osteochondral, nerve, or blood vessel support by MSCs derived from both autologous and allogeneic sources have been examined. Recent mechanistic insights into the trophic activities of these cells point to ultimate regulation by nitric oxide, nuclear factor-kB, and indoleamine, among other signaling pathways. Classic growth factors and cytokines-such as VEGF, CNTF, GDNF, TGF-β, interleukins (IL-1β, IL-6, and IL-8), and C-C ligands (CCL-2, CCL-5, and CCL-23)-serve as paracrine control molecules secreted or packaged into extracellular vesicles, or exosomes, by MSCs. Recent studies have also implicated signaling by microRNAs contained in MSC-derived exosomes. The response of target cells is further regulated by their microenvironment, involving the extracellular matrix, which may be modified by MSC-produced matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs. Trophic activities of MSCs, either resident or introduced exogenously, are thus intricately controlled, and may be further fine-tuned via implant material modifications. MSCs are actively being investigated for the repair and regeneration of both osteochondral and other musculoskeletal tissues, such as tendon/ligament and meniscus. Future rational and effective MSC-based musculoskeletal therapies will benefit from better mechanistic understanding of MSC trophic activities, for example using analytical "-omics" profiling approaches. PMID:27612948

  17. Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    OpenAIRE

    Sung, Hwa Jung; Hong, Soon Cheol; Yoo, Ji Hyun; Oh, Jee Hyun; Shin, Hye Jin; Choi, In Young; Ahn, Ki Hoon; Kim, Sun Haeng; Park, Yong; Kim, Byung Soo

    2010-01-01

    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, e...

  18. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  19. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sommer, Eva; Lopez, Ramon; Wirkner, Ute [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sisombath, Sonevisay [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Ho, Anthony D.; Saffrich, Rainer [Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg (Germany); Huber, Peter E. [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  20. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem;

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...... bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106 and CD166 as revealed by immunohistochemical staining and flow cytometry (FACS) analysis. Ex vivo differentiation of h...

  1. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  2. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  3. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  4. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  5. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Peng Xia; Su Pan; Jieping Cheng; Maoguang Yang; Zhiping Qi; Tingting Hou; Xiaoyu Yang

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu-bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid-and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi-tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro-tubule-associated protein 1B via a cross-signaling network, and affect the migratory efifciency of bone marrow mesenchymal stem cells towards injured spinal cord.

  6. IFNγ and B7-H1 in the immunology of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Mesenchymal stem cells (MSCs) are found in multiple organs in the fetus,cord blood and adult tissues [1]. However, in adults, the bone marrow is the major source of these stem cells. MSCs surround the blood vessels of bone marrow and are also in contact with the trabeculae [2].

  7. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene

    DEFF Research Database (Denmark)

    Bentzon, J F; Stenderup, K; Hansen, F D;

    2005-01-01

    Engraftment of mesenchymal stem cells (MSC) in peripheral tissues for replenishing of local stem cell function has been proposed as a therapeutic approach to degenerative diseases. We have previously reported the development of an immortalized human telomerase reverse transcriptase transduced MSC...

  8. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  9. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  10. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zurab Kakabadze

    2016-01-01

    Full Text Available Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50% cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA scale, 7 (78% out of the 9 patients observed an improvement by one grade, while two cases (22% saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury.

  11. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Kakabadze, Zurab; Kipshidze, Nickolas; Mardaleishvili, Konstantine; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50%) cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA) scale, 7 (78%) out of the 9 patients observed an improvement by one grade, while two cases (22%) saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury. PMID:27433165

  12. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  13. Advancement in high dose therapy and autologous stem cell rescue in lymphoma

    Institute of Scientific and Technical Information of China (English)

    Alessandro; Isidori; Cristina; Clissa; Federica; Loscocco; Barbara; Guiducci; Sara; Barulli; Lara; Malerba; Elisa; Gabucci; Giuseppe; Visani

    2015-01-01

    A lthough advanced stage aggressive non-Hodgkin’slymphomas and Hodgkin’s disease are thought to be che-motherapy-responsive cancers, a considerable number of patients either relapse or never attain a remission. High-dose therapy(HDT) followed by autologous stem cell transplantation(ASCT) is often the only possibility of cure for most of these patients. However, many controversial issues still remain with respect to HDT/ASCT for lymphomas, including its role for, the optimal timing of transplantation, the best conditioning regimen and the potential use of localized radiotherapy or immunologic methods to decrease post-transplant recurrence. Recently, mainly due to the unavailability of carmustine, several novel conditioning protocols have been clinically developed, with the aim of improving the overall outcome by enhancing the anti-lymphoma effect and, at the same time, by reducing short and long-term toxicity. Furthermore, the better safety profiles of novel approaches would definitively allow patients aged more than 65-70 years to benefit from this therapeutic option. In this review, we will briefly discuss the most relevant and recent data available regarding HDT/ASCT in lymphomas.

  14. Steroids prevent engraftment syndrome after autologous hematopoietic stem cell transplantation without increasing the risk of infection.

    Science.gov (United States)

    Mossad, S; Kalaycio, M; Sobecks, R; Pohlman, B; Andresen, S; Avery, R; Rybicki, L; Jarvis, J; Bolwell, B

    2005-02-01

    Engraftment syndrome (ES) following autologous hematopoietic stem cell transplantation (AHSCT) is characterized by fever and rash. In January 2002, we instituted steroid prophylaxis for ES from day +4 to +14. This study was conducted to assess whether this practice increased the risk of infection. In total, 194 consecutive patients were reviewed, 111 did not receive steroid prophylaxis (group A), and 83 did (group B). Initial antimicrobial prophylaxis was the same in both groups. There were no significant differences between groups in age, gender, race, prior radiation therapy, number of prior chemotherapy regimens, disease status at transplant, mobilization regimen, days of leukopheresis, CD34(+) cell dose, and days to platelet and neutrophil engraftment. Group B had significantly fewer patients with non-Hodgkin's lymphoma and multiple myeloma, shorter median duration from diagnosis to transplant, lower risk of ES, and shorter mean length of hospital stay. The incidence of early and late microbiologically confirmed infections was not significantly different between groups. Types of infections and types of organisms identified were similar in both groups. Hospital readmission rates were similar in both groups. Steroid prophylaxis significantly decreases the risk of ES following AHSCT, and is associated with shortened hospitalization, without increasing risk of infection. PMID:15640827

  15. Mesenchymal Stem Cell (MSC) Aggregate Formation in vivo

    Science.gov (United States)

    Bartosh, Thomas J.; Ylostalo, Joni H.

    2016-01-01

    Human mesenchymal stem/progenitor cells (MSCs) isolated from various adult tissues show remarkable therapeutic potential and are being employed in clinical trials for the treatment of numerous diseases (Prockop et al., 2010). While routes of cell administration vary, profound beneficial effects of MSCs in animal models have been observed following intraperitoneal injections of the cells (Roddy et al., 2011). Similar to MSC spheres formed in culture under conditions where attachment to plastic is not permitted (Bartosh et al., 2010), MSCs injected into the peritoneum of mice spontaneously aggregate into 3D sphere-like structures (Bartosh et al., 2013). During the process of sphere assembly and compaction, MSCs upregulate expression of numerous therapeutic anti-inflammatory and immune modulatory factors. Here we describe the method we previously used for the generation of human bone marrow-derived MSC aggregates/spheres in vivo (Bartosh et al., 2013). By tagging the MSCs with green fluorescent protein (GFP), the aggregates formed can be easily visualized, collected and analyzed for changes in cellular properties and interactions with host immune cells.

  16. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  17. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Science.gov (United States)

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  18. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  19. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  20. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Science.gov (United States)

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  1. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    Science.gov (United States)

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  2. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis.

    Science.gov (United States)

    Coimbra, L S; Steffens, J P; Alsadun, S; Albiero, M L; Rossa, C; Pignolo, R J; Spolidorio, L C; Graves, D T

    2015-12-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.

  3. PPAR-γ Signaling Crosstalk in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ichiro Takada

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor-gamma (PPAR-γ is a member of the nuclear receptor (NR superfamily of ligand-activated transcriptional factors. Among other functions, PPAR-γ acts as a key regulator of the adipogenesis. Since several cytokines (IL-1, TNF-α, TGF-β had been known to inhibit adipocyte differentiation in mesenchymal stem cells (MSCs, we examined the effect of these cytokines on the transactivation function of PPAR-γ. We found that the TNF-α/IL-1-activated TAK1/TAB1/NIK (NFκB-inducible kinase signaling cascade inhibited both the adipogenesis and Tro-induced transactivation by PPAR-γ by blocking the receptor binding to the cognate DNA response elements. Furthermore, it has been shown that the noncanonical Wnts are expressed in MSCs and that Wnt-5a was capable to inhibit transactivation by PPAR-γ. Treatment with Wnt5a-activated NLK (nemo-like kinase induced physical association of the endogenous NLK and H3K9 histone methyltransferase (SETDB1 protein complexes with PPAR-γ. This resulted in histoneH3K9 tri-methylation at PPAR-γ target gene promoters. Overall, our data show that cytokines and noncanonical Wnts play a crucial role in modulation of PPAR-γ regulatory function in its target cells and tissues.

  4. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  5. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. PMID:26212931

  6. Mesenchymal stem cells and cancer: friends or enemies?

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kang, Kyung-Sun

    2014-10-01

    There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.

  7. Pattern Recognition Receptors as modulators of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Olga eDelaRosa

    2012-07-01

    Full Text Available Mesenchymal stem cells (MSCs have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by pattern recognition receptors (PRRs, towards either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. PRRs, including Toll-like receptors (TLRs and NOD-like receptors (NLRs, have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g. Crohn´s disease, rheumatoid arthritis through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals produced upon injury. Interest in understanding the effects of PRR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter PRRs ligands at sites of injury, and it has been proven that the activation of PRRs in MSCs can modulate their function and therapeutic effect.

  8. Mesenchymal stem cell-based therapy in kidney transplantation.

    Science.gov (United States)

    Chen, Cheng; Hou, Jianquan

    2016-01-01

    Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation. PMID:26852923

  9. Mesenchymal stem cells for treatment of aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    Aika; Yamawaki-Ogata; Ryotaro; Hashizume; Xian-Ming; Fu; Akihiko; Usui; Yuji; Narita

    2014-01-01

    An aortic aneurysm(AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdom-inal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflam-mation enhances the degradation of matrices directly and indirectly, making control of the chronic inflamma-tion crucial for aneurysmal development. Meanwhile, mesenchymal stem cells(MSCs) are known to be ob-tained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppres-sive properties but also can be recruited into damagedtissue. MSCs have been widely used as a source for celltherapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronicinflammatory disease such as Crohn’s disease clinically.Therefore, administration of MSCs might be availableto treat AA using anti-inflammatory and immnosup-pressive properties. This review provides a summary ofseveral studies on "Cell Therapy for Aortic Aneurysm"including our recent data, and we also discuss the pos-sibility of this kind of treatment.

  10. mTOR and the differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xinxin Xiang; Jing Zhao; Geyang Xu; Yin Li; Weizhen Zhang

    2011-01-01

    The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase,belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells, mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.

  11. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  12. Mechanisms of mesenchymal stem/stromal cell function.

    Science.gov (United States)

    Spees, Jeffrey L; Lee, Ryang Hwa; Gregory, Carl A

    2016-01-01

    The past decade has seen an explosion of research directed toward better understanding of the mechanisms of mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition to delineating cell-cell signaling and molecular controls for MSC differentiation, the field has made particular progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair. These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles containing RNA and other molecules. Improved understanding of MSC function holds great promise for the application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics. PMID:27581859

  13. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  14. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Vanessa Pérez-Silos

    2016-01-01

    Full Text Available Research on mesenchymal stem cells (MSCs continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs’ ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.

  15. Mesenchymal stem cell printing and process regulated cell properties.

    Science.gov (United States)

    Snyder, Jessica; Rin Son, Ae; Hamid, Qudus; Wang, Chengyang; Lui, Yigong; Sun, Wei

    2015-01-01

    This topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities. (2) Original flow analysis frames the feasible range of stress duration and intensity during manufacturing. (3) Preliminary empirical results define cell properties as a function of minimum, mean and maximum stress conditions. The review and analytical characterization serve as an essential precursor to interpret surprising empirical results. Results identify key cell properties are stress-dependent and controllable based on printing process parameter selection. Printing's minimum stress condition preserves cell viability. The maximum stress increases heterogeneity of cell response, induces inelastic ultra-structural distortion of the cell membrane and chromatin, and increases necrotic subpopulations post-printing. The review, analysis and preliminary results support the feasibility of modulating cell properties during fabrication by prescriptively tuning the stress environment. The process control over cell morphology, health and the rate of differentiation is both a direct result of strain during printing and an in-direct result of increased distress signaling from necrotic sub-populations. PMID:26696405

  16. [Mesenchymal stem cells - The challenge of a good therapeutic product].

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe

    2011-03-01

    Mesenchymal stem cells (or stromal cells) have been initially characterized in bone marrow, but since, they have been identified in almost every tissue. Their multiple properties, namely differentiative capacity, production of cytokines and trophic molecules, and their immunosuppressive potential undoubtedly offer many therapeutic advantages, both for regenerative medecine or to relieve immune or inflammatory diseases. This is illustrated by the high number (> 100) of ongoing clinical trials with these cells. However, a prerequsite for their safe use in clinics is to guarantee that their production meet the good manufacturing practices, and that the final product is validated by adequate controls. It is thus quite a challenge to move from procedures defined for a research use to large scale production that fits with the national and international rules in terms of standardisation and controls. This underlines the importance of developping interacting networks between research teams, physicians and the industrial R&D departments. This fruitful collaboration will ensure the definition of appropriate and safe procedures for a successful therapeutic application.

  17. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.

    Science.gov (United States)

    Tsai, Ang-Chen; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are considered as a primary candidate in cell therapy owing to their self-renewability, high differentiation capabilities, and secretions of trophic factors. In clinical application, a large quantity of therapeutically competent hMSCs is required that cannot be produced in conventional petri dish culture. Bioreactors are scalable and have the capacity to meet the production demand. Microcarrier suspension culture in stirred-tank bioreactors is the most widely used method to expand anchorage dependent cells in a large scale. Stirred-tank bioreactors have the potential to scale up and microcarriers provide the high surface-volume ratio. As a result, a spinner flask bioreactor with microcarriers has been commonly used in large scale expansion of adherent cells. This chapter describes a detailed culture protocol for hMSC expansion in a 125 mL spinner flask using microcarriers, Cytodex I, and a procedure for cell seeding, expansion, metabolic sampling, and quantification and visualization using microculture tetrazolium (MTT) reagent. PMID:27032950

  18. A population-based cohort study of late mortality in adult autologous hematopoietic stem cell transplant recipients in Australia.

    Science.gov (United States)

    Ashton, Lesley J; Le Marsney, Renate E; Dodds, Anthony J; Nivison-Smith, Ian; Wilcox, Leonie; O'Brien, Tracey A; Vajdic, Claire M

    2014-07-01

    We assessed overall and cause-specific mortality and risk factors for late mortality in a nation-wide population-based cohort of 4547 adult cancer patients who survived 2 or more years after receiving an autologous hematopoietic stem cell transplantation (HSCT) in Australia between 1992 and 2005. Deaths after HSCT were identified from the Australasian Bone Marrow Transplant Recipient Registry and through data linkage with the National Death Index. Overall, the survival probability was 56% at 10 years from HSCT, ranging from 34% for patients with multiple myeloma to 90% for patients with testicular cancer. Mortality rates moved closer to rates observed in the age- and sex-matched Australian general population over time but remained significantly increased 11 or more years from HSCT (standardized mortality ratio, 5.9). Although the proportion of deaths from nonrelapse causes increased over time, relapse remained the most frequent cause of death for all diagnoses, 10 or more years after autologous HSCT. Our findings show that prevention of disease recurrence remains 1 of the greatest challenges for autologous HSCT recipients, while the increasing rates of nonrelapse deaths due to the emergence of second cancers, circulatory diseases, and respiratory diseases highlight the long-term health issues faced by adult survivors of autologous HSCT. PMID:24631736

  19. Generation of Insulin-Producing Human Mesenchymal Stem Cells Using Recombinant Adeno-Associated Virus

    OpenAIRE

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-01-01

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet β-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced wi...

  20. Cytomegalovirus infection in autologous stem cell transplant recipients in the era of rituximab.

    Science.gov (United States)

    Jain, Tania; John, Jisha; Kotecha, Aditya; Deol, Abhinav; Saliminia, Tanaz; Revankar, Sanjay; Chandrasekar, Pranatharthi

    2016-08-01

    The incidence of cytomegalovirus (CMV) reactivation/disease after autologous stem cell transplant (ASCT) is much lower than that after allogeneic stem cell transplantation. With the recent use of rituximab during cancer chemotherapy or conditioning regimens prior to transplantation, there has been an increasing concern of opportunistic infections including CMV. In the present study, we reviewed the patients undergoing ASCT from December 2007 to December 2013 to identify those developing CMV reactivation/disease. Out of the 978 patients who underwent ASCT at the Karmanos Cancer Institute, 239 patients were tested for symptomatic CMV reactivation based on clinical suspicion. Of the tested patients, 7/239 (2.9 %) were documented to have CMV reactivation within 90 days of ASCT. The median time to develop CMV viremia was 32 days from transplantation. Of the 239 patients tested, CMV viremia was detected in 3 out of 72 patients who received rituximab as compared to 4 out of 167 patients who did not. Three of these seven viremic patients were treated with anti-viral drugs; viremia resolved in all patients at a median of 24 days. Three patients were found to develop other bacterial and/or fungal infections following CMV viremia. Two of the seven patients died during 1-year follow-up, due to primary disease progression or Candida sepsis. None of the patients developed proven tissue-invasive CMV disease. The study did not evaluate the incidence of asymptomatic CMV infection/reactivation. Despite prior publications based on limited data, rituximab does not appear to contribute to an increased frequency of symptomatic CMV reactivation following ASCT. PMID:27225264