WorldWideScience

Sample records for autologous hematopoietic cell

  1. Hematopoietic progenitor cell mobilization for autologous transplantation - a literature review

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Salvino

    2016-02-01

    Full Text Available ABSTRACT The use of high-dose chemotherapy with autologous support of hematopoietic progenitor cells is an effective strategy to treat various hematologic neoplasms, such as non-Hodgkin lymphomas and multiple myeloma. Mobilized peripheral blood progenitor cells are the main source of support for autologous transplants, and collection of an adequate number of hematopoietic progenitor cells is a critical step in the autologous transplant procedure. Traditional strategies, based on the use of growth factors with or without chemotherapy, have limitations even when remobilizations are performed. Granulocyte colony-stimulating factor is the most widely used agent for progenitor cell mobilization. The association of plerixafor, a C-X-C Chemokine receptor type 4 (CXCR4 inhibitor, to granulocyte colony stimulating factor generates rapid mobilization of hematopoietic progenitor cells. A literature review was performed of randomized studies comparing different mobilization schemes in the treatment of multiple myeloma and lymphomas to analyze their limitations and effectiveness in hematopoietic progenitor cell mobilization for autologous transplant. This analysis showed that the addition of plerixafor to granulocyte colony stimulating factor is well tolerated and results in a greater proportion of patients with non-Hodgkin lymphomas or multiple myeloma reaching optimal CD34+ cell collections with a smaller number of apheresis compared the use of granulocyte colony stimulating factor alone.

  2. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Science.gov (United States)

    Cortez, Afonso José Pereira; Dulley, Frederico Luiz; Saboya, Rosaura; Mendrone Júnior, Alfredo; Amigo Filho, Ulisses; Coracin, Fabio Luiz; Buccheri, Valéria; Linardi, Camila da Cruz Gouveia; Ruiz, Milton Artur; Chamone, Dalton de Alencar Fischer

    2011-01-01

    Background Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. Objectives To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. Methods A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. Results The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. Conclusion Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not been previously reported

  3. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  4. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    Science.gov (United States)

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein.

  5. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  6. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  7. Hematopoietic progenitor cell mobilization for autologous transplantation – a literature review

    Science.gov (United States)

    Salvino, Marco Aurélio; Ruiz, Jefferson

    2015-01-01

    The use of high-dose chemotherapy with autologous support of hematopoietic progenitor cells is an effective strategy to treat various hematologic neoplasms, such as non-Hodgkin lymphomas and multiple myeloma. Mobilized peripheral blood progenitor cells are the main source of support for autologous transplants, and collection of an adequate number of hematopoietic progenitor cells is a critical step in the autologous transplant procedure. Traditional strategies, based on the use of growth factors with or without chemotherapy, have limitations even when remobilizations are performed. Granulocyte colony-stimulating factor is the most widely used agent for progenitor cell mobilization. The association of plerixafor, a C-X-C Chemokine receptor type 4 (CXCR4) inhibitor, to granulocyte colony stimulating factor generates rapid mobilization of hematopoietic progenitor cells. A literature review was performed of randomized studies comparing different mobilization schemes in the treatment of multiple myeloma and lymphomas to analyze their limitations and effectiveness in hematopoietic progenitor cell mobilization for autologous transplant. This analysis showed that the addition of plerixafor to granulocyte colony stimulating factor is well tolerated and results in a greater proportion of patients with non-Hodgkin lymphomas or multiple myeloma reaching optimal CD34+ cell collections with a smaller number of apheresis compared the use of granulocyte colony stimulating factor alone. PMID:26969772

  8. Analysis of the efficacy and prognosis on first-line autologous hematopoietic stem cell transplantation of patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    邹徳慧

    2013-01-01

    Objective To explore the efficacy and prognosis of first-line autologous hematopoietic stem cell transplantation(ASCT) for newly diagnosed patients with multiple myeloma(MM).Methods From January 2005 to

  9. Membranous nephropathy in autologous hematopoietic stem cell transplant: autologous graft-versus-host disease or autoimmunity induction?

    Science.gov (United States)

    Abudayyeh, Ala; Truong, Luan D.; Beck, Laurence H.; Weber, Donna M.; Rezvani, Katy; Abdelrahim, Maen

    2015-01-01

    With the increasing utility of hematopoietic stem cell transplantation (SCT) as a treatment for cancer and noncancerous disorders, more challenges and complications associated with SCT have emerged. Renal injury immediately after transplant is common and well understood, but long-term renal injury is becoming more evident. Chronic graft-versus-host disease (GVHD) is a known long-term complication of SCT, and membranous nephropathy (MN) is emerging as the most common cause of SCT-associated glomerular pathology. In this case report, we present a patient who developed features of anti-PLA2R antibody-negative MN following autologous SCT. The renal injury responded well to steroids and further response to rituximab therapy was noted, suggesting antibody-mediated autoimmune glomerular disease. We also present a review of the literature on autologous GVHD and the role of T and B cells in induction of autoimmunity by SCT. PMID:26251713

  10. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore the effectiveness of autologous peripheral hematopoietic stem-cell transplantation in the treatment of refractory pemphigus.A 35-year-old male patient presented with a 4-year history of recurrent bullae on his trunk and extremities.The diagnosis of pemphigus was made on the basis of the clinical,histologic and immunofluorescence findings.The patient had shown resistance to conventional therapy with glucocorticoid and immunosuppressive agents.Two months before admission,he complained of hip joint pain.X-ray and CT scan revealed aseptic necrosis of the femoral head.Stem-cell mobilization was achieved by treatment with cyclophosphamide,granulocyte colony-stimulating factor (G-CSF)and rituximab.Peripheral blood stem cells were collected via leukapheresis and cryopreserved for later use.Immunoablation was accomplished by using cyclophosphamide(200 mg/kg;divided into 50 mg/kg on days-5,-4,-3,and-2),antithymocyte globulin(ATG;10 mg/kg;divided into 2.5 mg/kg on days-6,-5,-4,and-3),and rituximab (1200 mg/d;divided into 600 mg/d on days 0 and 7).Autologous peripheral hematopoietic stem cell transplantation was followed by reconstitution of the immune system which was monitored by flow cytometry.The glucocorticoid was withdrawn immediately after transplantation.The pemphigus titer turned negative 6 weeks after transplantation and remained negative.The patient was in complete drug-free remission with no evidence of residual clinical or serological activity of pemphigus during 1 year of followup.The patient's response suggests that autologous peripheral hematopoietic stem cell transplantation may be a potential "cure" for refractory pemphigus.However,further studies are needed to evaluate the risk-benefit ratio of this approach in patients with pemphigus showing resistance to conventional therapy.

  11. Specific Factors Influence the Success of Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Thissiane L. Gonçalves

    2009-01-01

    Full Text Available Successful hematopoietic stem cell transplantation (HSCT, both autologous and allogeneic, requires a rapid and durable engraftment, with neutrophil (>500/µL and platelet (>20,000/µL reconstitution. Factors influencing engraftment after autologous or allogeneic HSCT were investigated in 65 patients: 25 autologous peripheral stem cell transplantation (PBSCT and 40 allogeneic bone marrow transplantation (BMT patients. The major factor affecting engraftment was the graft source for HSCT. Neutrophil and platelet recovery were more rapid in autologous PBSCT than in allogeneic BMT [neutrophil occurring in median on day 10.00 (09.00/11.00 and 19.00 (16.00/23.00 and platelet on day 11.00 (10.00/13.00 and 21.00 (18.00/25.00, respectively; p < 0.0001]. The type of disease also affected engraftment, where multiple myeloma (MM and lymphoma showed faster engraftment when compared with leukemia, syndrome myelodysplastic (SMD and aplastic anemia (AA and MM presented the best overall survival (OS in a period of 12 months. Other factors included the drug used in the conditioning regimen (CR, where CBV, melphalan (M-200 and FluCy showed faster engraftment and M-200 presented the best OS, in a period of 12 months and age, where 50–59 years demonstrated faster engraftment. Sex did not influence neutrophil and platelet recovery.

  12. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR LYMPHOMA: AN EVALUATION OF GRAFTS SOURCE AND MINIMAL RESIDUAL DISEASE

    Institute of Scientific and Technical Information of China (English)

    HOU Shu-ling; ZHANG Qiao-hua; HAN Wei-e; GUI Wei; WANG Yu-luan

    2005-01-01

    Objective: To determine whether the source of autologous hematopoietic stem cells altered the clinical outcomes of patients undergoing high dose chemotherapy and autologous hematopoietic stem cell transplantation (AHSCT) for aggressive lymphoma and to study the problem of minimal residual disease (MRD). Methods: 14 lymphoma patients who had lymphoma with high risk factors, relapsed lymphoma or refractory lymphoma received autologous bone marrow transplantation (ABMT). 14 lymphoma patients who were similar to ABMT group received autologous peripheral blood stem cells transplantation (APBSCT). Regimen of CBV (cyclophos phamide 50~60 mg/kg/d×2 d, carmustine 15 mg/kg/d×1 d,etoposide 45~60 mg/kg/d×1 d) was received by all the patients as conditioning regimen in the transplant pretreatment followed by ABMT or APBSCT. Autologous peripheral blood stem cell (APBSC) was mobilized by CTX 2g~3g/m2/d×2 d iv and G-CSF 5 μg/kg/d for five to seven days. MRD was continually supervised by PCR in bone marrow before and after transplantation. Cellular immunocyte function, such as natural killer cell (NK), CD3, CD4, CD8 and sIL-2R was tested before and twenty days after transplantation. Results: In ABMT group, the median time for hematopoietic recovery of absolute neutrophilia counts ≥0.5×109/L and platelet counts ≥20×109/L was +18 days and +20 days respectively. In contrast, the APBSCT group was both at 12 days. Patients who have undergone ABMT all got complete remission (CR), while 81.8% patients in APBSCT group got CR. The 3-year disease free survival (DFS) in APBSCT and ABMT group was 75% and 72.7% respectively (P>0.05). The mean days of immunity recovering in APBSCT was ±20 days. After transplantation, MRD in 11 patients were positive, in whom 6 patients died. Conclusion: Aggressive lymphoma patients' hemapoiesis recovered more rapidly in APBSCT group than that in ABMT group, but 3-year DFS had no statistical difference. Patients positive for IgH/TCR-γ by

  13. Biosimilar Filgrastim in Autologous Peripheral Blood Hematopoietic Stem Cell Mobilization and Post-Transplant Hematologic Recovery.

    Science.gov (United States)

    Marchesi, Francesco; Mengarelli, Andrea

    2016-01-01

    To date, two kinds of Granulocyte Colony-Stimulating Factors (G-CSF) have been approved for autologous peripheral blood hematopoietic stem cell (PBSCs) mobilization and posttransplant hematologic recovery after high-dose chemotherapy: filgrastim (originator and biosimilar) and lenograstim. Biosimilar filgrastim has been approved on the basis of comparable efficacy and safety in clinical studies where it has been used as chemotherapy-induced febrile neutropenia prophylaxis, but no specific pre-registration studies have been published in the transplant setting. Hence, there is still general skepticism about the role of biosimilar G-CSFs in this setting of patients. This review of biochemical, pre-clinical and clinical data suggests significant comparability of biosimilar filgrastim with both originator filgrastim and lenograstim in autologous PBSCs mobilization and post-autograft hematologic recovery.

  14. Peripheral blood CD34+ cell count as a predictor of adequacy of hematopoietic stem cell collection for autologous transplantation

    Directory of Open Access Journals (Sweden)

    Combariza, Juan F.

    2016-10-01

    Full Text Available Introduction: In order to carry out an autologous transplantation, hematopoietic stem cells should be mobilized to peripheral blood and later collected by apheresis. The CD34+ cell count is a tool to establish the optimal time to begin the apheresis procedure. Objective: To evaluate the association between peripheral blood CD34+ cell count and the successful collection of hematopoietic stem cells. Materials and methods: A predictive test evaluation study was carried out to establish the usefulness of peripheral blood CD34+ cell count as a predictor of successful stem cell collection in patients that will receive an autologous transplantation. Results: 77 patients were included (median age: 49 years; range: 5-66. The predominant baseline diagnosis was lymphoma (53.2 %. The percentage of patients with successful harvest of hematopoietic stem cells was proportional to the number of CD34+cells in peripheral blood at the end of the mobilization procedure. We propose that more than 15 CD34+cells/μL must be present in order to achieve an adequate collection of hematopoietic stem cells. Conclusion: Peripheral blood CD34+ cell count is a useful tool to predict the successful collection of hematopoietic stem cells.

  15. Autologous hematopoietic stem cell transplantation for autoimmune disease--is it now ready for prime time?

    Science.gov (United States)

    Atkins, Harold L; Muraro, Paolo A; van Laar, Jacob M; Pavletic, Steven Z

    2012-01-01

    Current systemic therapies are rarely curative for patients with severe life-threatening forms of autoimmune disease (AID). During the past 15 years, autologous hematopoietic stem cell transplantation (HCT) has been demonstrated to cure some patients with severe AID refractory to all other available therapies, and thus AID has become an emerging indication for cell therapy. The sustained clinical effects after autologous HCT are better explained by qualitative change in the reconstituted immune repertoire rather than transient depletion of immune cells. Since 1996, more than 1300 AID patients have been registered by the European Group for Blood and Marrow Transplantation (EBMT) and almost 500 patients by the Center for International Blood and Marrow Transplant Research (CIBMTR). Autologous HCT is most commonly performed for patients with multiple sclerosis (MS) or systemic sclerosis (SSc). Systemic lupus, Crohn's disease, type I diabetes, and juvenile idiopathic arthritis are other common indications. Allogeneic transplants are still considered too toxic for use in AID, except for cases of immune cytopenia. Although biologic therapies have been effective at controlling the manifestations of the disease, they require continuous administration, thus raising questions about their increasing costs, morbidity, and mortality related to prolonged therapy. Perhaps it is a reasonable time to ask, "Is autologous HCT for severe AID now ready for prime time?" Yet, the paucity of controlled studies, the short-term toxicities, and the upcoming availability of second-generation biologic and targeted immunotherapies argues that perhaps HCT for AID should be still limited to clinical trials. In this article, we focus on the results of autologous HCT for MS and SSc because these are the two most commonly transplanted diseases. The promising data that is emerging may establish these diseases as standard indications for HCT.

  16. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial

    NARCIS (Netherlands)

    Laar, J.M. van; Farge, D.; Sont, J.K.; Naraghi, K.; Marjanovic, Z.; Larghero, J.; Schuerwegh, A.J.; Marijt, E.W.; Vonk, M.C.; Schattenberg, A.V.M.B.; Matucci-Cerinic, M.; Voskuyl, A.E.; Loosdrecht, A.A. van de; Daikeler, T.; Kotter, I.; Schmalzing, M.; Martin, T.; Lioure, B.; Weiner, S.M.; Kreuter, A.; Deligny, C.; Durand, J.M.; Emery, P.; Machold, K.P.; Sarrot-Reynauld, F.; Warnatz, K.; Adoue, D.F.; Constans, J.; Tony, H.P.; Papa, N. Del; Fassas, A.; Himsel, A.; Launay, D. de; Monaco, A. Lo; Philippe, P.; Quere, I.; Rich, E.; Westhovens, R.; Griffiths, B.; Saccardi, R.; Hoogen, F.H.J. van den; Fibbe, W.E.; Socie, G.; Gratwohl, A.; Tyndall, A.

    2014-01-01

    IMPORTANCE: High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE: To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphami

  17. Icing oral mucositis: Oral cryotherapy in multiple myeloma patients undergoing autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Chen, Joey; Seabrook, Jamie; Fulford, Adrienne; Rajakumar, Irina

    2017-03-01

    Background Up to 70% of patients receiving hematopoietic stem cell transplant develop oral mucositis as a side effect of high-dose melphalan conditioning chemotherapy. Oral cryotherapy has been documented to be potentially effective in reducing oral mucositis. The aim of this study was to examine the effectiveness of the cryotherapy protocol implemented within the hematopoietic stem cell transplant program. Methods A retrospective chart review was conducted of adult multiple myeloma patients who received high-dose melphalan conditioning therapy for autologous hematopoietic stem cell transplant. Primary endpoints were incidence and severity of oral mucositis. Secondary endpoints included duration of oral mucositis, duration of hospital stay, parenteral narcotics use and total parenteral nutrition use. Results One hundred and forty patients were included in the study, 70 patients in both no cryotherapy and cryotherapy groups. Both oral mucositis incidence and severity were found to be significantly lower in the cryotherapy group. Fifty (71.4%) experienced mucositis post cryotherapy compared to 67 (95.7%) in the no cryotherapy group (p < 0.001). The median oral mucositis severity, assessed using the WHO oral toxicity scale from grade 0-4, experienced in the no group was 2.5 vs. 2 in the cryotherapy group (p = 0.03). Oral mucositis duration and use of parenteral narcotics were also significantly reduced. Duration of hospital stay and use of parenteral nutrition were similar between the two groups. Conclusion The cryotherapy protocol resulted in a significantly lower incidence and severity of oral mucositis. These results provide evidence for the continued use of oral cryotherapy, an inexpensive and generally well-tolerated practice.

  18. Observation of humoral immunity reconstitution and its relationship with infection after autologous hematopoietic stem cell transplantation for patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    刘俊茹

    2013-01-01

    Objective To study the humoral immunity reconstitution and its relationship with infection in patients with multiple myeloma(MM) after undergoing autologous hematopoietic stem cell transplantation(auto-HSCT)

  19. Stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Fall-Dickson, Jane M; Mock, Victoria; Berk, Ronald A; Grimm, Patricia M; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. The hypotheses that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing were tested. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two women were recruited at 2 East Coast comprehensive cancer centers. Data were collected on bone marrow transplantation day +7 +/- 24 hours using Painometer, Oral Mucositis Index-20, Oral Assessment Guide, State-Trait Anxiety Inventory, and Beck Depression Inventory. Data analysis included descriptive statistics, correlations, and stepwise multiple regression. All participants had stomatitis; 47% had oral pain, with a subset reporting continuous moderate to severe oral pain despite pain management algorithms. Significant, positive associations were seen between oral pain, stomatitis, and alteration in swallowing and between oral pain with swallowing and alteration in swallowing. Oral pain was not significantly correlated with state anxiety and depression. Oral sensory and affective pain intensity most accurately predicted oral pain overall intensity. Future research needs to explore factors that affect perception and response to stomatitis-related oropharyngeal pain and individual patient response to opioid treatment.

  20. Outcomes in patients with multiple myeloma with TP53 deletion after autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Gaballa, Sameh; Saliba, Rima M; Srour, Samer; Lu, Gary; Brammer, Jonathan E; Shah, Nina; Bashir, Qaiser; Patel, Krina; Bock, Fabian; Parmar, Simrit; Hosing, Chitra; Popat, Uday; Delgado, Ruby; Rondon, Gabriela; Shah, Jatin J; Manasanch, Elisabet E; Orlowski, Robert Z; Champlin, Richard; Qazilbash, Muzaffar H

    2016-10-01

    TP53 gene deletion is associated with poor outcomes in multiple myeloma (MM). We report the outcomes of patients with MM with and without TP53 deletion who underwent immunomodulatory drug (IMiD) and/or proteasome inhibitor (PI) induction followed by autologous hematopoietic stem cell transplant (auto-HCT). We identified 34 patients with MM and TP53 deletion who underwent IMiD and/or PI induction followed by auto-HCT at our institution during 2008-2014. We compared their outcomes with those of control patients (n = 111) with MM without TP53 deletion. Median age at auto-HCT was 59 years in the TP53-deletion group and 58 years in the control group (P = 0.4). Twenty-one patients (62%) with TP53 deletion and 69 controls (62%) achieved at least partial remission before auto-HCT (P = 0.97). Twenty-three patients (68%) with TP53 deletion and 47 controls (42%) had relapsed disease at auto-HCT (P = 0.01). Median progression-free survival was 8 months for patients with TP53 deletion and 28 months for controls (P TP53 deletion and 56 months for controls (P TP53 deletion (hazard ratio 3.4, 95% confidence interval 1.9-5.8, P TP53 deletion and relapsed disease at the time of auto-HCT are independent predictors of progression. Novel approaches should be evaluated in this high-risk population. Am. J. Hematol. 91:E442-E447, 2016. © 2016 Wiley Periodicals, Inc.

  1. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  2. Autologous Transplantation of Lentivector/Acid Ceramidase–Transduced Hematopoietic Cells in Nonhuman Primates

    OpenAIRE

    Walia, Jagdeep S; Neschadim, Anton; Lopez-Perez, Orlay; Alayoubi, Abdulfatah; Fan, Xin; Carpentier, Stéphane; Madden, Melissa; Lee, Chyan-Jang; Cheung, Fred; Jaffray, David A.; Levade, Thierry; McCart, J. Andrea; Medin, Jeffrey A

    2011-01-01

    Farber disease is a rare lysosomal storage disorder (LSD) that manifests due to acid ceramidase (AC) deficiencies and ceramide accumulation. We present a preclinical gene therapy study for Farber disease employing a lentiviral vector (LV-huAC/huCD25) in three enzymatically normal nonhuman primates. Autologous, mobilized peripheral blood (PB) cells were transduced and infused into fully myelo-ablated recipients with tracking for at least 1 year. Outcomes were assessed by measuring the AC speci...

  3. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    Directory of Open Access Journals (Sweden)

    Alessandra Barban

    2014-07-01

    Full Text Available INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in this process. Guidance may contribute to long-term goals through patients' short-term needs. AIM: To analyze the results of early hospital discharge on the treatment of patients submitted to autologous transplantation and the influence of nursing care on this conduct. METHODS: A retrospective, quantitative, descriptive and transversal study was conducted. The hospital records of 112 consecutive patients submitted to autologous transplantation in the period from January to December 2009 were revisited. Of these, 12 patients, who remained in hospital for more than ten days after transplantation, were excluded from the study. RESULTS: The medical records of 100 patients with a median age of 48.5 years (19-69 years were analyzed. All patients were mobilized and hematopoietic stem cells were collected by leukapheresis. The most common conditioning regimes were BU12Mel100 and BEAM 400. Toxicity during conditioning was easily managed in the outpatient clinic. Gastrointestinal toxicity, mostly Grades I and II, was seen in 69% of the patients, 62% of patients had diarrhea, 61% of the patients had nausea and vomiting and 58% had Grade I and II mucositis. Ten patients required hospitalization due to the conditioning regimen. Febrile neutropenia was seen in 58% of patients. Two patients died before Day +60 due to infections, one with aplasia. The median times to granulocyte and platelet engraftment were 12 days and 15 days, respectively, with median red blood cell and

  4. Use of laboratory tests to guide initiation of autologous hematopoietic progenitor cell collection by apheresis: results from the multicenter hematopoietic progenitor cell collection by Apheresis Laboratory Trigger Survey.

    Science.gov (United States)

    Makar, Robert S; Padmanabhan, Anand; Kim, Haewon C; Anderson, Christina; Sugrue, Michele W; Linenberger, Michael

    2014-10-01

    Limited literature describes the value of laboratory "triggers" to guide collection of peripheral blood (PB) hematopoietic progenitor cells (HPCs) by apheresis [HPC(A)]. We used a web-based survey to determine which parameters are used to initiate autologous HPC(A) collection in adult and pediatric patients and to identify common practice patterns. Members of the AABB Cellular Therapy Product Collection and Clinical Practices Subsection and the American Society for Apheresis HPC Donor Subcommittee drafted and developed relevant survey questions. A web link to the survey was distributed by electronic newsletter or email. Responses from 67 programs that perform autologous HPC(A) collections, including academic medical centers (n = 46), blood centers (n = 10), community hospitals (n = 5), and a variety of other medical institutions (n = 6), were analyzed. Ninety-three percent (62/67) of programs used a laboratory parameter to initiate HPC(A) collection. In both adult (40/54, 74%) and pediatric (29/38, 76%) patients, the PB CD34+ cell count was the most common parameter used to initiate HPC(A) collection. The median PB CD34+ trigger value was 10/μL for both patient populations. Among centers routinely using the PB CD34+ cell count to initiate apheresis, 51% (22/43) first sent the test before the patient presented for collection. Although more than 90% of centers used a laboratory test to trigger apheresis in cytokine-mobilized (44/48) or chemomobilized patients (50/53), only 57% (30/53) used a laboratory trigger if the patient was mobilized with granulocyte colony-stimulating factor plus plerixafor. Forty-two percent (21/50) of programs that routinely measured the PB CD34+ count before collection and discontinued further HPC(A) collection based on product CD34+ cell yield also stopped if the PB CD34+ value before apheresis was considered too low to proceed. Most programs use the PB CD34+ cell count to trigger autologous HPC(A) collection. Some centers also use this

  5. THE PRELIMINARY RESULTS OF TREATMENT OFADVANCED AND RECURRENT MALIGNANT LYMPHOMA BY BEAC REGIMEN SUPPORTED WITH AUTOLOGOUS HEMATOPOIETIC STEM CELLS TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    黄慧强; 姜文奇; 何友兼; 孙晓非; 刘冬耕; 徐瑞华; 张力; 周中梅; 林桐榆; 李宇红; 管忠震

    2002-01-01

    Objective: High dose chemotherapy supported by autologous hematopoietic stem cells transplantation (AHSCT) has developed dramaticly in recent years and become the most effective approach to improve radical treatment for the chemo-sensitive lymphoma. The purposes of this study was to evaluate the efficacy and tolerance of preparative regimen BEAC and hematopoietic reconsti- tution after high dose chemotherapy in Chinese patients with advanced and recurrent lymphoma. Methods: After confirmed complete or partial remission from conventional chemotherapy, 24 patients with advanced or recurrent lymphoma including 1 recurrent HD and 23 NHL, 16 male and 8 female with median age of 29 (13(50) years, were enrolled into this study and treated by BEAC regimen (CTX 3600(4000 mg/m2, VP-16 1200 mg/m2. BCNU 300 mg/m2 and Ara-C 1500(2000 mg/m2). 3 patients were supported by ABMT and 21 by APBSCT. Mobilization regimen for APBSCT was CTX 3500 mg/m2 + G-CSF 3.5(5 (g/kg + Dexamethasone 10 mg. Autologous hematopoietic stem cells was re-infused 24(48 h after completion of high dose chemotherapy. Results: MNC 1.3 (1.0(1.7) (108/kg and MNC 1.8 (1.0(4.4) (108, CFU-GM 5.1 (1.9(9.6) (105/kg plus CD34 + cells 2.9 (1.9(8.7) (106/kg were re-infused in the ABMT group and APBSCT group respectively. All patients obtained prompt and sustained hematopoietic reconstitution. ANC (0.5 (109/L and Pt (2.0 (109/L were at day 9 (6(17) and day 10 (0(31) respectively. 16 patients were alive with median 21 (2(69) months follow-up till end of May, 2001. 1, 2 and 3 years survival rate were 60.5%, 50.1% and 50.1%, respectively. Non-hematologic toxicity was mild and tolerable. Conclusions: High dose chemotherapy supported by AHSCT in the treatment of previously-untreated poor- prognostic and recurrent lymphoma was a safe and effective modality. Further investigation was warranted.

  6. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  7. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results.

    Science.gov (United States)

    Bowen, J D; Kraft, G H; Wundes, A; Guan, Q; Maravilla, K R; Gooley, T A; McSweeney, P A; Pavletic, S Z; Openshaw, H; Storb, R; Wener, M; McLaughlin, B A; Henstorf, G R; Nash, R A

    2012-07-01

    The purpose of the study was to determine the long-term safety and effectiveness of high-dose immunosuppressive therapy (HDIT) followed by autologous hematopoietic cell transplantation (AHCT) in advanced multiple sclerosis (MS). TBI, CY and antithymocyte globulin were followed by transplantation of autologous, CD34-selected PBSCs. Neurological examinations, brain magnetic resonance imaging and cerebrospinal fluid (CSF) for oligoclonal bands (OCB) were serially evaluated. Patients (n=26, mean Expanded Disability Status Scale (EDSS)=7.0, 17 secondary progressive, 8 primary progressive, 1 relapsing/remitting) were followed for a median of 48 months after HDIT followed by AHCT. The 72-month probability of worsening ≥1.0 EDSS point was 0.52 (95% confidence interval, 0.30-0.75). Five patients had an EDSS at baseline of ≤6.0; four of them had not failed treatment at last study visit. OCB in CSF persisted with minor changes in the banding pattern. Four new or enhancing lesions were seen on MRI, all within 13 months of treatment. In this population with high baseline EDSS, a significant proportion of patients with advanced MS remained stable for as long as 7 years after transplant. Non-inflammatory events may have contributed to neurological worsening after treatment. HDIT/AHCT may be more effective in patients with less advanced relapsing/remitting MS.

  8. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-11-01

    Full Text Available Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  9. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANT IN FOLLICULAR LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Mónica Cabrero

    2012-01-01

    Full Text Available

    Follicular lymphoma (FL remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb. Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS and to increase overall survival (OS, mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen.

  10. Update on the Role of Autologous Hematopoietic Stem Cell Transplantation in Follicular Lymphoma

    Science.gov (United States)

    Cabrero, Mónica; Redondo, Alba; Martin, Alejandro; Caballero, Dolores

    2012-01-01

    Follicular lymphoma (FL) remains incurable despite advances in new strategies of treatment, including monoclonal antibodies (MoAb). Except for early stages, FL is characterized by responses to treatments and systematic relapses. The main objective in this disease is to achieve a better progression free survival (PFS) and to increase overall survival (OS), mainly in young patients. In order to improve the results of conventional chemotherapy, autologous stem cell transplant (ASCT) is a feasible treatment in these patients. In this moment, ASCT is not recommended as first line treatment, except for transformed FL, but is a good strategy as salvage therapy with an improved PFS and OS. New drugs have been introduced to enhance responses of ASCT, but nowadays they are not part of conventional conditioning regimen. PMID:23205262

  11. Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mohamadnejad; Mehrnaz Namiri; Mohamad Bagheri; Seyed Masiha Hashemi; Hossein Ghanaati; Narges Zare Mehrjardi; Saeed Kazemi Ashtiani; Reza Malekzadeh; Hossein Baharvand

    2007-01-01

    AIM: To evaluate safety and feasibility of autologous bone marrow-enriched CD34+ hematopoietic stem cell Tx through the hepatic artery in patients with decompensated cirrhosis.METHODS: Four patients with decompensated cirrhosis were included. Approximately 200 mL of the bone marrow of the patients was aspirated, and CD34+ stem cells were selected. Between 3 to 10 million CD34+ cells were isolated. The cells were slowly infused through the hepatic artery of the patients.RESULTS: Patient 1 showed marginal improvement in serum albumin and no significant changes in other test results. In patient 2 prothrombin time was decreased;however, her total bilirubin, serum creatinine, and Model of End-Stage Liver Disease (MELD) score worsened at the end of follow up. In patient 3 there was improvement in serum albumin, porthrombin time (PT), and MELD score. Patient 4 developed radiocontrast nephropathy after the procedure, and progressed to type 1 hepatorenal syndrome and died of liver failure a few days later. Because of the major side effects seen in the last patient, the trial was prematurely stopped.CONCLUSION: Infusion of CD34+ stem cells through the hepatic artery is not safe in decompensated cirrhosis.Radiocontrast nephropathy and hepatorenal syndrome could be major side effects. However, this study does not preclude infusion of CD34+ stem cells through other routes.

  12. Dose escalation of the hypoxic cell sensitizer etanidazole combined with ifosfamide, carboplatin, etoposide, and autologous hematopoietic stem cell support.

    Science.gov (United States)

    Elias, A D; Wheeler, C; Ayash, L J; Schwartz, G; Ibrahim, J; Mills, L; McCauley, M; Coleman, N; Warren, D; Schnipper, L; Antman, K H; Teicher, B A; Frei, E

    1998-06-01

    Multiple mechanisms of drug resistance contribute to treatment failure. Although high-dose therapy attempts to overwhelm these defenses pharmacologically, this approach is only successful in a fraction of treated patients. Many drug resistance mechanisms are shared between malignant and normal cells, but the expression of various drug resistance mechanisms associated with hypoxia is largely confined to tumor tissue. Thus, reversal of this mechanism is likely to provide a therapeutic advantage to the host. This study was designed to define the dose-limiting toxicities and maximum tolerated dose of etanidazole when it is given concurrently with high-dose ifosfamide, carboplatin, and etoposide (ICE), with hematopoietic stem cell support. The maximum tolerated doses of high-dose ICE were administered concurrently with dose escalations of etanidazole, a hypoxic cell sensitizer. All agents were given by 96-h continuous i.v. infusion beginning on day -7. Mesna uroprotection was provided. Autologous marrow and cytokine mobilized peripheral blood progenitor cells were reinfused on day 0. Granulocyte colony-stimulating factor was administered following reinfusion until the granulocytes recovered to > 1000/microliter. Fifty-five adults with advanced malignancies were enrolled in cohorts of five to nine patients. Four dose levels of etanidazole between 3 and 5.5 g/m2/day (12, 16, 20, and 22 g/m2 total doses) and two doses of carboplatin (1600 and 1800 mg/m2 total doses) were evaluated. Seven patients died of organ toxicity (13%); two each from veno-occlusive disease of liver and sepsis; and one each from sudden death, renal failure, and refractory thrombocytopenic hemorrhage. Five deaths occurred at the top dose level. One additional patient suffered a witnessed cardiorespiratory arrest from ventricular fibrillation and was resuscitated. Dose-dependent and largely reversible peripheral neuropathy was observed consisting of two syndromes: severe cramping myalgic/neuralgic pain

  13. Sequential treatment with bortezomib plus dexamethasone followed by autologous hematopoietic stem cell transplantation in patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Dong; LI Juan; HUANG Bei-hui; LIU Jun-ru; ZOU Wai-yi; SU Chang

    2012-01-01

    Background Whether the sequential treatment with bortezomib plus dexamethasone (BD) followed by autologous hematopoietic stem cell transplantation (ASCT) could extend the overall survival period in multiple myeloma patients is still not clear.Few large case studies about this therapeutics in multiple myeloma were reported in China.Our purpose was to assess the efficacy and adverse effects of sequential treatment with BD chemotherapy and ASCT in patients with multiple myeloma.Methods Fifty-three patients with newly diagnosed or relapsed/refractory multiple myeloma received BD as induction therapy before ASCT.Stem-cell mobilization was undertaken with cyclophosphamide 3-5 g/m2 plus granulocyte colony-stimulating factor 300 μg/d.Target yield was 2.0×106 CD34+ cells/kg.Conditioning for ASCT consisted of melphalan 200 mg/m2.Thalidomide and/or α-interferon was used as post-transplantation maintenance treatment.Results The BD chemotherapy before transplantation was effective in 86.7% of the 53 patients,including 22.6% with complete remission (CR),39.6% with near complete remission (nCR),and 24.5% with partial remission (PR).The best effect was achieved after two treatment courses.Most bortezomib-related adverse effects were classes 1-2.All patients were successfully mobilized after BD for autologous peripheral blood stem cell transplantation.The ASCT was effective in 96.3% of patients,including 49.1% with CR,32.1% with nCR,and 15.1% with PR.The CR rate was significantly increased (49.1% vs.22.6%,P <0.05) by sequential ASCT.Within 27 (range,6-53) months of follow-up,the efficacy of ASCT was maintained in 29 patients and further enhanced by post-transplantation maintenance treatment in four patients.Eleven patients died after transplantation.Among the patients undergoing BD/ASCT treatment,overall survival (OS) was significantly better in newly diagnosed patients in comparison to relapsed/refractory patients (P=0.046).Conclusions BD chemotherapy can

  14. Allogeneic hematopoietic stem cell transplantation in patients with diffuse large B cell lymphoma relapsed after autologous stem cell transplantation: a GITMO study.

    Science.gov (United States)

    Rigacci, Luigi; Puccini, Bendetta; Dodero, Anna; Iacopino, Pasquale; Castagna, Luca; Bramanti, Stefania; Ciceri, Fabio; Fanin, Renato; Rambaldi, Alessandro; Falda, Michele; Milone, Giuseppe; Guidi, Stefano; Martelli, Massimo Fabrizio; Mazza, Patrizio; Oneto, Rosi; Bosi, Alberto

    2012-06-01

    Patients who relapse after an autologous hematopoietic stem cell transplantation (SCT) have a very poor prognosis. We have retrospectively analyzed diffuse large B cell lymphoma patients who underwent an allo-SCT after an auto-SCT relapse reported in the Gruppo Italiano Trapianto di Midollo Osseo (GITMO) database. From 1995 to 2008, 3449 autologous transplants were reported in the GITMO database. Eight hundred eighty-four patients relapsed or progressed after transplant; 165 patients, 19% of the relapsed patients, were treated with allo-transplant. The stem cell donor was related to the patient in 108 cases. A reduced intensity conditioning regimen was used in 116. After allo-SCT, 72 patients (43%) obtained a complete response and 9 obtained a partial response with an overall response rate of 49%; 84 patients (51%) experienced rapid progression of disease. Ninety-one patients died, 45 due to disease and 46 due to treatment-related mortality. Acute graft-versus-host disease was recorded in 57 patients and a chronic GvHD in 38 patients. With a median follow-up of 24 months (2-144) after allo, overall survival (OS) was 39%, and after a median of 21 months (2-138) after allo, progression-free survival (PFS) was 32%. Multivariate analysis indicated that the only factors affecting OS were status at allo-SCT, and those affecting PFS were status at allo-SCT and stem cell donor. This retrospective analysis shows that about one-fifth of patients with diffuse large B cell lymphoma who experience relapse after autologous transplantation may be treated with allogeneic transplantation. Moreover, the only parameter affecting either OS or PFS was the response status at the time of allo-SCT.

  15. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation.

    Science.gov (United States)

    Garcia-Sanchez, F; Pizzorno, G; Fu, S Q; Nanakorn, T; Krause, D S; Liang, J; Adams, E; Leffert, J J; Yin, L H; Cooperberg, M R; Hanania, E; Wang, W L; Won, J H; Peng, X Y; Cote, R; Brown, R; Burtness, B; Giles, R; Crystal, R; Deisseroth, A B

    1998-07-15

    Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for

  16. A retrospective comparison of autologous and unrelated donor hematopoietic cell transplantation in myelodysplastic syndrome and secondary acute myeloid leukemia: a report on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT).

    NARCIS (Netherlands)

    Al-Ali, H.K.; Brand, R.; Biezen, A. van; Finke, J.; Boogaerts, M.; Fauser, A.A.; Egeler, M.; Cahn, J.Y.; Arnold, R.; Biersack, H.; Niederwieser, D.; Witte, T.J.M. de

    2007-01-01

    Hematopoietic cell transplantation (HCT) is an effective treatment for myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML). In this study, outcome of 593 patients with MDS/sAML after autologous and allogeneic HCT from a matched unrelated donor (MUD) were compared. A total of 167 (28%) p

  17. Interleukin-15 Affects Patient Survival through Natural Killer Cell Recovery after Autologous Hematopoietic Stem Cell Transplantation for Non-Hodgkin Lymphomas

    Directory of Open Access Journals (Sweden)

    Luis F. Porrata

    2010-01-01

    Full Text Available Natural killer cells at day 15 (NK-15, after autologous peripheral blood hematopoietic stem cell transplantation (APHSCT, is a prognostic factor for overall survival (OS and progression-free survival (PFS in non-Hodgkin lymphoma (NHL. The potential role of the immunologic (homeostatic environment affecting NK-15 recovery and survival post-APHSCT has not been fully studied. Therefore, we evaluate prospectively the cytokine profile in 50 NHL patients treated with APHSCT. Patients with an interleukin-15 (IL-15≥76.5 pg/mL at day 15 post-APHSCT experienced superior OS and PFS compared with those who did not; median OS; not reached versus 19.2 months, P<.002; and median PFS; not reached versus 6.8 months, P<.002, respectively. IL-15 was found to correlate with (rs=0.7, P<.0001 NK-15. Multivariate analysis showed only NK-15 as a prognostic factor for survival, suggesting that the survival benefit observed by IL-15 is most likely mediated by enhanced NK cell recovery post-APHSCT.

  18. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    Directory of Open Access Journals (Sweden)

    Kátia Aparecida de Brito Eid

    2015-06-01

    Full Text Available Introduction: The use of peripheral hematopoietic progenitor cells (HPCs is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G- CSF for mobilization is a single daily dose of 10 µg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective: The aim of this study was to compare a fractionated dose of 15 µg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods: Patients were divided into two groups: Group 10 - patients who received a single daily dose of 10 µg G-CSF/kg body weight and Group 15 - patients who received a fractioned dose of 15 µg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results: Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3% for Group 10 and 36 (24.7% for Group 15. For Group 10, a median of three (range: 1-7 leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59 were collected whereas for Group 15 the corresponding values were one (range: 1-3 and 5.29 × 106 cells/kg body weight (±4.95. A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001. Conclusions: To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 µg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed.

  19. Association of oxidative stress and DNA damage with grafting time in patients with multiple myeloma and lymphoma submitted to autologous hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Thayna Nogueira dos Santos

    Full Text Available ABSTRACT The aim of the study was to investigate the association between oxidative stress and DNA damage with grafting time in patients submitted to autologous hematopoietic stem-cell transplantation (HSCT. The study included 37 patients submitted to autologous HSCT diagnosed with Multiple Myeloma (MM and lymphoma (Hodgkin’s and non-Hodgkin’s. Biomarkers of oxidative stress and DNA damage index (DI were performed at baseline (pre-CR of the disease and during the conditioning regimen (CR, one day after the HSCT, ten days after HSCT and twenty days after HSCT, as well as in the control group consisting of 30 healthy individuals. The outcomes showed that both groups of patients had an hyperoxidative state with high DI when compared to baseline and to the control group and that the CR exacerbated this condition. However, after the follow-up period of the study, this picture was re-established to the baseline levels of each pathology. The study patients with MM showed a mean grafting time of 10.75 days (8 to 13 days, with 10.15 days (8 to 15 days for the lymphoma patients. In patients with MM, there was a negative correlation between the grafting time and the basal levels of GPx (r = -0.54; p = 0.034, indicating that lower levels of this important enzyme are associated with a longer grafting time. For the DI, the correlation was a positive one (r = 0.529; p = 0.030. In the group with lymphoma, it was observed that the basal levels of NOx were positively correlated with grafting time (r = 0.4664, p = 0.032. The data indicate the potential of these biomarkers as predictors of toxicity and grafting time in patients with MM and Lymphomas submitted to autologous HSCT.

  20. Epstein-Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases.

    Science.gov (United States)

    Nash, Richard A; Dansey, Roger; Storek, Jan; Georges, George E; Bowen, James D; Holmberg, Leona A; Kraft, George H; Mayes, Maureen D; McDonagh, Kevin T; Chen, Chien-Shing; Dipersio, John; Lemaistre, C Fred; Pavletic, Steven; Sullivan, Keith M; Sunderhaus, Julie; Furst, Daniel E; McSweeney, Peter A

    2003-09-01

    High-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation (HSCT) is currently being evaluated for the control of severe autoimmune diseases. The addition of antithymocyte globulin (ATG) to high-dose chemoradiotherapy in the high-dose immunosuppressive therapy regimen and CD34 selection of the autologous graft may induce a higher degree of immunosuppression compared with conventional autologous HSCT for malignant diseases. Patients may be at higher risk of transplant-related complications secondary to the immunosuppressed state, including Epstein-Barr virus (EBV)-associated posttransplantation lymphoproliferative disorder (PTLD), but this is an unusual complication after autologous HSCT. Fifty-six patients (median age, 42 years; range, 23-61 years) with either multiple sclerosis (n = 26) or systemic sclerosis (n = 30) have been treated. The median follow-up has been 24 months (range, 2-60 months). Two patients (multiple sclerosis, n = 1; systemic sclerosis, n = 1) had significant reactivations of herpesvirus infections early after HSCT and then developed aggressive EBV-PTLD and died on days +53 and +64. Multiorgan clonal B-cell infiltrates that were EBV positive by molecular studies or immunohistology were identified at both autopsies. Both patients had positive screening skin tests for equine ATG (Atgam) and had been converted to rabbit ATG (Thymoglobulin) from the first dose. Of the other 54 patients, 2 of whom had partial courses of rabbit ATG because of a reaction to the intravenous infusion of equine ATG, only 1 patient had a significant clinical reactivation of a herpesvirus infection (herpes simplex virus 2) early after HSCT, and none developed EBV-PTLD. The T-cell count in the peripheral blood on day 28 was 0/microL in all 4 patients who received rabbit ATG; this was significantly less than in patients who received equine ATG (median, 174/microL; P =.001; Mann-Whitney ranked sum test). Although the numbers are limited

  1. Autologous Hematopoietic Stem Cells transplantation and genetic modification of CCR5 m303/m303 mutant patient for HIV/AIDS.

    Science.gov (United States)

    Esmaeilzadeh, Abdolreza; Farshbaf, Alieh; Erfanmanesh, Maryam

    2015-03-01

    HIV and AIDS is one of the biggest challenges all over the world. There are an approximately 34 million people living with the virus, and a large number of them become infected each year. Although there are some antiviral drugs for HIV viral load reduction, they are not sufficient. There is no cure for AIDS. Nowadays natural resistance or immunity has absorbed attentions. Because in some HIV positive patients progression trend is slow or even they indicate resistance to AIDS. One of the most interesting approaches in this category is CCR5 gene. CCR5 is a main cc-chemokine co-receptor that facilitates HIV-1 entry to macrophage and CD4(+) T cells. To now, many polymorphisms have been known by CCR5 gene that produces a truncated protein with no function. So, HIV-1 could not entry to immune-cells and the body resistant to HIV/AIDS. Δ32/Δ32 and m303/m303 homozygotes are example of mutations that could create this resistance mechanism. There is a new treatment, such as Hematopoietic Stem Cell transplantation (HSCT) in Berlin and Boston patients for Δ32/Δ32 mutation. It could eliminate co-receptor antagonist and highly-active-anti retroviral therapy (HAART) drugs problems such as toxicity, low safety and side-effects. Now there, the aim of this hypothesis will be evaluation of a new mutation CCR5 m303/m303 as autologous HSCT. This novel hypothesis indicates that autologous HSCT for m303/m303 could be effective treatment for anyone HIV/AIDS affected patient worldwide.

  2. Phase I and pharmacokinetic study of docetaxel combined with melphalan and carboplatin, with autologous hematopoietic progenitor cell support, in patients with advanced refractory malignancies.

    Science.gov (United States)

    Nieto, Yago; Shpall, Elizabeth J; Bearman, Scott I; McSweeney, Peter A; Cagnoni, Pablo J; Matthes, Steve; Gustafson, Dan; Long, Michael; Barón, Anna E; Jones, Roy B

    2005-04-01

    The purpose of this study was to define the maximal tolerated dose (MTD), extramedullary toxicities, and pharmacokinetics of docetaxel combined with high-dose melphalan and carboplatin with autologous hematopoietic progenitor cell support. Fifty-nine patients with advanced refractory malignancy (32 breast cancer, 10 non-Hodgkin lymphoma, 6 germ cell tumors, 4 Hodgkin disease, 4 ovarian cancer, 2 sarcoma, and 1 unknown primary adenocarcinoma) with a median of 3 prior chemotherapy regimens and a median of 3 organs involved were enrolled. Treatment included docetaxel (150-550 mg/m2 infused over 2 hours on day -6), melphalan (150-165 mg/m2 infused over 15 minutes from day -5 to -3), and carboplatin (1000-1300 mg/m2 as a 72-hour continuous infusion from day -5). Five patients died from direct regimen-related organ toxicity (2 capillary leak syndrome, 2 enterocolitis, and 1 hepatic toxicity), and 1 additional patient died from pulmonary aspergillosis. The docetaxel MTD was defined as 400 mg/m 2 , combined with melphalan (150 mg/m2 ) and carboplatin (1000 mg/m2 ). The MTD cohort was expanded to enroll a total of 26 patients, 1 of whom died from toxic enterocolitis. The remaining 25 patients presented the following extramedullary toxicity profile, which was manageable and largely reversible: stomatitis, myoarthralgias, peripheral neuropathy, gastrointestinal and cutaneous toxicities, and syndrome of inappropriate antidiuretic hormone secretion. Docetaxel exhibited linear pharmacokinetics in the dose range tested (150-550 mg/m2 ). Pharmacodynamic correlations were noted between the docetaxel area under the curve and peripheral neuropathy or stomatitis. The response rate among 38 patients with measurable disease was 95%, with 47% complete responses. At a median follow-up of 26 months (range, 7-72 months), the 3-year event-free survival and overall survival were 26% and 36%, respectively. In conclusion, a 4-fold dose escalation of docetaxel, combined with melphalan and

  3. Phase I study of temozolomide in combination with thiotepa and carboplatin with autologous hematopoietic cell rescue in patients with malignant brain tumors with minimal residual disease.

    Science.gov (United States)

    Egan, G; Cervone, K A; Philips, P C; Belasco, J B; Finlay, J L; Gardner, S L

    2016-04-01

    Recurrence of malignant brain tumors results in a poor prognosis with limited treatment options. High-dose chemotherapy with autologous hematopoietic cell rescue (AHCR) has been used in patients with recurrent malignant brain tumors and has shown improved outcomes compared with standard chemotherapy. Temozolomide is standard therapy for glioblastoma and has also shown activity in patients with medulloblastoma/primitive neuro-ectodermal tumor (PNET), particularly those with recurrent disease. Temozolomide was administered twice daily on days -10 to -6, followed by thiotepa 300 mg/m(2) per day and carboplatin dosed using the Calvert formula or body surface area on days -5 to -3, with AHCR day 0. Twenty-seven patients aged 3-46 years were enrolled. Diagnoses included high-grade glioma (n=12); medulloblastoma/PNET (n=9); central nervous system (CNS) germ cell tumor (n=4); ependymoma (n=1) and spinal cord PNET (n=1). Temozolomide doses ranged from 100 mg/m(2) per day to 400 mg/m(2) per day. There were no toxic deaths. Prolonged survival was noted in several patients including those with recurrent high-grade glioma, medulloblastoma and CNS germ cell tumor. Increased doses of temozolomide are feasible with AHCR. A phase II study using temozolomide, carboplatin and thiotepa with AHCR for children with recurrent malignant brain tumors is being conducted through the Pediatric Blood and Marrow Transplant Consortium.

  4. Role of Maintenance Therapy after High-Dose Chemotherapy and Autologous Hematopoietic Cell Transplantation in Aggressive Lymphomas: A Systematic Review.

    Science.gov (United States)

    Taverna, Josephine A; Yun, Seongseok; Jonnadula, Jayasree; Saleh, Ahlam; Riaz, Irbaz Bin; Abraham, Ivo; Yeager, Andrew M; Persky, Daniel O; McBride, Ali; Haldar, Subrata; Anwer, Faiz

    2016-07-01

    Significant uncertainty exists in regard to the efficacy of maintenance therapy after high-dose chemotherapy (HDC) as well as autologous stem cell transplantation (ASCT) for the treatment of patients with aggressive lymphoma. A systematic review was performed to evaluate the effectiveness of post-ASCT maintenance therapy in patients with relapsed/refractory lymphoma. A comprehensive literature search yielded 4476 studies and a total of 42 studies (11 randomized controlled trials [RCT], 9 retrospective comparative studies, and 22 single-arm studies) were included in the systematic review. There was significant heterogeneity in study design, chemotherapeutic regimens, post-ASCT maintenance strategies, patient enrollment criteria, and study endpoints. Our findings suggest that post-ASCT maintenance immune-targeting strategies, including PD-1/PD-L1 blocking antibodies, rituximab, and brentuximab, may improve progression-free survival but not overall survival. Collectively, the results indicate a need for testing new strategies with well-designed and adequately powered RCTs to better address the role of post-ASCT maintenance in relapsed/refractory lymphomas.

  5. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    Science.gov (United States)

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  6. High-Dose Chemotherapy with Autologous Hematopoietic Stem-Cell Rescue for Pediatric Brain Tumor Patients: A Single Institution Experience from UCLA

    Directory of Open Access Journals (Sweden)

    Eduard H. Panosyan

    2011-01-01

    Full Text Available Background. Dose-dependent response makes certain pediatric brain tumors appropriate targets for high-dose chemotherapy with autologous hematopoietic stem-cell rescue (HDCT-AHSCR. Methods. The clinical outcomes and toxicities were analyzed retrospectively for 18 consecutive patients ≤19 y/o treated with HDCT-AHSCR at UCLA (1999–2009. Results. Patients' median age was 2.3 years. Fourteen had primary and 4 recurrent tumors: 12 neural/embryonal (7 medulloblastomas, 4 primitive neuroectodermal tumors, and a pineoblastoma, 3 glial/mixed, and 3 germ cell tumors. Eight patients had initial gross-total and seven subtotal resections. HDCT mostly consisted of carboplatin and/or thiotepa ± etoposide (n=16. Nine patients underwent a single AHSCR and nine ≥3 tandems. Three-year progression-free and overall survival probabilities were 60.5% ± 16 and 69.3% ± 11.5. Ten patients with pre-AHSCR complete remissions were alive/disease-free, whereas 5 of 8 with measurable disease were deceased (median followup: 2.3 yrs. Nine of 13 survivors avoided radiation. Single AHSCR regimens had greater toxicity than ≥3 AHSCR (P<.01. Conclusion. HDCT-AHSCR has a definitive, though limited role for selected pediatric brain tumors with poor prognosis and pretransplant complete/partial remissions.

  7. HIGH DOSE CHEMORADIOTHERAPY WITH AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THE TREATMENT OF ADVANCED HODGKIN'S LYMPHOMA: A REPORT OF 11 CASES

    Institute of Scientific and Technical Information of China (English)

    周生余; 石远凯; 何小慧; 韩晓红; 刘鹏; 杨建良; 周爱萍; 冯奉仪

    2002-01-01

    Objective: High dose therapy (HDT) with autologous hematopoietic stem celltransplantation (ASCT) has become one of the important salvage treatments for the Hodgkin's Lymphoma patients with relapsed or resistant disease, but its role as the primary treatment remains indefinite. This study was designed to further evaluate its status in the combined modality treatment, especially, to discuss its value in the primary treatment of the patients who had advanced disease with poor prognostic factors. Methods: Eleven patients who had advanced or relapsed disease with poor prognostic factors were enrolled in this study. Among them, 9 cases had primary treatment, and 2 cases had secondary treatment; one patient received autologous bone marrow transplantation (ABMT), and 10 patients received autologous peripheral blood stem cell transplantation (APBSCT). After induction treatment 4 cases achieved complete response (CR) and 7 cases achieved partial response (PR). High dose chemotherapy combined with total body irradiation (TBI) ortotal lymph node irradiation (TLI)/subtotallymph node irradiation (STLI) were adopted in 7 cases and only high dose chemotherapy were adopted in 4 cases as the transplant preparative regimens. 5 cases received complementary irradiation in the primary sites after transplant. Results:The patients who had CR before transplantation were given consolidative therapy. Among the rest with PR, 2 cases achieved CR, 1 case PR, and 4 cases SD. Furthermore all these patients who maintained SD had bone involvement. With a median follow-up for all patients of 13(1(80) months, all of them are alive currently. Four cases are event-free survival (EFS); 4 cases with bone involvement are progression-free survival (PFS); 3 cases experienced relapse after transplant, one ofthem is EFS for 42 months again after a local relapsed site irradiation; the other two cases are being given further salvaged treatment now. According to the Life Tables method, the cumulative probability

  8. Tandem chemo-mobilization followed by high-dose melphalan and carmustine with single autologous hematopoietic cell transplantation for multiple myeloma

    Science.gov (United States)

    Chen, AI; Negrin, RS; McMillan, A; Shizuru, JA; Johnston, LJ; Lowsky, R; Miklos, DB; Arai, S; Weng, W-K; Laport, GG; Stockerl-Goldstein, K

    2017-01-01

    Single autologous hematopoietic cell transplant (AHCT) with high-dose melphalan prolongs survival in patients with multiple myeloma but is not curative. We conducted a study of intensive single AHCT using tandem chemomobilization with CY and etoposide followed by high-dose conditioning with melphalan 200 mg/m2 plus carmustine 15 mg/kg. One hundred and eighteen patients in first consolidation (CON1) and 58 patients in relapse (REL) were transplanted using this intensified approach. Disease response improved from 32% very good PR (VGPR) + CR pre-mobilization to 76% VGPR + CR post transplant in CON1. With a median follow-up of 4.7 years, the median EFS was 2.8 years, and the median OS was 5.1 years in CON1. OS from time of transplant was significantly shorter for REL (3.4 years) compared with CON1 (5.1 years; P = 0.02). However, OS from time of diagnosis was similar in REL (6.1 years) and CON1 (6.0 years; P = 0.80). The 100-day non-relapse mortality in the CON1 and REL groups was 0% and 7%, respectively. In summary, intensified single AHCT with tandem chemo-mobilization and augmented high-dose therapy is feasible in multiple myeloma and leads to high-quality response rates. PMID:21602899

  9. Clinical Outcome of Autologous Hematopoietic Stem Cell Infusion via Hepatic Artery or Portal Vein in Patients with End-stage Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Xiao-lun Huang; Tian Zhang; Ping Xie; Mao-zhu Yang; Shao-ping Deng; Le Luo; Lan-yun Luo; Hua Xue; Ling-ling Wei; Yu-tong Yao; Hai-bo Zou; Xiao-bing Huang; Yi-fan Zhu

    2014-01-01

    Objective To investigate the efficacy of hematopoietic stem cell (HSC) transplantation via the hepatic artery vs. the portal vein for end-stage liver disease (ESLD). Methods Patients with hepatic decompensation were prospectively recruited from September 2010 to September 2012 to receive HSC transplantation via the hepatic artery or the portal vein. Liver function was examined at 3, 6, and 12 months after transplantation. Liver biopsy results were analyzed using the Knodell score. Results Eighty patients (58 males and 22 females) were enrolled in the study. The Child-Pugh score was grade B in 69 cases, and grade C in the remaining 11 cases. HSC transplantation was performed via the portal vein in 36 patients and via the hepatic artery in 44 patients. ALT levels decreased while serum albumin levels increased significantly in both groups at 6 and 12 months after HSC transplantation (P Conclusions Autologous HSC transplantation improves liver function and histology in ESLD patients. The administration route of HSC has no significant impact on the efficacy of transplantation.

  10. Highly favorable outcome in BRCA-mutated metastatic breast cancer patients receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Boudin, L; Gonçalves, A; Sabatier, R; Moretta, J; Sfumato, P; Asseeva, P; Livon, D; Bertucci, F; Extra, J-M; Tarpin, C; Houvenaegel, G; Lambaudie, E; Tallet, A; Resbeut, M; Sobol, H; Charafe-Jauffret, E; Calmels, B; Lemarie, C; Boher, J-M; Viens, P; Eisinger, F; Chabannon, C

    2016-08-01

    Breast cancer carrying BRCA mutation may be highly sensitive to DNA-damaging agents. We hypothesized a better outcome for BRCA-mutated (BRCA(mut)) metastatic breast cancer (MBC) patients receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HDC AHSCT) versus unaffected BRCA (BRCA wild type; (BRCA(wt))) or patients without documented BRCA mutation (BRCA untested (BRCA(ut))). All female patients treated for MBC with AHSCT at Institut Paoli-Calmettes between 2003 and 2012 were included. BRCA(mut) and BRCA(wt) patients were identified from our institutional genetic database. Overall survival (OS) was the primary end point. A total of 235 patients were included. In all, 15 patients were BRCA(mut), 62 BRCA(wt) and 149 BRCA(ut). In multivariate analyses, the BRCA(mut) status was an independent prognostic factor for OS (hazard ratio (HR): 3.08, 95% confidence interval (CI): 1.10-8.64, P=0.0326) and PFS (HR: 2.52, 95% CI :1.29-4.91, P=0.0069). In this large series of MBC receiving HDC AHSCT, we report a highly favorable survival outcome in the subset of patients with documented germline BRCA mutations.

  11. Comparative efficacy of tandem autologous versus autologous followed by allogeneic hematopoietic cell transplantation in patients with newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Kharfan-Dabaja Mohamed A

    2013-01-01

    Full Text Available Abstract Background Despite advances in understanding of clinical, genetic, and molecular aspects of multiple myeloma (MM and availability of more effective therapies, MM remains incurable. The autologous-allogeneic (auto-allo hematopoietic cell transplantation (HCT strategy is based on combining cytoreduction from high-dose (chemo- or chemoradio-therapy with adoptive immunotherapy. However, conflicting results have been reported when an auto-allo HCT approach is compared to tandem autologous (auto-auto HCT. A previously published meta-analysis has been reported; however, it suffers from serious methodological flaws. Methods A systematic search identified 152 publications, of which five studies (enrolling 1538 patients met inclusion criteria. All studies eligible for inclusion utilized biologic randomization. Results Assessing response rates by achievement of at least a very good partial response did not differ among the treatment arms [risk ratio (RR (95% CI = 0.97 (0.87-1.09, p = 0.66]; but complete remission was higher in the auto-allo HCT arm [RR = 1.65 (1.25-2.19, p = 0.0005]. Event-free survival did not differ between auto-allo HCT group versus auto-auto HCT group using per-protocol analysis [hazard ratio (HR = 0.78 (0.58-1.05, p = 0.11] or using intention-to-treat analysis [HR = 0.83 (0.60-1.15, p = 0.26]. Overall survival (OS did not differ among these treatment arms whether analyzed on per-protocol [HR = 0.88 (0.33-2.35, p = 0.79], or by intention-to-treat [HR = 0.80 (0.48-1.32, p = 0.39] analysis. Non-relapse mortality (NRM was significantly worse with auto-allo HCT [RR (95%CI = 3.55 (2.17-5.80, p  Conclusion Despite higher complete remission rates, there is no improvement in OS with auto-allo HCT; but this approach results in higher NRM in patients with newly diagnosed MM. At present, totality of evidence suggests that an auto-allo HCT approach for patients with newly diagnosed

  12. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  13. Cost and clinical analysis of autologous hematopoietic stem cell mobilization with G-CSF and plerixafor compared to G-CSF and cyclophosphamide.

    Science.gov (United States)

    Shaughnessy, Paul; Islas-Ohlmayer, Miguel; Murphy, Julie; Hougham, Maureen; MacPherson, Jill; Winkler, Kurt; Silva, Matthew; Steinberg, Michael; Matous, Jeffrey; Selvey, Sheryl; Maris, Michael; McSweeney, Peter A

    2011-05-01

    Plerixafor plus granulocyte-colony stimulating factor (G-CSF) has been shown to mobilize more CD34(+) cells than G-CSF alone for autologous hematopoietic stem cell transplantation (HSCT). However, many centers use chemotherapy followed by G-CSF to mobilize CD34(+) cells prior to HSCT. We performed a retrospective study of patients who participated in the expanded access program (EAP) of plerixafor and G-CSF for initial mobilization of CD34(+) cells, and compared outcomes to matched historic controls mobilized with cyclophosphamide 3-5 g/m(2) and G-CSF at 2 centers that participated in the EAP Control patients were matched for age, sex, disease, disease stage, and number of prior therapies. Mobilization costs were defined to be the costs of medical procedures, resource utilization, and medications. Median national CMS reimbursement rates were used to establish the costs of procedures, hospitalization, provider visits, apheresis, CD34(+) cell processing and cryopreservation. Average sale price was used for G-CSF, plerixafor, cyclophosphamide, MESNA, antiemetics, and antimicrobials. A total of 33 patients from the EAP and 33 matched controls were studied. Two patients in the control group were hospitalized for neutropenic fever during the mobilization period. Apheresis started on the scheduled day in 33 (100%) study patients and in 29 (88%) control patients (P = 0.04). Sixteen (48%) control patients required weekend apheresis. There was no difference in number of CD34(+) cells collected between the groups, and all patients proceeded to HSCT with no difference in engraftment outcomes. Median total cost of mobilization was not different between the plerixafor/G-CSF and control groups ($14,224 versus $18,824; P = .45). In conclusion, plerixafor/G-CSF and cyclophosphamide/G-CSF for upfront mobilization of CD34(-) cells resulted in similar numbers of cells collected, costs of mobilization, and clinical outcomes. Additionally, plerixafor/G-CSF mobilization resulted in more

  14. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes

    Science.gov (United States)

    Lacoste, Sandrine; Bhatia, Smita; Chen, Yanjun; Bhatia, Ravi; O’Connor, Timothy R.

    2017-01-01

    Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient’s stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much

  15. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes.

    Science.gov (United States)

    Lacoste, Sandrine; Bhatia, Smita; Chen, Yanjun; Bhatia, Ravi; O'Connor, Timothy R

    2017-01-01

    Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much higher

  16. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  17. Transplante de células-tronco hematopoéticas no diabete melito do tipo I Autologous hematopoietic stem cell transplantation in type I diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Júlio C. Voltarelli

    2004-03-01

    Full Text Available Transplantes autólogos de células-tronco hematopoéticas (TACTH para doenças auto-imunes (DAÍ graves e refratárias à terapia convencional têm sido realizados desde 1996, principalmente dirigidos a doenças reumáticas e neurológicas, com resultados encorajadores. De modo geral, dois terços dos pacientes alcançam remissão duradoura da doença auto-imune, embora a morbimortalidade relacionada ao transplante ou à recidiva e progressão da DAI ainda constituam problemas significativos. Baseados nesses resultados e no efeito benéfico da imunossupressão moderada na evolução do diabete melito do tipo I (DM-I, iniciamos, em dezembro de 2003, um protocolo clínico de TACTH para esta doença, em cooperação com a Universidade Northwestern de Chicago, da Universidade de Miami e do National Institutes of Health. Pacientes com DM-I abaixo de 35 anos, diagnosticados há menos de seis semanas ou na fase assintomática ("lua-de-mel" da doença têm suas CTH mobilizadas com ciclofosfamida (2 g/m² e G-CSF, coletadas do sangue periférico e criopreservadas. Após o condicionamento com ciclofosfamida (200 mg/kg e globulina antitimocitária de coelho (4,5 mg/kg e a infusão das CTH autólogas, os pacientes são seguidos por cinco anos em relação aos aspectos clínicos, endocrinológicos e imunológicos do diabete. Este estudo clínico poderá representar uma importante contribuição científica do transplante de medula óssea brasileiro à moderna era de terapia celular de doenças inflamatórias e degenerativas.Autologous hematopoietic stem cell transplantation (AHSCT for severe and refractory autoimmune diseases has been performed since 1996 with encouraging results. In general, two thirds of the patients achieve durable remissions, although morbidity and mortality related to transplantation or to relapse and progression of autoimmune diseases are still significant. Based on those results and on beneficial effects of moderate immunosuppression

  18. Autologous hematopoietic stem cell transplantation and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes: long term follow-up

    Institute of Scientific and Technical Information of China (English)

    Gu Yi; Gong Chunxiu; Peng Xiaoxia; Wei Liya; Su Chang; Qin Miao; Wang Xi'ou

    2014-01-01

    Background It has been indicated that autologous hematopoietic stem cell transplantation (AHST) is a promising treatment to adults with type 1 diabetes,however,the application of AHST therapy to children with type 1 diabetes still needs more data.The aim of this study was to assess the clinical effect of immune intervention combined with AHST and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes.Methods This 1:2 matched case-control study was comprised of 42 children who were newly diagnosed with type 1 diabetes in the Department of Endocrinology,Beijing Children's Hospital from 2009-2010.The case group included 14 patients,who were treated with AHST within the first 3 months after being diagnosed with diabetes at request of their parents during 2009-2010.The control group included 28 patients with newly diagnosed type 1 diabetes at the same period of hospitalization.We compared the baseline and follow-up data of them,including ketoacidosis onset,clinical variables (glycosylated hemoglobin (HbA1c),insulin dosage and serum C-peptide).Results The clinical characteristics of the patients was comparable between the case group and the control group.At 6-12 months ((10.7±4.2) months) after AHST treatment,we found 11 patients in the case group did not stop the insulin therapy,three cases stopped insulin treatment for 2,3 and 11 months,respectively.No diabetic ketoacidosis (DKA) occurred after transplantation in all the patients in the case group.HbA1c in the control group was significant lower than that in the case group (P <0.01),while the insulin dosage and serum C-peptide were not significant different between the two groups (P >0.05).In order to eliminate the honeymoon effect,we performed final follow-up at the 3-5 years ((4.2±1.8) years) after AHST treatment,and found that HbA1c in the control group was still lower than that in the case group (P <0.01); however,the insulin dosage and serum C-peptide were not

  19. Early Failure of Frontline Rituximab-Containing Chemo-immunotherapy in Diffuse Large B Cell Lymphoma Does Not Predict Futility of Autologous Hematopoietic Cell Transplantation

    NARCIS (Netherlands)

    Hamadani, Mehdi; Hari, Parameswaran N.; Zhang, Ying; Carreras, Jeanette; Akpek, G??rg??n; Aljurf, Mahmoud D.; Ayala, Ernesto; Bachanova, Veronika; Chen, Andy I.; Chen, Yi Bin; Costa, Luciano J.; Fenske, Timothy S.; Freytes, C??sar O.; Ganguly, Siddhartha; Hertzberg, Mark S.; Holmberg, Leona A.; Inwards, David J.; Kamble, Rammurti T.; Kanfer, Edward J.; Lazarus, Hillard M.; Marks, David I.; Nishihori, Taiga; Olsson, Richard; Reddy, Nishitha M.; Rizzieri, David A.; Savani, Bipin N.; Solh, Melhem; Vose, Julie M.; Wirk, Baldeep; Maloney, David G.; Smith, Sonali M.; Montoto, Silvia; Saber, Wael

    2014-01-01

    The poor prognosis for patients with diffuse large Bcell lymphoma (DLBCL) who relapse within 1year of initial diagnosis after first-line rituximab-based chemo-immunotherapy has created controversy about the role of autologous transplantation (HCT) in this setting. We compared autologous HCT outcomes

  20. Aggressive NK/T Lymphoma with Autologous Hematopoietic Stem Cell Transplantation%自体造血干细胞移植治疗侵袭性NK/T细胞淋巴瘤

    Institute of Scientific and Technical Information of China (English)

    牛挺; 陈心传; 薛红利; 李建军; 刘志刚; 刘霆

    2011-01-01

    Objective To explore the therapeutic effect of autologous hematopoietic stem cell transplantation (auto-HSCT) on aggressive NK/T lymphoma. Methods The clinical data of one patient with aggressive NK/T lymphoma diagnosed in January 2005 were retrospectively analyzed, and the relevant domestic literatures were analyzed. Results This thirty-seven-year-old female patient had good disease control after undergoing chemotherapy with CHOAP and ICE regimens, surgery, and locoregional radiotherapy. After that, she had been collected enough bone marrow-derived hematopoietic stem cells, then underwent auto-HSCT with these cells. The conditioning regimen was TBI plus Ecy. On the +29th day after transplantation, the hematopoietic reconstruction was successful. During the follow-up period, the patient was in complete remission status all along and her disease-free survival (DFS) was 67 months. Conclusion Auto-HSCT is effective on aggressive NK/T lymphoma.%目的 探讨自体造血干细胞移植(autologous hematopoietic stem cell transplantation,auto-HSCT)治疗侵袭性NK/T细胞淋巴瘤的疗效.方法 对我科2005年1月16日收治的1例侵袭性NK/T细胞淋巴瘤患者的造血干细胞移植和随访资料进行回顾性分析,并复习国内外相关文献.结果 患者为37岁女性,诊断结外鼻型NK/T细胞淋巴瘤,系统性,经CHOAP和ICE方案化学疗法、手术、局部放射治疗控制病情良好后,采集自体骨髓造血干细胞,行auto-HSCT,预处理方案为全身放射治疗+ECy;移植+29 d造血功能即顺利重建;移植后密切随访,患者一直处于完全缓解,至今已存活67个月.结论 auto-HSCT治疗侵袭性NK/T细胞淋巴瘤疗效肯定、可靠.

  1. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  2. Emerging uses for pediatric hematopoietic stem cells.

    Science.gov (United States)

    Domen, Jos; Gandy, Kimberly; Dalal, Jignesh

    2012-04-01

    Many new therapies are emerging that use hematopoietic stem and progenitor cells. In this review, we focus on five promising emerging trends that are altering stem cell usage in pediatrics: (i) The use of hematopoietic stem cell (HSC) transplantation, autologous or allogeneic, in the treatment of autoimmune disorders is one. (ii) The use of cord blood transplantation in patients with inherited metabolic disorders such as Hurler syndrome shows great benefit, even more so than replacement enzyme therapy. (iii) Experience with the delivery of gene therapy through stem cells is increasing, redefining the potential and limitations of this therapy. (iv) It has recently been shown that human immunodeficiency virus (HIV) infection can be cured by the use of selected stem cells. (v) Finally, it has long been postulated that HSC-transplantation can be used to induce tolerance in solid-organ transplant recipients. A new approach to tolerance induction using myeloid progenitor cells will be described.

  3. Outcomes of Adults with Acute Lymphoblastic Leukemia After Autologous Hematopoietic Stem Cell Transplantation and the Significance of Pretransplantation Minimal Residual Disease:Analysis from a Single Center of China

    Institute of Scientific and Technical Information of China (English)

    Zhe Ding; Ming-Zhe Han; Shu-Lian Chen; Qiao-Ling Ma; Jia-Lin Wei; Ai-Ming Pang; Xiao-Yu Zhang

    2015-01-01

    Background:The postremission therapics for adult patients generally contain consolidation chemotherapy,allogeneic hematopoietic stem cell transplantation and autologous hematopoietic stem cell transplantation (auto-HSCT).Because of the various results from different centers,the optimal therapy for adult acute lymphoblastic leukemia (ALL) patients is still uncertain.This study aimed to better understand predictive factors and role of auto-HSCT in the postremission thcrapy for adult ALL patients.Methods:The outcomes of 135 adult patients with ALL,who received the first auto-HSCT in Hematopoietic Stem Cell Transplantation Center of Blood Diseases Hospital,Chinese Academy of Medical Sciences from January 1,1994 to February 28,2014,were retrospectively analyzed.Survival curves were estimated using the Kaplan-Meier method and simultaneous effects of multiple covariates were estimated with the Cox model.Results:Overall survival (OS) and disease-free survival (DFS) at 5 years for the whole cohort were 59.1 ± 4.5% and 59.0 ± 4.4%,respectively.The cumulative nonrelapse mortality and relapse rate at 5 years were 4.5 ± 0.03% and 36.6 ± 0.19%.For both OS and DFS,acute T-cell lymphoblastic leukemia,high lactate dehydrogenase (LDH) at diagnosis,blast cell proportion ≥5% on the 15th day of induction therapy,and extramedullary infiltration before HSCT were the poor prognosis factors.In addition,age ≥35 years predicted poor DFS.Only T-ALL and high LDH were the independent undesirable factors associated with OS and DFS in Cox regression model.For 44 patients who had results of pretransplantation minimal residual disease (MRD),positive MRD (MRD ≥0.01%) indicated poor OS (P =0.044) and DFS (P =0.008).Furthermore,for the standard risk group,the patients with negative MRD (MRD <0.01%) had better results (OS at 18 months was 90.0 ± 9.5%,while for the patients with positive MRD OS was 50.0 ± 35.4%,P =0.003;DFS at 18 months was 90.0 ± 9.5%,while for the

  4. Autologous hematopoietic stem cell transplantation in combination with immunoablative protocol in secondary progressive multiple sclerosis: A 10-year follow-up of the first transplanted patient

    Directory of Open Access Journals (Sweden)

    Obradović Dragana

    2016-01-01

    Full Text Available Introduction. Multiple sclerosis (MS is an immunemediated disease of the central nervous system that affects young individuals and leads to severe disability. High dose immunoablation followed by autologous hemopoietic stem cell transplantation (AHSCT has been considered in the last 15 years as potentialy effective therapeutic approach for agressive MS. The most recent long-time follow-up results suggest that AHSCT is not only effective for highly aggressive MS, but for relapsing-remitting MS as well, providing long-term remission, or maybe even cure. We presented a 10- year follow-up of the first MS patient being treated by immunoablation therapy and AHSCT. Case report. A 27-year-old male experienced the first symptoms - intermitent numbness and paresthesia of arms and legs of what was treated for two years by psychiatrist as anxiety disorder. After he developed severe paraparesis he was admitted to the Neurology Clinic and diagnosed with MS. Our patient developed aggressive MS with frequent relapses, rapid disability progression and transition to secondary progressive form 6 years after MS onset [the Expanded Disability Status Scale (EDSS 7.0 Ambulation Index (AI 7]. AHSCT was performed, cyclophosphamide was used for hemopoietic stem cell mobilization and the BEAM protocol was used as conditionig regimen. No major adverse events followed the AHSCT. Neurological impairment improved, EDSS 6.5, AI 6 and during a 10-year followup remained unchanged. Brain MRI follow-up showed the absence of gadolinium enhancing lesions and a mild progression of brain atrophy. Conclusion. The patient with rapidly evolving, aggressive, noninflammatory MS initialy improved and remained stable, without disability progression for 10 years, after AHSCT. This kind of treatment should be considered in aggressive MS, or in disease modifying treatment nonresponsive MS patients, since appropriately timed AHSCT treatment may not only prevent disability progression but reduce

  5. Pharmacoeconomics of Hematopoietic Stem Cell Mobilization : An Overview of Current Evidence and Gaps in the Literature

    NARCIS (Netherlands)

    Shaughnessy, Paul; Chao, Nelson; Shapiro, Jamie; Walters, Kent; McCarty, John; Abhyankar, Sunil; Shayani, Sepideh; Helmons, Pieter; Leather, Helen; Pazzalia, Amy; Pickard, Simon

    2013-01-01

    Adequate hematopoietic stem cell (HSC) mobilization and collection is required prior to proceeding with high dose chemotherapy and autologous hematopoietic stem cell transplant. Cytokines such as G-CSF, GM-CSF, and peg-filgrastim, alone or in combination with plerixafor, and after chemotherapy have

  6. Prognostic Factors and a New Prognostic Index Model for Children and Adolescents with Hodgkin’s Lymphoma Who Underwent Autologous Hematopoietic Stem Cell Transplantation: A Multicenter Study of the Turkish Pediatric Bone Marrow Transplantation Study

    Directory of Open Access Journals (Sweden)

    Vural Kesik

    2016-12-01

    Full Text Available Objective: The prognostic factors and a new childhood prognostic index after autologous hematopoietic stem cell transplantation (AHSCT in patients with relapsed/refractory Hodgkin’s lymphoma (HL were evaluated. Materials and Methods: The prognostic factors of 61 patients who underwent AHSCT between January 1990 and December 2014 were evaluated. In addition, the Age-Adjusted International Prognostic Index and the Childhood International Prognostic Index (CIPI were evaluated for their impact on prognosis. Results: The median age of the 61 patients was 14.8 years (minimummaximum: 5-20 years at the time of AHSCT. There were single relapses in 28 patients, ≥2 relapses in eight patients, and refractory disease in 25 patients. The chemosensitivity/chemorefractory ratio was 36/25. No pretransplant radiotherapy, no remission at the time of transplantation, posttransplant white blood cell count over 10x103/ μL, posttransplant positron emission tomography positivity at day 100, and serum albumin of <2.5 g/dL at diagnosis were correlated with progression-free survival. No remission at the time of transplantation, bone marrow positivity at diagnosis, and relapse after AHSCT were significant parameters for overall survival. Conclusion: The major factors affecting the progression-free and overall survival were clearly demonstrated. A CIPI that uses a lactate dehydrogenase level of 500 IU/L worked well for estimating the prognosis. We recommend AHSCT at first complete remission for relapsed cases, and it should also be taken into consideration for patients with high prognostic scores at diagnosis.

  7. High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation as Adjuvant Treatment in High-Risk Breast Cancer: Data from the European Group for Blood and Marrow Transplantation Registry.

    Science.gov (United States)

    Martino, Massimo; Lanza, Francesco; Pavesi, Lorenzo; Öztürk, Mustafa; Blaise, Didier; Leno Núñez, Rubén; Schouten, Harry C; Bosi, Alberto; De Giorgi, Ugo; Generali, Daniele; Rosti, Giovanni; Necchi, Andrea; Ravelli, Andrea; Bengala, Carmelo; Badoglio, Manuela; Pedrazzoli, Paolo; Bregni, Marco

    2016-03-01

    The aim of this retrospective study was to assess toxicity and efficacy of adjuvant high-dose chemotherapy (HDC) and autologous hematopoietic stem cell transplantation (AHSCT) in 583 high-risk breast cancer (BC) patients (>3 positive nodes) who were transplanted between 1995 and 2005 in Europe. All patients received surgery before transplant, and 55 patients (9.5%) received neoadjuvant treatment before surgery. Median age was 47.1 years, 57.3% of patients were premenopausal at treatment, 56.5% had endocrine-responsive tumors, 19.5% had a human epidermal growth factor receptor 2 (HER2)-negative tumor, and 72.4% had ≥10 positive lymph nodes at surgery. Seventy-nine percent received a single HDC procedure. Overall transplant-related mortality was 1.9%, at .9% between 2001 and 2005, whereas secondary tumor-related mortality was .9%. With a median follow-up of 120 months, overall survival and disease-free survival rates at 5 and 10 years in the whole population were 75% and 64% and 58% and 44%, respectively. Subgroup analysis demonstrated that rates of overall survival were significantly better in patients with endocrine-responsive tumors, <10 positive lymph nodes, and smaller tumor size. HER2 status did not affect survival probability. Adjuvant HDC with AHSCT has a low mortality rate and provides impressive long-term survival rates in patients with high-risk BC. Our results suggest that this treatment modality should be considered in selected high-risk BC patients and further investigated in clinical trials.

  8. Autologous stem cell transplantation as first line treatment after incomplete excision of pancreatoblastoma.

    Science.gov (United States)

    Meneses, Clarice Franco; Osório, Carolina Dame; de Castro Junior, Claudio Galvão; Brunetto, Algemir Lunardi

    2013-01-01

    Pancreatoblastoma is a rare tumor and surgery with complete resection is the main treatment approach. Prognosis for patients with residual disease after surgery is usually dismal. A 14-year-old girl with pancreatoblastoma in the pancreatic body and tail was submitted to preoperative chemotherapy. She underwent surgery and the tumor was resected with microscopic margins. Postoperative chemotherapy was followed by high dose chemotherapy and autologous hematopoietic stem cell transplantation. After four years she remains very well with no evidence of disease. This is the first case reported of pancreatoblastoma that was treated with autologous hematopoietic stem cell transplantation as first line treatment without radiotherapy at the site of the microscopic disease.

  9. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    Science.gov (United States)

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  10. Trichoderma species fungemia after high-dose chemotherapy and autologous stem cell transplantation: a case report.

    Science.gov (United States)

    Festuccia, M; Giaccone, L; Gay, F; Brunello, L; Maffini, E; Ferrando, F; Talamo, E; Boccadoro, M; Serra, R; Barbui, A; Bruno, B

    2014-08-01

    We present a case of Trichoderma fungemia with pulmonary involvement in a multiple myeloma patient, who was severely immunocompromised and heavily treated with high-dose melphalan, and underwent autologous hematopoietic cell transplantation. This is the first report, to our knowledge, of proven Trichoderma fungemia, defined by published criteria, successfully treated with voriconazole.

  11. O transplante autólogo de células-tronco hematopoéticas no tratamento do Mieloma Múltiplo Autologous hematopoietic stem cell transplant for Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Angelo Maiolino

    2007-03-01

    Full Text Available A quimioterapia em altas doses seguida de transplante autólogo de células-tronco hematopoéticas vem se constituindo ao longo das últimas décadas em um importante instrumento terapêutico, devendo fazer parte da estratégia de tratamento da maior parte dos pacientes com mieloma múltiplo, particularmente daqueles com idade inferior a 65 anos. Pelo menos dois importantes estudos randomizados mostraram vantagens para esta estratégia quando comparadas à quimioterapia convencional. No entanto, a quase totalidade destes pacientes irá recair, necessitando de algum tratamento adicional. A utilização de um segundo transplante, manutenção com talidomida e a introdução de novas drogas como o bortezomibe poderão representar um avanço, melhorando os resultados da estratégia de tratamento do mieloma múltiplo.High dose chemotherapy followed by autologous stem cell transplantation has been recognized as an important step in the treatment of multiple myeloma. At least two well designed randomized studies showed better outcomes in patients treated with high doses compared to those treated with conventional chemotherapy. Nowadays, autologous stem cell transplantation should be considered for all under 65-year-old patients. Although autologous stem cell transplantation has modified the prognosis of myeloma, almost all patients still relapse some time after a single transplant, and then another therapeutic approach becomes necessary. With the aim of improving the results in the treatment of myeloma, new approaches including tandem stem cell transplantation, maintenance with thalidomide and new drugs such as bortezomib are being tested. Strategies including these approaches and autologous stem cell transplantation may improve the results of the treatment of myeloma in the future.

  12. Hematopoietic stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Gazit, Roi; Weissman, Irving L; Rossi, Derrick J

    2008-10-01

    The etiology of the age-associated pathophysiological changes of the hematopoietic system including the onset of anemia, diminished adaptive immune competence, and myelogenous disease development are underwritten by the loss of normal homeostatic control. As tissue and organ homeostasis in adults is primarily mediated by the activity of stem and progenitor cells, it has been suggested that the imbalances accompanying aging of the hematopoietic system may stem from alterations in the prevalence and/or functional capacity of hematopoietic stem cells (HSCs) and progenitors. In this review, we examine evidence implicating a role for stem cells in the aging of the hematopoietic system, and focus on the mechanisms suggested to contribute to stem cell aging.

  13. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  14. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  15. Hodgkin’s Lymphoma - evaluation of patients submitted to Autologous transplantation of hematopoietic cells in the Hematology Service of the Hospital Walter Cantídio – Fortaleza, Brazil.

    Directory of Open Access Journals (Sweden)

    Fernando Barroso Duarte

    Full Text Available SUMMARY The Autologous HSCT is an important alternative for refractory or recurrent HL patients in terms of survival and improved quality of life. This study analyzes the results of autologous BMT performed in HL patients in the Transplant Unit of the HUWC/ HEMOCE (Fortaleza - CE, Brazil. Fifty-two transplanted patients were studied from January 2009 to October 2015, among them, 30 men and 22 women, mean age of 28.2 years. All of them received GCS-F during the mobilization, in some cases associated with Vinorelbine or Plerixafor, with CD34 collection averaging 4.8 CD34/kg. The conditioning was performed with BEAC, NEAM or BEAM and the grafting with an average of 10 days. The evaluation on D + 100 showed: CR - 42 (82.7%, PR - 08 (13.5% and 02 (3.8% deaths, three and six days after cell infusion. After the D+100, 08 patients in CR showed HL recurrence from 06 to 36 months; 03 died and 05 are being treated with brentuximab; among the 08 patients in PR, 01 died due to HL activity, 04 months after BMT and 07 patients are undergoing treatment. The final evaluation of HL transplant patients showed an OS of 88.5% and a DFS of 61.5% in 6 years, with OS of the chemosensitive patients of 81% and of the chemoresistant ones, of 72.6%. It is possible to conclude that the Autologous HSCT has shown to be an excellent rescue therapy regarding tolerance, as well as the overall survival.

  16. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Ajay K.; Rajendran, Joseph G.; Gooley, Ted; Pagel, John M.; Fisher, Darrell R.; Petersdorf, Stephen; Maloney, David G.; Eary, Janet F.; Appelbaum, Frederick R.; Press, Oliver W.

    2007-04-10

    Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.

  17. Salvage Second Hematopoietic Cell Transplantation in Myeloma

    Science.gov (United States)

    Michaelis, Laura C.; Saad, Ayman; Zhong, Xiaobo; Le-Rademacher, Jennifer; Freytes, Cesar O.; Marks, David I.; Lazarus, Hillard M.; Bird, Jennifer M.; Holmberg, Leona; Kamble, Rammurti T.; Kumar, Shaji; Lill, Michael; Meehan, Kenneth R.; Saber, Wael; Schriber, Jeffrey; Tay, Jason; Vogl, Dan T.; Wirk, Baldeep; Savani, Bipin N.; Gale, Robert P.; Vesole, David H.; Schiller, Gary J.; Abidi, Muneer; Anderson, Kenneth C.; Nishihori, Taiga; Kalaycio, Matt E.; Vose, Julie M.; Moreb, Jan S.; Drobyski, William; Munker, Reinhold; Roy, Vivek; Ghobadi, Armin; Holland, H. Kent; Nath, Rajneesh; To, L. Bik; Maiolino, Angelo; Kassim, Adetola A.; Giralt, Sergio A.; Landau, Heather; Schouten, Harry C.; Maziarz, Richard T.; Mikhael, Joseph; Kindwall-Keller, Tamila; Stiff, Patrick J.; Gibson, John; Lonial, Sagar; Krishnan, Amrita; Dispenzieri, Angela; Hari, Parameswaran

    2013-01-01

    Autologous hematopoietic cell transplantation (AHCT) as initial therapy of patients with multiple myeloma (MM) improves survival. However, data to support this approach for relapsed/progressive disease after initial AHCT (AHCT1) are limited. Using Center for International Blood and Marrow Transplant Research data, we report the outcomes of 187 patients who underwent a second AHCT (AHCT2) for the treatment of relapsed/progressive MM. Planned tandem AHCT was excluded. Median age at AHCT2 was 59 years (range, 28 to 72), and median patient follow-up was 47 months (range, 3 to 97). Nonrelapse mortality after AHCT2 was 2% at 1 year and 4% at 3 years. Median interval from AHCT1 to relapse/progression was 18 months, and median interval between transplantations was 32 months. After AHCT2, the incidence of relapse/progression at 1 and 3 years was 51% and 82%, respectively. At 3 years after AHCT2, progression-free survival was 13%, and overall survival was 46%. In multivariate analyses, those relapsing ≥36 months after AHCT1 had superior progression-free (P = .045) and overall survival (P = .019). Patients who underwent AHCT2 after 2004 had superior survival (P = .026). AHCT2 is safe and feasible for disease progression after AHCT1. In this retrospective study, individuals relapsing ≥36 months from AHCT1 derived greater benefit from AHCT2 compared with those with a shorter disease-free interval. Storage of an adequate graft before AHCT1 will ensure that the option of a second autologous transplantation is retained for patients with relapsed/progressive MM. PMID:23298856

  18. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Fagius, J.; Lundgren, J.; Oberg, G.

    2009-01-01

    BACKGROUND: During the last 15 years, high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HSCT) has globally been performed for severe multiple sclerosis (MS). Most patients have been in progressive phase with long disease duration. As a rule, treatment effect has been...

  19. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving.

  20. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    Science.gov (United States)

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.

  1. Transplante de células-tronco hematopoéticas para tumores sólidos: recomendações do Consenso Brasileiro de Transplante de Medula Óssea Autologous hematopoietic stem cell transplantation in solid tumors: the Brazilian Consensus on Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Décio Lerner

    2010-05-01

    Full Text Available O transplante de células-tronco hematopoéticas autólogo permite o escalonamento de dose de drogas quimioterápicas e é uma estratégia atraente para tratamento de tumores sólidos, principalmente em doenças recaídas. Não há, no entanto, estudos randomizados fase III que demonstrem benefício deste procedimento em tumor sólido. Em tumor germinativo de testículo, há estudos fase II com excelentes resultados, proporcionando cura para doentes refratários a platina ou que estão em terceira linha de quimioterapia. Com base nisto, o transplante de células-tronco hematopoéticas autólogo é considerado tratamento padrão para tumor germinativo recaído. Para câncer de mama, o papel desta modalidade de tratamento permanece controverso apesar dos vinte anos de experiência. Ainda é utilizado em ensaios clínicos e talvez exista algum subgrupo que se beneficie. O procedimento não oferece benefício para câncer de ovário, pulmão ou tumor cerebral. O transplante alogeneico de células-tronco hematopoéticas para tumores sólidos se baseia no efeito enxerto-contra-tumor, que é observado para algumas doenças: câncer mamário, colorretal, ovariano, pancreático e, finalmente, renal, em que há a maior experiência. Porém, o tratamento ainda é considerado experimental.Autologous hematopoietic stem cell transplantation, which allows chemotherapy dose-escalonation, is an attractive strategy for solid tumors treatment, specially relapsed diseases. However, there are no phase III trials showing benefits. There are phase II trials showing excellent results for germ cell tumors, including cure for platinrefractory and heavily pretreated patients. Because of this, autologous stem cell transplantation is considered standard of care for relapsed germ cell tumor. The role of this treatment remains controversial for breast cancer despite twenty years of experience. It’s still done in clinical trials and it may benefit a subgroup of patients. The

  2. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  3. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma.

    Science.gov (United States)

    Yamasaki, S; Suzuki, R; Hatano, K; Fukushima, K; Iida, H; Morishima, S; Suehiro, Y; Fukuda, T; Uchida, N; Uchiyama, H; Ikeda, H; Yokota, A; Tsukasaki, K; Yamaguchi, H; Kuroda, J; Nakamae, H; Adachi, Y; Matsuoka, K-I; Nakamura, Y; Atsuta, Y; Suzumiya, J

    2017-04-03

    Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) represent severe late effects in patients receiving hematopoietic cell transplantation (HCT) for lymphoma. The choice between high-dose therapy with autologous HCT and allogeneic HCT with reduced-intensity conditioning remains controversial in patients with relapsed lymphoma. We retrospectively analyzed incidence and risk factors for the development of t-AML/MDS in lymphoma patients treated with autologous or allogeneic HCT. A total of 13 810 lymphoma patients who received autologous (n=9963) or allogeneic (n=3847) HCT between 1985 and 2012 were considered. At a median overall survival (OS) of 52 and 46 months in autologous and allogeneic HCT groups, respectively, lymphoma patients receiving autologous HCT (1.38% at 3 years after autologous HCT) had a significant risk for developing t-AML/MDS compared to allogeneic HCT (0.37% at 3 years after allogeneic HCT, Pafter autologous and allogeneic HCT were high-stage risk at HCT (P=0.04) or secondary malignancies (P<0.001) and receiving cord blood stem cell (P=0.03) or involved field radiotherapy (P=0.002), respectively. Strategies that carefully select lymphoma patients for autologous HCT, by excluding lymphoma patients with high-stage risk at HCT, may allow the identification of individual lymphoma patients at particular high risk for t-AML/MDS.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.52.

  4. Hematopoietic cell transplantation for Crohn's disease; is it time?

    Institute of Scientific and Technical Information of China (English)

    Y Leung; M Geddes; J Storek; R Panaccione; PL Beck

    2006-01-01

    AIM: To review all studies in the literature that have assessed Hematopoietic cell transplantation (HCT)and Crohn's disease (CD) with the ultimate aims of determining if this is a viable treatment option for those with CD. A secondary aim was to review the above literature and determine if the studies shed further light on the mechanisms involved in the pathogenesis of CD.METHODS: An extensive Medline search was performed on all articles from 1970 to 2005 using the keywords;bone marrow transplant, stem cell, hematopoietic cell,Crohn's disease and inflammatory bowel disease.RESULTS: We identified one case in which a patient developed CD following an allogeneic HCT from a sibling suffering with CD. Evidence for transfer of the genetic predisposition to develop CD was also identified with report of a patient that developed severe CD following an allogeneic HCT. Following HCT it was found that the donor (that had no signs or symptoms of CD) and the recipient had several haplotype mismatches in HLA class Ⅲ genes in the IBD3 locus including a polymorphism of NOD2/CARD15 that has been associated with CD.Thirty three published cases of patients with CD who underwent either autologous or allogeneic HCT were identified. At the time of publication 29 of these 33patients were considered to be in remission. The median follow-up time was seven years, and twenty months for allogeneic and autologous HCT respectively. For patients who underwent HCT primarily for treatment of their CD there have been no mortalities related to transplant complications.CONCLUSION: Overall these preliminary data suggest that both allogeneic and autologous HCT may be effective in inducing remission in refractory CD. This supports the hypothesis that the hematolymphatic cells play a key role in CD and that resetting of the immune system may be a critical approach in the management or cure of CD.

  5. Impact of autologous hematopoietic stem cell transplantation on the quality of life of type 1 diabetes mellitus patients Impacto do transplante de células-tronco hematopoéticas sobre a qualidade de vida de pacientes com diabetes mellitus tipo 1

    Directory of Open Access Journals (Sweden)

    Manoel Antônio dos Santos

    2011-01-01

    Full Text Available The present study aimed at assessing the health-related quality of life (HRQoL of patients with type 1 diabetes mellitus (DM1 submitted to autologous hematopoietic stem cell transplantation (HSCT. This study is part of a pioneering research protocol which tests the applicability of autologous hematopoietic stem cell transplantation as a new therapeutic approach to DM1. The study was conducted on 14 patients admitted to the ward of the Bone Marrow Transplantation Unit of a university hospital during the period from October 2006 to December 2007. The patients were evaluated at admission and on the occasion of the ambulatory return visit 100 days after transplantation. They answered the SF-36 quality of life questionnaire and the data were analyzed according to literature recommendations. The results showed that 100 days after transplantation the value of the patients' quality of life was higher compared to the pre-HSCT value, with significant differences in the Physical Domains (Role Limitations due to Physical Problems (p = .009, Vitality (p = .02 and Mental Health (p = .04, demonstrating significant appreciation of those domains after the procedure. The results indicate an improvement in HRQoL after HSCT. The SF-36 proved to be a useful instrument for the assessment of quality of life in patients with DM1 submitted to HSCT.Este estudo teve como objetivo avaliar a qualidade de vida relacionada à saúde (QVRS de pacientes com diabetes mellitus tipo 1 (DM1 submetidos ao Transplante de Células-Tronco Hematopoéticas (TCTH. O estudo é parte de um protocolo de pesquisa pioneiro no mundo, que testa a aplicabilidade do TCTH como nova abordagem terapêutica no DM1. Foram investigados 14 pacientes, que constituíram a população de pessoas internadas na enfermaria da Unidade de Transplante de Medula Óssea de um hospital universitário, no período de outubro de 2006 a dezembro de 2007. Os pacientes foram avaliados na admissão e no retorno

  6. Hematopoietic Stem-Cell Transplantation in the Developing World: Experience from a Center in Western India

    Directory of Open Access Journals (Sweden)

    Chirag A. Shah

    2015-01-01

    Full Text Available We describe our experience of first 50 consecutive hematopoietic stem-cell transplants (HSCT done between 2007 and 2012 at the Apollo Hospital, Gandhinagar, 35 autologous HSCT and 15 allogeneic HSCT. Indications for autologous transplant were multiple myeloma, non-Hodgkin lymphoma, Hodgkin lymphoma, and acute myeloid leukemia, and indications for allogeneic transplants were thalassemia major, aplastic anaemia, chronic myeloid leukemia, and acute lymphoblastic and myeloid leukaemia. The median age of autologous and allogeneic patient’s cohort was 50 years and 21 years, respectively. Median follow-up period for all patients was 39 months. Major early complications were infections, mucositis, acute graft versus host disease, and venoocclusive disease. All of our allogeneic and autologous transplant patients survived during the first month of transplant. Transplant related mortality (TRM was 20% (N = 3 in our allogeneic and 3% (N = 1 in autologous patients. Causes of these deaths were disease relapse, sepsis, hemorrhagic complications, and GVHD. 46% of our autologous and 47% of our allogeneic patients are in complete remission phase after a median follow-up of 39 months. 34% of our autologous patients and 13% of our allogeneic patients had disease relapse. Overall survival rate in our autologous and allogeneic patients is 65.7% and 57.1%, respectively. Our results are comparable to many national and international published reports.

  7. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  8. Hematopoietic Stem Cells Expansionin Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionClinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy. It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors. Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal sev...

  9. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    Science.gov (United States)

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  10. Effect of preoperative autologous blood donation on the bone marrow hematopoietic cells in acute hemor-rhagic shock rabbits%贮存式自体输血对急性失血性休克兔骨髓造血细胞的影响

    Institute of Scientific and Technical Information of China (English)

    章健萍; 刘丽; 陶强; 杨大威; 郭建荣

    2016-01-01

    Objective To explore the effect of preoperative autologous blood donation on the bone marrow hematopoietic cells in acute hemorrhagic shock of New Zealand rabbits. Methods Twenty-four male New Zealand rabbits,weighing 1.9-2.4 kg,were randomly divided into 4 groups(n =6 each),using a random number table:control group (group CON),allogeneic blood trans-fusion group (group ABT),autologous blood storage group (group ABS)and preoperative autologous blood donation group (group PAT).In ABS and PAT groups,autologous blood was collected and stored for 3 times before operation,once a week till 72 hours before operation.Femoral artery of group CON and group ABS were separated,yet shock was not simulated.After the rabbit model of a-cute hemorrhagic shock was established,group ABT was transfused the blood stored by group ABS, group PAT preoperative autologous blood.Hemoglobin (Hb)and reticulocyte (RET)percentage of the four groups of rabbits were tested before blood storage (T1 ),after blood storage (T2 ),before hemorrhagic shock (T3 ),at resuscitation (T4 ),resuscitation for 24 h (T5 ).The bone marrow nucleated cell of rabbits was counted and the proportion of marrow hematopoietic cell in stationary/first gap (G0/G1 )phase,synthesis (S)phase,second gap/mitosis (G2/M)phase was examined at 24 h after resuscitation.Results Compared with group CON,Hb was significantly decreased in group ABS at T2-T5 ,group PAT at T2 ,T3 ,group ABT at T4 (P <0.05).Compared with group ABT,RET percentage was significantly increased in group ABS and PAT at T2 ,and remained at a high level at T5 (P <0.05).The number of bone marrow nucleated cell was significantly increased in group ABS and PAT (P <0.05),the marrow hematopoietic cell cycle of G0/G1 phase was significantly decreased,S phase,G2/M phase cell proportion obviously advanced (P < 0.05 ).Conclusion Preoperative autologous blood donation stimulates the bone marrow hematopoietic cell from the stationary phase to proliferation,increases the

  11. [Autologous stem cell transplantation for autoimmune diseases: recommendations from the SFGM-TC].

    Science.gov (United States)

    Farge, D; Terriou, L; Badoglio, M; Cras, A; Desreumaux, P; Hadj-Khelifa, S; Marjanovic, Z; Moisan, A; Dulery, R; Faucher, C; Hij, A; Martin, T; Vermersch, P; Yakoub-Agha, I

    2014-08-01

    Autologous hematopoietic stem cell transplantation is a valid alternative to immunosuppressive treatment in patients with auto-immune disease; however, the role of this approach remains subject to debate. In the attempt to harmonize clinical practices between different French transplantation centers, the French Society of Bone Marrow Transplantation and Cell Therapies (SFGM-TC) set up its fourth annual series of workshops which brought together practitioners from all of its member centers. These workshops took place in September 2013 in Lille. In this article we give an overview regarding the indications of autologous stem cell transplantation in auto-immune diseases as well as recommendations regarding post-transplant follow-up of patients.

  12. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2013-11-01

    Full Text Available The combination of genetic modification and hematopoietic stem cell (HSC transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  13. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    Science.gov (United States)

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-11-28

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  14. Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system.

    Science.gov (United States)

    Skinner, Amy M; Grompe, Markus; Kurre, Peter

    2012-06-15

    Cell fusion plays a well-recognized, physiological role during development. Bone-marrow-derived hematopoietic cells have been shown to fuse with non-hematopoietic cells in a wide variety of tissues. Some organs appear to resolve the changes in ploidy status, generating functional and mitotically-competent events. However, cell fusion exclusively involving hematopoietic cells has not been reported. Indeed, genomic copy number variation in highly replicative hematopoietic cells is widely considered a hallmark of malignant transformation. Here we show that cell fusion occurs between cells of the hematopoietic system under injury as well as non-injury conditions. Experiments reveal the acquisition of genetic markers in fusion products, their tractable maintenance during hematopoietic differentiation and long-term persistence after serial transplantation. Fusion events were identified in clonogenic progenitors as well as differentiated myeloid and lymphoid cells. These observations provide a new experimental model for the study of non-pathogenic somatic diversity in the hematopoietic system.

  15. Effect of endothelial progenitor cell on hematopoietic reconstitution in allogeneic hematopoietic stem cell transplantation mouse model

    Institute of Scientific and Technical Information of China (English)

    化静

    2013-01-01

    Objective To examine the effects of endothelial progenitor cell (EPC) on hematopoietic reconsititution in allogeneic hematopoietic stem cell transplantation (alloHSCT) mouse model.Methods Allo-HSCT mouse model was established with condition of BU/CY,in which C57BL/6 (H-2b) and BABL/c (H-2d) mice were used

  16. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  17. 自体造血干细胞移植治疗继发进展型多发性硬化36例疗效及预后影响因素分析%Autologous peripheral hematopoietic stem cell transplantation for treatment of multiple sclerosis in 36 cases: efficacy and prognostic factors analysis

    Institute of Scientific and Technical Information of China (English)

    苏力; 冀冰心; 董会卿; 惠吴函; 张普; 徐娟

    2011-01-01

    Objective To investigate the efficacy and prognostic factors of autologous peripheral hematopoietic stem cell transplantation (auto-HSCT) for treatment of secondary progressive multiple sclerosis (SPMS).Methods A total of 36 patients received subcutaneous injection with granulocyte colony-stimulating factor ( GCSF) for 4 ~ 6 days to mobilize hematopoietic stem cells and were then collected for peripheral blood mononuclear cells (PBMCs). CD34 + cell sorting was performed in 28 patients. The preparative regimen was BEAM ( carmustine, melphalan, teniposide and cytosine arabinoside). Results Clinical improvement was shown in 15 cases and stability in 5 cases. 14 cases recurred after auto-HSCT, Two cases were lost to follow-up. The expected relapse free survival (RFS) was 55% at 88 months. In addition, optic nerve injury at the onset of MS was considered as a risk factor for unfavorable outcome of auto-HSCT. Conclusion Auto-HSCT is effective for long-term remission in patients with SPMS. Optic nerve injury may be a risk factor for unfavorable prognosis of auto-HSCT.%目的 分析继发进展型多发性硬化(SPMS)患者接受自体造血千细胞移植(auto-HSCT)疗效及预后因素分折.方法 收集2001-2009年首都医科大学宣武医院收治的36例SPMS患者.粒细胞集落刺激因子(G-CSF)5 μg/kg皮下注射4~6d动员造血干细胞,来集外周血单个核细胞,其中28例患者分选CD34+ 细胞.预处理方案为BEAM(卡氮芥、马法兰、替尼泊甙及阿糖胞苷).结果 15例临床缓解,5例疾病稳定,14例移植后复发,2例失访.88个月预期无复发存活率55%.发病时有视神经损伤是移植预后不良的危险因素.结论 auto-HSCT是SPMS患者获得长期疾病缓解的有效方法,视神经损伤是移植预后不良因素.

  18. The role of hematopoietic stem cell transplantation for type 1 diabetes mellitus

    OpenAIRE

    2008-01-01

    In this review, we present 1) scientific basis for the use of high dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes mellitus, 2) an update of clinical and laboratory outcomes in 21 patients transplanted at the University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Brazil, including 6 relapses in patients without previous ketoacidosis and 3) a discussion of future prospectives ...

  19. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages (multipote

  20. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  1. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  2. Advance in hematopoietic stem cells transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun

    2008-01-01

    @@ During the past 50 years, intensive studies into the characteristics of hematopoietic stem cell transplantation immunology and the emergence of new immunosuppressant and anti-infective drugs have significantly improved the clinical result of hematopoietic stem cell transplantation (HSCT).

  3. American Society of Blood and Marrow Transplantation, European Society of Blood and Marrow Transplantation, Blood and Marrow Transplant Clinical Trials Network, and International Myeloma Working Group Consensus Conference on Salvage Hematopoietic Cell Transplantation in Patients with Relapsed Multiple Myeloma

    NARCIS (Netherlands)

    S. Giralt; L. Garderet (Laurent); B.G.M. Durie (Brian); G. Cook (Gordon); G. Gahrton (Gösta); B. Bruno (Benedetto); P. Hari (Paremesweran); H.M. Lokhorst (Henk); P.L. McCarthy (Philip); A. Krishnan (Amrita); P. Sonneveld (Pieter); H. Goldschmidt (Harmut); S. Jagannath (Sundar); B. Barlogie (Bart); M.V. Mateos; P. Gimsing (Peter); O. Sezer; J. Mikhael (Joseph); J. Lu (Jin); M.A. Dimopoulos (Meletios); R.N. Mazumder (Ramendra N.); A. Palumbo (Antonio); R. Abonour (Rafat); K. Anderson (Kenneth); M. Attal (Michel); J. Blade; J. Bird (Jenny); M. Cavo (Michele); R.L. Comenzo; J. de la Rubia (Javier); H. Einsele (Hermann); R. Garcia-Sanz (Ramon); J. Hillengass (Jens); S. Holstein (Sarah); H.E. Johnsen (Hans); D. Joshua; G. Koehne (Guenther); S. Kumar (Shaji); R. Kyle (Robert); X. Leleu; S. Lonial (Sagar); H. Ludwig (Heinz); H. Nahi (Hareth); A. Nooka (Anil); R.Z. Orlowski (Robert); S.V. Rajkumar (Vincent); A. Reiman (Anthony); P.G. Richardson (Paul Gerard); E. Riva (Eloisa); J. San Miguel (Jesús); I. Turreson (Ingemar); S. Usmani (Saad); D. Vesole (David); W. Bensinger; M. Qazilbash (Muzaffer); Y. Efebera (Yvonne); M. Mohty (Mohamad); C. Gasparreto (Christina); J. Gajewski (James); C.F. LeMaistre (Charles F.); C. Bredeson (Chris); P. Moreau; M. Pasquini (Marcelo); N. Kroeger (Nicolaus); E.A. Stadtmauer (Edward)

    2015-01-01

    textabstractIn contrast to the upfront setting in which the role of high-dose therapy with autologous hematopoietic cell transplantation (HCT) as consolidation of a first remission in patients with multiple myeloma (MM) is well established, the role of high-dose therapy with autologous or allogeneic

  4. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  5. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  6. Analysis of treating the acute leukemia in risk group with simple chemotherapy, chemotherapy + DC-CIK cell therapy, chemotherapy and autologous hematopoietic stem cell transplantation%单纯化疗、化疗加 DC-CIK 细胞治疗和化疗加自体造血干细胞移植治疗急性白血病疗效分析

    Institute of Scientific and Technical Information of China (English)

    宋庆林; 江梅

    2014-01-01

    目的::回顾性分析单纯化疗、化疗+DC-CIK细胞治疗、化疗+自体造血干细胞移植治疗的3种免疫细胞治疗急性中危组白血病的疗效。方法:将2009年1月-2012年12月本院65例急性中危组白血病患者,随机分成三组,分别给予单纯化疗(21例)、化疗+DC-CIK细胞治疗(26化疗+例)、化疗+自体造血干细胞移植(18例),采用健康供着(患者的父母或子女或婴儿脐带组织)单个核细胞,制备DC-CIK细胞,每位患者输注4~6次,每次间隔30 d。治疗结束后定期复查患者三年生存率、治疗费用、MDR检测、DC-CIK注射后产生的发热、过敏等不良反应。流式细胞术检测患者外周血淋巴细胞亚群的变化。结果:DC-CIK细胞输注未见严重不良反应发生情况。与单纯化疗组相比,化疗+DC-CIK细胞治疗方法患者体内CD3+、CD4+、CD8+、CD56+淋巴细胞均高于输注治疗前水平(P<0.01),治疗组同一随访时间段CD3+、CD4+、CD8+、CD56+淋巴细胞均显著高于化疗+自体造血干细胞移植治疗( P<0.05)。结论:化疗+DC-CIK细胞治疗方法明显优于单一化疗手段及化疗+自体造血干细胞移植。能显著提高患者肿瘤杀伤性T细胞水平,有助于清除移植后微小残留病,改善患者无病生存率。%Objective:Retrospectively analyze the clinical effect, safety and popular significance of the treatment of three kinds of immune cells in the treatment of acute leukemia in risk group with chemotherapy, chemotherapy analyzed + DC-CIK cell therapy, chemotherapy and autologous hematopoietic stem cell transplantation.Methods:65 cases of acute leukemia patients in risk group, were randomly divided into three groups, respectively treated with chemotherapy alone ( 21 cases) , chemotherapy ( chemotherapy++DC-CIK cells in the treatment of 26 cases) ,chemotherapy and autologous hematopoietic stem cell transplantation ( 18 cases

  7. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  8. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  9. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  10. Results of hematopoietic stem cell transplantation after treatment with different high-dose total-body irradiation regimens in five Dutch centers

    NARCIS (Netherlands)

    van Kempen-Harteveld, M. Loes; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; van der Maazen, Richard W.; Cornelissen, Jan J.; Eijkenboom, Wil M. H.; van der Lelie, Johannes P.; Oldenburger, Foppe; Barge, Renee M.; van Biezen, Anja; Vossen, Jaak M. J. J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia

  11. Results of hematopoietic stem cell transplantation after treatment with different high-dose total-body irradiation regimens in five Dutch centers.

    NARCIS (Netherlands)

    Kempen-Harteveld, ML van; Brand, R.; Kal, H.B.; Verdonck, L.F.; Hofman, P.; Schattenberg, A.V.M.B.; Maazen, R.W.M. van der; Cornelissen, J.J.L.M.; Eijkenboom, W.M.H.; Lelie, JP van der; Oldenburger, F.; Barge, R.M.; Biezen, A. van; Vossen, J.M.J.J.; Noordijk, E.M.; Struikmans, H.

    2008-01-01

    PURPOSE: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. METHODS AND MATERIALS: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia

  12. Bussulfano e melfalano como regime de condicionamento para o transplante autogênico de células-tronco hematopoéticas na leucemia mielóide aguda em primeira remissão completa Busulfan and melphalan as conditioning regimen for autologous hematopoietic stem cell transplantation in acute myeloid leukemia in first complete remission

    Directory of Open Access Journals (Sweden)

    Nadjanara D. Bueno

    2008-10-01

    Full Text Available Vinte e dois pacientes consecutivos portadores de leucemia mielóide aguda (LMA em primeira remissão completa (1ªRC submetidos a transplante de células-tronco hematopoéticas autogênico (TCTH Auto condicionados com bussulfano e melfalano (Bu/Mel foram selecionados entre 1993 e 2006. A probabilidade de sobrevida global (SG pelo método de Kaplan-Meier foi de 57,5% após 36 meses, com "plateau" aos 20 meses após o transplante. Fatores como sexo, classificação Franco-Americana-Britânica (FAB da LMA, tratamento de indução, consolidação intensiva, remissão após o primeiro ciclo de indução e fonte de células não tiveram impacto na sobrevida. Pela análise citogenética, um paciente de mau prognóstico submetido ao procedimento, foi a óbito um ano após o transplante. Nove pacientes foram a óbito, oito por recidiva e um por hemorragia. Morte antes dos 100 dias ocorreu em dois pacientes, um por recidiva e outro por hemorragia decorrente da plaquetopenia refratária, relacionada ao procedimento. Concluímos que o regime de condicionamento Bu/Mel é opção válida ao uso de outros regimes de condicionamento, apresentando excelente taxa da sobrevida.Twenty-two consecutive patients with acute myeloid leukemia in first complete remission submitted to autologous hematopoietic stem cells transplantation conditioned with busulfan and melphalan were evaluated between 1993 and 2006. The overall survival, according to the Kaplan-Meier curve, was 57.5% at 36 months, with a "plateau" at 20 months after transplant. Factors such as gender, French-American-British (FAB classification of acute myeloid leukemia, induction therapy, intensive consolidation, remission after the first cycle of induction and source of cells had no impact on survival. One patient with poor prognosis before the procedure died a year after transplantation. Nine patients died, eight by relapse and one because of bleeding. Death before 100 days occurred for two patients, one

  13. Transplante autólogo de células-tronco hematopoéticas como tratamento do mieloma múltiplo: experiência da Unidade de Transplante de Medula Óssea da Bahia Autologous hematopoietic stem cell transplantation in the treatment of multiple myeloma: the Portuguese Hospital Bone Marrow Transplant Unit in Bahia experience

    Directory of Open Access Journals (Sweden)

    Ronald Pallotta

    2007-06-01

    Full Text Available O mieloma múltiplo (MM é uma doença maligna de células plasmáticas incurável. O transplante de células-tronco hematopoéticas (TCTH faz parte da estratégia terapêutica para a maioria dos pacientes. Devido à distribuição heterogênea dos centros de transplante no nosso país, os autores têm por objetivo descrever a experiência de um centro nordestino no tratamento desta entidade. De fevereiro de 2000 a dezembro de 2005 foram realizados e analisados de maneira prospectiva 21 TCTH autólogos para pacientes com MM no Hospital Português da Bahia. Epidemiologicamente houve predomínio do sexo feminino (1,6:1 e uma predominância de caucasianos (61,9%. A mediana de idade ao diagnóstico foi de 58 anos, sendo a maioria secretores de IgG (71,4% que se apresentavam com estágio clínico IIIA (90,5%. A indicação para o procedimento foi a consolidação da remissão (RC obtida inicialmente pela quimioterapia (52,4% ou o resgate de uma doença refratária (47,6%. A taxa de sobrevida global (SG foi de 74,7%, a taxa de sobrevida livre de doença (SLD foi de 61,9% e a taxa de mortalidade (TM foi de 5% nos primeiros cem dias. Quando avaliamos os pacientes transplantados em relação à fase da doença no momento do procedimento, observamos que aqueles transplantados em RC tiveram SG e SLD superiores àqueles não transplantados em RC (90,9% vs 64% e 68,2% vs 56%. Embora com uma epidemiologia peculiar, os resultados se mostraram semelhantes aos da literatura mundial, reforçando o fato de que o TCTH autólogo é fundamental na estratégia terapêutica contra o MM e está disponível no nordeste brasileiro.Multiple myeloma (MM continues to be an incurable plasma cell malignancy. Autologous hematopoietic stem cell transplantation (HSCT is part of the treatment strategy for the majority of patients. Based on the heterogeneous distribution of the transplantation centers in Brazil, the authors describe their experience treating this disease in a

  14. Genomic Editing of the HIV-1 Coreceptor CCR5 in Adult Hematopoietic Stem and Progenitor Cells Using Zinc Finger Nucleases

    OpenAIRE

    2013-01-01

    The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5Δ32/Δ32) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5Δ32/Δ32 donors, we reasoned that engineered autologous CD34+ hematopoietic stem/progenitor ce...

  15. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  16. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    Science.gov (United States)

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia.

  17. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  18. DNA methylation profiling of hematopoietic stem cells.

    Science.gov (United States)

    Begtrup, Amber Hogart

    2014-01-01

    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  19. Bone Marrow Very Small Embryonic-Like Stem Cells: New Generation of Autologous Cell Therapy Soon Ready for Prime Time?

    Science.gov (United States)

    Smadja, David M

    2017-01-18

    Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells described in human and mouse. In this issue of Stem Cell Reviews and Reports, Shaikh and colleagues show in a valuable work that mouse bone marrow collected after 5FU treatment contains VSELs able to undergo in vitro multi-lineage differentiation into cells from all three germ layers and also in germ and hematopoietic cells. These findings are robust since no confounding factor such as feeder cell fusion with VSELs can occur here. This paper allows one to better appreciate bone marrow-VSELs differentiation potential and opens new perspectives for autologous cell therapy. Furthermore, it might help explaining lots of contradictive data from the past 20 years, in particular related to ability of bone marrow cells to differentiate into cardiomyocytes.

  20. Hematopoietic reconstitution on the prognosis of hematological malignancies after allogenceic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    张燕

    2012-01-01

    Objective To analyze the impact of the time to hematopoietic reconstitution on the prognosis of hematological malignancies after allogeneic hematopoietic stem cell transplantation(allo-HSCT) . Methods 173 patients with hematological malignancies treated with allo-HSCT (excluding umbilical cord blood transplantation)

  1. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Science.gov (United States)

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  2. Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy

    Science.gov (United States)

    Srivastava, Alok; Shaji, Ramachandran V.

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation has been well established for several decades as gene replacement therapy for patients with thalassemia major, and now offers very high rates of cure for patients who have access to this therapy. Outcomes have improved tremendously over the last decade, even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent, with a >90% survival rate, but for the best results, hematopoietic stem cell transplantation should be offered early, before any end organ damage occurs. However, access to this therapy is limited in more than half the patients by the lack of suitable donors. Inadequate hematopoietic stem cell transplantation services and the high cost of therapy are other reasons for this limited access, particularly in those parts of the world which have a high prevalence of this condition. As a result, fewer than 10% of eligible patients are actually able to avail of this therapy. Other options for curative therapies are therefore needed. Recently, gene correction of autologous hematopoietic stem cells has been successfully established using lentiviral vectors, and several clinical trials have been initiated. A gene editing approach to correct the β-globin mutation or disrupt the BCL11A gene to increase fetal hemoglobin production has also been reported, and is expected to be introduced in clinical trials soon. Curative possibilities for the major hemoglobin disorders are expanding. Providing access to these therapies around the world will remain a challenge. PMID:27909215

  3. Comparison of the Efficacy and Toxicity of Different Chemotherapies Combined with Autologous Hematopoietic Stem Cell Transplantation in the Treatment of Relapsing Malignant Lymphoma%BEP与CBV化疗方案联合自体干细胞移植治疗复发性淋巴瘤的疗效和毒性比较

    Institute of Scientific and Technical Information of China (English)

    林聪猛; 沈绿瑛; 唐海涛; 尹俊杰

    2015-01-01

    Objective To compare the efficacy and toxicity of BEP and CBV chemotherapy combined with autolo-gous hematopoietic stem cell transplantation (AHSCT) in the treatment of relapsing malignant lymphoma. Methods We retrospectively analyzed the clinical data of 177 recurrent lymphoma patients. They all had the treatment of autologous hematopoietic stem cell transplantation. 89 of them were treated with BEP chemotherapy (BEP group), and another 88 pa-tients were treated with CBV chemotherapy (CBV group). We observed and compared the average time for neutrophil and platelet transplants, 4-year rates of overall survival (OS) and progression-free survival (PFS), hospital stays, toxic reaction between the two groups. Results The follow-up was 40.8 (1~60) months. The proportion of patients whose platelet counts were greater than 50×109 L-1 in CBV group was significantly higher than the proportion in BEP group after transplanta-tion (P=0.045). After transplantation, there were no significant difference between BEP group and CBV group in complete remissionrate(98.9%vs.97.7%,P=0.083),4-yearratesofOS(80.9%vs.72.7%,P=0.755),PFS(73.0% vs.63.6%, P=0.668), hospital stays (13(10~24) v s . 13(10~42), P=0.655). The infectious complications rate of BEP group was sig-nificantly higher than CBV group (P=0.01). Conclusion BEP regimen had comparable short-and long-term outcomes with CBV regimen for AHSCT. BEP regimen may result in a higher incidence rate of infectious complications.%目的:比较BEP与CBV化疗方案结合自体干细胞移植治疗恶性淋巴瘤的临床疗效和毒性。方法回顾性分析在我市两家三甲医院血液科治疗并经自体干细胞移植的177例复发性淋巴瘤患者的临床资料,其中89例患者采用BEP方案(BEP组),88例患者采用CBV方案(CBV组)。观察和比较两组患者的中性粒细胞与血小板移植的平均时间、4年总生存率(OS)与无进展生存率(PFS)、住院时间及毒性反应的发

  4. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    Science.gov (United States)

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  5. 自体造血干细胞移植治疗1型糖尿病的疗效和安全性评价%Efficacy and safety of autologous hematopoietic stem cell transplantation in treating type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    顾卫琼; 李小英; 王卫庆; 宁光; 孙首悦; 胡炯; 唐暐; 卫静淑; 朱莉萍; 洪洁; 汤正义; 刘建民

    2010-01-01

    colony-stimulating factor and then collected from peripheral blood by leukapheresis and cryopreserved. The cells were injected intravenously after conditioning with cyclophosphamide and rabbit antithymocyte globulin. Serum levels of HbA1c, C-peptide levels, and anti-glutamic acid decarboxylase antibody (GAD-Ab)titers were measured before and after AHST. Meanwhile, adverse event was recorded.Results The average age of 18 patients (6 males and 12 females)was ( 18.8±4.4 )years, the mean follow-up was ( 414± 150 ) days. 67 % ( 12/18 ) patients became insulin free, the earliest one happened at 2 weeks after AHST, and the latest one at 6 months. 4 cases resumed insulin use because of influenza and other reasons resulting in the rise of blood glucose level. Currently, 8 patients (44.4%) were completely free of insulin therapy, and the remaining cases reduced the insulin dosage by 67.3% ±22.4%. 18 cases had lowered GAD-Ab level, the negative rate was 33.3% (6/18 ). Fasting and postprandial 2 h C-peptide levels increased significantly after A HST. Area under the curve for C-peptide ( AUCC ) increased much more markedly, and it could be maintained for 1 year. Duringtransplantation,all patients had varying degrees of gastrointestinal reactions, hair loss, fever, bone marrow suppression, and other side effects. 5 patients received blood component transfusion. No damage or other severe adverse events of heart, liver, kidney, and other organs were observed. Most side effects gradually disappeared after 2-4 weeks. The recovery of neutropenia was the slowest. Conclusion Autologous hematopoietic stem cell transplantation for treatment of newly-onset type 1 diabetes with residual islet function showed a certain effect and high safety. The widened use of this new technique should be cautious until the therapeutic mechanism has been further studied.

  6. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  7. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Stenholm, A C; Kronborg, O

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression...

  8. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  9. Diabetic Ketoacidosis at Diagnosis Influences Complete Remission After Treatment With Hematopoietic Stem Cell Transplantation in Adolescents With Type 1 Diabetes

    OpenAIRE

    Gu, Weiqiong; Hu, Jiong; Wang, Weiqing; Li, Lirong; Tang, Wei; Sun, Shouyue; Cui, Weijuan; Ye, Lei; Zhang, Yifei; Hong, Jie; Zhu, Dalong; Ning, Guang

    2012-01-01

    OBJECTIVE To determine if autologous nonmyeloablative hematopoietic stem cell transplantation (AHSCT) was beneficial for type 1 diabetic adolescents with diabetic ketoacidosis (DKA) at diagnosis. RESEARCH DESIGN AND METHODS We enrolled 28 patients with type 1 diabetes, aged 14–30 years, in a prospective AHSCT phase II clinical trial. HSCs were harvested from the peripheral blood after pretreatment consisting of a combination of cyclophosphamide and antithymocyte globulin. Changes in the exoge...

  10. File list: His.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. File list: His.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  12. File list: His.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: His.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. 自体外周血CD34+造血干细胞移植治疗晚期肝硬化的远期疗效%Long-term outcome of autologous peripheral blood CD34+ hematopoietic stem cell transplantation in the treatment of advanced liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    骆乐; 薛华; 罗兰云; 姚豫桐; 邹海波; 王冠; 向光明; 魏玲玲; 杨卯竹

    2016-01-01

    月(1~60个月),5年生存率为95.23%.患者术后5年肝功能Child评分及MELD评分分别为(7.1±1.1)分和(14±4)分,与术前的(9.4±1.8)分和(19±5)分比较,差异均有统计学意义(t=1.672,3.773,P<0.05).患者肝脏活组织病理学检查结果:移植前患者肝小叶结构紊乱,被纤维切割,肝细胞水肿变性,呈毛玻璃样变,有点状及碎屑坏死;可见汇管区-汇管区桥接坏死,汇管区内有纤维组织增生,其内有中等量淋巴细胞、单核细胞浸润,假小叶形成.移植后5年患者正常肝小叶形成明显增多,且分布更加趋近正常,肝细胞水肿变性,见少量点状坏死,未见明显碎屑坏死;汇管区内纤维组织增生较前明显好转,纤维组织明显减少,染色明显变淡.移植后5年患者Knodell评分为(9.9±2.7)分,与移植前的(14.1±4.1)分比较,差异有统计学意义(t=4.142,P<0.05);HRQL评分为(167±21)分,与移植前的(134±15)分比较,差异有统计学意义(t=3.142,P<0.05).结论 自体外周血CD34+造血干细胞移植能长期有效地改善晚期肝硬化患者的肝功能、肝组织形态学以及提高患者的生命质量.%Objective To investigate the long-term outcome of autologous peripheral blood CD34+hematopoietic stem cell transplantation in the treatment of advanced liver cirrhosis.Methods The retrospective cross-sectional study was adopted.The clinical data of 42 patients with advanced liver cirrhosis who were admitted to the Sichuan Provincial People's Hospital between July 2010 and July 2015 were collected.The patients underwent autologous peripheral blood CD34 + hematopoietic stem cell transplantation.The 5 μg/kg colonystimulating factors were injected subcutaneously daily for 3-5 days.The peripheral blood stem cells were collected and detected by flow cytometry,showing (1.8 ± 1.7) × 106/kg of CD34 + cell.Transfemoral superselective hepatic arterial implantation or catheterization via right gastroepiploic venous to main portal vein (PV

  15. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  16. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  17. Tuberculosis in Hematopoietic Stem Cell Transplant Recipients

    OpenAIRE

    Ramos, Jéssica Fernandes; Batista, Marjorie Vieira; Costa, Silvia Figueiredo

    2013-01-01

    Literature on tuberculosis (TB) occurring in recipients of Hematopoietic Stem Cell Transplant (HSCT) is scanty even in countries where TB is common. Most reports of TB in HSCT patients were from ASIA, in fact the TB incidence ranging from 0.0014 (USA) to 16% (Pakistan). There are few reports of TB diagnosis during the first two weeks after HSCT; most of cases described in the literature occurred after 90 days of HSCT, and the lung was the organ most involved. The mortality ranged from 0 to 50...

  18. Hematopoietic potential cells in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Atsushi Asakura

    2007-01-01

    @@ During mouse embryogenesis,the formation of primi-tive hematopoiesis begins in the yolk sac on embryonic day 7.5(E7.5).Thereafter,definitive hematopoietic stem cell(HSC)activity is first detectable in the aorta-gonad-mesonephros(AGM)region on E10,followed by fetal liver and yolk sac.Subsequently,the fetal liver by E12 becomes the main tissue for definitive hematopoiesis.At a later time,HSC population in the fetal liver migrates to the bone marrow,which becomes the maior site of he-matopoiesis throughout normal adult life[1].

  19. Gs signaling in osteoblasts and hematopoietic stem cells.

    Science.gov (United States)

    Kronenberg, Henry M

    2010-03-01

    The heterotrimeric G protein Gs is a major mediator of the actions of several G protein-coupled receptors that target cells of the osteoblast lineage. For this reason, we generated chimeric mice with normal host cells and cells derived from embryonic stem cells missing the gene encoding the alpha subunit of Gs. While the mutant cells contributed to cortical osteoblasts and to hematopoietic cells in the liver, the marrow space contained few if any osteoblasts or hematopoietic cells missing Gs. Subsequent studies using the Cre-lox approach to delete Gsalpha from early cells of the osteoblast lineage and from hematopoietic stem cells were performed. These studies demonstrated the crucial roles of Gsalpha in osteoblastic cells in regulating the differentiation of osteoblasts and in supporting B-cell development as well as the essential role for Gsalpha in hematopoietic stem cells in allowing the homing of these cells to the marrow.

  20. Evolving concepts on the microenvironmental niche for hematopoietic stem cells.

    NARCIS (Netherlands)

    Raaijmakers, M.G.P.; Scadden, D.T.

    2008-01-01

    PURPOSE OF REVIEW: The hematopoietic stem cell niche is critical for the maintenance and proliferation of hematopoietic stem cells and, as such, is not only essential for steady-state hematopoiesis but may also be relevant to hematologic disease. The present review discusses recent advances in the u

  1. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O’Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  2. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O’Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-01-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities. PMID:28150746

  3. Preliminary Observation on the Influence of Tumor Osseous Metastasis on Autologous Peripheral Blood Stem Cell Collection

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Si; Wenchao Liu; Yan Xue; Hongmei Zhang; Rong Sheng; Ying Huang; Jie Cheng

    2007-01-01

    OBJECTIVE To examine the influence of tumor osseous metastasis on the patients undergoing autologous peripheral blood stem cell collection. METHODS A total of 36 patients with malignant diseases who received an autologous peripheral blood stem cell transplantation, during a period from April 2004 to June 2006, were chosen. The patients were divided into two groups, I.e. Group A were patients with a complication of tumor osseous metastasis, and group B were without metastasis. Both groups were treated with Taxotere 120 mg/m2 plus granulocyte colony-stimulating factor (G-CSF) 5 ug/kg/d, for a mobilization regimen. A blood cell separator was used to collect the mononuclear cells. The proportion of harvested CD34+ cells in the peripheral blood and the collected mononuclear cells were detected by flow cytometry. The number of CD34+ cells was used to determine the difference in the nature of the collections between the two groups. RESULTS After mobilization in groups A and B, the number of the peripheral blood mononuclear cells (PBMC) was 39.3 ±14.7% and 41.±12.4 % and the proportion of CD34 + cells was 0.16±0.07% and 0.17 ± 0.10%, respectively. Following administration of the drugs, there was no significant difference between the number of harvested PBMC and CD34+ cells of the two groups, I.e., 3.47 ± 1.16 x 108/Kg and 2.52 ± 1.43 × 106/Kg in group A and 4.02 ± 1.31 × 108/Kg and 2.73 ± 1.87 x 108/Kg in group B, respectively. CONCLUSION Osseous metastasis, as a single factor, may have no impact on mobilization and harvesting of hematopoietic stem cells and their engraftment after autotransplantation.

  4. Allogeneic hematopoietic stem cell transplantation: transfusion issues

    Directory of Open Access Journals (Sweden)

    Akkök ÇA

    2016-05-01

    Full Text Available Çiğdem Akalın Akkök,1,21Department of Immunology and Transfusion Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway; 2Department of Clinical Immunology and Transfusion Medicine, Lund University Hospital, Lund, Sweden Abstract: Allogeneic hematopoietic stem cell transplantation (AHSCT is an intention-to-cure treatment strategy in several malignancies and nonmalignancies. The number of patients receiving AHSCT is increasing due to new indications, and more elderly patients with comorbidities are included in the protocols. Survival of the patients undergoing AHSCT has improved owing to better patient care, including optimization of transfusion support, which has a major contribution. However, transfusion can also be hazardous. Increasing awareness about transfusion and finding the balance between avoiding unnecessary transfusions and transfusing the correct component when needed are the key issues. Myeloablative conditioning results in pancytopenia, and the patients are prone to infections, anemia, and bleeding both before and after transplantation. Until red cell and platelet engraftment, the patients are usually transfusion dependent needing red cell and/or platelet components. Physicians dealing with AHSCT patients should be well informed about the attributes of the blood components they order. Knowledge about transfusion indications, triggers, and how to prevent and manage eventual transfusion complications is also required. The clinical picture can be challenging, and transplantation/treatment-related toxicity/complications can sometimes be difficult to distinguish from a transfusion complication, especially if the latter one took place, for instance, several days or weeks ago. ABO compatibility between the patient and the donor is not a prerequisite when choosing human leukocyte antigen-matched hematopoietic stem cell donor. Consequently, ABO incompatibility exists in ~40% of the cases and brings some immunohematological issues

  5. Cell manipulation in autologous chondrocyte implantation: from research to cleanroom.

    Science.gov (United States)

    Roseti, Livia; Serra, Marta; Tigani, Domenico; Brognara, Irene; Lopriore, Annamaria; Bassi, Alessandra; Fornasari, Pier Maria

    2008-04-01

    In the field of orthopaedics, autologous chondrocyte implantation is a technique currently used for the regeneration of damaged articular cartilage. There is evidence of the neo-formation of tissue displaying characteristics similar to hyaline cartilage. In vitro chondrocyte manipulation is a crucial phase of this therapeutic treatment consisting of different steps: cell isolation from a cartilage biopsy, expansion in monolayer culture and growth onto a three-dimensional biomaterial to implant in the damaged area. To minimise the risk of in vitro cell contamination, the manipulation must be performed in a controlled environment such as a cleanroom. Moreover, the choice of reagents and raw material suitable for clinical use in humans and the translation of research protocols into standardised production processes are important. In this study we describe the preliminary results obtained by the development of chondrocyte manipulation protocols (isolation and monolayer expansion) in cleanrooms for the application of autologous implantation.

  6. [Successful autologous haematopoietic stem cell transplantation in severe, therapy-resistant childhood Crohn's disease. Report on the first case in Hungary].

    Science.gov (United States)

    Kriván, Gergely; Szabó, Dolóresz; Kállay, Krisztián; Benyó, Gábor; Kassa, Csaba; Sinkó, János; Goda, Vera; Arató, András; Veres, Gábor

    2014-05-18

    The biological therapy of Crohn's disease, such as infliximab is a powerful approach in the therapy of inflammatory bowel diseases. However, in some patients with aggressive disease course, even a combined immunosuppressive therapy will not result in permanent remission. Hematopoietic stem cell transplantation has emerged as a new potential therapeutic tool for inflammatory bowel diseases. The authors report the case of a 15-year-old boy with severe Crohn's disease resistant to combined immunosuppressive therapy. After a 3-years course of unsuccessful conventional therapy including infliximab, autologous hematopoietic stem cell transplantation was performed which resulted in a complete remission. One year after transplantation the patient has relapsed, but he could be treated effectively with conventional therapy regiments. To the best of knowledge of the authors, this is the first report in Hungary presenting hematopoietic stem cell therapy in patient with severe Crohn's disease.

  7. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    OpenAIRE

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is know...

  8. Development of hematopoietic stem cell activity in the mouse embryo.

    NARCIS (Netherlands)

    A.M. Müller (Albrecht); A. Medvinsky; J. Strouboulis (John); F.G. Grosveld (Frank); E.A. Dzierzak (Elaine)

    1994-01-01

    textabstractThe precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipie

  9. Nutritional assessment as predictor of complications after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Marcela Espinoza

    2016-02-01

    Full Text Available ABSTRACT Introduction: Nutritional support is pivotal in patients submitted to hematopoietic stem cell transplantation. Nutritional status has been associated with time of engraftment and infection rates. In order to evaluate the association between nutritional parameters and clinical outcomes after transplantation a cohort of transplant patients was retrospectively evaluated. Methods: All 50 patients transplanted between 2011 and 2014 were included. The nutritional status before transplantation, ten days after transplantation and before discharge was assessed including anthropometry, body mass index, albumin, prealbumin and total urinary nitrogen. Results: The median follow-up time was 41 months and the median age of patients was 41 years. Thirty-two underwent allogeneic and 18 autologous transplants. Diagnoses included acute leukemias (n = 27, lymphoma (n = 7, multiple myeloma (n = 13, and aplastic anemia (n = 3. Thirty-seven patients developed mucositis (three Grade 1, 15 Grade 2, 18 Grade 3 and one Grade 4, and twenty-two allogeneic, and five autologous transplant patients required total parenteral nutrition. Albumin and total urinary nitrogen were associated with length of hospital stay and platelet and neutrophil engraftment. None of the nutritional parameters evaluated were associated with overall survival. Non-relapse mortality was 14% and overall survival was 79% at 41 months of follow-up. Conclusions: After hematopoietic stem cell transplantation, high catabolism was associated with longer length of hospital stay, the need of total parenteral nutrition and platelet and neutrophil engraftment times. Nutritional parameters were not associated with overall survival.

  10. Leukemia in donor cells after allogeneic hematopoietic stem cell transplant

    OpenAIRE

    2002-01-01

    The development of leukemia in donor cells after allogeneic hematopoietic stem cell transplant is an extremely rare event. We report here the case of a patient who developed myelodysplastic syndrome/acute myeloid leukemia, in cells of donor origin 3.5 years after related donor HSCT for refractory chronic lymphocytic leukemia and therapy-induced myelodysplastic syndrome. The origin of the leukemia was determined by analysis of minisatillite polymorphism tested on CD34(+) cells.

  11. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor

    2012-01-01

    Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...... the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications...... limitation is unpredictable graft resorption, which ranges from 25%-80%, probably as a result of ischaemia and lack of neoangiogenesis. To obviate these disadvantages, several studies have searched for new ways of increasing the viability of the transplanted tissue. One promising approach has been to enrich...

  12. Autologous stem cells in neurology: is there a future?

    Science.gov (United States)

    de Munter, Johannes P J M; Wolters, Erik C

    2013-01-01

    Stem cells seem very promising in the treatment of degenerative neurological diseases for which there are currently no or limited therapeutic strategies. However, their clinical application meets many regulatory hurdles. This article gives an overview of stem cells, their potential healing capacities as well as their identified and potential risks, such as tumor formation, unwanted immune responses and the transmission of adventitious agents. As there is no clinical experience with embryonic and induced pluripotent stem cells (as the result of their unacceptable risk on tumor formation), most attention will be paid to fresh autologous adult stem cells (ASCs). To evaluate eventual clinical benefits, preclinical studies are essential, though their value is limited as in these studies, various types of stem cells, with different histories of procurement and culturing, are applied in various concentrations by various routes of administration. On top of that, in most animal studies allogenic human, thus non-autologous, stem cells are applied, which might mask the real effects. More reliable, though small-sized, clinical trials with autologous ASCs did show satisfying clinical benefits in regenerative medicine, without major health concerns. One should wonder, though, why it is so hard to get compelling evidence for the healing and renewing capacities of these stem cells when these cells indeed are really essential for tissue repair during life. Why so many hurdles have to be taken before health authorities such as the European Medicine Agency (EMA) and/or the Food and Drug Administration (FDA) approve stem cells in the treatment of (especially no-option) patients.

  13. Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Sickle cell anemia is one of the most common hemoglobinopathies in the worldwide. Sickle cell anemia characterized by crises and organ failure develops over time. Myeloablative stem cell transplantation is curative but it has been performed in children younger than 16 years of age. Modest modifications in the conditioning regimen and supportive care have improved outcome such that the majority of children with a suitable HLA-matched sibling donor can expect a cure from this approach. But nonmyeloablative protocols are crucial for the future of Hematopoietic Stem-Cell Transplantation for older sickle cell anemia patients with organ failure. A protocol for nonmyeloablative allogeneic hematopoietic stem-cell transplantation that includes total-body irradiation and treatment with alemtuzumab and sirolimus can achieve stable, mixed donor–recipient chimerism. Stem cell transplantation is recommended in the presence of HLA-matched siblings in patients at risk.

  14. Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-11-1-0673 TITLE: Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse PRINCIPAL...CONTRACT NUMBER Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse 5b. GRANT NUMBER: W81XWH-11-1-0673 5c. PROGRAM...Tolerance, Drug abuse , Cell cultures, Spinal transplantation of autologous stem cells, Animal behavioral tests 16. SECURITY CLASSIFICATION OF: 17

  15. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy.

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S; Burke, Martin; McNally, Elizabeth M

    2010-01-01

    A 41-year-old male with cardiomyopathy from an inherited beta myosin heavy-chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart.

  16. Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy

    Science.gov (United States)

    Pytel, Peter; Husain, Aliya; Moskowitz, Ivan; Raman, Jai; MacLeod, Heather; Anderson, Allen S.; Burke, Martin; McNally, Elizabeth M.

    2010-01-01

    A 41 year old male with cardiomyopathy from an inherited β myosin heavy chain mutation underwent treatment for heart failure with intramyocardial cell transplantation. He received direct injections into his heart of autologous precursor cells isolated from his blood. He immediately suffered ventricular fibrillation. Although he was resuscitated, he experienced a prolonged downward course that prohibited his undergoing transplantation. His autopsy revealed marked fibrosis throughout the myocardium with areas of mononuclear cell infiltrate. This case highlights the potential adverse effects associated with intramyocardial therapy in the cardiomyopathic heart. PMID:19026577

  17. The Neuropsychiatry of Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Mitchell R. Levy

    2006-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Regimens incorporating hematopoietic stem cell transplantation (HSCT have become widely utilized in disease treatments, particularly for cancer. These complex treatment programs also expose patients to central nervous system (CNS toxicities from chemotherapy, irradiation, infection, metabolic effects and immunosuppression. METHODS: Relevant recent medical literature from Medline and bibliographies in pertinent publications are reviewed with a focus on those cases and studies pertaining to neuropsychiatric effects of HSCT. RESULTS: High rates of neuropsychiatric sequelae occur on a continuum from acute to chronic. Adverse outcomes include focal CNS deficits and severe global manifestations such as seizures, encephalopathy and delirium. More graduated effects on cognition, energy and mood are frequently seen, impacting patient function. CONCLUSIONS: Additional research on neuropsychiatric outcomes and treatment interventions is needed in the HSCT setting. Risks for neuropsychiatric deficits should be part of an ongoing informed consent discussion among treating physicians, patients and families.

  18. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  19. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells.

    Science.gov (United States)

    Singbrant, Sofie; van Galen, Peter; Lucas, Daniel; Challen, Grant; Rossi, Derrick J; Daley, George Q

    2015-09-01

    Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.

  20. Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development.

    Science.gov (United States)

    Aryee, Ken-Edwin; Shultz, Leonard D; Brehm, Michael A

    2014-01-01

    Immunodeficient mice engrafted with human immune systems provide an exciting model to study human immunobiology in an in vivo setting without placing patients at risk. The essential parameter for creation of these "humanized models" is engraftment of human hematopoietic stem cells (HSC) that will allow for optimal development of human immune systems. However, there are a number of strategies to generate humanized mice and specific protocols can vary significantly among different laboratories. Here we describe a protocol for the co-implantation of human HSC with autologous fetal liver and thymic tissues into immunodeficient mice to create a humanized model with optimal human T cell development. This model, often referred to as the Thy/Liv or BLT (bone marrow, liver, thymus) mouse, develops a functional human immune system, including HLA-restricted human T cells, B cells, and innate immune cells.

  1. Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6.

    Directory of Open Access Journals (Sweden)

    Flavia Q Pirih

    Full Text Available Parathyroid hormone (PTH stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6 is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L, PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45(+ and CD11b(+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin(- Sca-1(+c-Kit(+ (LSK hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.

  2. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  3. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  4. Consideration of strategies for hematopoietic cell transplantation.

    Science.gov (United States)

    Yaniv, Isaac; Ash, Shifra; Farkas, Daniel L; Askenasy, Nadir; Stein, Jerry

    2009-01-01

    Bone marrow transplantation has been adoptively transferred from oncology to the treatment of autoimmune disorders. Along with extension of prevalent transplant-related concepts, the assumed mechanism that arrests autoimmunity involves elimination of pathogenic cells and resetting of immune homeostasis. Similar to graft versus tumor (GVT) reactivity, allogeneic transplants are considered to provide a better platform of immunomodulation to induce a graft versus autoimmunity reaction (GVA). It is yet unclear whether recurrence of autoimmunity in both autologous and allogeneic settings reflects relapse of the disease, transplant-associated immune dysfunction or insufficient immune modulation. Possible causes of disease recurrence include reactivation of residual host pathogenic cells and persistence of memory cells, genetic predisposition to autoimmunity and pro-inflammatory characteristics of the target tissues. Most important, there is little evidence that autoimmune disorders are indeed abrogated by current transplant procedures, despite reinstitution of both peripheral and thymic immune homeostasis. It is postulated that non-specific immunosuppressive therapy that precedes and accompanies current bone marrow transplant strategies is detrimental to the active immune process that restores self-tolerance. This proposition refocuses the need to develop strategies of immunomodulation without immunosuppression.

  5. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms

    NARCIS (Netherlands)

    Radulovic, V.; de Haan, G.; Klauke, K.

    2013-01-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are

  6. Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

    NARCIS (Netherlands)

    C. Robin (Catherine); K. Bollerot (Karine); S.C. Mendes (Sandra); E. Haak (Esther); M. Crisan (Mihaela); F. Cerisoli (Francesco); I. Lauw (Ivoune); P. Kaimakis (Polynikis); R.J.J. Jorna (Ruud); M. Vermeulen (Mark); M.H. Kayser (Manfred); R. van der Linden (Reinier); P. Imanirad (Parisa); M.M.A. Verstegen (Monique); H. Nawaz-Yousaf (Humaira); N. Papazian (Natalie); E.A.P. Steegers (Eric); T. Cupedo (Tom); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractHematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emerg

  7. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  8. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  9. Hematopoietic stem cell characterization and isolation.

    Science.gov (United States)

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  10. Critical early events in hematopoietic cell seeding and engraftment.

    OpenAIRE

    Jerry Stein; Isaac Yaniv; Nadir Askenasy

    2005-01-01

    Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic ce...

  11. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  12. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  13. Reverse seroconversion of hepatitis B virus after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Goyama, S; Kanda, Y; Nannya, Y; Kawazu, M; Takeshita, M; Niino, M; Komeno, Y; Nakamoto, T; Kurokawa, M; Tsujino, S; Ogawa, S; Aoki, K; Chiba, S; Motokura, T; Shiratori, Y; Hirai, H

    2002-11-01

    Hepatitis B virus (HBV) reactivation in patients previously positive for hepatitis B surface antibody (HBsAb), so-called reverse seroconversion, has been considered to be a rare complication after hematopoietic stem cell transplantation (HSCT). We experienced two patients who developed reverse seroconversion among nine who were HBsAb positive and Hepatitis B core antibody (HBcAb) positive before HSCT; one after autologous bone marrow transplantation (BMT) and another after allogeneic peripheral blood stem cell transplantation (PBSCT). We reviewed the literature and considered that reverse seroconversion of HBV after HSCT is not uncommon among HBsAb positive recipients. The use of corticosteroids, the lack of HBsAb in donor, and a decrease in serum HBsAb and HBcAb levels may predict reverse seroconversion after HSCT.

  14. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  15. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus.

    Science.gov (United States)

    Rahman, Masmudur M; Madlambayan, Gerard J; Cogle, Christopher R; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo "purging" strategy with oncolytic Myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy.

  16. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  17. Treatment of Moyamoya disease by multipoint skull drilling for indirect revascularization combined with mobilization of autologous bone marrow stem cells.

    Science.gov (United States)

    Wu, R; Su, N; Zhang, Z; Jia, F

    2015-07-06

    This study discusses the clinical efficacy of multipoint skull drilling for indirect revascularization combined with mobilization of autologous bone marrow stem cells and use of simvastatin in the treatment of moyamoya disease. Seventy-eight patients [control group (group A), 39 patients; experimental group (group B), 39 patients] with moyamoya disease were selected. Group A underwent indirect revascularization, and group B, in addition to indirect revascularization, received alternate subcutaneous injections from day 7 post-surgery. The number and differentiation of the mobilized bone marrow stem cells were detected by the proportion of hematopoietic progenitor cell (HPCs) in mononuclear cells (MNCs) in the peripheral blood. There was no statistical difference in the BI (80.2 ± 13.7) and NIHSS (6.7 ± 2.3) scores between the groups before treatment (P > 0.05). The CSS score of group B was 13.5 ± 0.6 and there was a statistical significance compared to group A (18.2 ± 0.8) (P 0.05) and the proportions of CD34+ CDl33+ cells in MNCs in peripheral blood in groups A and B at 30 days after surgery were significantly higher than those before surgery (P moyamoya disease by multipoint skull drilling for indirect revascularization combined with mobilization of autologous bone marrow stem cells and simvastatin is a safe and effective method as it can promote recovery of neurological functions and improve patients' daily living abilities and quality of life.

  18. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  19. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    Science.gov (United States)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  20. Cytotoxicity of lymphocytes from melanoma patients against autologous tumor cells and its potentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskaya, S.N.; Iobadze, M.S.; Kupriyanova, T.A.; Demidov, L.V.

    1987-06-01

    The specific and natural cytotoxicity of peripheral blood lymphocytes from patients with melanomas was compared and stimulation with autologous tumor cells or a pool of allogeneic lymphocytes from five healthy blood donors also was used to potentiate the specific antitumor activity of the patients' lymphocytes. To assess cytolytic ability, cells of an autologous tumor, cells of the K-562 line, autologous peripheral blood lymphocytes, and blast cells obtained from these lymphocytes after stimulation by phytohemagglutinin were used as the target cells. The target cells were incubated in a medium containing sodium chromate and were labelled with the chromium 51 isotope.

  1. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    QIN Xiao-ying; WANG Jing-zhi; ZHANG Xiao-hui; LI Jin-lan; LI Ling-di; LIU Kai-yan; HUANG Xiao-jun; LI Guo-xuan; QIN Ya-zhen; WANG Yu; WANG Feng-rong; LIU Dai-hong; XU Lan-ping; CHEN Huan; HAN Wei

    2011-01-01

    Background Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. Methods A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Results Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7)informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%),which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. Conclusion This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative

  2. Regulation of hematopoietic stem cells during mouse development

    NARCIS (Netherlands)

    C. Orelio (Claudia)

    2003-01-01

    textabstractThe hematopoietic system is comprised of many different cell types that fulfill important physiological functions throughout embryonic and adult stages of mouse development. As the mature blood cells have a limited life-span, the pool of blood cells needs constant replenishing. At the ba

  3. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.

  4. HLA-mismatched hematopoietic stem cell tranplantation for pediatric solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea Pession

    2011-06-01

    Full Text Available Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing’s sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an eventfree survival approaching more than 50% at 5 years. New concepts of allogeneic HSCT and in particular HLA-mismatched HSCT for high risk solid tumors do not rely on escalation of chemo therapy intensity and tumor load reduction but rather on a graft-versus-tumor effect. We here report an experimental study design of HLA-mismatched HSCT for the treatment of pediatric solid tumors and the inherent preliminary results.

  5. Oral Complications in Hematopoietic Stem Cell Recipients: The Role of Inflammation

    Directory of Open Access Journals (Sweden)

    T. M. Haverman

    2014-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT recipients remains high, despite advances in transplant medicine and in supportive care. Frequently encountered oral complications include mucositis, infections, oral dryness, taste changes, and graft versus host disease in allogeneic HSCT. Oral complications are associated with substantial morbidity and in some cases with increased mortality and may significantly affect quality of life, even many years after HSCT. Inflammatory processes are key in the pathobiology of most oral complications in HSCT recipients. This review article will discuss frequently encountered oral complications associated with HSCT focusing on the inflammatory pathways and inflammatory mediators involved in their pathogenesis.

  6. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering.

    Science.gov (United States)

    Choi, Jaehoon; Chung, Jee-Hyeok; Kwon, Geun-Yong; Kim, Ki-Wan; Kim, Sukwha; Chang, Hak

    2013-09-01

    In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10%) on expansion and adipogenic differentiation of adipose-derived stem cells using 10% fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10% autologous serum > 10% fetal bovine serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10% fetal bovine serum > 10% autologous serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. Ten percent autologous serum and 10% fetal bovine serum had greater differentiation capacity than 1 and 2% autologous serum in vivo, and no significant difference was observed between the groups at ≥ 5% concentration at 14 weeks. In conclusion, 10% autologous serum was at least as effective as 10% fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2% autologous serum was inferior.

  7. Autologous serum can induce mesenchymal stem cells into hepatocyte-like cells

    Institute of Scientific and Technical Information of China (English)

    Yang Yi; Huo Jianhua; Qu Bo; Wu Shenli; Zhang Mingyu; Wang Zuoren

    2008-01-01

    Objective: To investigate whether the rabbit serum after radiofrequency ablation to liver tumor can induce mesenchymal stem cells (MSCs) differentiating into hepatocyte-like cells in order to find a new source and culture process for repairing liver injury. Methods: A tumor piece of 1 mm×1 mm×1 mm was transplanted into a tunnel at right liver of rabbits. The model of liver tumor was established after 2-3 weeks. The serum was collected from rabbits 72 h after being subjected to radiofrequency ablation of the liver tumor. Mesenchymal stem cells were isolated from rabbit bone marrow and cultured in DMEM containing autologous rabbit serum. Three kinds of media (L-DMEM) were tested respectively: ① containing 10% fetal calf serum (FCS);② containing 30% rabbit autologous serum after radiofrequency ablation of the liver tumor (ASRF); ③ containing 30% rabbit autologous serum (AS). MSCs were cultured on 12-well plates until passage 2 and examined under the light and electron microscopy at indicted intervals. The expression of albumin and CK18 was detected using immunofluorescence to identify the characteristics of differentiated cells. Results: MSCs performed differently in the presence of fetal calf serum, rabbit autologous serum and rabbit autologous serum after radiofrequency ablation of the liver tumor. Induced by the serum after radiofrequency ablation to liver tumor for 7 d, the spindle-shaped MSCs turned into round shaped and resembled hepatocyte-like cells. The reactions were not found in MSCs cultured in FCS and AS groups. After induction for 14 d, slender microvilli, cell-cell junction structure and cholangiole emerged, and the differentiated cells expressed albumin and CK18. All those could not been observed in 10% FCS and 30% autologous serum groups. Conclusion: Mesenchymal stem cells differentiate into hepatocyte-like cells in the serum after radiofrequency ablation of liver tumor, providing us a potential cell source and culture process for clinical

  8. Evaluation of febrile neutropenia in patients undergoing hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Shahideh Amini

    2014-01-01

    Full Text Available The aim of this study was to determine the incidence and causes of fever as a major problem contributing to transplantation related mortality among patients undergoing hematopoietic stem cell transplantation (HSCT and evaluation of antibiotic use, according to reliable guidelines.We retrospectively reviewed hospital records of 195 adult patients who underwent HSCT between 2009-2011 at hematology-oncology and bone marrow transplantation research center. Baseline information and also data related to fever and neutropenia, patient's outcomes, duration of hospitalization and antibiotic use pattern were documented.A total of 195 patients were analyzed and a total of 268 febrile episodes in 180 patients were recorded (mean 1.5 episodes per patient. About 222 episodes (82% were associated with neutropenia which one-fourth of them were without any documented infection sources. Microbiologic documents showed that the relative frequencies of gram positive and gram negative bacteria were 62.5% and 37.5%, respectively. The hospital stay duration was directly related to the numbers of fever episodes (P<0.0001.The rate of febrile episodes in autologous stem cell transplantation was significantly higher compared to allogeneic type (P<0.05.It is necessary to determine not only the local profile of microbiologic pattern, but also antibiotic sensitivities in febrile neutropenic patients following hematopoietic stem cell transplantation, and reassess response to antibiotic treatment to establish any necessity for modifications to treatment guidelines in order to prevent any fatal complications from infection.

  9. Hematopoietic stem cell transplantation for infantile osteopetrosis

    NARCIS (Netherlands)

    Orchard, Paul J.; Fasth, Anders L.; Le Rademacher, Jennifer L.; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; OBrien, Tracey A.; Perez, Miguel A Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HL

  10. A Role For Photodynamic Therapy In Autologous Bone Marrow Transplantation

    Science.gov (United States)

    Sieber, Fritz

    1988-02-01

    Simultaneous exposure to the amphipathic fluorescent dye merocyanine 540 (MC 540) and light of a suitable wavelength rapidly kills leukemia, lymphoma, and neuroblastoma cells but spares normal pluripotent hematopoietic stem cells. Tests in several preclinical models and early results of a phase I clinical trial suggest that MC 540-mediated photosensitization may be useful for the extracorporeal purging of autologous remission bone marrow grafts.

  11. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  12. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34(+) bone marrow cells, following gamma irradiation in cynomolgus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [CEA, DSV, Serv Immunovirol, Inst Maladies Emergentes et Therapies Innovantes, Fontenay Aux Roses (France); Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [Univ Paris 11, UMR E01, Orsay (France); Negre, D.; Cosset, F. [Univ Lyon, UCB Lyon 1, IFR 128, F-69007 Lyon (France); Negre, D.; Cosset, F. [INSERM, U758, F-69007 Lyon (France); Negre, D.; Cosset, F.L. [Ecole NormaleSuper Lyon, F-69007 Lyon (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Lab Radiobiol, F-78352 Jouy En Josas (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Etude Genome, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Radiobiol Lab, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Etude Genome, F-78352 Jouy En Josas (France)

    2008-07-01

    Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myelo-ablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34{sup +} bone marrow cells following gamma irradiation in cynomolgus macaques. The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% {+-} 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudo-typed and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% {+-} 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producing eGFP were detected as early as three days after transplantation,and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion: The transplantation of CD34{sup +} bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T-and B-lymphocyte, thrombocyte and red blood cell compartments. (authors)

  13. Dynamic changes in mouse hematopoietic stem cell numbers during aging

    NARCIS (Netherlands)

    de Haan, G; Van Zant, G

    1999-01-01

    To address the fundamental question of whether or not stem cell populations age, we performed quantitative measurements of the cycling status and frequency of hematopoietic stem cells in long-lived C57BL/6 (B6) and short-lived DBA/2 (DBA) mice at different developmental and aging stages. The frequen

  14. Hematopoietic development from human induced pluripotent stem cells.

    Science.gov (United States)

    Lengerke, Claudia; Grauer, Matthias; Niebuhr, Nina I; Riedt, Tamara; Kanz, Lothar; Park, In-Hyun; Daley, George Q

    2009-09-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells. Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g., circumventing the use of retroviral technology and oncoproteins), and on methods for differentiation into transplantable tissues of interest. In mouse ESC, we have previously shown that the embryonic morphogens BMP4 and Wnt3a direct blood formation via activation of Cdx and Hox genes. Ectopic expression of Cdx4 and HoxB4 enables the generation of mouse ESC-derived hematopoietic stem cells (HSC) capable of multilineage reconstitution of lethally irradiated adult mice. Here, we explore hematopoietic development from human induced pluripotent stem (iPS) cells generated in our laboratory. Our data show robust differentiation of iPS cells to mesoderm and to blood lineages, as shown by generation of CD34(+)CD45(+) cells, hematopoietic colony activity, and gene expression data, and suggest conservation of blood patterning pathways between mouse and human hematopoietic development.

  15. Primary Immunodeficiency Diseases and Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ayse Ozkan

    2014-02-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the only curative therapy for primary immunodeficiency diseases. Early diagnosis, including prenatally, and early transplantation improve HSCT outcomes. Survival rates improve with advances in the methods of preparing hosts and donor cells, and in supportive and conditioning regimes.

  16. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  17. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  18. Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Israel Henig

    2014-10-01

    Full Text Available Hematopoietic stem cell transplantation is a highly specialized and unique medical procedure. Autologous transplantation allows the administration of high-dose chemotherapy without prolonged bone marrow aplasia. In allogeneic transplantation, donor-derived stem cells provide alloimmunity that enables a graft-versus-tumor effect to eradicate residual disease and prevent relapse. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then the field has evolved and expanded worldwide. New indications beside acute leukemia and aplastic anemia have been constantly explored and now include congenital disorders of the hematopoietic system, metabolic disorders, and autoimmune disease. The use of matched unrelated donors, umbilical cord blood units, and partially matched related donors has dramatically extended the availability of allogeneic transplantation. Transplant-related mortality has decreased due to improved supportive care, including better strategies to prevent severe infections and with the incorporation of reduced-intensity conditioning protocols that lowered the toxicity and allowed for transplantation in older patients. However, disease relapse and graft-versus-host disease remain the two major causes of mortality with unsatisfactory progress. Intense research aiming to improve adoptive immunotherapy and increase graft-versus-leukemia response while decreasing graft-versus-host response might bring the next breakthrough in allogeneic transplantation. Strategies of graft manipulation, tumor-associated antigen vaccinations, monoclonal antibodies, and adoptive cellular immunotherapy have already proved clinically efficient. In the following years, allogeneic transplantation is likely to become more complex, more individualized, and more efficient.

  19. [Endothelial origin for hematopoietic stem cells: a visual proof].

    Science.gov (United States)

    Boisset, Jean-Charles; Robin, Catherine

    2011-10-01

    Hematopoietic stem cells (HSC) are the source of all blood cell types produced during the entire life of an organism. They appear during embryonic development, where they will transit through different successive hematopoietic organs, before to finally colonize the bone marrow. Nowadays, the precise origin of HSC remains a matter of controversy. Different HSC precursor candidates, located in different anatomical sites, have been proposed. Here, we summarize and discuss the different theories in light of the recent articles, especially those using in vivo confocal microscopy technology.

  20. Bacterial foodborne infections after hematopoietic cell transplantation.

    Science.gov (United States)

    Boyle, Nicole M; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A

    2014-11-01

    Diarrhea, abdominal pain, and fever are common among patients undergoing hematopoietic cell transplantation (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence after transplantation within a single-center population of HCT recipients. All HCT recipients who underwent transplantation from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, Washington were followed for 1 year after transplantation. Data were collected retrospectively using center databases, which include information from transplantation, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli O157:H7, Salmonella species, Shigella species, Vibrio species, or Yersinia species were isolated in culture within 1 year after transplantation. Nonfoodborne infections with these agents and patients with pre-existing bacterial foodborne infection (within 30 days of transplantation) were excluded from analyses. A total of 12 of 4069 (.3%) patients developed a bacterial foodborne infection within 1 year after transplantation. Patients with infections had a median age at transplantation of 50.5 years (interquartile range [IQR], 35 to 57), and the majority were adults ≥18 years of age (9 of 12 [75%]), male gender (8 of 12 [67%]) and had allogeneic transplantation (8 of 12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% confidence interval, .5 to 1.7) and at a median of 50.5 days after transplantation (IQR, 26 to 58.5). The most frequent pathogen detected was C. jejuni/coli (5 of 12 [42%]) followed by Yersinia (3 of 12 [25%]), although Salmonella (2 of 12 [17%]) and Listeria (2 of 12 [17%]) showed equal frequencies; no cases of Shigella

  1. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  2. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  3. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tangliang Li

    2016-06-01

    Full Text Available Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal and progenitor progenies (differentiation, which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  4. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Carolyn A. de Graaf

    2016-09-01

    Full Text Available Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.

  5. File list: DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  6. File list: DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  7. File list: DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  8. File list: Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic Stem... Cells SRX038919,SRX005153,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  9. File list: Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic Stem... Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  10. File list: Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic Stem... Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. File list: DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  12. File list: Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic Stem... Cells SRX038919,SRX038920,SRX005153 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Stem... Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic Stem... Cells SRX005153,SRX038919,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 DNase-seq Blood Hematopoietic Stem Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 RNA polymerase Blood Hematopoietic S...tem Cells SRX005153,SRX038919,SRX038920 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. File list: DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 DNase-seq Blood Hematopoietic Stem C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. File list: Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 Unclassified Blood Hematopoietic Ste...m Cells SRX1089838,SRX1089837 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  3. File list: Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 RNA polymerase Blood Hematopoietic St...em Cells SRX180164 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  5. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma

    DEFF Research Database (Denmark)

    d'Amore, Francesco; Relander, Thomas; Lauritzsen, Grete F;

    2012-01-01

    Systemic peripheral T-cell lymphomas (PTCLs) respond poorly to conventional therapy. To evaluate the efficacy of a dose-dense approach consolidated by up-front high-dose chemotherapy (HDT) and autologous stem-cell transplantation (ASCT) in PTCL, the Nordic Lymphoma Group (NLG) conducted a large p...

  6. Tissue engineering bone using autologous progenitor cells in the peritoneum.

    Directory of Open Access Journals (Sweden)

    Jinhui Shen

    Full Text Available Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs in the peritoneal lavage fluid from mice with peritoneal catheter implants. The osteogenic potential of these peritoneal progenitor cells was demonstrated by their ability to easily infiltrate decalcified bone implants, produce osteocalcin and form mineralized bone in 8 weeks. Additionally, when poly(l-lactic acid scaffolds loaded with bone morphogenetic protein-2 (a known osteogenic differentiation agent were implanted into the peritoneum, signs of osteogenesis were seen within 8 weeks of implantation. The results of this investigation support the concept that scaffolds containing BMP-2 can stimulate the formation of bone in the peritoneum via directed autologous stem and progenitor cell responses.

  7. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  8. Deficiency of GRP94 in the hematopoietic system alters proliferation regulators in hematopoietic stem cells.

    Science.gov (United States)

    Luo, Biquan; Tseng, Chun-Chih; Adams, Gregor B; Lee, Amy S

    2013-12-01

    We have previously reported that acute inducible knockout of the endoplasmic reticulum chaperone GRP94 led to an expansion of the hematopoietic stem and progenitor cell pool. Here, we investigated the effectors and mechanisms for this phenomenon. We observed an increase in AKT activation in freshly isolated GRP94-null HSC-enriched Lin(-) Sca-1(+) c-Kit(+) (LSK) cells, corresponding with higher production of PI(3,4,5)P3, indicative of PI3K activation. Treatment of GRP94-null LSK cells with the AKT inhibitor MK2206 compromised cell expansion, suggesting a causal relationship between elevated AKT activation and increased proliferation in GRP94-null HSCs. Microarray analysis demonstrated a 97% reduction in the expression of the hematopoietic cell cycle regulator Ms4a3 in the GRP94-null LSK cells, and real-time quantitative PCR confirmed this down-regulation in the LSK cells but not in the total bone marrow (BM). A further examination comparing freshly isolated BM LSK cells with spleen LSK cells, as well as BM LSK cells cultured in vitro, revealed specific down-regulation of Ms4a3 in freshly isolated BM GRP94-null LSK cells. On examining cell surface proteins that are known to regulate stem cell proliferation, we observed a reduced expression of cell surface connexin 32 (Cx32) plaques in GRP94-null LSK cells. However, suppression of Cx32 hemichannel activity in wild-type LSK cells through mimetic peptides did not lead to increased LSK cell proliferation in vitro. Two other important cell surface proteins that mediate HSC-niche interactions, specifically Tie2 and CXCR4, were not impaired by Grp94 deletion. Collectively, our study uncovers novel and unique roles of GRP94 in regulating HSC proliferation.

  9. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  10. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model.

    Directory of Open Access Journals (Sweden)

    Zongyang Sun

    Full Text Available PURPOSE: Bone regeneration through distraction osteogenesis (DO is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. MATERIALS AND METHODS: Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs; enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. RESULTS: From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4-5.8×10(7 autologous BM-MSCs (undifferentiated or differentiated were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds

  11. Human peripheral blood-born hematosphere as a niche for hematopoietic stem cell expansion

    Institute of Scientific and Technical Information of China (English)

    Jin Hur; Eun Ju Lee; Hyun-Jai Cho; Hyun-Jae Kang; Byung-Hee Oh; Young-Bae Park; Hyo-Soo Kim; Jonghanne Park; Sang Eun Lee; Chang-Hwan Yoon; Jae Hee Jang; Ji Min Yang; Tae-Kyu Lee; Jae-Il Choi; Han-Mo Yang

    2011-01-01

    @@ Dear Editor, Transplantation of autologous hematopoietic stem/progenitor cells (HSPCs) derived from the adult peripheral blood has been widely used in the treatment of various hematological diseases [1].However,the small number of circulating HSPC is the major limitation and necessitates additional interventions such as G-CSF mobilization and leukapheresis.There have been several attempts to overcome the limitation with ex vivo expansion of HSPC.These strategies are largely based on supplementation of one or more "stem cell niche components"such as supporting-cells,growth factors,extracellular matrix (ECM) or physicochemical microenvironment in the bone marrow [2].Spheroid culture methods of stem ceils from different tissues have been successfully used for expansion of cardiac and neural stem cells.These spheres sensitize target stem cells to growth factors and provide sufficient cell-to-cell and cell-to-matrix contacts,mimicking the in vivo stem cell niche [3,4].Here we asked whether spheroid culture of blood mononuclear cells (MNCs) would potentiate the expansion of circulating blood HSPC.

  12. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    Science.gov (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  13. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL.

    Science.gov (United States)

    Wang, Xiuli; Popplewell, Leslie L; Wagner, Jamie R; Naranjo, Araceli; Blanchard, M Suzette; Mott, Michelle R; Norris, Adam P; Wong, ChingLam W; Urak, Ryan Z; Chang, Wen-Chung; Khaled, Samer K; Siddiqi, Tanya; Budde, Lihua E; Xu, Jingying; Chang, Brenda; Gidwaney, Nikita; Thomas, Sandra H; Cooper, Laurence J N; Riddell, Stanley R; Brown, Christine E; Jensen, Michael C; Forman, Stephen J

    2016-06-16

    Myeloablative autologous hematopoietic stem cell transplantation (HSCT) is a mainstay of therapy for relapsed intermediate-grade B-cell non-Hodgkin lymphoma (NHL); however, relapse rates are high. In phase 1 studies designed to improve long-term remission rates, we administered adoptive T-cell immunotherapy after HSCT, using ex vivo-expanded autologous central memory-enriched T cells (TCM) transduced with lentivirus expressing CD19-specific chimeric antigen receptors (CARs). We present results from 2 safety/feasibility studies, NHL1 and NHL2, investigating different T-cell populations and CAR constructs. Engineered TCM-derived CD19 CAR T cells were infused 2 days after HSCT at doses of 25 to 200 × 10(6) in a single infusion. In NHL1, 8 patients safely received T-cell products engineered from enriched CD8(+) TCM subsets, expressing a first-generation CD19 CAR containing only the CD3ζ endodomain (CD19R:ζ). Four of 8 patients (50%; 95% confidence interval [CI]: 16-84%) were progression free at both 1 and 2 years. In NHL2, 8 patients safely received T-cell products engineered from enriched CD4(+) and CD8(+) TCM subsets and expressing a second-generation CD19 CAR containing the CD28 and CD3ζ endodomains (CD19R:28ζ). Six of 8 patients (75%; 95% CI: 35-97%) were progression free at 1 year. The CD4(+)/CD8(+) TCM-derived CD19 CAR T cells (NHL2) exhibited improvement in expansion; however, persistence was ≤28 days, similar to that seen by others using CD28 CARs. Neither cytokine release syndrome nor delayed hematopoietic engraftment was observed in either trial. These data demonstrate the safety and feasibility of CD19 CAR TCM therapy after HSCT. Trials were registered at www.clinicaltrials.gov as #NCT01318317 and #NCT01815749.

  14. Longitudinal Assessment of Hematopoietic Stem Cell Transplantation and Hyposalivation

    DEFF Research Database (Denmark)

    Laaksonen, Matti; Ramseier, Adrian; Rovó, Alicia

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study...

  15. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Noerskov, K H; Schjødt, I; Syrjala, K L

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  16. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  17. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian; Enevold, Christian; Wang, Tao;

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs...

  18. Polycomb group proteins in hematopoietic stem cell aging and malignancies

    NARCIS (Netherlands)

    Klauke, Karin; de Haan, Gerald

    2011-01-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-

  19. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    NARCIS (Netherlands)

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  20. File list: Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic Stem...293144,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic Stem...8606,SRX038913,SRX038912,SRX038909,SRX038908 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. File list: ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818463,SRX818464,SRX818459,SRX818461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  3. File list: Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic Stem...293143,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...SRX1520512,SRX1520515,SRX1520514,SRX507968,SRX507967,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  5. File list: Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic Stem...8915,SRX658607,SRX658606,SRX038908,SRX038909 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  6. File list: Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic Stem...293143,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  7. File list: ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818464,SRX818463,SRX818461,SRX818459 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  8. File list: ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Stem...05150 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  9. File list: Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...,SRX1520512,SRX507965,SRX507967,SRX507968,SRX507966,SRX1520514 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  10. File list: ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Stem...38907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  11. Interleukin-1 regulates Hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    NARCIS (Netherlands)

    C. Orelio (Claudia); M. Peeters (Marian); E. Haak (Esther); K. van der Horn (Karin); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractBackground Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are

  12. File list: ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18462,SRX818463,SRX818464,SRX818461,SRX818459,SRX127382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 TFs and others Blood Hematopoietic St...587736,SRX180155 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...,SRX1520515,SRX507965,SRX507967,SRX507968,SRX1520514,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...38918 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Unclassified Blood Hematopoietic Stem...RX507967,SRX1520512,SRX1520515,SRX1520513,SRX1520514,SRX507966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...0347,SRX038912,SRX038913,SRX658606,SRX658607 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 All antigens Blood Hematopoietic Ste...38918 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 All antigens Blood Hematopoietic Stem...18460,SRX818462,SRX818463,SRX818464,SRX818461,SRX818459 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  20. File list: Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 TFs and others Blood Hematopoietic S...0347,SRX038912,SRX038913,SRX658606,SRX658607 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. Regulation of stem cells in the zebra fish hematopoietic system.

    Science.gov (United States)

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  2. Transplantation of autologous noncultured epidermal cell suspension in treatment of patients with stable vitiligo

    Institute of Scientific and Technical Information of China (English)

    XU Ai-e; WEI Xiao-dong; CHENG Dong-qing; ZHOU He-fen; QIAN Guo-pei

    2005-01-01

    @@ Treatment of vitiligo by transplantation of noncultured melanocytes containing keratino-cytes has been successful since 1992,1 We report the encouraging results of autologous epidermal cell suspension in the treatment of 24 patients with stable vitiligo since 1998.

  3. Busulfan,cyclophosphamide and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    张春阳

    2013-01-01

    Objective To evaluate the efficacy and safety of dose-reduced intravenous busulfan,cyclophosphamide and etoposide(BCV)as conditioning for autologous stem cell transplantation(ASCT)in multiple myeloma(MM)

  4. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kanda, Junya

    2016-01-01

    The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.

  5. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  6. Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Bhasin A

    2012-01-01

    Full Text Available Background: The regenerative potential of brain has led to emerging therapies that can cure clinico-motor deficits after neurological diseases. Bone marrow mononuclear cell therapy is a great hope to mankind as these cells are feasible, multipotent and aid in neurofunctional gains in Stroke patients. Aims: This study evaluates safety, feasibility and efficacy of autologous mononuclear (MNC stem cell transplantation in patients with chronic ischemic stroke (CIS using clinical scores and functional imaging (fMRI and DTI. Design: Non randomised controlled observational study Study: Twenty four (n=24 CIS patients were recruited with the inclusion criteria as: 3 months–2years of stroke onset, hand muscle power (MRC grade at least 2; Brunnstrom stage of recovery: II-IV; NIHSS of 4-15, comprehendible. Fugl Meyer, modified Barthel Index (mBI and functional imaging parameters were used for assessment at baseline, 8 weeks and at 24 weeks. Twelve patients were administered with mean 54.6 million cells intravenously followed by 8 weeks of physiotherapy. Twelve patients served as controls. All patients were followed up at 24 weeks. Outcomes: The laboratory and radiological outcome measures were within normal limits in MNC group. Only mBI showed statistically significant improvement at 24 weeks (p<0.05 whereas the mean FM, MRC, Ashworth tone scores in the MNC group were high as compared to control group. There was an increased number of cluster activation of Brodmann areas BA 4, BA 6 post stem cell infusion compared to controls indicating neural plasticity. Cell therapy is safe and feasible which may facilitate restoration of function in CIS.

  7. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Javier Pilcante

    2015-12-01

    Full Text Available ABSTRACT Introduction: Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identi- fied. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods: A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results: Two hundred and fifty patients were studied (mean age: 39 years; range: 17-69, with 147 (59% receiving allogeneic transplants and 103 (41% receiving autologous trans- plants. One hundred and ninety-two (77% patients had diarrhea, with 25 (10% cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic trans- plants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia. In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56. Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008. In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p

  8. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  9. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    Science.gov (United States)

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  10. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  11. Expansion of hematopoietic stem cells for transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Schuster Jessica A

    2012-05-01

    Full Text Available Abstract Hematopoietic stem cells (HSCs are rare cells that have the unique ability to self-renew and differentiate into cells of all hematopoietic lineages. The expansion of HSCs has remained an important goal to develop advanced cell therapies for bone marrow transplantation and many blood disorders. Over the last several decades, there have been numerous attempts to expand HSCs in vitro using purified growth factors that are known to regulate HSCs. However, these attempts have been met with limited success for clinical applications. New developments in the HSC expansion field coupled with gene therapy and stem cell transplant should encourage progression in attractive treatment options for many disorders including hematologic conditions, immunodeficiencies, and genetic disorders.

  12. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  13. Critical early events in hematopoietic cell seeding and engraftment.

    Directory of Open Access Journals (Sweden)

    Jerry Stein

    2005-12-01

    Full Text Available Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic cells with the bone marrow stroma evolves as the most important early event. Adhesion to the marrow, rather than the vascular endothelium, determines the efficiency of both homing and seeding, and is absolutely essential to maintain cell viability in the marrow. Seeding and engraftment may be improved either by bypassing homing or by localized transplant of a large number of cells in a relatively small marrow space. There is functional redundancy in the molecular pathways that mediate the cell-stroma interaction, such that blockage of a single pathway has only minor effect on homing and seeding. We hypothesize that successfully seeding-engrafting cells undergo extensive phenotypic changes as a consequence of interaction with the stroma, without engaging in rapid proliferation. Surprisingly, Fas-ligand appears to promote hematopoietic cell engraftment by immunomodulatory and trophic effects.

  14. Critical early events in hematopoietic cell seeding and engraftment.

    Science.gov (United States)

    Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2005-01-01

    Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic cells with the bone marrow stroma evolves as the most important early event. Adhesion to the marrow, rather than the vascular endothelium, determines the efficiency of both homing and seeding, and is absolutely essential to maintain cell viability in the marrow. Seeding and engraftment may be improved either by bypassing homing or by localized transplant of a large number of cells in a relatively small marrow space. There is functional redundancy in the molecular pathways that mediate the cell-stroma interaction, such that blockage of a single pathway has only minor effect on homing and seeding. We hypothesize that successfully seeding-engrafting cells undergo extensive phenotypic changes as a consequence of interaction with the stroma, without engaging in rapid proliferation. Surprisingly, Fas-ligand appears to promote hematopoietic cell engraftment by immunomodulatory and trophic effects.

  15. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.

  16. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    Science.gov (United States)

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  17. Serum- and stromal cell-free hypoxic generation of embryonic stem cell-derived hematopoietic cells in vitro, capable of multilineage repopulation of immunocompetent mice.

    Science.gov (United States)

    Lesinski, Dietrich Armin; Heinz, Niels; Pilat-Carotta, Sandra; Rudolph, Cornelia; Jacobs, Roland; Schlegelberger, Brigitte; Klump, Hannes; Schiedlmeier, Bernhard

    2012-08-01

    Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4(+) embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM(+) (CD150(+)CD48(-)CD45(+)CD201(+)) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro.

  18. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats

    OpenAIRE

    Arzi, Boaz; Mills-Ko, Emily; Frank J.M. Verstraete; Kol, Amir; Walker, Naomi J.; Badgley, Megan R.; Fazel, Nasim; William J. Murphy; Vapniarsky, Natalia; Borjesson, Dori L.

    2015-01-01

    Mesenchymal stem cells (MSCs) are a promising therapy for immune-mediated and inflammatory disorders, because of their potent immunomodulatory properties. In this study, we investigated the use of fresh, autologous, adipose-derived MSCs (ASCs) for feline chronic gingivostomatitis (FCGS), a chronic, debilitating, idiopathic, oral mucosal inflammatory disease. Nine cats with refractory FCGS were enrolled in this pilot study. Each cat received 2 intravenous injections of 20 million autologous AS...

  19. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    Science.gov (United States)

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies.

  20. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  1. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: isolation of fibroblastlike stromal cells.

    Science.gov (United States)

    Modderman, W E; Vrijheid-Lammers, T; Löwik, C W; Nijweide, P J

    1994-02-01

    A method is described that permits the removal of hematopoietic cells and macrophages from mouse bone marrow cultures. The method is based on the difference in effect of extracellular ATP4- ions (ATP in the absence of divalent, complexing cations) on cells of hematopoietic origin, including macrophages, and of nonhematopoietic origin, such as fibroblastlike stromal cells. In contrast to fibroblastlike cells, hematopoietic cells and macrophages form under the influence of ATP4- lesions in their plasma membranes, which allows the entrance of molecules such as ethidium bromide (EB) and potassium thiocyanate (KSCN), which normally do not easily cross the membrane. The lesions can be rapidly closed by the addition of Mg2+ to the incubation medium, leaving the EB or KSCN trapped in the cell. This method allows the selective introduction of cell-toxic substances such as KSCN into hematopoietic cells and macrophages. By using this method, fibroblastlike stromal cells can be isolated from mouse bone marrow cultures.

  2. Hematopoietic Stem Cells Expansion in Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Tian-Qing LIU; Xiu-Bo FAN; Dan GE; Zhan-Feng CUI; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction Clinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy.It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors.Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal several inherent limitations: ineffective mixing, lack of control options for dissolved oxygen and pH and difficulty in continuous feeding, which restricts the usefulness of static systems. Several advanced bioreactors have been used in the field of HSCs expansion. But hematopoietic cells are extremely sensitive to shear, so cells in bioreactors such as stirred and perfusion culture systems may suffer physical damage. This problem will be improved by applying the rotating wall vessel (RWV) bioreactor in clinic because of its low shear and unique structure. In this research, cord blood (CB) HSCs were expanded by means of a cell-dilution feeding protocol in RWV.

  3. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs.

  4. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    Science.gov (United States)

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1.

  5. Quality of life before autologous stem cells transplantation as prognostic factor in patients with malignant lymphomas

    Directory of Open Access Journals (Sweden)

    Yu. L. Shevchenko

    2014-01-01

    Full Text Available Currently high-doses chemotherapy (HD-PCT + autologous hematopoietic stem cells transplantation (auto-HSCT is the treatment ofchoice in patients with recurrent and progressive lymphomas. Most of quality of life (QoL studies in lymphomas patients received HSCT limited on parameters dynamics assessment in the early and late post-transplant period. Aim of this study was to evaluate the QoL parameters and their prognostic significance in lymphoma patients before transplantation. 124 patients with lymphomas (non-Hodgkin lymphomas – 45 patients, Hodgkin's lymphoma – 79 patients who received HD-PCT + auto-HSCT were included in the study: men – 42.7 % (n = 53, women – 57.3 % (n = 71, median age – 34 years (19–65 years. Patients’ heterogeneity before transplantation regarding quality of life has been revealed. Almost 1/3 of patients showed a significant reduction in the integral index of QoL. Insignificant differences between patients with chemosensitivity and chemoresistant lymphomas regarding QoL before HD-PCT + auto-HSCT were shown. We also analyzed the outcomes of studied patients received HD-PCT + auto-HSCT. With a median follow-up of 18 months, overall survival after transplantation was 72 % (95 % CI 56–84; event-free survival – 64 % (95 % CI 53,3–73,2.Overall and event-free survivals were significantly higher in patients with chemosensitive lymphoma compared with chemoresistance tumor. Differences in the survival rates between patients with no or negligible decrease of QoL integral index and with significant reduction of it also were found. Revealed differences in overall and event-free survival between the groups allowed the first group considered as patients with a favorable prognosis, and the second group – as patients with poor prognosis regarding the transplantation outcome.

  6. Quality of life before autologous stem cells transplantation as prognostic factor in patients with malignant lymphomas

    Directory of Open Access Journals (Sweden)

    Yu. L. Shevchenko

    2014-07-01

    Full Text Available Currently high-doses chemotherapy (HD-PCT + autologous hematopoietic stem cells transplantation (auto-HSCT is the treatment ofchoice in patients with recurrent and progressive lymphomas. Most of quality of life (QoL studies in lymphomas patients received HSCT limited on parameters dynamics assessment in the early and late post-transplant period. Aim of this study was to evaluate the QoL parameters and their prognostic significance in lymphoma patients before transplantation. 124 patients with lymphomas (non-Hodgkin lymphomas – 45 patients, Hodgkin's lymphoma – 79 patients who received HD-PCT + auto-HSCT were included in the study: men – 42.7 % (n = 53, women – 57.3 % (n = 71, median age – 34 years (19–65 years. Patients’ heterogeneity before transplantation regarding quality of life has been revealed. Almost 1/3 of patients showed a significant reduction in the integral index of QoL. Insignificant differences between patients with chemosensitivity and chemoresistant lymphomas regarding QoL before HD-PCT + auto-HSCT were shown. We also analyzed the outcomes of studied patients received HD-PCT + auto-HSCT. With a median follow-up of 18 months, overall survival after transplantation was 72 % (95 % CI 56–84; event-free survival – 64 % (95 % CI 53,3–73,2.Overall and event-free survivals were significantly higher in patients with chemosensitive lymphoma compared with chemoresistance tumor. Differences in the survival rates between patients with no or negligible decrease of QoL integral index and with significant reduction of it also were found. Revealed differences in overall and event-free survival between the groups allowed the first group considered as patients with a favorable prognosis, and the second group – as patients with poor prognosis regarding the transplantation outcome.

  7. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/Trithorax Group complexes distinctly from functional adult hematopoietic stem cells.

    Science.gov (United States)

    Schnerch, Angelique; Lee, Jung Bok; Graham, Monica; Guezguez, Borhane; Bhatia, Mickie

    2013-01-01

    Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation. We reveal that hESC-derived hematopoietic progenitor cells (eHPCs) fail to express critical transcription factors which are known to govern self-renewal and myeloid/lymphoid development and instead retain the expression of Polycomb Group (PcG) and Trithorax Group (TrxG) factors which are more prevalent in embryonic cell types that include EZH1 and ASH1L, respectively. These molecular profiles indicate that the differential expression of the core epigenetic machinery comprising PcGs/TrxGs in eHPCs may serve as previously unexplored molecular targets that direct hematopoietic differentiation of PSCs toward functional HSPCs in humans.

  8. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  9. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  10. Mitophagy in hematopoietic stem cells: the case for exploration.

    Science.gov (United States)

    Joshi, Aashish; Kundu, Mondira

    2013-11-01

    Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis.

  11. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    Science.gov (United States)

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  12. Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

    Directory of Open Access Journals (Sweden)

    Dânia Sofia Marques

    2011-01-01

    Full Text Available Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections. This is a major cause of morbidity and mortality. We report a case of a 17-year-old male patient diagnosed with severe idiopathic acquired aplastic anemia who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis, its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies.

  13. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    Science.gov (United States)

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  14. Autologous cell therapy as a new approach to treatment of radiation-induced bone marrow aplasia: preliminary study in a baboon model

    Energy Technology Data Exchange (ETDEWEB)

    Herodin, F.; Drouet, M. [Radiohematology Unit, Centre de Recherches du Service de Sante des Armees, La Tronche CEDEX (France)

    2002-07-01

    The sparing of viable hematopoietic stem and progenitor cells located in underexposed bone marrow territories associated with the relative radioresistance of certain stem cell populations is the rationale for autologous cell therapy consisting of ex vivo expansion of residual cells after collection postirradiation. The feasibility of this treatment mainly depends on time constraints and hematopoietic cell threshold. We showed in this study that in the absence of early-acting mobilizing agent administration, subliminar amounts of CD34{sup +} cells can be collected (1 x 10{sup 6} CD34{sup +} cells/100 mL bone marrow or for 1 L apheresis) from 6-Gy {gamma} globally irradiated baboons. Residual CD34{sup +} cells were successfully expanded in serum-free medium in the presence of antiapoptotic cytokine combination (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin 3, 50 ng/mL each, i.e., 4F): K{sub CD34{sup +}} = x2.8 and x13.7 (n=2). Moreover, we demonstrated the short-term neutrophil engraftment potential of a low-size mixed expanded graft (1.5 x 10{sup 6} final CD34{sup +}cells/kg) issued from the coculture of unirradiated (20%) and 2.5-Gy in vitro irradiated (80%) CD34{sup +} cells on an allogeneic stromal cell layer in the presence of 4F. Further preclinical research needs to be performed to clearly establish this therapeutic approach that could be optimized by the early administration of antiapoptotic cytokines. (author)

  15. Intestinal dysbiosis and allogeneic hematopoietic progenitor cell transplantation

    OpenAIRE

    Raghunathan, Vikram M.; Sheng, Iris; Lim, Seah H.

    2016-01-01

    The intestinal microbiota is a diverse and dynamic ecosystem that is increasingly understood to play a vital role in human health. Hematopoietic stem cell transplant recipients undergo prolonged exposure to antimicrobials, chemotherapeutic agents, and immunosuppressants, resulting in profound shifts in the gut microbiome. A growing body of research has revealed the ways in which these microbiologic shifts shape immune modulation, affecting susceptibility to infections and graft-versus-host di...

  16. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    OpenAIRE

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and car...

  17. Role of adhesion molecules in mobilization of hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    陈彤; 谢毅

    2003-01-01

    Objective To study the changes of adhesion molecules' expressions during the recombinant human granulocyte-colony-stimulating factor (rhG-CSF) mobilization in periphera l blood stem cell transplantation (PBSCT), and to confirm the influence of rhG- CSF on hematopoietic stem cells, which are proposed to guide mobilization in PBS CT. Methods Mice were injected subcutaneously with diluted rhG-CSF or normal saline for 7 days. The blood Sca-1+ stem cell count and bone marrow (BM) nucleated cell count were enumerated. The expressions of CD49d and CD44 and the adhesive ability of mononuclear cells to bone marrow matrix (fibronectin) were examined by flow c ytometry and 51Cr adhesive assay, respectively.Results The mobilizing effect of rhG-CSF on mice was the same as on humans. The number of Sca-1+ cells in peripheral blood reached the peak on the seventh day, the BM nucleated cell count was reduced, and the expressions of CD49d and the cells ' adhesive ability in BM and PB declined. Conclusions rhG-CSF can reduce some cell adhesion molecules' expressions and the adhesive a bility of hematopoietic stem cells to BM matrix, therefore mobilizing hematopoie tic stem cells (HSC) from the BM to the peripheral blood.

  18. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    Science.gov (United States)

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed.

  19. Use of the quality management system "JACIE" and outcome after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Gratwohl, Alois; Brand, Ronald; McGrath, Eoin; van Biezen, Anja; Sureda, Anna; Ljungman, Per; Baldomero, Helen; Chabannon, Christian; Apperley, Jane

    2014-05-01

    Competent authorities, healthcare payers and hospitals devote increasing resources to quality management systems but scientific analyses searching for an impact of these systems on clinical outcome remain scarce. Earlier data indicated a stepwise improvement in outcome after allogeneic hematopoietic stem cell transplantation with each phase of the accreditation process for the quality management system "JACIE". We therefore tested the hypothesis that working towards and achieving "JACIE" accreditation would accelerate improvement in outcome over calendar time. Overall mortality of the entire cohort of 107,904 patients who had a transplant (41,623 allogeneic, 39%; 66,281 autologous, 61%) between 1999 and 2006 decreased over the 14-year observation period by a factor of 0.63 per 10 years (hazard ratio: 0.63; 0.58-0.69). Considering "JACIE"-accredited centers as those with programs having achieved accreditation by November 2012, at the latest, this improvement was significantly faster in "JACIE"-accredited centers than in non-accredited centers (approximately 5.3% per year for 49,459 patients versus approximately 3.5% per year for 58,445 patients, respectively; hazard ratio: 0.83; 0.71-0.97). As a result, relapse-free survival (hazard ratio 0.85; 0.75-0.95) and overall survival (hazard ratio 0.86; 0.76-0.98) were significantly higher at 72 months for those patients transplanted in the 162 "JACIE"-accredited centers. No significant effects were observed after autologous transplants (hazard ratio 1.06; 0.99-1.13). Hence, working towards implementation of a quality management system triggers a dynamic process associated with a steeper reduction in mortality over the years and a significantly improved survival after allogeneic stem cell transplantation. Our data support the use of a quality management system for complex medical procedures.

  20. Use of the quality management system “JACIE” and outcome after hematopoietic stem cell transplantation

    Science.gov (United States)

    Gratwohl, Alois; Brand, Ronald; McGrath, Eoin; van Biezen, Anja; Sureda, Anna; Ljungman, Per; Baldomero, Helen; Chabannon, Christian; Apperley, Jane

    2014-01-01

    Competent authorities, healthcare payers and hospitals devote increasing resources to quality management systems but scientific analyses searching for an impact of these systems on clinical outcome remain scarce. Earlier data indicated a stepwise improvement in outcome after allogeneic hematopoietic stem cell transplantation with each phase of the accreditation process for the quality management system “JACIE”. We therefore tested the hypothesis that working towards and achieving “JACIE” accreditation would accelerate improvement in outcome over calendar time. Overall mortality of the entire cohort of 107,904 patients who had a transplant (41,623 allogeneic, 39%; 66,281 autologous, 61%) between 1999 and 2006 decreased over the 14-year observation period by a factor of 0.63 per 10 years (hazard ratio: 0.63; 0.58–0.69). Considering “JACIE“-accredited centers as those with programs having achieved accreditation by November 2012, at the latest, this improvement was significantly faster in “JACIE”-accredited centers than in non-accredited centers (approximately 5.3% per year for 49,459 patients versus approximately 3.5% per year for 58,445 patients, respectively; hazard ratio: 0.83; 0.71–0.97). As a result, relapse-free survival (hazard ratio 0.85; 0.75–0.95) and overall survival (hazard ratio 0.86; 0.76–0.98) were significantly higher at 72 months for those patients transplanted in the 162 “JACIE“-accredited centers. No significant effects were observed after autologous transplants (hazard ratio 1.06; 0.99–1.13). Hence, working towards implementation of a quality management system triggers a dynamic process associated with a steeper reduction in mortality over the years and a significantly improved survival after allogeneic stem cell transplantation. Our data support the use of a quality management system for complex medical procedures. PMID:24488562

  1. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    OpenAIRE

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellul...

  2. Haploidentical Hematopoietic Stem-Cell Transplantation in Adults

    Directory of Open Access Journals (Sweden)

    Salem Alshemmari

    2011-01-01

    Full Text Available Haploidentical hematopoietic stem-cell transplantation is an alternative transplant strategy for patients without an HLA-matched donor. Still, only half of patients who might benefit from transplantation are able to find an HLA-matched related or unrelated donor. Haploidentical donor is readily available for many patients in need of immediate stem-cell transplantation. Historical experience with haploidentical stem-cell transplantation has been characterised by a high rejection rate, graft-versus-host disease, and transplant-related mortality. Important advances have been made in this field during the last 20 years. Many drawbacks of haploidentical transplants such as graft failure and significant GVHD have been overcome due to the development of new extensive T cell depletion methods with mega dose stem-cell administration. However, prolonged immune deficiency and an increased relapse rate remain unresolved problems of T cell depletion. New approaches such as partial ex vivo or in vivo alloreactive T cell depletion and posttransplant cell therapy will allow to improve immune reconstitution in haploidentical transplants. Results of unmanipulated stem-cell transplantation with using ATG and combined immunosuppression in mismatched/haploidentical transplant setting are promising. This paper focuses on recent advances in haploidentical hematopoietic stem-cell transplantation for hematologic malignancies.

  3. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy.

    Science.gov (United States)

    Potdar, Pd; Subedi, Rp

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia.

  4. Isolation of a T-cell clone showing HLA-DRB1*0405-restricted cytotoxicity for hematopoietic cells in a patient with aplastic anemia.

    Science.gov (United States)

    Nakao, S; Takami, A; Takamatsu, H; Zeng, W; Sugimori, N; Yamazaki, H; Miura, Y; Ueda, M; Shiobara, S; Yoshioka, T; Kaneshige, T; Yasukawa, M; Matsuda, T

    1997-05-15

    The existence of T cells capable of inhibiting in vitro hematopoiesis has been shown in aplastic anemia (AA), although whether such inhibition is mediated by a specific immune reaction involving an HLA allele remained unknown. We isolated a CD4+ Vbeta21+ T-cell clone that was most dominant among Vbeta21+ T cells in the bone marrow (BM) of an AA patient whose HLA-DRB1 alleles included 1501 and 0405. The T-cell clone named NT4.2 lysed an autologous Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) and phytohemagglutinin-stimulated lymphocytes (PHA-blasts) as well as allogeneic LCLs sharing HLA-DRB1*0405. Cytotoxicity against LCL cells and PHA-blasts by NT4.2 was blocked by anti-HLA-DR monoclonal antibody (MoAb) or anti-CD3 MoAb. NT4.2 also lysed autologous BM mononuclear cells enriched with CD34+ cells that had been cultured for one week in the presence of colony-stimulating factors as well as allogeneic CD34+ cells of a normal individual carrying HLA-DRB1*0405, cultured in the same way. Moreover, NT4.2 strongly inhibited colony formation by hematopoietic progenitor cells derived from cultured CD34+ cells sharing HLA-DRB1*0405. These results indicate that the AA patient has T cells capable of killing hematopoietic cells in an HLA-DRB1*0405-restricted manner and that such cytotoxic T cells may contribute to the pathogenesis of AA.

  5. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    Science.gov (United States)

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  6. Microbial contamination of peripheral blood and bone marrow hematopoietic cell products and environmental contamination in a stem cell bank: a single-center report.

    Science.gov (United States)

    Kozlowska-Skrzypczak, M; Bembnista, E; Kubiak, A; Matuszak, P; Schneider, A; Komarnicki, M

    2014-10-01

    Hematopoietic stem cells (HSC) derived from peripheral blood (PB) and bone marrow (BM) are frequently used for autologous and allogenic transplantations. Establishing quality control at appropriate steps of the stem cell preparation process is crucial for a successful transplantation. Microbial contamination of haematopoietic stem cells is rare but could cause a potentially mortal complication of a stem cells transplantation. We investigated the microbiological contamination of PB (291 donations) and BM (39 donations) products. Microbial cultures of 330 donations between January 2012 and June 2013 were retrospectively analyzed after the collection and preparation steps. The microbiological analysis was performed with an automated system. Hematopoietic stem cells were processed in a closed system. Additionally, in this report the environment of the working areas of stem cell preparation was monitored. We analyzed microbial contamination of the air in a class I laminar air flow clean bench at the time of preparation and in the laboratory once per month. We reported 9 (2.73%) contaminated HSC products. The most frequent bacteria isolated from PB and BM products were Bacillus species. Coagulase-negative staphylococci and Micrococcus species were the most frequent micro-organisms detected in the air microbial control. Microbial control results are necessary for the safety of hematopoietic stem cell products transplantation. Microbial control of hematopoietic stem cell products enables an early contamination detection and allows for knowledgeable decision making concerning either discarding the contaminated product or introducing an efficient antibiotic therapy. Each step of cell processing may cause a bacterial contamination. A minimum of manipulation steps is crucial for increasing the microbial purity of the transplant material. Also, the air contamination control is essential to ensure the highest quality standards of HSC products preparation.

  7. 自体造血干细胞移植治疗进展型多发性硬化的疗效评价%The evaluation of curative effect of autologous hematopoietic stem cell transplantation in treatment of patients with progressive multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    冯楠; 张普; 董会卿; 徐娟; 苏力

    2011-01-01

    目的 评价自体造血干细胞移植(AHSCT)治疗进展型多发性硬化(PMS)的疗效及安全性.方法 选取2001年11月至2010年3月我院收治的82例PMS患者,行AHSCT治疗的41例为AHSCT组,行皮质醇激素治疗的41例PMS患者为激素治疗组.随访观察临床疗效,分析指标包括疾病无进展生存率(PFS)、神经功能残疾评分(EDSS)、总发作次数、平均年发作次数、生活质量评分(ADL)和MRI病灶变化情况、移植相关死亡率及毒副反应.结果 AHSCT组41例患者均完成了AHSCT,但3例失访,38例完成临床试验.其移植后EDSS评分、发作总次数、年均发作次数、病灶总容积及生活质量评分均较移植前下降( <0.05);5.2年PFS为78.9%.激素治疗组41例患者失访29例,随访12例患者治疗后EDSS评分、发作总次数及年均发作次数均较治疗前增加(P<0.05);2.8年PFS仅为8.3%.结论 PMS应用其他方法治疗效果欠佳时,采取自体造血干细胞移植,可有效降低EDSS评分、发作次数及病灶容积,提高生活质量.%Objective To evaluate the therapeutic effect and the safety of autologous haematopoietic stem cell transplantation in progressive multiple sclerosis. Methods A retrospective analysis of 82 patients with PMS who were treated between November 2001 and March 2010 were carried out in our hospital. 41 cases with AHSCT therapy were defined as test group, and another 41 cases with cortisol hormone therapy were defined as control group. Compared their therapeutic effect by observing progression-free survival, EDSS, total numbers of relapses, the per capital average annal number of relapses, ADL, image changes of MRI, transplantation related mortality and toxic effect. Results 38 of 41 patients completed the trial in test group as planned. The results showed that there were significant differences( all P <0. 05 )after AHSCT in test group with lower mean EDSS, total numberof relapses, the per capital average annal number of relapses

  8. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues

    NARCIS (Netherlands)

    Jokubaitis, Vanta J.; Sinka, Lidia; Driessen, Rebecca; Whitty, Genevieve; Haylock, David N.; Bertoncello, Ivan; Smith, Ian; Peault, Bruno; Tavian, Manuela; Simmons, Paul J.

    2008-01-01

    Previous studies revealed that mAb BB9 reacts with a subset of CD34(+) human BM cells with hematopoietic stem cell (HSC) characteristics. Here we map B89 expression throughout hernatopoietic development and show that the earliest definitive HSCs that arise at the ventral wall of the aorta and surrou

  9. Employment Status as an Indicator of Recovery and Function One Year after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Morrison, Eleshia J; Ehlers, Shawna L; Bronars, Carrie A; Patten, Christi A; Brockman, Tabetha A; Cerhan, James R; Hogan, William J; Hashmi, Shahrukh K; Gastineau, Dennis A

    2016-09-01

    Employment after hematopoietic stem cell transplantation (HSCT) is an indicator of post-transplantation recovery and function, with economic and social implications. As survival rates for HSCT continue to improve, greater emphasis can be placed on factors affecting the quality of post-transplantation survival, including the ability to resume employment. A sample of recipients of autologous or allogeneic HSCT was accrued (n = 1000) to complete a longitudinal lifestyle survey before transplantation and at 1 year after transplantation. The present study examines associations between employment and patient characteristics, disease variables, illness status, and quality of life among 1-year survivors (n = 702). Participants had a mean age of 55 years (range, 18 to 78) and were predominately male (59.7%), married/partnered (77.1%), and non-Hispanic Caucasian (89.5%); most (79.4%) had received autologous transplantation. Of the 690 participants reporting some form of employment before illness diagnosis, 62.4% had returned to work by 1 year after HSCT. Full-time employment at 1 year after HSCT was significantly associated with remission of illness, improved illness, fewer post-transplantation hospitalizations, less fatigue and pain, higher quality of life, and higher rating of perceived health. Those unemployed because of their health reported the highest rates of fatigue and pain and lowest quality of life, and they were most likely to report poor perceived health. These findings highlight work reintegration as an important outcome and marker of survivors' overall adjustment after transplantation. Identifying factors affecting post-transplantation employment offers opportunities for behavioral interventions to target modifiable risk factors to optimize post-transplantation survivorship, inclusive of increased rates of return to work and decreased rates of associated disability.

  10. Economics and Outcome After Hematopoietic Stem Cell Transplantation: A Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Alois Gratwohl

    2015-12-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a lifesaving expensive medical procedure. Hence, more transplants are performed in more affluent countries. The impact of economic factors on patient outcome is less defined. We analyzed retrospectively a defined cohort of 102,549 patients treated with an allogeneic (N = 37,542; 37% or autologous (N = 65,007; 63% HSCT. They were transplanted by one of 404 HSCT centers in 25 European countries between 1999 and 2006. We searched for associations between center-specific microeconomic or country-specific macroeconomic factors and outcome. Center patient-volume and center program-duration were significantly and systematically associated with improved survival after allogeneic HSCT (HR 0·87; 0·84–0·91 per 10 patients; p < 0·0001; HR 0·90;0·85–0·90 per 10 years; p < 0·001 and autologous HSCT (HR 0·91;0·87–0·96 per 10 patients; p < 0·001; HR 0·93;0·87–0·99 per 10 years; p = 0·02. The product of Health Care Expenditures by Gross National Income/capita was significantly associated in multivariate analysis with all endpoints (R2 = 18%; for relapse free survival after allogeneic HSCT. Data indicate that country- and center-specific economic factors are associated with distinct, significant, systematic, and clinically relevant effects on survival after HSCT. They impact on center expertise in long-term disease and complication management. It is likely that these findings apply to other forms of complex treatments.

  11. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  12. Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development.

    Science.gov (United States)

    Lee, W-J; Lee, J-H; Jeon, R-H; Jang, S-J; Lee, S-C; Park, J-S; Lee, S-L; King, W-A; Rho, G-J

    2017-02-13

    Somatic cell nuclear transfer (SCNT) is considered as the technique in which a somatic cell is introduced into an enucleated oocyte to make a cloned animal. However, it is unavoidable to lose a small amount of the ooplasm during enucleation step during SCNT procedure. The present study was aimed to uncover whether the supplement of autologous ooplasm could ameliorate the oocyte competence so as to improve low efficiency of embryo development in porcine SCNT. Autologous ooplasm-transferred (AOT) embryos were generated by the supplementation with autologous ooplasm into SCNT embryos. They were comparatively evaluated with respect to embryo developmental potential, the number of apoptotic body formation and gene expression including embryonic lineage differentiation, apoptosis, epigenetics and mitochondrial activity in comparison with parthenogenetic, in vitro-fertilized (IVF) and SCNT embryos. Although AOT embryos showed perfect fusion of autologous donor ooplasm with recipient SCNT embryos, the supplement of autologous ooplasm could not ameliorate embryo developmental potential in regard to the rate of blastocyst formation, total cell number and the number of apoptotic body. Furthermore, overall gene expression of AOT embryos was presented with no significant alterations in comparison with that of SCNT embryos. Taken together, the results of AOT demonstrated inability to make relevant values improved from the level of SCNT embryos to their IVF counterparts.

  13. Imaging evaluation of pulmonary and abdominal complications following hematopoietic stem cell transplantation.

    Science.gov (United States)

    Coy, David L; Ormazabal, Amaya; Godwin, J David; Lalani, Tasneem

    2005-01-01

    Hematopoietic stem cell transplantation is used to treat hematologic disorders and as an adjunct treatment for solid organ malignancies. After undergoing transplantation, patients are at risk for opportunistic infections and other complications caused by dysfunction of the immune system. Pulmonary complications include cryptogenic organizing pneumonia, opportunistic pneumonias caused by Aspergillus and Zygomycetes species and cytomegalovirus, alveolar hemorrhage, and constrictive bronchiolitis. Abdominal complications include hepatic veno-occlusive disease, graft-versus-host disease (GVHD), colitis, and hemorrhagic cystitis. Allogeneic transplant recipients are at risk for developing GVHD. Autologous and syngeneic transplant recipients are less likely to have chronic or late posttransplantation complications. Nonmyeloablative transplant recipients are less likely to develop opportunistic infections and other complications in the period immediately following transplantation, but are at risk for developing chronic GVHD and other chronic complications. Radiologic evaluation serves as the cornerstone for timely diagnosis of these complications, which is essential to reduce patient morbidity and mortality. Combining clinical factors-including the type of transplant and the point of time during the posttransplantation course-with characteristic imaging features yields the most specific and accurate differential diagnosis for radiologic findings in stem cell transplant recipients.

  14. The role of hematopoietic stem cell transplantation for type 1 diabetes mellitus O papel do transplante de célula-tronco hematopoética no diabetes mellitus tipo1

    OpenAIRE

    2008-01-01

    In this review, we present 1) scientific basis for the use of high dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes mellitus, 2) an update of clinical and laboratory outcomes in 21 patients transplanted at the University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Brazil, including 6 relapses in patients without previous ketoacidosis and 3) a discussion of future prospectives ...

  15. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  16. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up

    NARCIS (Netherlands)

    Bjorkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Beksac, M.; Bosi, A.; Milone, G.; Corradini, P.; Goldschmidt, H.; Witte, T.J.M. de; Morris, C.; Niederwieser, D.; Gahrton, G.

    2011-01-01

    PURPOSE: Results of allogeneic stem-cell transplantation (allo) in myeloma are controversial. In this trial autologous stem-cell transplantation (auto) followed by reduced-intensity conditioning matched sibling donor allo (auto-allo) was compared with auto only in previously untreated multiple myelo

  17. Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal.

    Science.gov (United States)

    Lee, Eunsong; Song, Kilyoung

    2007-12-01

    The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.

  18. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2016-04-26

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  19. Autologous CD34~+ and CD133~+ stem cells transplantation in patients with end stage liver disease

    Institute of Scientific and Technical Information of China (English)

    Hosny; Salama; Abdel-Rahman; N; Zekri; Abeer; A; Bahnassy; Eman; Medhat; Hanan; A; Halim; Ola; S; Ahmed; Ghada; Mohamed; Sheren; A; Al; Alim; Ghada; M; Sherif

    2010-01-01

    AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver diseases were randomized into two groups.Group 1,comprising 90 patients,received granulocyte colony stimulating factor for five days followed by autologous CD34 + and CD133 + stem cell infusion in the portal vein.Group 2,comprising 50 patients,received regular liver treatment only and served a...

  20. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  1. Evolution of brain-derived neurotrophic factor levels after autologous hematopietic stem cell transplantation in multiple sclerosis.

    Science.gov (United States)

    Blanco, Y; Saiz, A; Costa, M; Torres-Peraza, J F; Carreras, E; Alberch, J; Jaraquemada, D; Graus, F

    A neuroprotective role of inflammation has been suggested based on that immune cells are the main source of brain-derived neurotrophic factor (BDNF). We investigated the 3-year evolution of BDNF levels in serum, CSF and culture supernatant of peripheral blood mononuclear cells (PBMC), unstimulated and stimulated with anti-CD3 and soluble anti-CD28 antibodies, in 14 multiple sclerosis patients who underwent an autologous hematopoietic stem cell transplantation (AHSCT). BDNF levels were correlated with previously reported MRI measures that showed a reduction of T2 lesion load and increased brain atrophy, mainly at first year post-transplant. A significant decrease of serum BDNF levels was seen at 12 months post-transplant. BDNF values were found significantly lower in stimulated but not in unstimulated PBMC supernatants during the follow-up, supporting that AHSCT may induce a down-regulation of BDNF production. The only significant correlation was found between CSF BDNF levels and T2 lesion load before and 1 year after AHSCT, suggesting that BDNF reflects the past and ongoing inflammatory activity and demyelination of these highly active patients. Our study suggests that AHSCT can reduce BDNF levels to values associated with lower activity. This decrease does not seem to correlate with the brain atrophy measures observed in the MRI.

  2. Short and long-term repopulating hematopoietic stem cells in the mouse

    NARCIS (Netherlands)

    J.C.M. van der Loo

    1995-01-01

    textabstractThe formation and development of blood cells, or hematopoiesis, normally takes place in the bone marrow, which serves as the major hematopoietic organ during adult life. A small population of bone marrow cells (BMC), designated as hematopoietic stem cells, underlies the process of blood

  3. Fine-tuning Hematopoiesis: Microenvironmental factors regulating self-renewal and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    T.C. Luis (Tiago)

    2010-01-01

    markdownabstract__Abstract__ Hematopoietic stem cells (HSCs) have the ability to self renew and generate all lineages of blood cells. Although it is currently well established that hematopoietic stem cells (HSCs) regenerate the blood compartment, it was only in the 1960s that was introduced the not

  4. 重视造血干细胞移植中的造血微环境问题%Pay close attention to hematopoietic inductive microenvironment in hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    张曦; 张诚; 陈幸华

    2012-01-01

    Hematopoietic stem cell transplantation is a therapeutic method in treatment of various hematologic neoplastic disorders. Successful transplantion relies on the normal proliferation, differentiation of the transplanted hematopoietic stem cells in the recipients, and the low occurence of complications. In previous studies, more attention has been paid to the hematopoietic stem cells rather than the hematopoietic inductive microenvironment , which is actually necessary for the survival and function of the transplanted hematopoietic stem cells. Results from our studies indicate that the hematopoietic inductive microenvironment is as important as the hematopoietic stem cells in the transplantation therapy.

  5. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases.

    Science.gov (United States)

    Li, Lijing; Krymskaya, Ludmila; Wang, Jianbin; Henley, Jill; Rao, Anitha; Cao, Lan-Feng; Tran, Chy-Anh; Torres-Coronado, Monica; Gardner, Agnes; Gonzalez, Nancy; Kim, Kenneth; Liu, Pei-Qi; Hofer, Ursula; Lopez, Evan; Gregory, Philip D; Liu, Qing; Holmes, Michael C; Cannon, Paula M; Zaia, John A; DiGiusto, David L

    2013-06-01

    The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5(Δ32/Δ32)) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5(Δ32/Δ32) donors, we reasoned that engineered autologous CD34(+) hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy. We evaluated disruption of CCR5 gene expression in HSPCs isolated from granulocyte colony-stimulating factor (CSF)-mobilized adult blood using a recombinant adenoviral vector encoding a CCR5-specific pair of zinc finger nucleases (CCR5-ZFN). Our results demonstrate that CCR5-ZFN RNA and protein expression from the adenoviral vector is enhanced by pretreatment of HSPC with protein kinase C (PKC) activators resulting in >25% CCR5 gene disruption and that activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is responsible for this activity. Importantly, using an optimized dose of PKC activator and adenoviral vector we could generate CCR5-modified HSPCs which engraft in a humanized mouse model (albeit at a reduced level) and support multilineage differentiation in vitro and in vivo. Together, these data establish the basis for improved approaches exploiting adenoviral vector delivery in the modification of HSPCs.

  6. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  7. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Amit J Sabnis

    2009-03-01

    Full Text Available How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs and leukemias. We investigated the effects of expressing oncogenic Kras(G12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs, but not in common myeloid progenitors. Kras(G12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  8. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  9. Adenovirus as a gene therapy vector for hematopoietic cells.

    Science.gov (United States)

    Marini, F C; Yu, Q; Wickham, T; Kovesdi, I; Andreeff, M

    2000-06-01

    Adenovirus (Adv)-mediated gene transfer has recently gained new attention as a means to deliver genes for hematopoietic stem cell (HSC) or progenitor cell gene therapy. In the past, HSCs have been regarded as poor Adv targets, mainly because they lack the specific Adv receptors required for efficient and productive Adv infection. In addition, the nonintegrating nature of Adv has prevented its application to HSC and bone marrow transduction protocols where long-term expression is required. There is even controversy as to whether Adv can infect hematopoietic cells at all. In fact, the ability of Adv to infect epithelium-based targets and its inability to effectively transfect HSCs have been used in the development of eradication schemes that use Adv to preferentially infect and "purge" tumor cell-contaminating HSC grafts. However, there are data supporting the existence of productive Adv infections into HSCs. Such protocols involve the application of cytokine mixtures, high multiplicities of infection, long incubation periods, and more recently, immunological and genetic modifications to Adv itself to enable it to efficiently transfer genes into HSCs. This is a rapidly growing field, both in terms of techniques and applications. This review examines the two sides of the Adv/CD34 controversy as well as the current developments in this field.

  10. Megakaryocytes regulate hematopoietic stem cell quiescence via Cxcl4 secretion

    Science.gov (United States)

    Bruns, Ingmar; Lucas, Daniel; Pinho, Sandra; Ahmed, Jalal; Lambert, Michele P.; Kunisaki, Yuya; Scheiermann, Christoph; Schiff, Lauren; Poncz, Mortimer; Bergman, Aviv; Frenette, Paul S.

    2014-01-01

    In the bone marrow (BM), hematopoietic stem cells (HSCs) lodge in specialized microenvironments that tightly control their proliferative state to adapt to the varying needs for replenishment of blood cells while also preventing exhaustion1. All putative niche cells suggested thus far have a non-hematopoietic origin2-8. Thus, it remains unclear how feedback from mature cells is conveyed to HSCs to adjust proliferation. Here we show that megakaryocytes (Mk) can directly regulate HSC pool size. Three-dimensional whole-mount imaging revealed that endogenous HSCs are frequently located adjacent to Mk in a non-random fashion. Selective in vivo depletion of Mk resulted in specific loss of HSC quiescence and led to a marked expansion of functional HSCs. Gene expression analyses revealed that Mk were the source of chemokine C-X-C motif ligand 4 (Cxcl4, also named platelet factor 4, Pf4) in the BM and Cxcl4 injection reduced HSC numbers via increased quiescence. By contrast, Cxcl4−/− mice exhibited increased HSC numbers and proliferation. Combined use of whole-mount imaging and computational modelling was highly suggestive of a megakaryocytic niche capable of influencing independently HSC maintenance by regulating quiescence. Thus, these results indicate that a terminally differentiated HSC progeny contributes to niche activity by directly regulating HSC behavior. PMID:25326802

  11. Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency

    Science.gov (United States)

    Wahlstrom, Justin T.; Dvorak, Christopher C.; Cowan, Morton J.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is an effective approach for the treatment of severe combined immunodeficiency (SCID). However, SCID is not a homogeneous disease, and the treatment required for successful transplantation varies significantly between SCID subtypes and the degree of HLA mismatch between the best available donor and the patient. Recent studies are beginning to more clearly define this heterogeneity and how outcomes may vary. With a more detailed understanding of SCID, new approaches can be developed to maximize immune reconstitution, while minimizing acute and long-term toxicities associated with chemotherapy conditioning. PMID:25821657

  12. Lung function after allogeneic hematopoietic stem cell transplantation in children

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF...... experienced a decline in lung function of more than 10% during the first 3 to 9 months after HSCT. The decline in forced expiratory volume in 1 second, forced expiratory volume in 1 second/forced vital capacity and diffusion capacity of the lung for carbon monoxide were strongly associated with acute graft...

  13. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  14. ROLE AND TIMING OF HEMATOPOIETIC CELL TRANSPLANTATION FOR MYELODYSPLASTIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Teresa L Field

    2010-07-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT is the only curative treatment for patients with myelodysplastic syndromes (MDS.  Most patients with MDS are older than 60 years and age-associated morbidities limit the patients’ options for curative transplant therapy.  Since the development of conditioning regimens with reduced toxicity, the age limitations for HCT have waned for those patients with good performance status. This review will discuss the role of HCT for MDS based on prognostic features, the optimal timing of HCT, and outcomes based on patient age.

  15. Acute kidney injury in patients with systemic sclerosis participating in hematopoietic cell transplantation trials in the United States.

    Science.gov (United States)

    Hosing, Chitra; Nash, Richard; McSweeney, Peter; Mineishi, Shin; Seibold, James; Griffith, Linda M; Shulman, Howard; Goldmuntz, Ellen; Mayes, Maureen; Parikh, Chirag R; Crofford, Leslie; Keyes-Elstein, Lynette; Furst, Daniel; Steen, Virginia; Sullivan, Keith M

    2011-05-01

    Recipients of hematopoietic cell transplantation may be at risk for developing acute kidney injury (AKI), and this risk may be increased in patients who undergo transplantation for severe systemic sclerosis (SSc) due to underlying scleroderma renal disease. AKI after transplantation can increase treatment-related mortality. To better define these risks, we analyzed 91 patients with SSc who were enrolled in 3 clinical trials in the United States of autologous or allogeneic hematopoietic cell transplantation (HCT). Eleven (12%) of the 91 patients with SSc in these studies (8 undergoing autologous HCT, 1 undergoing allogeneic HCT, 1 pretransplantation, 1 given i.v. cyclophosphamide on a transplantation trial) experienced AKI, of whom 8 required dialysis and/or therapeutic plasma exchange. AKI injury in the 9 HCT recipients developed a median of 35 days (range, 0-90 days) after transplantation. Ten of 11 patients with AKI received angiotensin-converting enzyme inhibitor (ACE-I) therapy. The etiology of AKI was attributed to scleroderma renal crisis in 6 patients (including 2 with normotensive renal crisis), to AKI of uncertain etiology in 2 patients, and to AKI superimposed on scleroderma kidney disease in 3 patients. Eight of the 11 patients died, one each because of progression of SSc, multiorgan failure, gastrointestinal and pulmonary bleeding, pericardial tamponade and pulmonary complications, diffuse alveolar hemorrhage, pulmonary embolism, graft-versus-host disease, and malignancy. Limiting nephrotoxins, cautious use of corticosteroids, renal shielding during total body irradiation, strict control of blood pressure, and aggressive use of ACE-Is may be of importance in preventing renal complications after HCT for SSc.

  16. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  17. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  18. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  19. CMV IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Rafael de la Camara

    2016-06-01

    Full Text Available Due to its negative impact in the outcome of stem cell transplant (SCT and solid organ transplant patients (SOT CMV has been called “the troll of transplantation”. One of the greatest advances in the management of SCT has been the introduction of the preemptive strategy. Since its introduction, the incidence of the viremia, as expected, remains unchanged but there has been a marked decline in the incidence of early CMV disease. But in spite of the advances in prevention of CMV disease, CMV is still today an important cause of morbidity and mortality. Late CMV disease is still occurring in a significant proportion of patients and the so-called indirect effects of CMV are causing significant morbidity and mortality. Fortunately, there have been several advances in the development of new antivirals, adoptive immunotherapy and DNA-CMV vaccines that might transform the management of CMV in the near future.

  20. ROLE OF HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Angelo Michele Carella

    2012-10-01

    Full Text Available Hodgkin lymphoma is one of the most curable human tumors. Despite this, about 30% of these patients relapsed or are primary refractory to the first line treatment. Autografting is generally considered the standard of care for these patients. Alternative salvage strategies have been evaluated such as high dose sequential and tandem autografting strategies. In younger patients,  refractory or early relapsed after autografting, allogeneic stem cell transplantation has been employed but this approach has been followed by significant concerns since the treatment related mortality often exceeded 40-50%, and relapses were not uncommon. It is clear that patient selection remains an issue in all allografting reports. At the end, new drugs and novel treatment strategies, that are based on our understanding of the disease biology and signaling pathways, are needed to improve treatment outcome for these patients. The two leading compounds Brentuximab Vedotin and Panobinostat, are currently under evaluation  in several clinical trials.

  1. High-grade cytomegalovirus antigenemia after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Asano-Mori, Y; Oshima, K; Sakata-Yanagimoto, M; Nakagawa, M; Kandabashi, K; Izutsu, K; Hangaishi, A; Motokura, T; Chiba, S; Kurokawa, M; Hirai, H; Kanda, Y

    2005-11-01

    Clinical impact of high-grade (HG) cytomegalovirus (CMV) antigenemia after hematopoietic stem cell transplantation has not been clarified. Therefore, in order to investigate the risk factors and outcome for HG-CMV antigenemia, we retrospectively analyzed the records of 154 Japanese adult patients who underwent allogeneic hematopoietic stem cell transplantation for the first time from 1995 to 2002 at the University of Tokyo Hospital. Among 107 patients who developed positive CMV antigenemia at any level, 74 received risk-adapted preemptive therapy with ganciclovir (GCV), and 17 of these developed HG-antigenemia defined as > or = 50 positive cells per two slides. The use of systemic corticosteroids at > or = 0.5 mg/kg/day at the initiation of GCV was identified as an independent significant risk factor for HG-antigenemia. Seven of the 17 HG-antigenemia patients developed CMV disease, with a cumulative incidence of 49.5%, which was significantly higher than that in the low-grade antigenemia patients (4%, P<0.001). However, overall survival was almost equivalent in the two groups. In conclusion, the development of HG-antigenemia appeared to depend on the profound immune suppression of the recipient. Although CMV disease frequently developed in HG-antigenemia patients, antiviral therapy could prevent a fatal outcome.

  2. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone

    NARCIS (Netherlands)

    Illing, Anett; Liu, Peng; Ostermay, Susanne; Schilling, Arndt; de Haan, Gerald; Krust, Andree; Amling, Michael; Chambon, Pierre; Schinke, Thorsten; Tuckermann, Jan P.

    2012-01-01

    Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Her

  3. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    NARCIS (Netherlands)

    van Pel, M; van Os, R; Velders, GA; Hagoort, H; Heegaard, PMH; Lindley, IJD; Willemze, R; Fibbe, WE

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulatory

  4. Improvement of Thymopoiesis after Hematopoietic Stem Cell Transplantation by Cytokines: Translational studies in experimental animal models

    NARCIS (Netherlands)

    E-J. Wils (Evert-Jan)

    2011-01-01

    textabstractAllogeneic hematopoietic stem cell transplantation (AlloHSCT) is a powerful treatment modality that is frequently applied as part of treatment of hematological malignancies, aplastic anemia and inborn errors of hematopoietic progenitor cells. A major drawback of alloHSCT is the treatment

  5. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  6. Intrathecal application of autologous bone marrow cell preparations in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Storch, Alexander; Csoti, Ilona; Eggert, Karla

    2012-01-01

    A growing number of patients is treated with intrathecal application of autologous bone marrow cells (aBMCs), but clinical data are completely lacking in movement disorders. We provide first clinical data on efficacy and safety of this highly experimental treatment approach in parkinsonian...

  7. Autologous stem cell transplantation in treatment of aggressive non-Hodgkin's lymphoma

    NARCIS (Netherlands)

    Kluin-Nelemans, Hanneke

    2002-01-01

    There is no doubt that autologous stem cell transplantation is useful for patients with relapsed aggressive non-Hodgkin's lymphoma if they are responsive to the chemotherapy given before the transplantation. A small subset of patients with primary refractory disease still profits from this high dose

  8. Influence of cell quality on clinical outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Salzmann, Gian M;

    2012-01-01

    BACKGROUND: Several factors influence clinical outcome after autologous chondrocyte implantation (ACI) for the treatment of cartilage defects of the knee joint. HYPOTHESIS/PURPOSE: The aim of the present study was to investigate the influence of cell quality on clinical outcome after ACI. The hyp...

  9. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee

    DEFF Research Database (Denmark)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian;

    2014-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. PURPOSE: To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of ca...

  10. Severe encephalopathy after high-dose chemotherapy with autologous stem cell support for brain tumours.

    NARCIS (Netherlands)

    Berkmortel, F. van den; Gidding, C.E.M.; Kanter, M. De; Punt, C.J.A.

    2006-01-01

    Recurrent medulloblastoma carries a poor prognosis. Long-term survival has been obtained with high-dose chemotherapy with autologous stem cell transplantation and secondary irradiation. A 21-year-old woman with recurrent medulloblastoma after previous chemotherapy and radiotherapy is presented. The

  11. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  12. File list: InP.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic Stem... Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  13. File list: InP.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic Stem... Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  14. File list: InP.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic Stem... Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  15. File list: NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 No description Blood Hematopoietic S...tem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopo...ietic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  20. File list: DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  1. File list: His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  2. File list: Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopo...ietic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  3. File list: InP.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Hematopoietic_Stem_Cells hg19 Input control Blood Hematopoietic St...em Cells SRX038907 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopo...ietic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  5. File list: Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 RNA polymerase Blood CD34 Hematopo...ietic stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoieti...c stem cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  7. File list: DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoie...tic stem cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  8. File list: DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  9. File list: His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  10. File list: His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  11. File list: DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  12. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    Science.gov (United States)

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  13. Arrhythmias in the setting of hematopoietic cell transplants.

    Science.gov (United States)

    Tonorezos, E S; Stillwell, E E; Calloway, J J; Glew, T; Wessler, J D; Rebolledo, B J; Pham, A; Steingart, R M; Lazarus, H; Gale, R P; Jakubowski, A A; Schaffer, W L

    2015-09-01

    Prior studies report that 9-27% of persons receiving a hematopoietic cell transplant develop arrhythmias, but the effect on outcomes is largely unknown. We reviewed data from 1177 consecutive patients ⩾40 years old receiving a hematopoietic cell transplant at one center during 1999-2009. Transplant indication was predominately leukemia, lymphoma and multiple myeloma. Overall, 104 patients were found to have clinically significant arrhythmia: 43 before and 61 after transplant. Post-transplant arrhythmias were most frequently atrial fibrillation (N=30), atrial flutter (N=7) and supraventricular tachycardia (N=11). Subjects with an arrhythmia post transplant were more likely to have longer median hospital stays (32 days vs 23, P=transplant (41% vs 15%; Ptransplant, diagnosis, history of pretransplant arrhythmia, and transplant-related variables, post-transplant arrhythmia was associated with a greater risk for death within a year of transplant (odds ratio 3.5, 95% confidence interval: 2.1, 5.9; Ptransplants are associated with significant morbidity and mortality. A prospective study of arrhythmia in the transplant setting is warranted.

  14. Biophysical characterization of hematopoietic cells from normal and leukemic sources with distinct primitiveness

    Science.gov (United States)

    Tan, Youhua; Fung, Tsz-Kan; Wan, Haixia; Wang, Kaiqun; Leung, Anskar Y. H.; Sun, Dong

    2011-08-01

    This letter reported the biophysical characterization of immunophenotypically distinct hematopoietic cells from normal and leukemic sources, through manipulation with optical tweezers at single cell level. The results show that the percentage of cells that are stretchable and their deformability are significantly higher in the more primitive cell populations. This study provides the evidence that normal and leukemic hematopoietic cell populations with distinct primitiveness exhibit differential biophysical properties. These findings raise a hypothesis that the high deformability may be related to the unique functions and activities of primitive hematopoietic cells.

  15. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    Science.gov (United States)

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL).

  16. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  17. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  18. Kinetics of hematopoietic stem cells and supportive activities of stromal cells in a three-dimensional bone marrow culture system.

    Science.gov (United States)

    Harada, Tomonori; Hirabayashi, Yukio; Hatta, Yoshihiro; Tsuboi, Isao; Glomm, Wilhelm Robert; Yasuda, Masahiro; Aizawa, Shin

    2015-01-01

    In the bone marrow, hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment. Previously, we established a 3D bone marrow culture system. In this study, we analyzed the kinetics of hematopoietic cells, and more than 50% of hematopoietic progenitor cells, including CFU-Mix, CFU-GM and BFU-E in 3D culture were in a resting (non-S) phase. Furthermore, we examined the hematopoietic supportive ability of stromal cells by measuring the expression of various mRNAs relevant to hematopoietic regulation. Over the 4 weeks of culture, the stromal cells in the 3D culture are not needlessly activated and "quietly" regulate hematopoietic cell proliferation and differentiation during the culture, resulting in the presence of resting hematopoietic stem cells in the 3D culture for a long time. Thus, the 3D culture system may be a new tool for investigating hematopoietic stem cell-stromal cell interactions in vitro.

  19. Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells.

    Science.gov (United States)

    Price, Mary A; Case, Scott S; Carbonaro, Denise A; Yu, Xiao-Jin; Petersen, Denise; Sabo, Kathleen M; Curran, Michael A; Engel, Barbara C; Margarian, Hovanes; Abkowitz, Janis L; Nolan, Garry P; Kohn, Donald B; Crooks, Gay M

    2002-11-01

    Vectors based on the feline immunodeficiency virus (FIV) have been developed as an alternative to those based on another lentivirus, human immunodeficiency virus-1 (HIV-1), because of theoretical safety advantages. We compared the efficiency of gene transfer and expression in human and feline hematopoietic progenitors using second-generation HIV-1 and FIV-based vectors. Vector pairs were tested using either human cytomegalovirus or murine phospho-glycerate kinase (PGK) internal promoters and were pseudotyped with the vesicular stomatitis virus G protein (VSV-G). Vector proviral copy numbers were similar in human and feline hematopoietic primary cells and cell lines transduced by HIV-1 or FIV vectors, demonstrating that both vectors are able to transfer genes efficiently to these cell types. HIV-1 vectors were well expressed in human primary hematopoietic cells and cell lines. However, transgene expression from FIV vectors was almost undetectable in human hematopoietic cells. In contrast, the FIV vector was expressed well in primary hematopoietic feline cells and human non-hematopoietic cells, demonstrating that low transgene expression from the FIV vector is a phenomenon specific to human hematopoietic cells. Northern blot analysis demonstrated decreased vector transcript levels in human CEM cells transduced with FIV relative to cells transduced with HIV-1, despite high vector copy numbers. No evidence of vector transcript instability was seen in studies of transduced CEM cells treated with actinomycin D. We conclude that FIV vectors can transfer genes into human hematopoietic cells as effectively as HIV-1 vectors, but that unknown elements in the current FIV backbone inhibit expression from FIV vectors in human hematopoietic cells.

  20. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  1. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: which way to go?

    Science.gov (United States)

    Mamidi, Murali Krishna; Dutta, Susmita; Bhonde, Ramesh; Das, Anjan Kumar; Pal, Rajarshi

    2014-12-01

    Stem cell transplantation is a generic term covering different techniques. However there is argument over the pros and cons of autologous and allogeneic transplants of mesenchymal stem cells (MSCs) for regenerative therapy. Given that the MSCs have already been proven to be safe in patients, we hypothesize that allogeneic transplantation could be more effective and cost-effective as compared to autologous transplantation specifically in older subjects who are the likely victims of degenerative diseases. This analysis is based on the scientific logic that allogeneic stem cells extracted in large numbers from young and healthy donors could be physiologically, metabolically and genetically more stable. Therefore stem cells from young donors may be expected to exhibit higher vigor in secreting trophic factors leading to activation of host tissue-specific stem cells and also be more efficient in remodeling the micro-environmental niche of damaged tissue.

  2. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    Science.gov (United States)

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD.

  3. Untested, unproven, and unethical: the promotion and provision of autologous stem cell therapies in Australia.

    Science.gov (United States)

    McLean, Alison K; Stewart, Cameron; Kerridge, Ian

    2015-02-09

    An increasing number of private clinics in Australia are marketing and providing autologous stem cell therapies to patients. Although advocates point to the importance of medical innovation and the primacy of patient choice, these arguments are unconvincing. First, it is a stark truth that these clinics are flourishing while the efficacy and safety of autologous stem cell therapies, outside of established indications for hematopioetic stem cell transplantation, are yet to be shown. Second, few of these therapies are offered within clinical trials. Third, patients with chronic and debilitating illnesses, who are often the ones who take up these therapies, incur significant financial burdens in the expectation of benefiting from these treatments. Finally, the provision of these stem cell therapies does not follow the established pathways for legitimate medical advancement. We argue that greater regulatory oversight and professional action are necessary to protect vulnerable patients and that at this time the provision of unproven stem cell therapies outside of clinical trials is unethical.

  4. Hematopoietic stem cells in neonates: any differences between very preterm and term neonates?

    Directory of Open Access Journals (Sweden)

    Lukas Wisgrill

    Full Text Available In the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs. Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood.CD34+ HSPC subsets in UCB of 30 preterm and 30 term infants were evaluated by flow cytometry. Clonogenic assays suitable for detection of the proliferative potential of HSPCs were conducted. Furthermore, we analyzed the clonogenic potential of isolated HSPCs according to the stem cell marker CD133 and aldehyde dehydrogenase (ALDH activity.Preterm cord blood contained a significantly higher concentration of circulating CD34+ HSPCs, especially primitive progenitors, than term cord blood. The clonogenic capacity of HSPCs was enhanced in preterm cord blood. Using univariate analysis, the number and clonogenic potential of circulating UCB HSPCs was influenced by gestational age, birth weight and maternal age. Multivariate analysis showed that main factors that significantly influenced the HSPC count were maternal age, gestational age and white blood cell count. Further, only gestational age significantly influenced the clonogenic potential of UCB HSPCs. Finally, isolated CD34+/CD133+, CD34+/CD133- and ALDH(high HSPC obtained from preterm cord blood showed a significantly higher clonogenic potential compared to term cord blood.We demonstrate that preterm cord blood exhibits a higher HSPC concentration and increased clonogenic capacity compared to term neonates. These data may imply an emerging use of HSPCs in autologous stem cell therapy in preterm neonates.

  5. Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Toh, Han Chong; Wang, Who-Whong; Chia, Whay Kuang

    2009-01-01

    PURPOSE: We evaluated the clinical benefit of an allogeneic melanoma cell lysate (MCL)-pulsed autologous dendritic cell (DC) vaccine in advanced colorectal cancer patients expressing at least one of six MAGE-A antigens overexpressed by the cell line source of the lysate. EXPERIMENTAL DESIGN: DCs ...

  6. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  7. Bone Niches, Hematopoietic Stem Cells, and Vessel Formation

    Directory of Open Access Journals (Sweden)

    Roberto Tamma

    2017-01-01

    Full Text Available Bone marrow (BM is a source of hematopoietic stem cells (HSCs. HSCs are localized in both the endosteum, in the so-called endosteal niche, and close to thin-walled and fenestrated sinusoidal vessel in the center of BM, in the so-called vascular niche. HSCs give rise to all types of mature blood cells through a process finely controlled by numerous signals emerging from the bone marrow niches where HSCs reside. This review will focus on the description of the role of BM niches in the control of the fate of HSCs and will also highlight the role of the BM niches in the regulation of vasculogenesis and angiogenesis. Moreover, alterations of the signals in niche microenvironment are involved in many aspects of tumor progression and vascularization and further knowledge could provide the basis for the development of new therapeutic strategies.

  8. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  9. Hematopoietic stem cell transplantation for severe combined immunodeficiency.

    Science.gov (United States)

    Hönig, M; Schulz, A; Friedrich, W

    2011-11-01

    Severe combined immunodeficiency (SCID) is a heterogeneous group of congenital diseases characterized by their presentation with life threatening infections in the first months of life. The clinical presentation and the therapeutic outcome is influenced by multiple factors: the genetic defect, infectious complications, the presence of maternal T cells the development of Omenn syndrome, as well as non-immunological signs and symptoms of the disease. Hematopoietic stem cell transplantation (HSCT) to date is the only established curative option and allows long-term cure of the disease. Therapeutic objectives of HSCT in SCID clearly differ from those in malignant or hematological disease. Disease specific aspects and their influence on the therapeutic strategy in SCID will be discussed in this review.

  10. Segmentation of occluded hematopoietic stem cells from tracking.

    Science.gov (United States)

    Mankowski, Walter C; Winter, Mark R; Wait, Eric; Lodder, Mels; Schumacher, Ton; Naik, Shalin H; Cohen, Andrew R

    2014-01-01

    Image sequences of live proliferating cells often contain visual ambiguities that are difficult even for human domain experts to resolve. Here we present a new approach to analyzing image sequences that capture the development of clones of hematopoietic stem cells (HSCs) from live cell time lapse microscopy. The HSCs cannot survive long term imaging unless they are cultured together with a secondary cell type, OP9 stromal cells. The HSCs frequently disappear under the OP9 cell layer, making segmentation difficult or impossible from a single image frame, even for a human domain expert. We have developed a new approach to the segmentation of HSCs that captures these occluded cells. Starting with an a priori segmentation that uses a Monte Carlo technique to estimate the number of cells in a clump of touching cells, we proceed to track and lineage the image data. Following user validation of the lineage information, an a posteriori resegmentation step utilizing tracking results delineates the HSCs occluded by the OP9 layer. Resegmentation has been applied to 3031 occluded segmentations from 77 tracks, correctly recovering over 84% of the occluded segmentations.

  11. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Tasken, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-02-24

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole bone marrow aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.Leukemia accepted article preview online, 24 February 2017. doi:10.1038/leu.2017.69.

  12. Acute Myeloid Leukemia Targeting by Myxoma Virus In Vivo Depends on Cell Binding But Not Permissiveness to Infection In Vitro

    OpenAIRE

    Madlambayan, Gerard J.; Bartee, Eric; Kim, Manbok; Rahman, Masmudur M.; Meacham, Amy; Scott, Edward W.; McFadden, Grant; Cogle, Christopher R.

    2012-01-01

    Some oncolytic viruses, such as myxoma virus (MYXV), can selectively target malignant hematopoietic cells, while sparing normal hematopoietic cells. This capacity for discrimination creates an opportunity to use oncolytic viruses as ex vivo purging agents of autologous hematopoietic cell grafts in patients with hematologic malignancies. However, the mechanisms by which oncolytic viruses select malignant hematopoietic cells are poorly understood. In this study, we investigated how MYXV specifi...

  13. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo.

    NARCIS (Netherlands)

    M.F.T.R. de Bruijn (Marella); N.A. Speck; M.C. Peeters (Marian); E.A. Dzierzak (Elaine)

    2000-01-01

    textabstractThe aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site within the mammalian embryo body, and the first place from which hematopoietic stem cells (HSCs) emerge. Within the complex embryonic vascular, excretory and reproductive tissues of the

  14. The Hematopoietic Differentiation and Production of Mature Myeloid Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Choi, Kyung-Dal; Vodyanik, Maxim; Slukvin, Igor I.

    2011-01-01

    Here we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin-CD34+CD43+CD45+ multipotent progenitors. The protocol is comprised of three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells, (ii) short-term expansion of multipotent myeloid progenitors with a high dose of GM-CSF, and ...

  15. NK cell subgroups, phenotype and functions after autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Benedikt eJacobs

    2015-11-01

    Full Text Available High-dose chemotherapy with consecutive autologous stem cell transplantation (autoSCT is a well-established treatment option for patients suffering from malignant lymphoma or multiple myeloma. Natural killer (NK cells are an important part of the immune surveillance, and their cell number after autoSCT is predictive for progression-free and overall survival. To improve knowledge about the role of NK cells after autoSCT, we investigated different NK cell subgroups, their phenotypes and their functions in patients treated with autoSCT. Directly after leukocyte regeneration (>1000 leukocytes/μl following autoSCT, CD56++ NK cells were the major NK cell subset. Surprisingly, these cells showed unusually high surface expression levels of CD57 and KIR compared to expression levels before or at later time points after autoSCT. Moreover, these NK cells strongly up-regulated KIR2DL2/3 and KIR3DL1, whereas KIR2DL1 remained constant, indicating that this cell population arose from more immature NK cells instead of from activated mature ones. Remarkably, NK cells were already able to degranulate and produce IFN-γ and MIP-1β upon tumor interaction early after leukocyte regeneration.In conclusion, we describe an unusual up-regulation of CD57 and KIRs on CD56++ NK cells shortly after autoSCT. Importantly, these NK cells were functionally competent upon tumor interaction at this early time point.

  16. File list: InP.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: InP.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: InP.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Input control Blood Hematopoietic Ste...hive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. File list: ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX026654,SRX029315,SRX751542,SRX100320,SRX097082,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  20. File list: Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  1. File list: ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX813531,SRX097081,SRX097084,SRX180945,SRX180946,SRX180947,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  2. File list: Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  3. File list: NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoietic stem...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  4. File list: InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  5. File list: InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  7. File list: ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX180940,SRX813531,SRX029315,SRX097082,SRX100320,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  8. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  9. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Madaric, Juraj, E-mail: jurmad@hotmail.com [National Institute of Cardiovascular Diseases (NUSCH) and Slovak Medical University, Department of Cardiology and Angiology (Slovakia); Klepanec, Andrej [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia); Mistrik, Martin [Clinic of Hematology and Transfusiology, Faculty Hospital (Slovakia); Altaner, Cestmir [Slovak Academy of Science, Institute of Experimental Oncology (Slovakia); Vulev, Ivan [National Institute of Cardiovascular Diseases, Department of Diagnostic and Interventional Radiology (Slovakia)

    2013-04-15

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  10. Autologous Skin Cell Spray for Massive Soft Tissue War Injuries: A Prospective, Case-Control, Multicenter Trial

    Science.gov (United States)

    2015-01-01

    AD______________ AWARD NUMBER: W81XWH-13-2-0031 TITLE: Autologous Skin Cell Spray for Massive Soft Tissue War Injuries: A Prospective, Case...DATES COVERED 15Mar2013-31Oct2014 4. TITLE AND SUBTITLE Autologous Skin Cell Spray for Massive Soft Tissue War Injuries: A Prospective, Case-Control...assess the success of skin cell spray combined with a biocomposite subcutaneous (INTEGRA) layer for repair of large open wounds. The objective is the

  11. Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells.

    Science.gov (United States)

    Patwardhan, R S; Sharma, Deepak; Checker, Rahul; Sandur, Santosh K

    2014-03-01

    Here we describe a novel strategy for mitigation of ionizing radiation-induced hematopoietic syndrome by suppressing the activity of MKP3, resulting in ERK activation and enhanced abundance of hematopoietic stem cells, using the antioxidant flavonoid baicalein (5,6,7-trihydroxyflavone). It offered complete protection to mouse splenic lymphocytes against radiation-induced cell death. Inhibitors of ERK and Nrf-2 could significantly abrogate baicalein-mediated radioprotection in lymphocytes. Baicalein inhibited phosphatase MKP3 and thereby enhanced phosphorylation of ERK and its downstream proteins such as Elk and Nrf-2. It also increased the nuclear levels of Nrf-2 and the mRNA levels of its dependent genes. Importantly, baicalein administration to mice before radiation exposure led to significant recovery of loss of bone marrow cellularity and also inhibited cell death. Administration of baicalein increased the hematopoietic stem cell frequency as measured by side-population assay and also by antibody staining. Further, baicalein offered significant protection against whole-body irradiation (WBI; 7.5Gy)-induced mortality in mice. Interestingly, we found that baicalein works by activating the same target molecules ERK and Nrf-2 both in vitro and in vivo. Finally, administration of all-trans-retinoic acid (inhibitor of Nrf-2) significantly abrogated baicalein-mediated protection against WBI-induced mortality in mice. Thus, in contrast to the generalized conception of antioxidants acting as radioprotectors, we provide a rationale that antioxidants exhibit pleiotropic effects through the activation of multiple cellular signaling pathways.

  12. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract

    Institute of Scientific and Technical Information of China (English)

    Wei Liang; Hui Wang; Tie-Mie Sun; Wen-Qing Yao; Li-Li Chen; Yu Jin; Chun-Ling Li; Fan-Juan Meng

    2003-01-01

    AIM: To treat patients with stage Ⅰ-Ⅳ malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect.METHODS: 335 patients with malignant tumors of digestive tract were treated with autologous tumor cell vaccine and NDV vaccine. The autologous tumor cell vaccine were assigned for long-term survival observation. While these failed to obtain the autologous tumor tissue were given with NDV vaccine for a short-term observation on curative effect.RESULTS: The colorectal cancer patients treated with autologous tumor cell vaccine were divided into two groups:the controlled group (subjected to resection alone) (n=257),the vaccine group (subjected to both resection and immunotherapy) (n=310). 25 patients treated with NDV immunotherapy were all at stage Ⅳ without having resection.In postoperation adjuvant therapy patients, the 5, 6 and 7-year survival rates were 66.51%, 60.52 %, 56.50 %respectively; whereas in patients with resection alone, only 45.57 %, 44.76 % and 43.42 % respectively. The average survival period was 5.13 years (resection alone group 4.15years), the median survival period was over 7 years (resection alone group 4.46 years). There were significant differences between the two groups. The patients treated with resection plus vaccine were measured delayed-type hypersensitivity (DTH) reactions after vaccination, (indurative scope >5 mm).The magnitude of DTH was related to the prognosis. The 5-year survival rate was 80 % for those with indurations greater than 5 mm, compared with 30 % for those with indurations less than 5 mm. The 1-year survival rate was 96 % for 25patients treated with NDV immunotherapy. The total effective rate (CR+PR) was 24.00 % in NDV immunotherapy; complete remission (CR) in 1 case (4.00 %), partial remission (PR) in 5 cases (20.00 %), stabilizedin in 16 cases (64.00 %),progression (PD) in 1 case (4.00 %). After NDV vaccine

  13. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    Science.gov (United States)

    Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard

    2016-01-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700

  14. Placenta as a source of hematopoietic stem cells

    OpenAIRE

    Dzierzak, Elaine; Robin, Catherine

    2010-01-01

    The placenta is a large, highly vascularised hematopoietic tissue that functions during the embryonic and foetal development of eutherian mammals. Although recognised as the interface tissue important in the exchange of oxygen, nutrients and waste products between the foetus and mother, the placenta has increasingly become a focus of research concerning the ontogeny of the blood system. Here, we describe recent data showing the intrinsic hematopoietic potential and appearance of hematopoietic...

  15. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    Science.gov (United States)

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  16. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Hande H Tuncer; Naveed Rana; Cannon Milani; Angela Darko; Samer A Al-Homsi

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years.The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities,infections,bleeding,sinusoidal obstruction syndrome,acute and chronic graftversus-host disease (GVHD) as well as other long-term problems.The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented.Transplant clinicians,however,continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants,expanding transplant indications and age-limit.This review describes the most commonly seen transplant related complications,focusing on their pathogenesis,differential diagnosis and management.

  17. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  18. Hematopoietic stem cell transplantation for primary immunodeficiency diseases.

    Science.gov (United States)

    Slatter, Mary A; Cant, Andrew J

    2011-11-01

    Hematopoietic stem cell transplantation (HSCT) is now highly successfully curing a widening range of primary immunodeficiencies (PIDs). Better tissue typing, matching of donors, less toxic chemotherapy, better virus detection and treatment, improved supportive care, and graft-versus-host disease prophylaxis mean up to a 90% cure for severe combined immunodeficiency patients and a 70-80% cure for other PIDs given a matched unrelated donor, and rising to 95% for young patients with specific PIDs, such as Wiskott-Aldrich syndrome. Precise molecular diagnosis, detailed data on prognosis, and careful pre-HSCT assessment of infective lung and liver damage will ensure an informed benefit analysis of HSCT and the best outcome. It is now recognized that the best treatment option for chronic granulomatous disease is HSCT, which can also be curative for CD40 ligand deficiency and complex immune dysregulation disorders.

  19. Expression of human adenosine deaminase in murine hematopoietic cells.

    Science.gov (United States)

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  20. Parental caregiving of children prior to hematopoietic stem cell transplant.

    Science.gov (United States)

    Rodday, Angie Mae; Pedowitz, Elizabeth J; Mayer, Deborah K; Ratichek, Sara J; Given, Charles W; Parsons, Susan K

    2012-08-01

    Using the Caregiver Reaction Assessment (CRA), we assessed positive reactions and burdens of the caregiving experience among parental caregivers (n = 189) of children scheduled to undergo hematopoietic stem cell transplant. Although widely used in non-parental caregivers, the CRA has not been used in parents of pediatric patients. Reliability (Cronbach's alpha: .72-.81 vs. .63) and concurrent validity (correlation: .41-.61 vs. .28) were higher for negatively framed than positively framed subscales. Results indicate that the caregiving experience is complex. The parents experienced high caregiver's esteem and moderate family support, but also negative impacts on finances and schedule, and to a lesser degree, health. Compared to non-parental caregivers, parental caregivers experienced higher esteem and more impact on finances and schedule.

  1. Gastrointestinal Complications Following Hematopoietic Stem Cell Transplantation in Children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hye; Lim, Gye Yeon; Im, Soo Ah; Chung, Nak Gyun; Hahn, Seung Tae [St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2008-10-15

    Gastrointestinal system involvement is one of the principal complications seen in the recipients of hematopoietic stem cell transplantation (HSCT), and it is also a major cause of morbidity and death in these patients. The major gastrointestinal complications include typhlitis (neutropenic enterocolitis), pseudomembranous enterocolitis, viral enteritis, graft-versus-host disease, benign pneumatosis intestinalis, intestinal thrombotic microangiopathy, and post-transplantation lymphoproliferative disease. As these patients present with nonspecific abdominal symptoms, evaluation with using such imaging modalities as ultrasonography and CT is essential in order to assess the extent of gastrointestinal involvement and to diagnose these complications. We present here a pictorial review of the imaging features and other factors involved in the diagnosis of these gastrointestinal complications in pediatric HSCT recipients.

  2. Sexual health in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S M; Shaw, Bronwen E; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S; Savani, Bipin N; Rovó, Alicia

    2015-12-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT.

  3. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  4. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  5. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  6. The LMO2 oncogene regulates DNA replication in hematopoietic cells.

    Science.gov (United States)

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F T; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, El Bachir; Verreault, Alain; Hoang, Trang

    2016-02-02

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.

  7. Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model.

    Directory of Open Access Journals (Sweden)

    Michelle Escobedo-Cousin

    Full Text Available Cord blood (CB is increasingly used as a source of hematopoietic stem cells (HSC for transplantation. Low incidence and severity of graft-versus-host disease (GvHD and a robust graft-versus-leukemia (GvL effect are observed following CB transplantation (CBT. However, its main disadvantages are a limited number of HSC per unit, delayed immune reconstitution and a higher incidence of infection. Unmanipulated grafts contain accessory cells that may facilitate HSC engraftment. Therefore, the effects of accessory cells, particularly natural killer (NK cells, on human CB HSC (CBSC functions were assessed in vitro and in vivo. CBSC cultured with autologous CB NK cells showed higher levels of CXCR4 expression, a higher migration index and a higher number of colony forming units (CFU after short-term and long-term cultures. We found that CBSC secreted CXCL9 following interaction with CB NK cells. In addition, recombinant CXCL9 increased CBSC clonogenicity, recapitulating the effect observed of CB NK cells on CBSC. Moreover, the co-infusion of CBSC with CB NK cells led to a higher level of CBSC engraftment in NSG mouse model. The results presented in this work offer the basis for an alternative approach to enhance HSC engraftment that could improve the outcome of CBT.

  8. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.

  9. Epo and non-hematopoietic cells: what do we know?

    Science.gov (United States)

    Ogunshola, Omolara O; Bogdanova, Anna Yu

    2013-01-01

    The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured

  10. Brief Report: Efficient Generation of Hematopoietic Precursors and Progenitors from Human Pluripotent Stem Cell Lines

    Science.gov (United States)

    Woods, Niels-Bjarne; Parker, Aaron S.; Moraghebi, Roksana; Lutz, Margaret K.; Firth, Amy L.; Brennand, Kristen J.; Berggren, W. Travis; Raya, Angel; Izpisúa Belmonte, Juan Carlos; Gage, Fred H.; Verma, Inder M.

    2012-01-01

    By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD341 and CD45+/CD341/CD38− hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD341) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability. PMID:21544903

  11. Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines.

    Science.gov (United States)

    Woods, Niels-Bjarne; Parker, Aaron S; Moraghebi, Roksana; Lutz, Margaret K; Firth, Amy L; Brennand, Kristen J; Berggren, W Travis; Raya, Angel; Izpisúa Belmonte, Juan Carlos; Gage, Fred H; Verma, Inder M

    2011-07-01

    By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.

  12. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    Directory of Open Access Journals (Sweden)

    Olivier Féraud

    Full Text Available Hematopoiesis generated from human embryonic stem cells (ES and induced pluripotent stem cells (iPS are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  13. Stroma-conditioned media improve expansion of human primitive hematopoietic stem cells and progenitor cells.

    Science.gov (United States)

    Breems, D A; Blokland, E A; Ploemacher, R E

    1997-01-01

    It has been reported that stroma-dependent cultures support proliferation of hematopoietic stem cells (HSC). In order to investigate the effect of soluble stromal factors, we developed short-term serum-low liquid cultures in which the effect of stroma-conditioned media (SCM) from the murine FBMD-1, and human L87/4 and L88/5 cell lines was studied on the maintenance and expansion of various human HSC subsets in CD34-positive selected mobilized peripheral blood stem cells (PBSC) from autologous transplants of lymphoma and multiple myeloma patients. The human cobblestone area forming cell (CAFC) assay was employed to determine the frequencies of both the CAFC weeks 2 to 4 as tentative indicators of progenitor and transiently repopulating HSC, and the more primitive CAFC weeks 6 to 8 as indicators of long-term repopulating HSC. In 7-day liquid cultures containing interleukin-3 (IL-3), stem cell factor (SCF) and IL-6, we recovered 3.0-fold more colony-forming cells (CFC) and 1.7- to 1.9-fold more CAFC weeks 2 and 4. The absolute number of primitive CAFC weeks 6 and 8 were only maintained (1.1- to 1.4-fold) in these liquid cultures. This modest expansion was significantly improved by the addition of SCM from the FBMD-1, L87/4 or L88/5 cell lines. Output CFC numbers were 6.8-, 5.8- and 9.9-fold higher, respectively, than the input values, while absolute CAFC week 2 to 4 numbers were 4.5-, 10.2- and 10.2-fold expanded, respectively. The addition of SCM also improved expansion of the more primitive CAFC week 6 to 8 stem cell subsets by 2.2-, 4.5- and 4.9-fold, respectively. The addition of granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), IL-1beta, IL-11 or macrophage inflammatory protein-1alpha to cultures containing IL-3, SCF and IL-6 could not explain the SCM effect and in all these combinations SCM addition further increased the recovery of HSC subsets. Similarly, addition of anti-cytokine antibodies (ie alpha-G-CSF, alpha-GM-CSF, alpha

  14. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: A pilot study

    Directory of Open Access Journals (Sweden)

    Sudesh Prabhakar

    2012-01-01

    Full Text Available Background: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with no effective treatment. Stem cell therapy may be one of the promising treatment options for such patients. Aim: To assess the feasibility, efficacy and safety of autologous bone marrow-derived stem cells in patients of ALS. Settings and Design: We conducted an open-label pilot study of autologous bone marrow-derived stem cells in patients with ALS attending the Neurology Clinic of a tertiary care referral centre. Materials and Methods: Ten patients with ALS with mean revised ALS Functional Rating Scale (ALSFRS-R score of 30.2 (± 10.58 at baseline received intrathecal autologous bone marrow-derived stem cells. Primary end point was improvement in the ALSFRS-R score at 90, 180, 270 and 365 days post therapy. Secondary endpoints included ALSFRS-R subscores, time to 4-point deterioration, median survival and reported adverse events. Paired t-test was used to compare changes in ALSFRS-R from baseline and Kaplan-Meier analysis was used for survival calculations. Results: There was no significant deterioration in ALSFRS-R composite score from baseline at one-year follow-up (P=0.090. The median survival post procedure was 18.0 months and median time to 4-point deterioration was 16.7 months. No significant adverse events were reported. Conclusion: Autologous bone marrow-derived stem cell therapy is safe and feasible in patients of ALS. Short-term follow-up of ALSFRS-R scores suggests a trend towards stabilization of disease. However, the benefit needs to be confirmed in the long-term follow-up period.

  15. Manipulation of hematopoietic stem cells for regenerative medicine.

    Science.gov (United States)

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Iwama, Atsushi

    2014-01-01

    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC-based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small-molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved.

  16. Hematopoietic stem cells, overview and pathways implied on their self-renewal mechanisms

    OpenAIRE

    2010-01-01

    Blood tissue is composed approximately in 45% by cells and its derivatives, with a life span of around 120 days for erythrocytes and 3 years for certain type of lymphocytes. This lost is compensated with the hematopoietic system activity and the presence of an immature primitive cell population known as Hematopoietic Stem Cells (HSCs) which perform the hematopoiesis, a process that is active from the beginning of the fetal life and produces near to 2 x 1011 eritrocytes and 1010 white blood ce...

  17. T-cell-replete haploidentical transplantation versus autologous stem cell transplantation in adult acute leukemia: a matched pair analysis.

    Science.gov (United States)

    Gorin, Norbert-Claude; Labopin, Myriam; Piemontese, Simona; Arcese, William; Santarone, Stella; Huang, He; Meloni, Giovanna; Ferrara, Felicetto; Beelen, Dietrich; Sanz, Miguel; Bacigalupo, Andrea; Ciceri, Fabio; Mailhol, Audrey; Nagler, Arnon; Mohty, Mohamad

    2015-04-01

    Adult patients with acute leukemia in need of a transplant but without a genoidentical donor are usually considered upfront for transplantation with stem cells from any other allogeneic source, rather than autologous stem cell transplantation. We used data from the European Society for Blood and Marrow Transplantation and performed a matched pair analysis on 188 T-cell-replete haploidentical and 356 autologous transplants done from January 2007 to December 2012, using age, diagnosis, disease status, cytogenetics, and interval from diagnosis to transplant as matching factors. "Haploidentical expert" centers were defined as having reported more than five haploidentical transplants for acute leukemia (median value for the study period). The median follow-up was 28 months. Multivariate analyses, including type of transplant categorized into three classes ("haploidentical regular", "haploidentical expert" and autologous), conditioning intensity (reduced intensity versus myeloablative conditioning) and the random effect taking into account associations related to matching, showed that non-relapse mortality was higher following haploidentical transplants in expert (HR: 4.7; P=0.00004) and regular (HR: 8.98; Ptransplants was lower in expert centers (HR:0.39; P=0.0003) but in regular centers was similar to that for autologous transplants. Leukemia-free survival and overall survival rates were higher following autologous transplantation than haploidentical transplants in regular centers (HR: 1.63; P=0.008 and HR: 2.31; P=0.0002 respectively) but similar to those following haploidentical transplants in expert centers. We conclude that autologous stem cell transplantation should presently be considered as a possible alternative to haploidentical transplantation in regular centers that have not developed a specific expert program.

  18. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    Science.gov (United States)

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  19. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  20. Cytomegalovirus Reactivation in Adult Recipients of Autologous Stem Cell Transplantation: a Single Center Experience

    OpenAIRE

    Al-Rawi, Omar; Abdel-Rahman, Fawzi; Al-Najjar, Rula; Abu-Jazar, Husam; Salam, Mourad; Saad, Mustafa

    2015-01-01

    Introduction Cytomegalovirus (CMV) reactivation and infection are well-recognized complications after allogeneic stem cell transplantation (SCT). Only a few studies have addressed CMV reactivation after autologous SCT (ASCT). Methods We retrospectively reviewed medical records of 210 adult patients who underwent ASCT for lymphoma or multiple myeloma (MM) at a single center from January 1st, 2007 until December 31st, 2012. All patients were monitored weekly with CMV antigenemia test till day 4...

  1. IT-24DEVELOPMENT OF A NOVEL AUTOLOGOUS DENDRITIC CELL / ALLOGENEIC GLIOBLASTOMA LYSATE VACCINE PROTOCOL

    OpenAIRE

    Parney, Ian; Peterson, Timothy; Gustafson, Michael; Dietz, Allan

    2014-01-01

    BACKGROUND: Dendritic cell (DC) vaccines for glioblastoma (GBM) are promising but significant conceptual shortcomings may have limited their clinical efficacy. First, most trials have not employed optimal DC culture techniques resulting in large numbers of immature (immunosuppressive) DC's. Second, most have used autologous tumor lysate. While highly personalized, this limits vaccine availability and precludes antigen-specific response testing. Finally, GBM-mediated immunosuppression has been...

  2. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  3. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices.

    Science.gov (United States)

    De Filippo, Roger E; Kornitzer, Benjamin S; Yoo, James J; Atala, Anthony

    2015-03-01

    Acellular collagen matrices have been used as an onlay material for urethral reconstruction. However, cell-seeded matrices have been recommended for tubularized urethral repairs. In this study we investigated whether long segmental penile urethral replacement using autologous cell-seeded tubularized collagen-based matrix is feasible. Autologous bladder epithelial and smooth muscle cells from nine male rabbits were grown and seeded onto preconfigured tubular matrices constructed from decellularized bladder matrices obtained from lamina propria. The entire anterior penile urethra was resected in 15 rabbits. Urethroplasties were performed with tubularized matrices seeded with cells in nine animals, and with matrices without cells in six. Serial urethrograms were performed at 1, 3 and 6 months. Retrieved urethral tissues were analysed using histo- and immunohistochemistry, western blot analyses and organ bath studies. The urethrograms showed that animals implanted with cell-seeded matrices maintained a wide urethral calibre without strictures. In contrast, the urethras with unseeded scaffolds collapsed and developed strictures. Histologically, a transitional cell layer surrounded by muscle was observed in the cell-seeded constructs. The epithelial and smooth muscle phenotypes were confirmed with AE1/AE3 and α-actin antibodies. Organ bath studies of the neourethras confirmed both physiological contractility and the presence of neurotransmitters. Tubularized collagen matrices seeded with autologous cells can be used successfully for long segmental penile urethra replacement, while implantation of tubularized collagen matrices without cells leads to poor tissue development and stricture formation. The cell-seeded collagen matrices are able to form new tissue, which is histologically similar to native urethra.

  4. Subclinical hypothyroidism in children and adolescents after hematopoietic stem cells transplantation without irradiation

    Directory of Open Access Journals (Sweden)

    Milenković Tatjana

    2014-01-01

    Full Text Available Background/Aim. Although total body irradiation (TBI was considered to be the primary cause of thyroid dysfunction following hematopoietic stem cells transplantation (HSCT, a significant prevalence of subclinical hypothyroidism after HSCT with chemotherapy-only conditioning regimens has been observed in several studies. The aim of this study was to assess changes in thyroid stimulating hormone (TSH levels in children after HSCT, without the use of irradiation at any time in the course of the treatment. Methods. Our cohort consisted of 41 children and adolescents who underwent autologous or allogeneic HSCT and were available for follow-up for at least one year after transplantation. Irradiation was not performed in any of the subjects, neither during pretransplatation therapy, nor during conditioning. The median duration of follow-up was 2.9 years. The indications for HSCT were hematologic malignancy (41.5%, solid malignant tumor (34.1%, and other disorders (24.4%. The thyroid status of all the subjects was assessed prior to HSCT and after follow-up period. Results. Thyroid dysfunction after HSCT was present in 27 (65.8% subjects. Subclinical hypothyroidism was the most common abnormality, presenting in 23 (56.1% patients, primary hypothyroidism was present in one (2.4% patient, while 3 (7.3% subjects had low free T4 with normal TSH values. Significantly (p < 0.01 higher elevations in TSH levels were present in the patients who received chemotherapy for the underlying disease prior to HSCT. Conclusion. Our findings emphasize the need for long-term monitoring of thyroid function following HSCT, regardless of whether or not irradiation was used.

  5. Late Effects Surveillance Recommendations among Survivors of Childhood Hematopoietic Cell Transplantation: A Children's Oncology Group Report.

    Science.gov (United States)

    Chow, Eric J; Anderson, Lynnette; Baker, K Scott; Bhatia, Smita; Guilcher, Gregory M T; Huang, Jennifer T; Pelletier, Wendy; Perkins, Joanna L; Rivard, Linda S; Schechter, Tal; Shah, Ami J; Wilson, Karla D; Wong, Kenneth; Grewal, Satkiran S; Armenian, Saro H; Meacham, Lillian R; Mulrooney, Daniel A; Castellino, Sharon M

    2016-05-01

    Hematopoietic cell transplantation (HCT) is an important curative treatment for children with high-risk hematologic malignancies, solid tumors, and, increasingly, nonmalignant diseases. Given improvements in care, there are a growing number of long-term survivors of pediatric HCT. Compared with childhood cancer survivors who did not undergo transplantation, HCT survivors have a substantially increased burden of serious chronic conditions and impairments involving virtually every organ system and overall quality of life. This likely reflects the joint contributions of pretransplantation treatment exposures and organ dysfunction, the transplantation conditioning regimen, and any post-transplantation graft-versus-host disease (GVHD). In response, the Children's Oncology Group (COG) has created long-term follow-up guidelines (www.survivorshipguidelines.org) for survivors of childhood, adolescent, and young adult cancer, including those who were treated with HCT. Guideline task forces, consisting of HCT specialists, other pediatric oncologists, radiation oncologists, organ-specific subspecialists, nurses, social workers, other health care professionals, and patient advocates systematically reviewed the literature with regards to late effects after childhood cancer and HCT since 2002, with the most recent review completed in 2013. For the most recent review cycle, over 800 articles from the medical literature relevant to childhood cancer and HCT survivorship were reviewed, including 586 original research articles. Provided herein is an organ system-based overview that emphasizes the most relevant COG recommendations (with accompanying evidence grade) for the long-term follow-up care of childhood HCT survivors (regardless of current age) based on a rigorous review of the available evidence. These recommendations cover both autologous and allogeneic HCT survivors, those who underwent transplantation for nonmalignant diseases, and those with a history of chronic GVHD.

  6. The Changing Epidemiology of Bloodstream Infections and Resistance in Hematopoietic Stem Cell Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Mücahit Yemişen

    2016-08-01

    Full Text Available Objective: Patients receiving hematopoietic stem cell transplantation (HSCT are exposed to highly immunosuppressive conditions and bloodstream infections (BSIs are one of the most common major complications within this period. Our aim, in this study, was to evaluate the epidemiology of BSIs in these patients retrospectively. Materials and Methods: The epidemiological properties of 312 patients with HSCT were retrospectively evaluated. Results: A total of 312 patients, followed between 2000 and 2011, who underwent autologous (62% and allogeneic (38% HSCT were included in the study. The most common underlying malignancies were multiple myeloma (28% and Hodgkin lymphoma (21.5%. A total of 142 (45% patients developed at least 1 episode of BSI and 193 separate pathogens were isolated from the blood cultures. There was a trend of increase in the numbers of BSIs in 2005-2008 and a relative increase in the proportion of gram-positive infections in recent years (2009-2011, and central venous catheter-related BSI was found to be most common source. Coagulase-negative staphylococci (49.2% and Acinetobacter baumannii (8.8% were the most common pathogens. Extended-spectrum beta-lactamase-producing strains were 23% and 22% among Escherichia coli and Klebsiella spp. isolates, respectively. Quinolone resistance was detected in 10% of Enterobacteriaceae. Resistance to carbapenems was not detected in Enterobacteriaceae, while it was seen at 11.1% and 23.5% in Pseudomonas and Acinetobacter strains, respectively. Conclusion: A shift was detected from gram-negative bacteria to gram-positive in the etiology over the years and central lines were the most common sources of BSIs.

  7. Admission of hematopoietic cell transplantation patients to the intensive care unit at the Pontificia Universidad Católica de Chile Hospital.

    Science.gov (United States)

    Escobar, Karen; Rojas, Patricio; Ernst, Daniel; Bertin, Pablo; Nervi, Bruno; Jara, Veronica; Garcia, Maria Jose; Ocqueteau, Mauricio; Sarmiento, Mauricio; Ramirez, Pablo

    2015-01-01

    Patients undergoing hematopoietic cell transplantation (HCT) can have complications that require management in the intensive care unit (ICU). We conducted a retrospective study of patients undergoing HCT between 2007 and 2011 with admission to the ICU. We analyzed 97 patients, with an average age of 37 (range, 15 to 68). The main indications for HCT were hematologic malignancies (84%, n = 82). Ninety percent (n = 87) received myeloablative conditioning. Thirty-one percent were admitted (autologous transplant recipients 15%, allogeneic transplant recipients 34%, and umbilical cord blood [UCB] transplant recipients 48%) with an average length of stay of 19 days (range, 1 to 73 days). The average time between transplantation and transfer was 15 days. The main causes of admission were acute respiratory failure (63%) and septic shock (20%). ICU mortality was 20% for autologous transplantations and 64% for allogeneic transplantations (adult donor and UCB combined). On average, patients died 108 days after the transplantation (range, 4 to 320 days). One-year overall survival, comparing patients entering the ICU with those never admitted, was 16% versus 82% (P < .0001) for allogeneic transplantations (adult donor and UCB combined) and 80% versus 89% (P = not significant) for autologous transplantations. Acute graft-versus-host disease was significantly associated with death in ICU after UCB HCT. ICU support is satisfactory in about one half of patients admitted, characterized by a short and medium term prognosis not as unfavorable as has been previously reported.

  8. Allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia:a report of 12 patients

    Institute of Scientific and Technical Information of China (English)

    孙于谦

    2013-01-01

    Objective To retrospectively review the efficacy of allogeneic hematopoietic stem cell transplantation(allo-HSCT)for chronic myelomonocytic leukemia(CMML).Methods The engraftment,graft versus host disease(GVHD)

  9. Myositis in Griscelli syndrome type 2 treated with hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Born, Alfred Peter; Müller, Klaus; Marquart, Hanne Vibeke;

    2010-01-01

    and elevated plasma creatine kinase. Muscle biopsy showed massive inflammatory changes in some fascicles, while other fascicles were relatively spared. Clinical symptoms and biopsy changes resolved after immunosuppression and allogeneic hematopoietic cell transplantation. Our results suggest that muscle...

  10. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  11. Mammalian target of rapamycin activity is required for expansion of CD34(+) hematopoietic progenitor cells

    NARCIS (Netherlands)

    Geest, Christian R.; Zwartkruis, Fried J.; Vellenga, Edo; Coffer, Paul J.; Buitenhuis, Miranda

    2009-01-01

    Background The mammalian target of rapamycin is a conserved protein kinase known to regulate protein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of rapamycin activity has been observed in hematopoietic malignancies, including acute leukemias and myelodysplastic sy

  12. Mammalian target of rapamycin activity is required for expansion of CD34+ hematopoietic progenitor cells

    NARCIS (Netherlands)

    Geest, C.R.; Zwartkruis, G.J.T.; Vellenga, E.; Coffer, P.J.; Buitenhuis, M.

    2009-01-01

    Background The mammalian target of rapamycin is a conserved protein kinase known to regulate protein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of rapamycin activity has been observed in hematopoietic malignancies, including acute leukemias and myelodysplastic sy

  13. Infection Rates among Acute Leukemia Patients Receiving Alternative Donor Hematopoietic Cell Transplantation

    NARCIS (Netherlands)

    Ballen, Karen; Woo Ahn, Kwang; Chen, Min; Abdel-Azim, Hisham; Ahmed, Ibrahim; Aljurf, Mahmoud; Antin, Joseph; Bhatt, Ami S; Boeckh, Michael; Chen, George; Dandoy, Christopher; George, Biju; Laughlin, Mary J; Lazarus, Hillard M; MacMillan, Margaret L; Margolis, David A; Marks, David I; Norkin, Maxim; Rosenthal, Joseph; Saad, Ayman; Savani, Bipin; Schouten, Harry C; Storek, Jan; Szabolcs, Paul; Ustun, Celalettin; Verneris, Michael R; Waller, Edmund K; Weisdorf, Daniel J; Williams, Kirsten M; Wingard, John R; Wirk, Baldeep; Wolfs, Tom; Young, Jo-Anne H; Auletta, Jeffrey; Komanduri, Krishna V; Lindemans, Caroline; Riches, Marcie L

    2016-01-01

    Alternative graft sources (umbilical cord blood [UCB], matched unrelated donors [MUD], or mismatched unrelated donors [MMUD]) enable patients without a matched sibling donor to receive potentially curative hematopoietic cell transplantation (HCT). Retrospective studies demonstrate comparable outcome

  14. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Science.gov (United States)

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  15. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans.

  16. The treatment of diffuse cutaneous systemic sclerosis with autologous hemopoietic stem cells transplantation (HSCT: our experience on 2 cases

    Directory of Open Access Journals (Sweden)

    A. Tyndall

    2011-09-01

    Full Text Available Objectives: Autologous hematopoietic stem cell transplantation (HSCT is a treatment option which may be considered for severe diffuse cutaneous systemic sclerosis (dcSSc patients not responding to cyclophophamide (CY. We present two cases of dcSSc not responding to CY >10 g who were successfully treated with HSCT. Patients and methods: Two dcSSc patients were unresponsive to monthly i.v. pulse of CYC (0.75 g m2. Both patients had significant reduction of DLCO and mild-moderate pulmonary hypertension and HSCT was considered due to the rapid progression of the disease. Following informed consent and ethics committee approval, HSCT was performed. Mobilisation was performed with CY 4g/m2 and recombinant human granulocyte colony stimulating factor (rHu GCSF followed by a successful apheresis (CD34+ cells, >7X106. Conditioning regimens were: CY 100mg/kg body weight plus thiotepa 10 mg/ kg in the first patient and CY 200 mg/kg in the second. Both graft products were CD34 selected. No arrythmias occurred during the procedure and no other severe side effects were observed during hospitalisation. Results: Follow up: Patients underwent a monthly follow up with physical examination, pulmonary function tests and echocardiography every 3 months. Chest CT has been performed 6 months post transplantation. The following was observed: skin score (from 40 to 10 for the first patient and from 38 to 12 for the second one, LVEF and pulmonary function remained stable, PAP decreased from 45 mmHg to 35 mmHg and from 40 to 32 mmHg. No late complications or cardiac toxicity was observed. Conclusion: These two dcSSc cases demonstrate that HSCT may be successfully performed without serious side effects in cases in whom despite a cumulative CY dose was ineffective. This suggests an “immunological threshold” effect which may be exploited in other severe, therapy refractory autoimmune cases.

  17. [Selection of retroviral vector producing cell lines and gene transfer into hematopoietic cells].

    Science.gov (United States)

    Bagnis, C; Mannoni, P

    1996-04-01

    Transduction and expression of a transgene in hematopoietic stem cells with retroviral vectors still remain major challenges for gene therapy in blood disorders. Use of an easily detectable gene marker, such as the nlsLacZ, at the laboratory and clinical levels, provides a powerful approach of these two combined problems.

  18. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  19. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja;

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...... compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential....

  20. Autologous mesenchymal stem cells transplantation in adriamycin-induced cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Geng-shan; LI Guo-cao; ZHOU Qing; LI Wen-qiang; XU Hong-xin

    2005-01-01

    @@ Recent studies have suggested benefits of mesenchymal stem cells (MSCs) transplantation for the regeneration of cardiac tissue and function improvement of regionally infracted myocardium, but its effects on global heart failure is still little known. This study suggested the capacity of MSCs to transdifferentiate to cardiac cells in a nonischemic cardiomyopathic setting, and the effect of the cells on heart function.

  1. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mondal Debasis

    2011-01-01

    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  2. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  3. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V...... activity selectively induces surface expression of Hsp70 on hematopoietic cancer cells and that this may increase immunorecognition of these cells.......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...

  4. Brazilian experience using high-dose sequential therapy (HDS followed by autologous hematopoietic stem cell transplantation (ASCT for malignant lymphomas Experiência brasileira utilizando terapia sequencial de alta dose seguido de transplante autólogo de célula-tronco hematopoética para linfomas malignos

    Directory of Open Access Journals (Sweden)

    Cármino A. de Souza

    2009-08-01

    Full Text Available Using the overall survival (OS, disease free survival (DFS and progression free survival (PFS, as well as associated toxicity, the purpose of this work was to evaluate the effectiveness of HDS followed by ASCT as salvage therapy. A retrospective analysis was performed of 106 patients with high grade non-Hodgkin lymphoma receiving HDS followed by ASCT, between 1998 and 2006. Median age was 45 years (Range: 8-65, with 66 (62% men. Histopathological classification was: 78% DLBCL patients, 12% T and anaplastic and 9% Mantle cell lymphomas; 87% had B cell and 12% T cell lymphomas; 83% were stage III-IV (Ann Arbor Staging, 63% had B symptoms, 32% had bone marrow involvement, 62% bulky disease and 42% high-intermediate or high risk IPI. After HDCY, 9 patients died, 7 from toxicity and 2 from sepsis. Eighty patients underwent ASCT, 47% were in complete remission (CR and 15% died, all from toxicity. Their OS was 45% over 8 years. During the follow-up, another 35 patients died [4 CR, 1 partial response (PR, 2 relapsed disease (RD and 28 disease progression (DP], 11 (31% had not performed ASCT. OS was 37%; DFS was 49% and PFS 28%. OS by diagnosis was 42% for DLBCL, 40% for T-cell (8 y and 20% for Mantle Cell (6 y (P=NS. OS by B symptom patients was 22% vs. 58% (P=0.002 and PFS was 23% vs. 37% (P=0.03. Patients who achieved CR after HDCY (38 had significantly better OS and PFS (38% and 17% than patients who remained in DP (PA proposta deste trabalho foi avaliar a eficácia da HDS seguida do transplante autólogo como terapia de salvamento através da sobrevida global, livre de doença e livre de progressão bem como sua toxicidade. Realizou-se estudo retrospectivo com 106 pacientes com LNH de alto grau de malignidade entre 1998 e 2006. A mediana de idade foi 45 anos (8-65; 62% homens; DLBCL, 78%; 12%, T e anaplásico e 9%, linfoma da zona do manto; 87%, células B; 83% estádios III-IV; 63% com sintomas B; 32% com infiltração da medula óssea ao diagn

  5. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  6. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  7. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  8. A question of ethics: selling autologous stem cell therapies flaunts professional standards.

    Science.gov (United States)

    Munsie, Megan; Hyun, Insoo

    2014-11-01

    The idea that the body's own stem cells could act as a repair kit for many conditions, including cardiac repair, underpins regenerative medicine. While progress is being made, with hundreds of clinical trials underway to evaluate possible autologous cell-based therapies, some patients and physicians are not prepared to wait and are pursuing treatments without evidence that the proposed treatments are effective, or even safe. This article explores the inherent tension between patients, practitioners and the need to regulate the development and commercialization of new cellular therapies--even when the cells come from the patient.

  9. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  10. Histone acetyltransferase cofactor Trrap is essential for maintaining the hematopoietic stem/progenitor cell pool.

    Science.gov (United States)

    Loizou, Joanna I; Oser, Gabriela; Shukla, Vivek; Sawan, Carla; Murr, Rabih; Wang, Zhao-Qi; Trumpp, Andreas; Herceg, Zdenko

    2009-11-15

    The pool of hematopoietic stem/progenitor cells, which provide life-long reconstitution of all hematopoietic lineages, is tightly controlled and regulated by self-renewal and apoptosis. Histone modifiers and chromatin states are believed to govern establishment, maintenance, and propagation of distinct patterns of gene expression in stem cells, however the underlying mechanism remains poorly understood. In this study, we identified a role for the histone acetytransferase cofactor Trrap in the maintenance of hematopietic stem/progenitor cells. Conditional deletion of the Trrap gene in mice resulted in ablation of bone marrow and increased lethality. This was due to the depletion of early hematopoietic progenitors, including hematopoietic stem cells, via a cell-autonomous mechanism. Analysis of purified bone marrow progenitors revealed that these defects are associated with induction of p53-independent apoptosis and deregulation of Myc transcription factors. Together, this study has identified a critical role for Trrap in the mechanism that maintains hematopoietic stem cells and hematopoietic system, and underscores the importance of Trrap and histone modifications in tissue homeostasis.

  11. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    Science.gov (United States)

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of hematopoietic regulatory genes (Bmi-1, β-Catenin, Hox B4, GATA-1) were increased in EB or CFU cultures supported by FL or sequential CM. Our study has provided a strategy for derivation of hematopoietic cells from embryonic stem cells under the influence of primary hematopoietic niches and CM, particularly the FL.

  12. The autologous bone marrow mononuclear cell transplantation by intracoronary route treat patients with severe heart failure after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    高连如

    2006-01-01

    Objective To investigate the chronic effects of intracoronary autologous bone marrow mononuclear cell (BM-MNCs) transplantation in patients with refractory heart failure (RIHF) after myocardial infarction. Methods Thirty patients with RIHF (LVEF<40%) were enrolled in this nonrandomized study, autologous BM-MNCs (5.0±0.7)×107 were transplanted with via infarct-related coronary artery in 16 patients and 14 patients received

  13. Alternative donor allogeneic hematopoietic cell transplantation for hemoglobinopathies.

    Science.gov (United States)

    Alfraih, Feras; Aljurf, Mahmoud; Fitzhugh, Courtney D; Kassim, Adetola A

    2016-04-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative therapy for patients with hemoglobinopathies, mainly severe sickle cell disease (SCD) and thalassemia (TM). However, the applicability of HSCT has been limited mainly by donor availability, with a less than 25%-30% of eligible patients having human leukocyte antigen (HLA)-matched sibling donors. Previous outcomes using alternate donor options have been markedly inferior due to increased regimen-related toxicity, transplant-related mortality, graft failure, and graft-versus-host disease (GVHD). Advances in transplant technology, including high-resolution HLA typing, improved GVHD prophylactic approaches with tolerance induction, and better supportive care over the last decade, are addressing these historical challenges, resulting in increasing donor options. Herein, we review alternate donor HSCT approaches for severe SCD and TM using unrelated donors, umbilical cord blood units, or related haploidentical donors. Though this is an emerging field, early results are promising and in selected patients, this may be the preferred option to mitigate against the age-related morbidity and early mortality associated with these disorders.

  14. The correlation between T regulatory cells and autologous peripheral blood stem cell transplantation in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Ayşe Pınar Erçetin

    2011-06-01

    Full Text Available Objective: Multiple myeloma (MM is characterized by malignant proliferation of plasmocytes and their precursors. T regulatory cells (Tregs have a role in immunosuppression and control of autoimmunity, and are currently an important topic in the study of immune response to tumor cells. The correlation between Tregs and autologous peripheral blood stem cell transplantation (APBSCT in MM has not been studied. The aim of this study was to compare CD4+CD25+FOXP3+ Treg, CD200, and PD-1 levels in MM patients that did and did not undergo APBSCT. Materials and Methods: Peripheral blood samples were collected from 28 MM patients ranging in age from 41 to 78 years for analysis of CD4CD25+ FOXP3+ Tregs, PD-1 (CD279, and CD200. Peripheral blood mononuclear cells were isolated via density gradient centrifugation. Four-color flow cytometry was performed. Using a sequential gating strategy, Tregs were identified as CD4+CD25+FOXP3+ T-cells. Results were analyzed using the Mann Whitney U non-parametric test and a compare means test. p values 0.05. Conclusion: Treg levels were higher in the patients that underwent APBSCT. Tregs are crucial for the induction and maintenance of peripheral tolerance to self-antigens. In addition, Tregs can suppress immune responses to tumor antigens; however, APBSCT and Treg levels were not correlated with CD200 or PD-1 expression. Relationship of Tregs with prognosis needs to be determined by studies that include larger cohorts.

  15. The association of killer cell immunoglobulin like receptor gene polylmorphism with cytomegalovirus infection after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    吴小津

    2013-01-01

    Objective To explore the influence of the killer cell immunoglobulin like receptor(KIR)gene polymorphism on cytomegalovirus(CMV)infection and pathogenesis after hematopoietic stem cell transplantation(HSCT)

  16. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  17. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  18. Preliminary Study of Local Immunotherapy with Autologous Cytokine-Induced Killer Cells for Glioma Patients

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Yonggao Mu; Zhongping Chen

    2008-01-01

    OBJECTIVE Cytokine-induced killer (CIK) cells are T-cells that display effective anti-tumor activity. In this study, we investigated the anti-tumor activity of CIK cells in vitro, and conducted a preliminary investigation using autologous CIK cells to treat glioma patients through local administration.METHODS The CIK cells were derived from peripheral blood monocytes (PBMCs) of the glioma patients. The anti-tumor activity of the CIK cells against human T98-G glioma cell was tested In vitro. In addition, the autologous CIK cells were locally administrated into the tumor cavity in the malignant glioma patients through an Ommaya reservoir which was pre-inserted during tumor resection. The 4×108 CIK cells in a 5 ml suspension were injected once a week 2 times per cycle. Five hundreds KU of IL-2 was injected every other day.RESULTS (I) With incubation, the CIK cells showed dual staining of CD3+CD56+ with a positive rate of 3.45% on day 10 and 55.2% on day 30. In vitro anti-tumor activity (againstT98-G cells) of the CIK cells reached the highest level after 18 days of incubation with different effector/target (E:T) ratios. (ii)Six patients received autologous CIK cell treatment (10 cycles).Two patients showed no recurrence and are still alive (24 and 10 months), while 4 cases had a recurrence 3 of which have died. The mean survival time from the first CIK cell treatment to the end of follow-up was 12.5 months. The main side-effects of the local CIK cell treatment was brain edema, which was controlled by mannitol in most of the cases. However for one patient injection of CIK cells and IL-2 had to be discontinued.CONCLUSION In vitro CIK cells are effective anti-glioma T-cells. Local therapy with CIK cells has potential anti-glioma efficacy and tolerable side-effects.

  19. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist.

    Science.gov (United States)

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette; DiGiusto, David L

    2014-08-01

    Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.

  20. Physical characterization of hematopoietic stem cells using multidirectional label-free light scatterings.

    Science.gov (United States)

    Shahin, Hesam; Gupta, Manisha; Janowska-Wieczorek, Anna; Rozmus, Wojciech; Tsui, Ying Y

    2016-12-12

    An experimental setup capable of measuring simultaneous 2D scattered light angular distribution from two directions to study cell morphology without the use of bio-labels was developed. Experiments with hematopoietic stem cells (CD34+ cells) show good agreement with detailed numerical simulations of light scattering. Numerical simulations and computer models of cells are used to identify physical features of cells with the largest scattering cross sections. This allows for determination of size, geometry of the nucleus and distribution of mitochondria in hematopoietic stem cells by means of our label-free method.

  1. Imaging approaches to hematopoietic stem and progenitor cell function and engraftment.

    Science.gov (United States)

    Askenasy, Nadir; Stein, Jerry; Farkas, Daniel L

    2007-01-01

    Cell tracking in vivo continues to provide significant insights into hematopoietic cell function and donor cell engraftment after transplantation. The combination of proliferation tracking dyes and induced expression of reporters with advanced imaging modalities has led to better understanding of qualitative and quantitative aspects of hematopoietic cells' homing, seeding and engraftment. Currently, there is no single technique that allows in vivo tracking of cells with molecular resolution, thus several techniques need to be combined. Recent developments promise better implementation of non-invasive imaging modalities to study functional and molecular characteristics of stem cells.

  2. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011370 The efficacy and safety of second allogeneic hematopoietic stem cell transplantation for post-transplant hematologic malignancies relapse. CHEN Yuhong(陳育紅),et al.Instit Hematol,People’s Hosp,Peking Univ,Beijing 100044. Abstract:Objective To investigate the safety and efficacy of second allogeneic hematopoietic stem cell transplantation for the relapsed hematologic malignancies.Methods The data of 25 relapsed patients received the second allogeneic transplantation as a salvage therapy

  3. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed.

  4. Secondary solid cancer screening following hematopoietic cell transplantation.

    Science.gov (United States)

    Inamoto, Y; Shah, N N; Savani, B N; Shaw, B E; Abraham, A A; Ahmed, I A; Akpek, G; Atsuta, Y; Baker, K S; Basak, G W; Bitan, M; DeFilipp, Z; Gregory, T K; Greinix, H T; Hamadani, M; Hamilton, B K; Hayashi, R J; Jacobsohn, D A; Kamble, R T; Kasow, K A; Khera, N; Lazarus, H M; Malone, A K; Lupo-Stanghellini, M T; Margossian, S P; Muffly, L S; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, J R; Wirk, B; Wood, W A; Yong, A; Duncan, C N; Flowers, M E D; Majhail, N S

    2015-08-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients.

  5. Secondary solid cancer screening following hematopoietic cell transplantation

    Science.gov (United States)

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  6. Inhaled corticosteroids stabilize constrictive bronchiolitis after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bashoura, L; Gupta, S; Jain, A; Couriel, D R; Komanduri, K V; Eapen, G A; Safdar, A; Broglio, K R; Adachi, R; Dickey, B F

    2008-01-01

    Post transplantation constrictive bronchiolitis (PTCB) is the most common pulmonary complication among long-term survivors of allogeneic hematopoietic stem cell transplantation (HSCT). It is a late manifestation of GVHD. Its treatment with high-dose systemic corticosteroids and other immunosuppressive regimens is associated with multiple side effects. Topical corticosteroids are used for the treatment of other manifestations of GVHD to minimize these side effects. We conducted a retrospective analysis of a series of adult patients to evaluate the efficacy of high-dose inhaled corticosteroids in the treatment of PTCB. Seventeen patients with new-onset airflow obstruction were diagnosed with PTCB. Their forced expiratory volume in 1 s (FEV1) declined from a median of 84% (range, 56-119) before HSCT to 53% (26-82) after HSCT. All patients received inhaled fluticasone propionate 500-940 microg two times daily. Symptoms of airway obstruction improved and FEV1 stabilized 3-6 months after treatment. We conclude that high-dose inhaled corticosteroids may be effective in the treatment of PTCB and propose a plausible mechanism of its action. A prospective evaluation of its efficacy is warranted.

  7. Dyslipidemia after allogeneic hematopoietic stem cell transplantation: evaluation and management.

    Science.gov (United States)

    Griffith, Michelle L; Savani, Bipin N; Boord, Jeffrey B

    2010-08-26

    Currently, approximately 15,000 to 20,000 patients undergo allogeneic hematopoietic stem cell transplantation (HSCT) annually throughout the world, with the number of long-term survivors increasing rapidly. In long-term follow-up after transplantation, the focus of care moves beyond cure of the original disease to the identification and treatment of late effects after HSCT. One of the more serious complications is therapy-related cardiovascular disease. Long-term survivors after HSCT probably have an increased risk of premature cardiovascular events. Cardiovascular complications related to dyslipidemia and other risk factors account for a significant proportion of late nonrelapse morbidity and mortality. This review addresses the risk and causes of dyslipidemia and impact on cardiovascular complications after HSCT. Immunosuppressive therapy, chronic graft-versus-host disease, and other long-term complications influence the management of dyslipidemia. There are currently no established guidelines for evaluation and management of dyslipidemia in HSCT patients; in this review, we have summarized our suggested approach in the HSCT population.

  8. Predictors for severe cardiac complications after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Sakata-Yanagimoto, M; Kanda, Y; Nakagawa, M; Asano-Mori, Y; Kandabashi, K; Izutsu, K; Imai, Y; Hangaishi, A; Kurokawa, M; Tsujino, S; Ogawa, S; Chiba, S; Motokura, T; Hirai, H

    2004-05-01

    The value of pre-transplant factors for predicting the development of cardiac complications after transplantation has been inconsistent among studies. We analyzed the impact of pre-transplant factors on the incidence of severe cardiac complications in 164 hematopoietic stem cell transplant recipients. We identified eight patients (4.8%) who experienced grade III or IV cardiac complications according to the Bearman criteria. Seven died of cardiac causes a median of 3 days after the onset of cardiac complications. On univariate analysis, both the cumulative dose of anthracyclines and the use of anthracyclines within 60 days before transplantation affected the incidence of severe cardiac complications (P=0.0091 and 0.011). The dissociation of heart rate and body temperature, which reflects "relative tachycardia", was also associated with a higher incidence of cardiac complications (P=0.024). None of the variables obtained by electrocardiography or echocardiography were useful for predicting cardiac complications after transplantation, although the statistical power might not be sufficient to detect the usefulness of ejection fraction. On a multivariate analysis, the cumulative dose of anthracyclines was the only independent significant risk factor for severe cardiac complications. We conclude that the cumulative dose of anthracyclines is the most potent predictor of cardiac complications and the administration of anthracyclines should be avoided within two months before transplantation.

  9. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  10. Clinical experience with plerixafor as a mobilization regimen for autologous peripheral blood stem cell transplantation in patients with refractory germ cell tumors.

    Science.gov (United States)

    García-Escobar, Ignacio; Parrilla, Lucía; Ortega, Laura Montejano; Castellanos, Daniel; Pallarés, María Ángeles Montalbán; Cortés-Funés, Hernán

    2014-11-01

    The purpose of this study was to report our experience with administration of plerixafor for the mobilization of hematopoietic stem cells (HSCs) in patients with refractory or recurrent germ cell tumors who were candidates for salvage therapy with high-dose chemotherapy and HSC transplantation and for whom mobilization of HSCs had not been achieved by standard therapies. This retrospective and observational study selected patients who were eligible for autologous HSC transplantation (AHSCT) and received plerixafor after failure of HSC mobilization by granulocyte colony-stimulating factor (G-CSF). A total of 5 patients (4 male and 1 female), aged 19-41 years (mean age, 29.6 years) were initially selected. Four patients (80%) achieved an adequate HSC mobilization with plerixafor and subsequently received high-dose chemotherapy followed by HSC transplantation. In these patients, the number of CD34(+) cells collected following plerixafor mobilization was 1.8×10(6)-10.3×10(6) cells/kg, with a peak CD34(+) cell count of 7.0-32.0 cells/μl. Following HSC infusion, these 4 patients achieved a neutrophil count of >0.5×10(3)/mm(3) and a platelet count of >20,000/μl between days 10 and 14. Therefore, patients with high-risk germ cell tumors eligible for AHSCT who are refractory to mobilization by G-CSF, may benefit from the use of plerixafor, possibly to the same extent as patients with lymphoma and multiple myeloma.

  11. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    Science.gov (United States)

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  12. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Chinnasamy, Nachimuthu; Mitalipov, Shoukhrat M; Wolf, Don P; Slukvin, Igor; Thomson, James A; Shaaban, Aimen F

    2007-02-01

    Progress toward clinical application of ESC-derived hematopoietic cellular transplantation will require rigorous evaluation in a large animal allogeneic model. However, in contrast to human ESCs (hESCs), efforts to induce conclusive hematopoietic differentiation from rhesus macaque ESCs (rESCs) have been unsuccessful. Characterizing these poorly understood functional differences will facilitate progress in this area and likely clarify the critical steps involved in the hematopoietic differentiation of ESCs. To accomplish this goal, we compared the hematopoietic differentiation of hESCs with that of rESCs in both EB culture and stroma coculture. Initially, undifferentiated rESCs and hESCs were adapted to growth on Matrigel without a change in their phenotype or karyotype. Subsequent differentiation of rESCs in OP9 stroma led to the development of CD34(+)CD45(-) cells that gave rise to endothelial cell networks in methylcellulose culture. In the same conditions, hESCs exhibited convincing hematopoietic differentiation. In cytokine-supplemented EB culture, rESCs demonstrated improved hematopoietic differentiation with higher levels of CD34(+) and detectable levels of CD45(+) cells. However, these levels remained dramatically lower than those for hESCs in identical culture conditions. Subsequent plating of cytokine-supplemented rhesus EBs in methylcellulose culture led to the formation of mixed colonies of erythroid, myeloid, and endothelial cells, confirming the existence of bipotential hematoendothelial progenitors in the cytokine-supplemented EB cultures. Evaluation of four different rESC lines confirmed the validity of these disparities. Although rESCs have the potential for hematopoietic differentiation, they exhibit a pause at the hemangioblast stage of hematopoietic development in culture conditions developed for hESCs.

  13. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  14. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  15. CD133-targeted Gene Transfer Into Long-term Repopulating Hematopoietic Stem Cells

    NARCIS (Netherlands)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwaeble, Joachim; Kaufmann, Kerstin B.; Mueller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J.; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cell

  16. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    Science.gov (United States)

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  17. The use of intravenous antibiotics at the onset of neutropenia in patients receiving outpatient-based hematopoietic stem cell transplants.

    Directory of Open Access Journals (Sweden)

    Aziz Hamadah

    Full Text Available Empirical antibiotics at the onset of febrile neutropenia are one of several strategies for management of bacterial infections in patients undergoing Hematopoietic Stem Cell Transplant (HSCT (empiric strategy. Our HSCT program aims to perform HSCT in an outpatient setting, where an empiric antibiotic strategy was employed. HSCT recipients began receiving intravenous antibiotics at the onset of neutropenia in the absence of fever as part of our institutional policy from 01 Jan 2009; intravenous Prophylactic strategy. A prospective study was conducted to compare two consecutive cohorts [Year 2008 (Empiric strategy vs. Year 2009 (Prophylactic strategy] of patients receiving HSCT. There were 238 HSCTs performed between 01 Jan 2008 and 31 Dec 2009 with 127 and 111 in the earlier and later cohorts respectively. Infection-related mortality pre- engraftment was similar with a prophylactic compared to an empiric strategy (3.6% vs. 7.1%; p = 0.24, but reduced among recipients of autologous HSCT (0% vs. 6.8%; p = 0.03. Microbiologically documented, blood stream infections and clinically documented infections pre-engraftment were reduced in those receiving a prophylactic compared to an empiric strategy, (11.7% vs. 28.3%; p = 0.001, (9.9% vs. 24.4%; p = 0.003 and (18.2% vs. 33.9% p = 0.007 respectively. The prophylactic use of intravenous once-daily ceftriaxone in patients receiving outpatient based HSCT is safe and may be particularly effective in patients receiving autologous HSCT. Further studies are warranted to study the impact of this Prophylactic strategy in an outpatient based HSCT program.

  18. Screening, prevention and management of osteoporosis and bone loss in adult and pediatric hematopoietic cell transplant recipients.

    Science.gov (United States)

    McClune, B L; Polgreen, L E; Burmeister, L A; Blaes, A H; Mulrooney, D A; Burns, L J; Majhail, N S

    2011-01-01

    Long-term survivors of hematopoietic cell transplantation (HCT) are at risk for loss of bone mineral density (BMD) and subsequent osteoporosis. There is a lack of clear guidelines for the screening, prevention and treatment of bone loss after HCT. We reviewed the prevailing literature and provide guidelines developed by our center for the screening and management of this complication. Bone loss occurs predominantly within the first 6-12 months after autologous and allogeneic HCT. Recovery first occurs in the lumbar spine and is followed by a slower recovery of BMD in the femoral neck. BMD may not return to baseline levels in patients with continuing exposure to corticosteroids and calcineurin inhibitors. All HCT recipients should be advised general interventions to reduce fracture risk including adequate intake of calcium and vitamin D. We recommend screening all adult allogeneic and autologous HCT recipients with dual-energy X-ray absorptiometry 1 year after transplantation. Patients at high risk for bone loss (for example, patients receiving ≥ 5 mg of prednisone equivalent daily for > 3 months) can be screened earlier (for example, 3-6 months after HCT). Where indicated, bisphosphonates or other anti-resorptive agents (for example, calcitonin) can be used for prevention or treatment of osteoporosis in adult HCT recipients. Pediatric HCT recipients should be referred to a pediatric endocrinologist for evaluation and treatment of bone loss. There remain several areas of uncertainty that need further research in adult and pediatric HCT recipients, such as the optimal timing and frequency of screening for loss of bone mineral density, relationship of bone loss with risk of fractures, selection of appropriate patients for pharmacologic therapy, and optimal dosing schedule and duration of therapy with anti-resorptive agents.

  19. Hematopoietic stem cells: potential new applications for translational medicine.

    Science.gov (United States)

    Felfly, Hady; Haddad, Gabriel G

    2014-01-01

    Hematopoietic stem cells (HSC) are multipotent cells that produce the various lineages of blood and HSC transplantations (HSCT) are widely used to reconstitute damaged bone marrow (BM). Over time, HSCT has evolved for the treatment of non-blood diseases as well, brain in particular. However, HSCT required total myeloablation through irradiation and/or chemotherapy for the treatment of BM-related diseases, and HSCs are difficult to safely deliver in large amounts into the brain. In blood disorders, for a minimal myelosuppression to be sufficient and allow donor cells to engraft, it is necessary to determine the minimal percentage of normal BM cells needed to achieve phenotypic correction. Recent studies on animal models of ?-thalassemia and sickle cell disease (SCD), through Competitive Repopulation Assay (CRA) following lethal irradiation of recipients, demonstrated that an average of 25% normal BM cells allows the production of enough normal red blood cells to significantly correct the ?-thalassemia and SCD phenotypes, at the levels of BM, blood, histology, and survival, with normal donor cells contributing to 50-60% of peripheral red blood cells. Further assays using mild myelosuppression showed that long term sustained phenotypic correction can be obtained for both diseases through a novel transplantation strategy based on modulating four parameters: dose of irradiation/myelosuppression, number of transplanted cells, timing of cell injections, and number of cell doses. Through a minimal dose of irradiation of 1Gy (100 Rads) or 2Gy, two injections of BM cells within the first 24h after myelosuppression resulted in engraftment in 100% of mice and a sustained therapeutic mixed chimerism in ?-thalassemia, while three to four injections were needed to achieve a similar outcome in SCD. Following the success of these trials, we modified this novel HSCT strategy and applied it to determine whether we can protect mice from lethal stroke induced through the Middle

  20. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    Science.gov (United States)

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.