WorldWideScience

Sample records for autologous hematopoietic cell

  1. SECOND MALIGNANCIES AFTER AUTOLOGOUS HEMATOPOIETIC CELL TRANSPLANTATION IN CHILDREN

    OpenAIRE

    Danner-Koptik, Karina E; Majhail, Navneet S.; Brazauskas, Ruta; Wang, Zhiwei; Buchbinder, David; Cahn, Jean-Yves; Dilley, Kimberley J.; Frangoul, Haydar A.; Gross, Thomas G.; Hale, Gregory A.; Hayashi, Robert J.; Hijiya, Nobuko; Kamble, Rammurti T.; Lazarus, Hillard M.; Marks, David I.

    2012-01-01

    Childhood autologous hematopoietic cell transplant (AHCT) survivors can be at risk for secondary malignant neoplasms (SMNs). We assembled a cohort of 1,487 pediatric AHCT recipients to investigate the incidence and risk factors for SMNs. Primary diagnoses included neuroblastoma (39%), lymphoma (26%), sarcoma (18%), CNS tumors (14%), and Wilms tumor (2%). Median follow-up was 8 years (range,

  2. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  3. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sandra Fernandes

    2015-03-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

  4. Autologous hematopoietic stem cell transplantation in autoimmune diseases.

    Science.gov (United States)

    Annaloro, Claudio; Onida, Francesco; Lambertenghi Deliliers, Giorgio

    2009-12-01

    The term 'autoimmune diseases' encompasses a spectrum of diseases whose clinical manifestations and, possibly, biological features vary widely. The results of conventional treatment are considered unsatisfactory in aggressive forms, with subsets of patients having short life expectancies. Relying on wide experimental evidence and more feeble clinical data, some research groups have used autologous hematopoietic stem cell transplantation (HSCT) in the most disabling autoimmune diseases with the aim of resetting the patient's immune system. Immunoablative conditioning regimens are preferred over their myeloablative counterparts, and some form of in vivo and/or ex vivo T-cell depletion is generally adopted. Despite 15 years' experience, published controlled clinical trials are still lacking, with the evidence so far available coming from pilot studies and registry surveys. In multiple sclerosis, clinical improvement, or at least lasting disease stabilization, can be achieved in the majority of the patients; nevertheless, the worst results are observed in patients with progressive disease, where no benefit can be expected from conventional therapy. Concerning rheumatologic diseases, wide experience has been acquired in systemic sclerosis, with long-term improvements in cutaneous disease being frequently reported, although visceral involvement remains unchanged at best. Autografting has proved to be barely effective in rheumatoid arthritis and quite toxic in juvenile idiopathic arthritis, whereas it leads to clinical remission and the reversal of visceral impairment in the majority of patients with systemic lupus erythematosus. A promising indication is Crohn's disease, in which long-term endoscopic remission is frequently observed. Growing experience with autologous HCST in autoimmune diseases has progressively reduced concerns about transplant-related mortality and secondary myelodysplasia/leukemia. Therefore, a sustained complete remission seems to be within the

  5. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  6. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  7. Serum after autologous transplantation stimulates proliferation and expansion of human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Thomas Walenda

    Full Text Available Regeneration after hematopoietic stem cell transplantation (HSCT depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+, CD133(+, CD45(- for more cell divisions and increased colony forming units (CFU as well as the number of cobblestone area-forming cells (CAFC. The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT. Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1 increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.

  8. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  9. Analysis of the efficacy and prognosis on first-line autologous hematopoietic stem cell transplantation of patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    邹徳慧

    2013-01-01

    Objective To explore the efficacy and prognosis of first-line autologous hematopoietic stem cell transplantation(ASCT) for newly diagnosed patients with multiple myeloma(MM).Methods From January 2005 to

  10. Membranous nephropathy in autologous hematopoietic stem cell transplant: autologous graft-versus-host disease or autoimmunity induction?

    Science.gov (United States)

    Abudayyeh, Ala; Truong, Luan D.; Beck, Laurence H.; Weber, Donna M.; Rezvani, Katy; Abdelrahim, Maen

    2015-01-01

    With the increasing utility of hematopoietic stem cell transplantation (SCT) as a treatment for cancer and noncancerous disorders, more challenges and complications associated with SCT have emerged. Renal injury immediately after transplant is common and well understood, but long-term renal injury is becoming more evident. Chronic graft-versus-host disease (GVHD) is a known long-term complication of SCT, and membranous nephropathy (MN) is emerging as the most common cause of SCT-associated glomerular pathology. In this case report, we present a patient who developed features of anti-PLA2R antibody-negative MN following autologous SCT. The renal injury responded well to steroids and further response to rituximab therapy was noted, suggesting antibody-mediated autoimmune glomerular disease. We also present a review of the literature on autologous GVHD and the role of T and B cells in induction of autoimmunity by SCT. PMID:26251713

  11. Stomatitis-Related Pain in Women with Breast Cancer Undergoing Autologous Hematopoietic Stem Cell Transplant

    OpenAIRE

    Fall-Dickson, Jane M.; Mock, Victoria; Berk, Ronald A.; Grimm, Patricia M.; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. Hypotheses tested were that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two ...

  12. Renal function in high dose chemotherapy and autologous hematopoietic cell support treatment for breast cancer.

    Science.gov (United States)

    Merouani, A; Shpall, E J; Jones, R B; Archer, P G; Schrier, R W

    1996-09-01

    Autologous and allogeneic bone marrow grafting both require cytoreductive therapy but only the allogeneic procedure requires immunosuppressive agents. Allogeneic bone marrow transplantation has been reported to be associated with a high incidence of both renal failure and veno-occlusive disease (VOD) of the liver, the combination of which is associated with a high morbidity and mortality. There is less known about the frequency and severity of these complications in patients undergoing autologous bone marrow transplantation. In the present study renal, hepatic and other complications were examined in 232 patients with Stages II/III and IV breast cancer who were treated with high-dose chemotherapy and autologous hematopoietic cell support with either marrow or peripheral blood progenitor cells. The post-treatment severity of the renal dysfunction was classified as follows: Grade 0, normal renal function [ 25% decrement in GFR but twofold rise in serum creatinine but no need for dialysis; Grade 3 > than twofold rise in serum creatinine and need for dialysis. There were 102 patients (44%) who were classified as Grade 0 and 81 patients (35%) who were classified as Grade 1 renal dysfunction. Severe renal dysfunction (Grades 2 and 3) was observed in 49 of the 232 patients (21%). This severe renal dysfunction of 21% compares with a previously reported 53% incidence of severe renal dysfunction for allogeneic bone marrow transplantation. Similarly, the frequency of hepatic VOD was less (4.7% or 11 of 232 patients) in this autologous bone marrow transplant study as compared to a reported incidence of hepatic VOD ranging from 22 to 53% in large series of allogeneic bone marrow transplant patients. The severe renal dysfunction (Grades 2 and 3) in the present autologous hematopoietic cell support study correlated most significantly with sepsis, liver and pulmonary dysfunction. The major fall in GFR occurred during chemotherapy but before hematopoietic cell support, thus

  13. Novel therapy for type 1 diabetes: autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Li, Lirong; Gu, Weiqiong; Zhu, Dalong

    2012-12-01

    Type 1 diabetes is characterized pathologically by autoimmune insulitis-related islet β-cell destruction. Although intensive insulin therapy for patients with type 1 diabetes can correct hyperglycemia, this therapy does not prevent all diabetes-related complications. Recent studies have shown that autologous hematopoietic stem cell transplantation (HSCT) is a promising new approach for the treatment of type 1 diabetes by reconstitution of immunotolerance and preservation of islet β-cell function. Herein we discuss the therapeutic efficacy and potential mechanisms underlying the action of HSCT and other perspectives in the clinical management of type 1 diabetes.

  14. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  15. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore the effectiveness of autologous peripheral hematopoietic stem-cell transplantation in the treatment of refractory pemphigus.A 35-year-old male patient presented with a 4-year history of recurrent bullae on his trunk and extremities.The diagnosis of pemphigus was made on the basis of the clinical,histologic and immunofluorescence findings.The patient had shown resistance to conventional therapy with glucocorticoid and immunosuppressive agents.Two months before admission,he complained of hip joint pain.X-ray and CT scan revealed aseptic necrosis of the femoral head.Stem-cell mobilization was achieved by treatment with cyclophosphamide,granulocyte colony-stimulating factor (G-CSF)and rituximab.Peripheral blood stem cells were collected via leukapheresis and cryopreserved for later use.Immunoablation was accomplished by using cyclophosphamide(200 mg/kg;divided into 50 mg/kg on days-5,-4,-3,and-2),antithymocyte globulin(ATG;10 mg/kg;divided into 2.5 mg/kg on days-6,-5,-4,and-3),and rituximab (1200 mg/d;divided into 600 mg/d on days 0 and 7).Autologous peripheral hematopoietic stem cell transplantation was followed by reconstitution of the immune system which was monitored by flow cytometry.The glucocorticoid was withdrawn immediately after transplantation.The pemphigus titer turned negative 6 weeks after transplantation and remained negative.The patient was in complete drug-free remission with no evidence of residual clinical or serological activity of pemphigus during 1 year of followup.The patient's response suggests that autologous peripheral hematopoietic stem cell transplantation may be a potential "cure" for refractory pemphigus.However,further studies are needed to evaluate the risk-benefit ratio of this approach in patients with pemphigus showing resistance to conventional therapy.

  16. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    OpenAIRE

    Alessandra Barban; Fabio Luiz Coracin; Priscila Tavares Musqueira; Andrea Barban; Lilian Piron Ruiz; Milton Artur Ruiz; Rosaura Saboya; Frederico Luiz Dulley

    2014-01-01

    INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in ...

  17. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nooka, Ajay K; Johnson, Heather R; Kaufman, Jonathan L; Flowers, Christopher R; Langston, Amelia; Steuer, Conor; Graiser, Michael; Ali, Zahir; Shah, Nishi N; Rangaraju, Sravanti; Nickleach, Dana; Gao, Jingjing; Lonial, Sagar; Waller, Edmund K

    2014-06-01

    Trials have shown benefits of palifermin in reducing the incidence and severity of oral mucositis in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI)-based conditioning regimens. Similar outcome data are lacking for patients receiving non-TBI-based regimens. We performed a retrospective evaluation on the pharmacoeconomic benefit of palifermin in the setting of non-TBI-based conditioning and autologous HSCT. Between January 2002 and December 2010, 524 patients undergoing autologous HSCT for myeloma (melphalan 200 mg/m²) and lymphoma (high-dose busulfan, cyclophosphamide, and etoposide) as preparative regimen were analyzed. Use of patient-controlled analgesia (PCA) was significantly lower in the palifermin-treated groups (myeloma: 13% versus 53%, P inflation (myeloma: $167,820 versus $143,200, P < .001; lymphoma: $168,570 versus $148,590, P < .001). Palifermin treatment was not associated with a difference in days to neutrophil engraftment, length of stay, and overall survival and was associated with an additional cost of $5.5K (myeloma) and $14K (lymphoma) per day of PCA avoided. Future studies are suggested to evaluate the cost-effectiveness of palifermin compared with other symptomatic treatments to reduce transplant toxicity using validated measures for pain and quality of life. PMID:24607557

  18. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial

    NARCIS (Netherlands)

    Laar, J.M. van; Farge, D.; Sont, J.K.; Naraghi, K.; Marjanovic, Z.; Larghero, J.; Schuerwegh, A.J.; Marijt, E.W.; Vonk, M.C.; Schattenberg, A.V.M.B.; Matucci-Cerinic, M.; Voskuyl, A.E.; Loosdrecht, A.A. van de; Daikeler, T.; Kotter, I.; Schmalzing, M.; Martin, T.; Lioure, B.; Weiner, S.M.; Kreuter, A.; Deligny, C.; Durand, J.M.; Emery, P.; Machold, K.P.; Sarrot-Reynauld, F.; Warnatz, K.; Adoue, D.F.; Constans, J.; Tony, H.P.; Papa, N. Del; Fassas, A.; Himsel, A.; Launay, D. de; Monaco, A. Lo; Philippe, P.; Quere, I.; Rich, E.; Westhovens, R.; Griffiths, B.; Saccardi, R.; Hoogen, F.H.J. van den; Fibbe, W.E.; Socie, G.; Gratwohl, A.; Tyndall, A.

    2014-01-01

    IMPORTANCE: High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE: To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphami

  19. Preimmunization of donor lymphocytes enhances antitumor immunity of autologous hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Lymphopenia-induced homeostatic proliferation (HP) of T cells following autologous hematopoietic stem cell transplantation (HSCT) skews the T-cell repertoire by engaging tumor-associated antigens (TAAs), leading to an induction of antitumor immunity. Here, as the tumor-reactive lymphocytes preferentially proliferate during the condition of HP, we examined whether the priming of a donor lymphocytes to TAAs could enhance HP-induced antitumor immunity in autologous HSCT recipients. First, to examine whether the tumor-bearing condition of donor influences the antitumor effect of HSCT, the lymphocytes isolated from CT26 tumor-bearing mice were infused into lethally irradiated mice. The growth of tumors was substantially suppressed in the mice that received HSCT from a tumor-bearing donor compared with a naïve donor, suggesting that a fraction of donor lymphocytes from tumor-bearing mice are primed in response to TAAs and remain responsive upon transplantation. We previously reported that type I interferon (IFN) maturates the dendritic cells and promotes the priming of T cells. We then investigated whether the further priming of donor cells by IFN-α can strengthen the antitumor effect of HSCT. The intratumoral IFN-α gene transfer significantly increased the number of IFN-γ-positive lymphocytes in response to CT26 cells but not the syngeneic lymphocytes in donor mice. The infusion of primed donor lymphocytes markedly suppressed the tumor growth in recipient mice, and cured 64% of the treated mice. Autologous HSCT with the infusion of primed donor lymphocytes is a promising strategy to induce an effective antitumor immunity for solid cancers

  20. Observation of humoral immunity reconstitution and its relationship with infection after autologous hematopoietic stem cell transplantation for patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    刘俊茹

    2013-01-01

    Objective To study the humoral immunity reconstitution and its relationship with infection in patients with multiple myeloma(MM) after undergoing autologous hematopoietic stem cell transplantation(auto-HSCT)

  1. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Norman, Krystin K; Norgaard, Zachary K; Humbert, Olivier; Tse, Collette K; Yan, Jenny J; Trimble, Richard G; Shivak, David A; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Kiem, Hans-Peter

    2016-05-19

    Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well. PMID:26980728

  2. High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for adult histiocytic disorders with central nervous system involvement

    OpenAIRE

    Gaspar, Nathalie; Van Den Neste, Eric; Boudou, Pascaline; Haroche, Julien; Wechsler, Bertrand; Hoang-Xuan, Khe; Amoura, Zahir; Guillevin, Remy; Savatovski, Julien; Azar, Nabih; Piette, Jean-Charles; Leblond, Veronique

    2006-01-01

    We postulated that high-dose chemotherapy (HDC) followed by peripheral autologous hematopoietic stem cell transplantation might help to control refractory central nervous system (CNS) histiocytic disorders. Six patients with histiocytic CNS involvement were treated in this way. Two patients achieved non-active disease status, although one relapsed at 84 months. Two patients had regressive disease, one of whom progressed at 21 months. One patient had progressive disease at 14 months. One patie...

  3. Steroids prevent engraftment syndrome after autologous hematopoietic stem cell transplantation without increasing the risk of infection.

    Science.gov (United States)

    Mossad, S; Kalaycio, M; Sobecks, R; Pohlman, B; Andresen, S; Avery, R; Rybicki, L; Jarvis, J; Bolwell, B

    2005-02-01

    Engraftment syndrome (ES) following autologous hematopoietic stem cell transplantation (AHSCT) is characterized by fever and rash. In January 2002, we instituted steroid prophylaxis for ES from day +4 to +14. This study was conducted to assess whether this practice increased the risk of infection. In total, 194 consecutive patients were reviewed, 111 did not receive steroid prophylaxis (group A), and 83 did (group B). Initial antimicrobial prophylaxis was the same in both groups. There were no significant differences between groups in age, gender, race, prior radiation therapy, number of prior chemotherapy regimens, disease status at transplant, mobilization regimen, days of leukopheresis, CD34(+) cell dose, and days to platelet and neutrophil engraftment. Group B had significantly fewer patients with non-Hodgkin's lymphoma and multiple myeloma, shorter median duration from diagnosis to transplant, lower risk of ES, and shorter mean length of hospital stay. The incidence of early and late microbiologically confirmed infections was not significantly different between groups. Types of infections and types of organisms identified were similar in both groups. Hospital readmission rates were similar in both groups. Steroid prophylaxis significantly decreases the risk of ES following AHSCT, and is associated with shortened hospitalization, without increasing risk of infection. PMID:15640827

  4. Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Directory of Open Access Journals (Sweden)

    Scelsi Mario

    2005-08-01

    Full Text Available Abstract Background Post-transplant lymphoproliferative disorder (PTLD is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT; following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD, as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. Case presentation 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. Conclusion The clinical and pathological findings were consistent with the diagnosis of PTLD.

  5. Epstein-Barr Virus–Associated Posttransplantation Lymphoproliferative Disorder after High-Dose Immunosuppressive Therapy and Autologous CD34-Selected Hematopoietic Stem Cell Transplantation for Severe Autoimmune Diseases

    OpenAIRE

    Nash, Richard A.; Dansey, Roger; Storek, Jan; Georges, George E.; Bowen, James D.; Holmberg, Leona A.; Kraft, George H.; Maureen D Mayes; McDonagh, Kevin T; Chen, Chien-Shing; DiPersio, John; LeMaistre, C. Fred; Pavletic, Steven; Sullivan, Keith M.; Sunderhaus, Julie

    2003-01-01

    High-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation (HSCT) is currently being evaluated for the control of severe autoimmune diseases. The addition of antithymocyte globulin (ATG) to high-dose chemoradiotherapy in the high-dose immunosuppressive therapy regimen and CD34 selection of the autologous graft may induce a higher degree of immunosuppression compared with conventional autologous HSCT for malignant diseases. Patients may be at higher risk...

  6. A population-based cohort study of late mortality in adult autologous hematopoietic stem cell transplant recipients in Australia.

    Science.gov (United States)

    Ashton, Lesley J; Le Marsney, Renate E; Dodds, Anthony J; Nivison-Smith, Ian; Wilcox, Leonie; O'Brien, Tracey A; Vajdic, Claire M

    2014-07-01

    We assessed overall and cause-specific mortality and risk factors for late mortality in a nation-wide population-based cohort of 4547 adult cancer patients who survived 2 or more years after receiving an autologous hematopoietic stem cell transplantation (HSCT) in Australia between 1992 and 2005. Deaths after HSCT were identified from the Australasian Bone Marrow Transplant Recipient Registry and through data linkage with the National Death Index. Overall, the survival probability was 56% at 10 years from HSCT, ranging from 34% for patients with multiple myeloma to 90% for patients with testicular cancer. Mortality rates moved closer to rates observed in the age- and sex-matched Australian general population over time but remained significantly increased 11 or more years from HSCT (standardized mortality ratio, 5.9). Although the proportion of deaths from nonrelapse causes increased over time, relapse remained the most frequent cause of death for all diagnoses, 10 or more years after autologous HSCT. Our findings show that prevention of disease recurrence remains 1 of the greatest challenges for autologous HSCT recipients, while the increasing rates of nonrelapse deaths due to the emergence of second cancers, circulatory diseases, and respiratory diseases highlight the long-term health issues faced by adult survivors of autologous HSCT. PMID:24631736

  7. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  8. Autologous Transplantation of Lentivector/Acid Ceramidase–Transduced Hematopoietic Cells in Nonhuman Primates

    OpenAIRE

    Walia, Jagdeep S; Neschadim, Anton; Lopez-Perez, Orlay; Alayoubi, Abdulfatah; Fan, Xin; Carpentier, Stéphane; Madden, Melissa; Lee, Chyan-Jang; Cheung, Fred; Jaffray, David A.; Levade, Thierry; McCart, J Andrea; Jeffrey A Medin

    2011-01-01

    Farber disease is a rare lysosomal storage disorder (LSD) that manifests due to acid ceramidase (AC) deficiencies and ceramide accumulation. We present a preclinical gene therapy study for Farber disease employing a lentiviral vector (LV-huAC/huCD25) in three enzymatically normal nonhuman primates. Autologous, mobilized peripheral blood (PB) cells were transduced and infused into fully myelo-ablated recipients with tracking for at least 1 year. Outcomes were assessed by measuring the AC speci...

  9. High-dose chemotherapy and autologous hematopoietic stem cell transplantation in patients with rheumatoid arthritis: results of an open study to assess feasibility, safety, and efficacy.

    NARCIS (Netherlands)

    Verburg, R.J.; Kruize, A.A.; Hoogen, F.H.J. van den; Fibbe, W.; Petersen, E.J.; Preijers, F.W.M.B.; Sont, J.K.; Barge, R.M.; Bijlsma, J.W.J.; Putte, L.B.A. van de; Breedveld, F.C.; Laar, J.M. van

    2001-01-01

    OBJECTIVE: To assess the feasibility, safety, and efficacy of high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HSCT) in patients with severe, refractory rheumatoid arthritis (RA). METHODS: Fourteen patients (3 male, 11 female, mean age 43 years, mean disease duration 10

  10. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    Directory of Open Access Journals (Sweden)

    Alessandra Barban

    2014-07-01

    Full Text Available INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in this process. Guidance may contribute to long-term goals through patients' short-term needs. AIM: To analyze the results of early hospital discharge on the treatment of patients submitted to autologous transplantation and the influence of nursing care on this conduct. METHODS: A retrospective, quantitative, descriptive and transversal study was conducted. The hospital records of 112 consecutive patients submitted to autologous transplantation in the period from January to December 2009 were revisited. Of these, 12 patients, who remained in hospital for more than ten days after transplantation, were excluded from the study. RESULTS: The medical records of 100 patients with a median age of 48.5 years (19-69 years were analyzed. All patients were mobilized and hematopoietic stem cells were collected by leukapheresis. The most common conditioning regimes were BU12Mel100 and BEAM 400. Toxicity during conditioning was easily managed in the outpatient clinic. Gastrointestinal toxicity, mostly Grades I and II, was seen in 69% of the patients, 62% of patients had diarrhea, 61% of the patients had nausea and vomiting and 58% had Grade I and II mucositis. Ten patients required hospitalization due to the conditioning regimen. Febrile neutropenia was seen in 58% of patients. Two patients died before Day +60 due to infections, one with aplasia. The median times to granulocyte and platelet engraftment were 12 days and 15 days, respectively, with median red blood cell and

  11. Persistence of virus reservoirs in ART-treated SHIV-infected rhesus macaques after autologous hematopoietic stem cell transplant.

    Directory of Open Access Journals (Sweden)

    Maud Mavigner

    2014-09-01

    Full Text Available Despite many advances in AIDS research, a cure for HIV infection remains elusive. Here, we performed autologous hematopoietic stem cell transplantation (HSCT in three Simian/Human Immunodeficiency Virus (SHIV-infected, antiretroviral therapy (ART-treated rhesus macaques (RMs using HSCs collected prior to infection and compared them to three SHIV-infected, ART-treated, untransplanted control animals to assess the effect of conditioning and autologous HSCT on viral persistence. As expected, ART drastically reduced virus replication, below 100 SHIV-RNA copies per ml of plasma in all animals. After several weeks on ART, experimental RMs received myeloablative total body irradiation (1080 cGy, which resulted in the depletion of 94-99% of circulating CD4+ T-cells, and low to undetectable SHIV-DNA levels in peripheral blood mononuclear cells. Following HSC infusion and successful engraftment, ART was interrupted (40-75 days post-transplant. Despite the observed dramatic reduction of the peripheral blood viral reservoir, rapid rebound of plasma viremia was observed in two out of three transplanted RMs. In the third transplanted animal, plasma SHIV-RNA and SHIV DNA in bulk PBMCs remained undetectable at week two post-ART interruption. No further time-points could be assessed as this animal was euthanized for clinical reasons; however, SHIV-DNA could be detected in this animal at necropsy in sorted circulating CD4+ T-cells, spleen and lymph nodes but not in the gastro-intestinal tract or tonsils. Furthermore, SIV DNA levels post-ART interruption were equivalent in several tissues in transplanted and control animals. While persistence of virus reservoir was observed despite myeloablation and HSCT in the setting of short term ART, this experiment demonstrates that autologous HSCT can be successfully performed in SIV-infected ART-treated RMs offering a new experimental in vivo platform to test innovative interventions aimed at curing HIV infection in humans.

  12. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  13. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results.

    Science.gov (United States)

    Bowen, J D; Kraft, G H; Wundes, A; Guan, Q; Maravilla, K R; Gooley, T A; McSweeney, P A; Pavletic, S Z; Openshaw, H; Storb, R; Wener, M; McLaughlin, B A; Henstorf, G R; Nash, R A

    2012-07-01

    The purpose of the study was to determine the long-term safety and effectiveness of high-dose immunosuppressive therapy (HDIT) followed by autologous hematopoietic cell transplantation (AHCT) in advanced multiple sclerosis (MS). TBI, CY and antithymocyte globulin were followed by transplantation of autologous, CD34-selected PBSCs. Neurological examinations, brain magnetic resonance imaging and cerebrospinal fluid (CSF) for oligoclonal bands (OCB) were serially evaluated. Patients (n=26, mean Expanded Disability Status Scale (EDSS)=7.0, 17 secondary progressive, 8 primary progressive, 1 relapsing/remitting) were followed for a median of 48 months after HDIT followed by AHCT. The 72-month probability of worsening ≥1.0 EDSS point was 0.52 (95% confidence interval, 0.30-0.75). Five patients had an EDSS at baseline of ≤6.0; four of them had not failed treatment at last study visit. OCB in CSF persisted with minor changes in the banding pattern. Four new or enhancing lesions were seen on MRI, all within 13 months of treatment. In this population with high baseline EDSS, a significant proportion of patients with advanced MS remained stable for as long as 7 years after transplant. Non-inflammatory events may have contributed to neurological worsening after treatment. HDIT/AHCT may be more effective in patients with less advanced relapsing/remitting MS.

  14. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-11-01

    Full Text Available Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  15. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-01-01

    Full Text Available

    Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  16. Update on the Role of Autologous Hematopoietic Stem Cell Transplantation in Follicular Lymphoma

    Science.gov (United States)

    Cabrero, Mónica; Redondo, Alba; Martin, Alejandro; Caballero, Dolores

    2012-01-01

    Follicular lymphoma (FL) remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb). Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS) and to increase overall survival (OS), mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT) is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen. PMID:23205262

  17. High-Dose Chemotherapy with Autologous Hematopoietic Stem-Cell Rescue for Pediatric Brain Tumor Patients: A Single Institution Experience from UCLA

    OpenAIRE

    Panosyan, Eduard H.; IKEDA, ALAN K.; Chang, Vivian Y.; Laks, Dan R.; Charles L. Reeb; La Vette Bowles; Lasky, Joseph L.; Moore, Theodore B.

    2011-01-01

    Background. Dose-dependent response makes certain pediatric brain tumors appropriate targets for high-dose chemotherapy with autologous hematopoietic stem-cell rescue (HDCT-AHSCR). Methods. The clinical outcomes and toxicities were analyzed retrospectively for 18 consecutive patients ≤19 y/o treated with HDCT-AHSCR at UCLA (1999–2009). Results. Patients' median age was 2.3 years. Fourteen had primary and 4 recurrent tumors: 12 neural/embryonal (7 medulloblastomas, 4 primitive neuroectodermal ...

  18. Dose escalation of the hypoxic cell sensitizer etanidazole combined with ifosfamide, carboplatin, etoposide, and autologous hematopoietic stem cell support.

    Science.gov (United States)

    Elias, A D; Wheeler, C; Ayash, L J; Schwartz, G; Ibrahim, J; Mills, L; McCauley, M; Coleman, N; Warren, D; Schnipper, L; Antman, K H; Teicher, B A; Frei, E

    1998-06-01

    Multiple mechanisms of drug resistance contribute to treatment failure. Although high-dose therapy attempts to overwhelm these defenses pharmacologically, this approach is only successful in a fraction of treated patients. Many drug resistance mechanisms are shared between malignant and normal cells, but the expression of various drug resistance mechanisms associated with hypoxia is largely confined to tumor tissue. Thus, reversal of this mechanism is likely to provide a therapeutic advantage to the host. This study was designed to define the dose-limiting toxicities and maximum tolerated dose of etanidazole when it is given concurrently with high-dose ifosfamide, carboplatin, and etoposide (ICE), with hematopoietic stem cell support. The maximum tolerated doses of high-dose ICE were administered concurrently with dose escalations of etanidazole, a hypoxic cell sensitizer. All agents were given by 96-h continuous i.v. infusion beginning on day -7. Mesna uroprotection was provided. Autologous marrow and cytokine mobilized peripheral blood progenitor cells were reinfused on day 0. Granulocyte colony-stimulating factor was administered following reinfusion until the granulocytes recovered to > 1000/microliter. Fifty-five adults with advanced malignancies were enrolled in cohorts of five to nine patients. Four dose levels of etanidazole between 3 and 5.5 g/m2/day (12, 16, 20, and 22 g/m2 total doses) and two doses of carboplatin (1600 and 1800 mg/m2 total doses) were evaluated. Seven patients died of organ toxicity (13%); two each from veno-occlusive disease of liver and sepsis; and one each from sudden death, renal failure, and refractory thrombocytopenic hemorrhage. Five deaths occurred at the top dose level. One additional patient suffered a witnessed cardiorespiratory arrest from ventricular fibrillation and was resuscitated. Dose-dependent and largely reversible peripheral neuropathy was observed consisting of two syndromes: severe cramping myalgic/neuralgic pain

  19. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation.

    Science.gov (United States)

    Garcia-Sanchez, F; Pizzorno, G; Fu, S Q; Nanakorn, T; Krause, D S; Liang, J; Adams, E; Leffert, J J; Yin, L H; Cooperberg, M R; Hanania, E; Wang, W L; Won, J H; Peng, X Y; Cote, R; Brown, R; Burtness, B; Giles, R; Crystal, R; Deisseroth, A B

    1998-07-15

    Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for

  20. Interleukin-15 Affects Patient Survival through Natural Killer Cell Recovery after Autologous Hematopoietic Stem Cell Transplantation for Non-Hodgkin Lymphomas

    Directory of Open Access Journals (Sweden)

    Luis F. Porrata

    2010-01-01

    Full Text Available Natural killer cells at day 15 (NK-15, after autologous peripheral blood hematopoietic stem cell transplantation (APHSCT, is a prognostic factor for overall survival (OS and progression-free survival (PFS in non-Hodgkin lymphoma (NHL. The potential role of the immunologic (homeostatic environment affecting NK-15 recovery and survival post-APHSCT has not been fully studied. Therefore, we evaluate prospectively the cytokine profile in 50 NHL patients treated with APHSCT. Patients with an interleukin-15 (IL-15≥76.5 pg/mL at day 15 post-APHSCT experienced superior OS and PFS compared with those who did not; median OS; not reached versus 19.2 months, P<.002; and median PFS; not reached versus 6.8 months, P<.002, respectively. IL-15 was found to correlate with (rs=0.7, P<.0001 NK-15. Multivariate analysis showed only NK-15 as a prognostic factor for survival, suggesting that the survival benefit observed by IL-15 is most likely mediated by enhanced NK cell recovery post-APHSCT.

  1. Phase I and pharmacokinetic study of docetaxel combined with melphalan and carboplatin, with autologous hematopoietic progenitor cell support, in patients with advanced refractory malignancies.

    Science.gov (United States)

    Nieto, Yago; Shpall, Elizabeth J; Bearman, Scott I; McSweeney, Peter A; Cagnoni, Pablo J; Matthes, Steve; Gustafson, Dan; Long, Michael; Barón, Anna E; Jones, Roy B

    2005-04-01

    The purpose of this study was to define the maximal tolerated dose (MTD), extramedullary toxicities, and pharmacokinetics of docetaxel combined with high-dose melphalan and carboplatin with autologous hematopoietic progenitor cell support. Fifty-nine patients with advanced refractory malignancy (32 breast cancer, 10 non-Hodgkin lymphoma, 6 germ cell tumors, 4 Hodgkin disease, 4 ovarian cancer, 2 sarcoma, and 1 unknown primary adenocarcinoma) with a median of 3 prior chemotherapy regimens and a median of 3 organs involved were enrolled. Treatment included docetaxel (150-550 mg/m2 infused over 2 hours on day -6), melphalan (150-165 mg/m2 infused over 15 minutes from day -5 to -3), and carboplatin (1000-1300 mg/m2 as a 72-hour continuous infusion from day -5). Five patients died from direct regimen-related organ toxicity (2 capillary leak syndrome, 2 enterocolitis, and 1 hepatic toxicity), and 1 additional patient died from pulmonary aspergillosis. The docetaxel MTD was defined as 400 mg/m 2 , combined with melphalan (150 mg/m2 ) and carboplatin (1000 mg/m2 ). The MTD cohort was expanded to enroll a total of 26 patients, 1 of whom died from toxic enterocolitis. The remaining 25 patients presented the following extramedullary toxicity profile, which was manageable and largely reversible: stomatitis, myoarthralgias, peripheral neuropathy, gastrointestinal and cutaneous toxicities, and syndrome of inappropriate antidiuretic hormone secretion. Docetaxel exhibited linear pharmacokinetics in the dose range tested (150-550 mg/m2 ). Pharmacodynamic correlations were noted between the docetaxel area under the curve and peripheral neuropathy or stomatitis. The response rate among 38 patients with measurable disease was 95%, with 47% complete responses. At a median follow-up of 26 months (range, 7-72 months), the 3-year event-free survival and overall survival were 26% and 36%, respectively. In conclusion, a 4-fold dose escalation of docetaxel, combined with melphalan and

  2. Role of Maintenance Therapy after High-Dose Chemotherapy and Autologous Hematopoietic Cell Transplantation in Aggressive Lymphomas: A Systematic Review.

    Science.gov (United States)

    Taverna, Josephine A; Yun, Seongseok; Jonnadula, Jayasree; Saleh, Ahlam; Riaz, Irbaz Bin; Abraham, Ivo; Yeager, Andrew M; Persky, Daniel O; McBride, Ali; Haldar, Subrata; Anwer, Faiz

    2016-07-01

    Significant uncertainty exists in regard to the efficacy of maintenance therapy after high-dose chemotherapy (HDC) as well as autologous stem cell transplantation (ASCT) for the treatment of patients with aggressive lymphoma. A systematic review was performed to evaluate the effectiveness of post-ASCT maintenance therapy in patients with relapsed/refractory lymphoma. A comprehensive literature search yielded 4476 studies and a total of 42 studies (11 randomized controlled trials [RCT], 9 retrospective comparative studies, and 22 single-arm studies) were included in the systematic review. There was significant heterogeneity in study design, chemotherapeutic regimens, post-ASCT maintenance strategies, patient enrollment criteria, and study endpoints. Our findings suggest that post-ASCT maintenance immune-targeting strategies, including PD-1/PD-L1 blocking antibodies, rituximab, and brentuximab, may improve progression-free survival but not overall survival. Collectively, the results indicate a need for testing new strategies with well-designed and adequately powered RCTs to better address the role of post-ASCT maintenance in relapsed/refractory lymphomas.

  3. Late effects in survivors of Hodgkin and non-Hodgkin lymphoma treated with autologous hematopoietic cell transplantation: a report from the bone marrow transplant survivor study.

    Science.gov (United States)

    Majhail, Navneet S; Ness, Kirsten K; Burns, Linda J; Sun, Can-Lan; Carter, Andrea; Francisco, Liton; Forman, Stephen J; Bhatia, Smita; Baker, K Scott

    2007-10-01

    We determined the prevalence of self-reported late-effects in survivors of autologous hematopoietic cell transplantation (HCT) for Hodgkin lymphoma (HL, n = 92) and non-Hodgkin lymphoma (NHL, n = 184) using a 255-item questionnaire and compared them to 319 sibling controls in the Bone Marrow Transplant Survivor Study. Median age at HCT was 39 years (range: 13-69) and median posttransplant follow-up was 6 years (range: 2-17). Median age at survey was 46 years (range: 21-73) for survivors and 44 years (range: 19-79) for siblings. Compared to siblings, HCT survivors reported a significantly higher frequency of cataracts, dry mouth, hypothyroidism, bone impairments (osteoporosis and avascular necrosis), congestive heart failure, exercise-induced shortness of breath, neurosensory impairments, inability to attend work or school, and poor overall health. Compared to those receiving no total-body irradiation (TBI), patients treated with TBI-based conditioning had higher risks of cataracts (odds-ratio [OR] 4.9, 95% confidence interval [CI] 1.5-15.5) and dry mouth (OR 3.4, 95% CI 1.1-10.4). Females had a greater likelihood of reporting osteoporosis (OR 8.7, 95% CI: 1.8-41.7), congestive heart failure (OR 4.3, 95% CI 1.1-17.2), and abnormal balance, tremor, or weakness (OR 2.4, 95% CI 1.0-5.5). HL and NHL survivors of autologous HCT have a high prevalence of long-term health-related complications and require continued monitoring for late effects of transplantation. PMID:17889351

  4. High-dose chemotherapy with autologous hematopoietic stem-cell rescue for pediatric brain tumor patients: a single institution experience from UCLA.

    Science.gov (United States)

    Panosyan, Eduard H; Ikeda, Alan K; Chang, Vivian Y; Laks, Dan R; Reeb, Charles L; Bowles, La Vette; Lasky, Joseph L; Moore, Theodore B

    2011-01-01

    Background. Dose-dependent response makes certain pediatric brain tumors appropriate targets for high-dose chemotherapy with autologous hematopoietic stem-cell rescue (HDCT-AHSCR). Methods. The clinical outcomes and toxicities were analyzed retrospectively for 18 consecutive patients ≤19 y/o treated with HDCT-AHSCR at UCLA (1999-2009). Results. Patients' median age was 2.3 years. Fourteen had primary and 4 recurrent tumors: 12 neural/embryonal (7 medulloblastomas, 4 primitive neuroectodermal tumors, and a pineoblastoma), 3 glial/mixed, and 3 germ cell tumors. Eight patients had initial gross-total and seven subtotal resections. HDCT mostly consisted of carboplatin and/or thiotepa ± etoposide (n = 16). Nine patients underwent a single AHSCR and nine ≥3 tandems. Three-year progression-free and overall survival probabilities were 60.5% ± 16 and 69.3% ± 11.5. Ten patients with pre-AHSCR complete remissions were alive/disease-free, whereas 5 of 8 with measurable disease were deceased (median followup: 2.3 yrs). Nine of 13 survivors avoided radiation. Single AHSCR regimens had greater toxicity than ≥3 AHSCR (P < .01). Conclusion. HDCT-AHSCR has a definitive, though limited role for selected pediatric brain tumors with poor prognosis and pretransplant complete/partial remissions. PMID:21559259

  5. High-Dose Chemotherapy with Autologous Hematopoietic Stem-Cell Rescue for Pediatric Brain Tumor Patients: A Single Institution Experience from UCLA

    Directory of Open Access Journals (Sweden)

    Eduard H. Panosyan

    2011-01-01

    Full Text Available Background. Dose-dependent response makes certain pediatric brain tumors appropriate targets for high-dose chemotherapy with autologous hematopoietic stem-cell rescue (HDCT-AHSCR. Methods. The clinical outcomes and toxicities were analyzed retrospectively for 18 consecutive patients ≤19 y/o treated with HDCT-AHSCR at UCLA (1999–2009. Results. Patients' median age was 2.3 years. Fourteen had primary and 4 recurrent tumors: 12 neural/embryonal (7 medulloblastomas, 4 primitive neuroectodermal tumors, and a pineoblastoma, 3 glial/mixed, and 3 germ cell tumors. Eight patients had initial gross-total and seven subtotal resections. HDCT mostly consisted of carboplatin and/or thiotepa ± etoposide (n=16. Nine patients underwent a single AHSCR and nine ≥3 tandems. Three-year progression-free and overall survival probabilities were 60.5% ± 16 and 69.3% ± 11.5. Ten patients with pre-AHSCR complete remissions were alive/disease-free, whereas 5 of 8 with measurable disease were deceased (median followup: 2.3 yrs. Nine of 13 survivors avoided radiation. Single AHSCR regimens had greater toxicity than ≥3 AHSCR (P<.01. Conclusion. HDCT-AHSCR has a definitive, though limited role for selected pediatric brain tumors with poor prognosis and pretransplant complete/partial remissions.

  6. HIGH DOSE CHEMORADIOTHERAPY WITH AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THE TREATMENT OF ADVANCED HODGKIN'S LYMPHOMA: A REPORT OF 11 CASES

    Institute of Scientific and Technical Information of China (English)

    周生余; 石远凯; 何小慧; 韩晓红; 刘鹏; 杨建良; 周爱萍; 冯奉仪

    2002-01-01

    Objective: High dose therapy (HDT) with autologous hematopoietic stem celltransplantation (ASCT) has become one of the important salvage treatments for the Hodgkin's Lymphoma patients with relapsed or resistant disease, but its role as the primary treatment remains indefinite. This study was designed to further evaluate its status in the combined modality treatment, especially, to discuss its value in the primary treatment of the patients who had advanced disease with poor prognostic factors. Methods: Eleven patients who had advanced or relapsed disease with poor prognostic factors were enrolled in this study. Among them, 9 cases had primary treatment, and 2 cases had secondary treatment; one patient received autologous bone marrow transplantation (ABMT), and 10 patients received autologous peripheral blood stem cell transplantation (APBSCT). After induction treatment 4 cases achieved complete response (CR) and 7 cases achieved partial response (PR). High dose chemotherapy combined with total body irradiation (TBI) ortotal lymph node irradiation (TLI)/subtotallymph node irradiation (STLI) were adopted in 7 cases and only high dose chemotherapy were adopted in 4 cases as the transplant preparative regimens. 5 cases received complementary irradiation in the primary sites after transplant. Results:The patients who had CR before transplantation were given consolidative therapy. Among the rest with PR, 2 cases achieved CR, 1 case PR, and 4 cases SD. Furthermore all these patients who maintained SD had bone involvement. With a median follow-up for all patients of 13(1(80) months, all of them are alive currently. Four cases are event-free survival (EFS); 4 cases with bone involvement are progression-free survival (PFS); 3 cases experienced relapse after transplant, one ofthem is EFS for 42 months again after a local relapsed site irradiation; the other two cases are being given further salvaged treatment now. According to the Life Tables method, the cumulative probability

  7. Clinical Outcome of Autologous Hematopoietic Stem Cell Infusion via Hepatic Artery or Portal Vein in Patients with End-stage Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Xiao-lun Huang; Tian Zhang; Ping Xie; Mao-zhu Yang; Shao-ping Deng; Le Luo; Lan-yun Luo; Hua Xue; Ling-ling Wei; Yu-tong Yao; Hai-bo Zou; Xiao-bing Huang; Yi-fan Zhu

    2014-01-01

    Objective To investigate the efficacy of hematopoietic stem cell (HSC) transplantation via the hepatic artery vs. the portal vein for end-stage liver disease (ESLD). Methods Patients with hepatic decompensation were prospectively recruited from September 2010 to September 2012 to receive HSC transplantation via the hepatic artery or the portal vein. Liver function was examined at 3, 6, and 12 months after transplantation. Liver biopsy results were analyzed using the Knodell score. Results Eighty patients (58 males and 22 females) were enrolled in the study. The Child-Pugh score was grade B in 69 cases, and grade C in the remaining 11 cases. HSC transplantation was performed via the portal vein in 36 patients and via the hepatic artery in 44 patients. ALT levels decreased while serum albumin levels increased significantly in both groups at 6 and 12 months after HSC transplantation (P Conclusions Autologous HSC transplantation improves liver function and histology in ESLD patients. The administration route of HSC has no significant impact on the efficacy of transplantation.

  8. Reduction in incidence of early fatal complications of high-dose chemotherapy with autologous hematopoietic stem cell transplantation in Hodgkin lymphoma patients

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2013-01-01

    Full Text Available Traditionally, the concern of fatal complication is a major obstacle to transfer patients with unfavorable course of Hodgkin’s lymphoma tonational transplantation centers. Early mortality after high-dose chemotherapy with autologous hematopoietic stem cell transplantation(HSCT in the Russia, Ukraine and Belarus was assessed in this retrospective multicenter study.Patients and methods. The study included 372 patients with unfavorable course of Hodgkin’s lymphoma received HSCT between 01.1990and 06.2013: 35.5 % patients with primary resistance, 30.6 % with early relapse, 33.1 % with late relapse and 0.8 % during consolidation offirst complete remission.Results. During first 100 days after HSCT died 14 (3.8 % patients, during first year – 31 (8.4 % patients. During the study period a significant decrease in the 100-day and 1-year mortality rate was observed (p < 0.0001 for both. Among patients received HSCT in 1990–1995, 1996–2000, 2001–2005 and 2006–2013 the 100-day mortality was 19.4 %, 6.3 %, 1.1 % and 0.6 %, respectively. 1-year mortality for the same intervals was 32.3 %, 14.7 %, 4.5 % and 1.9 %, respectively.Conclusions. Currently HSCT in patients with unfavorable course of Hodgkin's lymphoma in national transplant centers, accompanied by an extremely low risk of fatal toxicity.

  9. Reduction in incidence of early fatal complications of high-dose chemotherapy with autologous hematopoietic stem cell transplantation in Hodgkin lymphoma patients

    Directory of Open Access Journals (Sweden)

    N. V. Zhukov

    2014-07-01

    Full Text Available Traditionally, the concern of fatal complication is a major obstacle to transfer patients with unfavorable course of Hodgkin’s lymphoma tonational transplantation centers. Early mortality after high-dose chemotherapy with autologous hematopoietic stem cell transplantation(HSCT in the Russia, Ukraine and Belarus was assessed in this retrospective multicenter study.Patients and methods. The study included 372 patients with unfavorable course of Hodgkin’s lymphoma received HSCT between 01.1990and 06.2013: 35.5 % patients with primary resistance, 30.6 % with early relapse, 33.1 % with late relapse and 0.8 % during consolidation offirst complete remission.Results. During first 100 days after HSCT died 14 (3.8 % patients, during first year – 31 (8.4 % patients. During the study period a significant decrease in the 100-day and 1-year mortality rate was observed (p < 0.0001 for both. Among patients received HSCT in 1990–1995, 1996–2000, 2001–2005 and 2006–2013 the 100-day mortality was 19.4 %, 6.3 %, 1.1 % and 0.6 %, respectively. 1-year mortality for the same intervals was 32.3 %, 14.7 %, 4.5 % and 1.9 %, respectively.Conclusions. Currently HSCT in patients with unfavorable course of Hodgkin's lymphoma in national transplant centers, accompanied by an extremely low risk of fatal toxicity.

  10. Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy

    OpenAIRE

    Yang, Jian; Darley, Richard L.; Hallett, Maurice; Evans, W. Howard

    2010-01-01

    Human bone marrow is a clinical source of autologous progenitor stem cells showing promise for cardiac repair following ischemic insult. Functional improvements following delivery of adult bone marrow CD34+ cells into heart tissue may require metabolic/electrical communication between participating cells. Since connexin43 (Cx43) channels are implicated in cardiogenesis and provide intercellular connectivity in the heart, the authors analyzed the expression of 20 connexins (Cx) in CD34+ cells ...

  11. A phase 1/2 study of an adjuvanted varicella-zoster virus subunit vaccine in autologous hematopoietic cell transplant recipients.

    Science.gov (United States)

    Stadtmauer, Edward A; Sullivan, Keith M; Marty, Francisco M; Dadwal, Sanjeet S; Papanicolaou, Genovefa A; Shea, Thomas C; Mossad, Sherif B; Andreadis, Charalambos; Young, Jo-Anne H; Buadi, Francis K; El Idrissi, Mohamed; Heineman, Thomas C; Berkowitz, Elchonon M

    2014-11-01

    Recombinant herpes zoster (HZ) vaccines may be an alternative to the live-attenuated HZ vaccine for immunocompromised individuals. This was a phase 1/2, randomized, observer-blind, placebo-controlled study in adults with multiple myeloma, non-Hodgkin lymphoma (B- or T-cell), Hodgkin lymphoma, or acute myeloid leukemia who had undergone autologous hematopoietic stem-cell transplant 50 to 70 days earlier. Subjects (N = 121) were randomized 1:1:1:1 to receive (at months 0, 1, 3) three doses of 50 μg varicella-zoster virus glycoprotein E (gE) adjuvanted with AS01B, 3 doses of gE adjuvanted with AS01E, 1 dose of saline followed by 2 doses of gE/AS01B, or 3 doses of saline. One month after the last dose (6 months after transplant), frequencies of CD4(+) T cells expressing ≥2 activation markers after induction with gE and anti-gE antibody concentrations were higher with all gE/AS01 regimens than with saline. Both responses persisted up to 1 year in subjects vaccinated with gE/AS01. Immune responses were higher in the gE/AS01B 3-dose group than in the gE/AS01B 2-dose group but not higher than in the gE/AS01E 3-dose group. One serious adverse event (pneumonia) was considered vaccine related. Both formulations and both schedules were immunogenic and well tolerated in this population. This study was registered at www.clinicaltrials.gov as #NCT00920218. PMID:25237196

  12. Immunoselection techniques in hematopoietic stem cell transplantation.

    Science.gov (United States)

    Li Pira, Giuseppina; Biagini, Simone; Cicchetti, Elisabetta; Merli, Pietro; Brescia, Letizia Pomponia; Milano, Giuseppe Maria; Montanari, Mauro

    2016-06-01

    Hematopoietic Stem Cells Transplantation (HSCT) is an effective treatment for hematological and non-hematological diseases. The main challenge in autologous HSCT is purging of malignant cells to prevent relapse. In allogeneic HSCT graft-versus-host disease (GvHD) and opportunistic infections are frequent complications. Two types of graft manipulation have been introduced: the first one in the autologous context aimed at separating malignant cells from hematopoietic stem cells (HSC), and the second one in allogeneic HSCT aimed at reducing the incidence of GvHD and at accelerating immune reconstitution. Here we describe the manipulations used for cell purging in autologous HSCT or for T Cell Depletion (TCD) and T cell selection in allogeneic HSCT. More complex manipulations, requiring a Good Manufacturing Practice (GMP) facility, are briefly mentioned. PMID:27209628

  13. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR HIGH-RISK ACUTE LYMPHOBLASTIC LEUKEMIA: NON-RANDOMIZED STUDY WITH A MAXIMUM FOLLOW-UP OF MORE THAN 22 YEARS

    Directory of Open Access Journals (Sweden)

    Grzegorz Helbig

    2014-06-01

    Full Text Available Objective. To evaluate the efficacy and toxicity of autologous hematopoietic stem cell transplantation (AHSCT for high-risk acute lymphoblastic leukemia (ALL. Material and methods. Overall, 128 high-risk ALL patients at a median age of 26 years (range 18-56 years at diagnosis received AHSCT between 1991-2008. Induction treatment was anthracycline-based in all patients. Conditioning regimen consisted of CAV (cyclophosphamide, cytarabine, etoposide in 125 patients whereas 3 subjects received cyclophosphamide and TBI (total body irridation. Bone marrow was stored for 72 hours in 4oC and re-infused 24 hours after conditioning completion. Bone marrow was a source of stem cells in 119 patients, peripheral blood in 2 and 7 subjects received both bone marrow and peripheral blood. Results. With a median follow-up after AHSCT of 1.6 years (range 0.1-22.3 years, the probability of leukemia-free survival (LFS for the whole group at 10 years was 27% and 23% at 20 years. Transplant-related mortality at 100 days after AHSCT was 3.2%.. There was a strong tendency for better LFS for MRD-negative patients if compared with patients who had positive or unknown MRD status at AHSCT (32% vs 23% and 25%, respectively; p=0.06. There was no difference in LFS between B- and T-lineage ALL as well as between patients transplanted in first complete remission (CR1 and CR2. LFS at 10 years for patients with detectable BCR-ABL at transplant was 20% and this was comparable with subjects with negative and missing BCR-ABL status (26% and 28%; p=0.97. Conclusions. The results of AHSCT for high-risk ALL remains unsatisfactory with low probability of long-term LFS.

  14. Prospective evaluation of pulmonary function in cancer patients treated with total body irradiation, high-dose melphalan, and autologous hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Pulmonary function tests (standard vital capacity, SVC; total lung capacity, TLC; forced expiratory volume in 1 second-forced vital capacity ratio, FEV1/FVC; carbon monoxide transfer factor, DLCO) were prospectively evaluated in patients (median age 25 years, 13-52 years; median follow-up 20 months, 6-51 months) with Hodgkin's disease (15 patients), non-Hodgkin's lymphoma (9 patients), and inflammatory breast cancer (3 patients) treated with sequential high-dose therapy comprising the following phases over approximately 2 months: (a) cyclophosphamide (7 g/m2); (b) vincristine (1.4 mg/m2), methotrexate (8 g/m2), and cisplatinum (120 mg/m2) or etoposide (2 g/m2); (c) total body irradiation (TBI; 12.5 gy, 5 fractions over 48 hours), intravenous melphalan (120-180 mg/m2), and transplantation of autologous peripheral blood and/or bone marrow hematopoietic stem cells. Within 2 months after transplantation, 12 patients also received 25 Gy radiotherapy boost to mediastinum and clavicular regions. In vivo dosimetry evaluations of fractionated TBI treatments showed that mean radiation dose absorbed by lungs was 12.18 Gy (97.4% of TBI dose). Despite such a high radiation dose, we observed only transient and subclinical decrease of SVC, TLC, and DLCO. The decrease of SVC, TLC, and DLCO was more evident and prolonged in patients receiving radiotherapy boost. All parameters progressively recovered to normal values within 2 years after transplantation. In contrast, FEV1/FVC remained within normal limits in all patients, thus demonstrating the absence of obstructive ventilatory changes. In addition, no interstitial pneumonia was observed

  15. Comparative efficacy of tandem autologous versus autologous followed by allogeneic hematopoietic cell transplantation in patients with newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Kharfan-Dabaja Mohamed A

    2013-01-01

    Full Text Available Abstract Background Despite advances in understanding of clinical, genetic, and molecular aspects of multiple myeloma (MM and availability of more effective therapies, MM remains incurable. The autologous-allogeneic (auto-allo hematopoietic cell transplantation (HCT strategy is based on combining cytoreduction from high-dose (chemo- or chemoradio-therapy with adoptive immunotherapy. However, conflicting results have been reported when an auto-allo HCT approach is compared to tandem autologous (auto-auto HCT. A previously published meta-analysis has been reported; however, it suffers from serious methodological flaws. Methods A systematic search identified 152 publications, of which five studies (enrolling 1538 patients met inclusion criteria. All studies eligible for inclusion utilized biologic randomization. Results Assessing response rates by achievement of at least a very good partial response did not differ among the treatment arms [risk ratio (RR (95% CI = 0.97 (0.87-1.09, p = 0.66]; but complete remission was higher in the auto-allo HCT arm [RR = 1.65 (1.25-2.19, p = 0.0005]. Event-free survival did not differ between auto-allo HCT group versus auto-auto HCT group using per-protocol analysis [hazard ratio (HR = 0.78 (0.58-1.05, p = 0.11] or using intention-to-treat analysis [HR = 0.83 (0.60-1.15, p = 0.26]. Overall survival (OS did not differ among these treatment arms whether analyzed on per-protocol [HR = 0.88 (0.33-2.35, p = 0.79], or by intention-to-treat [HR = 0.80 (0.48-1.32, p = 0.39] analysis. Non-relapse mortality (NRM was significantly worse with auto-allo HCT [RR (95%CI = 3.55 (2.17-5.80, p  Conclusion Despite higher complete remission rates, there is no improvement in OS with auto-allo HCT; but this approach results in higher NRM in patients with newly diagnosed MM. At present, totality of evidence suggests that an auto-allo HCT approach for patients with newly diagnosed

  16. Cost and clinical analysis of autologous hematopoietic stem cell mobilization with G-CSF and plerixafor compared to G-CSF and cyclophosphamide.

    Science.gov (United States)

    Shaughnessy, Paul; Islas-Ohlmayer, Miguel; Murphy, Julie; Hougham, Maureen; MacPherson, Jill; Winkler, Kurt; Silva, Matthew; Steinberg, Michael; Matous, Jeffrey; Selvey, Sheryl; Maris, Michael; McSweeney, Peter A

    2011-05-01

    Plerixafor plus granulocyte-colony stimulating factor (G-CSF) has been shown to mobilize more CD34(+) cells than G-CSF alone for autologous hematopoietic stem cell transplantation (HSCT). However, many centers use chemotherapy followed by G-CSF to mobilize CD34(+) cells prior to HSCT. We performed a retrospective study of patients who participated in the expanded access program (EAP) of plerixafor and G-CSF for initial mobilization of CD34(+) cells, and compared outcomes to matched historic controls mobilized with cyclophosphamide 3-5 g/m(2) and G-CSF at 2 centers that participated in the EAP Control patients were matched for age, sex, disease, disease stage, and number of prior therapies. Mobilization costs were defined to be the costs of medical procedures, resource utilization, and medications. Median national CMS reimbursement rates were used to establish the costs of procedures, hospitalization, provider visits, apheresis, CD34(+) cell processing and cryopreservation. Average sale price was used for G-CSF, plerixafor, cyclophosphamide, MESNA, antiemetics, and antimicrobials. A total of 33 patients from the EAP and 33 matched controls were studied. Two patients in the control group were hospitalized for neutropenic fever during the mobilization period. Apheresis started on the scheduled day in 33 (100%) study patients and in 29 (88%) control patients (P = 0.04). Sixteen (48%) control patients required weekend apheresis. There was no difference in number of CD34(+) cells collected between the groups, and all patients proceeded to HSCT with no difference in engraftment outcomes. Median total cost of mobilization was not different between the plerixafor/G-CSF and control groups ($14,224 versus $18,824; P = .45). In conclusion, plerixafor/G-CSF and cyclophosphamide/G-CSF for upfront mobilization of CD34(-) cells resulted in similar numbers of cells collected, costs of mobilization, and clinical outcomes. Additionally, plerixafor/G-CSF mobilization resulted in more

  17. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  18. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  19. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  20. Late Effects in Survivors of Hodgkin’s and Non-Hodgkin’s Lymphoma Treated with Autologous Hematopoietic Cell Transplantation: A Report from the Bone Marrow Transplant Survivor Study

    OpenAIRE

    Majhail, Navneet S.; Ness, Kirsten K.; Burns, Linda J.; Sun, Can-Lan; Carter, Andrea; Francisco, Liton; Forman, Stephen J.; Bhatia, Smita; Baker, K. Scott

    2007-01-01

    We determined the prevalence of self-reported late-effects in survivors of autologous hematopoietic-cell transplantation (HCT) for Hodgkin’s lymphoma (HL, n=92) and non-Hodgkin’s lymphoma (NHL, n=184) using a 255-item questionnaire and compared them to 319 sibling controls in the Bone Marrow Transplant Survivor Study. Median age at HCT was 39 years (range, 13-69) and median post-transplant followup was 6 years (range, 2-17). Median age at survey was 46 years (range, 21-73) for survivors and 4...

  1. Transplante de células-tronco hematopoéticas no diabete melito do tipo I Autologous hematopoietic stem cell transplantation in type I diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Júlio C. Voltarelli

    2004-03-01

    Full Text Available Transplantes autólogos de células-tronco hematopoéticas (TACTH para doenças auto-imunes (DAÍ graves e refratárias à terapia convencional têm sido realizados desde 1996, principalmente dirigidos a doenças reumáticas e neurológicas, com resultados encorajadores. De modo geral, dois terços dos pacientes alcançam remissão duradoura da doença auto-imune, embora a morbimortalidade relacionada ao transplante ou à recidiva e progressão da DAI ainda constituam problemas significativos. Baseados nesses resultados e no efeito benéfico da imunossupressão moderada na evolução do diabete melito do tipo I (DM-I, iniciamos, em dezembro de 2003, um protocolo clínico de TACTH para esta doença, em cooperação com a Universidade Northwestern de Chicago, da Universidade de Miami e do National Institutes of Health. Pacientes com DM-I abaixo de 35 anos, diagnosticados há menos de seis semanas ou na fase assintomática ("lua-de-mel" da doença têm suas CTH mobilizadas com ciclofosfamida (2 g/m² e G-CSF, coletadas do sangue periférico e criopreservadas. Após o condicionamento com ciclofosfamida (200 mg/kg e globulina antitimocitária de coelho (4,5 mg/kg e a infusão das CTH autólogas, os pacientes são seguidos por cinco anos em relação aos aspectos clínicos, endocrinológicos e imunológicos do diabete. Este estudo clínico poderá representar uma importante contribuição científica do transplante de medula óssea brasileiro à moderna era de terapia celular de doenças inflamatórias e degenerativas.Autologous hematopoietic stem cell transplantation (AHSCT for severe and refractory autoimmune diseases has been performed since 1996 with encouraging results. In general, two thirds of the patients achieve durable remissions, although morbidity and mortality related to transplantation or to relapse and progression of autoimmune diseases are still significant. Based on those results and on beneficial effects of moderate immunosuppression

  2. Autologous hematopoietic stem cell transplantation and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes: long term follow-up

    Institute of Scientific and Technical Information of China (English)

    Gu Yi; Gong Chunxiu; Peng Xiaoxia; Wei Liya; Su Chang; Qin Miao; Wang Xi'ou

    2014-01-01

    Background It has been indicated that autologous hematopoietic stem cell transplantation (AHST) is a promising treatment to adults with type 1 diabetes,however,the application of AHST therapy to children with type 1 diabetes still needs more data.The aim of this study was to assess the clinical effect of immune intervention combined with AHST and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes.Methods This 1:2 matched case-control study was comprised of 42 children who were newly diagnosed with type 1 diabetes in the Department of Endocrinology,Beijing Children's Hospital from 2009-2010.The case group included 14 patients,who were treated with AHST within the first 3 months after being diagnosed with diabetes at request of their parents during 2009-2010.The control group included 28 patients with newly diagnosed type 1 diabetes at the same period of hospitalization.We compared the baseline and follow-up data of them,including ketoacidosis onset,clinical variables (glycosylated hemoglobin (HbA1c),insulin dosage and serum C-peptide).Results The clinical characteristics of the patients was comparable between the case group and the control group.At 6-12 months ((10.7±4.2) months) after AHST treatment,we found 11 patients in the case group did not stop the insulin therapy,three cases stopped insulin treatment for 2,3 and 11 months,respectively.No diabetic ketoacidosis (DKA) occurred after transplantation in all the patients in the case group.HbA1c in the control group was significant lower than that in the case group (P <0.01),while the insulin dosage and serum C-peptide were not significant different between the two groups (P >0.05).In order to eliminate the honeymoon effect,we performed final follow-up at the 3-5 years ((4.2±1.8) years) after AHST treatment,and found that HbA1c in the control group was still lower than that in the case group (P <0.01); however,the insulin dosage and serum C-peptide were not

  3. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma.

    Science.gov (United States)

    Satwani, P; Jin, Z; Martin, P L; Bhatia, M; Garvin, J H; George, D; Chaudhury, S; Talano, J; Morris, E; Harrison, L; Sosna, J; Peterson, M; Militano, O; Foley, S; Kurtzberg, J; Cairo, M S

    2015-02-01

    The outcome of children, adolescents and young adults (CAYA) with poor-risk recurrent/refractory lymphoma is dismal (⩽30%). To overcome this poor prognosis, we designed an approach to maximize an allogeneic graft vs lymphoma effect in the setting of low disease burden. We conducted a multi-center prospective study of myeloablative conditioning (MAC) and autologous stem cell transplantation (AutoSCT), followed by a reduced intensity conditioning (RIC) and allogeneic hematopoietic cell transplantation (AlloHCT) in CAYA, with poor-risk refractory or recurrent lymphoma. Conditioning for MAC AutoSCT consisted of carmustine/etoposide/cyclophosphamide, RIC consisted of busulfan/fludarabine. Thirty patients, 16 Hodgkin lymphoma (HL) and 14 non-Hodgkin lymphoma (NHL), with a median age of 16 years and median follow-up of 5years, were enrolled. Twenty-three patients completed both MAC AutoSCT and RIC AlloHCT. Allogeneic donor sources included unrelated cord blood (n=9), unrelated donor (n=8) and matched siblings (n=6). The incidence of transplant-related mortality following RIC AlloHCT was only 12%. In patients with HL and NHL, 10 year EFS was 59.8% and 70% (P=0.613), respectively. In summary, this approach is safe, and long-term EFS with this approach is encouraging considering the poor-risk patient characteristics and the use of unrelated donors for RIC AlloHCT in the majority of cases. PMID:24938649

  4. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  5. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    Science.gov (United States)

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  6. Chiaroscuro hematopoietic stem cell.

    OpenAIRE

    Quesenberry, P.; Habibian, M. (PhD); Dooner, M; Zhong, S.; Reilly, J; Peters, S.; De Becker, P; Grimaldi, C.; Carlson, J; REDDY, P; Nilsson, S.; Stewart, F. M.

    1998-01-01

    These observations suggest several immediate clinical strategies. In gene therapy, approaches could be targeted to obtain cycling of hematopoietic stem cells and gene-carrying retrovirus vector integration followed by engraftment at an appropriate time interval which favors engraftment. The same type of approach can be utilized for stem cell expansion approaches. Alternatively marrow or peripheral stem cell engraftment can be obtained with minimal to no toxicity in allochimeric strategies in ...

  7. Hematopoietic stem cell transplantation

    OpenAIRE

    Eleftheria Hatzimichael; Mark Tuthill

    2010-01-01

    Eleftheria Hatzimichael1, Mark Tuthill21Department of Haematology, Medical School of Ioannina, University of Ioannina, Ioannina, Greece; 2Department of Medical Oncology, Hammersmith Hospital, Imperial College National Health Service Trust, London, UKAbstract: More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and mye...

  8. Efficacy and safety of autologous bone marrow derived hematopoietic stem cell transplantation in patients with type 2 DM: A 15 months follow-up study

    Directory of Open Access Journals (Sweden)

    Anil Bhansali

    2014-01-01

    Full Text Available Background: there are dearths of studies describing the effect of autologous bone marrow derived stem cell transplantation (ABMSCT through targeted approach in Type 2 Diabetes Mellitus.This study reports the efficacy and safety of super-selective injection of ABMSCT in T2DM. Materials and Methods: Ten patients (8 men and 2 women with T2DM, with duration of disease >5 years and with documented triple drug failure receiving insulin (0.7 U/Kg/day, metformin and pioglitazone underwent super-selective injection of stem cells into superior pancreaticoduodenal artery under fluoroscopic guidance. The primary outcome measure was decrease in insulin requirement by ≥50% (defined as responders, while secondary endpoints were improvement in glucagon stimulated C-peptide levels, changes in weight, HbA1c, lipid profile and quality of life (QOL at the end of 15 months. Results: Six patients (60% were ′responders′ at 15 months of follow-up showing a reduction in mean insulin requirement by 74% as compared to baseline and one patient was off-insulin till the end of the study. Mean HbA1c reduction in ′responders′ was 1.1% (8.1 ± 0.5% to 7.0 ± 0.6%, P = 0.03, accompanied with a significant improvement in glucagon stimulated C-peptide levels (P = 0.03, Homeostasis Model Assessment -β (P = 0.03 and QOL scores. However, ′non-responders′ did not show any significant alterations in these parameters. No serious adverse events were noted. Conclusion: Our observations indicate that ABMSCT is effective in management of T2DM and its efficacy is maintained over a period of 15 months without any adverse events. However, more number of patients and longer duration of follow-up are required to substantiate these observations.

  9. Autologous hematopoietic stem cell transplantation in combination with immunoablative protocol in secondary progressive multiple sclerosis: A 10-year follow-up of the first transplanted patient

    Directory of Open Access Journals (Sweden)

    Obradović Dragana

    2016-01-01

    Full Text Available Introduction. Multiple sclerosis (MS is an immunemediated disease of the central nervous system that affects young individuals and leads to severe disability. High dose immunoablation followed by autologous hemopoietic stem cell transplantation (AHSCT has been considered in the last 15 years as potentialy effective therapeutic approach for agressive MS. The most recent long-time follow-up results suggest that AHSCT is not only effective for highly aggressive MS, but for relapsing-remitting MS as well, providing long-term remission, or maybe even cure. We presented a 10- year follow-up of the first MS patient being treated by immunoablation therapy and AHSCT. Case report. A 27-year-old male experienced the first symptoms - intermitent numbness and paresthesia of arms and legs of what was treated for two years by psychiatrist as anxiety disorder. After he developed severe paraparesis he was admitted to the Neurology Clinic and diagnosed with MS. Our patient developed aggressive MS with frequent relapses, rapid disability progression and transition to secondary progressive form 6 years after MS onset [the Expanded Disability Status Scale (EDSS 7.0 Ambulation Index (AI 7]. AHSCT was performed, cyclophosphamide was used for hemopoietic stem cell mobilization and the BEAM protocol was used as conditionig regimen. No major adverse events followed the AHSCT. Neurological impairment improved, EDSS 6.5, AI 6 and during a 10-year followup remained unchanged. Brain MRI follow-up showed the absence of gadolinium enhancing lesions and a mild progression of brain atrophy. Conclusion. The patient with rapidly evolving, aggressive, noninflammatory MS initialy improved and remained stable, without disability progression for 10 years, after AHSCT. This kind of treatment should be considered in aggressive MS, or in disease modifying treatment nonresponsive MS patients, since appropriately timed AHSCT treatment may not only prevent disability progression but reduce

  10. A phase 1/2 study of an adjuvanted varicella-zoster virus subunit vaccine in autologous hematopoietic cell transplant recipients

    OpenAIRE

    Stadtmauer, Edward A.; Sullivan, Keith M.; Marty, Francisco M.; Dadwal, Sanjeet S; Papanicolaou, Genovefa A.; Shea, Thomas C.; Mossad, Sherif B.; Andreadis, Charalambos; Young, Jo-Anne H.; Buadi, Francis K; El Idrissi, Mohamed; Heineman, Thomas C.; Berkowitz, Elchonon M.

    2014-01-01

    HCT recipients have increased susceptibility to herpes zoster, but live-attenuated vaccines are not appropriate for highly immunocompromised people.An adjuvanted subunit vaccine against herpes zoster elicits strong immune responses with an acceptable safety profile in adult autologous HCT recipients.

  11. Optimized patient-trajectory for patients undergoing treatment with high-dose chemotherapy and autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Bartels, Frederik Reith; Smith, Nicholas Simon; Gørløv, Jette Sønderskov;

    2015-01-01

    PURPOSE: Before, during and after autologous hematopoietic stem cell transplantation (HD-ASCT) patients suffer from significant loss of physical function, and experience multiple complications during and after hospitalization. Studies regarding safety and feasibility of physical exercise...

  12. Autologous hematopoietic stem cell transplantation for peripheral T cell lymphoma%自体造血干细胞移植治疗外周T细胞淋巴瘤

    Institute of Scientific and Technical Information of China (English)

    潘耀柱; 白海; 王存邦; 葸瑞; 张茜; 王晓靖

    2015-01-01

    BACKGROUND:The incidence rate of peripheral T cel lymphoma is high in Asia, and peripheral T cel lymphoma is aggressive with generaly poor prognosis. However, there is no standard treatment strategy. OBJECTIVE:To retrospectively analyze the therapeutic effect of autologous hematopoietic stem cel transplantation on peripheral T cel lymphoma as wel as relevant toxic and side effects. METHODS:A retrospective review was conducted in 35 patients with peripheral T cel lymphoma who underwent autologous hematopoietic stem cel transplantation from March 2003 to April 2014, including 22 cases of extranodal NK/T-cel lymphoma (nasal type), 1 case of angioimmunoblastic T-cel lymphoma, 8 cases of peripheral T cel lymphoma (non-specific), 3 cases of ALK-positive anaplastic large cel lymphoma, and 1 case of ALK-negative anaplastic large cel lymphoma. Al of 35 patients were classified pathologicaly according to WHO pathological type in 2001 and 2008, and received the high-dose chemotherapy with vincristine, cytarabine, etoposide, mitoxantrone, semustine, cyclophosphamide, and total body irradiation. RESULTS AND CONCLUSION: After a median folow-up of 54 (9-120) months, the probabilities of overal survival and disease-free survival after transplantation were 80% (n=28) and 71% (n=25), respectively. Eight cases (23%) relapsed after transplantation, seven of which died. It was safe with mild and moderate transplantation related side-effects on opportunistic infections, oral cavity mucosa and bladder responses and so on, and there were no severe, life-threatening late complications. Autologous hematopoietic stem cel transplantation may be an effective and safe treatment for peripheral T cel lymphoma, and there is a better benefit in peripheral T cel lymphoma patients with first complete remission.%背景:外周T细胞淋巴瘤亚洲地区发病率高,具有侵袭性,预后普遍较差,目前尚无标准治疗策略。目的:评价自体造血干细胞移植治疗外周T细胞

  13. 自体造血干细胞移植治疗恶性淋巴瘤的研究进展%Recent advance in the treatment of malignant lymplhoma by using autologous hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    杨磊; 徐小红

    2011-01-01

    大剂量化疗联合自体造血干细胞移植(HDT-ASCT)是目前治疗复发难治的弥漫大B细胞淋巴瘤的标准方案,但其在滤泡性淋巴瘤、套细胞淋巴瘤及外周T细胞淋巴瘤治疗上的作用及地位存在争议.根据2010年NCCN非霍奇金淋巴瘤治疗指南建议,HDT-ASCT仍是治疗复发滤泡性淋巴瘤、初治套细胞淋巴瘤及外周T细胞淋巴瘤的重要方法,但需大规模的前瞻性临床试验证实其作用及验证不同类型淋巴瘤最佳的诱导、动员及维持治疗方案.对于HDT-ASCT在霍奇金淋巴瘤中的应用有很多问题需要解决,如预处理方案的选择、自体造血干细胞移植前的最佳化疗周期数、放疗在HDT-ASCT中的应用及二重癌发生的风险等.现就ASCT近年来的研究进展作一综述.%High-dose therapy and autologous hematopoietic stem cell transplant (HDT-ASCT) is the standard treatment for relapsed and refractory diffuse large B cell lymphoma and Hodgkin's lymphoma; however, the role for HDT-ASCT in the treatment of follicular lymphoma ( FL), mantle cell lymphoma ( MCL), and peripheral T cell lymphoma (PTCL) is controversial.According to 2009 NCCN non-Hodgkin's lymphoma clinical practice guidelines, HDT-ASCT is an important element of the treatment of relapsed FL,untreated MCL and PTCL.However, large prospective studies are needed to confirm its role and identify the most optimal induction,mobilization and maintenance regimens.For Hodgkin's lymphoma, there are lots of issues need to be solved, such as the option of chemotherapy-conditioning regimens (preprocessing), the optimal number of chemotherapy cycles prior to HSCT, the use of radiation in ASCT and the risk of second malignancies.This review aims to summarize recent advances in ASCT.

  14. Autologous tumor cell lysate-loaded dendritic cells and cytokine-induced killer cells in combination with autologous hematopoietic stem cell transplatation in the treatment of refractory lymphoma%负载自体肿瘤抗原的DC-CIK细胞联合自体造血干细胞移植治疗难治性淋巴瘤的临床研究

    Institute of Scientific and Technical Information of China (English)

    苏毅; 邵文军; 闵敏; 李莉; 陈健; 范方教; 易海; 付利; 刘阳阳; 邓涛; 孙浩平; 孙薏; 钟国成

    2009-01-01

    目的 观察负载自体肿瘤抗原的DE-CIK细胞联合自体造血干细胞移植治疗难治性淋巴瘤的疗效.方法 选取难治性淋巴瘤35例,采用MAC预处理方案,用自体淋巴瘤抗原致敏DC-CIK细胞,于移植预处理后5-10d,将DC-CIK细胞回输给患者.结果 35例难治性淋巴瘤中,29例完全缓解(82.86%),4例部分缓解(14.43%),移植过程中死亡2例(5.71%)(均死于严重混合性感染).所有完全缓解和部分缓解病例均随访3-49个月:4名部分缓解患者分别于移植后3、6、10、13个月后病情进展死亡;完全缓解患者中有3人于移植后11、17、20个月再次复发死亡;现存活26例.结论 负载自体肿瘤抗原的DC-CIK细胞联合自体造血千细胞移植治疗难治性淋巴瘤高于单纯自体外周血造血干细胞的疗效,且无明显毒副作用.%Objective To study the efficacy and side effect of autologons tumor cell lysate-loaded DC-CIK plus autologous hematopoietic stem cell transplantation in the treatment of refractory lymphoma.Methods Thirty-five cases of refractory lymphoma were recruited,lymphoma antigen-pulsed autologous DE-CIK cells were infused 5-10 days after the MAC conditioning regimen.Results Out of the 35 Cases,complete remission Was achieved in 29(82.8%),partial remission in 4(14.4%).Two patients died during transplantation due to severe mixed infections,with a transplant-related mortality rate of 5.7%.All cases of complete remission and partial remission were followed-up for 3-49 months,4 cases with partial remission died 3,6,10,13 months after transplantation.Three cases with complete remission relapsed 11,17,20 months after transplantation.and the other 26 cases survived until now.Conclusion Autologous tumor cell lysate-loaded DE-CIK combined with autologous hematopoietic stem cell transplantation in the treatment of refractory lymphoma is safe and effective.

  15. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    Science.gov (United States)

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  16. 儿童难治性自身免疫性疾病自体外周血干细胞动员采集和分选的临床研究%A study of the mobilization, collection and selection of autologous peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation in juvenile severe autoimmune disease

    Institute of Scientific and Technical Information of China (English)

    唐湘凤; 栾佐; 吴凤岐; 赖建铭; 吴南海; 王凯; 龚晓军; 黄友章

    2010-01-01

    Objective To explore the safety of mobilization and collection as well as the feasibility of selection of autologous peripheral blood stem cells (auto-PBSC) from patients with juvenile severe autoimmune diseases (AID) for autologous hematopoietic stem cell transplantation (auto-HSCT). The clinical significance of these procedure is evaluated. Methods Eight patients with AID, including four patients with systemic lupus erythematosus(SLE),two patients with dermatomysoitis, one patient with juvenile rheumatoid arthritis (JRA), one patient with multiple sclerosis(MS),underwent auto-HSCT. Auto-PBSCs were mobilized in 8 patients using cyclophosphamide(CTX) and granulocyte colony-stimulating factor (G-CSF), and their PBSCs were collected by CS-3000 Blood Cell Separator, then the CD34+cells were selected and purified by CliniMACS CD34+cell selection device. The CD34+ cells were frozenand preserved under -80 ℃ ALL patients received non-myeloablative or lymphoablative conditioning regimens which consisted of CTX/Mel/ATG or CTX/ATG or BEAM/ATG. All patient received CD34+ cells transplantation. The safety of mobilization and collection process of auto-PBSC as well asthe feasibility of selection and purification of CD34+cells were recorded and hematopoietic reconstruction were evaluated. Results All patients tolerated the collection process well, and there was no mobilization-related mortality. The number of collected MNCs and CD34+ cells were 8.35×108/kg and 7.92×106/kg respectively. The number of CD34+ and CD3+ cells after purification was 6.28×106/kg and0.71 ×105/kg respectively. The mean granulocytes and platelet engraftment occurred on days 11 and 15 after G-CSF regimen, and they can be collected using CS-3000 instrument. PBSC mobilization and collection from patients with juvenile severe AID is safe. The CD34+ cell can be highly purified. The auto-PBSC CD34+cell transplantation is an alternative therapy for severe AIDs that do not respond to conventional treatments

  17. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    OpenAIRE

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2012-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative ...

  18. Clinical Analysis of Allogeneic Hematopoietic Stem Cell Transplantation for Hodgkin's Lymphoma First Autologous Stem Cell transplant Relapse%异基因造血干细胞移植治疗首例自体移植复发霍奇金淋巴瘤的临床分析

    Institute of Scientific and Technical Information of China (English)

    郭智; 陈惠仁; 刘晓东; 楼金星; 何学鹏

    2012-01-01

    目的 探讨霍奇金淋巴瘤自体移植复发后行异基因造血干细胞2次移植的可能性和安全性.方法 对1例10年前行自体造血干细胞移植复发的霍奇金淋巴瘤患者,行异基因造血干细胞移植,供者为患者母亲,采用外周血干细胞移植,预处理方案采用氟达拉滨+马法兰+兔抗人淋巴细胞免疫球蛋白,预防移植物抗宿主病采用环孢素A、霉酚酸酯、甲氨蝶呤,输注单个核细胞数14.03×108/kg,CD34+细胞6.57×106/kg.结果 2次移植后移植物成功植入,形成完全供者来源造血,移植后第20天骨髓初步植活,造血功能恢复后患者出现皮肤植物抗宿主病,FISH嵌合状态供者细胞植入率为100%,随访至今一直长期无病生存.结论 异基因造血干细胞移植,可有效治疗自体移植复发的霍奇金淋巴瘤,是安全有效的挽救治疗措施.%To investigate the possibility and security of Hodgkin s lymphoma with autologous transplantation relapse treated with allogeneic hematopoietic stem cell transplantation for the second time . Methods A case of autologous hema -topoietic stem cell transplant relapse of Hodgkin s lymphoma patients first treated 10 years ago was treated with allogeneic hemato -poietic stem cell transplantation , donor was the patient s mother, using blood stem cell transplantation , conditioning regimen was fu- dalabin Melphalan anti -THmocyte globulin. Prevention of graft -versus-host disease with cyclosporin A , mycophenolate mofetil, methotrexate. Infusion of the mononuclear cell 14.03 ×108 /kg,CD34+ cells 6. 57 × 106 /kg. Results The second post-transplant graft was successfully implanted to form a complete source of donor hematopoietic and immune function after second hematopoietic stem cell transplantation. Patients had skin graft-versus-host disease after hematopoietic recovery ,20 days later the second transplant of bone marrow preliminary engraftment and follow -up has been a long-term disease-free survival

  19. [Tandem transplantation with peripheral autologous hematopoietic blood stem cells in treatment of oncologic and hematologic malignancies. Initial results of the Donauspital, Vienna].

    Science.gov (United States)

    Ruckser, R; Kier, P; Sebesta, C; Kittl, E; Kurz, M; Selleny, S; Höniger, S; Scherz, M; Habertheuer, K H; Zelenka, P

    1995-01-01

    10 patients were subjected to tandem transplantation for breast cancer (n = 3), ovarian cancer (n = 2) and multiple myeloma (n = 5), at the Second Department of Medicine, Donauspital, Vienna. The breast cancer patients were in stages 2 and 3, respectively, at diagnosis and entered complete remission thereafter. 2 of them developed lymph node metastasis and additional local recurrence, the 3rd patient presented with distant metastasis. The 2 patients with ovarian cancer were in stages Figo III and IV, respectively, at the time of diagnosis, and showed minimal residual disease at second-look-operation. 5 patients with multiple myeloma were in stage 3 pretransplant. Peripheral stem cells were obtained after either high-dose cyclophosphamide or FEC induction and application of cytokines. In 4 patients, tandem transplantation has been completed. 1 patient with multiple myeloma, who had received total body irradiation in combination with chemotherapy for the 2nd transplant, succumbed from idiopathic interstitial pneumonia. No severe clinical complications were observed in all other patients. All patients with solid tumors entered complete remission after the 1st transplantation. 3 of them completed tandem transplantation. Of these, 2 remain in continuous complete remission, the 3rd patient relapsed in lymph nodes day 485. In patients who received only 1 course of high dose chemotherapy with stem cell transplantation, relapses occurred on days 29 and 75, respectively. All patients with multiple myeloma entered only partial remission. We conclude that supralethal chemotherapy with peripheral blood stem cell support is a safe procedure that may at least induce prolonged remissions in solid tumors and hematologic malignancies.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7762251

  20. Trichoderma species fungemia after high-dose chemotherapy and autologous stem cell transplantation: a case report.

    Science.gov (United States)

    Festuccia, M; Giaccone, L; Gay, F; Brunello, L; Maffini, E; Ferrando, F; Talamo, E; Boccadoro, M; Serra, R; Barbui, A; Bruno, B

    2014-08-01

    We present a case of Trichoderma fungemia with pulmonary involvement in a multiple myeloma patient, who was severely immunocompromised and heavily treated with high-dose melphalan, and underwent autologous hematopoietic cell transplantation. This is the first report, to our knowledge, of proven Trichoderma fungemia, defined by published criteria, successfully treated with voriconazole.

  1. O transplante autólogo de células-tronco hematopoéticas no tratamento do Mieloma Múltiplo Autologous hematopoietic stem cell transplant for Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Angelo Maiolino

    2007-03-01

    Full Text Available A quimioterapia em altas doses seguida de transplante autólogo de células-tronco hematopoéticas vem se constituindo ao longo das últimas décadas em um importante instrumento terapêutico, devendo fazer parte da estratégia de tratamento da maior parte dos pacientes com mieloma múltiplo, particularmente daqueles com idade inferior a 65 anos. Pelo menos dois importantes estudos randomizados mostraram vantagens para esta estratégia quando comparadas à quimioterapia convencional. No entanto, a quase totalidade destes pacientes irá recair, necessitando de algum tratamento adicional. A utilização de um segundo transplante, manutenção com talidomida e a introdução de novas drogas como o bortezomibe poderão representar um avanço, melhorando os resultados da estratégia de tratamento do mieloma múltiplo.High dose chemotherapy followed by autologous stem cell transplantation has been recognized as an important step in the treatment of multiple myeloma. At least two well designed randomized studies showed better outcomes in patients treated with high doses compared to those treated with conventional chemotherapy. Nowadays, autologous stem cell transplantation should be considered for all under 65-year-old patients. Although autologous stem cell transplantation has modified the prognosis of myeloma, almost all patients still relapse some time after a single transplant, and then another therapeutic approach becomes necessary. With the aim of improving the results in the treatment of myeloma, new approaches including tandem stem cell transplantation, maintenance with thalidomide and new drugs such as bortezomib are being tested. Strategies including these approaches and autologous stem cell transplantation may improve the results of the treatment of myeloma in the future.

  2. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells

    NARCIS (Netherlands)

    Delemarre, Eveline M.; Van Den Broek, Theo; Mijnheer, Gerdien; Meerding, Jenny; Wehrens, Ellen J.; Olek, Sven; Boes, Marianne; Van Herwijnen, Martijn J C; Broere, Femke; van Royen, Annet; Wulffraat, Nico W.; Prakken, Berent J.; Spierings, Eric; Van Wijk, Femke

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) is increasingly considered for patients with severe autoimmune diseases whose prognosis is poor with standard treatments. Regulatory T cells (Tregs) are thought to be important for disease remission after HSCT. However, eliciting the role of

  3. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    Science.gov (United States)

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  4. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: A case report

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-08-01

    Full Text Available Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC and bone marrow derived hematopoietic stem cells (HSC-BM. Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study.

  5. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Fagius, J.; Lundgren, J.; Oberg, G.

    2009-01-01

    BACKGROUND: During the last 15 years, high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HSCT) has globally been performed for severe multiple sclerosis (MS). Most patients have been in progressive phase with long disease duration. As a rule, treatment effect has been...

  6. Differences in heat sensitivity between normal and acute myeloid leukemic stem cells : Feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts

    NARCIS (Netherlands)

    Wierenga, PK; Setroikromo, R; Kamps, G; Kampinga, HH; Vellenga, E

    2003-01-01

    Objectives. In autologous stem cell transplantation contamination of the graft with malignant cells is frequently noticed and necessitates the use of in vivo or in vitro purging modalities. The hematopoietic recovery after transplantation depends on the number of stem and progenitor cells in the tra

  7. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  8. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Ajay K.; Rajendran, Joseph G.; Gooley, Ted; Pagel, John M.; Fisher, Darrell R.; Petersdorf, Stephen; Maloney, David G.; Eary, Janet F.; Appelbaum, Frederick R.; Press, Oliver W.

    2007-04-10

    Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.

  9. Sweet Syndrome After Autologous Stem Cell Transplant.

    Science.gov (United States)

    Alkan, Ali; İdemen, Celal; Okçu Heper, Aylin; Utkan, Güngör

    2016-02-01

    Sweet syndrome (acute febrile neutrophilic dermatosis) is a rare clinical entity characterized by skin lesions, neutrophilia, fever, and neutrophilic infiltration of the dermis. It may be a consequence of malignant disease, comorbidities, or drugs. We present a case of acute febrile neutrophilic dermatosis in a patient after autologous stem cell transplant. PMID:25748978

  10. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  11. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    Science.gov (United States)

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients. PMID:27465155

  12. Treatment of massive gastrointestinal bleeding occurred during autologous stem cell transplantation with recombinant activated factor VII and octreotide

    Directory of Open Access Journals (Sweden)

    Erman Atas

    2015-01-01

    Full Text Available After hematopoietic stem cell transplantation (HSCT, patients may suffer from bleeding. One of the bleeding type is gastrointestinal (GI which has serious morbidity and mortality in children with limited treatment options. Herein, we presented a child with upper GI bleeding post autologous HSCT controlled successfully by using recombinant activated factor VII (rFVIIa and octreotide infusion.

  13. Hematopoietic cell transplantation for Crohn's disease; is it time?

    Institute of Scientific and Technical Information of China (English)

    Y Leung; M Geddes; J Storek; R Panaccione; PL Beck

    2006-01-01

    AIM: To review all studies in the literature that have assessed Hematopoietic cell transplantation (HCT)and Crohn's disease (CD) with the ultimate aims of determining if this is a viable treatment option for those with CD. A secondary aim was to review the above literature and determine if the studies shed further light on the mechanisms involved in the pathogenesis of CD.METHODS: An extensive Medline search was performed on all articles from 1970 to 2005 using the keywords;bone marrow transplant, stem cell, hematopoietic cell,Crohn's disease and inflammatory bowel disease.RESULTS: We identified one case in which a patient developed CD following an allogeneic HCT from a sibling suffering with CD. Evidence for transfer of the genetic predisposition to develop CD was also identified with report of a patient that developed severe CD following an allogeneic HCT. Following HCT it was found that the donor (that had no signs or symptoms of CD) and the recipient had several haplotype mismatches in HLA class Ⅲ genes in the IBD3 locus including a polymorphism of NOD2/CARD15 that has been associated with CD.Thirty three published cases of patients with CD who underwent either autologous or allogeneic HCT were identified. At the time of publication 29 of these 33patients were considered to be in remission. The median follow-up time was seven years, and twenty months for allogeneic and autologous HCT respectively. For patients who underwent HCT primarily for treatment of their CD there have been no mortalities related to transplant complications.CONCLUSION: Overall these preliminary data suggest that both allogeneic and autologous HCT may be effective in inducing remission in refractory CD. This supports the hypothesis that the hematolymphatic cells play a key role in CD and that resetting of the immune system may be a critical approach in the management or cure of CD.

  14. Transplante de células-tronco hematopoéticas para tumores sólidos: recomendações do Consenso Brasileiro de Transplante de Medula Óssea Autologous hematopoietic stem cell transplantation in solid tumors: the Brazilian Consensus on Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Décio Lerner

    2010-05-01

    Full Text Available O transplante de células-tronco hematopoéticas autólogo permite o escalonamento de dose de drogas quimioterápicas e é uma estratégia atraente para tratamento de tumores sólidos, principalmente em doenças recaídas. Não há, no entanto, estudos randomizados fase III que demonstrem benefício deste procedimento em tumor sólido. Em tumor germinativo de testículo, há estudos fase II com excelentes resultados, proporcionando cura para doentes refratários a platina ou que estão em terceira linha de quimioterapia. Com base nisto, o transplante de células-tronco hematopoéticas autólogo é considerado tratamento padrão para tumor germinativo recaído. Para câncer de mama, o papel desta modalidade de tratamento permanece controverso apesar dos vinte anos de experiência. Ainda é utilizado em ensaios clínicos e talvez exista algum subgrupo que se beneficie. O procedimento não oferece benefício para câncer de ovário, pulmão ou tumor cerebral. O transplante alogeneico de células-tronco hematopoéticas para tumores sólidos se baseia no efeito enxerto-contra-tumor, que é observado para algumas doenças: câncer mamário, colorretal, ovariano, pancreático e, finalmente, renal, em que há a maior experiência. Porém, o tratamento ainda é considerado experimental.Autologous hematopoietic stem cell transplantation, which allows chemotherapy dose-escalonation, is an attractive strategy for solid tumors treatment, specially relapsed diseases. However, there are no phase III trials showing benefits. There are phase II trials showing excellent results for germ cell tumors, including cure for platinrefractory and heavily pretreated patients. Because of this, autologous stem cell transplantation is considered standard of care for relapsed germ cell tumor. The role of this treatment remains controversial for breast cancer despite twenty years of experience. It’s still done in clinical trials and it may benefit a subgroup of patients. The

  15. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving. PMID:24750320

  16. The role of the embryonic microenvironment in hematopoietic cell development

    NARCIS (Netherlands)

    E. Haak (Esther)

    2007-01-01

    textabstractThe adult hematopoietic system is comprised of a hierarchy of cells with the hematopoietic stem cell (HSC) at its foundation. HSCs give rise to progenitors that differentiate into mature hematopoietic cells, which perform the physiological functions of the hematopoietic system. The matur

  17. Impact of autologous hematopoietic stem cell transplantation on the quality of life of type 1 diabetes mellitus patients Impacto do transplante de células-tronco hematopoéticas sobre a qualidade de vida de pacientes com diabetes mellitus tipo 1

    Directory of Open Access Journals (Sweden)

    Manoel Antônio dos Santos

    2011-01-01

    Full Text Available The present study aimed at assessing the health-related quality of life (HRQoL of patients with type 1 diabetes mellitus (DM1 submitted to autologous hematopoietic stem cell transplantation (HSCT. This study is part of a pioneering research protocol which tests the applicability of autologous hematopoietic stem cell transplantation as a new therapeutic approach to DM1. The study was conducted on 14 patients admitted to the ward of the Bone Marrow Transplantation Unit of a university hospital during the period from October 2006 to December 2007. The patients were evaluated at admission and on the occasion of the ambulatory return visit 100 days after transplantation. They answered the SF-36 quality of life questionnaire and the data were analyzed according to literature recommendations. The results showed that 100 days after transplantation the value of the patients' quality of life was higher compared to the pre-HSCT value, with significant differences in the Physical Domains (Role Limitations due to Physical Problems (p = .009, Vitality (p = .02 and Mental Health (p = .04, demonstrating significant appreciation of those domains after the procedure. The results indicate an improvement in HRQoL after HSCT. The SF-36 proved to be a useful instrument for the assessment of quality of life in patients with DM1 submitted to HSCT.Este estudo teve como objetivo avaliar a qualidade de vida relacionada à saúde (QVRS de pacientes com diabetes mellitus tipo 1 (DM1 submetidos ao Transplante de Células-Tronco Hematopoéticas (TCTH. O estudo é parte de um protocolo de pesquisa pioneiro no mundo, que testa a aplicabilidade do TCTH como nova abordagem terapêutica no DM1. Foram investigados 14 pacientes, que constituíram a população de pessoas internadas na enfermaria da Unidade de Transplante de Medula Óssea de um hospital universitário, no período de outubro de 2006 a dezembro de 2007. Os pacientes foram avaliados na admissão e no retorno

  18. Consenso expandido do BCTRIMS para o tratamento da esclerose múltipla: I. As evidências para o uso de imunossupressores, plasmaférese e transplante autólogo de células tronco The BCTRIMS Expanded Consensus on treatment of multiple sclerosis: I. The evidences for the use of immunossupressive agents, plasma exchange and autologous hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Dagoberto Callegaro

    2002-09-01

    Full Text Available O tratamento da esclerose múltipla (EM com imunossupressores teve início na década de 60. As observações laboratoriais e clínicas de que a doença tinha um caráter inflamatório induziu os clínicos a utilizarem medicamentos citostáticos e imunossupressores. Foram assim incorporados ao arsenal terapêutico da EM as drogas utilizadas em outras doenças inflamatórias sistêmicas como a artrite reumatóide e o lupus eritematoso sistêmico. As drogas imunossupressoras mais utilizadas são a ciclofosfamida, azatioprina e o metotrexate. A ciclosporina e a cladribina foram utilizadas mais recentemente para o controle da EM na forma recorrente-remitente (RR. O mitoxantrone foi aprovado pelo FDA em 2000 para as formas mais agressivas, tanto RR, como secundariamente progressiva (SP ou primariamente progressiva (PP. Outras formas de tratamento como plasmaférese e transplante autólogo de células tronco (TACT, foram inseridas neste arsenal terapêutico com suas características específicas e para casos especiais.Since the sixties immunosuppressive agents have been used in the treatment of multiple sclerosis as there was cumulating evidence of the inflammatory nature of the disease. Cyclophosphamide, azathioprine and methotrexate have been the most frequently employed drugs whereas other agents such as cyclosporine and cladribine have been recently tested for RRMS. Mithoxantrone, on the other hand, was approved by the FDA for treatment of aggressive forms of the disease. Other immunointerventions such as plasma exchange and autologous hematopoietic stem cell transplantation have recently been employed in some special circumstances. This paper analyses the most important published data on the use of the immunosuppressive agents, plasma exchange and autologous hematopoietic stem cell transplantation according to the classes of evidences and types of recommendations of these drugs and immunointerventions. It provides sufficient information to

  19. Autologous cell sources in therapeutic vasculogenesis

    DEFF Research Database (Denmark)

    Szöke, Krisztina; Reinisch, Andreas; Østrup, Esben;

    2016-01-01

    BACKGROUND AIMS: Autologous endothelial cells are promising alternative angiogenic cell sources in trials of therapeutic vasculogenesis, in the treatment of vascular diseases and in the field of tissue engineering. A population of endothelial cells (ECs) with long-term proliferative capability...... functional assays, we wanted to evaluate the potential of these EC populations for use in clinical neovascularization. RESULTS: Global gene expression profiling of ECFCs, AT-ECs and the classical EC population, human umbilical vein ECs, showed that the EC populations clustered as unique populations, but very...

  20. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells

    OpenAIRE

    Sahin, Aysegul Ocal; Buitenhuis, Miranda

    2012-01-01

    Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activit...

  1. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes%自体外周造血干细胞移植——治疗1型糖尿病的新曙光

    Institute of Scientific and Technical Information of China (English)

    李莉蓉; 朱大龙

    2012-01-01

    Type 1 diabetes is pathologically characterized by autoimmune insulitis-related islet β-cell destruction.Although intensive insulin therapy for patients with type 1 diabetes can correct hyperglycemia,this therapy does not effectively prevent diabetes-related cardiovascular complications.Hence,preservation of natural β-cell function is critical for the prevention of diabetes-related complications.Receut studies have shown that autologous hematopoietic stem cell transplantation ( A HSCT) is a new promising approach for the treatment of type 1 diabetes by reeonstitution of immunotolerance and preservation of islet β-cell function.Here we introduce the key results of a clinical trial ( NCT 01341899,ClinicalTrials.gov) performed in Chinese type 1 diabetes patients ( most of them with diabetic ketoacidosis at onset ) and discuss the potential mechanisms underlying the action of HSCT and its prospects in the clinical management of type 1 diabetes.%1型糖尿病以自身免疫性胰岛炎和胰岛β细胞损伤为病理特征.尽管胰岛素强化治疗能使1型糖尿病患者实现良好的血糖控制,但该方案难以完全阻止糖尿病并发症的发生.最大限度的保存1型糖尿病患者自身的胰岛功能,是预防或延缓糖尿病并发症的关键.近年研究显示:自体外周造血干细胞移植(AHSCT)可诱导1型糖尿病患者实现免疫耐受,并改善其胰岛功能.本文将重点介绍采用该方案治疗中国人群初发1型糖尿病患者(多以酮症酸中毒起病)的临床研究结果( NCT01341899,ClinicalTrials.gov),并简要阐述AHSCT治疗1型糖尿病的可能机制和应用前景.

  2. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2013-11-01

    Full Text Available The combination of genetic modification and hematopoietic stem cell (HSC transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  3. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  4. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  5. Autologous rosette-forming T cells as the responding cells in human autologous mixed-lymphocyte reaction.

    OpenAIRE

    Palacios, R; Llorente, L; Alarcón-Segovia, D; Ruíz-Arguelles, A; Díaz-Jouanen, E

    1980-01-01

    Autologous rosette-forming cells (Tar cells) have surface and functional characteristics of post-thymic precursors and among these characteristics there are some that have been identified in the responsive cell of the autologous mixed-lymphocyte reaction (AMLR). We therefore did AMLR with circulating mononuclear cells from normal subjects using as responding cells either total T cells, T cells depleted of Tar cells, or purified Tar cells. The response of Tar cells in AMLR was significantly gr...

  6. Allogeneic Hematopoietic Cell Transplantation in Patients with Myelodysplastic Syndrome and Concurrent Lymphoid Malignancy

    OpenAIRE

    Zimmerman, Zachary; Scott, Bart L.; Gopal, Ajay K.; Sandmaier, Brenda M.; Maloney, David G; Deeg, H. Joachim

    2011-01-01

    Allogeneic hematopoietic cell transplantation (HCT) can be curative for both myelodysplastic syndromes (MDS) and lymphoid malignancies. Little is known about the efficacy of allogeneic HCT in patients in whom both myeloid and lymphoid disorders are present at the time of HCT. We analyzed outcomes in 21 patients with MDS and concurrent lymphoid malignancy when undergoing allogeneic HCT. Seventeen patients had received extensive prior cytotoxic chemotherapy, including autologous HCT in seven, f...

  7. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  8. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  9. Advance in hematopoietic stem cells transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun

    2008-01-01

    @@ During the past 50 years, intensive studies into the characteristics of hematopoietic stem cell transplantation immunology and the emergence of new immunosuppressant and anti-infective drugs have significantly improved the clinical result of hematopoietic stem cell transplantation (HSCT).

  10. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    made recently in the field of stem cell biology, researchers now have improved tools to define novel populations of stem cells, examine them ex vivo using conditions that promote self-renewal, track them into recipients, and determine whether they can contribute to the repair of damaged tissues......PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...

  11. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  12. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  13. Cellular memory and, hematopoietic stem cell aging

    NARCIS (Netherlands)

    Kamminga, Leonie M.; de Haan, Gerald

    2006-01-01

    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation in order to sustain lifelong blood production and simultaneously maintain the HSC pool. However, there is clear evidence that HSCs are subject to quantitative and qualitative exhaustion. In this review, we briefly discuss sever

  14. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  15. High-Dose Chemotherapy Followed by Autologous Stem Cell Transplantation for Metastatic Rhabdomyosarcoma—A Systematic Review

    OpenAIRE

    Frank Peinemann; Nicolaus Kröger; Carmen Bartel; Ulrich Grouven; Max Pittler; Rudolf Erttmann; Michael Kulig

    2011-01-01

    INTRODUCTION: Patients with metastatic rhabdomyosarcoma (RMS) have a poor prognosis. The aim of this systematic review is to investigate whether high-dose chemotherapy (HDCT) followed by autologous hematopoietic stem cell transplantation (HSCT) in patients with metastatic RMS has additional benefit or harm compared to standard chemotherapy. METHODS: Systematic literature searches were performed in MEDLINE, EMBASE, and The Cochrane Library. All databases were searched from inception to Februar...

  16. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon;

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  17. 单纯化疗、化疗加 DC-CIK 细胞治疗和化疗加自体造血干细胞移植治疗急性白血病疗效分析%Analysis of treating the acute leukemia in risk group with simple chemotherapy, chemotherapy + DC-CIK cell therapy, chemotherapy and autologous hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    宋庆林; 江梅

    2014-01-01

    Objective:Retrospectively analyze the clinical effect, safety and popular significance of the treatment of three kinds of immune cells in the treatment of acute leukemia in risk group with chemotherapy, chemotherapy analyzed + DC-CIK cell therapy, chemotherapy and autologous hematopoietic stem cell transplantation.Methods:65 cases of acute leukemia patients in risk group, were randomly divided into three groups, respectively treated with chemotherapy alone ( 21 cases) , chemotherapy ( chemotherapy++DC-CIK cells in the treatment of 26 cases) ,chemotherapy and autologous hematopoietic stem cell transplantation ( 18 cases) , equivalent to three groups of common data and the extent of the disease;used for a healthy ( tissue from patients with parents or children or infant umbilical cord) mononuclear cells, preparation of DC-CIK cells, each patient infusion of 4-6 times, the end of each interval after 30d. treatment to periodically review the three-year survival rates of patients, treatment costs, MDR detection, DC-CIK after injection of fever, allergies and other adverse reactions. Flow cytometry detection in patients with changes of peripheral blood lymphocyte subsets. Results:DC-CIK cells infusion injection and no occurrence of serious adverse reactions. Compared with the pure chemotherapy group, CD3+, +DC-CIK cells in vivo chemotherapy treatment for patients with CD4+, CD8+, CD56+lymphocytes were significantly higher than those before treatment level of infusion (P<0.01), the treatment group with a follow-up period of CD3+, CD4+, CD8+, CD56+ lymphocytes were significantly higher than that of chemotherapy plus autologous hematopoietic stem cell transplantation (P<0.05).Conclusion: Chemotherapy of +DC-CIK cell therapy method is better than the single chemotherapy and chemotherapy plus autologous hematopoietic stem cell transplantation. It can significantly improve the patient tumor killing T cell level, help to clear after transplantation in patients with minimal

  18. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    OpenAIRE

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok; Kim, Tai-Gyu

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic ce...

  19. Radiolabelled Autologous Cells: Methods and Standardization for Clinical Use

    International Nuclear Information System (INIS)

    This publication serves as a useful resource for nuclear medicine physicians, radiologists, radiopharmacists, pharmacologists and other researchers engaged with radiolabelling of autologous products for clinical application. It provides practical guidelines towards clinical work with radiolabelled autologous products and aims to streamline the variety of strategies that have evolved, for example, in the handling of radiolabelled red and white blood cells. The publication highlights the importance of the quality of radiolabelling services, provides advice on safety issues, and also addresses the use of other radiolabelled autologous products and their translation into the clinical environment

  20. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  1. Prostaglandin E2 regulates hematopoietic stem cell

    International Nuclear Information System (INIS)

    Prostaglandin E2 (PGE2) is a bioactive lipid molecule produced by cyclooxygenase (COX), which plays an important role on hematopoiesis. While it can block differentiation of myeloid progenitors but enhance proliferation of erythroid progenitors. Recent research found that PGE2 have the effects on hematopoietic stem cell (HSC) function and these effects were independent from effects on progenitor cells. Exposure of HSC cells to PGE2 in vitro can increase homing efficiency of HSC to the murine bone marrow compartment and decrease HSC apoptosis, meanwhile increase long-term stem cell engraftment. In-vivo treatment with PGE2 expands short-term HSC and engraftment in murine bone marrow but not long-term HSC.In addition, PGE2 increases HSC survival after radiation injury and enhance hematopoietic recovery, resulting maintains hematopoietic homeostasis. PGE2 regulates HSC homeostasis by reactive oxygen species and Wnt pathway. Clinical beneficial of 16, 16-dimethyl-prostaglandin E2 treatment to enhance engraftment of umbilical cord blood suggest important improvements to therapeutic strategies. (authors)

  2. Results of hematopoietic stem cell transplantation after treatment with different high-dose total-body irradiation regimens in five Dutch centers

    NARCIS (Netherlands)

    van Kempen-Harteveld, M. Loes; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; van der Maazen, Richard W.; Cornelissen, Jan J.; Eijkenboom, Wil M. H.; van der Lelie, Johannes P.; Oldenburger, Foppe; Barge, Renee M.; van Biezen, Anja; Vossen, Jaak M. J. J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia

  3. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    Science.gov (United States)

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. PMID:27496493

  4. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    Science.gov (United States)

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia.

  5. Autologous stem cell transplantation in the treatment of Hodgkin's disease

    OpenAIRE

    Tarabar Olivera; Tukić Ljiljana; Stamatović Dragana; Balint Bela; Elez Marija; Ostojić Gordana; Tatomirović Željka; Marjanović Slobodan

    2009-01-01

    Background/Aim. High-dose chemotherapy with autologous stem cell transplantacion (ASCT) has shown to produce long-term disease-free survival in patients with chemotherapysensitive Hodgkin disease. The aim of the study was to evaluate efficacy of ASCT in the treatment of Hodgkin's disease. Methods. Between May 1997 and September 2008, 34 patients with Hodgkin's disease in median age of 25 (range 16-60) years, underwent ASCT. Autologous SCT were performed as consolidation therapy in one poor-ri...

  6. The biology of hematopoietic stem cells.

    Science.gov (United States)

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  7. Transplante autólogo de células-tronco hematopoéticas como tratamento do mieloma múltiplo: experiência da Unidade de Transplante de Medula Óssea da Bahia Autologous hematopoietic stem cell transplantation in the treatment of multiple myeloma: the Portuguese Hospital Bone Marrow Transplant Unit in Bahia experience

    Directory of Open Access Journals (Sweden)

    Ronald Pallotta

    2007-06-01

    Full Text Available O mieloma múltiplo (MM é uma doença maligna de células plasmáticas incurável. O transplante de células-tronco hematopoéticas (TCTH faz parte da estratégia terapêutica para a maioria dos pacientes. Devido à distribuição heterogênea dos centros de transplante no nosso país, os autores têm por objetivo descrever a experiência de um centro nordestino no tratamento desta entidade. De fevereiro de 2000 a dezembro de 2005 foram realizados e analisados de maneira prospectiva 21 TCTH autólogos para pacientes com MM no Hospital Português da Bahia. Epidemiologicamente houve predomínio do sexo feminino (1,6:1 e uma predominância de caucasianos (61,9%. A mediana de idade ao diagnóstico foi de 58 anos, sendo a maioria secretores de IgG (71,4% que se apresentavam com estágio clínico IIIA (90,5%. A indicação para o procedimento foi a consolidação da remissão (RC obtida inicialmente pela quimioterapia (52,4% ou o resgate de uma doença refratária (47,6%. A taxa de sobrevida global (SG foi de 74,7%, a taxa de sobrevida livre de doença (SLD foi de 61,9% e a taxa de mortalidade (TM foi de 5% nos primeiros cem dias. Quando avaliamos os pacientes transplantados em relação à fase da doença no momento do procedimento, observamos que aqueles transplantados em RC tiveram SG e SLD superiores àqueles não transplantados em RC (90,9% vs 64% e 68,2% vs 56%. Embora com uma epidemiologia peculiar, os resultados se mostraram semelhantes aos da literatura mundial, reforçando o fato de que o TCTH autólogo é fundamental na estratégia terapêutica contra o MM e está disponível no nordeste brasileiro.Multiple myeloma (MM continues to be an incurable plasma cell malignancy. Autologous hematopoietic stem cell transplantation (HSCT is part of the treatment strategy for the majority of patients. Based on the heterogeneous distribution of the transplantation centers in Brazil, the authors describe their experience treating this disease in a

  8. Radiation response of human hematopoietic cells

    International Nuclear Information System (INIS)

    The radiosensitivity and capacity to accumulate and repair sub-lethal damage has been studied in hematopoietic cell lines of human origin and in stem cells derived from blood and bone narrow of normal human donors. The results were analysed in terms of the linear quadratic and multitarget models. For the cell lines intrinsic radiosensitivity varied widely with D/sub o/'s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed same capacity to accumulate sub-lethal damage and in three of these survival was enhanced by dose fractionation or reduction of dose rate. Among the cell lines of leukemic origin, several did not conform in one or more respects with the highly radiosensitive and repair deficient model associated with hematopoietic cells. There was no apparent correlation between radiation response and the phenotype (myeloid, lymphoid or undifferentiated) of the cell lines studied. Variability of radiation response and in some cases an unpredicted degree of radioresistance and capacity to repair sub-lethal damage has now been demonstrated for both cultured and primary explants of human leukemic cells. These observations have implications for the design of Total Body Irradiation protocols for use prior to bone narrow transplant

  9. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Science.gov (United States)

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  10. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    Science.gov (United States)

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  11. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  12. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  13. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  14. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  15. Hematopoietic potential cells in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Atsushi Asakura

    2007-01-01

    @@ During mouse embryogenesis,the formation of primi-tive hematopoiesis begins in the yolk sac on embryonic day 7.5(E7.5).Thereafter,definitive hematopoietic stem cell(HSC)activity is first detectable in the aorta-gonad-mesonephros(AGM)region on E10,followed by fetal liver and yolk sac.Subsequently,the fetal liver by E12 becomes the main tissue for definitive hematopoiesis.At a later time,HSC population in the fetal liver migrates to the bone marrow,which becomes the maior site of he-matopoiesis throughout normal adult life[1].

  16. Experimental Limitations Using Reprogrammed Cells for Hematopoietic Differentiation

    Directory of Open Access Journals (Sweden)

    Katharina Seiler

    2011-01-01

    Full Text Available We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC and subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC. While, in principle, the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC transplantations.

  17. 自体造血干细胞移植治疗1型糖尿病的疗效和安全性评价%Efficacy and safety of autologous hematopoietic stem cell transplantation in treating type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    顾卫琼; 李小英; 王卫庆; 宁光; 孙首悦; 胡炯; 唐暐; 卫静淑; 朱莉萍; 洪洁; 汤正义; 刘建民

    2010-01-01

    colony-stimulating factor and then collected from peripheral blood by leukapheresis and cryopreserved. The cells were injected intravenously after conditioning with cyclophosphamide and rabbit antithymocyte globulin. Serum levels of HbA1c, C-peptide levels, and anti-glutamic acid decarboxylase antibody (GAD-Ab)titers were measured before and after AHST. Meanwhile, adverse event was recorded.Results The average age of 18 patients (6 males and 12 females)was ( 18.8±4.4 )years, the mean follow-up was ( 414± 150 ) days. 67 % ( 12/18 ) patients became insulin free, the earliest one happened at 2 weeks after AHST, and the latest one at 6 months. 4 cases resumed insulin use because of influenza and other reasons resulting in the rise of blood glucose level. Currently, 8 patients (44.4%) were completely free of insulin therapy, and the remaining cases reduced the insulin dosage by 67.3% ±22.4%. 18 cases had lowered GAD-Ab level, the negative rate was 33.3% (6/18 ). Fasting and postprandial 2 h C-peptide levels increased significantly after A HST. Area under the curve for C-peptide ( AUCC ) increased much more markedly, and it could be maintained for 1 year. Duringtransplantation,all patients had varying degrees of gastrointestinal reactions, hair loss, fever, bone marrow suppression, and other side effects. 5 patients received blood component transfusion. No damage or other severe adverse events of heart, liver, kidney, and other organs were observed. Most side effects gradually disappeared after 2-4 weeks. The recovery of neutropenia was the slowest. Conclusion Autologous hematopoietic stem cell transplantation for treatment of newly-onset type 1 diabetes with residual islet function showed a certain effect and high safety. The widened use of this new technique should be cautious until the therapeutic mechanism has been further studied.

  18. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  19. Evolving concepts on the microenvironmental niche for hematopoietic stem cells.

    NARCIS (Netherlands)

    Raaijmakers, M.G.P.; Scadden, D.T.

    2008-01-01

    PURPOSE OF REVIEW: The hematopoietic stem cell niche is critical for the maintenance and proliferation of hematopoietic stem cells and, as such, is not only essential for steady-state hematopoiesis but may also be relevant to hematologic disease. The present review discusses recent advances in the u

  20. 自体外周血CD34+造血干细胞移植治疗晚期肝硬化的远期疗效%Long-term outcome of autologous peripheral blood CD34+ hematopoietic stem cell transplantation in the treatment of advanced liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    骆乐; 薛华; 罗兰云; 姚豫桐; 邹海波; 王冠; 向光明; 魏玲玲; 杨卯竹

    2016-01-01

    月(1~60个月),5年生存率为95.23%.患者术后5年肝功能Child评分及MELD评分分别为(7.1±1.1)分和(14±4)分,与术前的(9.4±1.8)分和(19±5)分比较,差异均有统计学意义(t=1.672,3.773,P<0.05).患者肝脏活组织病理学检查结果:移植前患者肝小叶结构紊乱,被纤维切割,肝细胞水肿变性,呈毛玻璃样变,有点状及碎屑坏死;可见汇管区-汇管区桥接坏死,汇管区内有纤维组织增生,其内有中等量淋巴细胞、单核细胞浸润,假小叶形成.移植后5年患者正常肝小叶形成明显增多,且分布更加趋近正常,肝细胞水肿变性,见少量点状坏死,未见明显碎屑坏死;汇管区内纤维组织增生较前明显好转,纤维组织明显减少,染色明显变淡.移植后5年患者Knodell评分为(9.9±2.7)分,与移植前的(14.1±4.1)分比较,差异有统计学意义(t=4.142,P<0.05);HRQL评分为(167±21)分,与移植前的(134±15)分比较,差异有统计学意义(t=3.142,P<0.05).结论 自体外周血CD34+造血干细胞移植能长期有效地改善晚期肝硬化患者的肝功能、肝组织形态学以及提高患者的生命质量.%Objective To investigate the long-term outcome of autologous peripheral blood CD34+hematopoietic stem cell transplantation in the treatment of advanced liver cirrhosis.Methods The retrospective cross-sectional study was adopted.The clinical data of 42 patients with advanced liver cirrhosis who were admitted to the Sichuan Provincial People's Hospital between July 2010 and July 2015 were collected.The patients underwent autologous peripheral blood CD34 + hematopoietic stem cell transplantation.The 5 μg/kg colonystimulating factors were injected subcutaneously daily for 3-5 days.The peripheral blood stem cells were collected and detected by flow cytometry,showing (1.8 ± 1.7) × 106/kg of CD34 + cell.Transfemoral superselective hepatic arterial implantation or catheterization via right gastroepiploic venous to main portal vein (PV

  1. Engineering Hematopoietic Stem Cells: Lessons from Development.

    Science.gov (United States)

    Rowe, R Grant; Mandelbaum, Joseph; Zon, Leonard I; Daley, George Q

    2016-06-01

    Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy. PMID:27257760

  2. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    OpenAIRE

    Pravin D. Potdar; Rambhadur P Subedi

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem...

  3. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  4. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind;

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  5. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells.

    Science.gov (United States)

    Delemarre, Eveline M; van den Broek, Theo; Mijnheer, Gerdien; Meerding, Jenny; Wehrens, Ellen J; Olek, Sven; Boes, Marianne; van Herwijnen, Martijn J C; Broere, Femke; van Royen, Annet; Wulffraat, Nico M; Prakken, Berent J; Spierings, Eric; van Wijk, Femke

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) is increasingly considered for patients with severe autoimmune diseases whose prognosis is poor with standard treatments. Regulatory T cells (Tregs) are thought to be important for disease remission after HSCT. However, eliciting the role of donor and host Tregs in autologous HSCT is not possible in humans due to the autologous nature of the intervention. Therefore, we investigated their role during immune reconstitution and re-establishment of immune tolerance and their therapeutic potential following congenic bone marrow transplantation (BMT) in a proteoglycan-induced arthritis (PGIA) mouse model. In addition, we determined Treg T-cell receptor (TCR) CDR3 diversity before and after HSCT in patients with juvenile idiopathic arthritis and juvenile dermatomyositis. In the PGIA BMT model, after an initial predominance of host Tregs, graft-derived Tregs started dominating and displayed a more stable phenotype with better suppressive capacity. Patient samples revealed a striking lack of diversity of the Treg repertoire before HSCT. This ameliorated after HSCT, confirming reset of the Treg compartment following HSCT. In the mouse model, a therapeutic approach was initiated by infusing extra Foxp3(GFP+) Tregs during BMT. Infusion of Foxp3(GFP+) Tregs did not elicit additional clinical improvement but conversely delayed reconstitution of the graft-derived T-cell compartment. These data indicate that HSCT-mediated amelioration of autoimmune disease involves renewal of the Treg pool. In addition, infusion of extra Tregs during BMT results in a delayed reconstitution of T-cell compartments. Therefore, Treg therapy may hamper development of long-term tolerance and should be approached with caution in the clinical autologous setting. PMID:26480932

  6. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  7. Engraftment Syndrome after Autologous Stem Cell Transplantation: An Update Unifying the Definition and Management Approach.

    Science.gov (United States)

    Cornell, Robert Frank; Hari, Parameswaran; Drobyski, William R

    2015-12-01

    Engraftment syndrome (ES) encompasses a continuum of periengraftment complications after autologous hematopoietic stem cell transplantation. ES may include noninfectious fever, skin rash, diarrhea, hepatic dysfunction, renal dysfunction, transient encephalopathy, and capillary leak features, such as noncardiogenic pulmonary infiltrates, hypoxia, and weight gain with no alternative etiologic basis other than engraftment. Given its pleiotropic clinical presentation, the transplant field has struggled to clearly define ES and related syndromes. Here, we present a comprehensive review of ES in all documented disease settings. Furthermore, we discuss the proposed risk factors, etiology, and clinical relevance of ES. Finally, our current approach to ES is included along with a proposed treatment algorithm for the management of this complication. PMID:26327628

  8. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  9. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  10. Infusion of Autologous Retrodifferentiated Stem Cells into Patients with Beta-Thalassemia

    Directory of Open Access Journals (Sweden)

    Ilham Saleh Abuljadayel

    2006-01-01

    Full Text Available Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion–induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed “retrodifferentiation”, with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean

  11. Nutritional assessment as predictor of complications after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Marcela Espinoza

    2016-02-01

    Full Text Available ABSTRACT Introduction: Nutritional support is pivotal in patients submitted to hematopoietic stem cell transplantation. Nutritional status has been associated with time of engraftment and infection rates. In order to evaluate the association between nutritional parameters and clinical outcomes after transplantation a cohort of transplant patients was retrospectively evaluated. Methods: All 50 patients transplanted between 2011 and 2014 were included. The nutritional status before transplantation, ten days after transplantation and before discharge was assessed including anthropometry, body mass index, albumin, prealbumin and total urinary nitrogen. Results: The median follow-up time was 41 months and the median age of patients was 41 years. Thirty-two underwent allogeneic and 18 autologous transplants. Diagnoses included acute leukemias (n = 27, lymphoma (n = 7, multiple myeloma (n = 13, and aplastic anemia (n = 3. Thirty-seven patients developed mucositis (three Grade 1, 15 Grade 2, 18 Grade 3 and one Grade 4, and twenty-two allogeneic, and five autologous transplant patients required total parenteral nutrition. Albumin and total urinary nitrogen were associated with length of hospital stay and platelet and neutrophil engraftment. None of the nutritional parameters evaluated were associated with overall survival. Non-relapse mortality was 14% and overall survival was 79% at 41 months of follow-up. Conclusions: After hematopoietic stem cell transplantation, high catabolism was associated with longer length of hospital stay, the need of total parenteral nutrition and platelet and neutrophil engraftment times. Nutritional parameters were not associated with overall survival.

  12. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells

    OpenAIRE

    Amabile, Giovanni; Welner, Robert S.; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K.; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S.; Khrapko, Konstantin; Silberstein, Leslie E.; Tenen, Daniel G

    2013-01-01

    Human hematopoietic cells develop within human iPSC-derived teratomas in immunodeficient mice.Co-transplantation of OP9 stromal cells along with human iPSCs increases hematopoietic specification within teratomas.

  13. The Neuropsychiatry of Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Mitchell R. Levy

    2006-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Regimens incorporating hematopoietic stem cell transplantation (HSCT have become widely utilized in disease treatments, particularly for cancer. These complex treatment programs also expose patients to central nervous system (CNS toxicities from chemotherapy, irradiation, infection, metabolic effects and immunosuppression. METHODS: Relevant recent medical literature from Medline and bibliographies in pertinent publications are reviewed with a focus on those cases and studies pertaining to neuropsychiatric effects of HSCT. RESULTS: High rates of neuropsychiatric sequelae occur on a continuum from acute to chronic. Adverse outcomes include focal CNS deficits and severe global manifestations such as seizures, encephalopathy and delirium. More graduated effects on cognition, energy and mood are frequently seen, impacting patient function. CONCLUSIONS: Additional research on neuropsychiatric outcomes and treatment interventions is needed in the HSCT setting. Risks for neuropsychiatric deficits should be part of an ongoing informed consent discussion among treating physicians, patients and families.

  14. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  15. Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6.

    Directory of Open Access Journals (Sweden)

    Flavia Q Pirih

    Full Text Available Parathyroid hormone (PTH stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6 is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L, PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45(+ and CD11b(+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin(- Sca-1(+c-Kit(+ (LSK hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.

  16. [High dosage chemotherapy with autologous stem cell transplantation in multiple myeloma].

    Science.gov (United States)

    Ruckser, R; Kier, P; Buxhofer, V; Kittl, E; Tatzreiter, G; Vedovelli, H; Zelenka, P; Hübl, G; Hinterberger, W

    2000-01-01

    Between 1992 and 1999 15 patients (pts.) suffering from multiple myeloma (MM) were treated with high-dose chemotherapy and consecutive autologous stem-cell transplantation (ASTx). 10/15 pts underwent two courses of ASTx (tandem- or double ASTx). So 25 ASTx were performed in these 15 pts. in total. All pts. were under 60 a. of age. 13/15 pts. received 6 cycles of chemotherapy on an average according to the VAD-protocol (Vincristin, Adriamycin, Dexamethason). Mobilisation of peripheral hematopoietic stem cells was performed with high-dose cyclophosphamide and hematopoietic growth-factors (CSFs). The conditioning protocol consisted of high-dose melphalan (200-225 mg/m2) in 24/25 ASTx. In one single case total body irradiation (TBI) plus melphalan 140 mg/m2 was used. 2/15 pts. died within 30 days from ASTx; one patient from interstitial pneumonia after TBI, and the other, who was in a very advanced stage of his disease with multiple pretreatment courses before ASTx. The overall survival (OS) was in the mean 68 months, the progression-free survival (PFS) after ASTx 21 m respectively. In pts. with MM high-dose melphalan (up to 225 mg/m2) without TBI plus ASTx is a safe and effective procedure when performed in the early course of the disease. PMID:11261278

  17. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells.

    Science.gov (United States)

    Singbrant, Sofie; van Galen, Peter; Lucas, Daniel; Challen, Grant; Rossi, Derrick J; Daley, George Q

    2015-09-01

    Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.

  18. Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

    NARCIS (Netherlands)

    C. Robin (Catherine); K. Bollerot (Karine); S.C. Mendes (Sandra); E. Haak (Esther); M. Crisan (Mihaela); F. Cerisoli (Francesco); I. Lauw (Ivoune); P. Kaimakis (Polynikis); R.J.J. Jorna (Ruud); M. Vermeulen (Mark); M.H. Kayser (Manfred); R. van der Linden (Reinier); P. Imanirad (Parisa); M.M.A. Verstegen (Monique); H. Nawaz-Yousaf (Humaira); N. Papazian (Natalie); E.A.P. Steegers (Eric); T. Cupedo (Tom); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractHematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emerg

  19. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms

    NARCIS (Netherlands)

    Radulovic, V.; de Haan, G.; Klauke, K.

    2013-01-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are

  20. Hematopoietic stem cell characterization and isolation.

    Science.gov (United States)

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  1. MiR-24 promotes the survival of hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tan Nguyen

    Full Text Available The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.

  2. Cell manipulation in autologous chondrocyte implantation: from research to cleanroom.

    Science.gov (United States)

    Roseti, Livia; Serra, Marta; Tigani, Domenico; Brognara, Irene; Lopriore, Annamaria; Bassi, Alessandra; Fornasari, Pier Maria

    2008-04-01

    In the field of orthopaedics, autologous chondrocyte implantation is a technique currently used for the regeneration of damaged articular cartilage. There is evidence of the neo-formation of tissue displaying characteristics similar to hyaline cartilage. In vitro chondrocyte manipulation is a crucial phase of this therapeutic treatment consisting of different steps: cell isolation from a cartilage biopsy, expansion in monolayer culture and growth onto a three-dimensional biomaterial to implant in the damaged area. To minimise the risk of in vitro cell contamination, the manipulation must be performed in a controlled environment such as a cleanroom. Moreover, the choice of reagents and raw material suitable for clinical use in humans and the translation of research protocols into standardised production processes are important. In this study we describe the preliminary results obtained by the development of chondrocyte manipulation protocols (isolation and monolayer expansion) in cleanrooms for the application of autologous implantation.

  3. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  4. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy.

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S; Burke, Martin; McNally, Elizabeth M

    2010-01-01

    A 41-year-old male with cardiomyopathy from an inherited beta myosin heavy-chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart.

  5. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S.; Burke, Martin; McNally, Elizabeth M.

    2010-01-01

    A 41 year old male with cardiomyopathy from an inherited β myosin heavy chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart. PMID:19026577

  6. The efficacy and safety of bortezomib-based induction regimen before autologous hematopoietic stem cell transplantation in patients with multiple myeloma%含硼替佐米的诱导化疗序贯自体造血干细胞移植治疗多发性骨髓瘤的疗效和安全性

    Institute of Scientific and Technical Information of China (English)

    李娟; 刘俊茹; 黄蓓晖; 陈媚; 郑冬; 许多荣; 邹外一

    2012-01-01

    目的 观察含硼替佐米的诱导化疗序贯自体造血干细胞移植(ASCT)治疗多发性骨髓瘤(MM)的疗效和安全性.方法 回顾性分析2006年6月至2011年6月在中山大学附属第一医院接受含硼替佐米的方案诱导化疗序贯ASCT治疗的62例MM患者,所有患者均随访至2011年9月30日.结果 含硼替佐米的诱导化疗总反应率(ORR)为88.7%,≥接近完全缓解(nCR)率为66.1%,完全缓解(CR)率为24.2%.患者在接受ASCT后,CR率升至50.0%,≥nCR率升至82.3%,同诱导后的疗效相比差异均有统计学意义(P =0.003和P=0.032).移植后中性粒细胞重建时间、血小板重建时间分别为12.0(9 ~43)d、13.5(0~ 120)d.既往接受含烷化剂治疗患者的造血重建要慢于不含烷化剂治疗者,接受骨髓移植患者的造血重建慢于接受外周血干细胞移植患者.含硼替佐米诱导化疗期间及移植期间无预期外副作用发生.该组患者中位随访时间为26.5(7 ~61)个月,中位总生存期(0S)尚未达到,中位无进展生存期(PFS)为30个月.移植前疗效为CR/nCR患者组的OS和PFS均长于≤部分缓解(PR)患者组.结论 含硼替佐米的诱导化疗可提高ASCT的疗效,应用过程安全.移植前高缓解质量与长OS和PFS相关.%Objective To investigate the efficacy and safety of bortezomib-based induction regimen followed by autologous hematopoietic stem cell transplantation (ASCT) in pationts with multiple myeloma (MM). Methods A retrospective analysis was performed upon clinical data of 62 MM patients who received bortezomib-based induction regimen followed by ASCT from June 2006 to June 2011.All patients were followed up to September 30,2011.Results Overall response rate [ complete remission (CR) + near complete remission (nCR) + partial remission (PR) ],≥ nCR rate (CR/nCR) and CR rate of postinduction with bortezomib-based regimen were 88.7%,66.1% and 24.2%,respectively.After ASCT,CR rate and CR/nCR rate were

  7. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  8. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  9. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  10. Circulation and chemotaxis of fetal hematopoietic stem cells.

    OpenAIRE

    Christensen, Julie L.; Wright, Douglas E.; Wagers, Amy J.; Weissman, Irving L.

    2004-01-01

    The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure ...

  11. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    OpenAIRE

    Forlenza, Christopher J.; Kushner, Brian H.; Nancy Kernan; Farid Boulad; Heather Magnan; Leonard Wexler; Wolden, Suzanne L.; LaQuaglia, Michael P.; Shakeel Modak

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT), a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days) + thiotepa (300 mg/m2/day fo...

  12. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  13. Application of reticulated platelets to transfusion management during autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Parco S

    2012-01-01

    Full Text Available Sergio Parco, Fulvia VascottoInstitute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, ItalyBackground: The immature (or reticulated platelet fraction (IPF is rich in nucleic acids, especially RNA, and can be used as a predictive factor for platelet recovery in platelet immunomediated consumption or in postchemotherapy myelosuppression. Our aim was to determine if transfusions with IPF-rich solutions, during autologous peripheral blood stem cell transplantation, reduce the occurrence of bleeding and hemorrhagic complications.Patients and methods: Transfusions were administered to 40 children, affected with hematological pathologies, who underwent autologous peripheral hematopoietic progenitor cell transplantation. There were two groups of 20 patients, one group treated with IPF-poor and the other with IPF-rich solutions. In the two groups, the conditioning regimen was the same for the same pathology (hematological pathologies: 14 acute lymphoblastic leukemia; twelve acute myelocytic leukemia; four non-Hodgkin's lymphoma; two Hodgkin's lymphoma; eight solid tumors. A new automated analyzer was used to quantify the IPF: the XE2100 (Sysmex, Kobe, Japan blood cell counter with upgraded software.Results: The 20 patients who received solutions with a high percentage of IPF (3%–9% of total number of infused platelets required fewer transfusions than the 20 patients who received transfusions with a low percentage of IPF (0%–1% of total number of infused platelets: 83 versus 129 (mean of number of transfusions 4.15 versus 6.45 and a significant difference was found between the two groups by using the Mann–Whitney test (P < 0.001. The prophylactic transfusions decreased from three to two per week. There was only one case of massive hemorrhage.Conclusion: The use of IPF solutions reduces the number of transfusions and bleedings after peripheral blood stem cell transplantation in pediatric patients.Keywords: children, reticulated

  14. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  15. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  16. Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury

    OpenAIRE

    Porter, Rebecca L.; Georger, Mary; Bromberg, Olga; McGrath, Kathleen E.; Frisch, Benjamin J.; Becker, Michael W.; Calvi, Laura M.

    2013-01-01

    Hematopoietic stem and progenitor cells (HSPCs), which continuously maintain all mature blood cells, are regulated within the marrow microenvironment. We previously reported that pharmacologic treatment of naïve mice with prostaglandin E2 (PGE2) expands HSPCs. However, the cellular mechanisms mediating this expansion remain unknown. Here we demonstrate that PGE2 treatment in naïve mice inhibits apoptosis of HSPCs without changing their proliferation rate. In a murine model of sub-lethal total...

  17. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    OpenAIRE

    Jielin Zhang; Clyde Crumpacker

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the in...

  18. High dose ionizing irradiation induces an early and transient increase in peripheral blood hematopoietic progenitor cells; L`exposition aigue aux radiations ionisantes induit un recrutement transitoire des progeniteurs hematopoietiques au niveau du sang peripherique: implications therapeutiques potentielles

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.; Mathieu, J.; Grenier, N.; Vetillard, J.; Chauvelot, F.; Thierry, D.; Mestries, J.C.; Herodin, F. [Centre de Recherches du Service de Sante des Armees, La Tronche, 38 - Grenoble (France)]|[Centre de Recherches du Service de Sante des Armees - Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1997-12-31

    Nonhuman primates exposed to ionizing radiation exhibit an early and transient increase in peripheral blood committed hematopoietic progenitor cells. The management of bone marrow aplasia secondary to accidental irradiation could be based in part on the re-infusion of those circulating autologous progenitors following a period of ex vivo expansion with cytokines. (authors)

  19. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    QIN Xiao-ying; WANG Jing-zhi; ZHANG Xiao-hui; LI Jin-lan; LI Ling-di; LIU Kai-yan; HUANG Xiao-jun; LI Guo-xuan; QIN Ya-zhen; WANG Yu; WANG Feng-rong; LIU Dai-hong; XU Lan-ping; CHEN Huan; HAN Wei

    2011-01-01

    Background Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. Methods A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Results Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7)informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%),which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. Conclusion This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative

  20. Hematopoietic stem cell transplantation for infantile osteopetrosis

    NARCIS (Netherlands)

    Orchard, Paul J.; Fasth, Anders L.; Le Rademacher, Jennifer L.; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; OBrien, Tracey A.; Perez, Miguel A Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HL

  1. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  2. Neurogenic Bladder Repair Using Autologous Mesenchymal Stem Cells.

    Science.gov (United States)

    Mahajan, Pradeep V; Subramanian, Swetha; Danke, Amit; Kumar, Anand

    2016-01-01

    The normal function of the urinary bladder is to store and expel urine in a coordinated, controlled fashion, the activity of which is regulated by the central and peripheral nervous systems. Neurogenic bladder is a term applied to a malfunctioning urinary bladder due to neurologic dysfunction or insult emanating from internal or external trauma, disease, or injury. This report describes a case of neurogenic bladder following laminectomy procedure and long-standing diabetes mellitus with neuropathy treated with autologous cellular therapy. The differentiation potential and paracrine effects of mesenchymal stem cells on bladder function have been highlighted. PMID:27656308

  3. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor;

    2012-01-01

    Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...

  4. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Stenholm, A C; Kronborg, O;

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression...... the criteria for inclusion. No serious side effects were observed. With three years of observation time, two patients are healthy, while the rest have had recurrence, and two of them have died. In all vaccines, all tumour cells expressed HLA class I, some expressed HLA class II and none expressed CD80...... of immune-response-related surface molecules on the tumour cells in the vaccine correlated with survival. The first and second vaccine comprised of 107 irradiated tumour cells mixed with BCG, the third of irradiated tumour cells only. Thirty-nine patients were considered, but only 6 patients fulfilled...

  5. Oral Complications in Hematopoietic Stem Cell Recipients: The Role of Inflammation

    Directory of Open Access Journals (Sweden)

    T. M. Haverman

    2014-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT recipients remains high, despite advances in transplant medicine and in supportive care. Frequently encountered oral complications include mucositis, infections, oral dryness, taste changes, and graft versus host disease in allogeneic HSCT. Oral complications are associated with substantial morbidity and in some cases with increased mortality and may significantly affect quality of life, even many years after HSCT. Inflammatory processes are key in the pathobiology of most oral complications in HSCT recipients. This review article will discuss frequently encountered oral complications associated with HSCT focusing on the inflammatory pathways and inflammatory mediators involved in their pathogenesis.

  6. Evaluation of febrile neutropenia in patients undergoing hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Shahideh Amini

    2014-01-01

    Full Text Available The aim of this study was to determine the incidence and causes of fever as a major problem contributing to transplantation related mortality among patients undergoing hematopoietic stem cell transplantation (HSCT and evaluation of antibiotic use, according to reliable guidelines.We retrospectively reviewed hospital records of 195 adult patients who underwent HSCT between 2009-2011 at hematology-oncology and bone marrow transplantation research center. Baseline information and also data related to fever and neutropenia, patient's outcomes, duration of hospitalization and antibiotic use pattern were documented.A total of 195 patients were analyzed and a total of 268 febrile episodes in 180 patients were recorded (mean 1.5 episodes per patient. About 222 episodes (82% were associated with neutropenia which one-fourth of them were without any documented infection sources. Microbiologic documents showed that the relative frequencies of gram positive and gram negative bacteria were 62.5% and 37.5%, respectively. The hospital stay duration was directly related to the numbers of fever episodes (P<0.0001.The rate of febrile episodes in autologous stem cell transplantation was significantly higher compared to allogeneic type (P<0.05.It is necessary to determine not only the local profile of microbiologic pattern, but also antibiotic sensitivities in febrile neutropenic patients following hematopoietic stem cell transplantation, and reassess response to antibiotic treatment to establish any necessity for modifications to treatment guidelines in order to prevent any fatal complications from infection.

  7. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  8. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([3H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [3H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [3H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [3H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [3H] Thymidine contamination. [3H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  9. Primary Immunodeficiency Diseases and Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ayse Ozkan

    2014-02-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the only curative therapy for primary immunodeficiency diseases. Early diagnosis, including prenatally, and early transplantation improve HSCT outcomes. Survival rates improve with advances in the methods of preparing hosts and donor cells, and in supportive and conditioning regimes.

  10. Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates.

    Science.gov (United States)

    Younan, Patrick M; Peterson, Christopher W; Polacino, Patricia; Kowalski, John P; Obenza, Willimark; Miller, Hannah W; Milless, Brian P; Gafken, Phil; DeRosa, Stephen C; Hu, Shiu-Lok; Kiem, Hans-Peter

    2015-05-01

    Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial. PMID:25648264

  11. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  12. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Rowley, S D; Donato, M L; Bhattacharyya, P

    2011-09-01

    Transplantation of hematopoietic progenitor cells from red cell-incompatible donors occurs in 30-50% of patients. Immediate and delayed hemolytic transfusion reactions are expected complications of red cell-disparate transplantation and both ABO and other red cell systems such as Kidd and rhesus can be involved. The immunohematological consequences of red cell-incompatible transplantation include delayed red blood cell recovery, pure red cell aplasia and delayed hemolysis from viable lymphocytes carried in the graft ('passenger lymphocytes'). The risks of these reactions, which may be abrupt in onset and fatal, are ameliorated by graft processing and proper blood component support. Red blood cell antigens are expressed on endothelial and epithelial tissues in the body and could serve to increase the risk of GvHD. Mouse models indicate that blood cell antigens may function as minor histocompatibility antigens affecting engraftment. Similar observations have been found in early studies of human transplantation for transfused recipients, although current conditioning and immunosuppressive regimens appear to overcome this affect. No deleterious effects from the use of red cell-incompatible hematopoietic grafts on transplant outcomes, such as granulocyte and platelet engraftments, the incidences of acute or chronic GvHD, relapse risk or OS, have been consistently demonstrated. Most studies, however, include limited number of patients, varying diagnoses and differing treatment regimens, complicating the detection of an effect of ABO-incompatible transplantation. Classification of patients by ABO phenotype ignoring the allelic differences of these antigens also may obscure the effect of red cell-incompatible transplantation on transplant outcomes. PMID:21897398

  13. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  14. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  15. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  16. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Carolyn A. de Graaf

    2016-09-01

    Full Text Available Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.

  17. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    Science.gov (United States)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  18. Hematopoietic stem cell transplantation with conditioning regimens containing melphalan in pediatric patients with acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Takaharu; Kato, Koji [Nagoya First Red Cross Hospital (Japan). Children' s Medical Center; Hanada, Ryoji [Saitama Children' s Medical Center, Iwatsuki (Japan)] [and others

    2002-07-01

    A multicenter comparative study was carried out to investigate the efficacy and safety of hematopoietic stem cell transplantation with conditioning regimens containing melphalan in pediatric patients with acute lymphoblastic leukemia. One hundred twenty three patients at a variety of remission stages were eligible for study participation. Eighty-nine were transplanted with allogeneic grafts and 34 patients with autologous grafts (23 cases with bone marrow and 11 cases with peripheral blood stem cells). Conditioning regimens used were as follows: melphalan and busulfan for 40 patients, melphalan, busulfan and TBI for 44 patients, other regimens for 39 patients. To accelerate engraftment G-CSF (lenograstim) was administered as a 1-hour or 24-hour drip infusion daily at 5 {mu}g/kg from day 5 until hematological recovery. The five year disease free survival (DFS) was 63% for 42 patients at CR1, 41% for 41 patients at CR2 and 33% for 40 patients at other stages. There was no significant difference in the DFS between allogeneic-transplantation and autologous-transplantation in all disease stages. In patients at remission stage for CR1 and CR2, the 5-year DFS by conditioning regimen was 63% for regimen with melphalan and busulfan, 54% for regimen with melphalan, busulfan and TBI and 54% for regimens with melphalan and TBI. There was no significant difference in the DFS between the groups. Serious complications such as renal failure were observed in 11%, veno-occlusive disease in 9%, and interstitial pneumonia in 9%. The most dominating cause of death was relapse in the disease (48% of deaths) which was most commonly observed in autologous transplantation. Contrary to that, treatment related toxic death was the most frequent cause of deaths in allogeneic-transplantation. (author)

  19. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  20. A Role For Photodynamic Therapy In Autologous Bone Marrow Transplantation

    Science.gov (United States)

    Sieber, Fritz

    1988-02-01

    Simultaneous exposure to the amphipathic fluorescent dye merocyanine 540 (MC 540) and light of a suitable wavelength rapidly kills leukemia, lymphoma, and neuroblastoma cells but spares normal pluripotent hematopoietic stem cells. Tests in several preclinical models and early results of a phase I clinical trial suggest that MC 540-mediated photosensitization may be useful for the extracorporeal purging of autologous remission bone marrow grafts.

  1. An ethical framework for the disposal of autologous stem cells.

    Science.gov (United States)

    Petrini, Carlo

    2013-01-01

    The disposal of haematopoietic stem cells stored for autologous transplantation purposes becomes a problem for hospitals when the conditions for their preservation cease to exist. When these cells have been stored for a considerable time the problem often becomes an ethical one involving informed consent and is linked to at least two simultaneous circumstances: (i) the indications regarding disposal contained in available informed consent papers are either absent or too generic; (ii) the person who provided the sample can no longer be traced. This article proposes and discusses some of the ethical criteria for addressing this problem on the basis of the so-called "principles" of North American bioethics, and compares them with some of the principles and values proposed in other models of bioethics. PMID:23412868

  2. Plerixafor for autologous stem-cell mobilization and transplantation for patients in Ontario

    Science.gov (United States)

    Kouroukis, C.T.; Varela, N.P.; Bredeson, C.; Kuruvilla, J.; Xenocostas, A.

    2016-01-01

    Background High-dose chemotherapy with autologous stem-cell transplantation (asct) is an accepted part of standard therapy for patients with hematologic malignancies. Usually, stem-cell mobilization uses granulocyte colony–stimulating factor (g-csf); however, some patients are not able to be mobilized with chemotherapy and g-csf, and such patients could be at higher risk of failing mobilization. Plerixafor is a novel mobilization agent that is absorbed quickly after subcutaneous injection and, at the recommended dose of 0.24 mg/kg, provides a sustained increase in circulating CD34+ cells for 10–18 hours. The main purpose of the present report was to evaluate the most current evidence on the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct for patients in Ontario so as to make recommendations for clinical practice and to assist Cancer Care Ontario in decision-making with respect to this intervention. Methods The medline and embase databases were systematically searched for evidence from January 1996 to March 2015, and the best available evidence was used to draft recommendations relevant to the efficacy of plerixafor in enhancing hematopoietic stem-cell mobilization and collection before asct. Final approval of this practice guideline report was obtained from both the Stem Cell Transplant Steering Committee and the Report Approval Panel of the Program in Evidence-Based Care. Recommendations These recommendations apply to adult patients considered for asct: ■ Adding plerixafor to g-csf is an option for initial mobilization in patients with non-Hodgkin lymphoma or multiple myeloma who are eligible for asct when chemotherapy cannot be used and only g-csf mobilization is available.■ For patients with a low peripheral blood CD34+ cell count (for example, <10/μL) at the time of anticipated stem-cell harvesting, or with an inadequate first-day apheresis collection, it is recommended that plerixafor be added to the

  3. Longitudinal Assessment of Hematopoietic Stem Cell Transplantation and Hyposalivation

    DEFF Research Database (Denmark)

    Laaksonen, Matti; Ramseier, Adrian; Rovó, Alicia;

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study...

  4. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Noerskov, K H; Schjødt, I; Syrjala, K L;

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  5. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    NARCIS (Netherlands)

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  6. Polycomb group proteins in hematopoietic stem cell aging and malignancies

    NARCIS (Netherlands)

    Klauke, Karin; de Haan, Gerald

    2011-01-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-

  7. A new image of the hematopoietic stem cell vascular niche

    OpenAIRE

    Silberstein, Leslie E.; Lin, Charles P.

    2013-01-01

    The microenvironment within the bone marrow that maintains hematopoietic stem cell (HSC) quiescence is the subject of intense study. In a recent Nature paper, Kunisaki et al combine imaging techniques and computational modeling to define a novel arteriolar niche for quiescent HSCs within the bone marrow.

  8. Lung function after allogeneic hematopoietic stem cell transplantation in children

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle;

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF...

  9. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-01

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  10. Autologous serum can induce mesenchymal stem cells into hepatocyte-like cells

    Institute of Scientific and Technical Information of China (English)

    Yang Yi; Huo Jianhua; Qu Bo; Wu Shenli; Zhang Mingyu; Wang Zuoren

    2008-01-01

    Objective: To investigate whether the rabbit serum after radiofrequency ablation to liver tumor can induce mesenchymal stem cells (MSCs) differentiating into hepatocyte-like cells in order to find a new source and culture process for repairing liver injury. Methods: A tumor piece of 1 mm×1 mm×1 mm was transplanted into a tunnel at right liver of rabbits. The model of liver tumor was established after 2-3 weeks. The serum was collected from rabbits 72 h after being subjected to radiofrequency ablation of the liver tumor. Mesenchymal stem cells were isolated from rabbit bone marrow and cultured in DMEM containing autologous rabbit serum. Three kinds of media (L-DMEM) were tested respectively: ① containing 10% fetal calf serum (FCS);② containing 30% rabbit autologous serum after radiofrequency ablation of the liver tumor (ASRF); ③ containing 30% rabbit autologous serum (AS). MSCs were cultured on 12-well plates until passage 2 and examined under the light and electron microscopy at indicted intervals. The expression of albumin and CK18 was detected using immunofluorescence to identify the characteristics of differentiated cells. Results: MSCs performed differently in the presence of fetal calf serum, rabbit autologous serum and rabbit autologous serum after radiofrequency ablation of the liver tumor. Induced by the serum after radiofrequency ablation to liver tumor for 7 d, the spindle-shaped MSCs turned into round shaped and resembled hepatocyte-like cells. The reactions were not found in MSCs cultured in FCS and AS groups. After induction for 14 d, slender microvilli, cell-cell junction structure and cholangiole emerged, and the differentiated cells expressed albumin and CK18. All those could not been observed in 10% FCS and 30% autologous serum groups. Conclusion: Mesenchymal stem cells differentiate into hepatocyte-like cells in the serum after radiofrequency ablation of liver tumor, providing us a potential cell source and culture process for clinical

  11. Designer blood: creating hematopoietic lineages from embryonic stem cells

    Science.gov (United States)

    Olsen, Abby L.; Stachura, David L.; Weiss, Mitchell J.

    2006-01-01

    Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases. PMID:16254136

  12. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34(+) bone marrow cells, following gamma irradiation in cynomolgus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [CEA, DSV, Serv Immunovirol, Inst Maladies Emergentes et Therapies Innovantes, Fontenay Aux Roses (France); Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [Univ Paris 11, UMR E01, Orsay (France); Negre, D.; Cosset, F. [Univ Lyon, UCB Lyon 1, IFR 128, F-69007 Lyon (France); Negre, D.; Cosset, F. [INSERM, U758, F-69007 Lyon (France); Negre, D.; Cosset, F.L. [Ecole NormaleSuper Lyon, F-69007 Lyon (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Lab Radiobiol, F-78352 Jouy En Josas (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Etude Genome, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Radiobiol Lab, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Etude Genome, F-78352 Jouy En Josas (France)

    2008-07-01

    Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myelo-ablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34{sup +} bone marrow cells following gamma irradiation in cynomolgus macaques. The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% {+-} 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudo-typed and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% {+-} 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producing eGFP were detected as early as three days after transplantation,and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion: The transplantation of CD34{sup +} bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T-and B-lymphocyte, thrombocyte and red blood cell compartments. (authors)

  13. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34(+) bone marrow cells, following gamma irradiation in cynomolgus macaques

    International Nuclear Information System (INIS)

    Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myelo-ablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34+ bone marrow cells following gamma irradiation in cynomolgus macaques. The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% ± 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudo-typed and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% ± 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producing eGFP were detected as early as three days after transplantation,and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion: The transplantation of CD34+ bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T-and B-lymphocyte, thrombocyte and red blood cell compartments. (authors)

  14. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    OpenAIRE

    Ana Belen Alvarez Palomo; Michaela Lucas; Dilley, Rodney J.; Samuel McLenachan; Fred Kuanfu Chen; Jordi Requena; Marti Farrera Sal; Andrew Lucas; Inaki Alvarez; Dolores Jaraquemada; Michael J. Edel

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and rege...

  15. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    Science.gov (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  16. Regulation of stem cells in the zebra fish hematopoietic system.

    Science.gov (United States)

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  17. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  18. Imaging of complications from hematopoietic stem cell transplant

    OpenAIRE

    Tarun Pandey; Suresh Maximin; Puneet Bhargava

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in tream...

  19. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  20. The Hematopoietic Stem Cell Niche—Home for Friend and Foe?

    OpenAIRE

    Daniela S Krause; Scadden, David T.; Preffer, Frederic I.

    2012-01-01

    The hematopoietic stem cell (HSC) niche is involved in the maintainance and regulation of quiescence, self-renewal and differentiation of hematopoietic stem cells and the fate of their progeny in mammals dealing with the daily stresses to the hematopoietic system. From the discovery that perturbations of the HSC niche can lead to hematopoietic disorders, we have now arrived at the prospect that the HSC niche may play a role in hematological malignancies and that this HSC niche may be a target...

  1. Regeneration of the vocal fold using autologous mesenchymal stem cells.

    Science.gov (United States)

    Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Omori, Koichi; Kojima, Hisayoshi; Magrufov, Akhmar; Hiratsuka, Yasuyuki; Hirano, Shigeru; Ito, Juichi; Shimizu, Yasuhiko

    2003-11-01

    The aim of this study was to regenerate the injured vocal fold by means of selective cultured autologous mesenchymal stem cells (MSCs). Eight adult beagle dogs were used for this experiment. Selective incubation of MSCs from bone marrow was done. These MSCs were submitted to 3-dimensional incubation in 1% hydrochloric acid atelocollagen. Three-dimensional incubated MSCs were injected into the left vocal fold, and atelocollagen only was injected into the right vocal fold of the same dog as a control. Four days after injection, the posterior parts of the vocal folds were incised. The regeneration of the vocal fold was estimated by morphological and histologic evaluations. Our results showed that 3-dimensional incubated MSCs were useful in the regeneration of the injured vocal fold. This study shows that damaged tissues such as an injured vocal fold would be able to be regenerated by tissue engineering. PMID:14653358

  2. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Javier Pilcante

    2015-12-01

    Full Text Available ABSTRACT Introduction: Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identi- fied. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods: A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results: Two hundred and fifty patients were studied (mean age: 39 years; range: 17-69, with 147 (59% receiving allogeneic transplants and 103 (41% receiving autologous trans- plants. One hundred and ninety-two (77% patients had diarrhea, with 25 (10% cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic trans- plants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia. In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56. Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008. In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p

  3. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    Science.gov (United States)

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  4. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham;

    2009-01-01

    of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...... therapeutic option if a suitable HLA-matched stem-cell donation is available. Reduced-intensity conditioning was particularly safe, and mixed-donor chimerism seems sufficient to prevent significant symptoms, although careful long-term monitoring will be required for these patients....

  5. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    Science.gov (United States)

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  6. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization.

    Science.gov (United States)

    Ryan, Marnie A; Nattamai, Kalpana J; Xing, Ellen; Schleimer, David; Daria, Deidre; Sengupta, Amitava; Köhler, Anja; Liu, Wei; Gunzer, Matthias; Jansen, Michael; Ratner, Nancy; Le Cras, Timothy D; Waterstrat, Amanda; Van Zant, Gary; Cancelas, Jose A; Zheng, Yi; Geiger, Hartmut

    2010-10-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes. PMID:20871610

  7. Disseminated Fusarium infection in autologous stem cell transplant recipient

    OpenAIRE

    Vivian Iida Avelino-Silva; Jessica Fernandes Ramos; Fabio Eudes Leal; Leonardo Testagrossa; Yana Sarkis Novis

    2015-01-01

    Disseminated infection by Fusariumis a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusariuminfection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  8. Hematopoietic Stem Cell Targeting with Surface-Engineered Lentiviral Vectors

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Els Verhoeyen and Francois-Loic Cosset Adapted from [*Gene Transfer: Delivery and Expression of DNA and RNA*](http://www.cshlpress.com/link/genetrnp.htm) (eds. Friedmann and Rossi). CSHL Press, Cold Spring Harbor, NY, USA, 2007. ### INTRODUCTION In the protocol presented here, hematopoietic stem cells (HSCs) are specifically transduced with a vector displaying the HSC-activating polypeptides, stem cell factor (SCF) and thrombopoietin (TPO). Targeted HSC transduction is e...

  9. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model.

    Directory of Open Access Journals (Sweden)

    Zongyang Sun

    Full Text Available PURPOSE: Bone regeneration through distraction osteogenesis (DO is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. MATERIALS AND METHODS: Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs; enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. RESULTS: From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4-5.8×10(7 autologous BM-MSCs (undifferentiated or differentiated were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds

  10. Treatment of Oral Mucositis in Hematologic Patients Undergoing Autologous or Allogeneic Transplantation of Peripheral Blood Stem Cells: a Prospective, Randomized Study with a Mouthwash Containing Camelia Sinensis Leaf Extract

    OpenAIRE

    Giovanni Carulli; Melania Rocco; Alessia Panichi; Chiara Feira Chios; Ester Ciurli; Chiara Mannucci; Elisabetta Sordi; Francesco Caracciolo; Federico Papineschi; Edoardo Benedetti; Mario Petrini

    2013-01-01

    Oral mucositis is an important side effect of hematopoietic stem cell transplantation (HCST), mainly due to toxicity of conditioning regimens. It produces significant pain and morbidity. The present study reports a prospective, randomized, non-blinded study testing the efficacy of a new mouthwash, called Baxidil Onco® (Sanitas Farmaceutici Srl, Tortona, Italy) in 60 hematologic patients undergoing HCST (28 autologous, 32 allogeneic). Baxidil Onco®, used three times a day from Day -1 to Day +3...

  11. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    Science.gov (United States)

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  12. Hematopoietic Stem Cells Expansion in Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Tian-Qing LIU; Xiu-Bo FAN; Dan GE; Zhan-Feng CUI; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction Clinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy.It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors.Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal several inherent limitations: ineffective mixing, lack of control options for dissolved oxygen and pH and difficulty in continuous feeding, which restricts the usefulness of static systems. Several advanced bioreactors have been used in the field of HSCs expansion. But hematopoietic cells are extremely sensitive to shear, so cells in bioreactors such as stirred and perfusion culture systems may suffer physical damage. This problem will be improved by applying the rotating wall vessel (RWV) bioreactor in clinic because of its low shear and unique structure. In this research, cord blood (CB) HSCs were expanded by means of a cell-dilution feeding protocol in RWV.

  13. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  14. Busulfan,cyclophosphamide and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    张春阳

    2013-01-01

    Objective To evaluate the efficacy and safety of dose-reduced intravenous busulfan,cyclophosphamide and etoposide(BCV)as conditioning for autologous stem cell transplantation(ASCT)in multiple myeloma(MM)

  15. Transplantation of autologous noncultured epidermal cell suspension in treatment of patients with stable vitiligo

    Institute of Scientific and Technical Information of China (English)

    XU Ai-e; WEI Xiao-dong; CHENG Dong-qing; ZHOU He-fen; QIAN Guo-pei

    2005-01-01

    @@ Treatment of vitiligo by transplantation of noncultured melanocytes containing keratino-cytes has been successful since 1992,1 We report the encouraging results of autologous epidermal cell suspension in the treatment of 24 patients with stable vitiligo since 1998.

  16. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    Science.gov (United States)

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  17. Lnk deficiency partially mitigates hematopoietic stem cell aging

    OpenAIRE

    Bersenev, Alexey; Rozenova, Krasimira; Balcerek, Joanna; JIANG, JING; Wu, Chao; Tong, Wei

    2012-01-01

    Upon aging, the number of hematopoietic stem cells (HSCs) in the bone marrow increases while their repopulation potential declines. Moreover, aged HSCs exhibit lineage bias in reconstitution experiments with an inclination towards myeloid at the expense of lymphoid potential. The adaptor protein Lnk is an important negative regulator of HSC homeostasis, as Lnk deficiency is associated with a 10-fold increase in HSC numbers in young mice. However, the age-related increase in functional HSC num...

  18. Massage for Children Undergoing Hematopoietic Cell Transplantation: A Qualitative Report

    OpenAIRE

    Ackerman, Sara L.; E. Anne Lown; Dvorak, Christopher C.; Dunn, Elizabeth A.; Abrams, Donald I; Horn, Biljana N.; Marcia Degelman; Cowan, Morton J.; Mehling, Wolf E.

    2012-01-01

    Background. No in-depth qualitative research exists about the effects of therapeutic massage with children hospitalized to undergo hematopoietic cell transplantation (HCT). The objective of this study is to describe parent caregivers' experience of the effects of massage/acupressure for their children undergoing HCT. Methods. We conducted a qualitative analysis of open-ended interviews with 15 parents of children in the intervention arm of a massage/acupressure trial. Children received both p...

  19. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    OpenAIRE

    Ningning He; Lu Zhang; Jian Cui; Zongjin Li

    2014-01-01

    Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs). As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this rev...

  20. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    Science.gov (United States)

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  1. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    Science.gov (United States)

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed.

  2. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    OpenAIRE

    Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-01-01

    The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect stil...

  3. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    Directory of Open Access Journals (Sweden)

    Jielin Zhang

    2015-01-01

    Full Text Available Hematopoietic stem cell (HSC belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person’s lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure.

  4. Hematopoietic Stem and Immune Cells in Chronic HIV Infection.

    Science.gov (United States)

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  5. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  6. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M.D.

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute’s ongoing programs are aimed at developing regenerative medicine technologies that employ a patient’s own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body’s own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  7. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  8. Haploidentical Hematopoietic Stem-Cell Transplantation in Adults

    Directory of Open Access Journals (Sweden)

    Salem Alshemmari

    2011-01-01

    Full Text Available Haploidentical hematopoietic stem-cell transplantation is an alternative transplant strategy for patients without an HLA-matched donor. Still, only half of patients who might benefit from transplantation are able to find an HLA-matched related or unrelated donor. Haploidentical donor is readily available for many patients in need of immediate stem-cell transplantation. Historical experience with haploidentical stem-cell transplantation has been characterised by a high rejection rate, graft-versus-host disease, and transplant-related mortality. Important advances have been made in this field during the last 20 years. Many drawbacks of haploidentical transplants such as graft failure and significant GVHD have been overcome due to the development of new extensive T cell depletion methods with mega dose stem-cell administration. However, prolonged immune deficiency and an increased relapse rate remain unresolved problems of T cell depletion. New approaches such as partial ex vivo or in vivo alloreactive T cell depletion and posttransplant cell therapy will allow to improve immune reconstitution in haploidentical transplants. Results of unmanipulated stem-cell transplantation with using ATG and combined immunosuppression in mismatched/haploidentical transplant setting are promising. This paper focuses on recent advances in haploidentical hematopoietic stem-cell transplantation for hematologic malignancies.

  9. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  10. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    Science.gov (United States)

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  11. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  12. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Science.gov (United States)

    Potdar, PD; Subedi, RP

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia. PMID:24693170

  13. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Directory of Open Access Journals (Sweden)

    Pravin D. Potdar

    2011-01-01

    Full Text Available Acute Lymphocytic Leukemia (ALL is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia.

  14. Loss of quiescence and impaired function of CD34+/CD38low cells one year following autologous stem cell transplantation

    OpenAIRE

    Woolthuis, Carolien M.; Brouwers-Vos, Annet Z.; Huls, Gerwin; de Wolf, Joost Th. M.; Schuringa, Jan Jacob; Vellenga, Edo

    2013-01-01

    Patients who have undergone autologous stem cell transplantation are subsequently more susceptible to chemotherapy-induced bone marrow toxicity. In the present study, bone marrow primitive progenitor cells were examined one year after autologous stem cell transplantation and compared with normal bone marrow and mobilized peripheral blood stem cells. Post-transplantation bone marrow contained a significantly lower percentage of quiescent cells in the CD34+/CD38low fraction compared to normal b...

  15. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioni...

  16. Microbial contamination of peripheral blood and bone marrow hematopoietic cell products and environmental contamination in a stem cell bank: a single-center report.

    Science.gov (United States)

    Kozlowska-Skrzypczak, M; Bembnista, E; Kubiak, A; Matuszak, P; Schneider, A; Komarnicki, M

    2014-10-01

    Hematopoietic stem cells (HSC) derived from peripheral blood (PB) and bone marrow (BM) are frequently used for autologous and allogenic transplantations. Establishing quality control at appropriate steps of the stem cell preparation process is crucial for a successful transplantation. Microbial contamination of haematopoietic stem cells is rare but could cause a potentially mortal complication of a stem cells transplantation. We investigated the microbiological contamination of PB (291 donations) and BM (39 donations) products. Microbial cultures of 330 donations between January 2012 and June 2013 were retrospectively analyzed after the collection and preparation steps. The microbiological analysis was performed with an automated system. Hematopoietic stem cells were processed in a closed system. Additionally, in this report the environment of the working areas of stem cell preparation was monitored. We analyzed microbial contamination of the air in a class I laminar air flow clean bench at the time of preparation and in the laboratory once per month. We reported 9 (2.73%) contaminated HSC products. The most frequent bacteria isolated from PB and BM products were Bacillus species. Coagulase-negative staphylococci and Micrococcus species were the most frequent micro-organisms detected in the air microbial control. Microbial control results are necessary for the safety of hematopoietic stem cell products transplantation. Microbial control of hematopoietic stem cell products enables an early contamination detection and allows for knowledgeable decision making concerning either discarding the contaminated product or introducing an efficient antibiotic therapy. Each step of cell processing may cause a bacterial contamination. A minimum of manipulation steps is crucial for increasing the microbial purity of the transplant material. Also, the air contamination control is essential to ensure the highest quality standards of HSC products preparation.

  17. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  18. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle;

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  19. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  20. Economics and Outcome After Hematopoietic Stem Cell Transplantation: A Retrospective Cohort Study.

    Science.gov (United States)

    Gratwohl, Alois; Sureda, Anna; Baldomero, Helen; Gratwohl, Michael; Dreger, Peter; Kröger, Nicolaus; Ljungman, Per; McGrath, Eoin; Mohty, Mohamad; Nagler, Arnon; Rambaldi, Alessandro; de Elvira, Carmen Ruiz; Snowden, John A; Passweg, Jakob; Apperley, Jane; Niederwieser, Dietger; Stijnen, Theo; Brand, Ronald

    2015-12-01

    Hematopoietic stem cell transplantation (HSCT) is a lifesaving expensive medical procedure. Hence, more transplants are performed in more affluent countries. The impact of economic factors on patient outcome is less defined. We analyzed retrospectively a defined cohort of 102,549 patients treated with an allogeneic (N = 37,542; 37%) or autologous (N = 65,007; 63%) HSCT. They were transplanted by one of 404 HSCT centers in 25 European countries between 1999 and 2006. We searched for associations between center-specific microeconomic or country-specific macroeconomic factors and outcome. Center patient-volume and center program-duration were significantly and systematically associated with improved survival after allogeneic HSCT (HR 0·87; 0·84-0·91 per 10 patients; p < 0·0001; HR 0·90;0·85-0·90 per 10 years; p < 0·001) and autologous HSCT (HR 0·91;0·87-0·96 per 10 patients; p < 0·001; HR 0·93;0·87-0·99 per 10 years; p = 0·02). The product of Health Care Expenditures by Gross National Income/capita was significantly associated in multivariate analysis with all endpoints (R(2) = 18%; for relapse free survival) after allogeneic HSCT. Data indicate that country- and center-specific economic factors are associated with distinct, significant, systematic, and clinically relevant effects on survival after HSCT. They impact on center expertise in long-term disease and complication management. It is likely that these findings apply to other forms of complex treatments. PMID:26844291

  1. Economics and Outcome After Hematopoietic Stem Cell Transplantation: A Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Alois Gratwohl

    2015-12-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a lifesaving expensive medical procedure. Hence, more transplants are performed in more affluent countries. The impact of economic factors on patient outcome is less defined. We analyzed retrospectively a defined cohort of 102,549 patients treated with an allogeneic (N = 37,542; 37% or autologous (N = 65,007; 63% HSCT. They were transplanted by one of 404 HSCT centers in 25 European countries between 1999 and 2006. We searched for associations between center-specific microeconomic or country-specific macroeconomic factors and outcome. Center patient-volume and center program-duration were significantly and systematically associated with improved survival after allogeneic HSCT (HR 0·87; 0·84–0·91 per 10 patients; p < 0·0001; HR 0·90;0·85–0·90 per 10 years; p < 0·001 and autologous HSCT (HR 0·91;0·87–0·96 per 10 patients; p < 0·001; HR 0·93;0·87–0·99 per 10 years; p = 0·02. The product of Health Care Expenditures by Gross National Income/capita was significantly associated in multivariate analysis with all endpoints (R2 = 18%; for relapse free survival after allogeneic HSCT. Data indicate that country- and center-specific economic factors are associated with distinct, significant, systematic, and clinically relevant effects on survival after HSCT. They impact on center expertise in long-term disease and complication management. It is likely that these findings apply to other forms of complex treatments.

  2. Employment Status as an Indicator of Recovery and Function One Year after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Morrison, Eleshia J; Ehlers, Shawna L; Bronars, Carrie A; Patten, Christi A; Brockman, Tabetha A; Cerhan, James R; Hogan, William J; Hashmi, Shahrukh K; Gastineau, Dennis A

    2016-09-01

    Employment after hematopoietic stem cell transplantation (HSCT) is an indicator of post-transplantation recovery and function, with economic and social implications. As survival rates for HSCT continue to improve, greater emphasis can be placed on factors affecting the quality of post-transplantation survival, including the ability to resume employment. A sample of recipients of autologous or allogeneic HSCT was accrued (n = 1000) to complete a longitudinal lifestyle survey before transplantation and at 1 year after transplantation. The present study examines associations between employment and patient characteristics, disease variables, illness status, and quality of life among 1-year survivors (n = 702). Participants had a mean age of 55 years (range, 18 to 78) and were predominately male (59.7%), married/partnered (77.1%), and non-Hispanic Caucasian (89.5%); most (79.4%) had received autologous transplantation. Of the 690 participants reporting some form of employment before illness diagnosis, 62.4% had returned to work by 1 year after HSCT. Full-time employment at 1 year after HSCT was significantly associated with remission of illness, improved illness, fewer post-transplantation hospitalizations, less fatigue and pain, higher quality of life, and higher rating of perceived health. Those unemployed because of their health reported the highest rates of fatigue and pain and lowest quality of life, and they were most likely to report poor perceived health. These findings highlight work reintegration as an important outcome and marker of survivors' overall adjustment after transplantation. Identifying factors affecting post-transplantation employment offers opportunities for behavioral interventions to target modifiable risk factors to optimize post-transplantation survivorship, inclusive of increased rates of return to work and decreased rates of associated disability. PMID:27220264

  3. Employment Status as an Indicator of Recovery and Function One Year after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Morrison, Eleshia J; Ehlers, Shawna L; Bronars, Carrie A; Patten, Christi A; Brockman, Tabetha A; Cerhan, James R; Hogan, William J; Hashmi, Shahrukh K; Gastineau, Dennis A

    2016-09-01

    Employment after hematopoietic stem cell transplantation (HSCT) is an indicator of post-transplantation recovery and function, with economic and social implications. As survival rates for HSCT continue to improve, greater emphasis can be placed on factors affecting the quality of post-transplantation survival, including the ability to resume employment. A sample of recipients of autologous or allogeneic HSCT was accrued (n = 1000) to complete a longitudinal lifestyle survey before transplantation and at 1 year after transplantation. The present study examines associations between employment and patient characteristics, disease variables, illness status, and quality of life among 1-year survivors (n = 702). Participants had a mean age of 55 years (range, 18 to 78) and were predominately male (59.7%), married/partnered (77.1%), and non-Hispanic Caucasian (89.5%); most (79.4%) had received autologous transplantation. Of the 690 participants reporting some form of employment before illness diagnosis, 62.4% had returned to work by 1 year after HSCT. Full-time employment at 1 year after HSCT was significantly associated with remission of illness, improved illness, fewer post-transplantation hospitalizations, less fatigue and pain, higher quality of life, and higher rating of perceived health. Those unemployed because of their health reported the highest rates of fatigue and pain and lowest quality of life, and they were most likely to report poor perceived health. These findings highlight work reintegration as an important outcome and marker of survivors' overall adjustment after transplantation. Identifying factors affecting post-transplantation employment offers opportunities for behavioral interventions to target modifiable risk factors to optimize post-transplantation survivorship, inclusive of increased rates of return to work and decreased rates of associated disability.

  4. Quality of life before autologous stem cells transplantation as prognostic factor in patients with malignant lymphomas

    Directory of Open Access Journals (Sweden)

    Yu. L. Shevchenko

    2014-01-01

    Full Text Available Currently high-doses chemotherapy (HD-PCT + autologous hematopoietic stem cells transplantation (auto-HSCT is the treatment ofchoice in patients with recurrent and progressive lymphomas. Most of quality of life (QoL studies in lymphomas patients received HSCT limited on parameters dynamics assessment in the early and late post-transplant period. Aim of this study was to evaluate the QoL parameters and their prognostic significance in lymphoma patients before transplantation. 124 patients with lymphomas (non-Hodgkin lymphomas – 45 patients, Hodgkin's lymphoma – 79 patients who received HD-PCT + auto-HSCT were included in the study: men – 42.7 % (n = 53, women – 57.3 % (n = 71, median age – 34 years (19–65 years. Patients’ heterogeneity before transplantation regarding quality of life has been revealed. Almost 1/3 of patients showed a significant reduction in the integral index of QoL. Insignificant differences between patients with chemosensitivity and chemoresistant lymphomas regarding QoL before HD-PCT + auto-HSCT were shown. We also analyzed the outcomes of studied patients received HD-PCT + auto-HSCT. With a median follow-up of 18 months, overall survival after transplantation was 72 % (95 % CI 56–84; event-free survival – 64 % (95 % CI 53,3–73,2.Overall and event-free survivals were significantly higher in patients with chemosensitive lymphoma compared with chemoresistance tumor. Differences in the survival rates between patients with no or negligible decrease of QoL integral index and with significant reduction of it also were found. Revealed differences in overall and event-free survival between the groups allowed the first group considered as patients with a favorable prognosis, and the second group – as patients with poor prognosis regarding the transplantation outcome.

  5. Quality of life before autologous stem cells transplantation as prognostic factor in patients with malignant lymphomas

    Directory of Open Access Journals (Sweden)

    Yu. L. Shevchenko

    2014-07-01

    Full Text Available Currently high-doses chemotherapy (HD-PCT + autologous hematopoietic stem cells transplantation (auto-HSCT is the treatment ofchoice in patients with recurrent and progressive lymphomas. Most of quality of life (QoL studies in lymphomas patients received HSCT limited on parameters dynamics assessment in the early and late post-transplant period. Aim of this study was to evaluate the QoL parameters and their prognostic significance in lymphoma patients before transplantation. 124 patients with lymphomas (non-Hodgkin lymphomas – 45 patients, Hodgkin's lymphoma – 79 patients who received HD-PCT + auto-HSCT were included in the study: men – 42.7 % (n = 53, women – 57.3 % (n = 71, median age – 34 years (19–65 years. Patients’ heterogeneity before transplantation regarding quality of life has been revealed. Almost 1/3 of patients showed a significant reduction in the integral index of QoL. Insignificant differences between patients with chemosensitivity and chemoresistant lymphomas regarding QoL before HD-PCT + auto-HSCT were shown. We also analyzed the outcomes of studied patients received HD-PCT + auto-HSCT. With a median follow-up of 18 months, overall survival after transplantation was 72 % (95 % CI 56–84; event-free survival – 64 % (95 % CI 53,3–73,2.Overall and event-free survivals were significantly higher in patients with chemosensitive lymphoma compared with chemoresistance tumor. Differences in the survival rates between patients with no or negligible decrease of QoL integral index and with significant reduction of it also were found. Revealed differences in overall and event-free survival between the groups allowed the first group considered as patients with a favorable prognosis, and the second group – as patients with poor prognosis regarding the transplantation outcome.

  6. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  7. Autologous cell therapy as a new approach to treatment of radiation-induced bone marrow aplasia: preliminary study in a baboon model

    Energy Technology Data Exchange (ETDEWEB)

    Herodin, F.; Drouet, M. [Radiohematology Unit, Centre de Recherches du Service de Sante des Armees, La Tronche CEDEX (France)

    2002-07-01

    The sparing of viable hematopoietic stem and progenitor cells located in underexposed bone marrow territories associated with the relative radioresistance of certain stem cell populations is the rationale for autologous cell therapy consisting of ex vivo expansion of residual cells after collection postirradiation. The feasibility of this treatment mainly depends on time constraints and hematopoietic cell threshold. We showed in this study that in the absence of early-acting mobilizing agent administration, subliminar amounts of CD34{sup +} cells can be collected (1 x 10{sup 6} CD34{sup +} cells/100 mL bone marrow or for 1 L apheresis) from 6-Gy {gamma} globally irradiated baboons. Residual CD34{sup +} cells were successfully expanded in serum-free medium in the presence of antiapoptotic cytokine combination (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin 3, 50 ng/mL each, i.e., 4F): K{sub CD34{sup +}} = x2.8 and x13.7 (n=2). Moreover, we demonstrated the short-term neutrophil engraftment potential of a low-size mixed expanded graft (1.5 x 10{sup 6} final CD34{sup +}cells/kg) issued from the coculture of unirradiated (20%) and 2.5-Gy in vitro irradiated (80%) CD34{sup +} cells on an allogeneic stromal cell layer in the presence of 4F. Further preclinical research needs to be performed to clearly establish this therapeutic approach that could be optimized by the early administration of antiapoptotic cytokines. (author)

  8. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  9. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  10. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2016-04-26

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  11. How do I perform hematopoietic progenitor cell selection?

    Science.gov (United States)

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  12. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  13. Imaging of complications from hematopoietic stem cell transplant

    Directory of Open Access Journals (Sweden)

    Tarun Pandey

    2014-01-01

    Full Text Available Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT.

  14. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  15. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    Science.gov (United States)

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  16. ROLE AND TIMING OF HEMATOPOIETIC CELL TRANSPLANTATION FOR MYELODYSPLASTIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Teresa L Field

    2010-07-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT is the only curative treatment for patients with myelodysplastic syndromes (MDS.  Most patients with MDS are older than 60 years and age-associated morbidities limit the patients’ options for curative transplant therapy.  Since the development of conditioning regimens with reduced toxicity, the age limitations for HCT have waned for those patients with good performance status. This review will discuss the role of HCT for MDS based on prognostic features, the optimal timing of HCT, and outcomes based on patient age.

  17. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  18. Complications of central venous catheter in patients transplanted with hematopoietic stem cells in a specialized service

    Science.gov (United States)

    Barretta, Lidiane Miotto; Beccaria, Lúcia Marinilza; Cesarino, Cláudia Bernardi; Pinto, Maria Helena

    2016-01-01

    Abstract Objective: to identify the model, average length of stay on site and complications of central venous catheter in patients undergoing transplant of hematopoietic stem cells and verify the corresponding relationship between the variables: age, gender, medical diagnosis, type of transplant, implanted catheter and insertion site. Method: a retrospective and quantitative study with a sample of 188 patients transplanted records between 2007 and 2011. Results: the majority of patients used Hickman catheter with an average length of stay on site of 47.6 days. The complication fever/bacteremia was significant in young males with non-Hodgkin's lymphoma undergoing autologous transplant, which remained with the device for a long period in the subclavian vein. Conclusion: nurses should plan with their team the minimum waiting time, recommended between the catheter insertion and start of the conditioning regimen, as well as not to extend the length of time that catheter should be on site and undertake their continuing education, focusing on the prevention of complications. PMID:27276021

  19. Complications of central venous catheter in patients transplanted with hematopoietic stem cells in a specialized service

    Directory of Open Access Journals (Sweden)

    Lidiane Miotto Barretta

    2016-01-01

    Full Text Available Abstract Objective: to identify the model, average length of stay on site and complications of central venous catheter in patients undergoing transplant of hematopoietic stem cells and verify the corresponding relationship between the variables: age, gender, medical diagnosis, type of transplant, implanted catheter and insertion site. Method: a retrospective and quantitative study with a sample of 188 patients transplanted records between 2007 and 2011. Results: the majority of patients used Hickman catheter with an average length of stay on site of 47.6 days. The complication fever/bacteremia was significant in young males with non-Hodgkin's lymphoma undergoing autologous transplant, which remained with the device for a long period in the subclavian vein. Conclusion: nurses should plan with their team the minimum waiting time, recommended between the catheter insertion and start of the conditioning regimen, as well as not to extend the length of time that catheter should be on site and undertake their continuing education, focusing on the prevention of complications.

  20. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  1. Analysis and manipulation of hematopoietic progenitor and stem cells from murine embryonic tissues

    NARCIS (Netherlands)

    A. Medvinsky (Alexander); S. Taoudi (Samir); S.C. Mendes (Sandra); E.A. Dzierzak (Elaine)

    2008-01-01

    textabstractHematopoietic development begins in several locations in the mammalian embryo: yolk sac, aorta-gonad-mesonephros region (AGM), and the chorio-allantoic placenta. Generation of the most potent cells, adult definitive hematopoietic stem cells (HSCs), occurs within the body of the mouse emb

  2. Effects of hematopoietic growth factors on purified bone marrow progenitor cells

    NARCIS (Netherlands)

    F.J. Bot (Freek)

    1992-01-01

    textabstractWe have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the following questions: 1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched hematopoietic progenitor cells have not been clearly defined: - how do IL~3

  3. Improvement of Thymopoiesis after Hematopoietic Stem Cell Transplantation by Cytokines: Translational studies in experimental animal models

    NARCIS (Netherlands)

    E-J. Wils (Evert-Jan)

    2011-01-01

    textabstractAllogeneic hematopoietic stem cell transplantation (AlloHSCT) is a powerful treatment modality that is frequently applied as part of treatment of hematological malignancies, aplastic anemia and inborn errors of hematopoietic progenitor cells. A major drawback of alloHSCT is the treatment

  4. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone

    NARCIS (Netherlands)

    Illing, Anett; Liu, Peng; Ostermay, Susanne; Schilling, Arndt; de Haan, Gerald; Krust, Andree; Amling, Michael; Chambon, Pierre; Schinke, Thorsten; Tuckermann, Jan P.

    2012-01-01

    Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Her

  5. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    Directory of Open Access Journals (Sweden)

    Christopher J. Forlenza

    2015-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT, a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days + thiotepa (300 mg/m2/day for 3 days ± topotecan (2 mg/m2/day for 5 days. All patients were engrafted and there was no treatment-related mortality. Seventeen patients received radiotherapy to sites of prior or residual disease at a median of 12 weeks after transplant. Five-year event-free and overall survival were 11 ± 7% and 16 ± 8%, respectively. Two patients survive disease-free 16 and 19 years after transplant (both in complete remission before transplant. 14 patients had progression and died of disease at a median of 18 months following autologous transplant. These data do not justify the use of myeloablative chemotherapy with carboplatin plus thiotepa in patients with DSRCT. Alternative therapies should be considered for this aggressive neoplasm.

  6. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft.

  7. Progress toward curing HIV infection with hematopoietic cell transplantation.

    Science.gov (United States)

    Petz, Lawrence D; Burnett, John C; Li, Haitang; Li, Shirley; Tonai, Richard; Bakalinskaya, Milena; Shpall, Elizabeth J; Armitage, Sue; Kurtzberg, Joanne; Regan, Donna M; Clark, Pamela; Querol, Sergio; Gutman, Jonathan A; Spellman, Stephen R; Gragert, Loren; Rossi, John J

    2015-01-01

    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood. PMID:26251620

  8. Fatal CMV-Infection after Autologous Stem Cell Transplantation in Refractory Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    László Váróczy

    2012-01-01

    Full Text Available High-dose chemotherapy followed by autologous stem cell transplantation can be a rescue for patients with severe refractory systemic lupus erythematosus (SLE. However, the procedure might have fatal complications including infections and bleeding. We report on a young female patient with SLE whose disease started in her early childhood. After many years, severe renal, neurological, and bone marrow involvement developed that did not respond to conventional therapy. She was selected for autologous stem cell transplantation. A successful peripheral stem cell apheresis was performed in March 2006. The nonselected graft was reinfused in August 2006 after a conditioning chemotherapy containing high-dose cyclophosphamide and antithymocyte globulin. Engraftment was detected within 11 days. On the 38th posttransplant day, severe cytomegalovirus (CMV infection developed that included pneumonitis, hepatitis, and pancytopenia. The patient died in a week due to multiorgan failure. With her case, we want to call the attention to this rare, but lethal complication of the autologous transplantation.

  9. Chronic phase CML patients possess T cells capable of recognising autologous tumour cells.

    Science.gov (United States)

    Müller, Ludmila; Pawelec, Graham

    2002-05-01

    Much circumstantial evidence points to the immunogenicity of chronic myloid leukemia (CML) cells, most impressively the well-established T cell-dependent GvL effect seen in bone marrow transplantation. However, only a small number of shared antigens expressed by CML cells have been identified as potential targets for T cell-mediated immune responses which might be exploited for immunotherapy. It may be that unique antigens expressed by individual tumours are more potent rejection antigens if the patient's own T cells could be encouraged to react against them. Work is reviewed here which documents that in vitro mixed cultures between autologous T cells and dendritic cells of chronic-phase CML patients can give rise to sensitised T cells capable of recognising the patient's tumour cells. Additionally, mixed autologous tumour cell/lymphocyte cultures, modified by the addition of cytokine cocktails, may also result in the generation of similarly sensitised T cells. These results could be exploited for adoptive immunotherapy, and possibly, after identification of the antigens recognised, also for active immunotherapy, i.e. including therapeutic vaccination. PMID:12148904

  10. File list: His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  11. File list: His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  12. File list: DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  13. File list: DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  14. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro.

    OpenAIRE

    J. Brandt; Baird, N; Lu, L; Srour, E; R. HOFFMAN

    1988-01-01

    A hematopoietic cell (CFU-B1) capable of producing blast cell containing colonies in vitro was detected using a semisolid culture system. The CFU-B1 has the capacity for self-renewal and commitment to a number of hematopoietic lineages. Monoclonal antibody to the human progenitor cell antigen-1 (HPCA-1) and a monoclonal antibody against the major histocompatibility class II antigen (HLA-DR) were used with fluorescence activated cell sorting to phenotype the CFU-B1. The CFU-B1 was found to exp...

  15. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up

    NARCIS (Netherlands)

    Bjorkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Beksac, M.; Bosi, A.; Milone, G.; Corradini, P.; Goldschmidt, H.; Witte, T.J.M. de; Morris, C.; Niederwieser, D.; Gahrton, G.

    2011-01-01

    PURPOSE: Results of allogeneic stem-cell transplantation (allo) in myeloma are controversial. In this trial autologous stem-cell transplantation (auto) followed by reduced-intensity conditioning matched sibling donor allo (auto-allo) was compared with auto only in previously untreated multiple myelo

  16. Autologous CD34~+ and CD133~+ stem cells transplantation in patients with end stage liver disease

    Institute of Scientific and Technical Information of China (English)

    Hosny; Salama; Abdel-Rahman; N; Zekri; Abeer; A; Bahnassy; Eman; Medhat; Hanan; A; Halim; Ola; S; Ahmed; Ghada; Mohamed; Sheren; A; Al; Alim; Ghada; M; Sherif

    2010-01-01

    AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver diseases were randomized into two groups.Group 1,comprising 90 patients,received granulocyte colony stimulating factor for five days followed by autologous CD34 + and CD133 + stem cell infusion in the portal vein.Group 2,comprising 50 patients,received regular liver treatment only and served a...

  17. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  18. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  19. Natural killer cells in non-hematopoietic malignancies.

    Science.gov (United States)

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies. PMID:23269924

  20. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  1. High-dose chemotherapy followed by autologous stem cell transplantation for metastatic rhabdomyosarcoma--a systematic review.

    Directory of Open Access Journals (Sweden)

    Frank Peinemann

    Full Text Available INTRODUCTION: Patients with metastatic rhabdomyosarcoma (RMS have a poor prognosis. The aim of this systematic review is to investigate whether high-dose chemotherapy (HDCT followed by autologous hematopoietic stem cell transplantation (HSCT in patients with metastatic RMS has additional benefit or harm compared to standard chemotherapy. METHODS: Systematic literature searches were performed in MEDLINE, EMBASE, and The Cochrane Library. All databases were searched from inception to February 2010. PubMed was searched in June 2010 for a last update. In addition to randomized and non-randomized controlled trials, case series and case reports were included to complement results from scant data. The primary outcome was overall survival. A meta-analysis was performed using the hazard ratio as primary effect measure, which was estimated from Cox proportional hazard models or from summary statistics of Kaplan Meier product-limit estimations. RESULTS: A total of 40 studies with 287 transplant patients with metastatic RMS (age range 0 to 32 years were included in the assessment. We identified 3 non-randomized controlled trials. The 3-year overall survival ranged from 22% to 53% in the transplant groups vs. 18% to 55% in the control groups. Meta-analysis on overall survival in controlled trials showed no difference between treatments. Result of meta-analysis of pooled individual survival data of case series and case reports, and results from uncontrolled studies with aggregate data were in the range of those from controlled data. The risk of bias was high in all studies due to methodological flaws. CONCLUSIONS: HDCT followed by autologous HSCT in patients with RMS remains an experimental treatment. At present, it does not appear justifiable to use this treatment except in appropriately designed controlled trials.

  2. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  3. Hematopoietic stem cells in neonates: any differences between very preterm and term neonates?

    Directory of Open Access Journals (Sweden)

    Lukas Wisgrill

    Full Text Available In the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs. Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood.CD34+ HSPC subsets in UCB of 30 preterm and 30 term infants were evaluated by flow cytometry. Clonogenic assays suitable for detection of the proliferative potential of HSPCs were conducted. Furthermore, we analyzed the clonogenic potential of isolated HSPCs according to the stem cell marker CD133 and aldehyde dehydrogenase (ALDH activity.Preterm cord blood contained a significantly higher concentration of circulating CD34+ HSPCs, especially primitive progenitors, than term cord blood. The clonogenic capacity of HSPCs was enhanced in preterm cord blood. Using univariate analysis, the number and clonogenic potential of circulating UCB HSPCs was influenced by gestational age, birth weight and maternal age. Multivariate analysis showed that main factors that significantly influenced the HSPC count were maternal age, gestational age and white blood cell count. Further, only gestational age significantly influenced the clonogenic potential of UCB HSPCs. Finally, isolated CD34+/CD133+, CD34+/CD133- and ALDH(high HSPC obtained from preterm cord blood showed a significantly higher clonogenic potential compared to term cord blood.We demonstrate that preterm cord blood exhibits a higher HSPC concentration and increased clonogenic capacity compared to term neonates. These data may imply an emerging use of HSPCs in autologous stem cell therapy in preterm neonates.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  5. A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells

    NARCIS (Netherlands)

    B. van Riel (Boet); T. Pakozdi (Tibor); R.W.W. Brouwer; R. Monteiro (Rui); E. Tuladhar (Era); V. Franke (Vedran); J.C. Bryne; R.J.J. Jorna (Ruud); E.J. Rijkers; W.F.J. van IJcken (Wilfred); C. Andrieu-Soler (Charlotte); J.A.A. Demmers (Jeroen); R. Patient; E. Soler (Eric); B. Lenhard (Boris); F.G. Grosveld (Frank)

    2012-01-01

    textabstractRUNX1 is known to be an essential transcription factor for generating hematopoietic stem cells (HSC), but much less is known about its role in the downstream process of hematopoietic differentiation. RUNX1 has been shown to be part of a large transcription factor complex, together with L

  6. Of lineage and legacy: The development of mammalian hematopoietic stem cells

    NARCIS (Netherlands)

    E.A. Dzierzak (Elaine); N.A. Speck (Nancy)

    2008-01-01

    textabstractThe hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobil

  7. A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Johnson Holly L

    2012-03-01

    Full Text Available Abstract Background The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS model results in severe central nervous system (CNS vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. Methods PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. Results C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of

  8. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  9. File list: Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  10. File list: ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX813531,SRX097081,SRX097084,SRX180945,SRX180946,SRX180947,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  11. File list: InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  12. File list: Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  13. File list: Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  14. File list: ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX026654,SRX029315,SRX751542,SRX100320,SRX097082,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  15. File list: NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoietic stem...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  16. File list: ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX180940,SRX813531,SRX029315,SRX097082,SRX100320,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  17. File list: InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  18. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    Science.gov (United States)

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  19. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  20. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  1. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  2. Human thymic epithelial cells directly induce activation of autologous immature thymocytes.

    OpenAIRE

    Denning, S M; Kurtzberg, J; Le, P. T.; Tuck, D T; Singer, K H; Haynes, B. F.

    1988-01-01

    To study the role that epithelial cells of the thymic microenvironment play in promoting activation of immature CD7+, CD2+, CD4-, CD8- (double-negative) human thymocytes, we have isolated thymocyte subsets from normal postnatal thymus and have cocultured autologous double-negative thymocytes with pure populations of thymic epithelial (TE) cells. We report that TE cells directly activate double-negative thymocytes to proliferate and that TE cells enhance the ability of double-negative thymocyt...

  3. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Hande H Tuncer; Naveed Rana; Cannon Milani; Angela Darko; Samer A Al-Homsi

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years.The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities,infections,bleeding,sinusoidal obstruction syndrome,acute and chronic graftversus-host disease (GVHD) as well as other long-term problems.The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented.Transplant clinicians,however,continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants,expanding transplant indications and age-limit.This review describes the most commonly seen transplant related complications,focusing on their pathogenesis,differential diagnosis and management.

  4. Analysis of the motivation for hematopoietic stem cell donation.

    Science.gov (United States)

    Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M

    2011-05-01

    The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. PMID:21620031

  5. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  6. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    Science.gov (United States)

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S.M.; Shaw, Bronwen E.; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S.; Savani, Bipin N.; Rovó, Alicia

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  7. Bullous pemphigoid after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kato, Keisuke; Koike, Kazutoshi; Kobayashi, Chie; Iijima, Shigeruko; Hashimoto, Takashi; Tsuchida, Masahiro

    2015-06-01

    Bullous pemphigoid (BP) is an autoimmune skin disorder characterized by subepidermal blisters due to deposit of autoantibody against dermal basement membrane protein. It has been reported that BP can occur after allogeneic hematopoietic stem cell transplantation (HSCT). We describe a patient with BP having autoantibody against BP180 after unrelated-donor HSCT against T lymphoblastic leukemia. The patient was treated with steroid leading to complete resolution of BP, but T lymphoblastic leukemia progressed rapidly after steroid hormone treatment. Given that immunosuppressant may reduce graft-versus-tumor effect, immunomodulatory agents such as nicotinamide and tetracycline, erythromycin, and immunoglobulin may be appropriate as soon as typical blister lesions are seen after HSCT. PMID:26113316

  8. Gastrointestinal Complications Following Hematopoietic Stem Cell Transplantation in Children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hye; Lim, Gye Yeon; Im, Soo Ah; Chung, Nak Gyun; Hahn, Seung Tae [St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2008-10-15

    Gastrointestinal system involvement is one of the principal complications seen in the recipients of hematopoietic stem cell transplantation (HSCT), and it is also a major cause of morbidity and death in these patients. The major gastrointestinal complications include typhlitis (neutropenic enterocolitis), pseudomembranous enterocolitis, viral enteritis, graft-versus-host disease, benign pneumatosis intestinalis, intestinal thrombotic microangiopathy, and post-transplantation lymphoproliferative disease. As these patients present with nonspecific abdominal symptoms, evaluation with using such imaging modalities as ultrasonography and CT is essential in order to assess the extent of gastrointestinal involvement and to diagnose these complications. We present here a pictorial review of the imaging features and other factors involved in the diagnosis of these gastrointestinal complications in pediatric HSCT recipients.

  9. Iron Overload in Patients Undergoing Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Vinod Pullarkat

    2010-01-01

    Full Text Available Recipients of hematopoietic stem cell transplantation (HSCT frequently have iron overload resulting from chronic transfusion therapy for anemia. In some cases, for example, in patients with myelodysplastic syndromes and thalassemia, this can be further exacerbated by increased absorption of iron from the gut as a result of ineffective erythropoiesis. Accumulating evidence has established the negative impact of elevated pretransplantation serum ferritin, a surrogate marker of iron overload, on overall survival and nonrelapse mortality after HSCT. Complications of HSCT associated with iron overload include increased bacterial and fungal infections as well as sinusoidal obstruction syndrome and possibly other regimen-related toxicities. Based on current evidence, particular attention should be paid to prevention and management of iron overload in allogeneic HSCT candidates, especially in patients with thalassemia and myelodysplastic syndromes. The pathophysiology of iron overload in the HSCT patient and optimum strategies to deal with iron overload during and after HSCT require further study.

  10. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  11. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  12. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  13. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  14. Intrathecal application of autologous bone marrow cell preparations in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Storch, Alexander; Csoti, Ilona; Eggert, Karla;

    2012-01-01

    A growing number of patients is treated with intrathecal application of autologous bone marrow cells (aBMCs), but clinical data are completely lacking in movement disorders. We provide first clinical data on efficacy and safety of this highly experimental treatment approach in parkinsonian...

  15. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Guang-Ping Ruan

    Full Text Available INTRODUCTION: Renal interstitial fibrosis (RIF is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. METHODS: A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP. These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. RESULTS: Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05 were observed in serum creatinine (SCr (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L and blood urea nitrogen (BUN (119 ± 22 µmol/L to 97 ± 13 µmol/L, indicating improvement in renal function. CONCLUSIONS: We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.

  16. Autologous stem cell transplantation in treatment of aggressive non-Hodgkin's lymphoma

    NARCIS (Netherlands)

    Kluin-Nelemans, Hanneke

    2002-01-01

    There is no doubt that autologous stem cell transplantation is useful for patients with relapsed aggressive non-Hodgkin's lymphoma if they are responsive to the chemotherapy given before the transplantation. A small subset of patients with primary refractory disease still profits from this high dose

  17. Response of hematopoietic stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of HSC presence: CD150+ and CD105+. A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin-/low Sca-1+ c-Kit+ (LSK) stem/progenitor compartment: CD150+/Flk2- and CD150-/Flk2+ LSK cell frequencies are increased and dramatically reduced, respectively. CD150+ LSK cells also show impaired reconstitution capacity, accrued number of γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying this effect, and found in a competitive transplant experiment that a

  18. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun;

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  19. The impact of hematopoietic stem cell transplantation on sexuality: a systematic review of the literature

    DEFF Research Database (Denmark)

    Thygesen, Kristina Holmegaard; Schiødt, Ida; Jarden, M

    2012-01-01

    In this paper we review evidence concerning the impact of hematopoietic SCT (HSCT) on sexuality. The aims are to determine: (1) the sexual changes experienced by patients following allogeneic or autologous HSCT, and its consequences; (2) changes in the sexual function over time and (3) the impact...... in sexual dysfunction with specific reliable validated instruments and more adequate sample sizes will be required to definitively evaluate the impact of HSCT on sexuality.Bone Marrow Transplantation advance online publication, 29 August 2011; doi:10.1038/bmt.2011.169....

  20. Polarised cells, polarised views: Asymmetric cell division in hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Kim ePham

    2014-02-01

    Full Text Available It has long been recognised that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade a new aspect of lymphocyte polarity, termed Asymmetric Cell Division (ACD, has attracted much attention. ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukaemia. However, dissecting the role that ACD might play in these activities is not straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.

  1. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    Directory of Open Access Journals (Sweden)

    Cary N. Weiss

    2015-03-01

    Full Text Available In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.

  2. Mouse Hematopoietic Stem Cells, Unlike Human and Mouse Embryonic Stem Cells, Exhibit Checkpoint–Apoptosis Coupling

    OpenAIRE

    Rohrabaugh, Sara; Mantel, Charlie; Broxmeyer, Hal E.

    2008-01-01

    Previously, we reported that the spindle assembly checkpoint (SAC), which is coupled in somatic cells, is uncoupled from apoptosis-initiation in mouse and human embryonic stem cells (ESCs). This condition allows ESCs to tolerate and proliferate as polyploidy/aneuploid cells. Proper function of the SAC is vital to prevent polyploidy/aneuploidy during ex vivo hematopoietic stem cell (HSC) expansion. Here we address, for the first time, whether HSCs are more like ESCs or somatic cells with respe...

  3. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    Science.gov (United States)

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL). PMID:27000734

  4. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    Science.gov (United States)

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL).

  5. Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model.

    Directory of Open Access Journals (Sweden)

    Michelle Escobedo-Cousin

    Full Text Available Cord blood (CB is increasingly used as a source of hematopoietic stem cells (HSC for transplantation. Low incidence and severity of graft-versus-host disease (GvHD and a robust graft-versus-leukemia (GvL effect are observed following CB transplantation (CBT. However, its main disadvantages are a limited number of HSC per unit, delayed immune reconstitution and a higher incidence of infection. Unmanipulated grafts contain accessory cells that may facilitate HSC engraftment. Therefore, the effects of accessory cells, particularly natural killer (NK cells, on human CB HSC (CBSC functions were assessed in vitro and in vivo. CBSC cultured with autologous CB NK cells showed higher levels of CXCR4 expression, a higher migration index and a higher number of colony forming units (CFU after short-term and long-term cultures. We found that CBSC secreted CXCL9 following interaction with CB NK cells. In addition, recombinant CXCL9 increased CBSC clonogenicity, recapitulating the effect observed of CB NK cells on CBSC. Moreover, the co-infusion of CBSC with CB NK cells led to a higher level of CBSC engraftment in NSG mouse model. The results presented in this work offer the basis for an alternative approach to enhance HSC engraftment that could improve the outcome of CBT.

  6. Stem cell transplantation for neuroblastoma

    OpenAIRE

    Fish, JD; Grupp, SA

    2007-01-01

    High-risk neuroblastoma is a childhood malignancy with a poor prognosis. Gradual improvements in survival have correlated with therapeutic intensity, and the ability to harvest, process and store autologous hematopoietic stem cells has allowed for dose intensification beyond marrow tolerance. The use of high-dose chemotherapy with autologous hematopoietic stem cell rescue in consolidation has resulted in improvements in survival, although further advances are still needed. Newer approaches to...

  7. Single-Cell Cytokine Profiling to Investigate Cellular Functional Diversity in Hematopoietic Malignancies.

    Science.gov (United States)

    Chen, Jonathan J; Kwak, Minsuk; Fan, Rong

    2016-01-01

    Single-cell analysis of cytokine production is increasingly recognized as an important method to understand the inflammatory microenvironment and hematopoietic disease state. Certain cytokines are critical to the regulation of lineage specification, and the aberrant production of these cytokines can contribute to lineage reprogramming. Here, we describe of a platform combining subnanoliter microchambers and a high-density antibody barcode array for the study of single-cell cytokine secretions in hematopoietic cancer cell populations. PMID:27581152

  8. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  9. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  10. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation. PMID:26901703

  11. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.

  12. The CD85j+ NK cell subset potently controls HIV-1 replication in autologous dendritic cells.

    Directory of Open Access Journals (Sweden)

    Daniel Scott-Algara

    Full Text Available Natural killer (NK cells and dendritic cells (DC are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j(+ NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j(- NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j(+ NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j(+ NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules preferentially expressed on HIV-1-infected MDDC.

  13. Progress toward curing HIV infection with hematopoietic cell transplantation

    Directory of Open Access Journals (Sweden)

    Petz LD

    2015-07-01

    Full Text Available Lawrence D Petz,1 John C Burnett,2 Haitang Li,3 Shirley Li,3 Richard Tonai,1 Milena Bakalinskaya,4 Elizabeth J Shpall,5 Sue Armitage,6 Joanne Kurtzberg,7 Donna M Regan,8 Pamela Clark,9 Sergio Querol,10 Jonathan A Gutman,11 Stephen R Spellman,12 Loren Gragert,13 John J Rossi2 1StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 2Department of Molecular and Cellular Biology, Irell and Manella Graduate School of Biological Sciences, 3Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; 4CCR5-Δ32/Δ32 Research Department, StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 5Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 6MD Anderson Cord Blood Bank, Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 7Carolinas Cord Blood Bank, Duke University Medical Center, Durham, NC, USA; 8St Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA; 9Enhance Quality Consulting Inc., Oviedo, FL, USA; 10Cell Therapy Service and Cord Blood Bank, Banc de Sang i Teixits, Barcelona, Spain; 11BMT/Hematologic Malignancies, University of Colorado, Aurora, CO, USA; 12Immunobiology and Observational Research, CIBMTR, Minneapolis, MN, USA; 13National Marrow Donor Program/Be The Match, Minneapolis, MN, USA Abstract: HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT from a graft that carried the HIV-resistant CCR5-Δ32/Δ32 mutation. Other attempts to establish a cure for HIV

  14. HSC-explorer: a curated database for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Corinna Montrone

    Full Text Available HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/ is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  15. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    Science.gov (United States)

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD.

  16. The role of citrulline in patients following hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Herbers, A.H.E.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) provides effective treatment of hematological malignancies and other disorders. However, the procedure temporarily compromises the immune system resulting in damage to the gastrointestinal (GI) tract, called mucosal barrier injury (MBI), and neutropenia

  17. Allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia:a report of 12 patients

    Institute of Scientific and Technical Information of China (English)

    孙于谦

    2013-01-01

    Objective To retrospectively review the efficacy of allogeneic hematopoietic stem cell transplantation(allo-HSCT)for chronic myelomonocytic leukemia(CMML).Methods The engraftment,graft versus host disease(GVHD)

  18. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Science.gov (United States)

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  19. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  20. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  1. Subclinical hypothyroidism in children and adolescents after hematopoietic stem cells transplantation without irradiation

    Directory of Open Access Journals (Sweden)

    Milenković Tatjana

    2014-01-01

    Full Text Available Background/Aim. Although total body irradiation (TBI was considered to be the primary cause of thyroid dysfunction following hematopoietic stem cells transplantation (HSCT, a significant prevalence of subclinical hypothyroidism after HSCT with chemotherapy-only conditioning regimens has been observed in several studies. The aim of this study was to assess changes in thyroid stimulating hormone (TSH levels in children after HSCT, without the use of irradiation at any time in the course of the treatment. Methods. Our cohort consisted of 41 children and adolescents who underwent autologous or allogeneic HSCT and were available for follow-up for at least one year after transplantation. Irradiation was not performed in any of the subjects, neither during pretransplatation therapy, nor during conditioning. The median duration of follow-up was 2.9 years. The indications for HSCT were hematologic malignancy (41.5%, solid malignant tumor (34.1%, and other disorders (24.4%. The thyroid status of all the subjects was assessed prior to HSCT and after follow-up period. Results. Thyroid dysfunction after HSCT was present in 27 (65.8% subjects. Subclinical hypothyroidism was the most common abnormality, presenting in 23 (56.1% patients, primary hypothyroidism was present in one (2.4% patient, while 3 (7.3% subjects had low free T4 with normal TSH values. Significantly (p < 0.01 higher elevations in TSH levels were present in the patients who received chemotherapy for the underlying disease prior to HSCT. Conclusion. Our findings emphasize the need for long-term monitoring of thyroid function following HSCT, regardless of whether or not irradiation was used.

  2. Late Effects Surveillance Recommendations among Survivors of Childhood Hematopoietic Cell Transplantation: A Children's Oncology Group Report.

    Science.gov (United States)

    Chow, Eric J; Anderson, Lynnette; Baker, K Scott; Bhatia, Smita; Guilcher, Gregory M T; Huang, Jennifer T; Pelletier, Wendy; Perkins, Joanna L; Rivard, Linda S; Schechter, Tal; Shah, Ami J; Wilson, Karla D; Wong, Kenneth; Grewal, Satkiran S; Armenian, Saro H; Meacham, Lillian R; Mulrooney, Daniel A; Castellino, Sharon M

    2016-05-01

    Hematopoietic cell transplantation (HCT) is an important curative treatment for children with high-risk hematologic malignancies, solid tumors, and, increasingly, nonmalignant diseases. Given improvements in care, there are a growing number of long-term survivors of pediatric HCT. Compared with childhood cancer survivors who did not undergo transplantation, HCT survivors have a substantially increased burden of serious chronic conditions and impairments involving virtually every organ system and overall quality of life. This likely reflects the joint contributions of pretransplantation treatment exposures and organ dysfunction, the transplantation conditioning regimen, and any post-transplantation graft-versus-host disease (GVHD). In response, the Children's Oncology Group (COG) has created long-term follow-up guidelines (www.survivorshipguidelines.org) for survivors of childhood, adolescent, and young adult cancer, including those who were treated with HCT. Guideline task forces, consisting of HCT specialists, other pediatric oncologists, radiation oncologists, organ-specific subspecialists, nurses, social workers, other health care professionals, and patient advocates systematically reviewed the literature with regards to late effects after childhood cancer and HCT since 2002, with the most recent review completed in 2013. For the most recent review cycle, over 800 articles from the medical literature relevant to childhood cancer and HCT survivorship were reviewed, including 586 original research articles. Provided herein is an organ system-based overview that emphasizes the most relevant COG recommendations (with accompanying evidence grade) for the long-term follow-up care of childhood HCT survivors (regardless of current age) based on a rigorous review of the available evidence. These recommendations cover both autologous and allogeneic HCT survivors, those who underwent transplantation for nonmalignant diseases, and those with a history of chronic GVHD. PMID

  3. The Changing Epidemiology of Bloodstream Infections and Resistance in Hematopoietic Stem Cell Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Mücahit Yemişen

    2016-08-01

    Full Text Available Objective: Patients receiving hematopoietic stem cell transplantation (HSCT are exposed to highly immunosuppressive conditions and bloodstream infections (BSIs are one of the most common major complications within this period. Our aim, in this study, was to evaluate the epidemiology of BSIs in these patients retrospectively. Materials and Methods: The epidemiological properties of 312 patients with HSCT were retrospectively evaluated. Results: A total of 312 patients, followed between 2000 and 2011, who underwent autologous (62% and allogeneic (38% HSCT were included in the study. The most common underlying malignancies were multiple myeloma (28% and Hodgkin lymphoma (21.5%. A total of 142 (45% patients developed at least 1 episode of BSI and 193 separate pathogens were isolated from the blood cultures. There was a trend of increase in the numbers of BSIs in 2005-2008 and a relative increase in the proportion of gram-positive infections in recent years (2009-2011, and central venous catheter-related BSI was found to be most common source. Coagulase-negative staphylococci (49.2% and Acinetobacter baumannii (8.8% were the most common pathogens. Extended-spectrum beta-lactamase-producing strains were 23% and 22% among Escherichia coli and Klebsiella spp. isolates, respectively. Quinolone resistance was detected in 10% of Enterobacteriaceae. Resistance to carbapenems was not detected in Enterobacteriaceae, while it was seen at 11.1% and 23.5% in Pseudomonas and Acinetobacter strains, respectively. Conclusion: A shift was detected from gram-negative bacteria to gram-positive in the etiology over the years and central lines were the most common sources of BSIs.

  4. Regulatory T cells and immune tolerance after allogeneic hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    M. Bruinsma (Marieke)

    2010-01-01

    textabstractThe story of allogeneic hematopoietic stem cell transplantation (allo-SCT) begins after the atomic bombings of Hiroshima and Nagasaki in 1945. It was observed that fallout radiation caused dose-dependent depression of hematopoiesis 1. Research first focused on how to protect the hematopo

  5. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45low c-Kit+ cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45low c-Kit- cells that showed a granulocyte morphology; CD45high c-Kitlow/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45low c-Kit+ cells from the AGM culture had the abilities to reproduce CD45low c-Kit+ cells and differentiate into CD45low c-Kit- and CD45high c-Kitlow/- cells, whereas CD45low c-Kit- and CD45high c-Kitlow/- did not produce CD45low c-Kit+ cells. Furthermore, CD45low c-Kit+ cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45low c-Kit+ cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  6. Hematopoietic Stem Cell Transplantation Activity and Trends at a Pediatric Transplantation Center in Turkey During 1998-2008

    Directory of Open Access Journals (Sweden)

    Volkan Hazar

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this study was to document hematopoietic stem cell transplantation (HSCT activity and trends at our treatment center. METHODS: Data collected over a 10-year period were retrospectively analyzed, concentrating primarily on types of HSCT, transplant-related mortality (TRM, stem cell sources, indications for HSCT, and causes of death following HSCT. RESULTS: In total, 222 allogeneic (allo-HSCT (87.4% and 32 autologous (auto-HSCT (12.6% procedures were performed between 1998 and 2008. Stem cells obtained from unrelated donors were used in 22.6% (50/222 of the allo- HSCTs. Cord blood was the source of hematopoietic stem cells (HSC in 12.2% of all transplants. The most common indication for allo-HSCT was hemoglobinopathy (43.2%, versus neuroblastoma (53.1% for auto-HSCT. The TRM rate 1 year post transplantation was 18.3% ± 2.5% for all transplants, but differed according to transplantation type (23.5% ± 7.9% for auto-HSCT and 17.5% ± 2.6% for allo-HSCT. The most common cause of death 1 year post HSCT was infection (35.9%. CONCLUSION: The TRM rate in the patients that underwent allo-HSCT was similar to that which has been previously reported; however, the TRM rate in the patients that underwent auto-HSCT was higher than previously reported in developed countries. The selection of these patients to be transplanted must be made attentively.

  7. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

    OpenAIRE

    Akada, Hajime; Akada, Saeko; Hutchison, Robert E.; Sakamoto, Kazuhito; Wagner, Kay-Uwe; Mohi, Golam

    2014-01-01

    Jak2, a member of the Janus kinase family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Ja...

  8. Quality of life of hospitalized patients submitted to hematopoietic stem cells transplantation

    OpenAIRE

    Vanessa da Rocha; Luciana Puchalski Kalinke; Jorge Vinicius Cestari Felix; Maria de Fátima Montovani; Mariluci Alves Maftum; Paulo Ricardo Bittencourt Guimarães

    2015-01-01

    The objective of this study was to assess the quality of life and to identify the altered domains of adult patients with blood cancer, submitted to hematopoietic stem cells transplantation during hospitalization time. A longitudinal, observation and analytical study, conducted in a reference hospital for hematopoietic stem cell transplant. The data collection was during September of 2013 and September of 2014, including 25 patients and using questionnaires for sociodemographic and clinic char...

  9. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses.

    Science.gov (United States)

    Shaw, S W Steven; Bollini, Sveva; Nader, Khalil Abi; Gastaldello, Annalisa; Gastadello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H Bobby; Qasim, Waseem; De Coppi, Paolo; David, Anna L

    2011-01-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep (n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.

  10. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  11. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  12. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    International Nuclear Information System (INIS)

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  13. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Madaric, Juraj, E-mail: jurmad@hotmail.com [National Institute of Cardiovascular Diseases (NUSCH) and Slovak Medical University, Department of Cardiology and Angiology (Slovakia); Klepanec, Andrej [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia); Mistrik, Martin [Clinic of Hematology and Transfusiology, Faculty Hospital (Slovakia); Altaner, Cestmir [Slovak Academy of Science, Institute of Experimental Oncology (Slovakia); Vulev, Ivan [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia)

    2013-04-15

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  14. Admission of hematopoietic cell transplantation patients to the intensive care unit at the Pontificia Universidad Católica de Chile Hospital.

    Science.gov (United States)

    Escobar, Karen; Rojas, Patricio; Ernst, Daniel; Bertin, Pablo; Nervi, Bruno; Jara, Veronica; Garcia, Maria Jose; Ocqueteau, Mauricio; Sarmiento, Mauricio; Ramirez, Pablo

    2015-01-01

    Patients undergoing hematopoietic cell transplantation (HCT) can have complications that require management in the intensive care unit (ICU). We conducted a retrospective study of patients undergoing HCT between 2007 and 2011 with admission to the ICU. We analyzed 97 patients, with an average age of 37 (range, 15 to 68). The main indications for HCT were hematologic malignancies (84%, n = 82). Ninety percent (n = 87) received myeloablative conditioning. Thirty-one percent were admitted (autologous transplant recipients 15%, allogeneic transplant recipients 34%, and umbilical cord blood [UCB] transplant recipients 48%) with an average length of stay of 19 days (range, 1 to 73 days). The average time between transplantation and transfer was 15 days. The main causes of admission were acute respiratory failure (63%) and septic shock (20%). ICU mortality was 20% for autologous transplantations and 64% for allogeneic transplantations (adult donor and UCB combined). On average, patients died 108 days after the transplantation (range, 4 to 320 days). One-year overall survival, comparing patients entering the ICU with those never admitted, was 16% versus 82% (P < .0001) for allogeneic transplantations (adult donor and UCB combined) and 80% versus 89% (P = not significant) for autologous transplantations. Acute graft-versus-host disease was significantly associated with death in ICU after UCB HCT. ICU support is satisfactory in about one half of patients admitted, characterized by a short and medium term prognosis not as unfavorable as has been previously reported.

  15. Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche

    OpenAIRE

    Tian Li; Yaojiong Wu

    2011-01-01

    Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.

  16. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract

    Institute of Scientific and Technical Information of China (English)

    Wei Liang; Hui Wang; Tie-Mie Sun; Wen-Qing Yao; Li-Li Chen; Yu Jin; Chun-Ling Li; Fan-Juan Meng

    2003-01-01

    AIM: To treat patients with stage Ⅰ-Ⅳ malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect.METHODS: 335 patients with malignant tumors of digestive tract were treated with autologous tumor cell vaccine and NDV vaccine. The autologous tumor cell vaccine were assigned for long-term survival observation. While these failed to obtain the autologous tumor tissue were given with NDV vaccine for a short-term observation on curative effect.RESULTS: The colorectal cancer patients treated with autologous tumor cell vaccine were divided into two groups:the controlled group (subjected to resection alone) (n=257),the vaccine group (subjected to both resection and immunotherapy) (n=310). 25 patients treated with NDV immunotherapy were all at stage Ⅳ without having resection.In postoperation adjuvant therapy patients, the 5, 6 and 7-year survival rates were 66.51%, 60.52 %, 56.50 %respectively; whereas in patients with resection alone, only 45.57 %, 44.76 % and 43.42 % respectively. The average survival period was 5.13 years (resection alone group 4.15years), the median survival period was over 7 years (resection alone group 4.46 years). There were significant differences between the two groups. The patients treated with resection plus vaccine were measured delayed-type hypersensitivity (DTH) reactions after vaccination, (indurative scope >5 mm).The magnitude of DTH was related to the prognosis. The 5-year survival rate was 80 % for those with indurations greater than 5 mm, compared with 30 % for those with indurations less than 5 mm. The 1-year survival rate was 96 % for 25patients treated with NDV immunotherapy. The total effective rate (CR+PR) was 24.00 % in NDV immunotherapy; complete remission (CR) in 1 case (4.00 %), partial remission (PR) in 5 cases (20.00 %), stabilizedin in 16 cases (64.00 %),progression (PD) in 1 case (4.00 %). After NDV vaccine

  17. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    Science.gov (United States)

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  18. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna;

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  19. Role of Hematopoietic Stem Cells in Inflammation of the Pancreas during Diabetes Mellitus.

    Science.gov (United States)

    Dygai, A M; Skurikhin, E G; Pershina, O V; Ermakova, N N; Krupin, V A; Ermolaeva, L A; Stakheeva, M N; Choinzonov, E L; Goldberg, V E; Reikhart, D V; Ellinidi, V N; Kravtsov, V Yu

    2016-02-01

    The model of streptozotocin-induced diabetes mellitus in C57Bl/6 mice was employed to study the role of precursors of insulin-producing β-cells, hematopoietic stem cells, and progenitor hematopoietic cells in inflammation. In addition to provoking hyperglycemia, streptozotocin elevated serum levels of IL-1β and hyaluronic acid, induced edema in the pancreatic insular tissue and its infiltration by inflammatory cells (neutrophils, lymphocytes, and macrophages) and fibroblasts. Inflammation in pancreatic islets was accompanied by necrotic processes and decreasing counts of multipotent progenitor β-cells (CD45(-), TER119(-), c-kit-1(-), and Flk-1(-)), oligopotent progenitor β-cells (CD45(-), TER119(-), CD133(+), and CD49f(low)), and insulinproducing β-cells (Pdx1(+)). Pancreatic infl ammation was preceded by elevation of the number of short-term hematopoietic stem cells (Lin-Sca-1(+)c-kit(+)CD34(+)) relative to long-term cells (Lin(-)Sca-1(+)c-kit(+)CD34(-)) in the bone marrow as well as recruitment of hematopoietic stem and progenitor cells into circulation. Transplantation of bone marrow hematopoietic stem and progenitor cells from diabetic C57Bl/6 donor mice to recipient CBA mice with 5-fluorouracilinduced leukopenia accelerated regeneration of granulocytopoiesis in recipient mice. PMID:26906195

  20. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  1. The association of killer cell immunoglobulin like receptor gene polylmorphism with cytomegalovirus infection after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    吴小津

    2013-01-01

    Objective To explore the influence of the killer cell immunoglobulin like receptor(KIR)gene polymorphism on cytomegalovirus(CMV)infection and pathogenesis after hematopoietic stem cell transplantation(HSCT)

  2. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  3. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011370 The efficacy and safety of second allogeneic hematopoietic stem cell transplantation for post-transplant hematologic malignancies relapse. CHEN Yuhong(陳育紅),et al.Instit Hematol,People’s Hosp,Peking Univ,Beijing 100044. Abstract:Objective To investigate the safety and efficacy of second allogeneic hematopoietic stem cell transplantation for the relapsed hematologic malignancies.Methods The data of 25 relapsed patients received the second allogeneic transplantation as a salvage therapy

  4. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: A pilot study

    Directory of Open Access Journals (Sweden)

    Sudesh Prabhakar

    2012-01-01

    Full Text Available Background: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with no effective treatment. Stem cell therapy may be one of the promising treatment options for such patients. Aim: To assess the feasibility, efficacy and safety of autologous bone marrow-derived stem cells in patients of ALS. Settings and Design: We conducted an open-label pilot study of autologous bone marrow-derived stem cells in patients with ALS attending the Neurology Clinic of a tertiary care referral centre. Materials and Methods: Ten patients with ALS with mean revised ALS Functional Rating Scale (ALSFRS-R score of 30.2 (± 10.58 at baseline received intrathecal autologous bone marrow-derived stem cells. Primary end point was improvement in the ALSFRS-R score at 90, 180, 270 and 365 days post therapy. Secondary endpoints included ALSFRS-R subscores, time to 4-point deterioration, median survival and reported adverse events. Paired t-test was used to compare changes in ALSFRS-R from baseline and Kaplan-Meier analysis was used for survival calculations. Results: There was no significant deterioration in ALSFRS-R composite score from baseline at one-year follow-up (P=0.090. The median survival post procedure was 18.0 months and median time to 4-point deterioration was 16.7 months. No significant adverse events were reported. Conclusion: Autologous bone marrow-derived stem cell therapy is safe and feasible in patients of ALS. Short-term follow-up of ALSFRS-R scores suggests a trend towards stabilization of disease. However, the benefit needs to be confirmed in the long-term follow-up period.

  5. Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells

    OpenAIRE

    Xiaoying Zhou; Barsky, Lora W.; Adams, Gregor B

    2013-01-01

    Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow suppor...

  6. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed.

  7. Secondary solid cancer screening following hematopoietic cell transplantation

    Science.gov (United States)

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  8. Dyslipidemia after allogeneic hematopoietic stem cell transplantation: evaluation and management.

    Science.gov (United States)

    Griffith, Michelle L; Savani, Bipin N; Boord, Jeffrey B

    2010-08-26

    Currently, approximately 15,000 to 20,000 patients undergo allogeneic hematopoietic stem cell transplantation (HSCT) annually throughout the world, with the number of long-term survivors increasing rapidly. In long-term follow-up after transplantation, the focus of care moves beyond cure of the original disease to the identification and treatment of late effects after HSCT. One of the more serious complications is therapy-related cardiovascular disease. Long-term survivors after HSCT probably have an increased risk of premature cardiovascular events. Cardiovascular complications related to dyslipidemia and other risk factors account for a significant proportion of late nonrelapse morbidity and mortality. This review addresses the risk and causes of dyslipidemia and impact on cardiovascular complications after HSCT. Immunosuppressive therapy, chronic graft-versus-host disease, and other long-term complications influence the management of dyslipidemia. There are currently no established guidelines for evaluation and management of dyslipidemia in HSCT patients; in this review, we have summarized our suggested approach in the HSCT population.

  9. Secondary solid cancer screening following hematopoietic cell transplantation.

    Science.gov (United States)

    Inamoto, Y; Shah, N N; Savani, B N; Shaw, B E; Abraham, A A; Ahmed, I A; Akpek, G; Atsuta, Y; Baker, K S; Basak, G W; Bitan, M; DeFilipp, Z; Gregory, T K; Greinix, H T; Hamadani, M; Hamilton, B K; Hayashi, R J; Jacobsohn, D A; Kamble, R T; Kasow, K A; Khera, N; Lazarus, H M; Malone, A K; Lupo-Stanghellini, M T; Margossian, S P; Muffly, L S; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, J R; Wirk, B; Wood, W A; Yong, A; Duncan, C N; Flowers, M E D; Majhail, N S

    2015-08-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients.

  10. T-cell-replete haploidentical transplantation versus autologous stem cell transplantation in adult acute leukemia: a matched pair analysis.

    Science.gov (United States)

    Gorin, Norbert-Claude; Labopin, Myriam; Piemontese, Simona; Arcese, William; Santarone, Stella; Huang, He; Meloni, Giovanna; Ferrara, Felicetto; Beelen, Dietrich; Sanz, Miguel; Bacigalupo, Andrea; Ciceri, Fabio; Mailhol, Audrey; Nagler, Arnon; Mohty, Mohamad

    2015-04-01

    Adult patients with acute leukemia in need of a transplant but without a genoidentical donor are usually considered upfront for transplantation with stem cells from any other allogeneic source, rather than autologous stem cell transplantation. We used data from the European Society for Blood and Marrow Transplantation and performed a matched pair analysis on 188 T-cell-replete haploidentical and 356 autologous transplants done from January 2007 to December 2012, using age, diagnosis, disease status, cytogenetics, and interval from diagnosis to transplant as matching factors. "Haploidentical expert" centers were defined as having reported more than five haploidentical transplants for acute leukemia (median value for the study period). The median follow-up was 28 months. Multivariate analyses, including type of transplant categorized into three classes ("haploidentical regular", "haploidentical expert" and autologous), conditioning intensity (reduced intensity versus myeloablative conditioning) and the random effect taking into account associations related to matching, showed that non-relapse mortality was higher following haploidentical transplants in expert (HR: 4.7; P=0.00004) and regular (HR: 8.98; Ptransplants was lower in expert centers (HR:0.39; P=0.0003) but in regular centers was similar to that for autologous transplants. Leukemia-free survival and overall survival rates were higher following autologous transplantation than haploidentical transplants in regular centers (HR: 1.63; P=0.008 and HR: 2.31; P=0.0002 respectively) but similar to those following haploidentical transplants in expert centers. We conclude that autologous stem cell transplantation should presently be considered as a possible alternative to haploidentical transplantation in regular centers that have not developed a specific expert program.

  11. A Rat Model of Autologous Oral Mucosal Epithelial Transplantation for Corneal Limbal Stem Cell Failure

    Institute of Scientific and Technical Information of China (English)

    Weihua Li; Qiaoli Li; Wencong Wang; Kaijing Li; Shiqi Ling; Yuanzhe Yang; Lingyi Liang

    2014-01-01

    Purpose:.To establish an animal model of autologous oral mucosa grafting for limbal stem cell deficiency. Methods:.The study was carried from August to October 2012. Fourteen SD rats were randomly and evenly allocated to study group A and control group B. Limbal stem cell defi-ciency was established by alkali burn in the right eye of each rat in both groups. Rats in group A received autologous oral mucosa strip transplantation following the chemical burn. Rats in group B did not receive surgery after the chemical burn. Topical antibiotics and dexamethasone were used in all rats. Corneal clarity,.corneal fluorescein staining,.oral mucosal graft survival, and complications at postoperative days 1,3,7, 14 were observed. Results:.The oral mucosa strip graft was detached in one rat in group A. Reepithelialization was observed starting from the graft position and was completed within 14 days in the re-maining 6 eyes in group A. However, persistent corneal ep-ithelium defect was observed in all eyes in group B, among which corneal melting and perforation was observed in 2 eyes and corneal opacification with neovascularization was ob-served in the remaining 5 eyes. Conclusion:.Autologous oral mucosa strip grafting for limbal stem cell deficiency can be achieved by a rat model following chemical burn. The fate of the transplanted oral mucosal ep-ithelial cells warrants further study. (Eye Science 2014; 29:1-5).

  12. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  13. OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    2015-09-01

    Full Text Available Generating engraftable hematopoietic stem cells (HSCs from pluripotent stem cells (PSCs is an ideal approach for obtaining induced HSCs for cell therapy. However, the path from PSCs to robustly induced HSCs (iHSCs in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study, we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2 accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly, the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore, the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.

  14. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    Science.gov (United States)

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  15. Cigarette Smoke Alters the Hematopoietic Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Robert W. Siggins

    2014-02-01

    Full Text Available Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs. Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT recipients with a history of smoking.

  16. Donor parity no longer a barrier for female-to-male hematopoietic stem cell transplantation

    OpenAIRE

    van Halteren, Astrid GS; Miranda P Dierselhuis; Netelenbos, Tanja; Fechter, Mirjam

    2014-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a widely applied treatment for disorders mainly involving the hematopoietic system. The success of this treatment depends on many different patient- and donor-specific factors. Based on higher CD34+ yields and superior clinical outcomes associated with the use of male donors, males are generally seen as the preferred HSCT donor. In addition, female donors are notorious for bearing memory type lymphocytes induced by previous pregnanc...

  17. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

    OpenAIRE

    Nijagal, Amar; Wegorzewska, Marta; Jarvis, Erin; Le, Tom; Tang, Qizhi; MacKenzie, Tippi C.

    2011-01-01

    Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we h...

  18. Regulatory T-cell immunotherapy for allogeneic hematopoietic stem-cell transplantation

    OpenAIRE

    Horch, Matthew; Nguyen, Vu H

    2012-01-01

    From mouse studies to recently published clinical trials, evidence has accumulated on the potential use of regulatory T cells (Treg) in preventing and treating graft-versus-host disease following hematopoietic-cell transplantation (HCT). However, controversies remain as to the phenotype and stability of various Treg subsets and their respective roles in vivo, the requirement of antigen-specificity of Treg to reduce promiscuous suppression, and the molecular mechanisms by which Treg suppress, ...

  19. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    Science.gov (United States)

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  20. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  1. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  2. Autologous peripheral blood stem cell transplantation in children and adolescents with non-Hodgkin lymphoma

    OpenAIRE

    Gui, Wei; Su, Liping; He, Jianxia; WANG, LIEYANG; Guan, Tao

    2015-01-01

    The aim of this study was to evaluate the effect and safety of autologous peripheral blood stem cell transplantation (APBSCT) in children and adolescents with non-Hodgkin lymphoma (NHL). Ten patients with NHL were analyzed retrospectively. In all the patients, lymph node enlargement was most frequently detected. Patients with a mediastinal mass presented with a cough, palpitation and shortness of breath. Extranodal patients presented with abdominal pain, inability to walk and vaginal bleeding...

  3. In Vivo Repopulating Activity Emerges at the Onset of Hematopoietic Specification during Embryonic Stem Cell Differentiation

    OpenAIRE

    Stella Pearson; Sara Cuvertino; Maud Fleury; Georges Lacaud; Valerie Kouskoff

    2015-01-01

    Summary The generation of in vivo repopulating hematopoietic cells from in vitro differentiating embryonic stem cells has remained a long-standing challenge. To date, hematopoietic engraftment has mostly been achieved through the enforced expression of ectopic transcription factors. Here, we describe serum-free culture conditions that allow the generation of in vivo repopulating hematopoietic cells in the absence of ectopically expressed factors. We show that repopulating activity arises imme...

  4. Heparinized crosslinked collagen structures for the expansion and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    Siebum, Bastiaan

    2007-01-01

    It is generally accepted that bone marrow contains niches that regulate the activity of hematopoietic stem cells (HSCs). These cells are the source of all different blood cells. In their niche the HSCs are localized in a specific microenvironment, where they interact with stromal cells, extracellula

  5. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  6. Hematopoietic stem cells: potential new applications for translational medicine.

    Science.gov (United States)

    Felfly, Hady; Haddad, Gabriel G

    2014-01-01

    Hematopoietic stem cells (HSC) are multipotent cells that produce the various lineages of blood and HSC transplantations (HSCT) are widely used to reconstitute damaged bone marrow (BM). Over time, HSCT has evolved for the treatment of non-blood diseases as well, brain in particular. However, HSCT required total myeloablation through irradiation and/or chemotherapy for the treatment of BM-related diseases, and HSCs are difficult to safely deliver in large amounts into the brain. In blood disorders, for a minimal myelosuppression to be sufficient and allow donor cells to engraft, it is necessary to determine the minimal percentage of normal BM cells needed to achieve phenotypic correction. Recent studies on animal models of ?-thalassemia and sickle cell disease (SCD), through Competitive Repopulation Assay (CRA) following lethal irradiation of recipients, demonstrated that an average of 25% normal BM cells allows the production of enough normal red blood cells to significantly correct the ?-thalassemia and SCD phenotypes, at the levels of BM, blood, histology, and survival, with normal donor cells contributing to 50-60% of peripheral red blood cells. Further assays using mild myelosuppression showed that long term sustained phenotypic correction can be obtained for both diseases through a novel transplantation strategy based on modulating four parameters: dose of irradiation/myelosuppression, number of transplanted cells, timing of cell injections, and number of cell doses. Through a minimal dose of irradiation of 1Gy (100 Rads) or 2Gy, two injections of BM cells within the first 24h after myelosuppression resulted in engraftment in 100% of mice and a sustained therapeutic mixed chimerism in ?-thalassemia, while three to four injections were needed to achieve a similar outcome in SCD. Following the success of these trials, we modified this novel HSCT strategy and applied it to determine whether we can protect mice from lethal stroke induced through the Middle

  7. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    Science.gov (United States)

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.

  8. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    Science.gov (United States)

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells. PMID:27313317

  9. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies

    DEFF Research Database (Denmark)

    Sorror, Mohamed L; Sandmaier, Brenda M; Storer, Barry E;

    2011-01-01

    A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions....

  10. Natural killer cell differentiation from hematopoietic stem cells: a comparative analysis of heparin- and stromal cell-supported methods

    NARCIS (Netherlands)

    Dezell, S.A.; Ahn, Y.O.; Spanholtz, J.; Wang, H.; Weeres, M.; Jackson, S.; Cooley, S.; Dolstra, H.; Miller, J.S.; Verneris, M.R.

    2012-01-01

    Natural killer (NK) cells differentiated from hematopoietic stem cells (HSCs) may have significant clinical benefits over NK cells from adult donors, including the ability to choose alloreactive donors and potentially more robust in vivo expansion. Stromal-based methods have been used to study the d

  11. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Science.gov (United States)

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  12. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  13. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  14. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  15. Autologous mesenchymal stem cells transplantation in adriamycin-induced cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Geng-shan; LI Guo-cao; ZHOU Qing; LI Wen-qiang; XU Hong-xin

    2005-01-01

    @@ Recent studies have suggested benefits of mesenchymal stem cells (MSCs) transplantation for the regeneration of cardiac tissue and function improvement of regionally infracted myocardium, but its effects on global heart failure is still little known. This study suggested the capacity of MSCs to transdifferentiate to cardiac cells in a nonischemic cardiomyopathic setting, and the effect of the cells on heart function.

  16. A question of ethics: selling autologous stem cell therapies flaunts professional standards.

    Science.gov (United States)

    Munsie, Megan; Hyun, Insoo

    2014-11-01

    The idea that the body's own stem cells could act as a repair kit for many conditions, including cardiac repair, underpins regenerative medicine. While progress is being made, with hundreds of clinical trials underway to evaluate possible autologous cell-based therapies, some patients and physicians are not prepared to wait and are pursuing treatments without evidence that the proposed treatments are effective, or even safe. This article explores the inherent tension between patients, practitioners and the need to regulate the development and commercialization of new cellular therapies--even when the cells come from the patient.

  17. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  18. Financial burden in recipients of allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Khera, Nandita; Chang, Yu-hui; Hashmi, Shahrukh; Slack, James; Beebe, Timothy; Roy, Vivek; Noel, Pierre; Fauble, Veena; Sproat, Lisa; Tilburt, Jon; Leis, Jose F; Mikhael, Joseph

    2014-09-01

    Although allogeneic hematopoietic cell transplantation (HCT) is an expensive treatment for hematological disorders, little is known about the financial consequences for the patients who undergo this procedure. We analyzed factors associated with its financial burden and its impact on health behaviors of allogeneic HCT recipients. A questionnaire was retrospectively mailed to 482 patients who underwent allogeneic HCT from January 2006 to June 2012 at the Mayo Clinic, to collect information regarding current financial concerns, household income, employment, insurance, out-of-pocket expenses, and health and functional status. A multivariable logistic regression analysis identified factors associated with financial burden and treatment nonadherence. Of the 268 respondents (56% response rate), 73% reported that their sickness had hurt them financially. All patients for whom the insurance information was available (missing, n = 13) were insured. Forty-seven percent of respondents experienced financial burden, such as household income decreased by >50%, selling/mortgaging home, or withdrawing money from retirement accounts. Three percent declared bankruptcy. Younger age and poor current mental and physical functioning increased the likelihood of financial burden. Thirty-five percent of patients reported deleterious health behaviors because of financial constraints. These patients were likely to be younger, have lower education, and with a longer time since HCT. Being employed decreased the likelihood of experiencing financial burden and treatment nonadherence due to concern about costs. A significant proportion of allogeneic HCT survivors experience financial hardship despite insurance coverage. Future research should investigate potential interventions to help at-risk patients and prevent adverse financial outcomes after this life-saving procedure.

  19. Allogeneic hematopoietic cell transplantation without fluconazole and fluoroquinolone prophylaxis.

    Science.gov (United States)

    Heidenreich, D; Kreil, S; Nolte, F; Reinwald, M; Hofmann, W-K; Klein, S A

    2016-01-01

    Fluoroquinolone (FQ) and fluconazole prophylaxis is recommended for patients undergoing allogeneic hematopoietic cell transplantation (alloHCT). However, due to an uncertain scientific basis and the increasing emergence of resistant germs, this policy should be questioned. Therefore, FQ and fluconazole prophylaxis was omitted in alloHCT at our center. In this retrospective analysis, all consecutive patients (n = 63) who underwent first alloHCT at our institution from September 2010 to September 2013 were included. Patients neither received FQ nor fluconazole prophylaxis. Day 100 mortality, incidence of febrile neutropenia, bacterial infections, and invasive fungal diseases (IFD) were assessed. Sixteen patients who started conditioning under antimicrobial treatment/prophylaxis due to pre-existing neutropenia (3/16), IFD (12/16), or aortic valve replacement (1/16) were excluded from the analysis. Finally, 47 patients were transplanted without prophylaxis as intended. Day 100 mortality was 9 %. Febrile neutropenia occurred in 62 % (29/47); 17/47 patients (36 %) experienced a blood stream infection (BSI) with detection of Gram-positive bacteria in 14 patients, Gram-negative bacteria in five patients, and candida in one patient, respectively. Coagulase-negative staphylococci were the most frequently isolated Gram-positive bacteria; 12/21 isolated Gram-positive and 3/6 Gram-negative bacteria were FQ resistant. In 21 % (10/47) of the patients, IFD (1x proven, 1x probable, and 8x possible) were diagnosed. To conclude, all three criteria, day 100 mortality, the incidence of IFD, and BSI, are in the range of published data for patients transplanted with FQ and fluconazole prophylaxis. These data demonstrate that alloHCT is feasible without FQ and fluconazole prophylaxis.

  20. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    Science.gov (United States)

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  1. The autologous bone marrow mononuclear cell transplantation by intracoronary route treat patients with severe heart failure after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    高连如

    2006-01-01

    Objective To investigate the chronic effects of intracoronary autologous bone marrow mononuclear cell (BM-MNCs) transplantation in patients with refractory heart failure (RIHF) after myocardial infarction. Methods Thirty patients with RIHF (LVEF<40%) were enrolled in this nonrandomized study, autologous BM-MNCs (5.0±0.7)×107 were transplanted with via infarct-related coronary artery in 16 patients and 14 patients received

  2. Bone marrow transplantation in mice as a tool for studying the role of hematopoietic cells in metabolic and cardiovascular diseases

    NARCIS (Netherlands)

    Aparicio-Vergara, Marcela; Shiri-Sverdlov, Ronit; de Haan, Gerald; Hofker, Marten H.

    2010-01-01

    Hematopoietic cells have been established as major players in cardiovascular disease, with an important role in the etiology of atherosclerotic plaque. In addition, hematopoietic cells, and in particular the cells of monocyte and macrophage lineages, have recently been unmasked as one of the main ca

  3. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential

    Institute of Scientific and Technical Information of China (English)

    Karen E JAY; Anne ROULEAU; T Michael UNDERHILL; Mickie BHATIA

    2004-01-01

    With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes.Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34-cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.

  4. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  5. Nucleofection, an efficient nonviral method to transfer genes into human hematopoietic stem and progenitor cells.

    NARCIS (Netherlands)

    Levetzow, G. von; Spanholtz, J.; Beckmann, J.; Fischer, J.; Kogler, G.; Wernet, P.; Punzel, M.; Giebel, B.

    2006-01-01

    The targeted manipulation of the genetic program of single cells as well as of complete organisms has strongly enhanced our understanding of cellular and developmental processes and should also help to increase our knowledge of primary human stem cells, e.g., hematopoietic stem cells (HSCs), within

  6. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  7. Autologous hematopoietic stem cell transplantation (AHSCT) for aggressive multiple sclerosis - whom, when and how.

    Science.gov (United States)

    Szczechowski, Lech; Śmiłowski, Marek; Helbig, Grzegorz; Krawczyk-Kuliś, Małgorzata; Kyrcz-Krzemień, Sławomira

    2016-10-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that leads to an inflammatory process resulting in demyelination and axonal degeneration. The most common form of MS is the relapsing-remitting MS (RRMS) characterized by the presence of numerous relapses. After few years of disease course, 90% of those patients eventually develop a secondary progressive form. About 10% of patients may suffer from a slowly progressive MS form - the primary progressive. The current treatment of RRMS includes immunomodulatory and immunosuppressive agents, which are effective, but usually in earlier and more benign forms. The immunomodulatory treatment has limited efficacy in aggressive forms of RRMS, and relapses occur despite treatment continuation. AHSCT should be considered as a therapeutic approach for patients with aggressive relapsing-remitting and aggressive progressive MS who failed conventional therapy. The mechanism of action of AHSCT for MS results from resetting the aberrant patient's immune system and eliminating the autoreactive T-lymphocytes. AHSCT can serve as an effective and safe procedure only when strict neurological eligibility criteria are adhered. The procedure should be performed in highly specialized hematological centers. The aim of our paper is to summarize the current eligibility criteria for AHSCT in MS patients as well as to present data on efficacy and safety of this approach. PMID:26577419

  8. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813236

  9. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry

    OpenAIRE

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan; Engel, James Douglas

    2012-01-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin−Sca1+c-KithiCD150+CD48−) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well d...

  10. Correlation between survivin mRNA expression and homoharringtonine induced apoptosis of malignant hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    CAI Zhen; BAO Han-ying; LIN Mao-fang

    2005-01-01

    Background The inhibitor of apoptosis (IAP) gene family is involved in the suppression of apoptotic cell death as well as an increasing number of seemingly unrelated cellular functions. It is not known, however, whether IAP expression in malignant hematopoietic cells is affected by chemotherapeutic agents such as homoharringtonine (HHT). In this study, we investigated mRNA expression levels of IAPs, especially survivin, in various hematopoietic cell lines in relation with apoptosis induced by HHT. Methods Semiquantitative reverse transcriptase polymerase chain reaction was used to determine survivin mRNA levels. Cell apoptosis was examined by flow cytometry. Cell viability and proliferation assay was evaluated by MTT. The experiments were performed on the malignant hematopoietic cell lines MUTZ-1, K562, Jurkat, RMPI and HL60, with or without survivin antisense-oligodeoxynucleotides (AS-ODN) and HHT.Results The expression levels of survivin mRNA were variable in the cell lines and negatively correlated to HHT induced cell apoptosis. Survivin AS-ODN significantly decreased mRNA level of survivin, but not those of bax and bcl-2. Survivin also inhibited MUTZ-1 cell growth and induced apoptosis in a dose dependent manner. AS-ODN and HHT showed synergistic effect on MUTZ-1 cell growth.Conclusion The apoptotic effect of HHT on the hematopoietic cell lines is associated with decreased level of survivin expression. Survivin could be a new marker for drug sensitivity and a new target for cancer treatment.

  11. Autologous bone marrow stem cells--properties and advantages.

    Science.gov (United States)

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  12. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT. PMID:27242795

  13. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  14. Placenta as a source of hematopoietic stem cells

    NARCIS (Netherlands)

    E.A. Dzierzak (Elaine); C. Robin (Catherine)

    2010-01-01

    textabstractThe placenta is a large, highly vascularised hematopoietic tissue that functions during the embryonic and foetal development of eutherian mammals. Although recognised as the interface tissue important in the exchange of oxygen, nutrients and waste products between the foetus and mother,

  15. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  16. PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Thoren, Lina A; Fog, Cathrine K; Jensen, Klaus T;

    2013-01-01

    Hematopoietic stem cells (HSC)(1) supply organisms with life-long output of mature blood cells. To do so, the HSC pool size has to be maintained by HSC self-renewing divisions. PRDM3 and PRDM16 have been documented to regulate HSC self-renewal, maintenance and function. We found Prdm11 to have...... similar expression patterns in the hematopoietic stem and progenitor cell (HSPC) compartments as Prdm3 and Prdm16. Therefore, we undertook experiments to test if PRDM11 regulates HSC self-renewal, maintenance and function by investigating the Prdm11(-/-) mice. Our data shows that phenotypic HSPCs...

  17. DI-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts

    Institute of Scientific and Technical Information of China (English)

    Baoquan Lu; Xiaoming Shang; Yongqiu Li; Hongying Ma; Chunqin Liu; Jianmin Li; Yingqi Zhang; Shaoxin Yao

    2011-01-01

    Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization.

  18. Preliminary Study of Local Immunotherapy with Autologous Cytokine-Induced Killer Cells for Glioma Patients

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Yonggao Mu; Zhongping Chen

    2008-01-01

    OBJECTIVE Cytokine-induced killer (CIK) cells are T-cells that display effective anti-tumor activity. In this study, we investigated the anti-tumor activity of CIK cells in vitro, and conducted a preliminary investigation using autologous CIK cells to treat glioma patients through local administration.METHODS The CIK cells were derived from peripheral blood monocytes (PBMCs) of the glioma patients. The anti-tumor activity of the CIK cells against human T98-G glioma cell was tested In vitro. In addition, the autologous CIK cells were locally administrated into the tumor cavity in the malignant glioma patients through an Ommaya reservoir which was pre-inserted during tumor resection. The 4×108 CIK cells in a 5 ml suspension were injected once a week 2 times per cycle. Five hundreds KU of IL-2 was injected every other day.RESULTS (I) With incubation, the CIK cells showed dual staining of CD3+CD56+ with a positive rate of 3.45% on day 10 and 55.2% on day 30. In vitro anti-tumor activity (againstT98-G cells) of the CIK cells reached the highest level after 18 days of incubation with different effector/target (E:T) ratios. (ii)Six patients received autologous CIK cell treatment (10 cycles).Two patients showed no recurrence and are still alive (24 and 10 months), while 4 cases had a recurrence 3 of which have died. The mean survival time from the first CIK cell treatment to the end of follow-up was 12.5 months. The main side-effects of the local CIK cell treatment was brain edema, which was controlled by mannitol in most of the cases. However for one patient injection of CIK cells and IL-2 had to be discontinued.CONCLUSION In vitro CIK cells are effective anti-glioma T-cells. Local therapy with CIK cells has potential anti-glioma efficacy and tolerable side-effects.

  19. Tissue Engineering Bone Using Autologous Progenitor Cells in the Peritoneum

    OpenAIRE

    Jinhui Shen; Ashwin Nair; Ramesh Saxena; Cheng Cheng Zhang; Joseph Borrelli; Liping Tang

    2014-01-01

    Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the periton...

  20. Effect of genistein on cell cycle of bone marrow hematopoietic cells in normal and irradiated mice

    International Nuclear Information System (INIS)

    Objective: To study the effects of genistein on cell cycle, proliferation and expression of bcl-2 gene in bone marrow hematopoietic cells (BMHCs) of normal and irradiated mice in order to explore mechanisms for protection of genistein from radiation-induced hematopoietic system injury. Methods: Adult male BALB/c mice were orally administered with genistein (160 mg/kg b.w.) 24 h before irradiation. Cell cycles in BMHCs of the normal and irradiated mice were measured by flow cytometry. The protein and mRNA expressions of bcl-2 gene in BMHCs were analyzed by Western blot and RT-PCR, respectively. Results: a) Transitory and significant changes occurred in the cell cycle of BMHCs in the normal mice after administration of genistein: first, the proliferation suppression of BMHCs was observed and most cells were arrested in G0/G1 phase on day 1; second, progression of cells from G0/G1 phase into S phase was observed, accumulation of cells in S phase on day 2, and back to the normal level on day 4. b) Genistein, administration 24 h before irradiation, decreased the percentage of BMHCs in G0/G1 phase and increased cell proliferation. Moreover, genistein up-regulated the protein and mRNA expressions of bcl-2 in BMHCs in the irradiated mice. Conclusions: It was shown that changing with cell cycle, strengthening of radioresistant, suppressing of radiation-induced apoptosis, and enhancing of proliferation and differentiation of BMHCs maybe the underlying mechanisms for genistein protection of hematopoietic system against radiation damage. (authors)

  1. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  2. Autologous bone marrow cell therapy for peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Botti C

    2012-09-01

    Full Text Available C Botti, C Maione, A Coppola, V Sica, G CobellisDepartment of General Pathology, Second University of Naples, Naples, ItalyAbstract: Inadequate blood supply to tissues caused by obstruction of arterioles and/or capillaries results in ischemic injuries – these injuries can range from mild (eg, leg ischemia to severe conditions (eg, myocardial infarction, stroke. Surgical and/or endovascular procedures provide cutting-edge treatment for patients with vascular disorders; however, a high percentage of patients are currently not treatable, owing to high operative risk or unfavorable vascular involvement. Therapeutic angiogenesis has recently emerged as a promising new therapy, promoting the formation of new blood vessels by the introduction of bone marrow–derived stem and progenitor cells. These cells participate in the development of new blood vessels, the enlargement of existing blood vessels, and sprouting new capillaries from existing blood vessels, providing evidence of the therapeutic utility of these cells in ischemic tissues. In this review, the authors describe peripheral arterial disease, an ischemic condition affecting the lower extremities, summarizing different aspects of vascular regeneration and discussing which and how stem cells restore the blood flow. The authors also present an overview of encouraging results from early-phase clinical trials using stem cells to treat peripheral arterial disease. The authors believe that additional research initiatives should be undertaken to better identify the nature of stem cells and that an intensive cooperation between laboratory and clinical investigators is needed to optimize the design of cell therapy trials and to maximize their scientific rigor. Only this will allow the results of these investigations to develop best clinical practices. Additionally, although a number of stem cell therapies exist, many treatments are performed outside international and national regulations and many

  3. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had hematoly......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...

  4. Prostate cancer cells metastasize to the hematopoietic stem cell niche in bone

    Institute of Scientific and Technical Information of China (English)

    Evan T Keller

    2011-01-01

    @@ The majority of men with advanced prostate cancer develop bone metastases as opposed to metastases at other sites.1 It has been unclear why prostate cancer selectively metastasizes to and proliferates in bone.Recently, Shiozawa et al.Delineated a mechanism that may account for the establishment of prostate cancer in bone.2 Specifically, they identified that prostate cancer cells compete with hematopoietic stem cells (HSC) for the osteoblast in the HSC niche of the bone.Defining the mechanisms through which prostate cancer cells establish themselves in bone is critical towards developing effective therapeutic strategies to prevent or target bone metastases.

  5. A problem-solving education intervention in caregivers and patients during allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bevans, Margaret; Wehrlen, Leslie; Castro, Kathleen; Prince, Patricia; Shelburne, Nonniekaye; Soeken, Karen; Zabora, James; Wallen, Gwenyth R

    2014-05-01

    The aim of this study was to determine the effect of problem-solving education on self-efficacy and distress in informal caregivers of allogeneic hematopoietic stem cell transplantation patients. Patient/caregiver teams attended three 1-hour problem-solving education sessions to help cope with problems during hematopoietic stem cell transplantation. Primary measures included the Cancer Self-Efficacy Scale-transplant and Brief Symptom Inventory-18. Active caregivers reported improvements in self-efficacy (p education; caregiver responders also reported better health outcomes such as fatigue. The effect of problem-solving education on self-efficacy and distress in hematopoietic stem cell transplantation caregivers supports its inclusion in future interventions to meet the multifaceted needs of this population.

  6. Outcome of Recipients of Hematopoietic Stem Cell Transplants Who Require Intensive Care Unit Support: A Single Institution Experience.

    Science.gov (United States)

    Galindo-Becerra, Samantha; Labastida-Mercado, Nancy; Rosales-Padrón, Jaime; García-Chavez, Jessica; Soto-Vega, Elena; Rivadeneyra-Espinoza, Liliana; León-Peña, Andres A; Fernández-Lara, Danitza; Dominguez-Cid, Monica; Anthon-Méndez, Javier; Arizpe-Bravo, Daniel; Ruiz-Delgado, Guillermo J; Ruiz-Argüelles, Guillermo J

    2015-01-01

    Admission to the intensive care unit (ICU) of a patient who has been grafted with hematopoietic stem cells is a serious event, but the role of the ICU in this setting remains controversial. Data were analyzed from patients who underwent autologous or allogeneic bone marrow transplantation at the Centro de Hematología y Medicina Interna de Puebla, México, between May 1993 and October 2014. In total, 339 patients were grafted: 150 autografts and 189 allografts; 68 of the grafted patients (20%) were admitted to the ICU after transplantation: 27% of the allografted and 11% of the autografted patients (p = 0.2). Two of 17 autografted patients (12%) and 5 of 51 allografted patients (10%) survived. All patients who required insertion of an endotracheal tube died, whereas 7 of 11 patients without invasive mechanical ventilation survived (p = 0.001). Only 10% of the grafted patients survived their stay in the ICU; this figure is lower than those reported from other centers and may reflect several facts, varying from the quality of the ICU support to ICU admission criteria to the initial management of all the grafts in an outpatient setting, which could somehow delay the arrival of patients to the hospital.

  7. A novel potent Fas agonist for selective depletion of tumor cells in hematopoietic transplants

    OpenAIRE

    Nahimana, A; AUBRY, D.; Lagopoulos, L; Greaney, P.; Attinger, A; Demotz, S; Dawson, K. M.; Schapira, M; Tschopp, J; Dupuis, M.; Duchosal, M A

    2011-01-01

    There remains a clear need for effective tumor cell purging in autologous stem cell transplantation (ASCT) where residual malignant cells within the autograft contribute to disease relapse. Here we propose the use of a novel Fas agonist with potent pro-apoptotic activity, termed MegaFasL, as an effective ex-vivo purging agent. MegaFasL selectively kills hematological cancer cells from lymphomas and leukemias and prevents tumor development at concentrations that do not reduce the functional ca...

  8. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Damgaard, Inge; Bryder, David;

    2008-01-01

    been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only...

  9. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    Science.gov (United States)

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  10. Advances in unrelated and alternative donor hematopoietic cell transplantation for nonmalignant disorders

    NARCIS (Netherlands)

    Shenoy, Shalini; Boelens, Jaap J.

    2015-01-01

    PURPOSE OF REVIEW: The role of hematopoietic cell transplantation in non-malignant disorders has increased exponentially with the recognition that multiple diseases can be controlled or cured if engrafted with donor-derived cells. This review provides an overview of advances made in alternative dono

  11. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    OpenAIRE

    Xiaojuan Ma; Yingmei Feng

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein r...

  12. The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion

    NARCIS (Netherlands)

    Kamminga, LM; Bystrykh, LV; Boer, AC; Houwer, S; Douma, J; Weersing, E; Dontje, B; de Haan, G

    2006-01-01

    The molecular mechanism responsible for a decline of stem cell functioning after replicative stress remains unknown. We used mouse embryonic fibroblasts (MEFs) and hematopoietic stem cells (HSCs) to identify genes involved in the process of cellular aging. In proliferating and senescent MEFs one of

  13. Financial Hardship and Patient-Reported Outcomes after Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Abel, Gregory A; Albelda, Randy; Khera, Nandita; Hahn, Theresa; Salas Coronado, Diana Y; Odejide, Oreofe O; Bona, Kira; Tucker-Seeley, Reginald; Soiffer, Robert

    2016-08-01

    Although hematopoietic cell transplantation (HCT) is the only curative therapy for many advanced hematologic cancers, little is known about the financial hardship experienced by HCT patients nor the association of hardship with patient-reported outcomes. We mailed a 43-item survey to adult patients approximately 180 days after their first autologous or allogeneic HCT at 3 high-volume centers. We assessed decreases in household income; difficulty with HCT-related costs, such as need to relocate or travel; and 2 types of hardship: hardship_1 (reporting 1 or 2 of the following: dissatisfaction with present finances, difficulty meeting monthly bill payments, or not having enough money at the end of the month) and "hardship_2" (reporting all 3). Patient-reported stress was measured with the Perceived Stress Scale-4, and 7-point scales were provided for perceptions of overall quality of life (QOL) and health. In total, 325 of 499 surveys (65.1%) were received. The median days since HCT was 173; 47% underwent an allogeneic HCT, 60% were male, 51% were > 60 years old, and 92% were white. Overall, 46% reported income decline after HCT, 56% reported hardship_1, and 15% reported hardship_2. In multivariable models controlling for income, those reporting difficulty paying for HCT-related costs were more likely to report financial hardship (odds ratio, 6.9; 95% confidence interval, 3.8 to 12.3). Hardship_1 was associated with QOL below the median (odds ratio, 2.9; 95% confidence interval, 1.7 to 4.9), health status below the median (odds ratio, 2.2; 95% confidence interval, 1.3 to 3.6), and stress above the median (odds ratio, 2.1; 95% confidence interval, 1.3 to 3.5). In this sizable cohort of HCT patients, financial hardship was prevalent and associated with worse QOL and higher levels of perceived stress. Interventions to address patient financial hardship-especially those that ameliorate HCT-specific costs-are likely to improve patient-reported outcomes. PMID:27184627

  14. Our Experience with Autologous Bone Marrow Stem Cell Application in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mukund K

    2009-01-01

    Full Text Available Background - Use of autologous bone marrow stem cell is a newly evolving treatment modality for end stage cardiac failure as reported in the literature. We report our experience with two patients with dilated cardiomyopathy who underwent this treatment after failure of maximal conventional therapy. Methods - A 29 year old Male patient with history of orthopnea and PND, with a diagnosis of dilated cardiomyopathy and echocardiographic evidence of severe LV dysfunction was referred for further treatment. His echo on admission showed EF of 17% and no other abnormal findings except elevated bilirubin levels. He was in NYHA functional class IV. He received intracoronary injection of autologous bone marrow stem cells in January 2009. 254X106 cells were injected with a CD34+ of 0.20%. His clinical condition stabilized and he was discharged home. He received a second injection of 22X106 in vitro expanded stem cells with a CD34+ of 0.72% in Aug 2009. He is now in NYHA class II-III with EF 24%. A 31year old Male patient with history of increasing shortness of breath, severe over the past 3-4 days was admitted for evaluation and treatment. His echo on admission showed EF of 20% and was in NYHA functional class IV. Coronary angiogram was normal and he was stabilized on maximal anti failure measures. He received intracoronary autologous bone marrow stem cell injection of 56X106 with a CD34+ of 0.53% in August 2009. His clinical condition stabilized over the next 10 days and he was discharged home. Conclusions - In our experience of two cases of dilated cardiomyopathy, safety of intracoronary injection of autologous bone marrow stem cells both isolated and in vitro expanded has been proven in both the cases with efficacy proven in one of the cases. Long term follow-up of these two cases and inclusion of more number of similar cases where all available conventional therapies have not resulted in significant improvement for such studies are planned.

  15. [Outcomes of using autologous peripheral-blood stem cells in patients with chronic lower arterial insufficiency].

    Science.gov (United States)

    Maksimov, A V; Kiiasov, A P; Plotnikov, M V; Maianskaia, S D; Shamsutdinova, I I; Gazizov, I M; Mavlikeev, M O

    2011-01-01

    Presented herein are the outcomes of using autologous peripheral blood stem cells (SCs) in patients with stage II В lower limb chronic obliterating diseases (according to A.V. Pokrovsky's classification). Autologous SCs had previously been stimulated by means of the recombinant granulocytic colony stimulating factor (G-CSF) for five days. On day six, we performed mobilization of the peripheral blood stem cells on the MSC+ unit by means of leukopheresis followed by intramuscular administration of half of the obtained dose into the affected extremity. The mean number of the transplanted mononuclears amounted to 6.73 ± 2.2 x 10(9) cells, with the number of CD34+ cells averaging 2.94 ± 2.312 x 10(7). Assessing the therapeutic outcomes at 3 and 6 months of follow-up showed a statistically significant increase in the ankle-brachial pressure index (ABPI) [being at baseline 0.59 ± 0.04, at 3 months - 0.66 ± 0.04 (P=0.001), and after 6 months - 0.73 ± .08 (P=0.035)], accompanied and followed by improved measures of the treadmill test, with the pain-free walking distance at baseline equalling 102.2 ± 11.55 m, after 3 months - 129 ± 11.13 m (P<0.001), and after 6 months - 140 ± 13.11 m=0.021 vs baseline). The findings of the immunohistochemical study confirmed the development of neoangiogenesis in the skeletal muscle and a 25 percent increase in the capillary-network density following administration of autologous stem cells into the muscle. The method of transplanting peripheral-blood autologous stem cells for treatment of patients presenting with distal forms of chronic obliterating insufficiency of the lower limbs proved safe and efficient. The findings obtained during this study made it possible to recommend extending the indications for its application at the expense of patients with critical ischaemia. PMID:21983456

  16. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.;

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases......-dose TBI, both Serpina1 mRNA and protein concentrations were increased in BM extracts, compared with extracts that were obtained from controls. The inhibitory activity in BM extracts of irradiated mice was reversed by addition of an Ab directed against Serpina1. To further study a possible in vivo role...

  17. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Directory of Open Access Journals (Sweden)

    Soner Solmaz

    2015-12-01

    Full Text Available Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature.

  18. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Science.gov (United States)

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  19. An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells.

    Science.gov (United States)

    Bose, Anamika; Ghosh, Tithi; Baral, Rathindranath

    2016-08-01

    Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management. PMID:27311851

  20. Black hairy tongue associated with allo peripheral blood hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    LUO Yi; ZOU Ping; LI Qiu-bai; YOU Yong

    2010-01-01

    @@ Tongue lesions resulting from mucositis are a frequent complication of high-dose chemotherapy and irradiation. They are very common in patients with hematopoietic stem cell transplantation, and tongue lesions due to other causes have also been reported. Black hairy tongue (BHT) is a special tongue lesion, not rare in the population with tobacco abuse, but so far it has not been reported after allo peripheral blood hematopoietic stem cell transplantation (allo-PBHST). Here we presented a patient who developed BHT after allo-PBHST and discussed the factors that may cause this condition.

  1. Circulating hematopoietic progenitors and CD34+ cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: experiences from a single institution

    Directory of Open Access Journals (Sweden)

    Yu JT

    2016-02-01

    Full Text Available Jui-Ting Yu,1,2,* Shao-Bin Cheng,3,* Youngsen Yang,1 Kuang-Hsi Chang,4 Wen-Li Hwang,1 Chieh-Lin Jerry Teng,1,5,6 1Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, 2Division of Hematology/Medical Oncology, Tungs' Taichung MetroHarbor Hospital, 3Division of General Surgery, Department of Surgery, 4Department of Medical Research and Education, Taichung Veterans General Hospital, 5Department of Life Science, Tunghai University, 6School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China *These authors contributed equally to this work Background: Previous studies have shown that the numbers of both circulating hematopoietic progenitor cell (HPC and CD34+ cell are positively correlated with CD34+ cell harvest yield. However, the minimal numbers of both circulating HPCs and CD34+ cells required for performing an efficient hematopoietic stem cell (HSC harvest in lymphoma and myeloma patients have not been defined in our institution. Patients and methods: Medical records of 50 lymphoma and myeloma patients undergoing peripheral blood HSC harvest in our institution were retrospectively reviewed. The minimal and optimal HSC harvest yield required for the treatment was considered to be ≥2×106 CD34+ cells/kg and ≥5×106 CD34+ cells/kg, respectively. Results: The minimally required or optimal HSC yield obtained was not influenced by age (≥60 years, sex, underlying malignancies, disease status, multiple rounds of chemotherapy, or history of radiotherapy. The numbers of both circulating HPC and CD34+ cell were higher in patients with minimally required HSC yields (P=0.000 for HPC and P=0.000 for CD34+ cell and also in patients with optimal HSC yields (P=0.011 for HPC and P=0.006 for CD34+ cell. The cell count cutoff for obtaining minimally required HSC harvest was determined to be 20/mm3 for HPCs and 10/mm3 for CD34+ cells. Furthermore, the cell count cutoff for obtaining

  2. Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    GU Yong-quan; LI Xue-feng; YU Heng-xi; CUI Shi-jun; WANG Zhong-gao; ZHANG Jian; GUO Lian-rui; QI Li-xing; ZHANG Shu-wen; XU Juan; LI Jian-xin; LUO Tao; JI Bing-xin

    2008-01-01

    Background Many treatment options for lower limb ischemia are difficult to apply for the patients with poor arterial outflow or with poor general conditions.The effect of medical treatment alone is far from ideal.especially in patients with diabetic foot.A high level amputation is inevitable in these patients.This study aimed to explore the effect of transplantation of autologous bone marrow mononuclear cells on the treatment of lower limb ischemia and to compare the effect of intra-artedal transplantation with that of intra-muscular transplantation.Methods In this clinical trial,32 patients with lower limb ischemia were divided into two groups.Group 1 (16 patients with 18 affected limbs) received transplantation of autologous bone marrow mononuclear cells by intra-muscular injection into the affected limbs;and group 2(16 patients with 17 affected limbs)received transplantation of autologous bone marrow mononucJear cells by intra-arterial injection into the affected limbs.Rest pain,coldness,ankle/brachial index (ABI),claudication,transcutaneous oxygen pressure(tcPO2)and angiography(15 limbs of 14 patients)were evaluated before and after the mononuclear cell transplantation to determine the effect of the treatment.Results Two patients died from heart failure.The improvement of rest pain was seen in 76.5%(13/17)of group 1 and 93.3%(14/15)of group 2.The improvement of coldness was 100%in both groups.The increase of ABI was 44.4%(8/18)in group 1 and 41.2%(7,17)in group 2.The value of tcPO2 increased to 20 mmHg or more in 20 limbs.Nine of 15 limbs which underwent angiography showed rich collaterals.Limb salvage rate was 83.3%(15,18)in group 1 and 94.1%(16/17)in group 2.There was no statistically significant difference in the effectiveness of the treatment between the two groups.Conclusions Transplantation of autologous bone marrow mononucJear cells is a simple,safe and effective method for the treatment of lower limb ischemia,and the two approaches for the implantation

  3. Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Ying Xia; Chengchuan Jiang; Zuowei Cao; Keshan Shi; Yang Wang

    2012-01-01

    Objective:To investigate the therapeutic effects of co-transplantation with Schwann cells (SCs) and human embryonic nerve stem cells (NSCs) on macaque Parkinson's disease (PD). Methods:Macaque autologous SCs and human embryonic NSCs were adopted for the treatment of macaque PD. Results: Six months after transplantation, positron emission computerized tomography showed that 18F-FP-β-CIT was significantly concentrated in the injured striatum in the co-transplanted group. Immunohistochemical staining of transplanted area tissue showed migration of tyroxine hydroxylase positive cells from the transplant area to the surrounding area was significantly increased in the co-transplanted group. Conclusions: Co-transplantation of SCs and NSCs could effectively cure PD in macaques. SCs harvested from the autologous peripheral nerves can avoid rejection and the ethics problems, so it is expected to be applied clinically.

  4. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells

    Science.gov (United States)

    Hoban, Megan D.; Cost, Gregory J.; Mendel, Matthew C.; Romero, Zulema; Kaufman, Michael L.; Joglekar, Alok V.; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R.; Cooper, Aaron R.; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E.; Zhang, Lei; Rebar, Edward J.; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D.; Holmes, Michael C.; Reik, Andreas; Hollis, Roger P.

    2015-01-01

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By codelivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34+ hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγnull mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34+ cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. PMID:25733580

  5. Development of a Novel Method for Harvest of Hematopoietic Stem Cells%一种新的造血干细胞获取方法的建立

    Institute of Scientific and Technical Information of China (English)

    武晓云; 王世立

    2011-01-01

    目的 建立一种新的造血干细胞获取方法,为临床应用提供实验依据.方法 将明胶海绵移植到小鼠后肢的大腿内侧肌间隙,12d后分离明胶海绵中的迁移细胞.采用流式细胞术和免疫荧光法检测迁移细胞和骨髓细胞中CD34+、Sca-1+和CD34+Sca-1+细胞的表达,利用体外造血克隆分析迁移细胞和骨髓细胞中造血克隆的密度.结果 迁移细胞的数量在移植12d时达最大;迁移细胞中CD34+、Sca-1+和CD34Sca-1+细胞的比例明显高于骨髓细胞(P<0.05),造血克隆比例也明显高于骨髓(P<0.01).结论 利用生物材料明胶海绵成功建立了一种高效的造血干细胞获取方法,可实现自体细胞治疗.%Objective To develop a novel method for harvest of hematopoietic stem cells and provide an experimental basis for clinical application. Methods Gelatin sponges (GS) were implanted into the spatium intermusculare of mice hind limbs, in which the migrating cells were isolated 12 d later. The expressions of CD34+, Sca-1+, and CD34+Sca-l+ cells in migrating cells (MCs) and bone marrow cells (BMCs) were determined by flow cytometry and IFA, and the density of hematopoietic colonies by colony-forming cell assay in vitro. Results The count of migrating cells reached the maximum 12 d after transplantation. The proportions of CD34+, Sca-1+ and CD34+Sca-l+ cells (each P < 0. 05) as well as the density of hematopoietic colonies were significantly higher in MCs than in BMCs (P < 0. 01). Conclusion An effective method for harvest of hematopoietic stem cells was successfully developed with GS as a biomaterial, by which autologous cell therapy might be feasible.

  6. Treatment of severe post-traumatic bone defects with autologous stem cells loaded on allogeneic scaffolds.

    Science.gov (United States)

    Vulcano, Ettore; Murena, Luigi; Cherubino, Paolo; Falvo, Daniele A; Rossi, Antonio; Baj, Andreina; Toniolo, Antonio

    2012-12-01

    Mesenchymal stem cells may differentiate into angiogenic and osteoprogenitor cells. The effectiveness of autologous pluripotent mesenchymal cells for treating bone defects has not been investigated in humans. We present a case series to evaluate the rationale of using nucleated cells from autologous bone marrow aspirates in the treatment of severe bone defects that failed to respond to traditional treatments. Ten adult patients (mean age, 49.6-years-old) with severe bone defects were included in this study. Lower limb bone defects were >or=5 cm3 in size, and upper limb defects .or=2 cm3. Before surgery, patients were tested for antibodies to common pathogens. Treatment consisted of bone allogeneic scaffold enriched with bone marrow nucleated cells harvested from the iliac crest and concentrated using an FDA-approved device. Postsurgery clinical and radiographic follow-up was performed at 1, 3, 6, and 12 months. To assess viability, morphology, and immunophenotype, bone marrow nucleated cells were cultured in vitro, tested for sterility, and assayed for the possible replication of adventitious (contaminating) viruses. In 9 of 10 patients, both clinical and radiographic healing of the bone defect along with bone graft integration were observed (mean time, 5.6 months); one patient failed to respond. No post-operative complications were observed. Bone marrow nucleated cells were enriched 4.49-fold by a single concentration step, and these enriched cells were free of microbial contamination. The immunophenotype of adherent cells was compatible with that of mesenchymal stem cells. We detected the replication of Epstein-Barr virus in 2/10 bone marrow cell cultures tested. Hepatitis B virus, cytomegalovirus, parvovirus B19, and endogenous retrovirus HERV-K replication were not detected. Overall, 470 to 1,150 million nucleated cells were grafted into each patient. This case series, with a mean follow-up of almost 2 years, demonstrates that an allogeneic bone scaffold

  7. Development of Hematopoietic and Endothelial Cells from Human Embryonic Stem Cells: Lessons from the Studies using Mouse as a Model

    OpenAIRE

    Anna Jezierski; Albert Swedani; Lisheng Wang

    2007-01-01

    The current progress using the human embryonic stem cell (hESC) model system has provided much insight into the early origins of the hematopoietic and endothelial lineages, particularly the elusive hemangioblast. Recently, the cellular hierarchy and molecular regulation controlling hematopoietic commitment have been further elucidated. These findings not only provide new insights into early human development, but also advance the knowledge required to develop techniques capable of generating ...

  8. Basal Cell Skin Cancer after Total-Body Irradiation and Hematopoietic Cell Transplantation

    OpenAIRE

    Schwartz, Jeffrey L.; Kopecky, Kenneth J.; Robert W. Mathes; Leisenring, Wendy M; Friedman, Debra L.; Deeg, H. Joachim

    2009-01-01

    Previous studies identified radiation therapy as a key modifier of basal cell carcinoma (BCC) risk in survivors of hematopoietic cell transplantation (HCT). In the present analysis, risk of BCC was analyzed in relation to age at transplant, attained age, race, total-body irradiation (TBI), and radiation fractionation in 6,306 patients who received HCT at ages 0–65 years after conditioning regimens with (n = 3870) or without (n = 2436) TBI, and who were followed from 100 days to 36.2 years aft...

  9. Outcome determinants for Transformed Indolent Lymphomas treated with or without Autologous Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Madsen, C; Pedersen, M B; Vase, M Ø;

    2015-01-01

    of autologous stem-cell transplantation (ASCT) is still debated. The purpose of this study was to determine whether the outcome of TIL patients improved if they, at transformation, also received ASCT. Furthermore, we investigated the outcome of cases with histologically low- and high-grade components diagnosed......%; P = 0.07; PFS 53% versus 6%; P = 0.002), regardless of prior rituximab therapy. The beneficial effect of ASCT was significantly higher in patients who had not received rituximab at IL stage. CONCLUSIONS: ASCT improved the outcome in sequential, but not composite/discordant TIL. The beneficial impact...

  10. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  11. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    Science.gov (United States)

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability.

  12. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  13. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard;

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V-positive c......We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...... surface-negative despite effective induction of apoptosis. Interestingly, inhibition of endolysosomes or normal ER/Golgi transport did not affect Hsp70 surface expression. Intracellular calcium and the transcription factor Sp1, which has been shown previously to be important for the intracellular stress...

  14. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man

    Science.gov (United States)

    Holland, Amanda M.; Zakrzewski, Johannes L.; Goldberg, Gabrielle L.; Ghosh, Arnab

    2016-01-01

    Hematopoietic stem cell transplantation is a curative therapy for hematological malignancies. T cell deficiency following transplantation is a major cause of morbidity and mortality. In this review, we discuss adoptive transfer of committed precursor cells to enhance T cell reconstitution and improve overall prognosis after transplantation. PMID:19015856

  15. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    Science.gov (United States)

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  16. Hematopoietic Stem Cell Transplantation in Adult Sickle Cell Disease: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Hakan Özdoğu

    2015-09-01

    Full Text Available Sickle cell disease-related organ injuries cannot be prevented despite hydroxyurea use, infection prophylaxis, and supportive therapies. As a consequence, disease-related mortality reaches 14% in adolescents and young adults. Hematopoietic stem cell transplantation is a unique curative therapeutic approach for sickle cell disease. Myeloablative allogeneic hematopoietic stem cell transplantation is curative for children with sickle cell disease. Current data indicate that long-term disease-free survival is about 90% and overall survival about 95% after transplantation. However, it is toxic in adults due to organ injuries. In addition, this curative treatment approach has several limitations, such as difficulties to find donors, transplant-related mortality, graft loss, graft-versus-host disease (GVHD, and infertility. Engraftment effectivity and toxicity for transplantations performed with nonmyeloablative reduced-intensity regimens in adults are being investigated in phase 1/2 trials at many centers. Preliminary data indicate that GVHD could be prevented with transplantations performed using reduced-intensity regimens. It is necessary to develop novel regimens to prevent graft loss and reduce the risk of GVHD.

  17. Success of an International Learning Health Care System in Hematopoietic Cell Transplantation: The American Society of Blood and Marrow Transplantation Clinical Case Forum.

    Science.gov (United States)

    Barba, Pere; Burns, Linda J; Litzow, Mark R; Juckett, Mark B; Komanduri, Krishna V; Lee, Stephanie J; Devlin, Sean M; Costa, Luciano J; Khan, Shakila; King, Andrea; Klein, Andreas; Krishnan, Amrita; Malone, Adriana; Mir, Muhammad A; Moravec, Carina; Selby, George; Roy, Vivek; Cochran, Melissa; Stricherz, Melisa K; Westmoreland, Michael D; Perales, Miguel-Angel; Wood, William A

    2016-03-01

    The American Society for Blood and Marrow Transplantation (ASBMT) Clinical Case Forum (CCF) was launched in 2014 as an online secure tool to enhance interaction and communication among hematopoietic cell transplantation (HCT) professionals worldwide through the discussion of challenging clinical care issues. After 14 months, we reviewed clinical and demographical data of cases posted in the CCF from January 29, 2014 to March 18, 2015. A total of 137 cases were posted during the study period. Ninety-two cases (67%) were allogeneic HCT, 29 (21%) were autologous HCT, and in 16 (12%), the type of transplantation (autologous versus allogeneic) was still under consideration. The diseases most frequently discussed included non-Hodgkin lymphoma (NHL; n = 30, 22%), acute myeloid leukemia (n = 23, 17%), and multiple myeloma (MM; n = 20, 15%). When compared with the US transplantation activity reported by the US Department of Health and Human Services, NHL and acute lymphoblastic leukemia cases were over-represented in the CCF, whereas MM was under-represented (P case (range, 1 to 6). Particularly common topics included whether transplantation was indicated (n = 57, 41%), conditioning regimen choice (n = 44, 32%), and post-HCT complications after day 100 (n = 43, 31%). The ASBMT CCF is a successful tool for collaborative discussion of complex cases in the HCT community worldwide and may allow identification of areas of controversy or unmet need from clinical, educational and research perspectives.

  18. Hematopoietic cells as sources for patient-specific iPSCs and disease modeling.

    Science.gov (United States)

    Ye, Zhaohui; Liu, Cyndi F; Jang, Yoon-Young

    2011-09-01

    In addition to being an attractive source for cell replacement therapy, human induced pluripotent stem cells (iPSCs) also have great potential for disease modeling and drug development. During the recent several years, cell reprogramming technologies have evolved to generate virus-free and integration-free human iPSCs from easily accessible sources such as patient skin fibroblasts and peripheral blood samples. Hematopoietic cells from umbilical cord blood banks and Epstein Barr virus (EBV) immortalized B lymphocyte repositories represent alternative sources for human genetic materials of diverse backgrounds. Ability to reprogram these banked blood cells to pluripotency and differentiate them into a variety of specialized and functional cell types provides valuable tools for studying underlying mechanisms of a broad range of diseases including rare inherited disorders. Here we describe the recent advances in generating disease specific human iPSCs from these different types of hematopoietic cells and their potential applications in disease modeling and regenerative medicine. PMID:21857158

  19. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  20. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  1. Hematopoietic stem cells: ex-vivo expansion and therapeutic potential for myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Jingwei Lu

    2010-03-01

    Full Text Available Jingwei Lu, Vincent J Pompili, Hiranmoy DasCardiovascular Stem Cell Research Laboratory, The Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USAAbstract: Despite recent advances in cardiovascular medicine, ischemic heart disease remains the major cause of death in the United States and abroad. Cell-based therapy for degenerative diseases like myocardial ischemia using stem cells is currently under serious investigation. Various types of stem cells are being considered to be candidates for cell transplantation in cell-based therapy. Hematopoietic stem cells are one of the most promising cell types as several studies demonstrated their ability to improve ischemic cardiac functions by enhancing neovascularization and by reducing the total size of scar tissue. However, in order to procure sufficient numbers of functional stem cells, ex-vivo expansion technology became critically important. In this review, we focus on the state-of-the-art ex-vivo technology for the expansion of hematopoietic stem cells, and the underlying mechanisms regulating stem cell self-renewal as well as differentiation.Keywords: ischemic heart disease, ex-vivo expansion, hematopoietic stem cells, cytokines, nanofibers

  2. Analysis of leptin signalling in hematopoietic cells using an adapted MAPPIT strategy.

    Science.gov (United States)

    Montoye, T; Piessevaux, J; Lavens, D; Wauman, J; Catteeuw, D; Vandekerckhove, J; Lemmens, I; Tavernier, J

    2006-05-29

    The adipocyte-secreted hormone leptin participates in the regulation of hematopoiesis and enhances proliferation of hematopoietic cells. We used an adaptation of the MAPPIT mammalian two-hybrid method to study leptin signalling in a hematopoietic setting. We confirmed the known interactions of suppressor of cytokine signalling 3 (SOCS3) and STAT5 with the Y985 and Y1077 motifs of the leptin receptor, respectively. We also provide evidence for novel interactions at the Y1077 motif, including phospholipase C gamma and several members of the SOCS protein family, further underscoring the important role of the Y1077 motif in leptin signalling. PMID:16698021

  3. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Cella Luigi

    2011-08-01

    Full Text Available Abstract Purpose Bisphosphonate - related osteonecrosis of the JAW (BRONJ is a well known side effect of bisphosphonate therapies in oncologic and non oncologic patients. Since to date no definitive consensus has been reached on the treatment of BRONJ, novel strategies for the prevention, risk reduction and treatment need to be developed. We report a 75 year old woman with stage 3 BRONJ secondary to alendronate and pamidronate treatment of osteoporosis. The patient was unresponsive to recommended treatment of the disease, and her BRONJ was worsening. Since bone marrow stem cells are know as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone and other tissue, we performed autologous bone marrow stem cell transplantation into the BRONJ lesion of the patient. Methods Under local anesthesia a volume of 75 ml of bone marrow were harvested from the posterior superior iliac crest by aspiration into heparinized siringes. The cell suspension was concentrated, using Ficoll - Hypaque® centrifugation procedures, in a final volume of 6 ml. Before the injection of stem cells into the osteonecrosis, the patient underwent surgical toilet, local anesthesia was done and spongostan was applied as a carrier of stem cells suspension in the bone cavity, then 4 ml of stem cells suspension and 1 ml of patient's activated platelet-rich plasma were injected in the lesion of BRONJ. Results A week later the residual spongostan was removed and two weeks later resolution of symptoms was obtained. Then the lesion improved with progressive superficialization of the mucosal layer and CT scan, performed 15 months later, shows improvement also of bone via concentric ossification: so complete healing of BRONJ (stage 0 was obtained in our patient, and 30 months later the patient is well and without signs of BRONJ. Conclusion To our knowledge this is the first case of BRONJ successfully treated with

  4. High dose chemotherapy with autologous stem cell transplantation in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Popp, Henning

    2007-06-01

    Full Text Available Background: High-dose chemotherapy (HDT with autologous stem cell transplantation (ASCT plays an important role in the treatment of aggressive non-Hodgkin’s lymphoma (NHL. We report on a retrospective analysis of all patients with diffuse large B-cell lymphoma who were consecutively treated with HDT followed by ASCT at the University Hospital of Bonn, Germany, between 1996 and 2004. Methods: A total of 25 patients were transplanted for biopsy-proven diffuse large B-cell lymphoma (DLBCL. Eight patients received up-front HDT as first-line therapy, four patients received HDT due to incomplete response to conventional induction chemotherapy, and six patients were treated for primary refractory disease. Seven patients had recurrent lymphoma. Results: A complete remission (CR was achieved in 14 of 25 patients (56%. Estimated 3-year survival for patients treated with upfront HDT, chemosensitive patients with incomplete response to first line therapy, and patients with chemosensitive relapsed disease was 87.5%, 50.0% and 60.0%, respectively. In contrast, no patient with primary refractory disease or relapsed disease lacking chemosensitivity lived longer than 8 months. Chemosensitivity was the only significant prognostic factor for overall survival (OS in multivariate analysis. Conclusions: Our results confirm that HDT and ASCT is a highly effective therapy in patients with DLBCL leading to long-term survival in a substantial proportion of patients. Patients treated upfront for high-risk disease, incomplete response to conventional first-line therapy, or for chemosensitive relapse have a good prognosis. In contrast, patients with primary chemorefractory disease and patients with relapsed disease lacking chemosensitivity do not benefit from HDT with ASCT.

  5. IL-18 single nucleotide polymorphisms in hematologic malignancies with HLA matched sibling donor allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    蔡小矜

    2014-01-01

    Objective To explore the impact of interleukin-18(IL-18)single nucleotide polymorphisms on outcomes of hematologic malignancies with HLA-matched sibling donor hematopoietic stem cell transplantation(allo-HSCT).Methods Single-nucleotide polymorphisms in IL-18 promoter was detected by PCR-sequence-specific primer analysis(PCR-SSP)in 93 recipients and their HLA matched sibling donors.Hematopoietic reconstitution,

  6. RARγ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation

    Science.gov (United States)

    Purton, Louise E.; Dworkin, Sebastian; Olsen, Gemma Haines; Walkley, Carl R.; Fabb, Stewart A.; Collins, Steven J.; Chambon, Pierre

    2006-01-01

    Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation. PMID:16682494

  7. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.

    NARCIS (Netherlands)

    Chan, W.I.; Hannah, R.L.; Dawson, M.A.; Pridans, C.; Foster, D.; Joshi, A.; Gottgens, B.; Deursen, J.M.A. van; Huntly, B.J.

    2011-01-01

    The transcriptional coactivator Cbp plays an important role in a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Although studies have shown its requirement for hematopoietic stem cell (HSC) development, its role in adult HSC maintenance, as well as the cel

  8. Basic oral care for hematology–oncology patients and hematopoietic stem cell transplantation recipients

    DEFF Research Database (Denmark)

    Elad, Sharon; Raber-Durlacher, Judith E; Brennan, Michael T;

    2015-01-01

    PURPOSE: Hematology-oncology patients undergoing chemotherapy and hematopoietic stem cell transplantation (HSCT) recipients are at risk for oral complications which may cause significant morbidity and a potential risk of mortality. This emphasizes the importance of basic oral care prior to, during...

  9. Introduction of a quality management system and outcome after hematopoietic stem-cell transplantation

    NARCIS (Netherlands)

    Gratwohl, A.; Brand, R.; Niederwieser, D.; Baldomero, H.; Chabannon, C.; Cornelissen, J.; Witte, T.J.M. de; Ljungman, P.; McDonald, F.; McGrath, E.; Passweg, J.; Peters, C.; Rocha, V.; Slaper-Cortenbach, I.; Sureda, A.; Tichelli, A.; Apperley, J.

    2011-01-01

    PURPOSE: A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We ther

  10. Introduction of a Quality Management System and Outcome After Hematopoietic Stem-Cell Transplantation

    NARCIS (Netherlands)

    Gratwohl, Alois; Brand, Ronald; Niederwieser, Dietger; Baldomero, Helen; Chabannon, Christian; Cornelissen, Jan; de Witte, Theo; Ljungman, Per; McDonald, Fiona; McGrath, Eoin; Passweg, Jakob; Peters, Christina; Rocha, Vanderson; Slaper-Cortenbach, Ineke; Sureda, Anna; Tichelli, Andre; Apperley, Jane

    2011-01-01

    Purpose A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We there

  11. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Storb, Rainer; Gyurkocza, Boglarka; Storer, Barry E;

    2013-01-01

    We designed a minimal-intensity conditioning regimen for allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematologic malignancies unable to tolerate high-intensity regimens because of age, serious comorbidities, or previous high-dose HCT. The regimen allows the pures...

  12. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : an international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  13. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : An international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  14. The risk factors of post-transplant lymphoproliferative disorders following haploidentical hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    张春丽

    2014-01-01

    Objective Post-transplant lymphoproliferative disorder(PTLD)occurring after allogeneic hematopoietic stem cell transplantation(allo-HSCT)is rare but severe.Risk factors including pre-HSCT exposure variables,conditioning regimens,transplant-related complications,and post-HSCT immune reconstitution were investigated in the development of PTLD after allo-HSCT.Methods A

  15. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  16. Routine Surveillance for Bloodstream Infections in a Pediatric Hematopoietic Stem Cell Transplant Cohort: Do Patients Benefit?

    Directory of Open Access Journals (Sweden)

    Heather Rigby

    2007-01-01

    Full Text Available BACKGROUND: Hematopoietic stem cell transplant (HSCT recipients are at a high risk for late bloodstream infection (BSI. Controversy exists regarding the benefit of surveillance blood cultures in this immunosuppressed population. Despite the common use of this practice, the practical value is not well established in non-neutropenic children following HSCT.

  17. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency

    NARCIS (Netherlands)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hoenig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E.; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M.; Boelens, Jaap; Davies, E. Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H. Bobby

    2012-01-01

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed o

  18. Pulmonary Rehabilitation for Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Tran, Jerry; Norder, Emily; Diaz, Phil; Gary S Phillips; Elder, Pat; Devine, Steven M; Wood, Karen L.

    2012-01-01

    Bronchiolitis obliterans syndrome (BOS) is a progressive, insidious lung disease affecting allogeneic hematopoietic stem cell transplant (HSCT) recipients. Unfortunately, there is no standardized approach for treatment of BOS in post HSCT patients. Pulmonary rehabilitation is a standard treatment in emphysema, an irreversible obstructive lung disease secondary to tobacco abuse. The National Emphysema Treatment Trial (NETT) demonstrated improved exercise tolerance, decrease dyspnea, and increa...

  19. Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes

    NARCIS (Netherlands)

    Aubert, Geraldine; Baerlocher, Gabriela M.; Vulto, Irma; Poon, Steven S.; Lansdorp, Peter M.

    2012-01-01

    Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835

  20. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Rehn, Matilda Carolina; Hasemann, Marie Sigurd;

    2015-01-01

    The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors...