WorldWideScience

Sample records for autologous cultured chondrocytes

  1. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  2. MR imaging of autologous chondrocyte implantation of the knee

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Skinner, J.A.; Briggs, T.W.R. [RNOH Stanmore, Department of Radiology, Stanmore, Middlesex (United Kingdom)

    2006-05-15

    Autologous chondrocyte implantation (ACI) is a surgical technique that is increasingly being used in the treatment of full-thickness defects of articular cartilage in the knee. It involves the arthroscopic harvesting and in vitro culture of chondrocytes that are subsequently implanted into a previously identified chondral defect. The aim is to produce a repair tissue that closely resembles hyaline articular cartilage that gradually becomes incorporated, restoring joint congruity. Over the long term, it is hoped that this will prevent the progression of full-thickness articular cartilage defects to osteoarthritis. This article reviews the indications and operative procedure performed in ACI. Magnetic resonance imaging (MRI) sequences that provide optimal visualization of articular cartilage in the post-operative period are discussed. Normal appearances of ACI on MRI are presented along with common complications that are encountered with this technique. (orig.)

  3. [Significance and technique of autologous chondrocyte transplantation].

    Science.gov (United States)

    Fritz, J; Gaissmaier, C; Schewe, B; Weise, K

    2005-08-01

    The bad risk for an early onset of osteoarthritis in the knee increases with the size of a cartilage defect. A collateral meniscus- or ligament-tear will enforce this hazard in addition. In order to avoid such a development, relevant full-thickness cartilage defects should be reconstructed biologically and attendant meniscus- or ligament-tears as well as varus- or valgus deformities should be treated. A number of studies, including some prospective-randomized trials, have shown that autologous chondrocyte transplantation (ACT) is the most reliable procedure for a surgical treatment of full-thickness cartilage defects larger than 4 cm (2) in adults. One disadvantage of ACT is the extensive approach to the joint and often a hypertrophy of the repair tissue. To solve these problems, some different biomaterials for a matrix-assisted ACT have been developed. The scaffold we use has a covering membrane upside and a collagen-sponge carrying the chondrocytes. By means of special surgical instruments a minimally invasive implantation is possible, reducing the side-effects of an extensive approach. Animal studies showed the regeneration of a hyaline cartilage using our described system. However, results of current clinical studies with the different scaffolds must be awaited before an universal application of matrix-assisted ACT can be recommended.

  4. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Lenz, Philipp; Kreuz, Peter C

    2010-01-01

    PURPOSE: We report the 2-year clinical results and identify prognostic factors in patients treated with autologous chondrocyte transplantation by use of a collagen membrane to seed the chondrocytes (ACT-CS). METHODS: This is a prospective study of 59 patients who were treated with ACT-CS and foll......PURPOSE: We report the 2-year clinical results and identify prognostic factors in patients treated with autologous chondrocyte transplantation by use of a collagen membrane to seed the chondrocytes (ACT-CS). METHODS: This is a prospective study of 59 patients who were treated with ACT...

  5. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  6. Spanish Experience in Autologous Chondrocyte Implantation

    Science.gov (United States)

    Pérez-Cachafeiro, Santiago; Ruano-Raviña, Alberto; Couceiro-Follente, José; Benedí-Alcaine, Jose Antonio; Nebot-Sanchis, Ignacio; Casquete-Román, Ciriaco; Bello-Prats, Santiago; Couceiro-Sánchez, Gonzalo; Blanco, Francisco J.

    2010-01-01

    Introduction: The Spanish Ministry of Health commissioned the Galician Agency for Health Technology Assessment to monitor and follow-up Autologous Chondrocyte Implantation (ACI) used to treat chondral lesions of the knee in Spain. The objective of this monitoring was to assess efficacy and safety of the technique. Design: One-hundred and eleven consecutive patients with knee chondral lesions were included in a multi-center study between January 2001 and January 2005. ACI was used in these patients as a second-line treatment option (or a first-line treatment option if the cause was Osteocondritis dissecans). The Cincinnati score and the Short Form 36 (SF-36) questionnaire were used to assess the patients’ self-reported satisfaction with the outcomes of ACI. A descriptive analysis was performed and non-parametric tests were used to establish correlations and compare results among subgroups. A multivariate analysis was also performed to measure the effect of different variables on changes in the condition of the knee. Results: Eighty men (72%) and 31 women (21%) with an age range from 16 to 49 years, underwent ACI surgery. Among these subjects, the most common previous first-line treatment was debridement (64 individuals, 74.4%). The mean size of the lesion treated with ACI was 3.82 cm2, and the most frequent location of the lesion was the inner femoral condyle (53.6%). The patient satisfaction was high or very high in 36 subjects (66.7%). Overall knee joint assessment improved from 4.32 points to 6.78. All SF-36 questionnaire categories improved, notably those related to physical condition. Conclusions: The results of this study indicate that ACI is safe; however, further studies are mandated to assess the efficacy of ACI compared to alternative treatment options. PMID:20148094

  7. MR imaging of osteochondral grafts and autologous chondrocyte implantation

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, S. [Medical University of Vienna, MR Centre of Excellence, Department of Radiology, Vienna (Austria); University Hospital of Vienna, MR-Center, Department of Radiology, Vienna (Austria); Millington, S.A. [Medical University of Vienna, MR Centre of Excellence, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Trauma Surgery, Center for Joints and Cartilage, Vienna (Austria); Szomolanyi, P. [Medical University of Vienna, MR Centre of Excellence, Department of Radiology, Vienna (Austria); Marlovits, S. [Medical University of Vienna, Department of Trauma Surgery, Center for Joints and Cartilage, Vienna (Austria)

    2007-01-15

    Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible. (orig.)

  8. Chondrocytes co-cultured with Stromal Vascular Fraction of adipose tissue present more intense chondrogenic characteristics than with Adipose Stem Cells

    NARCIS (Netherlands)

    Wu, Ling; Prins, H.J.; Leijten, Jeroen Christianus Hermanus; Helder, M.; Evseenko, D.; Moroni, L; van Blitterswijk, Clemens; Lin, Y.; Karperien, Hermanus Bernardus Johannes

    2016-01-01

    Partly replacement of chondrocytes by stem cells has been proposed to improve the performance of autologous chondrocytes implantation (ACI). Our previous studies showed that the increased cartilage production in pellet co-cultures of chondrocytes and mesenchymal stem cells (MSCs) is due to a trophic

  9. Effect of freezing on rabbit cultured chondrocytes

    Directory of Open Access Journals (Sweden)

    R.R Filgueiras

    2011-02-01

    Full Text Available This work evaluated the effect of freezing on chondrocytes maintained in culture, aiming the establishment of a cell bank for future application as heterologous implant. Chondrocytes extracted from joint cartilage of nine healthy New Zealand White rabbits were cultivated and frozen with the cryoprotector 5% dimethylsulfoxide for six months. Phenotypic and scanning electron microscopy analyses were carried out to identify morphological and functional differences between fresh and thawed cells. After enzymatic digestion, a total of 4.8x10(5cells per rabbit were obtained. Fresh chondrocytes showed a high mitotic rate and abundant matrix was present up to 60 days of culture. Loss of phenotypic stability was notable in the thawed chondrocytes, with a low labeling of proteoglycans and weak immunostaining of type II collagen. The present study showed important loss of chondrocyte viability under the freezing conditions. For future in vivo studies of heterologous implant, these results suggests that a high number of cells should be implanted in the host site in order to achieve an adequate number of viable cells. Furthermore, the chondrocytes should be implanted after two weeks of culture, when the highest viability rate is found

  10. Arthroscopic autologous chondrocyte implantation in the ankle joint.

    Science.gov (United States)

    Giannini, Sandro; Buda, Roberto; Ruffilli, Alberto; Cavallo, Marco; Pagliazzi, Gherardo; Bulzamini, Maria Chiara; Desando, Giovanna; Luciani, Deianira; Vannini, Francesca

    2014-06-01

    Autologous chondrocyte implantation (ACI) is an established procedure in the ankle providing satisfactory results. The development of a completely arthroscopic ACI procedure in the ankle joint made the technique easier and reduced the morbidity. The purpose of this investigation was to report the clinical results of a series of patients who underwent arthroscopic ACI of the talus at a mean of 7 ± 1.2-year follow-up. Forty-six patients (mean age 31.4 ± 7.6) affected by osteochondral lesions of the talar dome (OLT) received arthroscopic ACI between 2001 and 2006. Patients were clinically evaluated using AOFAS score pre-operatively and at 12, 36 months and at final follow-up of 87.2 ± 14.5 months. The mean pre-operative AOFAS score was 57.2 ± 14.3. At the 12-month follow-up, the mean AOFAS score was 86.8 ± 13.4 (p = 0.0005); at 36 months after surgery, the mean score was 89.5 ± 13.4 (p = 0.0005); whereas at final follow-up of 87.2 ± 14.5 months it was 92.0 ± 11.2 (p = 0.0005). There were three failures. Histological and immunohistochemical evaluations of specimens harvested from failed implants generally showed several aspects of a fibro-cartilaginous tissue associated with some aspects of cartilage tissue remodelling as indicated by the presence of type II collagen expression. This study confirmed the ability of arthroscopic ACI to repair osteochondral lesions in the ankle joint with satisfactory clinical results after mid-term follow-up. IV, retrospective case series.

  11. Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes

    Science.gov (United States)

    Bruns, Juergen; Deuretzbacher, Georg; Ruether, Wolfgang; Fuerst, Martin; Niggemeyer, Oliver

    2009-01-01

    The objective of this study was to determine the clinical outcome of combined bone grafting and matrix-supported autologous chondrocyte transplantation in patients with osteochondritis dissecans of the knee. Between January 2003 and March 2005, 21 patients (mean age 29.33 years) with symptomatic osteochondritis dissecans (OCD) of the medial or lateral condyle (grade III or IV) of the knee underwent reconstruction of the joint surface by autologous bone grafts and matrix-supported autologous chondrocyte transplantation. Patients were followed up at three, six, 12 and 36 months to determine outcomes by clinical evaluation based on Lysholm score, IKDC and ICRS score. Clinical results showed a significant improvement of Lysholm-score and IKDC score. With respect to clinical assessment, 18 of 21 patients showed good or excellent results 36 months postoperatively. Our study suggests that treatment of OCD with autologous bone grafts and matrix-supported autologous chondrocytes is a possible alternative to osteochondral cylinder transfer or conventional ACT. PMID:19626325

  12. Viability of chondrocytes seeded onto a collagen I/III membrane for matrix-induced autologous chondrocyte implantation.

    Science.gov (United States)

    Hindle, Paul; Hall, Andrew C; Biant, Leela C

    2014-11-01

    Cell viability is crucial for effective cell-based cartilage repair. The aim of this study was to determine the effect of handling the membrane during matrix-induced autologous chondrocyte implantation surgery on the viability of implanted chondrocytes. Images were acquired under five conditions: (i) Pre-operative; (ii) Handled during surgery; (iii) Cut edge; (iv) Thumb pressure applied; (v) Heavily grasped with forceps. Live and dead cell stains were used. Images were obtained for cell counting and morphology. Mean cell density was 6.60 × 10(5) cells/cm(2) (5.74-7.11 × 10(5) ) in specimens that did not have significant trauma decreasing significantly in specimens that had been grasped with forceps (p < 0.001) or cut (p = 0.004). Cell viability on delivery grade membrane was 75.1%(72.4-77.8%). This dropped to 67.4%(64.1-69.7%) after handling (p = 0.002), 56.3%(51.5-61.6%) after being thumbed (p < 0.001) and 28.8%(24.7-31.2%) after crushing with forceps (p < 0.001). When cut with scissors there was a band of cell death approximately 275 µm in width where cell viability decreased to 13.7%(10.2-18.2%, p < 0.001). Higher magnification revealed cells without the typical rounded appearance of chondrocytes. We found that confocal laser-scanning microscope (CLSM) can be used to quantify and image the fine morphology of cells on a matrix-induced autologous chondrocyte implantation (MACI) membrane. Careful handling of the membrane is essential to minimise chondrocyte death during surgery. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  14. Autologous chondrocytes as a novel source for neo-chondrogenesis in haemophiliacs.

    Science.gov (United States)

    Stocco, Elena; Barbon, Silvia; Radossi, Paolo; Rajendran, Senthilkumar; Dalzoppo, Daniele; Bortolami, Marina; Bagno, Andrea; Grandi, Francesca; Gamba, Pier Giorgio; Parnigotto, Pier Paolo; Tagariello, Giuseppe; Grandi, Claudio

    2016-10-01

    Haemophilic arthropathy is the major cause of disability in patients with haemophilia and, despite prophylaxis with coagulation factor concentrates, some patients still develop articular complications. We evaluate the feasibility of a tissue engineering approach to improve current clinical strategies for cartilage regeneration in haemophiliacs by using autologous chondrocytes (haemophilic chondrocytes; HaeCs). Little is known about articular chondrocytes from haemophilic patients and no characterisation has as yet been performed. An investigation into whether blood exposure alters HaeCs should be interesting from the perspective of autologous implants. The typical morphology and expression of specific target genes and surface markers were therefore assessed by optical microscopy, reverse transcription plus the polymerase chain reaction (PCR), real-time PCR and flow-cytometry. We then considered chondrocyte behaviour on a bio-hybrid scaffold (based on polyvinyl alcohol/Wharton's jelly) as an in vitro model of articular cartilage prosthesis. Articular chondrocytes from non-haemophilic donors were used as controls. HaeC morphology and the resulting immunophenotype CD44(+)/CD49c(+)/CD49e(+)/CD151(+)/CD73(+)/CD49f(-)/CD26(-) resembled those of healthy donors. Moreover, HaeCs were active in the transcription of genes involved in the synthesis of the extracellular matrix proteins of the articular cartilage (ACAN, COL1A, COL2A, COL10A, COL9A, COMP, HAS1, SOX9), although the over-expression of COL1A1, COL10A1, COMP and HAS was observed. In parallel, the composite scaffold showed adequate mechanical and biological properties for cartilage tissue engineering, promoting chondrocyte proliferation. Our preliminary evidence contributes to the characterisation of HaeCs, highlighting the opportunity of using them for autologous cartilage implants in patients with haemophilia.

  15. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  16. Early resumption of physical activities leads to inferior clinical outcomes after matrix-based autologous chondrocyte implantation in the knee.

    Science.gov (United States)

    Niethammer, Thomas R; Müller, Peter E; Safi, Elem; Ficklscherer, Andreas; Roßbach, Björn P; Jansson, Volkmar; Pietschmann, Matthias F

    2014-06-01

    Matrix-based autologous chondrocyte implantation is a well-established operation procedure for full cartilage defects. When to resume physical activity after matrix-based autologous chondrocyte implantation is controversial. Our hypothesis was that early resumption of physical activity leads to a worse clinical outcome after matrix-based autologous chondrocyte implantation in the knee two years post-operatively. Physical activity is defined as any kind of impact sport. Forty-four patients with cartilage defects of the knee were treated with matrix-based autologous chondrocyte implantation (Novocart3D). All patients were assessed preoperatively and after a period of 24 months with the University of California Los Angeles (UCLA) Activity score. The return to physical activities or sports after matrix-based autologous chondrocyte implantation was documented. Patients were evaluated using the International Knee Documentation Committee Knee Examination Form and visual analogue scale for pain after 6, 12 and 24 months. Fifty-five percent showed an unchanged level of physical activity in the UCLA Activity score post-operatively. About 35% showed a lower level and 10% a higher level of physical activity. The average return to physical activities or sports after matrix-based autologous chondrocyte implantation procedure was 10.2 months. Patients with a later return of sports after 12 months showed significantly better clinical results after two years. In particular, patients who started practicing impact sport after 12 months post-operatively showed significantly better results. Resuming physical activity including impact sports without waiting at least 12 months after the operation leads to inferior outcomes up to 24 months after matrix-based autologous chondrocyte implantation. Level IV.

  17. Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen.

    Science.gov (United States)

    König, Josephine; Kohl, Benjamin; Kratz, Karl; Jung, Friedrich; Lendlein, Andreas; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    In vitro cultured autologous chondrocytes can be used for implantation to support cartilage repair. For this purpose, a very small number of autologous cells harvested from a biopsy have to be expanded in monolayer culture. Commercially available polymer surfaces lead to chondrocyte dedifferentiation. Hence, the demanding need for optimized polymers and surface topologies supporting chondrocytes' differentiated phenotypes in vitro arises. In this study we explored the effect of tailored cell culture plate inserts prepared from polystyrene (PS) and polyether imide (PEI) exhibiting three different roughness levels (R0, RI, RII) on chondrocyte morphology, metabolism and gene expression profile. As a control, commercially available tissue culture plastic (TCP) dishes were included. Primary porcine articular chondrocytes were seeded on tailored PS and PEI inserts with three different roughness levels. The metabolic activity of the chondrocytes was determined after 24 hours using alamar blue assay. Chondrocyte gene expression profiles (aggrecan, type I and type II collagen) were monitored after 48 hours using Real Time Detection (RTD)-PCR. Chondrocytes cultured on PS and PEI surfaces formed cell clusters after 24 and 48 hours, which was not observed on TCP. The metabolic activity of chondrocytes cultured on PS was lower than of chondrocytes cultured on PEI, but also lower than on TCP. Gene expression analyses revealed an elevated expression of cartilage-specific aggrecan and an impaired expression of both collagen types by chondrocytes on PS and PEI compared with TCP. In summary, PEI is a biocompatible biomaterial suitable for chondrocyte culturing, which can be further chemically functionalized for generating specific surface interactions or covalent binding of biomolecules.

  18. Revision surgery after third generation autologous chondrocyte implantation in the knee.

    Science.gov (United States)

    Niethammer, Thomas R; Niethammer, Thomas; Valentin, Siegfried; Ficklscherer, Andreas; Gülecyüz, Mehmet F; Gülecyüz, Mehmet; Pietschmann, Matthias F; Pietschmann, Matthias; Müller, Peter E; Müller, Peter

    2015-08-01

    Third generation autologous chondrocyte implantation (ACI) is an established treatment for full thickness cartilage defects in the knee joint. However, little is known about cases when revision surgery is needed. The aim of the present study is to investigate the complication rates and the main reasons for revision surgery after third generation autologous chondrocyte implantation in the knee joint. It is of particular interest to examine in which cases revision surgery is needed and in which cases a "wait and see" strategy should be used. A total of 143 consecutive patients with 171 cartilage defects were included in this study with a minimum follow-up of two years. All defects were treated with third generation ACI (NOVACART®3D). Clinical evaluation was carried out after six months, followed by an annual evaluation using the International Knee Documentation Committee (IKDC) subjective score and the visual analogue scale (VAS) for rest and during activity. Revision surgery was documented. The revision rate was 23.4 % (n = 36). The following major reasons for revision surgery were found in our study: symptomatic bone marrow edema (8.3 %, n = 3), arthrofibrosis (22.2 %, n = 8) and partial graft cartilage deficiency (47.2 %, n = 17). The following revision surgery was performed: retrograde drilling combined with Iloprost infusion therapy for bone marrow oedema (8.4 %, n = 3), arthroscopic arthrolysis of the suprapatellar recess (22.2 %, n = 8) and microfracturing/antegrade drilling (47.3 %, n = 17). Significant improvements of clinical scores after revision surgery were observed. Revision surgery after third generation autologous chondrocyte implantation is common and is needed primarily in cases with arthrofibrosis, partial graft cartilage deficiency and symptomatic bone marrow oedema resulting in a significantly better clinical outcome.

  19. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C

    2008-01-01

    BACKGROUND: Although autologous chondrocyte implantation (ACI) is a well-established therapy for the treatment of isolated cartilage defects of the knee joint, little is known about typical complications and their treatment after ACI. HYPOTHESIS: Unsatisfactory outcome after ACI is associated...... with technique-related typical complications. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: A total of 309 consecutive patients with 349 ACI procedures of the knee joint were analyzed. Three different ACI techniques were used: periosteum-covered ACI in 52 cases (14.9%), Chondrogide (Geistlich...

  20. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation.

    Science.gov (United States)

    Buda, Roberto; Vannini, Francesca; Castagnini, Francesco; Cavallo, Marco; Ruffilli, Alberto; Ramponi, Laura; Pagliazzi, Gherardo; Giannini, Sandro

    2015-05-01

    Osteochondral lesions of the talus (OLT) usually require surgical treatment. Regenerative techniques for hyaline cartilage restoration, like autologous chondrocytes implantation (ACI) or bone marrow derived cells transplantation (BMDCT), should be preferred. The aim of this work is comparing two clusters with OLT, treated with ACI or BMDCT. Eighty patients were treated with regenerative techniques, 40 with ACI and 40 with BMDCT. The two groups were homogenous regarding age, lesion size and depth, previous surgeries, etiology of the lesion, subchondral bone graft, final follow-up and pre-operative AOFAS score. The two procedures were performed arthroscopically. The scaffold was a hyaluronic acid membrane in all the cases, loaded with previously cultured chondrocytes (ACI) or with bone marrow concentrated cells, harvested in the same surgical session (BMDCT). All the patients were clinically and radiologically evaluated, using MRI Mocart score and T2 mapping sequence. Clinical results were similar in both groups at 48 months. No statistically significant influence was reported after evaluation of all the pre-operative parameters. The rate of return to sport activity showed slightly better results for BMDCT than ACI. MRI Mocart score was similar in both groups. MRI T2 mapping evaluation highlighted a higher presence of hyaline like values in the BMDCT group, and lower incidence of fibrocartilage as well. To date, ACI and BMDCT showed to be effective regenerative techniques for the treatment of OLT. BMDCT could be preferred over ACI for the single step procedure, patients' discomfort and lower costs.

  1. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics

    DEFF Research Database (Denmark)

    Pestka, Jan M; Schmal, Hagen; Salzmann, Gian

    2011-01-01

    OBJECTIVE: Autologous chondrocyte implantation (ACI) is a well-established therapeutic option for the treatment of cartilage defects of the knee joint. Since information concerning the cellular aspects of ACI is still limited, the aim of the present study was to investigate relevant differences b...

  2. Extracellular matrix domain formation as an indicator of chondrocyte dedifferentiation and hypertrophy

    NARCIS (Netherlands)

    Wu, Ling; Gonzalez, Stephanie; Shah, Saumya; Kyupelyan, Levon; Petrigliano, Frank A.; McAllister, David R.; Adams, John S.; Karperien, Hermanus Bernardus Johannes; Tuan, Tai-Lan; Benya, Paul D.; Evseenko, Denis

    2014-01-01

    Cartilage injury represents one of the most significant clinical conditions. Implantation of expanded autologous chondrocytes from noninjured compartments of the joint is a typical strategy for repairing cartilage. However, two-dimensional culture causes dedifferentiation of chondrocytes, making

  3. hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing.

    Science.gov (United States)

    Zhao, Peng; Liu, Shuyun; Bai, Yuhe; Lu, Shibi; Peng, Jiang; Zhang, Li; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Guo, Quanyi

    2018-02-02

    Previously, we synthesized an articular cartilage extracellular matrix (ECM)-derived oriented scaffold for cartilage tissue engineering, which was biomimetic in terms of structure and biochemical composition. However, the limit resource of the cartilage-derived ECM is a hindrance for its application. In this study, we developed a new material for cartilage tissue engineering-human umbilical cord Wharton's jelly-derived ECM (hWJECM). The hWJECM has an abundant resource and similar biochemistry with cartilage ECM, and the use of it is not associated with ethical controversy. We adopted the method previously used in cartilage ECM-derived oriented scaffold preparation to generate the oriented hWJECM-derived scaffold, and the scaffold properties were tested in vitro and in vivo. The three-dimensional scaffold has a porous and well-oriented structure, with a mean pore diameter of ∼104 μm. Scanning electron microscopy and cell viability staining results demonstrated that the oriented scaffold has good biocompatibility and cell alignment. In addition, we used functional autologous chondrocytes to seed the hWJECM-derived oriented scaffold and tested the efficacy of the cell-scaffold constructs to repair the full-thickness articular cartilage defect in a rabbit model. Defects of 4 mm diameter were generated in the patellar grooves of the femurs of both knees and were implanted with chondrocyte-scaffold constructs (group A) or scaffolds alone (group B); rabbits with untreated defects were used as a control (group C). Six months after surgery, all defects in group A were filled completely with repaired tissue, and most of which were hyaline cartilage. In contrast, the defects in group B were filled partially with repaired tissue, and approximately half of these repaired tissues were hyaline cartilage. The defects in group C were only filled with fibrotic tissue. Histological grading score of group A was lower than those of groups B and C. Quantification of

  4. Treatment of full thickness cartilage defects in human knees with Autologous Chondrocyte Transplantation

    Directory of Open Access Journals (Sweden)

    Khalilallah Nazem

    2011-01-01

    Full Text Available Background: Although a variety of strategies have been employed for managing articular cartilage defects in the knee, overall outcomes have not been satisfactory. An alternative option may be autologous chondrocyte transplantation (ACT. However, as this method is still under investigation, here we assessed the efficacy of ACT for human knee defect cartilage repair. Methods: In a randomized clinical trial study, eleven patients (mean age 31.09 years were enrolled in the study with full thickness cartilage defects in the knee. Arthroscopically, healthy cartilage was obtained, chondrocytes expanded for 2-3 weeks and ACT performed. Clinical status was evaluated before ACT, 6 and 12 months after ACT using the Brittberg-Peterson functional assessment and modified Cincinnati rating score. Magnetic resonance imaging (MRI findings were evaluated based on the scoring systems used by Sally Roberts and by Henderson. Results: Modified Cincinnati rating indicated significant improvement of clinical score before ACT compared to 6 (p = 0.000 and 12 (p = 0.000 months after ACT (from 2.73 before ACT to 7.27, 8.36 and 9.5 at 6, 12, and 48 months after ACT, respectively. Brittberg-Peterson functional assessment indicated a decline from 79.27 to 25.82 and 19.27 at 6 and 12 months post ACT. Further, statistical test demonstrated significant differences 6, 12 and 48 months post ACT (p = 0.007. Evaluation of MRI revealed a score of 6.5 for Henderson criteria and a score of 2.5 for Robert criteria. Conclusions: Our study demonstrated that ACT of the knee provides an excellent treatment for full thickness cartilage defects with outstanding clinical and radiological outcomes.

  5. Autologous Chondrocyte Implantation "Sandwich" Technique Compared With Autologous Bone Grafting for Deep Osteochondral Lesions in the Knee.

    Science.gov (United States)

    Minas, Tom; Ogura, Takahiro; Headrick, Jeff; Bryant, Tim

    2018-02-01

    Treating symptomatic osteochondral defects is challenging, especially in young adults with deep (>8-10 mm) empty defects after osteochondritis dissecans (OCD) or collapsed condyles secondary to avascular necrosis (AVN). For this population, osteoarthritis (OA) is inevitable if articular congruence is not restored. To describe the autologous chondrocyte implantation (ACI) "sandwich" technique with autologous bone grafting (ABG) and compare it with ABG alone for restoration of the osteochondral unit. The midterm to long-term outcomes in patients after the treatment for OCD and AVN will be reported and compared. Cohort study; Level of evidence, 3. The outcomes for a consecutive cohort of 24 patients who underwent combined ABG with the ACI sandwich technique between 2001 and 2013 (ACI sandwich group) was compared with a historical control group of 17 consecutive patients who underwent ABG alone between 1995 and 2002 (ABG group) by a single surgeon for symptomatic deep (>8 mm) osteochondral lesions. Patients who were followed up with a minimum of 2 years were included in this study. The modified Cincinnati Knee Rating System, the Western Ontario and McMaster Universities Osteoarthritis Index, a visual analog scale (VAS), the Short Form-36, and a patient satisfaction survey were used to evaluate clinical outcomes. Survival analysis was performed using the Kaplan-Meier method, with no clinical improvement, graft failure, or conversion to prosthetic arthroplasty as the endpoint (failure). Kellgren-Lawrence (K-L) grading to assess OA progression was also performed. In the ABG group, 13 of 17 patients (76%) were available with a mean follow-up of 15.7 years postoperatively (range, 5-21 years). In the ACI sandwich group, all 24 patients were available with a mean follow-up of 7.8 years postoperatively (range, 2-15 years). No significant differences were observed between the groups in terms of age, sex, side of the operated knee, body mass index, lesion type, lesion size

  6. Nano-hydroxyapatite/collagen film as a favorable substrate to maintain the phenotype and promote the growth of chondrocytes cultured in vitro.

    Science.gov (United States)

    Jiang, Xianfang; Zhong, Yanping; Zheng, Li; Zhao, Jinmin

    2018-04-01

    Autologous chondrocyte implantation (ACI) has emerged as a novel approach to cartilage repair through the use of harvested chondrocytes. However, the expansion of the chondrocytes from the donor tissue in vitro is restricted by the limited cell numbers and the dedifferentiation of the chondrocytes. The present study investigated the effect of collagen-based films, including collagen, hydroxyapatite (HA)/collagen (HC) and in situ synthesis of nano‑HC (nHC), on monolayer cultures of chondrocytes. As a substrate for the chondrocytes monolayer culture in vitro, nHC was able to restrain the dedifferentiation of chondrocytes and facilitate cell expansion, which was detected by methyl thiazolyl tetrazolium assay, scanning electron microscopy, calcein‑acetoxymethyl/propidium iodide staining, hematoxylin and eosin staining, Safranin O staining, immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction. Furthermore, the nHC films significantly facilitated cell growth and enhanced the expression of cartilage‑specific extracellular matrix (ECM) components, including aggrecan and type II collagen. In addition, nHC films markedly downregulated the expression of collagen type I, an indicator of dedifferentiation. The results indicated that nHC, a collagen‑based substrate optimized by nanoparticles, was able to better support cell growth and preserve cell phenotype compared with collagen alone or HC. The nHC film, which favors cell growth and prevents the dedifferentiation of chondrocytes, may therefore serve as a useful cartilage‑like ECM for chondrocytes. In conclusion, nHC film is a promising substrate for the culture of chondrocytes in cell-based therapy.

  7. Long-Term Results of Surgical Treatment for Herniated Discs Using the Technique of Autologous Chondrocyte Transplantation

    Directory of Open Access Journals (Sweden)

    E.G. Pedachenko

    2016-08-01

    Full Text Available Objective: to evaluate the effectiveness of autologous chondrocyte (AC transplantation in patients after lumbar microdiscectomy in the long-term period. Materials and methods. Transplantation of cryopreserved AC has been carried out in 6 patients 3 months after lumbar microdiscectomy. Evaluation of clinical status was performed using VAS and NASS scales, before and 3 months after microdiscectomy, 1 and 2 years after AC transplantation. In the same period, there were also evaluated magnetic resonance characteristics of hydration of intervertebral disc. Results. According to magnetic resonance imaging, recovery of nucleus pulposus hydrophilicity was found in 4 of 6 patients (66.7 %, who underwent AC transplantation. Pain severity decreased significantly in the early period after microdiscectomy, and 3 months after (by the time of AC transplantation it has reduced by almost 6 times. One and 2 years after this procedure, pain continued to decline steadily. Functional status and quality of life after microdiscectomy significantly improved during first 3 months, and after transplantation they have not changed. Conclusions. Autologous chondrocyte transplantation after lumbar microdiscectomy is a safe method of surgical treatment for degenerative diseases of the spine, it helps to recover the biomechanical properties of the operated intervertebral disc.

  8. Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans. Histology, biochemistry, and MR imaging

    International Nuclear Information System (INIS)

    Moriya, Takuro; Watanabe, Atsuya; Sasho, Takahisa; Nakagawa, Koichi; Moriya, Hideshige; Wada, Yuichi; Mainil-Varlet, P.

    2007-01-01

    The aim of this study was to investigate the biochemical properties, histological and immunohistochemical appearance, and magnetic resonance (MR) imaging findings of reparative cartilage after autologous chondrocyte implantation (ACI) for osteochondritis dissecans (OCD). Six patients (mean age 20.2±8.8 years; 13-35 years) who underwent ACI for full-thickness cartilage defects of the femoral condyle were studied. One year after the procedure, a second-look arthroscopic operation was performed with biopsy of reparative tissue. The International Cartilage Repair Society (ICRS) visual histological assessment scale was used for histological assessment. Biopsied tissue was immunohistochemically analyzed with the use of monoclonal antihuman collagen type I and monoclonal antihuman collagen type II primary antibodies. Glycosaminoglycan (GAG) concentrations in biopsied reparative cartilage samples were measured by high performance liquid chromatography (HPLC). MR imaging was performed with T 1 and T 2 -weighted imaging and three-dimensional spoiled gradient-recalled (3D-SPGR) MR imaging. Four tissue samples were graded as having a mixed morphology of hyaline and fibrocartilage while the other two were graded as fibrocartilage. Average ICRS scores for each criterion were (I) 1.0±1.5; (II) 1.7±0.5; (III) 0.6±1.0; (IV) 3.0±0.0; (V) 1.8±1.5; and (VI) 2.5±1.2. Average total score was 10.7±2.8. On immunohistochemical analysis, the matrix from deep and middle layers of reparative cartilage stained positive for type II collagen; however, the surface layer did not stain well. The average GAG concentration in reparative cartilage was 76.6±4.2 μg/mg whereas that in normal cartilage was 108±11.2 μg/mg. Common complications observed on 3D-SPGR MR imaging were hypertrophy of grafted periosteum, edema-like signal in bone marrow, and incomplete repair of subchondral bone at the surgical site. Clinically, patients had significant improvements in Lysholm scores. In spite of a

  9. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, Daniël B.F.; Vonk, L.A.; van Rijen, M.H.P.; Akrum, V.; Langeveld, D.; van Boxtel, A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently,

  10. Treatment of severe osteochondral defects of the knee by combined autologous bone grafting and autologous chondrocyte implantation using fibrin gel

    NARCIS (Netherlands)

    Konst, Y.E.; Benink, R.J.; Veldstra, R.; van der Krieke, T.J.; Helder, M.N.; van Royen, B.J.

    2012-01-01

    Purpose: Severe symptomatic and unstable osteochondral defects of the knee are difficult to treat. A variety of surgical techniques have been developed. However, the optimal surgical technique is still controversial. We present a novel technique in which autologous bone grafting is combined with

  11. Sporting Activity Is Reduced 11 Years After First-Generation Autologous Chondrocyte Implantation in the Knee Joint

    DEFF Research Database (Denmark)

    Erdle, Benjamin; Herrmann, Simon; Porichis, Stella

    2017-01-01

    the onset of pain, the year before ACI-P, and 11 years (range, 9.0-13.4 years) postoperatively. Sporting activity was assessed and patients' level of activity scaled using standardized questionnaires. MRI scans of the affected knee joint at follow-up were analyzed using the MOCART (magnetic resonance......BACKGROUND: Little is known about long-term sporting activity after periosteal autologous chondrocyte implantation (ACI-P) and its correlation to clinical, morphological, and ultrastructural cartilage characteristics on magnetic resonance imaging (MRI). PURPOSE: To evaluate long-term sporting...... activity after ACI-P and to correlate with clinical and MRI findings. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Patients who underwent ACI-P for isolated cartilage defects of the knee joint between 1997 and 2001 were analyzed for sporting ability for 3 different time points: lifetime until...

  12. Proteoglycon synthesis by articular chondrocytes in agarose culture

    International Nuclear Information System (INIS)

    Sweet, M.B.E.; Grisillo, A.; Coehlo, A.; Schnitzler, C.M.

    1987-01-01

    Articular chondrocytes were isolated from knee joints of full-term bovine foetuses and grown in long-term agarose cultures. At intervals, cultures were labelled with 35 S-[sulphate] or D[6- 3 H] glucosamine. Newly synthesized proteoglycans were extracted with 4 M guanidine HCl and purified by isopycnic density gradient centrifugation or on DEAE cellulose in the presence of 8 M urea. Characterization of the proteoglycans revealed them to be identical in size to those present in the tissue and to be similarly capable of aggregation with hyaluronate. Newly synthesized chondroitin sulphate chains were identical in size, but newly synthesized keratan sulphate chains were somewhat larger than those present in the tissue. The newly synthesized proteoglycans were shown to contain the same range of O-linked oligosaccharides identified in proteoglycans of the Swarm rat chondrosarcoma. Cartilage-specific proteoglycan continued to be synthesized by the chondrocytes for up to 60 days; however, with time, proportionately more of a small non-aggregating proteoglycan appeared

  13. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Kon, E. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Di Martino, A., E-mail: a.dimartino@biomec.ior.it [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Filardo, G. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Tetta, C.; Busacca, M. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Iacono, F. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Delcogliano, M. [Orthopaedic Departement San Carlo di Nancy Hospital, Rome (Italy); Albisinni, U. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Marcacci, M. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy)

    2011-09-15

    Objective: To evaluate the clinical outcome of hyaluronan-based arthroscopic autologous chondrocyte transplantation at a minimum of 5 years of follow-up and to correlate it with the MRI evaluation parameters. Methods: Fifty consecutive patients were included in the study and evaluated clinically using the Cartilage Standard Evaluation Form as proposed by ICRS and the Tegner score. Forty lesions underwent MRI evaluation at a minimum 5-year follow-up. For the description and evaluation of the graft, we employed the MOCART-scoring system. Results: A statistically significant improvement in all clinical scores was observed at 2 and over 5 years. The total MOCART score and the signal intensity (3D-GE-FS) of the repair tissue were statistically correlated to the IKDC subjective evaluation. Larger size of the treated cartilage lesions had a negative influence on the degree of defect repair and filling, the integration to the border zone and the subchondral lamina integrity, whereas more intensive sport activity had a positive influence on the signal intensity of the repair tissue, the repair tissue surface, and the clinical outcome. Conclusion: Our findings confirm the durability of the clinical results obtained with Hyalograft C and the usefulness of MRI as a non-invasive method for the evaluation of the repaired tissue and the outcome after second-generation autologous transplantation over time.

  14. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up

    International Nuclear Information System (INIS)

    Kon, E.; Di Martino, A.; Filardo, G.; Tetta, C.; Busacca, M.; Iacono, F.; Delcogliano, M.; Albisinni, U.; Marcacci, M.

    2011-01-01

    Objective: To evaluate the clinical outcome of hyaluronan-based arthroscopic autologous chondrocyte transplantation at a minimum of 5 years of follow-up and to correlate it with the MRI evaluation parameters. Methods: Fifty consecutive patients were included in the study and evaluated clinically using the Cartilage Standard Evaluation Form as proposed by ICRS and the Tegner score. Forty lesions underwent MRI evaluation at a minimum 5-year follow-up. For the description and evaluation of the graft, we employed the MOCART-scoring system. Results: A statistically significant improvement in all clinical scores was observed at 2 and over 5 years. The total MOCART score and the signal intensity (3D-GE-FS) of the repair tissue were statistically correlated to the IKDC subjective evaluation. Larger size of the treated cartilage lesions had a negative influence on the degree of defect repair and filling, the integration to the border zone and the subchondral lamina integrity, whereas more intensive sport activity had a positive influence on the signal intensity of the repair tissue, the repair tissue surface, and the clinical outcome. Conclusion: Our findings confirm the durability of the clinical results obtained with Hyalograft C and the usefulness of MRI as a non-invasive method for the evaluation of the repaired tissue and the outcome after second-generation autologous transplantation over time.

  15. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction

    NARCIS (Netherlands)

    Beekman, B.; Verzijl, N.; Bank, R.A.; Von Der Mark, K.; TeKoppele, J.M.

    1997-01-01

    The extracellular matrix synthesized by articular chondrocytes cultured in alginate beads was investigated. Collagen levels increased sigmoidally with time and remained constant after 2 weeks of culture. The presence of cartilage-specific type II collagen was confirmed immunohistochemically.

  16. Knee chondral lesions treated with autologous chondrocyte transplantation in a tridimensional matrix: clinical evaluation at 1-year follow-up.

    Science.gov (United States)

    Vilchez, Félix; Lara, Jorge; Alvarez-Lozano, Eduardo; Cuervo, Carlos E; Mendoza, Oscar F; Acosta-Olivo, Carlos A

    2009-12-01

    Despite the many studies on chondral injury repair, no outcomes have been evaluated with the Western Ontario and McMaster (WOMAC) Universities osteoarthritis index, the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Oxford Knee Score, all of which are specific for evaluating the presence of osteoarthritis. We evaluated the clinical progress of patients following autologous chondrocyte implantation (ACI) performed by our Bone and Tissue Bank using a technique in which cells, instead of being introduced to the articular defect in a liquid form, are implanted into a tridimensional matrix of semisolid collagen (Condrograft((R))). A total of 22 patients underwent the procedure, 15 of whom were available for a 1-year follow-up that included clinical evaluation by WOMAC score before and after surgery and KOOS and the Oxford Knee Score after surgery. The results were improved WOMAC score from 56.4 before surgery to 16.2 after surgery (P tridimensional matrix technique effectively improved patients' quality of life, at least in the short term, and delayed any subsequent procedure. Long-term assessment is necessary to determine the true value of this technique.

  17. Primary Culture of Canine Growth Plate Chondrocytes as a Model of Biomineralization

    OpenAIRE

    Ryuji, HOSOKAWA; Kenji, KIKUZAKI; Daisuke, CHIBA; Yasumasa, AKAGAWA; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry

    1999-01-01

    This study investigated the mineralization process in primary cultures of dog growth plate chondrocytes as a model of biomineralization. Chondrocytes were isolated from the growth plates of ribs of 1-week-old dogs. The chondrocytes were maintained at extremely high density (5x10^4 cells/well) in collagen-coated 96-well dishes in a-MEM supplemented with 10% fetal bovine serum and 50 μg/ml ascorbic acid. Mineralization was initiated between days 20 and 24; however, the addition of fibroblast gr...

  18. MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome

    International Nuclear Information System (INIS)

    Takahashi, Tomoki; Tins, Bernhard; McCall, Iain W.; Ashton, Karen; Richardson, James B.; Takagi, Katsumasa

    2006-01-01

    To relate the magnetic resonance imaging (MRI) appearance of autologous chondrocyte implantation (ACI) in the knee in the 1st postoperative year with other knee features on MRI and with clinical outcome. Forty-nine examinations were performed in 49 patients at 1 year after ACI in the knee. Forty-one preoperative magnetic resonance (MR) examinations were also available. The grafts were assessed for smoothness, thickness in comparison with that of adjacent cartilage, signal intensity, integration to underlying bone and adjacent cartilage, and congruity of subchondral bone. Presence of overgrowth and bone marrow appearance beneath the graft were also assessed. Presence of osteophyte formation, further cartilage defects, appearance of the cruciate ligaments and the menisci were also recorded. An overall graft score was constructed, using the graft appearances. This was correlated with the knee features and the Lysholm score, a clinical self-assessment score. The data were analysed by a Kruskal-Wallis H test followed by a Mann-Whitney U test with Bonferroni correction as post-hoc test. Of 49 grafts, 32 (65%) demonstrated complete defect filling 1 year postoperatively. General overgrowth was seen in eight grafts (16%), and partial overgrowth in 13 grafts (26%). Bone marrow change underneath the graft was seen; oedema was seen in 23 grafts (47%), cysts in six grafts (12%) and sclerosis in two grafts (4%). Mean graft score was 8.7 (of maximal 12) (95% CI 8.0-9.5). Knees without osteophyte formation or additional other cartilage defects (other than the graft site) had a significantly higher graft score than knees with multiple osteophytes (P=0.0057) or multiple further cartilage defects (P=0.014). At 1 year follow-up improvement in the clinical scores was not significantly different for any subgroup. (orig.)

  19. Matrix-Induced Autologous Chondrocyte Implantation (MACI) Using a Cell-Seeded Collagen Membrane Improves Cartilage Healing in the Equine Model.

    Science.gov (United States)

    Nixon, Alan J; Sparks, Holly D; Begum, Laila; McDonough, Sean; Scimeca, Michael S; Moran, Nance; Matthews, Gloria L

    2017-12-06

    Autologous chondrocyte implantation (ACI) using a collagen scaffold (matrix-induced ACI; MACI) is a next-generation approach to traditional ACI that provides the benefit of autologous cells and guided tissue regeneration using a biocompatible collagen scaffold. The MACI implant also has inherent advantages including surgical implantation via arthroscopy or miniarthrotomy, the elimination of periosteal harvest, and the use of tissue adhesive in lieu of sutures. This study evaluated the efficacy of the MACI implant in an equine full-thickness cartilage defect model at 1 year. Autologous chondrocytes were seeded onto a collagen type-I/III membrane and implanted into one of two 15-mm defects in the femoral trochlear ridge of 24 horses. Control defects either were implanted with cell-free collagen type-I/III membrane (12 horses) or were left ungrafted as empty defects (12 horses). An additional 3 horses had both 15-mm defects remain empty as nonimplanted joints. The repair was scored by second-look arthroscopy (12 weeks), and necropsy examination (53 weeks). Healing was assessed by arthroscopic scoring, gross assessment, histology and immunohistology, cartilage matrix component assay, and gene expression determination. Toxicity was examined by prostaglandin E2 formation in joint fluid, and lymph node morphology combined with histologic screening of organs. MACI-implanted defects had improved gross healing and composite histologic scores, as well as increases in chondrocyte predominance, toluidine blue-stained matrix, and collagen type-II content compared with scaffold-only implanted or empty defects. There was minimal evidence of reaction to the implant in the synovial membrane (minor perivascular cuffing), subchondral bone, or cartilage. There were no adverse clinical effects, signs of organ toxicity, or evidence of chondrocytes or collagen type-I/III membrane in draining lymph nodes. The MACI implant appeared to improve cartilage healing in a critical-sized defect in

  20. Combined autologous chondrocyte implantation (ACI with supra-condylar femoral varus osteotomy, following lateral growth-plate damage in an adolescent knee: 8-year follow-up

    Directory of Open Access Journals (Sweden)

    Vijayan Sridhar

    2011-03-01

    Full Text Available Abstract We report the 8-year clinical and radiographic outcome of an adolescent patient with a large osteochondral defect of the lateral femoral condyle, and ipsilateral genu valgum secondary to an epiphyseal injury, managed with autologous chondrocyte implantation (ACI and supracondylar re-alignment femoral osteotomy. Long-term clinical success was achieved using this method, illustrating the effective use of re-alignment osteotomy in correcting mal-alignment of the knee, protecting the ACI graft site and providing the optimum environment for cartilage repair and regeneration. This is the first report of the combined use of ACI and femoral osteotomy for such a case.

  1. Incidence, degree, and development of graft hypertrophy 24 months after matrix-induced autologous chondrocyte implantation: association with clinical outcomes.

    Science.gov (United States)

    Ebert, Jay R; Smith, Anne; Fallon, Michael; Butler, Rodney; Nairn, Robert; Breidahl, William; Wood, David J

    2015-09-01

    Graft hypertrophy is a common occurrence after periosteal, collagen-covered and matrix-induced autologous chondrocyte implantation (MACI). The purpose of this study was to investigate the incidence, development, and degree of graft hypertrophy at 24 months after MACI. The hypothesis was that graft hypertrophy would not be associated with clinical outcome at 24 months. Case series, Level of evidence, 4. This study was undertaken in 180 consecutive patients (113 male, 67 female) after MACI in the knee. All patients were assessed clinically using the Knee injury and Osteoarthritis Outcome Score (KOOS) and underwent magnetic resonance imaging (MRI) at 3, 12, and 24 months after surgery. The incidence of hypertrophy relevant to anatomic graft site was investigated, as was the progressive change in hypertrophic studies postoperatively. The degree of tissue overgrowth in hypertrophic cases was investigated, as was its association with patient clinical outcome at 24 months after surgery. Of the 180 patients, 50 demonstrated a hypertrophic graft at 1 or more postoperative time points. This included 9 grafts (5.0%) at 3 months and 32 grafts (18.7%) at 12 months. At 24 months, 47 grafts (26.1%)-43 (32.1%) tibiofemoral and 4 (8.7%) patellofemoral-were hypertrophic. Patients with hypertrophic grafts at 24 months (n = 47) were younger (P = .051), they had a lower body mass index (BMI; P = .069), and significantly fewer of them had patellofemoral grafts (P = .007) compared with patients who had grafts with full (100%) tissue infill (n = 61). There were no significant differences in any of the KOOS subscales between patients with graft hypertrophy or full (100%) tissue infill at 24 months after surgery, while the severity of graft hypertrophy was not associated with KOOS subscales at 24 months. Hypertrophic grafts after MACI were common and continued to develop through to 24 months after surgery. Hypertrophic growth was associated with being younger and having a lower BMI, was

  2. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?

    Science.gov (United States)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian; Steinwachs, Mathias; Schmal, Hagen; Südkamp, Norbert P; Niemeyer, Philipp

    2014-01-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of cartilage defects of the knee at 36 months and to determine a time point after ACI-Cs at which success or failure can be estimated. Cohort study; Level of evidence, 3. A total of 80 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI-Cs were prospectively assessed before surgery as well as postoperatively by use of the International Knee Documentation Committee (IKDC) score and Lysholm knee score. Preoperative IKDC and Lysholm scores increased from 49.6 and 59.5, respectively, to 79.1 and 83.5, respectively, at 36 months. Only half the patients (46.6%) with poor IKDC scores (ie, <70) at 6 months postoperatively showed continued poor or fair scores at 36 months' follow-up. The probability of poor scores at 36 months after surgery further increased to 0.61 and 0.81, respectively, when scores were persistent at 12 and 24 months. All 3 patients (100%) with good IKDC scores (ie, 81-90) at 6 months after surgery showed constant or even improved scores at 36 months' follow-up. Ninety-one percent of patients with good and excellent scores at 12 months and 83% of patients with good and excellent scores at 24 months (a total of 23 and 37 patients, respectively) were able to maintain these scores at 36 months' follow-up. Similar results were obtained for the Lysholm score. With regard to the improvements in functional outcomes after ACI-Cs at 36 months after surgery, the technique described here appears to lead to satisfying and stable clinical results. This study helps the treating physician to predict the likeliness of further clinical improvements or constant unsatisfactory results after ACI. In patients with good/excellent scores shortly after surgery

  3. Correlation Between Clinical and Radiological Outcomes After Matrix-Induced Autologous Chondrocyte Implantation in the Femoral Condyles.

    Science.gov (United States)

    Ebert, Jay R; Smith, Anne; Fallon, Michael; Wood, David J; Ackland, Timothy R

    2014-08-01

    Matrix-induced autologous chondrocyte implantation (MACI) is an established technique for the repair of knee chondral defects, although the correlation between clinical and radiological outcomes after surgery is poorly understood. To determine the correlation between clinical and radiological outcomes throughout the postoperative timeline to 5 years after MACI. Cohort study (diagnosis); Level of evidence, 3. This retrospective study was undertaken in 83 patients (53 male, 30 female) with complete clinical and radiological follow-up at 1, 2, and 5 years after MACI. The mean age of patients was 38.9 years (range, 13-62 years), with a mean body mass index (BMI) of 26.6 kg/m(2) (range, 16.8-34.8 kg/m(2)), mean defect size of 3.3 cm(2) (range, 1-9 cm(2)), and mean preoperative duration of symptoms of 9.2 years (range, 1-46 years). Patients indicated for MACI in this follow-up were 13 to 65 years of age, although they were excluded if they had a BMI >35 kg/m(2), had undergone prior extensive meniscectomy, or had ongoing progressive inflammatory arthritis. Patients were assessed clinically using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Magnetic resonance imaging (MRI) was used to evaluate the graft using a 1.5-T or 3-T clinical scanner; the MRI assessment included 8 parameters of graft repair (infill, signal intensity, border integration, surface contour, structure, subchondral lamina, subchondral bone, and effusion) based on the magnetic resonance observation of cartilage repair tissue (MOCART) score as well as an MRI composite score. The degree of an association between the MRI parameters and the KOOS subscales at each postoperative time point was assessed with the Spearman correlation coefficient (SCC), and significance was determined at P correlations over time and statistically significant associations at 5 years with KOOS-Pain (SCC, 0.25; P = .020), KOOS-Activities of Daily Living (SCC, 0.26; P = .018), and KOOS-Sport (SCC, 0.32; P = .003). Apart

  4. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  5. VEGF, BMP-7, Matrigel(TM), hyaluronic acid, in vitro cultured chondrocytes and trephination for healing of the avascular portion of the meniscus. An experimental study in sheep.

    Science.gov (United States)

    Forriol, Francisco; Longo, Umile Giuseppe; Duart, Julio; Ripalda, Purification; Vaquero, Javier; Loppini, Mattia; Romeo, Giovanni; Campi, Stefano; Khan, Wasim S; Muda, Andrea O; Denaro, Vincenzo

    2015-01-01

    To evaluate the effects of VEGF, BMP-7, Matrigel(TM), hyaluronic acid, in vitro cultured chondrocytes and trephination to promote and enhance the healing process of avascular meniscal tears in an animal model. A longitudinal tear was produced in the inner avascular part of the meniscus of 24 sheeps. Each tear was treated with trephination technique and suture. The animals were divided into 6 groups to receive a different treatment: control (I); VEGF, BMP-7, Matrigel(TM), hyaluronic acid, in vitro cultured chondrocytes. At 8 weeks from surgery, meniscal samples were explanted and analyzed by histology, immunohistochemistry, and histomorphometry. At the histological examination, Group IV and VI showed a partial closure of the meniscal lesion, whereas Group I, II, III, and V did not show any evidence of healing. In the group IV, the healed tissue represented the 22.95% of the lesion area. In the group VI, the healed tissue represented the 43.75% of the lesion area. Autologous chondrocytes and BMP-7 associated with trephination and suture techniques enhanced healing process of meniscal tears in the avascular inner third of the meniscus in ovine model.

  6. Sporting Activity Is Reduced 11 Years After First-Generation Autologous Chondrocyte Implantation in the Knee Joint.

    Science.gov (United States)

    Erdle, Benjamin; Herrmann, Simon; Porichis, Stella; Uhl, Markus; Ghanem, Nadir; Schmal, Hagen; Suedkamp, Norbert; Niemeyer, Philipp; Salzmann, Gian M

    2017-10-01

    Little is known about long-term sporting activity after periosteal autologous chondrocyte implantation (ACI-P) and its correlation to clinical, morphological, and ultrastructural cartilage characteristics on magnetic resonance imaging (MRI). To evaluate long-term sporting activity after ACI-P and to correlate with clinical and MRI findings. Case series; Level of evidence, 4. Patients who underwent ACI-P for isolated cartilage defects of the knee joint between 1997 and 2001 were analyzed for sporting ability for 3 different time points: lifetime until the onset of pain, the year before ACI-P, and 11 years (range, 9.0-13.4 years) postoperatively. Sporting activity was assessed and patients' level of activity scaled using standardized questionnaires. MRI scans of the affected knee joint at follow-up were analyzed using the MOCART (magnetic resonance observation of cartilage repair tissue) score and T2 mapping. Seventy of 86 patients (81% follow-up rate) consisting of 25 female and 45 male patients, with a mean age of 33.3 ± 10.2 years at the time of surgery, mean defect size of 6.5 ± 4.0 cm 2 , and 1.17 treated defects per patient, agreed to participate in the study at a mean 10.9 ± 1.1 years after ACI-P. Fifty-nine patients (69% of total; 84% of follow-up) agreed to MRI, allowing the complete evaluation of 71 transplant sites. Before the onset of symptoms (lifetime), 95.7% of patients played a mean 6.0 sporting activities at a competitive level. In the year before ACI-P, 81.4% of patients played a mean 3.4 sporting activities in 2.4 sessions during 5.4 hours per week at a recreational level. At follow-up, 82.9% of the patients played a mean 3.0 sporting activities in 1.8 sessions during 3.0 hours per week at a recreational level. In contrast to objective factors, 65.6% of the patients felt that their subjective sporting ability had improved or strongly improved after ACI-P, whereas 12.9% felt that their situation had declined or strongly declined, and 21.4% stated

  7. Return to Sports Activity and Work After Autologous Chondrocyte Implantation of the Knee: Which Factors Influence Outcomes?

    Science.gov (United States)

    Pestka, Jan M; Feucht, Matthias J; Porichis, Stella; Bode, Gerrit; Südkamp, Norbert P; Niemeyer, Philipp

    2016-02-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results in everyday activities. Clinical results after ACI treatment of femorotibial lesions are superior in comparison with patellofemoral lesions. There is limited information regarding at which level recreational, amateur, and professional athletes can resume sports and physical activities as well as work after ACI and what parameters influence return to work and sports. Return to sports activity and work is dependent on defect characteristics such as location and size. Case series; Level of evidence, 4. A total of 130 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI between June 2000 and October 2007 were retrospectively studied by an established questionnaire that assessed sports-specific questions such as frequency, duration, and intensity. Engagement in 32 different sports disciplines was evaluated. In addition, work-specific data were evaluated according to classifications established by the REFA Association. Results were evaluated depending on patient- and defect-specific parameters. The mean ± SD patient age at ACI was 36.2 ± 9.2 years, with a mean defect size of 4.4 ± 1.7 cm(2). Defects were located at the femorotibial compartment in 55.7% of cases, whereas lesions of the patellofemoral compartment were found in 44.3%. Mean duration of inability to work after ACI was 13.6 ± 11.0 weeks and did not appear to be influenced by patient age. Defect location and defect size did not appear to significantly influence return-to-work rates, but work intensity before surgery significantly influenced return-to-work rates and duration of absence from work. Workplace adaptations were necessary in only 9.2% of cases postoperatively. With regard to postoperative sports activity, 73.1% of patients were able to return to sports. Neither defect location nor size significantly influenced return to physical activity. Patients participated in a mean of 2

  8. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Steinwachs, Matthias

    2010-01-01

    INTRODUCTION: Since introduction of autologous chondrocyte implantation (ACI), various factors have been described that influence the clinical outcome. The present paper investigates the influence of bone marrow edema at time of treatment on clinical function before and in the early clinical course...... after ACI. METHODS: 67 patients treated with ACI for cartilage defects of the knee joint were included. Presence of subchondral bone marrow edema was graded as absent (1), mild (2), moderate (3) or severe (4) using magnetic resonance (MR) imaging before surgery. All patients were assessed in terms...... edema, better clinical function was detected compared to all other groups before surgery (p bone marrow edema seems to correlate with knee function in patients with cartilage defects and may...

  9. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression

    Directory of Open Access Journals (Sweden)

    Mallein-Gerin Frédéric

    2008-09-01

    Full Text Available Abstract Background Articular cartilage is exposed to high mechanical loads under normal physiological conditions and articular chondrocytes regulate the composition of cartilaginous matrix, in response to mechanical signals. However, the intracellular pathways involved in mechanotransduction are still being defined. Using the well-characterized chondrocyte/agarose model system and dynamic compression, we report protocols for preparing and characterizing constructs of murine chondrocytes and agarose, and analyzing the effect of compression on steady-state level of mRNA by RT-PCR, gene transcription by gene reporter assay, and phosphorylation state of signalling molecules by Western-blotting. The mouse model is of particular interest because of the availability of a large choice of bio-molecular tools suitable to study it, as well as genetically modified mice. Results Chondrocytes cultured in agarose for one week were surrounded by a newly synthesized pericellular matrix, as revealed by immunohistochemistry prior to compression experiments. This observation indicates that this model system is suitable to study the role of matrix molecules and trans-membrane receptors in cellular responsiveness to mechanical stress. The chondrocyte/agarose constructs were then submitted to dynamic compression with FX-4000C™ Flexercell® Compression Plus™ System (Flexcell. After clearing proteins off agarose, Western-blotting analysis showed transient activation of Mitogen-activated protein kinases (MAPK in response to dynamic compression. After assessment by capillary electrophoresis of the quality of RNA extracted from agarose, steady-state levels of mRNA expression was measured by real time PCR. We observed an up-regulation of cFos and cJun mRNA levels as a response to compression, in accordance with the mechanosensitive character observed for these two genes in other studies using cartilage explants submitted to compression. To explore further the

  10. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  11. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  12. Effects of Extracellular Matrix on the Morphology and Behaviour of Rabbit Auricular Chondrocytes in Culture

    OpenAIRE

    Villar-Suárez, Vega; Colaço, B.; Calles-Venal, I.; Bravo, I. G.; Fernández-Álvarez, J. G.; Fernández-Caso, M.; Villar-Lacilla, J. M.

    2005-01-01

    Isolated chondrocytes dedifferentiate to a fibroblast-like shape on plastic substrata and proliferate extensively, but rarely form nodules. However, when dissociation is not complete and some cartilage remnants are included in the culture, proliferation decreases and cells grow in a reticular pattern with numerous nodules, which occasionally form small cartilage-like fragments. In an attempt to reproduce this stable chondrogenic state, we added a cartilage protein extract, ...

  13. 5-Arylidene-4-thiazolidinone derivatives active as antidegenerative agents on human chondrocyte cultures.

    Science.gov (United States)

    Panico, Annamaria; Maccari, Rosanna; Cardile, Venera; Crasci, Lucia; Ronsisvalle, Simone; Ottanà, Rosaria

    2013-02-01

    5-Arylidene-2-oxo-4-thiazolidinones and 2-phenylimino analogues were evaluated for their antidegenerative activity on human chondrocyte cultures stimulated by IL-1β and for their inhibitory capability against matrix metalloproteinase- 13. Our results indicated that 5-arylidene-4-thiazolidinone derivatives 1-9 exhibit antidegenerative activity and could block multiple cartilage destruction during the osteoarthritic process. Out of the selected compounds, (5-arylidene- 2,4-dioxothiazolidin-3-yl)acetic acids 7-9 showed significant effectiveness in reducing NO release and restoring normal levels of GAGs in chondrocytes treated with IL-1β. Moreover, benzoic acids 1, 5 and 6 proved to be effective MMP-13 inhibitors and were able to restore normal levels of GAGs.

  14. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    Directory of Open Access Journals (Sweden)

    Thomas Branly

    2018-02-01

    Full Text Available Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA, a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform, along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an

  15. Repair Potential of Matrix-Induced Bone Marrow Aspirate Concentrate and Matrix-Induced Autologous Chondrocyte Implantation for Talar Osteochondral Repair

    Science.gov (United States)

    Desando, Giovanna; Bartolotti, Isabella; Vannini, Francesca; Cavallo, Carola; Castagnini, Francesco; Buda, Roberto; Giannini, Sandro; Mosca, Massimiliano; Mariani, Erminia; Grigolo, Brunella

    2016-01-01

    Objective The low regenerative potential of cartilage contributed to the development of different cell therapies aimed to improve the clinical outcome in young patients with Osteochondral Lesions of the Talus (OLT). This study is designed to assess the regenerative potential of autologous matrix-induced Bone Marrow Aspirate Concentrate (mBMAC) and matrix-induced Autologous Chondrocyte Implantation (mACI) evaluating, on a small number of osteochondral biopsies, the expression of some catabolic, inflammatory, and pain mediators. Design Twenty-two patients with OLT were analyzed in this study; 7 were treated with mACI and 15 with mBMAC. Informed consent was obtained from all the patients. Clinical assessments were performed pre-operatively and at 12, 24, and 36 months after surgery using the American Orthopedic Foot and Ankle Society (AOFAS). Histology and immunohistochemistry were used to assess cartilage repair at 24 months. Data were analyzed using non-parametric Wilcoxon-Mann-Whitney and Spearman tests. Results A remarkable improvement in AOFAS score was noticed for both treatments up to 36 months; however, patients treated with mACI reported the best AOFAS score. Various degrees of tissue remodeling were observed by histological analysis for both cell strategies. However, mBMAC treatment showed a higher expression of some fibrous and hypertrophic markers compared to mACI group. A mild positivity for nerve growth factor, as pain mediator, was noticed for both treatments.M Conclusions Our findings demonstrated the best histological and clinical results following mACI treatment since different fibrotic and hypertrophic features were evident in the mBMAC group at 24-month follow-up. PMID:27994720

  16. Significantly worse isokinetic hamstring-quadriceps ratio in patellofemoral compared to condylar defects 4 years after autologous chondrocyte implantation.

    Science.gov (United States)

    Müller, Sebastian; Hirschmüller, Anja; Erggelet, Christoph; Beckmann, Nicholas A; Kreuz, Peter C

    2015-08-01

    Detailed biomechanical analysis including isokinetic muscle strength measurements after autologous chondrocyte implantation (ACI) are still rare, but might be of crucial importance for long-term outcomes. The present prospective study was performed to evaluate whether defect location had any influence on clinical and biomechanical outcomes 4 years after ACI. Forty-four patients with full-thickness cartilage defects ICRS grade III B and C underwent ACI and were assigned to two groups, the femoral condyle group or the patellofemoral joint group. Clinical scores were gathered preoperatively and 6, 12 and 48 months after implantation using the International Knee Documentation Committee (IKDC) score and the International Cartilage Repair Society (ICRS) form. Isokinetic strength measurements were performed 48 months postoperatively comparing healthy and operated knee joint of each patient. Clinical scores (ICRS, IKDC) showed continuous significant (p Hamstring-quadriceps ratios of the operated extremity revealed a significant change in physiological muscle balancing (ratios >1.0) based on significantly impaired extensor muscle strength in the patellofemoral joint group. All patients showed significant strength deficits on the operated extremity 4 years after ACI. Furthermore, the patellofemoral compartment in particular showed significantly worse hamstring-quadriceps ratios compared to condylar defects. Consequently, more efforts should be made to restore muscular strength especially of the quadriceps and the rehabilitation protocol should be adjusted accordingly. II.

  17. Enhanced Chondrocyte Proliferation in a Prototyped Culture System with Wave-Induced Agitation

    Directory of Open Access Journals (Sweden)

    Pilarek Maciej

    2017-06-01

    Full Text Available One of the actual challenges in tissue engineering applications is to efficiently produce as high of number of cells as it is only possible, in the shortest time. In static cultures, the production of animal cell biomass in integrated forms (i.e. aggregates, inoculated scaffolds is limited due to inefficient diffusion of culture medium components observed in such non-mixed culture systems, especially in the case of cell-inoculated fiber-based dense 3D scaffolds, inside which the intensification of mass transfer is particularly important. The applicability of a prototyped, small-scale, continuously wave-induced agitated system for intensification of anchorage-dependent CP5 chondrocytes proliferation outside and inside three-dimensional poly(lactic acid (PLA scaffolds has been discussed. Fibrous PLA-based constructs have been inoculated with CP5 cells and then maintained in two independent incubation systems: (i non-agitated conditions and (ii culture with wave-induced agitation. Significantly higher values of the volumetric glucose consumption rate have been noted for the system with the wave-induced agitation. The advantage of the presented wave-induced agitation culture system has been confirmed by lower activity of lactate dehydrogenase (LDH released from the cells in the samples of culture medium harvested from the agitated cultures, in contrast to rather high values of LDH activity measured for static conditions. Results of the proceeded experiments and their analysis clearly exhibited the feasibility of the culture system supported with continuously wave-induced agitation for robust proliferation of the CP5 chondrocytes on PLA-based structures. Aside from the practicability of the prototyped system, we believe that it could also be applied as a standard method offering advantages for all types of the daily routine laboratory-scale animal cell cultures utilizing various fiber-based biomaterials, with the use of only regular laboratory

  18. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    International Nuclear Information System (INIS)

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T.

    1991-01-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of 14 C oleic, 14 C linoleic, and 3H arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and 3 H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations

  19. Optimization of transport media for human chondrocytes

    International Nuclear Information System (INIS)

    Olender, E.; Uhrynowska-Tyszkiewicz, I.; Gaweda, K.; Kaminski, A.

    2008-01-01

    Full text: Autologous chondrocytes transplantation is a method used in treatment of cartilage defects in joints. Small fragments of patient healthy cartilage are removed and sent to a laboratory or tissue bank for cultivating chondrocytes. Obtained cells are reimplanted into areas of damaged cartilage. Since the transport of cartilage from a recovery site to a cell culture laboratory may be extended, it is very important to optimize the cartilage storage conditions in order to provide specimens with the best cell viability. Fresh human cartilage is stored in Ringer's solution or in normal saline at 4 degree C. Supplements such as hyaluronic acid and glucosamine have been shown to have chondroprotective effects. The aim of this experiment was to evaluate potential new storage media for improving chondrocytes viability. Cartilage fragments were harvested from fresh human femoral condyles. Cartilage samples from each condyle were separately stored at 4 degree C in: normal saline, Ringer solution, normal saline amended with hyaluronic acid and normal saline amended with glucosamine. The cartilage from each donor for each storage method was assayed for viability by MTT reduction assay on the day of recovery and after duration of one, two, three, six, twelve, and twenty-one days. Chondrocytes viability decreased with time in all media except for normal saline amended with glucosamine. The decline in chondrocytes viability was especially distinct for samples maintained in normal saline amended with hyaluronic acid when compared with standard media (normal saline and Ringer solution). In contrast, chondrocytes viability remained high for the whole duration of the experiment in samples maintained in normal saline amended with glucosamine. This finding suggests that the glucosamine supplementation of normal saline reduces the decline in chondrocytes viability and consequently extends the acceptable storage period of cartilage specimens. Further investigations are needed to

  20. Reconstruction of Alar Nasal Cartilage Defects Using a Tissue Engineering Technique Based on a Combined Use of Autologous Chondrocyte Micrografts and Platelet-rich Plasma: Preliminary Clinical and Instrumental Evaluation

    Science.gov (United States)

    Scioli, Maria G.; Bielli, Alessandra; Orlandi, Augusto; Cervelli, Valerio

    2016-01-01

    Background: Developing cartilage constructs with injectability, appropriate matrix composition, and persistent cartilaginous phenotype remains an enduring challenge in cartilage repair. The combined use of autologous chondrocyte micrografts and platelet-rich plasma (PRP) is an alternative that opens a new era in this field. Methods: At the Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Italy, 11 patients underwent nasal alar reconstruction with chondrocyte micrografts gently poured onto PRP in solid form. A computed tomographic scan control was performed after 12 months. Pearson’s Chi-square test was used to investigate difference in cartilage density between native and newly formed cartilages. Results: The constructs of chondrocyte micrografts–PRP that were subcutaneously injected resulted in a persistent cartilage tissue with appropriate morphology, adequate central nutritional perfusion without central necrosis or ossification, and further augmented nasal dorsum without obvious contraction and deformation. Conclusion: This report demonstrated that chondrocyte micrografts derived from nasal septum poured onto PRP in solid form are useful for cartilage regeneration in patients with external nasal valve collapse. PMID:27826462

  1. Effect of nitrogen-rich cell culture surfaces on type X collagen expression by bovine growth plate chondrocytes

    Directory of Open Access Journals (Sweden)

    Wertheimer Michael R

    2011-01-01

    Full Text Available Abstract Background Recent evidence indicates that osteoarthritis (OA may be a systemic disease since mesenchymal stem cells (MSCs from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification. We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.% of N. Methods In the present study, we examined the expression of type X collagen in fetal bovine growth plate chondrocytes (containing hypertrophic chondrocytes cultured on PPE:N. We also studied the effect of PPE:N on the expression of matrix molecules such as type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13 (MMP-13 and molecules implicated in cell division (cyclin B2. Two other culture surfaces, "hydrophilic" polystyrene (PS, regular culture dishes and nitrogen-containing cation polystyrene (Primaria®, were also investigated for comparison. Results Results showed that type X collagen mRNA levels were suppressed when cultured for 4 days on PPE:N, suggesting that type X collagen is regulated similarly in hypertrophic chondrocytes and in human MSCs from OA patients. However, the levels of type X collagen mRNA almost returned to control value after 20 days in culture on these surfaces. Culture on the various surfaces had no significant effects on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels. Conclusion Hypertrophy is diminished by culturing growth plate chondrocytes on nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis. Furthermore, one major advantage of such "intelligent surfaces" over recombinant growth factors for tissue engineering and cartilage repair is potentially large cost-saving.

  2. Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee.

    Science.gov (United States)

    Collarile, Marco; Sambri, Andrea; Lullini, Giada; Cadossi, Matteo; Zorzi, Claudio

    2018-04-01

    The purpose of the present study was to evaluate the effects of pulsed electromagnetic fields (PEMFs) on clinical outcome in patients who underwent arthroscopic matrix-assisted autologous chondrocyte implantation (MACI) for chondral lesions of the knee. Thirty patients affected by grade III and IV International Cartilage Repair Society chondral lesions of the knee underwent MACI. After surgery, patients were randomly assigned to either experimental group (PEMFs 4 h per day for 60 days) or control group . Clinical outcome was evaluated through International Knee Documentation Committee (IKDC) subjective knee evaluation form, Visual Analog Scale, Short Form-36 (SF-36) and EuroQoL before surgery and 1, 2, 6, and 60 months postoperative. Mean size of chondral lesion was 2.4 ± 0.6 cm 2 in the PEMFs group and 2.5 ± 0.5 cm 2 in the control one. No differences were found between groups at baseline. IKDC score increased in both groups till 6 months, but afterward improvement was observed only in the experimental group with a significant difference between groups at 60 months (p = 0.001). A significant difference between groups was recorded at 60 months for SF-36 (p = 0.006) and EuroQol (p = 0.020). A significant pain reduction was observed in the experimental group at 1-, 2- and 60-month follow-up. Biophysical stimulation with PEMFs improves clinical outcome after arthroscopic MACI for chondral lesions of the knee in the short- and long-term follow-up. Biophysical stimulation should be considered as an effective tool in order to ameliorate clinical results of regenerative medicine. The use of PEMFs represents an innovative therapeutic approach for the survival of cartilage-engineered constructs and consequently the success of orthopaedic surgery. II.

  3. Graft hypertrophy of matrix-based autologous chondrocyte implantation: a two-year follow-up study of NOVOCART 3D implantation in the knee.

    Science.gov (United States)

    Niethammer, Thomas R; Pietschmann, Matthias F; Horng, Annie; Roßbach, Björn P; Ficklscherer, Andreas; Jansson, Volkmar; Müller, Peter E

    2014-06-01

    Graft hypertrophy is a major complication in the treatment for localized cartilage defects with autologous chondrocyte implantation (ACI) using periosteal flap and its further development, Novocart (a matrix-based ACI procedure). The aim of the present study is to investigate individual criteria for the development of graft hypertrophy by NOVOCART 3D implantation of the knee in the post-operative course of 2 years. Forty-one consecutive patients with 44 isolated cartilage defects of the knee were treated with NOVOCART 3D implants. Individual criteria and defect-associated criteria were collected. Follow-up MRIs were performed at 3, 6, 12 and 24 months. The NOVOCART 3D implants were measured and classified. The modified MOCART Score was used to evaluate quality and integration of the NOVOCART 3D implants in MRI. Graft hypertrophy was observed in a total of 11 patients at all post-operative time points. We were able to show that NOVOCART 3D implantation of cartilage defects after acute trauma and osteochondritis dissecans (OCD) led to a significantly increased proportion of graft hypertrophy. No other individual criteria (age, gender, BMI) or defect-associated criteria (concomitant surgery, second-line treatment, defect size, fixation technique) showed any influence on the development of graft hypertrophy. The modified MOCART Score results revealed a significant post-operative improvement within 2 years. The aetiology of cartilage defects appears to have a relevant influence for the development of graft hypertrophy. Patients, who were treated with NOVOCART 3D implants after an acute event (acute trauma or OCD), are especially at risk for developing a graft hypertrophy in the post-operative course of two years. Case series, Level IV.

  4. Matrix-induced autologous chondrocyte implantation of the knee: mid-term and long-term follow-up by MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Genovese, Eugenio; Angeretti, Maria Gloria; Leonardi, Anna; Callegari, Leonardo; Fugazzola, Carlo [Insubria University, Department of Radiology, Varese (Italy); Ronga, Mario [Insubria University, Department of Orthopaedics and Traumatology, Varese (Italy); Novario, Raffaele [Insubria University, Department of Clinical and Biological Sciences, Varese (Italy); Albrizio, Mauro [Pavia University, Department of Radiology, Pavia (Italy)

    2011-01-15

    To define magnetic resonance (MR) arthrography imaging findings of matrix-induced autologous chondrocyte implantation (MACI) grafts of the knee in order to describe implant behaviour and to compare findings with validated clinical scores 30 and 60 months after MACI implant. Thirteen patients were recruited (10 male, 3 female) with a total number of 15 chondral lesions. Each patient underwent an MACI procedure and MR arthrography 30 and 60 months after surgery. MR arthrography was performed using a dedicated coil with a 1.5-Tesla unit. The status of the chondral implant was evaluated with the modified MOCART scoring scale. The lining of the implant, the integration to the border zone, the surface and structure of the repaired tissue were assessed, and the presence of bone marrow oedema and effusion was evaluated. For clinical assessment, the Cincinnati score was used. At 60 months, the abnormality showed worsening in 1 out of 15 cases. Integration showed improvement in 3 out of 15 cases, and worsening in 3 out of 15 cases. Two surfaces of the implant showed further deterioration at 60 months, and 1 afflicted implant fully recovered after the same time interval. Implant contrast enhancement at 30 months was seen in 2 out of 15 cases, 1 of which recovered at 60 months. According to the MOCART score, 4 cases were rated 68.4 out of 75 at 30 months and 65 out of 75 at 60 months. The mean clinical score decreased from 8.6 out of 10 at 30 months to 8.1 out of 10 at 60 months. Magnetic resonance arthrography improved the evaluation of implants and facilitated the characterisation of MACI integration with contiguous tissues. The follow-up showed significant changes in MACI, even at 60 months, allowing for useful long-term MR evaluations. (orig.)

  5. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Domayer, S.E. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: stephan.domayer@meduniwien.ac.at; Welsch, G.H. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Nehrer, S. [Centre of Regenerative Medicine, Danube University of Krems, Dr.-Karl-Dorrek-Strasse, 30 A-3500 Krems (Austria)], E-mail: stefan.nehrer@donau-uni.ac.at; Chiari, C.; Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); Szomolanyi, P. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Mamisch, T.C. [Department of Orthopedics, Inselspital, University of Bern, 3010 Bern (Switzerland); Yayon, A. [ProChon Biotech Ltd., Weizmann Science Park, Nes Ziona (Israel); Trattnig, S. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: siegfried.trattnig@meduniwien.ac.at

    2010-03-15

    Objective: To assess repair tissue (RT) after the implantation of BioCart{sup TM}II, an autologous chondrocyte implantation (ACI) technique with a fibrin-hyaluronan polymer as scaffold. T2 mapping and delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) were used to gain first data on the biochemical properties of BioCart{sup TM}II RT in vivo. Methods: T2 mapping and dGEMRIC were performed at 3 T in five patients (six knee joints) who had undergone ACI 15-27 months before. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. For quantitative T1 mapping a dual flip angle 3D GRE sequence was used and T1 maps were calculated pre- and post-contrast using IDL software. Subsequent region of interest analysis was carried out in comparison with morphologic MRI. Results: A spatial variation of T2 values in both hyaline, normal cartilage (NC) and RT was found. Mean RT T2 values and mean NC T2 values did not differ significantly. Relative T2 values were calculated from global RT and NC T2 and showed a small range (0.84-1.07). The relative delta relaxation rates (r{delta}R1) obtained from the T1 maps had a wider range (0.77-4.91). Conclusion: T2 mapping and dGEMRIC provided complementary information on the biochemical properties of the repair tissue. BioCart{sup TM}II apparently can provide RT similar to hyaline articular cartilage and may become a less-invasive alternative to ACI with a periosteal flap.

  6. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mandl, Irena [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Haller, Joerg [Department of Radiology, Hanusch Hospital, Heinrich-Collin-Strasse, A-1140 Vienna (Austria); Trattnig, Siegfried [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    In an observational study, the validity and reliability of magnetic resonance imaging (MRI) for the assessment of autologous chondrocyte transplantation (ACT) in the knee joint was determined. Two years after implantation, high-resolution MRI was used to analyze the repair tissue with nine pertinent variables. A complete filling of the defect was found in 61.5%, and a complete integration of the border zone to the adjacent cartilage in 76.9%. An intact subchondral lamina was present in 84.6% and an intact subchondral bone was present in 61.5%. Isointense signal intensities of the repair tissue compared to the adjacent native cartilage were seen in 92.3%. To evaluate interobserver variability, a reliability analysis with the determination of the intraclass correlation coefficient (ICC) was calculated. An 'almost perfect' agreement, with an ICC value >0.81, was calculated in 8 of 9 variables. The clinical outcome after 2 years showed the visual analog score (VAS) at 2.62 (S.D. {+-}0.65). The values for the knee injury and osteoarthritis outcome score (KOOS) subgroups were 68.29 ({+-}23.90) for pain, 62.09 ({+-}14.62) for symptoms, 75.45 ({+-}21.91) for ADL function, 52.69 ({+-}28.77) for sport and 70.19 ({+-}22.41) for knee-related quality of life. The clinical scores were correlated with the MRI variables. A statistically significant correlation was found for the variables 'filling of the defect,' 'structure of the repair tissue,' 'changes in the subchondral bone,' and 'signal intensities of the repair issue'. High resolution MRI and well-defined MRI variables are a reliable, reproducible and accurate tool for assessing cartilage repair tissue.

  7. Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: Results at 6 years.

    Science.gov (United States)

    Filardo, Giuseppe; Kon, Elizaveta; Berruto, Massimo; Di Martino, Alessandro; Patella, Silvio; Marcheggiani Muccioli, Giulio Maria; Zaffagnini, Stefano; Marcacci, Maurilio

    2012-10-01

    The aim of this study was to analyze the clinical outcome obtained with arthroscopic second generation autologous chondrocyte implantation (ACI) associated with bone grafting for the treatment of knee osteochondritis dissecans (OCD) at medium term follow-up. Thirty-four knees affected by symptomatic OCD grade III or IV on the ICRS (International Cartilage Repair Society) scale were treated and prospectively evaluated at 12, 24 months of follow-up, and at a final mean 6 ± 1 years of follow-up. The mean age at treatment was 21 ± 6 years. The average size of the defects was 3 ± 1cm(2). Patients were evaluated with IKDC, EQ-VAS, and Tegner scores. A statistically significant improvement in all scores was observed after the treatment. The IKDC subjective score improved from 38 ± 13 to 81 ± 20, and 91% of the knees were rated as normal or nearly normal in the objective IKDC at the final evaluation. EQ-VAS and Tegner scores showed a statistically significant linear trend of improvement over time passing from 52 ± 18 to 83 ± 14 and from 2 ± 1 to 5 ± 3, respectively, at 6 years' follow-up. A better outcome was obtained in men, sport active patients, and smaller lesions. Second generation ACI associated with bone grafting is a valid treatment option for knee OCD and may offer a good and stable clinical outcome at mean 6 years of follow-up. Further studies are needed to confirm the results over time, and determine if there is only a symptomatic improvement, or if this procedure may also prevent or delay further knee degeneration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Treatment of osteonecrosis of the femoral head using autologous cultured osteoblasts: a case report

    Directory of Open Access Journals (Sweden)

    Kim Seok-Jung

    2008-02-01

    Full Text Available Abstract Introduction Osteonecrosis of the femoral head is a progressive disease that leads to femoral head collapse and osteoarthritis. Our goal in treating osteonecrosis is to preserve, not to replace, the femoral head. Case presentation We present the case of a patient with bilateral osteonecrosis of the femoral head treated with autologous cultured osteoblast injection. Conclusion Although our experience is limited to one patient, autologous cultured osteoblast transplantation appears to be effective for treating the osteonecrosis of femoral head.

  9. A Preliminary Study of Human Amniotic Membrane as a Potential Chondrocyte Carrier

    Directory of Open Access Journals (Sweden)

    L Boo

    2009-11-01

    Full Text Available PURPOSE: To investigate the feasibility of using processed human amniotic membrane (HAM to support the attachment and proliferation of chondrocytes in vitro which in turn can be utilised as a cell delivery vehicle in tissue engineering applications. METHODS: Fresh HAM obtained from patients undergoing routine elective caesarean sections was harvested, processed and dried using either freeze drying (FD or air drying (AD methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrocytes were seeded on processed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microscopy. RESULTS: Processed HAM appeared to allow cell attachment when implanted with chondrocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. CONCLUSION: Preliminary results show that processed HAM promotes chondrocyte attachment and proliferation.

  10. Clinical and Radiological Regeneration of Large and Deep Osteochondral Defects of the Knee by Bone Augmentation Combined With Matrix-Guided Autologous Chondrocyte Transplantation.

    Science.gov (United States)

    Zellner, Johannes; Grechenig, Stephan; Pfeifer, Christian G; Krutsch, Werner; Koch, Matthias; Welsch, Goetz; Scherl, Madeleine; Seitz, Johannes; Zeman, Florian; Nerlich, Michael; Angele, Peter

    2017-11-01

    Large osteochondral defects of the knee are a challenge for regenerative treatment. While matrix-guided autologous chondrocyte transplantation (MACT) represents a successful treatment for chondral defects, the treatment potential in combination with bone grafting by cancellous bone or bone block augmentation for large and deep osteochondral defects has not been evaluated. To evaluate 1- to 3-year clinical outcomes and radiological results on magnetic resonance imaging (MRI) after the treatment of large osteochondral defects of the knee with bone augmentation and MACT. Special emphasis is placed on different methods of bone grafting (cancellous bone grafting or bone block augmentation). Case series; Level of evidence, 4. Fifty-one patients were included. Five patients were lost to follow-up. This left 46 patients (mean age, 28.2 years) with a median follow-up time of 2 years. The 46 patients had 47 deep, large osteochondral defects of the knee joint (1 patient with bilateral defects; mean defect size, 6.7 cm 2 ). The origin of the osteochondral defects was osteochondritis dissecans (n = 34), osteonecrosis (n = 8), or subchondral cysts (n = 5). Depending on the depth, all defects were treated by cancellous bone grafting (defect depth ≤10 mm; n = 16) or bone block augmentation (defect depth >10 mm; n = 31) combined with MACT. Clinical outcomes were followed at 3 months, 6 months, 1 year, 2 years, and 3 years and evaluated using the International Knee Documentation Committee (IKDC) score and Cincinnati score. A magnetic resonance imaging (MRI) evaluation was performed at 1 and 2 years, and the magnetic resonance observation of cartilage repair tissue (MOCART) score with additional specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes, sclerotic areas, and edema) was analyzed. The clinical outcome scores revealed a significant increase at follow-up (6 months to 3 years) compared with the preclinical results. The median IKDC score

  11. [Post-treatment rehabilitation after autologous chondrocyte implantation: State of the art and recommendations of the Clinical Tissue Regeneration Study Group of the German Society for Accident Surgery and the German Society for Orthopedics and Orthopedic Surgery].

    Science.gov (United States)

    Pietschmann, M F; Horng, A; Glaser, C; Albrecht, D; Bruns, J; Scheffler, S; Marlovits, S; Angele, P; Aurich, M; Bosch, U; Fritz, J; Frosch, K H; Kolombe, T; Richter, W; Petersen, J P; Nöth, U; Niemeyer, P; Jagodzinsky, M; Kasten, P; Ruhnau, K; Müller, P E

    2014-03-01

    Over the course of the past two decades autologous chondrocyte implantation (ACI) has become an important surgical technique for treating large cartilage defects. The original method using a periostal flap has been improved by using cell-seeded scaffolds for implantation, the matrix-based autologous chondrocyte implantation (mb-ACI) procedure. Uniform nationwide guidelines for post-ACI rehabilitation do not exist. A survey was conducted among the members of the clinical tissue regeneration study group concerning the current rehabilitation protocols and the members of the study group published recommendations for postoperative rehabilitation and treatment after ACI based on the results of this survey. There was agreement on fundamentals concerning a location-specific rehabilitation protocol (femoral condyle vs. patellofemoral joint). With regard to weight bearing and range of motion a variety of different protocols exist. Similar to this total agreement on the role of magnetic resonance imaging (MRI) for postsurgical care was found but again a great variety of different protocols exist. This manuscript summarizes the recommendations of the members of the German clinical tissue regeneration study group on postsurgical rehabilitation and MRI assessment after ACI (level IVb/EBM).

  12. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Quirbach, Sebastian; Trattnig, Siegfried [Vienna General Hospital, MR Center - High-Field MR, Department of Radiology, Medical University of Vienna, Vienna (Austria); Marlovits, Stefan; Zimmermann, Valentin [Medical University of Vienna, Center for Joint and Cartilage, Department of Trauma Surgery, Vienna (Austria); Domayer, Stephan; Dorotka, Ronald [Medical University of Vienna, Department of Orthopedic Surgery, Vienna (Austria); Mamisch, Tallal C. [University of Berne, Department of Orthopedic Surgery, Berne (Switzerland); Bohndorf, Klaus [Klinikum Augsburg, Department of Radiology, Augsburg (Germany); Welsch, Goetz H. [Vienna General Hospital, MR Center - High-Field MR, Department of Radiology, Medical University of Vienna, Vienna (Austria); University of Erlangen, Department of Trauma Surgery, Erlangen (Germany)

    2009-08-15

    The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. The overall MOCART score in patients after MACT was 73.8. T2 relaxation times ({proportional_to}50 ms), T2* relaxation times ({proportional_to}16 ms), and the diffusion constant for DWI ({proportional_to}1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p{>=}0.05) compared to the control cartilage; however, a significantly higher diffusivity ({proportional_to}1.5; p<0.05) was noted in the cartilage repair tissue. The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated

  13. Matrix-based autologous chondrocyte implantation for cartilage repair with Hyalograft{sup (R)}C: Two-year follow-up by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, S. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria)]. E-mail: siegfried.trattnig@meduniwien.ac.at; Pinker, K. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria); Krestan, C. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria); Plank, C. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria); Millington, S. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria); Marlovits, S. [Department of Radiology, University Hospital of Vienna, Medical University of Vienna, Vienna (Austria)

    2006-01-15

    Objective: Monitoring of articular cartilage repair after matrix-associated autologous chondrocyte implantation with Hyalograft{sup (R)}C by a new grading system based on non-invasive high-resolution magnetic resonance imaging. Patients and methods: In 23 patients, postoperative magnetic resonance imaging (MRI) was performed between 76 and 120 weeks. In nine of these patients, five MRI examinations were performed at 4, 12, 24, 52 and 104 weeks after Hyalograft{sup (R)}C implant. The repair tissue was described with separate variables: degree of defect repair in width and length, signal intensity of the repair tissue and status of the subchondral bone. For these variables a grading system with point scale evaluation was applied. Results: A complete filling of the defect by repair tissue was found in 15 patients. A moderate hypertrophy of the repair tissue was found in two patients. An underfilling of the defect by repair tissue was observed in four patients. In one patient, a partial detachment of the implant with associated subchondral cyst and edema was seen, and in one patient, a complete detachment of the graft was observed. The filling of the defect parallel to cartilage surface (integration) was complete in 18 cases. A split-like incomplete integration was present in one patient. Incomplete integration was found in four patients. The signal intensity of the implant on FSE and on 3D-GRE+FS was isointense compared to native normal cartilage in all cases after 12 months. The subchondral bone was normal in 14 patients. An edema-like signal alteration was found in three cases. In six patients, a non-edema abnormality of the subchondral bone (granulation tissue, cysts or sclerosis) was present. On follow-up exams performed in nine patients at the same postoperative intervals dynamic processes such as filling of partial defects, vanishing of hypertrophies and change of signal intensity of implant to isointensity with native articular cartilage were observed. A

  14. Transplante autólogo de condrócitos: relato de três casos Autologous chondrocyte implantation: series of 3 cases

    Directory of Open Access Journals (Sweden)

    Riccardo Gomes Gobbi

    2010-01-01

    Full Text Available A cartilagem hialina recobre as superfícies articulares e tem um papel importante na redução da fricção e da carga mecânica das articulações sinoviais, como o joelho. Este tecido não é suprido de vasos, nervos ou circulação linfática, o que pode ser uma das razões pela qual a cartilagem articular tem uma péssima capacidade de cicatrização. As lesões condrais, quando atingem o osso subcondral (lesão osteocondral, não cicatrizam e podem progredir para artrose com o passar do tempo. Em pacientes jovens, o tratamento dos defeitos condrais do joelho ainda é um desafio, principalmente as lesões maiores de 4cm. Uma das opções de tratamento nesses pacientes é o transplante autólogo de condrócitos, que por não violar o osso subcondral e por reparar o defeito com tecido semelhante à cartilagem hialina, teria a vantagem teórica de ser mais biológico e mecanicamente superior, quando comparado a outras técnicas. Descreveremos nesse artigo a experiência do Instituto de Ortopedia e Traumatologia do Hospital das Clínicas da Universidade de São Paulo (IOT-HCFMUSP com o transplante autólogo de condrócitos (ACI, através do relato de três casos.Hyaline cartilage in the surface of synovial joints plays an important role in lowering stress and attrition in joints such as the knee. This tissue has no blood vessels, nerves, nor lymphatic drainage, which in part explains why articular cartilage has such poor capacity for healing. Chondral lesions reaching the subchondral bone (osteochondral lesions do not heal and may progress to osteoarthritis as time passes. In young patients, treatment of such defects is challenging, especially in lesions larger than 4 cm. One option in young adults is the autologous chondrocyte implantation, capable of filling the defect with tissue similar to hyaline cartilage without violating the subchondral bone. Theoretically, it has biological and mechanical advantages over other surgical options. In this

  15. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow

    Science.gov (United States)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  16. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges.

    Science.gov (United States)

    Lu, Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen, Guoping

    2011-08-01

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering. © 2011 IOP Publishing Ltd

  17. Effects of platelet rich plasma and chondrocyte co-culture on MSC chondrogenesis, hypertrophy and pathological responses

    OpenAIRE

    Ramezanifard, Rouhallah; Kabiri, Mahboubeh; Hanaee Ahvaz, Hana

    2017-01-01

    Regarding the inadequate healing capability of cartilage tissue, cell-based therapy is making the future of cartilage repair and regeneration. Mesenchymal stem cells (MSC) have shown great promise in cartilage regeneration. However, a yet-unresolved issue is the emergence of hypertrophic and pathologic markers during in vitro MSC chondrogenesis. Articular chondrocytes (AC) can suppress the undesired hypertrophy when co-cultured with MSC. On the other hand, platelet rich plasma (PRP), is consi...

  18. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  19. The Ihh signal is essential for regulating proliferation and hypertrophy of cultured chicken chondrocytes.

    Science.gov (United States)

    Ma, R S; Zhou, Z L; Luo, J W; Zhang, H; Hou, J F

    2013-10-01

    The Indian hedgehog (Ihh) signal plays a vital role in regulating proliferation and hypertrophy of chondrocytes. To investigate its function in postnatal chicken (Gallus gallus) chondrocytes, cyclopamine was used to inhibit Ihh signaling. The MTT and ALP assays revealed the downgrade-proliferation and upgrade-differentiation of chondrocytes. To further elucidate the mechanism, the mRNA expression levels of Ihh, parathyroid hormone related protein (PTHrP), Gli-2, Bcl-2, Bone Morphogenetic Protein 6 (BMP-6), type X collagen (Col X) and type II collagen (Col II) were detected by quantitative real-time RT-PCR analysis, and the protein expressions of Ihh, Col X, and Col II were determined using Western blot analysis. After the Ihh signal was blocked, chondrocytes demonstrated high expression levels of PTHrP and Col X and low levels of Gli-2, BMP-6, Bcl-2 and Col II although Ihh expression was increased. Based on these results, the Ihh signal is essential for balancing chicken chondrocyte proliferation and hypertrophy, and the regulatory function of PTHrP acts in an Ihh-dependent manner. Furthermore, BMP-6 and Bcl-2 played roles in maintaining the development of chondrocytes and may be downstream regulatory factors of Ihh signaling. © 2013.

  20. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads.

    Science.gov (United States)

    Gründer, Tatiana; Gaissmaier, Christoph; Fritz, Jürgen; Stoop, Reinout; Hortschansky, Peter; Mollenhauer, Jürgen; Aicher, Wilhelm K

    2004-07-01

    For autologous chondrocyte transplantation (ACT) chondrocytes are expanded in vitro. During expansion these cells may dedifferentiate. This change in phenotype is characterized by a raised expression of type I collagen and a decrease in type II collagen expression. Since high expression of type II collagen is of central importance for the properties of hyaline cartilage, we investigated if the growth factor bone morphogenetic protein-2 (BMP-2) may modulate the chondrogenic phenotype in monolayer cell cultures and in three-dimensional culture systems. Chondrocytes from articular knee cartilage of 11 individuals (average age: 39.8 years) with no history of joint disease were isolated and seeded either in monolayer cultures or embedded in alginate beads in presence or absence of human recombinant BMP-2 (hr-BMP-2). Then, cells were harvested and analysis of the chondrogenic phenotype was performed using quantitative RT-PCR, immunocytochemistry and ELISA. Addition of BMP-2 to chondrocytes expanded in two-dimensional (2D) cultures during the first subculture (P1) had no effect on mRNA amounts encoding type II collagen and interleukin-1beta (IL-1beta). In contrast, seeding chondrocytes in three-dimensional (3D) alginate cultures raised type II collagen expression significantly and addition of BMP-2 enhanced this effect. We conclude that chondrocytes during expansion for ACT may benefit from BMP-2 activation only when seeded in an appropriate 3D culture system. Copyright 2004 OsteoArthritis Research Society International

  1. Effects of non-steroidal anti-inflammatory drugs on cell proliferation and death in cultured epiphyseal-articular chondrocytes of fetal rats

    International Nuclear Information System (INIS)

    Chang, J.-K.; Wu, S.-C.; Wang, G.-J.

    2006-01-01

    Previous reports indicated that non-steroidal anti-inflammatory drugs (NSAIDs) suppress bone repair. Our previous study further found that ketorolac delayed the endochondral bone formation, and the critical effective timing was at the early stage of repair. Furthermore, we found that NSAIDs suppressed proliferation and induced cell death of cultured osteoblasts. In this study, we hypothesized that chondrocytic proliferation and death, which plays an important role at the early stage of endochondral bone formation, might be affected by NSAIDs. Non-selective NSAIDs, indomethacin, ketorolac, diclofenac and piroxicam; cyclooxygenase-2 (COX-2) selective NSAIDs, celecoxib and DFU (an analog of rofecoxib); prostaglandins (PGs), PGE1, PGE2 and PGF2α; and each NSAID plus each PG were tested. The effects of NSAIDs on proliferation, cell cycle kinetics, cytotoxicity and cell death of epiphyseal-articular chondrocytes of fetal rats were examined. The results showed that all the tested NSAIDs, except DFU, inhibited thymidine incorporation of chondrocytes at a concentration range (10 -8 to 10 -4 M) covering the theoretic therapeutic concentrations. Cell cycle was arrested by NSAIDs at the G /G 1 phase. Upon a 24 h treatment, LDH leakage and cell death (both apoptosis and necrosis) were significantly induced by the four non-selective NSAIDs in chondrocyte cultures. However, COX-2 inhibitors revealed non-significant effects on cytotoxicity of chondrocytes except higher concentration of celecoxib (10 -4 M). Replenishments of PGE1, PGE2 or PGF2α could not reverse the effects of NSAIDs on chondrocytic proliferation and cytotoxicity. In this study, we found that therapeutic concentrations of non-selective NSAIDs caused proliferation suppression and cell death of chondrocytes, suggesting these adverse effects may be one of the reasons that NSAIDs delay the endochondral ossification during bone repair found in previous studies. Furthermore, these effects of NSAIDs may act via PG

  2. Effects of low oxygen tension on gene profile of soluble growth factors in co-cultured adipose-derived stromal cells and chondrocytes.

    Science.gov (United States)

    Shi, Sirong; Xie, Jing; Zhong, Juan; Lin, Shiyu; Zhang, Tao; Sun, Ke; Fu, Na; Shao, Xiaoru; Lin, Yunfeng

    2016-06-01

    Moving towards development of optimized cartilage regeneration with adipose-derived stromal cells (ASCs), the focus of this study was on investigating the influence of hypoxia on soluble factors secreted by ASCs and chondrocytes after crosstalk. We established direct contact co-culture and non-contact co-culture systems by using red or green fluorescent protein (R/GFP)-labelled mice and SD rats respectively. Gene variation of growth factors of the two cell types, in both hypoxic and normoxic conditions, were screened using semi-quantitative polymerase chain reaction (PCR). Co-culture with ASCs and chondrocytes under hypoxia was shown to successfully induce or enhance ASC to chondrogenic differentiation. To be specific, chondrogenic maker genes: AGC, COL II and SOX9 were remarkably enhanced in both ASCs and chondrocytes after crosstalk under low oxygen tension. Subsequently, screening growth factors in ASCs and chondrocytes under hypoxia showed that HIF-1α, VEGF-A/B, BMP-2/-4/-6, FGF-2 and IGF-1 were significantly increased, but not TGF-β1. These results revealed that both hypoxia and co-culture systems can notably enhance chondrogenesis of ASCs as well as increase proliferation of ASCs and chondrocytes. © 2016 John Wiley & Sons Ltd.

  3. Conditioned Medium of Wharton's Jelly Derived Stem Cells Can Enhance the Cartilage Specific Genes Expression by Chondrocytes in Monolayer and Mass Culture Systems

    Directory of Open Access Journals (Sweden)

    Maryam Hassan Famian

    2017-04-01

    Full Text Available Purpose: Mesenchymal stem cells (MSCs have been introduced for cell therapy strategies in osteoarthritis (OA. Despite of their capacity for differentiation into chondrocyte, there are some evidences about their life-threatening problem after transplantation. So, some researchers shifted on the application of stem cells conditioned medium. The goal of this study is to evaluate whether Wharton's jelly derived stem cell conditioned medium (WJSCs-CM can enhance the gene expression profile by chondrocytes in monolayer and mass culture systems. Methods: Conditioned medium was obtained from WJSCs at fourth passage. Isolated chondrocytes were plated at density of 1×106 for both monolayer and high density culture. Then cells in both groups were divided into control (received medium and experiment group treated with WJ-CM for 3 and 6 days. Samples were prepared to evaluate gene expression profile of collagen II, aggrecan, cartilage oligomeric matrix protein (COMP and sox-9 using real-time RT-PCR. Results: After 3 days, Chondrocytes treated with WJSCs-CM expressed significantly higher level of genes compared to the control group in both culture systems. After 6 days, the expression of genes in monolayer cultivated chondrocytes was decreased but that of the mass culture were up-regulated significantly. Conclusion: WJ-SCs-CM can increase the expression of cartilage-specific genes and can be introduced as a promoting factor for cartilage regeneration.

  4. In vitro exposure of human chondrocytes to pulsed electromagnetic fields

    Directory of Open Access Journals (Sweden)

    V Nicolin

    2009-08-01

    Full Text Available The effect of pulsed electromagnetic fields (PEMFs on the proliferation and survival of matrix-induced autologous chondrocyte implantation (MACI®-derived cells was studied to ascertain the healing potential of PEMFs. MACI-derived cells were taken from cartilage biopsies 6 months after surgery and cultured. No dedifferentiation towards the fibroblastic phenotype occurred, indicating the success of the surgical implantation. The MACI-derived cultured chondrocytes were exposed to 12 h/day (short term or 4 h/day (long term PEMFs exposure (magnetic field intensity, 2 mT; frequency, 75 Hz and proliferation rate determined by flow cytometric analysis. The PEMFs exposure elicited a significant increase of cell number in the SG2M cell cycle phase. Moreover, cells isolated from MACI® scaffolds showed the presence of collagen type II, a typical marker of chondrocyte functionality. The results show that MACI® membranes represent an optimal bioengineering device to support chondrocyte growth and proliferation in surgical implants. The surgical implant of MACI® combined with physiotherapy is suggested as a promising approach for a faster and safer treatment of cartilage traumatic lesions.

  5. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  6. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  7. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  8. Establishment of autologous embryonic stem cells derived from preantral follicle culture and oocyte parthenogenesis.

    Science.gov (United States)

    Lee, Seung Tae; Choi, Mun Hwan; Lee, Eun Ju; Gong, Seung Pyo; Jang, Mi; Park, Sang Hyun; Jee, Hyang; Kim, Dae Yong; Han, Jae Yong; Lim, Jeong Mook

    2008-11-01

    To evaluate whether autologous embryonic stem cells can be established without generating clone embryos. Prospective model study. Gamete and stem cell biotechnology laboratory in Seoul National University, Seoul, Korea. F1 hybrid B6D2F1 mice. Preantral follicles were cultured, and oocytes matured in the follicles were parthenogenetically activated. Preimplantation development and stem cell characterization. More intrafollicular oocytes that were retrieved from secondary follicles matured and developed into blastocysts after parthenogenesis than those that were retrieved from primary follicles. Of those 35 blastocysts derived from 193 parthenotes, one line of colony-forming cells was established from the culturing of early secondary follicles. The established cells were positive for embryonic stem cell-specific markers and had normal diploid karyotype and telomerase activity. They differentiated into embryoid bodies in vitro and teratomas in vivo. Inducible differentiation of the established cells into neuronal lineage cells also was possible. Autologous embryonic stem cells can be established by preantral follicle culture and oocyte parthenogenesis. A combined technique of follicle culture and oocyte parthenogenesis that does not use developmentally competent oocytes has the potential to replace somatic cell nuclear transfer for autologous cell therapy.

  9. Stimulation of matrix formation in rabbit chondrocyte cultures by ascorbate. 1. Effect of ascorbate analogs and beta-aminopropionitrile.

    Science.gov (United States)

    Wright, G C; Wei, X Q; McDevitt, C A; Lane, B P; Sokoloff, L

    1988-01-01

    The most consistent effects of 0.2 mM L-ascorbate on monolayer cultures of rabbit articular chondrocytes were a diversion of incorporated radiosulfate into a pericellular matrix and enhancement of cell proliferation. Only with certain batches of fetal bovine serum (FBS) was there a cell-for-cell increase of proteoglycan synthesis. These actions increased as the cell inoculum rose from 0.5 to 2 x 10(5) cells/T25 flask. Maximal effects of ascorbate and D-isoascorbate were found over a range of 0.05-0.2 mM. L-Dehydroascorbic acid was less effective than either, and no stimulatory action was exerted by L-cysteine, glutathione, dithiothreitol, methylene blue, or phenazine methosulfate. Ascorbate increased the hypro:pro ratio of newly synthesized proteins. beta-Aminopropionitrile (1 mM) reduced the proportion of [3H]hydroxyproline and [35S]O4-proteoglycans in the ascorbate-supplemented matrix 31 and 7%, respectively. In corresponding electronmicrographs, the number of pericellular filaments was reduced. We conclude: (a) Ascorbate has a general anabolic effect on chondrocytes in culture and enhances matrix assembly through mechanisms other than its redox function; (b) deposition of proteoglycans in the matrix is not simply the result of mechanical entrapment by allysine- or hydroxyallysine-derived cross-linking of collagen; and (c) contradictory reports on the subject result from variations in the serum employed, inoculum density, and concentration of ascorbate.

  10. Repair Potential of Matrix-Induced Bone Marrow Aspirate Concentrate and Matrix-Induced Autologous Chondrocyte Implantation for Talar Osteochondral Repair: Patterns of Some Catabolic, Inflammatory, and Pain Mediators.

    Science.gov (United States)

    Desando, Giovanna; Bartolotti, Isabella; Vannini, Francesca; Cavallo, Carola; Castagnini, Francesco; Buda, Roberto; Giannini, Sandro; Mosca, Massimiliano; Mariani, Erminia; Grigolo, Brunella

    2017-01-01

    The low regenerative potential of cartilage contributed to the development of different cell therapies aimed to improve the clinical outcome in young patients with Osteochondral Lesions of the Talus (OLT). This study is designed to assess the regenerative potential of autologous matrix-induced Bone Marrow Aspirate Concentrate (mBMAC) and matrix-induced Autologous Chondrocyte Implantation (mACI) evaluating, on a small number of osteochondral biopsies, the expression of some catabolic, inflammatory, and pain mediators. Twenty-two patients with OLT were analyzed in this study; 7 were treated with mACI and 15 with mBMAC. Informed consent was obtained from all the patients. Clinical assessments were performed pre-operatively and at 12, 24, and 36 months after surgery using the American Orthopedic Foot and Ankle Society (AOFAS). Histology and immunohistochemistry were used to assess cartilage repair at 24 months. Data were analyzed using non-parametric Wilcoxon-Mann-Whitney and Spearman tests. A remarkable improvement in AOFAS score was noticed for both treatments up to 36 months; however, patients treated with mACI reported the best AOFAS score. Various degrees of tissue remodeling were observed by histological analysis for both cell strategies. However, mBMAC treatment showed a higher expression of some fibrous and hypertrophic markers compared to mACI group. A mild positivity for nerve growth factor, as pain mediator, was noticed for both treatments.M. Our findings demonstrated the best histological and clinical results following mACI treatment since different fibrotic and hypertrophic features were evident in the mBMAC group at 24-month follow-up.

  11. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sushmita [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Kirkham, Jennifer [Biomineralisation Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom); Wood, David [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Curran, Stephen [Smith and Nephew Research Centre, YO105DF (United Kingdom); Yang, Xuebin, E-mail: X.B.Yang@leeds.ac.uk [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom)

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  12. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    International Nuclear Information System (INIS)

    Saha, Sushmita; Kirkham, Jennifer; Wood, David; Curran, Stephen; Yang, Xuebin

    2010-01-01

    Research highlights: → This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. → Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. → Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. → Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the

  13. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  14. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway.

    Science.gov (United States)

    Öztürk, Ece; Despot-Slade, Evelin; Pichler, Michael; Zenobi-Wong, Marcy

    2017-11-15

    De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    Science.gov (United States)

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  16. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee

    Energy Technology Data Exchange (ETDEWEB)

    Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Iwasa, Junji [Shimane University School of Medicine, Department of Orthopaedic Surgery, Izumo-shi, Shimane-ken (Japan); Fukuba, Eiji; Kitagaki, Hajime [Shimane University School of Medicine, Department of Radiology, Izumo-shi, Shimane-ken (Japan); Ochi, Mitsuo [Hiroshima University, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Minami-ku, Hiroshima (Japan)

    2016-10-15

    To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1{sub implant} and T2{sub implant} values were compared with those of the control cartilage region (T1{sub control} and T2{sub control}). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1{sub implant} (386.64 ± 101.78 ms) and T1{sub control} (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1{sub implant} and clinical outcomes, but not between T2{sub implant} and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1{sub implant} value, but not the T2 value, might be a predictor of clinical outcome after ACI. (orig.)

  17. Comparison of the osteogenic potentials of autologous cultured osteoblasts and mesenchymal stem cells loaded onto allogeneic cancellous bone granules.

    Science.gov (United States)

    Kim, Seok-Jung; Chung, Yang-Guk; Lee, Yun-Kyoung; Oh, Il-Whan; Kim, Yong-Sik; Moon, Young-Seok

    2012-02-01

    We compared the bone regeneration potentials of autologous cultured osteoblasts and of bone-marrow-derived autologous MSCs in combination with allogeneic cancellous bone granules in a rabbit radial defect model. Radial shaft defects over 15 mm were made in 26 New Zealand white rabbits. The animals underwent insertion of allogeneic cancellous bone granules containing autologous osteoblasts into right-side defects (the experimental group) and of allogeneic cancellous bone granules with autologous MSCs into left-side defects (the control group). To quantitatively assess bone regeneration, radiographic evaluations as well as BMD and BMC measurements were performed 3, 6, 9 and 12 weeks post-implantation and histology as well as micro-CT image analysis were performed at 6 and 12 weeks. Radiographic evaluations 3 weeks post-implantation showed that the experimental group had a higher mean bone quantity index (p bone volume and surface area than the control sides (p bone formation in the experimental group. This in vivo study demonstrates that a combination of autologous osteoblasts and small-sized, allogeneic cancellous bone granules leads to more rapid bone regeneration than autologous MSCs and small-sized, allogeneic cancellous bone granules.

  18. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(Ossron™ injection to treat fractures

    Directory of Open Access Journals (Sweden)

    Jeon Taek-Soo

    2009-02-01

    Full Text Available Abstract Background We performed a multicenter, open, randomized, clinical study of autologous cultured osteoblast injection for long-bone fracture, to evaluate the fracture healing acceleration effect and the safety of autologous cultured osteoblasts. Methods Sixty-four patients with long-bone fractures were randomly divided into two groups, i.e. those who received autologous cultured osteoblast injection and those who received no treatment. The sum of the difference in the callus formation scores after four and eight weeks, was used as the first efficacy variable. Results The autologous cultured osteoblast injection group showed fracture healing acceleration of statistical significance, and there were no specific patient complications when using this treatment. Conclusion Autologous cultured osteoblast injection should therefore be considered as a successful treatment option for treating long-bone fracture. Trial registration Current Controlled Trials ISRCTN10637905

  19. The effect of a slightly acidic somatomedin peptide (ILAs) on the sulphation of proteoglycans from articular and growth plate chondrocytes in culture

    International Nuclear Information System (INIS)

    Corvol, M.-T.; Dumontier, M.-F.; Rappaport, R.; Guyda, H.; Posner, B.I.

    1978-01-01

    Chondrocyte cultures were prepared from rabbit growth plate (GPC) and articular (ARC) chondrocytes. These two cell types have distinct morphological characteristics. The cells reached maximum numbers by days 10 and 21 for ARC and GPC, respectively. The proteoglycans (PG) contained in the cellular pool were extracted and purified by DEAE cellulose chromatography. The effect of a partially purified somatomedin peptide with insulin-like activity on [ 35 S]sulphate incorporation into PG was evaluated. In both ARC and GPC a significant stimulation of [ 35 S]sulphate uptake into PG subunits was obtained with 1 ng Eq./ml of somatomedin peptide. In order to obtain the same stimulatory effect with porcine insulin, a 1000-fold greater concentration was required. The electrophoretic patterns of the PG subunits on acrylamide-agarose electrophoresis were identical on control incubations and after stimulation with the somatomedin peptide. These data demonstrate in vitro biological activity of this peptide on well differentiated articular and epiphyseal growth plate chondrocytes in culture. These cultures appear to provide a sensitive biological assay for somatomedin peptides. (author)

  20. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-γ

    International Nuclear Information System (INIS)

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji; Hayakawa, Sumio; Yoshida, Kohji; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-01-01

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-γ was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-γ inhibitor GW9662 suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-γ and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1

  1. Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures.

    Science.gov (United States)

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, S

    2007-05-04

    Conventional medications in articular disease are often effective for symptom relief, but they can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective as non-steroidal anti-inflammatory drugs at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favourable influence on the course of the disease. In this study, we assay the anti-inflammatory/chondroprotective effect of some lyophilised extracts obtained from Opuntia ficus indica (L.) cladodes and of hyaluronic acid (HA) on the production of key molecules released during chronic inflammatory events such as nitric oxide (NO), glycosaminoglycans (GAGs), prostaglandins (PGE(2)) and reactive oxygen species (ROS) in human chondrocyte culture, stimulated with proinflammatory cytokine interleukin-1 beta (IL-1 beta). Further the antioxidant effect of these extracts was evaluated in vitro employing the bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test). All the extracts tested in this study showed an interesting profile in active compounds. Particularly some of these extracts were characterized by polyphenolic and polysaccharidic species. In vitro results pointed out that the extracts of Opuntia ficus indica cladodes were able to contrast the harmful effects of IL-1 beta. Our data showed the protective effect of the extracts of Opuntia ficus indica cladodes in cartilage alteration, which appears greater than that elicited by hyaluronic acid (HA) commonly employed as visco-supplementation in the treatment of joint diseases.

  2. Grafting Of Autologous Non-Cultured Melanocytes For The Treatment Of Vitiligo : A Pilot Study

    Directory of Open Access Journals (Sweden)

    kumar Sudhir

    2003-01-01

    Full Text Available Vitiligo is a common, often heritable, acquired disorder. Although vitiligo does not cause any physical problem but it surely is a psychosocial disaster. Depigmented patches resistant to medical treatment need to be managed surgically. Surgically. Surgical procedures usually performed lead to unsatisfactory results and that too at the cost of scarring of normal donor site. Here we describe our experience with grafting of non-cultured autologous melanocytes, which is not associated with any scarring. We tried this method in 16 lesions in 8 patients of stable vitiligo. Due to its advantages, like no scarring at recipient sites, ability to re-pigment large area with small piece of skin graft, simplicity and feasibility in Indian conditions, this is a good alternative in the treatment of vitiligo.

  3. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes.

    Science.gov (United States)

    Heywood, Hannah K; Lee, David A

    2010-01-01

    Autologous chondrocyte implantation requires a phase of in vitro cell expansion, achieved by monolayer culture under atmospheric oxygen levels. Chondrocytes reside under low oxygen conditions in situ and exhibit a glycolytic metabolism. However, oxidative phosphorylation rises progressively during culture, with concomitant reactive oxygen species production. We determine if the high oxygen environment in vitro provides the transformation stimulus. Articular chondrocytes were cultured in monolayer for up to 14 days under 2%, 5%, or 20% oxygen. Expansion under 2% and 5% oxygen reduced the rate at which the cells developed an oxidative phenotype compared to 20% oxygen. However, at 40 +/- 4 fmol cell(-1) h(-1) the oxygen consumption by chondrocytes expanded under 2% oxygen for 14 days was still 14 times the value observed for freshly isolated cells. Seventy-five to 78% of the increased oxygen consumption was accounted for by oxidative phosphorylation (oligomycin sensitive). Expansion under low oxygen also reduced cellular proliferation and 8-hydroxyguanosine release, a marker of oxidative DNA damage. However, these parameters remained elevated compared to freshly isolated cells. Thus, expansion under physiological oxygen levels reduces, but does not abolish, the induction of an oxidative energy metabolism. We conclude that simply transferring chondrocytes to low oxygen is not sufficient to either maintain or re-establish a normal energy metabolism. Furthermore, a hydrophobic polystyrene culture surface which promotes rounded cell morphology had no effect on the development of an oxidative metabolism. Although the shift towards an oxidative energy metabolism is often accompanied by morphological changes, this study does not support the hypothesis that it is driven by them.

  4. Comprehensive high-resolution genomic profiling and cytogenetics of human chondrocyte cultures by GTG-banding, locus-specific FISH, SKY and SNP array.

    Science.gov (United States)

    Wallenborn, M; Petters, O; Rudolf, D; Hantmann, H; Richter, M; Ahnert, P; Rohani, L; Smink, J J; Bulwin, G C; Krupp, W; Schulz, R M; Holland, H

    2018-04-23

    In the development of cell-based medicinal products, it is crucial to guarantee that the application of such an advanced therapy medicinal product (ATMP) is safe for the patients. The consensus of the European regulatory authorities is: "In conclusion, on the basis of the state of art, conventional karyotyping can be considered a valuable and useful technique to analyse chromosomal stability during preclinical studies". 408 chondrocyte samples (84 monolayers and 324 spheroids) from six patients were analysed using trypsin-Giemsa staining, spectral karyotyping and fluorescence in situ hybridisation, to evaluate the genetic stability of an ATMP named Spherox®. Single nucleotide polymorphism (SNP) array analysis was performed on chondrocyte spheroids from five of the six donors. Applying this combination of techniques, the genetic analyses performed revealed no significant genetic instability until passage 3 in monolayer cells and interphase cells from spheroid cultures at different time points. Clonal occurrence of polyploid metaphases and endoreduplications were identified associated with prolonged cultivation time. Also, gonosomal losses were observed in chondrocyte spheroids, with increasing passage and duration of the differentiation phase. Interestingly, in one of the donors, chromosomal aberrations that are also described in extraskeletal myxoid chondrosarcoma were identified. The SNP array analysis exhibited chromosomal aberrations in two donors and copy neutral losses of heterozygosity regions in four donors. This study showed the necessity of combined genetic analyses at defined cultivation time points in quality studies within the field of cell therapy.

  5. Anti-degenerative effect of Apigenin, Luteolin and Quercetin on human keratinocyte and chondrocyte cultures: SAR evaluation.

    Science.gov (United States)

    Crascì, Lucia; Cardile, Venera; Longhitano, Giusy; Nanfitò, Francesco; Panico, Annamaria

    2017-11-06

    Background Inflammation is a dynamic process that occur on vascularized tissue in response to different stimuli causing cell injury and tissue degeneration. Reactive oxygen and nitrogen species (ROS and RNS) and advanced glycation end products (AGEs) have a key mediatory role in the development and progression of degenerative tissue process. The bioflavonoids possess a broad-spectrum of pharmacological activities. Their capability is related to their chemical structure. Methods In this study we evaluated and compare antioxidant, anti-glycative and anti-degenerative actions of two flavones apigenin and luteolin and a flavonol quercetin, in function of their hydroxyl groups arrangement. Moreover we assay, on NCTC 2544 and chondrocytes cultures, the flavonoids capacity to modulate NO and glycosamminoglycans levels, index of antidegenerative capacity. Results All tested flavonoids act as free radicals scavengers (ROO • and NO • ) and advanced glycation end products inhibitors, in agreement with their BDE, IP and molecular planarity. Quercetin showed a high ORAC value (2.70±0.12 ORAC Units), according to a low BDE (74.54 Kcal/mol) and IP (174.44 Kcal/mol) values. Luteolin is the most active compound in the NO (48.19±0.18%) and AGEs (60.06±0.52%) inhibition, in function of a low torsion angle (16.3°) between the 3-OH moiety and C'6 carbon atom. Conclusion All tested flavonoids posses a protective role on degenerative tissue events. They acts in different manner depending on the functional groups, the biological substrate and the concentration used. In any case, it can be considered a suitable product preventing a degenerative processes. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Graft of autologous fibroblasts in gingival tissue in vivo after culture in vitro. Preliminary study on rats.

    Science.gov (United States)

    Simain-Sato, F; Lahmouzi, J; Heinen, E; Defresne, M P; De Pauw-Gillet, M C; Grisar, T; Legros, J J; Legrand, R

    1999-08-01

    Several grafting techniques and guided tissue regeneration techniques (GTR) have been well-developed in periodontal surgery. However, these techniques could induce pain and side effects, such as a gingival recession during the healing period following the therapy. The graft of a small autologous connective tissue, using non-invasive surgical techniques could yield several benefits for the patients. Our preliminary study explores the feasibility of collecting healthy gingival tissues, culturing them in vitro to amplify rat gingival fibroblasts (RGF) and inoculating the obtained cells into autologous rat gingival tissues in vivo. Gingival tissues samples were cultured as explants as described by Freshney et al. and Adolphe. Confluent cells surrounding explants were detached after 7 d of culture from Petri dishes using 0.05% trypsin and designated "first transferred cells" (T1). At the third passage (T3), cells cultured as monolayer were either examined under microscopy--phase contrast, scanning, or transmission electron--or numerated after trypan blue exclusion test. Autologous RGF labelled with fluorochrome were inoculated at the vestibular and palatine site of gingival tissue close to the superior incisors. In this preliminary study, 12 Wistar rats were used; for each, 2 biopsies were dissected and fixed for phase contrast or fluorescence microscopy. On d 1, 3 and 7 after injection in rat gingival tissues, fluorochrome-labelled cells could be detected in all these.

  7. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-01-01

    Full Text Available Mechanical loading and hydrostatic pressure (HP regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA. This study investigated the effects of a cyclic HP (1–5 MPa, in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4. Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01 of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01 of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001 in OA chondrocytes at basal conditions and significantly reduced (p < 0.01 by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation.

  8. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Science.gov (United States)

    Cheleschi, Sara; De Palma, Anna; Pecorelli, Alessandra; Pascarelli, Nicola Antonio; Valacchi, Giuseppe; Belmonte, Giuseppe; Carta, Serafino; Galeazzi, Mauro; Fioravanti, Antonella

    2017-01-01

    Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1–5 MPa), in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4). Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01) of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01) of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001) in OA chondrocytes at basal conditions and significantly reduced (p < 0.01) by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation. PMID:28085114

  9. Does size difference in allogeneic cancellous bone granules loaded with differentiated autologous cultured osteoblasts affect osteogenic potential?

    Science.gov (United States)

    Lee, Sang-Uk; Chung, Yang-Guk; Kim, Seok-Jung; Oh, Il-Hoan; Kim, Yong-Sik; Ju, Sung-Hun

    2014-02-01

    We study the efficacy of bone regeneration by using two differently sized allogeneic cancellous bone granules loaded with autologous cultured osteoblasts in a rabbit model. Critical-sized bone defects of the radial shaft were made in 40 New Zealand White rabbits. Small allogeneic bone granules (150-300 μm in diameter) loaded with cultured differentiated autologous osteoblasts were implanted into one forearm (SBG group) and large bone granules (500-710 μm) loaded with osteoblasts were implanted into the forearm of the other side (LBG group). Radiographic evaluations were performed at 3, 6, 9 and 12 weeks and histology and micro-CT image analysis were carried out at 6 and 12 weeks post-implantation. On radiographic evaluation, the LBG group showed a higher bone quantity index at 3 and 6 weeks post-implantation (P bone volume and surface area than the SBG group at 6 weeks (P bone formation and maturation in the SBG group. Thus, the two differently sized allogeneic bone granules loaded with co-cultured autologous osteoblasts show no differences in the amount of bone regeneration, although the SBG group exhibits faster progression of bone regeneration and remodeling. This method might therefore provide benefits, such as a short healing time and easy application in an injectable form, in a clinical setting.

  10. Autologous Chondrocyte Implantation in Osteoarthritic Surroundings

    DEFF Research Database (Denmark)

    Ossendorff, Robert; Grad, Sibylle; Stoddart, Martin J

    2018-01-01

    ), and hypertrophy (collagen 10) markers and proinflammatory cytokines (TNFα, IL-1β) was analyzed. Histological evaluation was performed with safranin O/fast green, toluidine blue, and immunohistochemistry of collagen 1 and 2. Apoptosis was analyzed by immunolabeling of anti-active caspase 3. For statistical...... evaluation, nonparametric tests were chosen with a significance level of P markers was detected in the TNFα groups. Collagen 2 was suppressed by TNFα (FS, P = .029; L, P = .006), while MMP 3 was significantly upregulated (FS...... induced apoptosis, and this effect was increased by loading. CONCLUSION: TNFα does negatively affect chondrogenesis under simulated ACI conditions. Both dynamic load and, more potentially, adalimumab showed the capability of antagonizing the negative effects. CLINICAL RELEVANCE: Catabolic cytokine...

  11. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  12. A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes.

    Science.gov (United States)

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2014-01-01

    Despite an increased interest in the use of hydrogel encapsulation and cellular self-assembly (often termed "self-aggregating" or "scaffold-free" approaches) for tissue-engineering applications, to the best of our knowledge, no study to date has been undertaken to directly compare both approaches for generating functional cartilaginous grafts. The objective of this study was to directly compare self-assembly (SA) and agarose hydrogel encapsulation (AE) as a means to engineer such grafts using passaged chondrocytes. Agarose hydrogels (5 mm diameter × 1.5 mm thick) were seeded with chondrocytes at two cell seeding densities (900,000 cells or 4 million cells in total per hydrogel), while SA constructs were generated by adding the same number of cells to custom-made molds. Constructs were either supplemented with transforming growth factor (TGF)-β3 for 6 weeks, or only supplemented with TGF-β3 for the first 2 weeks of the 6 week culture period. The SA method was only capable of generating geometrically uniform cartilaginous tissues at high seeding densities (4 million cells). At these high seeding densities, we observed that total sulphated glycosaminoglycan (sGAG) and collagen synthesis was greater with AE than SA, with higher sGAG retention also observed in AE constructs. When normalized to wet weight, however, SA constructs exhibited significantly higher levels of collagen accumulation compared with agarose hydrogels. Furthermore, it was possible to engineer such functionality into these tissues in a shorter timeframe using the SA approach compared with AE. Therefore, while large numbers of chondrocytes are required to engineer cartilaginous grafts using the SA approach, it would appear to lead to the faster generation of a more hyaline-like tissue, with a tissue architecture and a ratio of collagen to sGAG content more closely resembling native articular cartilage.

  13. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model.

    Science.gov (United States)

    Wang, C C; Guo, L; Tian, F D; An, N; Luo, L; Hao, R H; Wang, B; Zhou, Z H

    2017-03-23

    Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs) are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA) osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4) and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  14. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model

    Directory of Open Access Journals (Sweden)

    C.C. Wang

    Full Text Available Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4 and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  15. Chondrocytes from patients with osteoarthritis express typical extracellular matrix molecules once grown onto a three-dimensional hyaluronan-based scaffold.

    Science.gov (United States)

    Cavallo, Carola; Desando, Giovanna; Facchini, Andrea; Grigolo, Brunella

    2010-04-01

    The opportunity to apply autologous chondrocyte transplantation in repairing cartilage lesions in osteoarthritis (OA) is of great interest. To this end, chondrocytes from cartilage of these patients and from healthy donors were used to evaluate the expression of some extracellular matrix molecules once these cells were grown onto a hyaluronan-based scaffold already used in clinical practice. Constructs were analyzed by immunohistochemical and real-time PCR analyses. Chondrocytes from control and patients with OA cartilages expressed the same extracellular matrix molecules even if at different amount. These differences, which were appreciable both at protein and molecular levels, were not evident once the cells were grown onto Hyaff-11 scaffold. In this experimental culture condition, the cells derived from control and patients with OA showed a significant increase of collagen type II, Sox-9, and aggrecan and a decrease of collagen type I compared with chondrocytes grown in monolayer. On the other hand, MMPs were downregulated in both the cell types evaluated by the specific action of TIMP-1 which was highly expressed at molecular and protein levels in the two groups. The growth of chondrocytes onto Hyaff-11 membrane seems to erase the differences between the cells derived from normal and OA cartilages. The cells seem to benefit of the "hyaluronan" presence which is able to create an ideal environment for the expression of cartilage genes even in absence of specific growth factors. This is of particular relevance hypothesizing the use of tissue engineering therapeutical approach also in patients with OA.

  16. Cultura de condrócitos em arcabouço tridimensional: hidrogel de alginato Chondrocyte cultures in tridimensional scaffold: alginate hydrogel

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Camargo Bittencourt

    2009-01-01

    Full Text Available OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA e caracterizar a produção de matriz extracelular (ECM. MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v, em seguida fez-se o processo de gelatinização em CaCl2 (102 mM, permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE. RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.OBJECTIVES: The aim of this study was to culture chondrocytes from knee joint cartilage of rabbits encapsulated in alginate hydrogel (HA and to characterize the production of extracelular matrix (ECM. METHODS: Joint cartilage was obtained from rabbits' knees, three to six months old, fragmented into 1-mm pieces and submitted to enzymatic digestion. A concentration of 1x106 cells/mL were re-suspended into a 1.5% (w/v sodium alginate solution, followed by gel formation process with CaCl2 (102 mM, allowing HA to build for culturing it into a DMEM-F12 medium for four weeks. The distribution of cells and ECM were assessed from histological slices stained toluidine

  17. Effects of limited exposure of rabbit chondrocyte cultures to parathyroid hormone and dibutyryl adenosine 3',5'-monophosphate on cartilage-characteristic proteoglycan synthesis

    International Nuclear Information System (INIS)

    Kato, Y.; Koike, T.; Iwamoto, M.; Kinoshita, M.; Sato, K.; Hiraki, Y.; Suzuki, F.

    1988-01-01

    Treatment of rabbit chondrocyte cultures with PTH or (Bu)2cAMP for 30 h increased by 2- to 3-fold the incorporation of [35S]sulfate and 3H radioactivity with glucosamine as the precursor into large chondroitin sulfate proteoglycans characteristically found in cartilage matrix. However, PTH and (Bu)2cAMP did not increase either [35S]sulfate incorporation into small proteoglycans or the incorporation of 3H radioactivity into hyaluronic acid and other glycosaminoglycans. PTH and (Bu)2cAMP also increased the incorporation of [3H] serine into both proteoglycans and total protein. In all cultures described above, the stimulation of [3H]serine incorporation into proteoglycans exceeded that of [3H]serine incorporation into total protein. These data indicate that PTH and (Bu)2cAMP selectively stimulate cartilage proteoglycan synthesis while they increase total protein synthesis. Since cAMP seems to play a mediatory role in the action of PTH, we elected to examine the effects of a limited exposure of chondrocytes to PTH or (Bu)2cAMP on the synthesis of proteoglycans. Treatment with PTH or (Bu)2cAMP for only the initial 2-7 h did not increase the rates of incorporation of [35S]sulfate, the 3H radioactivity with glucosamine, and [3H]serine into proteoglycans, as measured at 30 h, despite the fact that this treatment brought about a rapid and transient rise in the cAMP level. Furthermore, the application of prostaglandin I2 at concentrations that increased cAMP levels in a similar fashion as did PTH did not affect [35S] sulfate incorporation into proteoglycans

  18. Autologous transplantation of oral mucosal epithelial cell sheets cultured on an amniotic membrane substrate for intraoral mucosal defects.

    Directory of Open Access Journals (Sweden)

    Takeshi Amemiya

    Full Text Available The human amniotic membrane (AM is a thin intrauterine placental membrane that is highly biocompatible and possesses anti-inflammatory and anti-scarring properties. Using AM, we developed a novel method for cultivating oral mucosal epithelial cell sheets. We investigated the autologous transplantation of oral mucosal epithelial cells cultured on AM in patients undergoing oral surgeries. We obtained specimens of AM from women undergoing cesarean sections. This study included five patients without any history of a medical disorder who underwent autologous cultured oral epithelial transplantation following oral surgical procedures. Using oral mucosal biopsy specimens obtained from these patients, we cultured oral epithelial cells on an AM carrier. We transplanted the resultant cell sheets onto the oral mucosal defects. Patients were followed-up for at least 12 months after transplantation. After 2-3 weeks of being cultured on AM, epithelial cells were well differentiated and had stratified into five to seven layers. Immunohistochemistry revealed that the cultured cells expressed highly specific mucosal epithelial cell markers and basement membrane proteins. After the surgical procedures, no infection, bleeding, rejection, or sheet detachment occurred at the reconstructed sites, at which new oral mucous membranes were evident. No recurrence was observed in the long-term follow-up, and the postoperative course was excellent. Our results suggest that AM-cultured oral mucosal epithelial cell sheets represent a useful biomaterial and feasible method for oral mucosal reconstruction. However, our primary clinical study only evaluated their effects on a limited number of small oral mucosal defects.

  19. TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions

    NARCIS (Netherlands)

    Das, R.; Timur, U. T.; Edip, S.; Haak, E.; Wruck, C.; Weinans, H.; Jahr, H.

    2015-01-01

    Culturing chondrocytes under oxygen tension closely resembling their in vivo environment has been shown to have positive effects on matrix synthesis. In redifferentiation of expanded chondrocytes, hypoxia increased collagen type II expression. However, the mechanism by which hypoxia enhances

  20. Pronounced biomaterial dependency in cartilage regeneration using nonexpanded compared with expanded chondrocytes

    NARCIS (Netherlands)

    Tsuchida, A.I.; Bekkers, J.E.J.; Beekhuizen, M.; Vonk, L.A.; Dhert, W.J.A.; Saris, Daniël B.F.; Creemers, L.B.

    2013-01-01

    We aimed to investigate freshly isolated compared with culture-expanded chondrocytes with respect to early regenerative response, cytokine production and cartilage formation in response to four commonly used biomaterials. Materials & methods: Chondrocytes were both directly and after expansion to

  1. Could Oxidative Stress Regulate the Expression of MicroRNA-146a and MicroRNA-34a in Human Osteoarthritic Chondrocyte Cultures?

    Science.gov (United States)

    Cheleschi, Sara; De Palma, Anna; Pascarelli, Nicola Antonio; Giordano, Nicola; Galeazzi, Mauro; Tenti, Sara

    2017-01-01

    Oxidative stress and the overproduction of reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Accumulating evidence has demonstrated the involvement of microRNAs (miRNAs) dysregulation in disease development and progression. In this study, we evaluated the effect of oxidative stress on miR-146a and miR-34a expression levels in human OA chondrocytes cultures stimulated by H2O2. Mitochondrial ROS production and cell apoptosis were detected by flow cytometry. The antioxidant enzymes SOD-2, CAT, GPx, the transcriptional factor NRF2 and the selected miRNAs were analyzed by qRT-PCR. The H2O2-induced oxidative stress was confirmed by a significant increase in superoxide anion production and of the apoptotic ratio. Furthermore, H2O2 significantly up-regulated the expression levels of SOD-2, CAT, GPx and NRF2, and modulated miR-146a and miR-34a gene expression. The same analyses were carried out after pre-treatment with taurine, a known antioxidant substance, which, in our experience, counteracted the H2O2-induced effect. In conclusion, the induction of oxidative stress affected cell apoptosis and the expression of the enzymes involved in the oxidant/antioxidant balance. Moreover, we demonstrated for the first time the modification of miR-146a and miR-34a in OA chondrocytes subjected to H2O2 stimulus and we confirmed the antioxidant effect of taurine. PMID:29292727

  2. Could Oxidative Stress Regulate the Expression of MicroRNA-146a and MicroRNA-34a in Human Osteoarthritic Chondrocyte Cultures?

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-12-01

    Full Text Available Oxidative stress and the overproduction of reactive oxygen species (ROS play an important role in the pathogenesis of osteoarthritis (OA. Accumulating evidence has demonstrated the involvement of microRNAs (miRNAs dysregulation in disease development and progression. In this study, we evaluated the effect of oxidative stress on miR-146a and miR-34a expression levels in human OA chondrocytes cultures stimulated by H2O2. Mitochondrial ROS production and cell apoptosis were detected by flow cytometry. The antioxidant enzymes SOD-2, CAT, GPx, the transcriptional factor NRF2 and the selected miRNAs were analyzed by qRT-PCR. The H2O2-induced oxidative stress was confirmed by a significant increase in superoxide anion production and of the apoptotic ratio. Furthermore, H2O2 significantly up-regulated the expression levels of SOD-2, CAT, GPx and NRF2, and modulated miR-146a and miR-34a gene expression. The same analyses were carried out after pre-treatment with taurine, a known antioxidant substance, which, in our experience, counteracted the H2O2-induced effect. In conclusion, the induction of oxidative stress affected cell apoptosis and the expression of the enzymes involved in the oxidant/antioxidant balance. Moreover, we demonstrated for the first time the modification of miR-146a and miR-34a in OA chondrocytes subjected to H2O2 stimulus and we confirmed the antioxidant effect of taurine.

  3. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  4. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    Science.gov (United States)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10

  5. THE EFFECT OF PIROXICAM ON THE METABOLISM OF ISOLATED HUMAN CHONDROCYTES

    NARCIS (Netherlands)

    BULSTRA, SK; KUIJER, R; BUURMAN, WA; TERWINDTROUWENHORST, E; GUELEN, PJM; VANDERLINDEN, AJ

    The effect of piroxicam on the metabolism of healthy and osteoarthrotic (OA) chondrocytes was studied in vitro. The chondrocytes were obtained from five healthy, five moderately OA, and four severely OA hips or knees. The chondrocytes were cultured in a high-density, short-term in vitro model. In

  6. Smad4 regulates growth plate matrix production and chondrocyte polarity.

    Science.gov (United States)

    Whitaker, Amanda T; Berthet, Ellora; Cantu, Andrea; Laird, Diana J; Alliston, Tamara

    2017-03-15

    Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre +/- ;Smad4 fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo , Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. © 2017. Published by The Company of Biologists Ltd.

  7. Smad4 regulates growth plate matrix production and chondrocyte polarity

    Directory of Open Access Journals (Sweden)

    Amanda T. Whitaker

    2017-03-01

    Full Text Available Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate.

  8. Oxygen tension affects lubricin expression in chondrocytes.

    Science.gov (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  9. Articular chondrocyte metabolism and osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  10. Influence of species and anatomical location on chondrocyte expansion

    Directory of Open Access Journals (Sweden)

    Hurtig Mark B

    2005-05-01

    Full Text Available Abstract Background Bovine articular cartilage is often used to study chondrocytes in vitro. It is difficult to correlate in vitro studies using bovine chondrocytes with in vivo studies using other species such as rabbits and sheep. The aim of this investigation was to study the effect of species, anatomical location and exogenous growth factors on chondrocyte proliferation in vitro. Methods Equine (EQ, bovine (BO and ovine (OV articular chondrocytes from metacarpophalangeal (fetlock (F, shoulder (S and knee (K joints were cultured in tissue culture flasks. Growth factors (rh-FGFb: 10 ng/ml; rh-TGFβ: 5 ng/ml were added to the cultures at days 2 and 4. On day 6, cells were counted and flow cytometry analysis was performed to determine cell size and granularity. A three factor ANOVA with paired Tukey's correction was used for statistical analysis. Results After 6 days in culture, cell numbers had increased in control groups of EQ-F, OV-S, OV-F and BO-F chondrocytes. The addition of rh-FGFb led to the highest increase in cell numbers in the BO-F, followed by EQ-F and OV-S chondrocytes. The addition of rh-TGFβ increased cell numbers in EQ-S and EQ-F chondrocytes, but showed nearly no effect on EQ-K, OV-K, OV-S, OV-F and BO-F chondrocytes. There was an overall difference with the addition of growth factors between the different species and joints. Conclusion Different proliferation profiles of chondrocytes from the various joints were found. Therefore, we recommend performing in vitro studies using the species and site where subsequent in vivo studies are planned.

  11. Safety outcomes and long-term effectiveness of ex vivo autologous cultured limbal epithelial transplantation for limbal stem cell deficiency.

    Science.gov (United States)

    Fasolo, Adriano; Pedrotti, Emilio; Passilongo, Mattia; Marchini, Giorgio; Monterosso, Cristina; Zampini, Roberto; Bohm, Elisabetta; Birattari, Federica; Franch, Antonella; Barbaro, Vanessa; Bertolin, Marina; Breda, Claudia; Di Iorio, Enzo; Ferrari, Barbara; Ferrari, Stefano; Meneguzzi, Mauro; Ponzin, Diego

    2017-05-01

    To evaluate the safety and effectiveness of ex vivo autologous cultured limbal stem cell transplantation (CLET). We reviewed the clinical records of 59 consecutive patients treated with 65 CLETs. Efficacy was graded 1 year after surgery as successful, partially successful or failed. A safety analysis was performed considering side effects and complications that were recorded during the first year after CLET and those reported later than 1 year, including the events related to subsequent treatments. The mean post-CLET follow-up was 6.0±4.1 years. 69% of CLETs had either one or more adverse events (AEs), or adverse drug reactions (ADRs), within 1 year of surgery, with inflammation being the most common (42%), followed by corneal epithelium defects/disepithelialisation (31%), and blood coagula under the fibrin (24%). One year after surgery, 41% of the 59 primary CLET procedures were successful, 39% partially successful and 20% failed. The most common ADRs recorded for the primary unsuccessful CLETs were ulcerative keratitis, melting/perforation, and epithelial defects/disepithelialisation. Six failed CLETs required reconstructive penetrating keratoplasty (PK). Among CLETs with a favourable outcome, 13 underwent corrective PK (mean 4.8±3.4 years), and thereafter seven eyes maintained integrity of the corneal epithelium, five showed corneal surface failure, and one had recurrent epithelial defects. Corneal graft rejection episodes were reported in 71% and 58% of patients following corrective or reconstructive PK, respectively. Seven primary CLETs with a favourable outcome worsened thereafter, and the overall 3-year long-term effectiveness was 68%. This study addresses important issues regarding possible risks associated with disarray of the ocular surface homeostasis following autologous CLET in patients with limbal stem cell deficiency, despite the fact that the majority of patients experienced a favourable long-term benefit. Published by the BMJ Publishing

  12. Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years.

    Science.gov (United States)

    Auxenfans, Celine; Menet, Veronique; Catherine, Zulma; Shipkov, Hristo; Lacroix, Pierre; Bertin-Maghit, Marc; Damour, Odile; Braye, Fabienne

    2015-02-01

    The aim was to review the use and indications of cultured autologous epidermis (CAE) in extensive burns and to evaluate the efficiency of our strategy of burn treatment. This retrospective study comprised 15 years (1997-2012). all patients who received CAE. patients who died before complete healing and patients who received exclusively cultured allogeneic keratinocytes. Evaluation criteria were clinical. Time and success of wound healing after CAE graft were evaluated. A total of 63 patients were included with severity Baux score of 107 (from 70 to 140) and mean percentage of TBSA of 71% (from 40% to 97%). The CAE were used as Cuono method, in STSG donor sites and deep 2nd degree burns and in combination with large-meshed STSG (1:6-1:12) in extensively burned patients. Cuono method was used in 6 patients. The final take was 16% (0-30) because of the great fragility of the obtained epidermis. Nine patients with deep 2nd degree burns (mean TBSA 81%, from 60 to 97%) were successfully treated with only CAE without skin grafting. Combined technique (STSG meshed at 1:6-1:12 covered with CAE) was used in 27 patients (mean TBSA 69%, from 49% to 96%) with 85% success rate. Finally, donor sites treated with CAE in 49 patients could be harvested several times thanks to rapid epithelialization (time of wound healing was 7 days (from 5 to 10 days)). The CAE allow rapid healing of STSG donor sites and deep 2nd second degree burns in extensively burned patients. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. Soft tissue augmentation by autologous cultured fibroblasts transplantation for treatment of the wrinkles and scars; a case series of 20 patients.

    Directory of Open Access Journals (Sweden)

    mohammad ali Nilforoushzadeh

    2010-01-01

    Full Text Available There are many filler agents for augmentation of static wrinkles and atrophic scar with synthetic, biosynthetic, cadaver, animal and human sources. The current study presents 20 patients with facial wrinkles and lines whom were treated by transplantation of autologous cultured fibroblasts. The fibroblast nature of cells was confirmed by immune-staining and flow cytometry. The mean of improvement for this procedure at the 6 month follow up was 41%. Overall, the results of the current and other studies show that autologous fibroblast transplantation can be an effective procedure for correction of wrinkles and atrophic scars. Although this procedure seems to have low side effects, however, further studies with longer follow up seem to be mandatory to further confirm the permanence of this procedure

  14. Chondrocyte survival in osteochondral transplant cylinders depends on the harvesting technique.

    Science.gov (United States)

    Hafke, Benedikt; Petri, Maximilian; Suero, Eduardo; Neunaber, Claudia; Kwisda, Sebastian; Krettek, Christian; Jagodzinski, Michael; Omar, Mohamed

    2016-07-01

    In autologous osteochondral transplantation, the edges of the harvested plug are particularly susceptible to mechanical or thermal damage to the chondrocytes. We hypothesised that the applied harvesting device has an impact on chondrocyte vitality. Both knees of five blackhead sheep (ten knees) underwent open osteochondral plug harvesting with three different circular harvesting devices (osteoarticular transfer system harvester [OATS; diameter 8 mm; Arthrex, Munich, Germany], diamond cutter [DC; diameter 8.35 mm; Karl Storz, Tuttlingen, Germany] and hollow reamer with cutting crown [HRCC; diameter 7 mm; Dannoritzer, Tuttlingen, Germany]) from distinctly assigned anatomical sites of the knee joint. The rotary cutters (DC and HRCC) were either used with (+) or without cooling (-). Surgical cuts of the cartilage with a scalpel blade were chosen as control method. After cryotomy cutting, chondrocyte vitality was assessed using fluorescence microscopy and a Live/Dead assay. There were distinct patterns of chondrocyte vitality, with reproducible accumulations of dead chondrocytes along the harvesting edge. No statistical difference in chondrocyte survivorship was seen between the OATS technique and the control method, or between the HRCC+ technique and the control method (P > 0.05). The DC+, HRCC- and DC- techniques yielded significantly lower chondrocyte survival rates compared with the control method (P vitality.

  15. Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni

    2010-01-01

    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  16. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Yamada, Tomoe; Lu, Hongxu; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2008-01-01

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture

  17. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  18. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  19. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis.

    Science.gov (United States)

    Maumus, Marie; Manferdini, Cristina; Toupet, Karine; Peyrafitte, Julie-Anne; Ferreira, Rosanna; Facchini, Andrea; Gabusi, Elena; Bourin, Philippe; Jorgensen, Christian; Lisignoli, Gina; Noël, Danièle

    2013-09-01

    Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA

    Directory of Open Access Journals (Sweden)

    Jakob Naranda

    2017-03-01

    Full Text Available Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2, collagen 1 (COL1 and aggrecan (ACAN was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a

  1. Characterization of collagenase-3 binding and internalization by rabbit chondrocytes

    International Nuclear Information System (INIS)

    Raggatt, L.J.; Choundhury, I.; Williams, S.

    2002-01-01

    Full text: Collagenase-3 (MMP-13) is an extracellular matrix metalloproteinase that cleaves type II collagen, the major protein component of cartilage, with high specificity. Several studies have identified increased levels of MMP-13 in arthritic synovial fluid where it may contribute to matrix destruction in this disease. Our laboratory has previously documented a process where by osteoblastic cells remove MMP-13 from the surrounding milieu by binding the enzyme to a specific receptor. The enzyme is then internalized and degraded through the actions of the endocytotic receptor, the low-density lipoprotein receptor-related protein (LRP). Such a mechanism provides for a controlled elimination of a potentially destructive enzyme from the extracellular environment. This process of MMP-13 internalization also occurs in chondrocytes and is significantly reduced in OA chondrocytes. We are currently characterizing the internalization of MMP-13 in normal rabbit chondrocytes. Primary rabbit chondrocytes were harvested and cultured in monolayers for three passages. Reverse transcription polymerase chain reaction (RT-PCR) was used to asses the cell phenotype during the culture period and the rabbit chondrocytes were found to express the cartilage specific genes aggrecan and type II collagen throughout this time. 125I-MMP-13 was used to assess the ability of the rabbit chondrocytes to bind MMP-13. Appreciable specific cell-association of MMP-13 was detected after 10 mm of exposure to the ligand and equilibrium was obtained after 2 h. After identifying the time to equilibrium we determined whether binding was saturable by incubating the chondrocytes with increasing concentrations of 125I-MMP-13 ranging from 0 to 100 nM at 4 deg C for 2h. The amount of specifically associated MMP-13 approached saturation at 75 nM, allowing assessment of the receptor kinetics. Finally, we have assessed the ability of rabbit chondrocytes to internalize a single cohort of 125I-MMP-13 over time at

  2. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique.

    Science.gov (United States)

    Centeno, Christopher J; Schultz, John R; Cheever, Michelle; Freeman, Michael; Faulkner, Stephen; Robinson, Brent; Hanson, Ronald

    2011-12-01

    Mesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine. Numerous animal studies have documented the multipotency of MSCs, showing their capabilities for differentiating into orthopedic tissues such as muscle, bone, cartilage, and tendon. However, the safety of culture expanded MSC's for human use has only just begun to be reported. Between 2006 and 2010, two groups of patients were treated for various orthopedic conditions with culture-expanded, autologous, bone marrow-derived MSCs (group 1: n=50; group 2: n=290-one patient in both groups). Cells were cultured in monolayer culture flasks using an autologous platelet lysate technique and re-injected into peripheral joints or into intervertebral discs with use of c-arm fluoroscopy. While both groups had prospective surveillance for complications, Group 1 additionally underwent 3.0T MRI tracking of the re-implant sites. The mean age of patients treated was 53 +/- 13.85 years; 214 were males and 125 females with mean follow-up time from any procedure being 435 days +/- 261 days. Number of contacts initiated based on time from first procedure was 482 at 3 months, 433 at 6 months, 316 contacts at 12 months, 110 contacts at 24 months, and 22 contacts at 36 months. For Group 1, 50 patients underwent 210 MRI surveillance procedures at 3 months, 6 months, 1, 2, and 3 years which failed to demonstrate any tumor formation at the re-implant sites. Formal disease surveillance for adverse events based on HHS criteria documented significantly less morbidity than is commonly reported for more invasive surgical procedures, all of which were either self-limited or were remedied with therapeutic measures. Two patients were diagnosed with cancer out of 339 patients treated since study inception; however, this was almost certainly unrelated to the MSC therapy and the neoplasm rate in similar to that seen in the U.S. Caucasian population. Knee outcome data was collected on a subset of patients

  3. Reduction of Environmental Temperature Mitigates Local Anesthetic Cytotoxicity in Bovine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Tarik Onur, Alexis Dang

    2014-09-01

    Full Text Available The purpose of this study was to assess whether reducing environmental temperature will lead to increased chondrocyte viability following injury from a single-dose of local anesthetic treatment. Bovine articular chondrocytes from weight bearing portions of femoral condyles were harvested and cultured. 96-well plates were seeded with 15,000 chondrocytes per well. Chondrocytes were treated with one of the following conditions: ITS Media, 1x PBS, 2% lidocaine, 0.5% bupivacaine, or 0.5% ropivacaine. Each plate was then incubated at 37°C, 23°C, or 4°C for one hour and then returned to media at 37°C. Chondrocyte viability was assessed 24 hours after treatment. Chondrocyte viability is presented as a ratio of the fluorescence of the treatment group over the average of the media group at that temperature (ratio ± SEM. At 37°C, lidocaine (0.35 ± 0.04 and bupivacaine (0.30 ± 0.05 treated chondrocytes show low cell viability when compared to the media (1.00 ± 0.03 control group (p < 0.001. Lidocaine treated chondrocytes were significantly more viable at 23°C (0.84 ± 0.08 and 4°C (0.86±0.085 than at 37°C (p < 0.001. Bupivacaine treated chondrocytes were significantly more viable at 4°C (0.660 ± 0.073 than at 37°C or 23°C (0.330 ± 0.069 (p < 0.001 and p = 0.002 respectively. Reducing the temperature from 37°C to 23°C during treatment with lidocaine increases chondrocyte viability following injury. Chondrocytes treated with bupivacaine can be rescued by reducing the temperature to 4°C.

  4. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  5. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  6. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering.

    Science.gov (United States)

    Oda, Tomoyuki; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Ono, Yohei; Nakashima, Motoshige; Ishizuka, Shinya; Matsukawa, Tetsuya; Yamashita, Satoshi; Tsuchiya, Saho; Ishiguro, Naoki

    2016-10-21

    The natural healing capacity of damaged articular cartilage is poor, rendering joint surface injuries a prime target for regenerative medicine. While autologous chondrocyte or mesenchymal stem cell (MSC) implantation can be applied to repair cartilage defects in young patients, no appropriate long-lasting treatment alternative is available for elderly patients with osteoarthritis (OA). Multipotent progenitor cells are reported to present in adult human articular cartilage, with a preponderance in OA cartilage. These facts led us to hypothesize the possible use of osteoarthritis-derived chondrocytes as a cell source for cartilage tissue engineering. We therefore analyzed chondrocyte- and stem cell-related markers, cell growth rate, and multipotency in OA chondrocytes (OACs) and bone marrow-derived MSCs, along with normal articular chondrocytes (ACs) as a control. OACs demonstrated similar phenotype and proliferation rate to MSCs. Furthermore, OACs exhibited multilineage differentiation ability with a greater chondrogenic differentiation ability than MSCs, which was equivalent to ACs. We conclude that chondrogenic capacity is not significantly affected by OA, and OACs could be a potential source of multipotent progenitor cells for cartilage tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  8. Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C

    NARCIS (Netherlands)

    Mahmood, Tahir A.; de Jong, Ruben; Riesle, J.U.; Langer, Robert; van Blitterswijk, Clemens

    2004-01-01

    Chondrocyte ‘dedifferentiation’ involves the switching of the cell phenotype to one that no longer secretes extracellular matrix found in normal cartilage and occurs frequently during chondrocyte expansion in culture. It is also characterized by the differential expression of receptors and

  9. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  10. Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Mohmmad Mardani

    2013-06-01

    Full Text Available   Objective(s: Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose derived stem cells (ADSCs was compared with natural articular chondrocytes cultured in alginate scaffold.   Materials and Methods: Human ADSCs were obtained from subcutaneous adipose tissue and human articular chondrocytes from non-weight bearing areas of knee joints. Cells were seeded in 1.5% alginate and cultured in chondrogenic media for three weeks with and without TGFβ3. The genes expression of types II and X collagens was assessed by Real Time PCR and the amount of aggrecan (AGC and type I collagen measured by ELISA and the content of glycosaminoglycan evaluated by GAG assay. Results: Our findings showed that type II collagen, GAG and AGC were expressed, in differentiated ADSCs. Meanwhile, they produced a lesser amount of types II and X collagens but more AGC, GAG and type I collagen in comparison with natural chondrocytes (NCs. Conclusion: Further attempt should be carried out to optimize achieving type II collagen in DCs, as much as, natural articular chondrocytes and decline of the production of type I collagen in order to provide efficient hyaline cartilage after chondrogenic induction, prior to the usage of harvested tissues in clinical trials.

  11. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.

    Science.gov (United States)

    Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S

    2018-03-15

    Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for

  12. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  13. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  14. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro

    OpenAIRE

    1988-01-01

    This report deals with the quantitation of both mRNA and transcription activity of type I collagen gene and of three cartilage-specific collagens (types II, IX, and X) during in vitro differentiation of chick chondrocytes. Differentiation was obtained by transferal to suspension culture of dedifferentiated cells passaged for 3 wk as adherent cells. The type I collagen mRNA, highly represented in the dedifferentiated cells, rapidly decreased during chondrocyte differentiation. On the contrary,...

  15. Fibroblast growth factor receptor 3 effects on proliferation and telomerase activity in sheep growth plate chondrocytes

    Directory of Open Access Journals (Sweden)

    Smith Logan B

    2012-12-01

    Full Text Available Abstract Background Fibroblast growth factor receptor 3 (FGFR3 inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (T3 plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT and RNA component of telomerase (TR, and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions The results suggest that FGFR3 inhibits chondrocyte proliferation by down-regulating TERT expression and reducing telomerase activity indicating an important role for telomerase in sustaining chondrocyte proliferative capacity during bone elongation.

  16. Influence of cell printing on biological characters of chondrocytes.

    Science.gov (United States)

    Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan

    2015-01-01

    To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×10(6)/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may provide a novel approach

  17. Time-varying magnetic fields: effects of orientation on chondrocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.P.; Smith, R.L.; Block, C.A.

    1988-01-01

    The purpose of this study was to determine the effect of orientation of pulsed electromagnetic fields (PEMFs) on cellular proliferation and extracellular matrix synthesis. Bovine articular chondrocytes were cultured in PEMFs (repetitive pulse at 72 Hz) generated using Helmholtz coils oriented either parallel (horizontal) or perpendicular (vertical) to the plane of cell adhesion. Dissipation of signal energy in the form of heat increased the temperature of the PEMF coils by 2 degrees C and the tissue culture medium by 1 degree C. Therefore, control coils, which emitted no PEMFs, were heated to the temperature of PEMF coils by circulating water. Chondrocytes were cultured in 16-mm-well culture plates, and the data for individual wells were pooled as triplicates. Although not observed by microscopic examination of individual wells, positionally dependent electric field effects may be minimized by this approach. PEMFs generated by coils oriented vertically significantly decreased chondrocyte proliferation. The effect was dependent on the concentration of serum in the culture media. At 3% serum concentration, the total cell number attained after 10 days of culture was reduced by 50% in stimulated cultures when compared with controls. At 5% serum concentration, there was no effect. PEMFs applied by coils oriented horizontally did not alter proliferation of articular chondrocytes. PEMFs had no effect on synthesis of extracellular matrix by chondrocytes plated at high density, irrespective of orientation.

  18. Evaluation of chondrocyte behavior in a new equine collagen scaffold useful for cartilage repair.

    Science.gov (United States)

    Grigolo, B; Desando, G; Cavallo, C; Zini, N; Ghisu, S; Facchini, A

    2011-01-01

    Association of biomaterials with autologous cells can provide a new generation of implantable devices for cartilage repair. An ideal scaffold should possess a preformed three-dimensional shape, fix the cells to the damaged area and prevent their migration into the articular cavity. Furthermore, the constructs should have sufficient mechanical strength to facilitate handling in a clinical setting and stimulate the uniform spreading of cells and a phenotype re-differentiation process. The aim of this study was to verify the ability of an equine collagen membrane to support the growth of human chondrocytes and to allow the re-expression of their original phenotype. This ability was assessed by the evaluation of collagen type I, II and aggrecan mRNA expression by Real-Time PCR. Immunohistochemical analyses were performed to evaluate collagen type I, II and proteoglycans synthesis. Electron microscopy was utilized to highlight the structure of the biomaterial and its interactions with the cells. Our data indicate that human chondrocytes seeded onto a collagen membrane express and produce collagen type II and aggrecan and downregulate the production of collagen type I during the experimental times analyzed. These results provide an in vitro demonstration for the therapeutic potential of autologous chondrocyte transplantation by an equine collagen membrane as a delivery vehicle in a tissue-engineered approach towards the repair of articular cartilage defects.

  19. RAGE, Receptor of Advanced Glycation Endoproducts, Negatively Regulates Chondrocytes Differentiation

    Science.gov (United States)

    Kurosaka, Yuko; Nishimura, Haruka; Tanabe, Motoki; Takakura, Yuuki; Iwai, Keisuke; Waki, Takuya; Fujita, Takashi

    2014-01-01

    RAGE, receptor for advanced glycation endoproducts (AGE), has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE) demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA) partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms. PMID:25275461

  20. Nanosized fibers' effect on adult human articular chondrocytes behavior

    International Nuclear Information System (INIS)

    Stenhamre, Hanna; Thorvaldsson, Anna; Enochson, Lars; Walkenström, Pernilla; Lindahl, Anders; Brittberg, Mats; Gatenholm, Paul

    2013-01-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum

  1. Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products

    Directory of Open Access Journals (Sweden)

    Michiyo Nasu

    2016-01-01

    Full Text Available The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0 and Passage 1 (P1 cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.

  2. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  3. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  4. Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression.

    Science.gov (United States)

    Yamashita, Michiko; Inoue, Kazuki; Saeki, Noritaka; Ideta-Otsuka, Maky; Yanagihara, Yuta; Sawada, Yuichiro; Sakakibara, Iori; Lee, Jiwon; Ichikawa, Koichi; Kamei, Yoshiaki; Iimura, Tadahiro; Igarashi, Katsuhide; Takada, Yasutsugu; Imai, Yuuki

    2018-01-08

    Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice ( Uhrf1 Δ Limb/ Δ Limb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1 Δ Limb/ Δ Limb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1 , which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation. © 2018. Published by The Company of Biologists Ltd.

  5. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Directory of Open Access Journals (Sweden)

    Peter Apelgren

    Full Text Available Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  6. Leptin Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling in Growth Plate Chondrocytes

    Directory of Open Access Journals (Sweden)

    Lai Wang

    2012-01-01

    Full Text Available Leptin is an obesity-associated cytokine-like hormone encoded by the ob gene. Recent studies reveal that leptin promotes proliferation and differentiation of chondrocytes, suggesting a peripheral role of leptin in regulating growth plate function. Peroxisome proliferator-activated receptor-γ (PPARγ is a transcriptional regulator of adipogenesis. Locally, PPARγ negatively regulates chondrogenic differentiation and terminal differentiation in the growth plate. The aim of this study was to test the hypothesis that leptin may suppress the inhibitory effects of PPARγ on growth plate chondrocytes. Chondrocytes were collected from distal femoral growth plates of newborn rats and were cultured in monolayer or cell pellets in the presence or absence of leptin and the PPARγ agonist ciglitazone. The results show that leptin attenuates the suppressive effects of PPARγ on chondrogenic differentiation and T3-mediated chondrocyte hypertrophy. Leptin treatment also leads to a mild downregulation of PPAR mRNA expression and a significant MAPK/ERK-dependent PPARγ phosphorylation at serine 112/82. Blocking MAPK/ERK function with PD98059 confirmed that leptin antagonizes PPARγ function in growth plate chondrocytes through the MAPK/ERK signaling pathway. Furthermore, leptin signaling in growth plate cells is also negatively modulated by activation of PPARγ, implying that these two signaling pathways are mutually regulated in growth plate chondrocytes.

  7. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Christelle Sanchez

    Full Text Available The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.Osteoarthritic (OA human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM. The production of aggrecan, matrix metalloproteinase (MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-6 and nitric oxide (NO and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC or non-sclerotic (NSC subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008. MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01. TIMP-1 production was slightly increased at 3 μM (p = 0.02 and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05. IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in

  9. Effect of bone marrow-derived stem cells on chondrocytes from patients with osteoarthritis.

    Science.gov (United States)

    Zhang, Qiangzhi; Chen, Yong; Wang, Qiang; Fang, Chaoyong; Sun, Yu; Yuan, Tao; Wang, Yuebei; Bao, Rongni; Zhao, Ningjian

    2016-02-01

    Increasing numbers of individuals are suffering from osteoarthritis every year, and the directed intra-articular injection of bone marrow stem cells has provided a promising treatment strategy for osteoarthritis. Although a number of studies have demonstrated that intra-articular injection of bone marrow stem cells produced desirable results, the mechanism underlying this effect has not been elucidated. In the current study, the effect of bone marrow stem cells on chondrocytes from patients with osteoarthritis was observed in a co-culture system. Human chondrocytes were obtained from patients with osteoarthritis who underwent surgical procedures and bone marrow stem cells were obtained from bone marrow aspirates, and then the chondrocytes were then cultured alone or cocultured with bone marrow stem cells in 0.4-µm Transwell inserts. The differentiation and biological activity of chondrocytes in the culture system were measured, and the inflammatory factors and OA-associated markers were also measured. The results indicated that coculture with human bone marrow stem cells increases cell proliferation of chondrocytes and inhibits inflammatory activity in osteoarthritis.

  10. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation

    DEFF Research Database (Denmark)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A

    2001-01-01

    with use of conventional light microscopy, electron microscopy, and immunohistochemistry to identify extracellular matrix, cell proliferation, and apoptosis. Cultures of normal chondrocytes expressed type-II collagen. Electron microscopy revealed a large amount of glycogen in the cells; the presence of fat...... of vimentin filaments. The treated chondrocytes showed a decrease in cell proliferation, but there was no induction of apoptosis or effect on the expression of extracellular matrix proteins. Ciprofloxacin-treated chondrosarcoma cultures and tissue samples showed changes in cartilage matrix composition...

  11. Clinical Outcomes of Characterized Chondrocyte Implantation

    Science.gov (United States)

    Huylebroek, José; Van Der Bauwhede, Jan; Saris, Daniël; Veeckman, Geert; Bobic, Vladimir; Victor, Jan; Almqvist, Karl Fredrik; Verdonk, Peter; Fortems, Yves; Van Lommel, Nel; Haazen, Ludo

    2012-01-01

    Objective: To assess the clinical outcome of patients treated with autologous chondrocyte implantation using ChondroCelect in daily practice. Methods: The study is a cross-sectional analysis of an open-label, noninterventional cohort. The setting was a compassionate use program, involving 43 orthopaedic centers in 7 European countries. The participants were patients treated with ChondroCelect between October 13, 2004 and July 2, 2008. The measurements used were Clinical Global Impression–Improvement and –Efficacy and solicited adverse event reports. Results: Safety data were collected from 334 patients (90.3%), and effectiveness data were from 282 (76.2%) of the 370 patients treated. Mean age at baseline was 33.6 years (range, 12-57 years), 57% were male, and mean body mass index was 25 kg/m2. Mean follow-up was 2.2 years (range, 0.4-4.1 years). A femoral condyle lesion was reported in 66% (288/379) and a patellar lesion in 19% (84/379). Mean lesion size was 3.5 cm2; a collagen membrane was used in 92.4% (328/355). A therapeutic effect was reported in 89% (234/264) of patients overall and in 87% (40/46) of patellar lesion patients. Rates of much or very much improved patients were similar in patients with short- (18 months: 68% [70/103]) (P = 0.68) and were independent of lesion size (>4 cm2: 75.5% [37/49]; ≤4 cm2: 67.7% [111/164]) (P = 0.38). Adverse events were similar to those reported in the randomized trial with the same product, with more arthrofibrosis, more reduced joint mobility, and more crepitations reported in patellar lesions. Overall, less cartilage hypertrophy was noted, probably due to the use of a biological membrane cover. Conclusions: Implantation of ChondroCelect appeared to result in a positive benefit/risk ratio when used in an unselected heterogenous population, irrespective of the follow-up period, lesion size, and type of lesion treated. PMID:26069630

  12. Doublecortin May Play a Role in Defining Chondrocyte Phenotype

    Directory of Open Access Journals (Sweden)

    Dongxia Ge

    2014-04-01

    Full Text Available Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.

  13. Quantitative Proteomic Analysis of Rat Condylar Chondrocytes during Postnatal Development.

    Science.gov (United States)

    Jiang, Li Ting; Xie, Yin Yin; Wei, Li; Zhou, Qi; Shen, Xing; Gao, Yi Ming; Jiang, Xin Quan

    To investigate differentially expressed proteins in rat mandibular condylar cartilage (MCC) chondrocytes caused by initial mastication for short postnatal periods. Four groups of protein samples were extracted from primary cultured rat MCC chondrocytes, harvested from eigthy postnatal SD rats aged 1,7,14 and 28 days, with twenty in each group. Total proteins were labelled with isobaric tags for relative and absolute quantification (iTRAQ) reagents. Two-dimensional nano-high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time-of-flight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry analysis with iTRAQ technique were performed. All data were analysed by MASCOT software with the SWISSPROT protein database. Furthermore, bioinformatics and statistical analysis were performed to classify their cellular components, biological processes, molecular functions and metabolic pathway by the PANTHER database. In total, 137 differentially expressed proteins were identified during MCC growth and were assigned to one or more cellular components. According to the PANTHER analysis, a significant proportion of proteins are involved in the metabolic process, cellular process, biological regulation, developmental process and response to stimulus. The most extensive molecular function was 43% in catalytic activity. In addition, it was found that proteins in MCC chondrocytes change markedly on the growth stage of eruption of the teeth. This study provides an integrated perspective of molecular mechanisms regulating early normal postnatal growth and development of rat MCC at the protein level.

  14. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    2017-01-01

    Full Text Available Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI. The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  15. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study.

    Science.gov (United States)

    Mata, Manuel; Milian, Lara; Oliver, Maria; Zurriaga, Javier; Sancho-Tello, Maria; de Llano, Jose Javier Martin; Carda, Carmen

    2017-01-01

    Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo , but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo . hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  16. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won

    2015-06-24

    The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.

  17. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  18. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Thomas M Randau

    Full Text Available The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on

  19. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    Science.gov (United States)

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  1. Coumestrol Counteracts Interleukin-1β-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes.

    Science.gov (United States)

    You, Jae-Seek; Cho, In-A; Kang, Kyeong-Rok; Oh, Ji-Su; Yu, Sang-Joun; Lee, Gyeong-Je; Seo, Yo-Seob; Kim, Su-Gwan; Kim, Chun Sung; Kim, Do Kyung; Im, Hee-Jeong; Kim, Jae-Sung

    2017-02-01

    In the present study, we investigated the anti-catabolic effects of coumestrol, a phytoestrogen derived from herbal plants, against interleukin-1β-induced cartilage degeneration in primary rat chondrocytes and articular cartilage. Coumestrol did not affect the viability of human normal oral keratinocytes and primary rat chondrocytes treated for 24 h and 21 days, respectively. Although coumestrol did not significantly increase the proteoglycan contents in long-term culture, it abolished the interleukin-1β-induced loss of proteoglycans in primary rat chondrocytes and knee articular cartilage. Furthermore, coumestrol suppressed the expression of matrix-degrading enzymes such as matrix metalloproteinase-13, -3, and -1 in primary rat chondrocytes stimulated with interleukin-1β. Moreover, the expression of catabolic factors such as nitric oxide synthase, cyclooxygenase-2, prostaglandin E 2 , and inflammatory cytokines in interleukin-1β-stimulated primary rat chondrocytes was suppressed by coumestrol. In summary, these results indicate that coumestrol counteracts the catabolic effects induced by interleukin-1β through the suppression of inflammation. Therefore, based on its biological activity and safety profile, coumestrol could be used as a potential anti-catabolic biomaterial for osteoarthritis.

  2. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor.

    Science.gov (United States)

    Bueno, Ericka M; Bilgen, Bahar; Carrier, Rebecca L; Barabino, Gilda A

    2004-12-20

    A novel wavy-walled bioreactor designed to enhance mixing at controlled shear stress levels was used to culture chondrocytes in suspension. Chondrocyte aggregation in suspensions mixed at 30, 50, and 80 rpm was characterized in the wavy-walled bioreactor and compared with that in conventional smooth-walled and baffled-walled spinner flask bioreactors. Aggregation was characterized in terms of the percentage of cells that aggregated over time, and aggregate size changes over time. The kinetics of chondrocyte aggregation observed in the bioreactors was composed of two phases: early aggregation between 0 and 2 h of culture, and late aggregation between 3 and 24 h of culture. At 50 rpm, the kinetics of early aggregation in the wavy-walled bioreactor was approximately 25% and 65% faster, respectively, than those in the smooth-walled and baffled-walled spinner flask bioreactors. During the late aggregation phase, the kinetics of aggregation in the wavy-walled bioreactor were approximately 45% and 65% faster, respectively, than in the smooth-walled and baffled-walled spinner flasks. The observed improved kinetics of chondrocyte aggregation was obtained at no cost to the cell survival rate. Results of computerized image analysis suggest that chondrocyte aggregation occurred initially by the formation of new aggregates via cell-cell interactions and later by the joining of small aggregates into larger cell clumps. Aggregates appeared to grow for only a couple of hours in culture before reaching a steady size, possibly determined by limitations imposed by the hydrodynamic environment. These results suggest that the novel geometry of the wavy-walled bioreactor generates a hydrodynamic environment distinct from those traditionally used to culture engineered cartilage. Such differences may be useful in studies aimed at distinguishing the effects of the hydrodynamic environment on tissue-engineered cartilage. Characterizing the wavy-walled bioreactor's hydrodynamic environment

  3. Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model.

    Science.gov (United States)

    Desando, Giovanna; Cavallo, Carola; Tschon, Matilde; Giavaresi, Gianluca; Martini, Lucia; Fini, Milena; Giardino, Roberto; Facchini, Andrea; Grigolo, Brunella

    2012-08-01

    In this study, we investigated the efficacy of the transplantation of autologous articular chondrocytes seeded onto a hyaluronan-based scaffold, known as Hyaff(®)-11, on the treatment of early cartilage lesions in a rabbit osteoarthritis (OA) model. The hypothesis of the study was that this treatment could enhance cartilage repair after OA induction. OA was surgically induced by Anterior Cruciate Ligament Transection (ACLT) in thirty rabbits. Animals were divided into three groups, according to treatment: group 1: ACLT; group 2: Chondrocytes+Hyaff-11; and group 3: Hyaff-11 alone. The animals were euthanized, respectively, at 3 and 6 months after the treatment. Histomorphometrical analyses were performed by means of fibrillation index, cartilage thickness, and subchondral bone thickness evaluations. Histological appearance was scored according to Modified Kraus' Mankin and Osteoarthritis Research Society International (OARSI) scores. Immunohistochemical analyses were carried out for type I and II collagens, MMP-1, and MMP-3. A comparison between groups and follow-up for each outcome was performed with the general linear model with Sidak correction. Histomorphometrical evaluations at 3 and 6 months demonstrated that OA lesions became significantly worse followed by Hyaff-11 treatment, whereas Chondrocytes+Hyaff-11 treatment had the best overall subjective grade. Overall raw histological scores demonstrated a significant improvement with chondro-hyaluronic acid (HA) treatment at 3 months compared with HA in cartilage repair processes. Immunohistochemical analyses displayed a strong positivity for type II collagen in the Chondrocytes+Hyaff-11group at 3 months compared with the HA group. No staining was observed in MMP-3 expression in this group at any experimental point. The use of Chondrocytes+Hyaff-11 for the treatment of early OA lesions produced, already at 3 months, a repair tissue showing better macroscopic, histological, and immunohistochemical results than

  4. Autologous Matrix-Induced Chondrogenesis in the Knee: A Review.

    Science.gov (United States)

    Lee, Yee Han Dave; Suzer, Ferzan; Thermann, Hajo

    2014-07-01

    Autologous matrix-induced chondrogenesis (AMIC) is a 1-step cartilage restoration technique that combines microfracture with the use of an exogenous scaffold. This matrix covers and mechanically stabilizes the clot. There have been an increasing number of studies performed related to the AMIC technique and an update of its use and results is warranted. Using the PubMed database, a literature search was performed using the terms "AMIC" or "Autologous Matrix Induced Chondrogenesis." A total of 19 basic science and clinical articles were identified. Ten studies that were published on the use of AMIC for knee chondral defects were identified and the results of 219 patients were analyzed. The improvements in Knee Injury and Osteoarthritis Outcome Score, International Knee Documentation Committee Subjective, Lysholm and Tegner scores at 2 years were comparable to the published results from autologous chondrocyte implantation (ACI) and matrix ACI techniques for cartilage repair. Our systematic review of the current state of the AMIC technique suggests that it is a promising 1-stage cartilage repair technique. The short-term clinical outcomes and magnetic resonance imaging results are comparable to other cell-based methods. Further studies with AMIC in randomized studies versus other repair techniques such as ACI are needed in the future.

  5. Effects of clinically relevant concentrations of glucosamine on equine chondrocytes and synoviocytes in vitro.

    Science.gov (United States)

    Byron, Christopher R; Stewart, Matthew C; Stewart, Allison A; Pondenis, Holly C

    2008-09-01

    To evaluate the effects of glucosamine on equine articular chondrocytes and synoviocytes at concentrations clinically relevant to serum and synovial fluid concentrations. Articular cartilage and synovium with normal gross appearance from metacarpophalangeal and metatarsophalangeal joints of 8 horses (1 to 10 years of age). In vitro chondrocyte and synoviocyte cell cultures from 8 horses were treated with glucosamine (0.1 to 20 microg/mL) with or without interleukin-1 (IL-1; 10 ng/mL) for 48 hours. Negative control cultures received no glucosamine or IL-1, and positive control cultures received only IL-1. Cultures were assayed for production of proteoglycan (via media containing sulfur 35 (35S)-labeled sodium sulfate and Alcian blue precipitation), prostaglandin E2 (PGE2; via a colorimetric assay), cyclooxygenase-2 (via real-time reverse-transcriptase PCR assay), microsomal PGE2 synthase (mPGEs; via real-time reverse-transcriptase PCR assay), and matrix metalloproteinase (MMP)-13 (via a colorimetric assay). Glucosamine had no impact on proteoglycan production or MMP-13 production under noninflammatory (no IL-1) or inflammatory (with IL-1) conditions. Glucosamine at 0.1 and 0.5 microg/mL significantly decreased IL-1-stimulated production of mPGEs by chondrocytes, compared with that of positive control chondrocytes. Glucosamine at 0.1 and 5 microg/mL significantly decreased IL-1-stimulated production of mPGEs and PGE2, respectively, compared with that of positive control synoviocytes. Glucosamine had limited effects on chondrocyte and synoviocyte metabolism at clinically relevant concentrations, although it did have some anti-inflammatory activity on IL-1-stimulated articular cells. Glucosamine may have use at clinically relevant concentrations in the treatment of inflammatory joint disease.

  6. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  7. Engineered cartilage regeneration from adipose tissue derived-mesenchymal stem cells: A morphomolecular study on osteoblast, chondrocyte and apoptosis evaluation.

    Science.gov (United States)

    Szychlinska, Marta Anna; Castrogiovanni, Paola; Nsir, Houda; Di Rosa, Michelino; Guglielmino, Claudia; Parenti, Rosalba; Calabrese, Giovanna; Pricoco, Elisabetta; Salvatorelli, Lucia; Magro, Gaetano; Imbesi, Rosa; Mobasheri, Ali; Musumeci, Giuseppe

    2017-08-15

    The poor self-repair capacity of cartilage tissue in degenerative conditions, such as osteoarthritis (OA), has prompted the development of a variety of therapeutic approaches, such as cellular therapies and tissue engineering based on the use of mesenchymal stem cells (MSCs). The aim of this study is to demonstrate, for the first time, that the chondrocytes differentiated from rat adipose tissue derived-MSCs (AMSCs), are able to constitute a morphologically and biochemically healthy hyaline cartilage after 6 weeks of culture on a Collagen Cell Carrier (CCC) scaffold. In this study we evaluated the expression of some osteoblasts (Runt-related transcription factor 2 (RUNX2) and osteocalcin), chondrocytes (collagen I, II and lubricin) and apoptosis (caspase-3) biomarkers in undifferentiated AMSCs, differentiated AMSCs in chondrocytes cultured in monolayer and AMSCs-derived chondrocytes seeded on CCC scaffolds, by different techniques such as immunohistochemistry, ELISA, Western blot and gene expression analyses. Our results showed the increased expression of collagen II and lubricin in AMSCs-derived chondrocytes cultured on CCC scaffolds, whereas the expression of collagen I, RUNX2, osteocalcin and caspase-3 resulted decreased, when compared to the controls. In conclusion, this innovative basic study could be a possible key for future therapeutic strategies for articular cartilage restoration through the use of CCC scaffolds, to reduce the morbidity from acute cartilage injuries and degenerative joint diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions.

    Science.gov (United States)

    Mobasheri, Ali; Kalamegam, Gauthaman; Musumeci, Giuseppe; Batt, Mark E

    2014-07-01

    Osteoarthritis (OA) represents a final and common pathway for all major traumatic insults to synovial joints. OA is the most common form of degenerative joint disease and a major cause of pain and disability. Despite the global increase in the incidence of OA, there are no effective pharmacotherapies capable of restoring the original structure and function of damaged articular cartilage. Consequently cell-based and biological therapies for osteoarthritis (OA) and related orthopaedic disorders have become thriving areas of research and development. Autologous chondrocyte implantation (ACI) has been used for treatment of osteoarticular lesions for over two decades. Although chondrocyte-based therapy has the capacity to slow down the progression of OA and delay partial or total joint replacement surgery, currently used procedures are associated with the risk of serious adverse events. Complications of ACI include hypertrophy, disturbed fusion, delamination, and graft failure. Therefore there is significant interest in improving the success rate of ACI by improving surgical techniques and preserving the phenotype of the primary chondrocytes used in the procedure. Future tissue-engineering approaches for cartilage repair will also benefit from advances in chondrocyte-based repair strategies. This review article focuses on the structure and function of articular cartilage and the pathogenesis of OA in the context of the rising global burden of musculoskeletal disease. We explore the challenges associated with cartilage repair and regeneration using cell-based therapies that use chondrocytes and mesenchymal stem cells (MSCs). This paper also explores common misconceptions associated with cell-based therapy and highlights a few areas for future investigation. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Effect of hydrostatic pressure of various magnitudes on osteoarthritic chondrocytes exposed to IL-1beta.

    Science.gov (United States)

    Fioravanti, Antonella; Collodel, Giulia; Petraglia, Angela; Nerucci, Fabiola; Moretti, Elena; Galeazzi, Mauro

    2010-08-01

    Several in vitro studies have shown the importance of mechanical compression or hydrostatic pressure (HP) as a modulator of cartilage metabolism. The present study was undertaken to evaluate the in vitro effects of cyclical low HP (1-5 MPa) and continuous high HP (24 MPa) applied in the presence or absence of interleukin (IL)-1beta on human osteoarthritis (OA) chondrocytes. Chondrocytes obtained from OA cartilage were cultivated for 48 h and then exposed to pressurization in the presence or absence of IL-1beta. After pressurization, the culture medium was collected to detect the amount of proteoglycans (PG) and nitric oxide (NO) and the chondrocytes were immediately fixed for transmission electron microscopy (TEM) and processed for immunocytochemistry to localize the inducible nitric oxide synthase (iNOS). A significant increase in the level of PG and a small, non-significant, decrease in NO production were observed upon exposure to cyclical low HP. On the other hand, exposure to continuous high HP resulted in a significant decrease in the PG levels and a significant increase in NO production. The presence of IL-1beta led to a significant decrease in PG levels as well as a significant increase in NO production. The cyclical low HP did not increase the PG levels significantly but caused a statistically significant decrease in NO production in cultures damaged with IL-1beta. The continuous high HP in chondrocyte cultures stimulated with IL-1beta did not significantly decrease PG production, but significantly increased NO production. The results concerning metabolic production were further confirmed by morphological findings obtained by TEM and immunocytochemical studies. The findings of this study confirmed that the response of chondrocytes varies with magnitude and frequency of HP. These findings are important to understand aetiopathogenetic mechanisms of OA and to find out which type of physical activity may be best suited for the prevention and therapy of OA.

  10. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin α1 and discoidin domain receptor 2: a protein kinase C-dependent pathway.

    Science.gov (United States)

    Vonk, Lucienne A; Doulabi, Behrouz Z; Huang, ChunLing; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2011-03-01

    To investigate whether maintaining the chondrocyte's native pericellular matrix prevents collagen-induced up-regulation of collagenase-3 (MMP-13) and whether integrin α1 (ITGα1) and/or discoidin domain receptor 2 (DDR2) modulate MMP-13 expression and which signalling pathway plays a role in collagen-stimulated MMP-13 expression. Goat articular chondrocytes and chondrons were cultured on collagen coatings. Small interfering RNA (siRNA) oligonucleotides targeted against ITGα1 and DDR2 were transfected into primary chondrocytes. Chemical inhibitors for mitogen-activated protein kinase kinase (MEK1) (PD98059), focal adhesion kinase (FAK) (FAK inhibitor 14), mitogen-activated protein kinase 8 (JNK) (SP600125) and protein kinase C (PKC) (PKC412), and a calcium chelator (BAPTA-AM) were used in cell cultures. Real-time PCR was performed to examine gene expression levels of MMP-13, ITGα1 and DDR2 and collagenolytic activity was determined by measuring the amount of hydroxyproline released in the culture medium. Maintaining the chondrocyte's native pericellular matrix prevented MMP-13 up-regulation and collagenolytic activity when the cells were cultured on a collagen coating. Silencing of ITGα1 and DDR2 reduced MMP-13 gene expression and collagenolytic activity by primary chondrocytes cultured on collagen. Incubation with the PKC inhibitor strongly reduced MMP-13 gene expression levels. Gene expression levels of MMP-13 were also decreased by chondrocytes incubated with the MEK, FAK or JNK inhibitor. Maintaining the native pericellular matrix of chondrocytes prevents collagen-induced up-regulation of MMP-13. Both ITGα1 and DDR2 modulate MMP-13 expression after direct contact between chondrocytes and collagen. PKC, FAK, MEK and JNK are involved in collagen-stimulated expression of MMP-13.

  11. Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2017-01-01

    Full Text Available Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1 adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2 the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.

  12. Giant crystals inside mitochondria of equine chondrocytes.

    Science.gov (United States)

    Nürnberger, S; Rentenberger, C; Thiel, K; Schädl, B; Grunwald, I; Ponomarev, I; Marlovits, St; Meyer, Ch; Barnewitz, D

    2017-05-01

    The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1-2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice-resolution TEM images proving the crystalline nature of the structure. Elemental analysis reveals a high content of nitrogen referring to protein. The outer shape of the crystals is geometrical with an up to hexagonal profile in cross sections. It is elongated, spanning a length of several micrometres through the whole cell. In some chondrocytes, several crystals were found, sometimes combined in a single mitochondrion. Crystals were preferentially aligned along the long axis of the cells, thus appearing in the same orientation as the chondrocytes in the tissue. Although no similar structures have been found in the cartilage of any other species investigated, they have been found in cartilage repair tissue formed within a mechanically stimulated equine chondrocyte construct. Crystals were mainly located in superficial regions of cartilage, especially in joint regions of well-developed superficial layers, more often in yearlings than in adult horses. These results indicate that intramitochondrial crystals are related to the high mechanical stress in the horse joint and potentially also to the increased metabolic activity of immature individuals.

  13. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis

    Science.gov (United States)

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2017-01-01

    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. PMID:24225059

  14. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  15. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  16. Platelet rich plasma associated with heterologous fresh and thawed chondrocytes on osteochondral lesions of rabbits

    Directory of Open Access Journals (Sweden)

    R.R. Filgueiras

    2014-02-01

    Full Text Available Chondrocytes obtained from stifle joint of New Zealand White rabbits were cultivated. Half of cells were maintained in culture for later implantation and the others frozen during six months to evaluate viability. A circular osteochondral defect was created in the right stifle of other twenty seven rabbits. The control group (CG received no treatment. The thawed (TH and fresh (FH heterologous groups received, respectively, an implant of cultivated thawed or fresh heterologous chondrocytes associated with platelet rich plasma (PRP. The CG group showed greatest pain and lameness compared to the other groups seven days after the implantation. Microscopically, at 45 and 90 days, the TH and FH groups showed filling with cartilaginous tissue containing chondrocytes surrounded by a dense matrix of glycosaminoglycans. In the CG group, healing occurred with vascularized fibrous connective tissue without integration to the subchondral bone. Cryopreserved heterologous chondrocytes were viable for implantation and healing of osteochondral lesions; the association with PRP allows the fixation of cells in the lesion and offers growth factors which accelerates repair with tissue similar to articular hyaline cartilage.

  17. Scaffold-free cartilage tissue engineering with a small population of human nasoseptal chondrocytes.

    Science.gov (United States)

    Chiu, Loraine L Y; To, William T H; Lee, John M; Waldman, Stephen D

    2017-03-01

    Cartilage tissue engineering is a promising approach to provide suitable materials for nasal reconstruction; however, it typically requires large numbers of cells. We have previously shown that a small number of chondrocytes cultivated within a continuous flow bioreactor can elicit substantial tissue growth, but translation to human chondrocytes is not trivial. Here, we aimed to demonstrate the application of the bioreactor to generate large-sized tissues from a small population of primary human nasoseptal chondrocytes. Experimental study. Chondrocytes were cultured in the bioreactor using different medium compositions, with varying amounts of serum and with or without growth factors. Resulting engineered tissues were analyzed for physical properties, biochemical composition, tissue microstructure, and protein localization. Bioreactor-cultivated constructs grown with serum and growth factors (basic fibroblast growth factor and transforming growth factor beta 2) had greater thickness, as well as DNA and glycosaminoglycan (GAG) contents, compared to low serum and no growth factor controls. These constructs also showed the most intense proteoglycan and collagen II staining. The combination of bioreactor conditions, serum, and growth factors allowed the generation of large, thick scaffold-free human cartilaginous tissues that resembled the native nasoseptal cartilage. There also may be implications for patient selection in future clinical applications of these engineered tissues because their GAG content decreased with donor age. NA. Laryngoscope, 127:E91-E99, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis.

    Science.gov (United States)

    Latief, Noreen; Raza, Fahad Ali; Bhatti, Fazal-Ur-Rehman; Tarar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2016-05-01

    Transplantation of mesenchymal stem cells (MSCs) or autologous chondrocytes has been shown to repair damages to articular cartilage due to osteoarthritis (OA). However, survival of transplanted cells is considerably reduced in the osteoarthritic environment and it affects successful outcome of the transplantation of the cells. Differentiated chrondroytes derived from adipose stem cells have been proposed as an alternative source and our study investigated this possibility in rats. We investigated the regenerative potential of ADSCs and DCs in osteoarthritic environment in the repair of cartilage in rats. We found that ADSCs maintained fibroblast morphology in vitro and also expressed CD90 and CD29. Furthermore, ADSCs differentiated into chondrocytes, accompanied by increased level of proteoglycans and expression of chondrocytes specific genes, such as, Acan, and Col2a1. Histological examination of transplanted knee joints showed regeneration of cartilage tissue compared to control OA knee joints. Increase in gene expression for Acan, Col2a1 with concomitant decrease in the expression of Col1a1 suggested formation of hyaline like cartilage. A significant increase in differentiation index was observed in DCs and ADSCs transplanted knee joints (P = 0.0110 vs. P = 0.0429) when compared to that in OA control knee joints. Furthermore, transplanted DCs showed increased proliferation along with reduction in apoptosis as compared to untreated control. In conclusion, DCs showed better survival and regeneration potential as compared with ADSCs in rat model of OA and thus may serve a better option for regeneration of osteoarthritic cartilage. © 2016 International Federation for Cell Biology.

  19. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Amilton M Fernandes

    Full Text Available Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM derived mesenchymal stem cells (MSCs from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin, ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  20. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Science.gov (United States)

    Fernandes, Amilton M; Herlofsen, Sarah R; Karlsen, Tommy A; Küchler, Axel M; Fløisand, Yngvar; Brinchmann, Jan E

    2013-01-01

    Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA) may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM) derived mesenchymal stem cells (MSCs) from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin), ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  1. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  2. Curcuminoids extract, hydrolyzed collagen and green tea extract synergically inhibit inflammatory and catabolic mediator's synthesis by normal bovine and osteoarthritic human chondrocytes in monolayer.

    Directory of Open Access Journals (Sweden)

    Fanny Comblain

    Full Text Available The main objective of this study was to assess the in vitro effects of curcuminoids extract, hydrolyzed collagen and green tea extract in normal bovine chondrocytes and osteoarthritic human chondrocytes cultured in monolayer. This study also investigated the synergic or additive effects of these compounds. Enzymatically isolated primary bovine or human chondrocytes were cultured in monolayer until confluence and then incubated for 24 hours or 48 hours in the absence or in the presence of interleukin-1β and with or without curcuminoids extract, hydrolyzed collagen or green tea extract, added alone or in combination, at different concentrations. Cell viability was neither affected by these compounds, nor by interleukin 1β. In the absence of interleukin-1β, compounds did not significantly affect bovine chondrocytes metabolism. In human chondrocytes and in the absence of interleukin 1β, curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract significantly inhibited matrix metalloproteinase-3 production. In interleukin-1β-stimulated bovine chondrocytes, interleukin-6, inducible nitric oxide synthase, cyclooxygenase2, matrix metalloproteinase 3, a disintegrin and metalloproteinase with thrombospondin type I motifs 4 and a disintegrin and metalloproteinase with thrombospondin type I motifs 5 expressions were decreased by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. The combination of the three compounds was significantly more efficient to inhibit interleukin-1β stimulated matrix metalloproteinase-3 expression than curcuminoids extract alone. In interleukin-1β-stimulated human chondrocytes, nitric oxide, interleukin-6 and matrix metalloproteinase 3 productions were significantly reduced by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. These findings indicate that a mixture of curcuminoids extract, hydrolyzed collagen

  3. Nanosized fibers' effect on adult human articular chondrocytes behavior

    Energy Technology Data Exchange (ETDEWEB)

    Stenhamre, Hanna [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Thorvaldsson, Anna, E-mail: anna.thorvaldsson@swerea.se [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Swerea IVF, Mölndal (Sweden); Enochson, Lars [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Walkenström, Pernilla [Swerea IVF, Mölndal (Sweden); Lindahl, Anders [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Brittberg, Mats [Cartilage Research Unit, University of Gothenburg, Department Orthopaedics, Kungsbacka Hospital, Kungsbacka (Sweden); Gatenholm, Paul [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2013-04-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum.

  4. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    OpenAIRE

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2013-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) ...

  5. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  6. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  7. GM-CSF increases the ability of cultured macrophages to support autologous CD4+ T-cell proliferation in response to Dermatophagoides pteronyssinus and PPD antigen.

    Science.gov (United States)

    Caulfield, J J; Hawrylowicz, C M; Kemeny, D M; Lee, T H

    1997-01-01

    Previous studies have demonstrated an infiltration of monocytes and increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the asthmatic lung. To study the possible effects of this cytokine upon the differentiation and function of these newly recruited monocytes, we have developed a model in which monocytes isolated from human peripheral blood were differentiated into macrophages in serum in the presence or absence of GM-CSF. After 7 days, the macrophages increased in size and granularity, had increased phagocytic activity, and expressed various adhesion molecules, CD14 and major histocompatibility complex (MHC) class II. The effects of GM-CSF on antigen presentation by cultured macrophages on the antigen-specific proliferative response of CD4+ T cells to Dermatophagoides pteronyssinus or purified protein derivative of tuberculin and the mitogen phytohaemagglutinin was determined. CD4+ T-cell proliferation was reduced when either antigen was presented by macrophages cultured in serum alone, compared with the values obtained with freshly isolated monocytes. However, CD4+ cell proliferation was comparable to that observed with monocytes when antigen was presented by macrophages which had been pre-cultured with 50 U/ml GM-CSF. CD4+ T-cell proliferation to phytohaemagglutinin was similar when all three populations were used as accessory cells. High numbers of macrophages partially suppressed CD4+ T-cell proliferation in response to antigen presented by monocytes, but there was no significant difference between macrophages cultured in the presence or absence of GM-CSF. This data suggests that GM-CSF directs monocyte differentiation into macrophages with an antigen-presenting, rather than a suppressive, phenotype. Elevated levels of GM-CSF in the asthmatic lung may therefore maintain recently recruited monocytes in an inflammatory and T-cell activating state. Images Figure 2 Figure 3 PMID:9370934

  8. Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo.

    Science.gov (United States)

    Heiligenstein, Susanne; Cucchiarini, Magali; Laschke, Matthias W; Bohle, Rainer M; Kohn, Dieter; Menger, Michael D; Madry, Henning

    2011-04-01

    Genetically modified chondrocytes embedded in alginate improve cartilage repair in experimental models, and alginates are clinically used for articular chondrocyte transplantation. In the present study, we tested the hypothesis that the alginate system allows for sustained transgene expression in cartilage defects in a preclinical large animal model in vivo. Primary cultures of ovine articular chondrocytes were transfected with the Photinus pyralis luc or the Escherichia coli lacZ genes in monolayer culture in vitro using eight different nonviral compounds. Optimally transfected chondrocytes were encapsulated in spheres composed of nonbiomedical or biomedical grade alginates for evaluation of luciferase expression, cell numbers and viabilities in vitro. Transfected chondrocytes encapsulated in spheres comprised of the different alginates were then implanted into osteochondral defects in the knee joints of sheep to examine the profiles of transgene expression in vivo. Ovine articular chondrocytes were efficiently transfected with FuGENE 6. Transgene expression was detectable after encapsulation in the alginates over 21 days in vitro. Transplantation of genetically modified chondrocytes to cartilage defects in vivo resulted in maximal transgene expression on day 1 after transfection, with a decrease by day 21, the longest time point evaluated. Remarkably, the reduction in luciferase activity was less pronounced when biomedical grade alginates were employed, compared to nonbiomedical grade alginates, suggesting that such alginates might be better suited to support elevated transgene expression after transplantation of genetically modified chondrocytes. This approach may be of value to study the effects of potential therapeutic genes upon cartilage repair in a clinically relevant setting. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2007-07-01

    Full Text Available Abstract Background Glucocorticoids (GCs are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX, at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides

  10. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation.

    Science.gov (United States)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A; Warhol, M J; Lackman, R D

    2001-01-01

    Clinical and in vitro studies have demonstrated that fluoroquinolones are toxic to chondrocytes; however, the exact mechanism of fluoroquinolone arthropathy is unknown. We investigated the toxicity of ciprofloxacin on normal cartilage and on cartilaginous tumors. Normal human cartilage, enchondroma, and chondrosarcoma explants were cultured either alone or with the addition of ciprofloxacin at 1, 10, or 20 mg/L of medium. Samples were collected up to twenty-one days after treatment and were processed for electron microscopy and conventional light microscopy. The specimens were characterized morphologically with use of conventional light microscopy, electron microscopy, and immunohistochemistry to identify extracellular matrix, cell proliferation, and apoptosis. Cultures of normal chondrocytes expressed type-II collagen. Electron microscopy revealed a large amount of glycogen in the cells; the presence of fat droplets, rough endoplasmic reticulum, and prominent Golgi apparatus; and a proteoglycan layer surrounding the cells. With prolonged ciprofloxacin treatment and with increased doses, there was an increase in dilated rough endoplasmic reticulum, the appearance of phagosomes, and disintegrated bundles of vimentin filaments. The treated chondrocytes showed a decrease in cell proliferation, but there was no induction of apoptosis or effect on the expression of extracellular matrix proteins. Ciprofloxacin-treated chondrosarcoma cultures and tissue samples showed changes in cartilage matrix composition. Ultrastructural analysis demonstrated clumped glycogen, dilation of endoplasmic reticulum, numerous abnormal lysosomes containing degeneration products, and a decreased proteoglycan deposit surrounding the tumor cells. Treated chondrosarcoma cells and tissue specimens did not proliferate, and apoptosis was induced. In contrast, the in vitro growth of other noncartilaginous malignant tumors like osteosarcoma and liposarcoma was unaffected by ciprofloxacin. Our results

  11. Longitudinal bone growth is impaired by direct involvement of caffeine with chondrocyte differentiation in the growth plate.

    Science.gov (United States)

    Choi, Hyeonhae; Choi, Yuri; Kim, Jisook; Bae, Jaeman; Roh, Jaesook

    2017-01-01

    We showed previously that caffeine adversely affects longitudinal bone growth and disrupts the histomorphometry of the growth plate during the pubertal growth spurt. However, little attention has been paid to the direct effects of caffeine on chondrocytes. Here, we investigated the direct effects of caffeine on chondrocytes of the growth plate in vivo and in vitro using a rapidly growing young rat model, and determined whether they were related to the adenosine receptor signaling pathway. A total of 15 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg -1  day -1 for 4 weeks. After sacrifice, the tibia processed for the analysis of the long bone growth and proliferation of chondrocytes using tetracycline and BrdU incorporation, respectively. Caffeine-fed animals showed decreases in matrix mineralization and proliferation rate of growth plate chondrocytes compared with the control. To evaluate whether caffeine directly affects chondrocyte proliferation and chondrogenic differentiation, primary rat chondrocytes were isolated from the growth plates and cultured in either the presence or absence of caffeine at concentrations of 0.1-1 mm, followed by determination of the cellular proliferation or expression profiles of cellular differentiation markers. Caffeine caused significant decreases in extracellular matrix production, mineralization, and alkaline phosphatase activity, accompanied with decreases in gene expression of the cartilage-specific matrix proteins such as aggrecan, type II collagen and type X. Our results clearly demonstrate that caffeine is capable of interfering with cartilage induction by directly inhibiting the synthetic activity and orderly expression of marker genes relevant to chondrocyte maturation. In addition, we found that the adenosine type 1 receptor signaling pathway may be partly involved in the detrimental effects of caffeine on chondrogenic

  12. [Bio-modification of polyhydroxyalkanoates and its biocompatibility with chondrocytes].

    Science.gov (United States)

    Gao, Tianxi; Chang, Huimin; Fan, Minjie; Lu, Xiaoyun; Wang, Zhenghui; Zhang, Xianghong; Jing, Xiaohong; Shi, Yanxia; Li, Zhihui

    2014-08-01

    To study the hydrophilicity and the cell biocompatibility of the poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) coated with a fusion protein polyhydroxyalkanoates granule binding protein (PhaP) fused with Arg-Gly-Asp (RGD) peptide (PhaP-RGD). PHBV and PHBHHx films were fabricated by solvent evaporation. Scanning electronic microscope (SEM) was used to study the morphology of the films. PhaP-RGD fusion proteins were expressed and purified by the technology of protein engineering; PHBV and PHBHHx films were immersed in the PhaP-RGD with an amount of 3.5 mg/mL protein/per sample respectively. The hydrophilicity of the surface were detected by the contact angle measurements. Septal cartilage cells obtained from human septal cartilage were cultured in vitro. The 2nd passage chondrocytes were incubated on PHBV unmodified with PhaP-RGD in group A1, PHBV modified with PhaP-RGD in group A2, PHBHHx unmodified with PhaP-RGD in group Bl, PHBHHx modified with PhaP-RGD in group B2, and on the cell culture plates in group C. After cultured for 3 days, the proliferation of cells was detected by the DAPI staining; the proliferation viability of cells was detected by the MTT assay after cultured for 3 and 7 days; after cultured for 7 days, the adhesion and morphology of the cells on the surface of the biomaterial films were observed by SEM and the matrix of the cells was detected through the toluidine blue staining. SEM observation showed that PHBV and PHBHHx films had porous structures. The contact angle of the surface of the PHBV and PHBHHx films modified with PhaP-RGD fusion proteins were significantly reduced when compared with the films unmodified with PhaP-RGD fusion proteins (P films could grow in all groups. After 3 days of cultivation in vitro, the cell proliferation and viability of group B2 were the strongest among all groups (P films of PHBHHx modified with PhaP-RGD fusion protein can promote its

  13. Evidence for regulated interleukin-4 expression in chondrocyte-scaffolds under in vitro inflammatory conditions.

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Rai

    Full Text Available OBJECTIVE: To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions. METHODS: Mature articular chondrocytes from dogs (n = 3 were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive or pCOX-2.cIL-4 (cytokine-responsive plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS® to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc IL-1β (100 ng/ml plus rcTNFα (50 ng/ml in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic properties of cIL-4. RESULTS: cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE(2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable. Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and

  14. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study.

    Science.gov (United States)

    Corallo, Claudio; Volpi, Nila; Franci, Daniela; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Guarna, Massimo; Montella, Antonio; Albanese, Antonietta; Battisti, Emilio; Fioravanti, Antonella; Nuti, Ranuccio; Giordano, Nicola

    2013-06-01

    Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.

  15. Stable subclones of the chondrogenic murine cell line MC615 mimic distinct stages of chondrocyte differentiation.

    Science.gov (United States)

    Surmann-Schmitt, Cordula; Widmann, Nathalie; Mallein-Gerin, Frédéric; von der Mark, Klaus; Stock, Michael

    2009-10-15

    Fourteen stable subclones derived from the murine chondrogenic cell line MC615 were established and characterised regarding their differentiation stages and responsivity to BMP2. Based on their gene expression profiles which revealed remarkable variances in Col2a1 and Col10a1 expression, subclones could be grouped into at least three distinct categories. Three representative subclones (4C3, 4C6 and 4H4) were further characterised with respect to gene expression pattern and differentiation capacity. These subclones resembled (i) weakly differentiated chondrogenic precursors, strongly responding to BMP2 stimulation (4C3), (ii) collagen II expressing chondrocytes which could be induced to undergo maturation (4C6) and (iii) mature chondrocytes expressing Col10a1 and other markers of hypertrophy (4H4). Interestingly, BMP2 administration caused Smad protein phosphorylation and stimulated Col10a1 expression in all clones, but induced Col2a1 expression only in precursor-like cells. Most remarkably, these clones maintained a stable gene expression profile at least until the 30th passage of subconfluent culture, but revealed reproducible changes in gene expression and differentiation pattern in long term high density cultures. Thus, the newly established MC615 subclones may serve as a potent new tool for investigations on the regulation of chondrocyte differentiation and function. (c) 2009 Wiley-Liss, Inc.

  16. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell......-extracellular matrix interactions. RESULTS: ADAM12-S transgenic mice exhibit increased longitudinal bone growth. The increased bone length is progressive and age dependent, with a maximum increase of 17% seen in the femur from 6-month-old transgenic mice. The effect is gene dose dependent, being more pronounced...

  17. A programmable ramp waveform generator for PEMF exposure studies on chondrocytes.

    Science.gov (United States)

    Jahns, M; Durdle, N; Lou, E; Raso, V J

    2006-01-01

    Osteoarthritis is a debilitating joint disease where the surface of articular cartilage degrades and is unable to repair itself through natural processes. Controlling the migration of transplanted chondrocytes to the defective cartilage non-invasively could be a novel treatment for osteoarthritis. Our research group has performed an in-vitro investigation into the response of cultured human chondrocytes to pulsed electromagnetic fields (PEMF). Development of a treatment for osteoarthritis patients will require the use of a programmable waveform generator to generate the PEMF. This paper discusses the design and testing of a programmable ramp waveform generator for such purpose. When this ramp waveform generator is connected to the PEMF coil driver circuitry, it will be able to produce linearly ramping magnetic fields ranging in strength from 0.5 mT to 4.5 mT. It also has an attainable pulse width ranging from 6 ms to 100 ms, with a selectable duty cycle from 1% to 99%

  18. L-Monomethyl-arginine decreases apoptosis of chondrocytes by ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... Apoptosis of chondrocytes was detected by terminal deoxynucleotidyl transferase dUTP nick end ... number of degraded chondrocytes to disease severity. A subsequent study of a rabbit knee OA .... (400×) and analyzed with Image-pro Plus6.0 image processing system (Media Cybernetics, Inc. Bethesda, ...

  19. Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival

    Science.gov (United States)

    Eaton, G J; Zhang, Q-S; Diallo, C; Matsuzawa, A; Ichijo, H; Steinbeck, M J; Freeman, T A

    2014-01-01

    Endochondral ossification is the result of chondrocyte differentiation, hypertrophy, death and replacement by bone. The careful timing and progression of this process is important for normal skeletal bone growth and development, as well as fracture repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK), which is activated by reactive oxygen species and other cellular stress events. Activation of ASK1 initiates a signaling cascade known to regulate diverse cellular events including cytokine and growth factor signaling, cell cycle regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice display alterations in normal growth plate morphology, which include a shorter proliferative zone and a lengthened hypertrophic zone. These changes in growth plate dynamics result in accelerated long bone mineralization and an increased formation of trabecular bone, which can be attributed to an increased resistance of terminally differentiated chondrocytes to undergo cell death. Interestingly, under normal cell culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show no differences in either MAPK signaling or osteogenic or chondrogenic differentiation when compared with wild-type (WT) MEFs. However, when cultured with stress activators, H2O2 or staurosporine, the KO cells show enhanced survival, an associated decrease in the activation of proteins involved in death signaling pathways and a reduction in markers of terminal differentiation. Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO mice endochondral bone formation was increased in an ectopic ossification model. These findings highlight a previously unrealized role for ASK1 in regulating endochondral bone formation. Inhibition of ASK1 has

  20. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Giuseppe Musumeci

    2015-08-01

    Full Text Available Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA.

  1. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis.

    Science.gov (United States)

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K; Alqahtani, Mohammed H; Mobasheri, Ali

    2015-08-31

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA.

  2. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    Science.gov (United States)

    Crovace, Antonio; Lacitignola, Luca; Rossi, Giacomo; Francioso, Edda

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression. PMID:20445779

  3. A Wnt/β-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes.

    Science.gov (United States)

    Ma, Bin; van Blitterswijk, Clemens A; Karperien, Marcel

    2012-08-01

    The results of recent animal studies suggest that activation of Wnt/β-catenin signaling in articular chondrocytes might be a driving factor in the pathogenesis of osteoarthritis (OA) by stimulating, for instance, the expression of matrix metalloproteinases (MMPs). The aim of this study was to investigate the role of Wnt/β-catenin signaling in interleukin-1β (IL-1β)-induced MMP expression in human chondrocytes. Primary cultures of human, murine, and bovine articular chondrocytes as well as human mesenchymal stem cells and mouse embryonic fibroblasts were used in the experiments. Multiple strategies for the activation and inhibition of signaling pathways were utilized. Reporter assays and coimmunoprecipitation were performed to study the interaction between β-catenin and NF-κB. In contrast to the role of Wnt/β-catenin in animal chondrocytes, in human chondrocytes it was a potent inhibitor of MMP-1, MMP-3, and MMP-13 expression and generic MMP activity both in basal conditions and after IL-1β stimulation. This effect was independent of the T cell factor/lymphoid enhancer factor family of transcription factors but rather was attributable to an inhibitory protein-protein interaction between β-catenin and NF-κB. IL-1β indirectly activated β-catenin signaling by inducing canonical Wnt-7B expression and by inhibiting the expression of canonical Wnt antagonists. Wnt/β-catenin signaling in human chondrocytes had an unexpected anticatabolic role by counteracting NF-κB-mediated MMP expression induced by IL-1β in a negative feedback loop. Copyright © 2012 by the American College of Rheumatology.

  4. Kaempferol Alleviates the Interleukin-1β-Induced Inflammation in Rat Osteoarthritis Chondrocytes via Suppression of NF-κB.

    Science.gov (United States)

    Zhuang, Zhengling; Ye, Guangqun; Huang, Bin

    2017-08-14

    BACKGROUND This study was designed to examine the anti-inflammatory and anti-osteoarthritis (OA) effects of kaempferol in rat articular chondrocytes stimulated with interleukin-1β. MATERIAL AND METHODS Rat articular chondrocytes cultures were treated with interleukin-1β alone or with kaempferol (25, 50, 100, and 200 μM) and interleukin-1β. The effect of kaempferol on chondrocyte cells viability was measured by MTT assay. The effect on prostaglandin E2 (PGE2) and nitric oxide (NO) level were also assessed using the ELISA and Griess reagent, respectively, for kaempferol activity. Moreover, the expression of iNOS, Cox-2 and activation of NF-κB under influence of kaempferol was also assessed by Western blot. RESULTS Kaempferol treatment (up to 100 μM) in a concentration-dependent way caused reduction in the interleukin-1b-stimulated formations of PGE2 and NO. Kaempferol also upregulated the expression of iNOS and Cox-2 in interleukin-1β-stimulated rat OA chondrocytes. Additionally, kaempferol was found to inhibit the IkBa degradation and NF-κB activation in rat chondrocytes stimulated with interleukin-1β. CONCLUSIONS Kaempferol significantly caused reduction in interleukin-1β-stimulated pro-inflammatory mediators in rat OA chondrocytes by inhibiting the NF-κB pathway. These results suggest that kaempferol had significant anti-inflammatory and anti-arthritis effects. Thus, kaempferol, as a novel therapeutic active agent, may prevent, stop, or retard the progression of OA.

  5. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    Directory of Open Access Journals (Sweden)

    Alice Roffi

    2014-01-01

    Full Text Available PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes.

  6. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    Science.gov (United States)

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  7. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Pedersen Christian

    2010-04-01

    Full Text Available Abstract Background Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglycans and collagen-type-II synthesis in osteoarthritic (OA cartilage. Methods Human OA cartilage explants were cultured with salmon calcitonin [100 pM-100 nM]. Direct effects of calcitonin on articular cartilage were evaluated by 1 measurement of proteoglycan synthesis by incorporation of radioactive labeled 35SO4 [5 μCi] 2 quantification of collagen-type-II formation by pro-peptides of collagen type II (PIINP ELISA, 3 QPCR expression of the calcitonin receptor in OA chondrocytes using four individual primer pairs, 4 activation of the cAMP signaling pathway by EIA and, 5 investigations of metabolic activity by AlamarBlue. Results QPCR analysis and subsequent sequencing confirmed expression of the calcitonin receptor in human chondrocytes. All doses of salmon calcitonin significantly elevated cAMP levels (P 35SO4 incorporation, with a 96% maximal induction at 10 nM (P Conclusion Calcitonin treatment increased proteoglycan and collagen synthesis in human OA cartilage. In addition to its well-established effect on subchondral bone, calcitonin may prove beneficial to the management of joint diseases through direct effects on chondrocytes.

  8. Autologous epidermal cell suspension: A promising treatment for chronic wounds.

    Science.gov (United States)

    Zhao, Hongliang; Chen, Yan; Zhang, Cuiping; Fu, Xiaobing

    2016-02-01

    Chronic wounds have become an increasing medical and economic problem of aging societies because they are difficult to manage. Skin grafting is an important treatment method for chronic wounds, which are refractory to conservative therapy. The technique involving epidermal cell suspensions was invented to enable the possibility of treating larger wounds with only a small piece of donor skin. Both uncultured and cultured autologous epidermal cell suspensions can be prepared and survive permanently on the wound bed. A systematic search was conducted of EMBASE, Cochrane Library, PubMed and web of science by using Boolean search terms, from the establishment of the database until May 31, 2014. The bibliographies of all retrieved articles in English were searched. The search terms were: (epithelial cell suspension OR keratinocyte suspension) and chronic and wound. From the included, 6 studies are descriptive interventions and discussed the use of autologous keratinocyte suspension to treat 61 patients' chronic wound. The various methods of preparation of epidermal cell suspension are described. The advantages and shortcomings of different carriers for epidermal cell suspensions are also summarised. Both uncultured and cultured autologous epidermal cell suspensions have been used to treat chronic wounds. Although the limitations of these studies include the small number of patient populations with chronic wounds and many important problems that remain to be solved, autologous epidermal cell suspension is a promising treatment for chronic wounds. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  9. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli.

    Directory of Open Access Journals (Sweden)

    Rene Olivares-Navarrete

    Full Text Available Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1 in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process.

  10. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic Acid Biphasic Scaffold

    Directory of Open Access Journals (Sweden)

    Juin-Yih Su

    2017-01-01

    Full Text Available Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM, transmission electron (TEM microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9 levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.

  11. Phenotyping of chondrocytes from human osteoarthritic cartilage: chondrocyte expression of beta integrins and correlation with anatomic injury

    Directory of Open Access Journals (Sweden)

    G. Lapadula

    2011-09-01

    Full Text Available Chondrocyte-ECM (extracellular matrix interactions are believed to play a pivotal role in the development and metabolic homeostasis of articular cartilage. Cell surface adhesion molecules have been reported to modulate chondrocyte binding to ECM (collagen, fibronectin, laminin and they also act as transducers of critical signals in many biological processes such as growth, differentiation, migration and matrix synthesis. Recently, it has been shown that normal human articular chondrocytes strongly express ß1 integrins, which are constituted by a common chain (ß1 and a variable α chain, but the behaviour of these molecules in human osteoarthritic cartilage has not been extensively investigated. We studied the expression of ß integrins (ß1-5, α1-6, av chains, LFA-1, ICAM-1 and CD44, on freshly isolated chondrocytes obtained from 10 osteoarthritic patients undergoing surgical knee replacement. Chondrocytes were isolated by enzymatic digestion from three zones of each articular cartilage with a differing degree of macroscopic and microscopic damage. Integrin expression and cell cycle analysis were carried out by flowcytometry. Chondrocytes from costal cartilages of 5 human fetuses were also studied. Chondrocytes from osteoarthritic cartilage expressed high levels of ß1 integrin and, at different percantages, all the α chains. The α chain most frequentiy expressed was α1, foilowed by α3, α5, α2, αv. Integrin expression decreased from the least to the most damaged zone of articular cartilage and cell cycle analysis showed that proliferating chondrocytes (S phase were prevalent on the latter zone. ß2, ß3, ß2, ß5, CD44, LFA-1/ICAM-1 complex were very low expressed. Fetal chondrocytes strongly expressed ß1 and ß5 chains. These data provide evidence to show that integrin expression on human chondrocytes changes in osteoarthritis and suggest that perturbations of chondrocyte-ECM signalling occur in the development of the disease. The

  12. Rebooting autoimmunity with autologous HSCT.

    Science.gov (United States)

    Snowden, John A

    2016-01-07

    Autologous hematopoietic stem cell transplantation (HSCT) is increasingly used for severe autoimmune and inflammatory diseases, but the mechanisms involved have yet to be elucidated. In this issue of Blood, Delemarre et al report their findings in both animal and human models which provide insights into restoration of functionality and diversity within the regulatory T-cell (Treg) compartment following HSCT.

  13. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  14. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth.

    Science.gov (United States)

    Woods, Anita; James, Claudine G; Wang, Guoyan; Dupuis, Holly; Beier, Frank

    2009-09-01

    Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-alpha (Ror-alpha) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-alpha target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-alpha by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1alpha (a regulator of Rora gene expression) and Ror-alpha(+) cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-alpha expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics.

  15. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF).

    Science.gov (United States)

    Corallo, Claudio; Battisti, Emilio; Albanese, Antonietta; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Gagliardi, Assunta; Landi, Claudia; Carta, Serafino; Nuti, Ranuccio; Giordano, Nicola

    2014-01-01

    Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30 min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.

  16. Bio-artificial pleura using an autologous dermal fibroblast sheet

    Science.gov (United States)

    Kanzaki, Masato; Takagi, Ryo; Washio, Kaoru; Kokubo, Mami; Yamato, Masayuki

    2017-10-01

    Air leaks (ALs) are observed after pulmonary resections, and without proper treatment, can produce severe complications. AL prevention is a critical objective for managing patients after pulmonary resection. This study applied autologous dermal fibroblast sheets (DFS) to close ALs. For sealing ALs in a 44-year-old male human patient with multiple bullae, a 5 × 15-mm section of skin was surgically excised. From this skin specimen, primary dermal fibroblasts were isolated and cultured for 4 weeks to produce DFSs that were harvested after a 10-day culture. ALs were completely sealed using surgical placement of these autologous DFSs. DFS were found to be a durable long-term AL sealant, exhibiting requisite flexibility, elasticity, durability, biocompatibility, and usability, resulting reliable AL closure. DFS should prove to be an extremely useful tissue-engineered pleura substitute.

  17. Altered Chondrocyte Apoptosis Status in Developmental Hip Dysplasia in Rabbits

    Directory of Open Access Journals (Sweden)

    Yi-Shan Wei

    2016-12-01

    Full Text Available Background: Developmental dysplasia of the hip (DDH is an important factor leading to early adult osteoarthritis. Chondrocyte apoptosis has been proven to be an important factor causing osteoarthritis. Aims: The current study aims to explore whether a rabbit model of developmental dysplasia of the hip through cast immobilization in the legs results in chondrocyte apoptosis. Study Design: Animal experimentation. Methods: Thirty-two New Zealand white rabbits were divided in three groups with cast plaster-induced dislocation at 2, 4 and 6 weeks. The contralateral hip joint was utilized as a control group. Ten rabbits in each group were sacrificed, and hip specimens were obtained. Bcl-2/Bax, cleaved caspase-3 and cleaved caspase-8 expression were examined by western blot analysis. Chondrocyte apoptosis was analyzed through transmission electron microscopy (TEM and TUNEL analysis. All experiments were repeated at least three times. Results: In the experimental group, Bcl-2/Bax, cleaved caspase-3 and cleaved caspase-8 expression were significantly altered. The Bcl-2/Bax ratio decreased with time (all p<0.01, whereas levels of cleaved caspase-3 (p<0.01 and p<0.05 and cleaved caspase-8 (all p<0.05 gradually increased. Chondrocyte apoptosis was observed through transmission electron microscopy (TEM and TUNEL analysis (p<0.05 at 4 weeks and p<0.01 at 6 weeks. Conclusion: Prolonged immobilization of rabbit hip caused chondrocyte apoptosis. Reduction of the hip joint may protect chondrocytes from apoptosis, thus preventing secondary osteoarthritis.

  18. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  19. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik

    2006-01-01

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P 2 , S1P 3 , S1P 4 , but not S1P 1 . When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P 1 - and S1P 4 -selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G i protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process

  20. Experimental study of tissue-engineered cartilage allograft with RNAi chondrocytes in vivo

    Directory of Open Access Journals (Sweden)

    Wang ZH

    2014-05-01

    Full Text Available Zhenghui Wang,1 Xiaoli Li,2 Xi-Jing He,3 Xianghong Zhang,1 Zhuangqun Yang,4 Min Xu,1 Baojun Wu,1 Junbo Tu,5 Huanan Luo,1 Jing Yan11Department of Otolaryngology – Head and Neck Surgery, 2Department of Dermatology, 3Department of Orthopedics, The Second Hospital, Xi’an Jiaotong University, 4Department of Plastic and Burns Surgery, The First Hospital, Xi’an Jiaotong University, 5Department of Oral and Maxillofacial Plastic Surgery, The Stomatological Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of ChinaPurpose: To determine the effects of RNA interference (RNAi on chondrocyte proliferation, function, and immunological rejection after allogenic tissue-engineered cartilage transplantation within bone matrix gelatin scaffolds.Methods: Seven million rat normal and RNAi chondrocytes were harvested and separately composited with fibrin glue to make the cell suspension, and then transplanted subcutaneously into the back of Sprague Dawley rats after being cultured for 10 days in vitro. Untransplanted animals served as the control group. The allograft and immunological response were examined at 1, 2, 4, 8, and 12 months postoperatively with hematoxylin and eosin histochemical staining, immunohistochemical staining (aggrecan, type II collagen, class I and II major histocompatibility complex, and flow cytometry for peripheral blood cluster of differentiation 4+ (CD4+ and CD8+ T-cells.Results: There was no infection or death in the rats except one, which died in the first week. Compared to the control group, the RNAi group had fewer eukomonocytes infiltrated, which were only distributed around the graft. The ratio of CD4+/CD8+ T-cells in the RNAi group was significantly lower than the normal one (P<0.05. There were many more positively stained chondrocytes and positively stained areas around the cells in the RNAi group, which were not found in the control group.Conclusion: The aggrecanase-1 and aggrecanase-2 RNAi for chondrocytes

  1. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Low-Frequency High-Magnitude Mechanical Strain of Articular Chondrocytes Activates p38 MAPK and Induces Phenotypic Changes Associated with Osteoarthritis and Pain

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2014-08-01

    Full Text Available Osteoarthritis (OA is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF. Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.

  3. Divergent responses of chondrocytes and endothelial cells to shear stress: Cross-talk among COX-2, the phase 2 response, and apoptosis

    Science.gov (United States)

    Healy, Zachary R.; Lee, Norman H.; Gao, Xiangqun; Goldring, Mary B.; Talalay, Paul; Kensler, Thomas W.; Konstantopoulos, Konstantinos

    2005-01-01

    Fluid shear exerts anti-inflammatory and anti-apoptotic effects on endothelial cells by inducing the coordinated expression of phase 2 detoxifying and antioxidant genes. In contrast, high shear is pro-apoptotic in chondrocytes and promotes matrix degradation and cartilage destruction. We have analyzed the mechanisms regulating shear-mediated chondrocyte apoptosis by cDNA microarray technology and bioinformatics. We demonstrate that shear-induced cyclooxygenase (COX)-2 suppresses phosphatidylinositol 3-kinase (PI3-K) activity, which represses antioxidant response element (ARE)/NF-E2 related factor 2 (Nrf2)-mediated transcriptional response in human chondrocytes. The resultant decrease in antioxidant capacity of sheared chondrocytes contributes to their apoptosis. Phase 2 inducers, and to a lesser extent COX-2-selective inhibitors, negate the shear-mediated suppression of ARE-driven phase 2 activity and apoptosis. The abrogation of shear-induced COX-2 expression by PI3-K activity and/or stimulation of the Nrf2/ARE pathway suggests the existence of PI3-K/Nrf2/ARE negative feedback loops that potentially interfere with c-Jun N-terminal kinase 2 activity upstream of COX-2. Reconstructing the signaling network regulating shear-induced chondrocyte apoptosis may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic strategies for arthritic disorders. PMID:16172382

  4. Use of containers with sterilizing filter in autologous serum eyedrops.

    Science.gov (United States)

    López-García, José S; García-Lozano, Isabel

    2012-11-01

    To assess the effect of the use of containers with an adapted sterilizing filter on the contamination of autologous serum eyedrops. Prospective, consecutive, comparative, and randomized study. Thirty patients with Sjögren syndrome. One hundred seventy-six autologous serum containers used in home therapy were studied; 48 of them included an adapted filter (Hyabak; Thea, Clermont-Ferrand, France), and the other 128 were conventional containers. Containers equipped with a filter were tested at 7, 14, 21, and 28 days of use, whereas conventional containers were studied after 7 days of use. In addition, testing for contamination was carried out in 14 conventional containers used during in-patient therapy every week for 4 weeks. In all cases, the preparation of the autologous serum was similar. Blood agar and chocolate agar were used as regular culture media for the microbiologic studies, whereas Sabouraud agar with chloramphenicol was the medium for fungal studies. Microbiologic contamination of containers with autologous serum eyedrops. Only one of the containers with an adapted sterilizing filter (2.1%) became contaminated with Staphylococcus epidermidis after 1 month of treatment, whereas the contamination rate among conventional containers reached 28.9% after 7 days of treatment. The most frequent germs found in the samples were coagulase-negative Staphylococcus (48.6%). With regard the containers used in the in-patient setting, 2 (14.3%) became contaminated after 2 weeks, 5 (35.7%) became contaminated after 3 weeks, and 5 (50%) became contaminated after 4 weeks, leaving 7 (50%) that did not become contaminated after 1 month of treatment. Using containers with an adapted filter significantly reduces the contamination rates in autologous serum eyedrops, thus extending the use of such container by the patients for up to 4 weeks with virtually no contamination risks. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.

    Science.gov (United States)

    Yeung Tsang, Kwok; Wa Tsang, Shun; Chan, Danny; Cheah, Kathryn S E

    2014-03-01

    The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia. Copyright © 2014 Wiley Periodicals

  6. Autologous Fat Injection for Augmented Mammoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eul Sik; Seo, Bo Kyoung; Yi, Ann; Cho, Kyu Ran [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2008-12-15

    Autologous fat injection is one of the methods utilized for augmented mammoplasty methods. In this surgical procedure, the fat for transfer is obtained from the donor site of the patient's own body by liposuction and the fat is then injected into the breast. We report here cases of three patients who underwent autologous fat injection. Two of the patients had palpable masses that were present after surgery. The serial imaging findings and surgical method of autologous fat transfer are demonstrated

  7. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair.

    Science.gov (United States)

    Hinton, R J; Jing, Y; Jing, J; Feng, J Q

    2017-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived).

  8. Altered Chondrocyte Apoptosis Status in Developmental Hip Dysplasia in Rabbits.

    Science.gov (United States)

    Wei, Yi-Shan; Li, Dai-He; Liu, Wan-Lin; Jiang, Dian-Ming

    2016-11-01

    Developmental dysplasia of the hip (DDH) is an important factor leading to early adult osteoarthritis. Chondrocyte apoptosis has been proven to be an important factor causing osteoarthritis. The current study aims to explore whether a rabbit model of developmental dysplasia of the hip through cast immobilization in the legs results in chondrocyte apoptosis. Animal experimentation. Thirty-two New Zealand white rabbits were divided in three groups with cast plaster-induced dislocation at 2, 4 and 6 weeks. The contralateral hip joint was utilized as a control group. Ten rabbits in each group were sacrificed, and hip specimens were obtained. Bcl-2/Bax, cleaved caspase-3 and cleaved caspase-8 expression were examined by western blot analysis. Chondrocyte apoptosis was analyzed through transmission electron microscopy (TEM) and TUNEL analysis. All experiments were repeated at least three times. In the experimental group, Bcl-2/Bax, cleaved caspase-3 and cleaved caspase-8 expression were significantly altered. The Bcl-2/Bax ratio decreased with time (all phip caused chondrocyte apoptosis. Reduction of the hip joint may protect chondrocytes from apoptosis, thus preventing secondary osteoarthritis.

  9. Doxycycline inhibits collagen synthesis by bovine chondrocytes cultured in alginate

    NARCIS (Netherlands)

    Beekman, B.; Verzijl, N.; Roos, J.A.D.M.de; Koopman, J.L.; Tekoppele, J.M.

    1997-01-01

    Doxycycline is known for its ability to inhibit matrix metalloproteinases (MMPs), a family of enzymes that play a role in cartilage breakdown in arthritides. Its prophylactic effect in reducing joint degradation in osteoarthritis is mainly attributed to this property. In this study, we show that

  10. Optimized alkylated cyclodextrin polysulphates with reduced risks on thromboembolic accidents improve osteoarthritic chondrocyte metabolism.

    Science.gov (United States)

    Groeneboer, Sara; Lambrecht, Stijn; Dhollander, Aad; Jacques, Peggy; Vander Cruyssen, Bert; Lories, Rik J; Devreese, Katrien; Chiers, Koen; Elewaut, Dirk; Verbruggen, Gust

    2011-07-01

    To compare the ability of different cyclodextrin polysulphate (CDPS) derivatives to affect human articular cartilage cell metabolism in vitro. OA chondrocytes were cultured in alginate and exposed to 5 µg/ml of 2,3,6-tri-O-methyl-β-cyclodextrin (ME-CD), 2,3-di-O-methyl-6-sulphate-β-cyclodextrin (ME-CD-6-S), 2,6-di-O-methyl-3-sulphate-β-cyclodextrin (ME-CD-3-S), (2-carboxyethyl)-β-CDPS (CE-CDPS), (2-hydroxypropyl)-β-CDPS (HP-CDPS), 6-monoamino-6-monodeoxy-β-CDPS (MA-CDPS) or β-CDPS for 5 days. Effects on IL-1-driven chondrocyte extracellular matrix (ECM) metabolism were assayed by analysis of the accumulation of aggrecan in the interterritorial matrix, IL-6 secretion and qPCR. MA-CDPS, HP-CDPS, CE-CDPS and CDPS were analysed for their in vitro effect on coagulation and their ability to activate platelets in an in vitro assay to detect possible cross-reactivity with heparin-induced thrombocytopenia (HIT) antibodies. The monosulphated cyclodextrins ME-CD-6-S and -3-S failed to affect aggrecan synthesis and IL-6 secretion by the OA chondrocytes. Polysulphated cyclodextrins MA-CDPS, HP-CDPS, CE-CDPS and CDPS at 5 µg/ml concentrations, on the other hand, significantly induced aggrecan production and repressed IL-6 release by the chondrocytes in culture. aPTT and PT for all derivatives were lengthened for polysaccharide concentrations >50 µg/ml. Five micrograms per millilitre of β-CDPS concentrations that significantly modulated ECM ground substance production in vitro did not affect aPTT or PT. Furthermore, CE-CDPS, in contrast to MA-CDPS, HP-CDPS and CDPS, did not significantly activate platelets, suggesting a minimal potential to induce HIT thromboembolic accidents in vivo. CE-CDPS is a new, structurally adjusted, sulphated β-cyclodextrin derivative with preserved chondroprotective capacity and a promising safety profile.

  11. Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage.

    Science.gov (United States)

    Steck, Eric; Bräun, Jessica; Pelttari, Karoliina; Kadel, Stephanie; Kalbacher, Hubert; Richter, Wiltrud

    2007-01-01

    Cartilage acidic protein 1 (CRTAC1), a novel human marker which allowed discrimination of human chondrocytes from osteoblasts and mesenchymal stem cells in culture was so far studied only on the RNA-level. We here describe its genomic organisation and detect a new brain expressed (CRTAC1-B) isoform resulting from alternate last exon usage which is highly conserved in vertebrates. In humans, we identify an exon sharing process with the neighbouring tail-to-tail orientated gene leading to CRTAC1-A. This isoform is produced by cultured human chondrocytes, localized in the extracellular matrix of articular cartilage and its secretion can be stimulated by BMP4. Of five putative O-glycosylation motifs in the last exon of CRTAC1-A, the most C-terminal one is modified according to exposure of serial C-terminal deletion mutants to the O-glycosylation inhibitor Benzyl-alpha-GalNAc. Both isoforms contain four FG-GAP repeat domains and an RGD integrin binding motif, suggesting cell-cell or cell-matrix interaction potential. In summary, CRTAC1 acquired an alternate last exon from the tail-to-tail oriented neighbouring gene in humans resulting in the glycosylated isoform CRTAC1-A which represents a new extracellular matrix molecule of articular cartilage.

  12. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  13. The influence of “Efial” medicine on the chondrocytes functional state

    Directory of Open Access Journals (Sweden)

    N. А. Volkova

    2014-12-01

    Full Text Available Renewal of articular cartilage is a topical issue of modern orthopedics. High frequency of injuries, complexity of clinical diagnosis and subsequent treatment, and also the delay in recovery lead to the development of osteoarthritis, and in some cases, to disability. Articular cartilage belongs to the highly specialized tissues, which is characterized by the lack of blood supply, the low number of cell elements that are placed in the matrix, include collagen, proteoglycans, non-collagenous proteins and water. For the treatment of articular cartilage lesions the medicine which are tissue specific promoters of regeneration are used. The ability of most reparants to stimulate cartilage regeneration combines with other effects, such as: anti-inflammatory, antioxidant and antibacterial. The purpose of administration of these medicines is to stimulate regeneration of tissue in the area of injury. The aim of research was to investigate the effect of “Efial” medicine on functional state of chondrocytes in cultivation conditions. Materials and methods. The chondrocytes were obtained from articular cartilage of rats by enzymatic disaggregation. In all experiments the seeding concentration of chondrocytes was 1.2 x 104 cells/cm2.The "Efial" medicine in concentration of peptides of 0.137 mg/ml was used. Investigated concentration range was 70; 7.6; 1.5; 0.15µg/ml and 75; 15; 1.5 ng/ml. The medicine was added to the cell culture medium when seeding and on the 3rd cultivation day. The control (comparison group was the cultures of chondrocytes which were cultivated under the same conditions without medicine addition. Functional state of chondrocytes under interaction with investigated "Efial" medicine was evaluated by the presence of glycosaminoglycans after Toluidine blue staining (Fluka, Germany and collagen type II (1:200 and FITC-conjugate, Sigma -Aldrich, USA. For statistical study ANOVA and t-Student tests were used with application of Microsoft

  14. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway

    Science.gov (United States)

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-01-01

    Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463

  15. [Change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes].

    Science.gov (United States)

    Ma, Mingming; Xu, Hongguang; Zhang, Xiaoling; Wang, Hong; Zheng, Quan; Xu, Jiajia; Shen, Xiang; Zhang, Shufeng

    2015-11-03

    To explore the change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes. Endplate chondrocytes were selected by enzyme digestion and cultured in vitro to divided into control (P2 cells), naturally passaged (P5 cells) groups and treatment group (P5+ROCK Inhibitor Y27632). The phenotype of endplate chondrocytes were identified by toluidine blue stains and F-actin stains. Type II collagen, aggrecan and SOX9 genes were examed by Real-time RT-PCR to verify the degeneration model. The RhoA/ROCK signaling pathway related gene ROCK-1, ROCK-2 were detected by RT-PCR and Western blot. The actived RhoA was examed by active-RhoA detection and Western blot. With the passaging,endplate chondrocytes completely lost the original cell morphology, the levels of type II collagen (P5/P2=0.248, PROCK-1 (P5/P2=0.652, PROCK-2 (P5/P2=2.527, PROCK-1 AND ROCK-2 were down-regulated in the treatment group. And type II collagen, aggrecan, SOX9 significantly increased. The degeneration of endplate chondrocytes with decreased ROCK-1 expression but increased active-RhoA and ROCK-2 expression suggest that RhoA/ROCK signaling pathway play an important role in the in vitro degeneration of endplate chondrocytes.Modulating the expression of RhoA/ROCK signaling pathway may be a new method of solving the problem of the degeneration of intervertebral disc.

  16. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities

    Science.gov (United States)

    Long, D.L.; Ulici, V.; Chubinskaya, S.; Loeser, R.F.

    2015-01-01

    Objective We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. Methods HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. Results HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. Conclusion HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. PMID:25937027

  17. Autopoiesis: Autology, Autotranscendence and Autonomy

    DEFF Research Database (Denmark)

    , to the prospects of imagination, not least because imagination is driven by such paradoxes. The depth of the imagination is all surface, and all of its surfaces are deep structures. Schiltz’s exploration of autology grows out of one of a number (a growing number) of programmes that deal seriously with the idea......¿ning) problem of modernity. Castoriadis suggests a mutual and complementary relation between subjective and collective autonomy. Bouchet’s interpretation of this is very  radical and in certain respects quite startling. He considers how in modernity emerge spontaneous social orders (like markets or publics...

  18. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses. © 2014 Wiley Periodicals, Inc.

  19. Screening for autologous blood transfusions

    DEFF Research Database (Denmark)

    Mørkeberg, J; Belhage, B; Ashenden, M

    2009-01-01

    The ratio between the amount of hemoglobin in the mature erythrocyte population and the reticulocytes (RBCHb:RetHb ratio) has previously been suggested as a marker to screen for EPO-abuse. We speculated that the reinfusion of blood would lead to a marked increase in this ratio, making it a valuable...... parameter in the screening for autologous blood doping. Three bags of blood (approximately 201+/-11 g of Hb) were withdrawn from 16 males and stored at either -80 degrees C (-80 T, n=8) or +4 degrees C (+4 T, n=8) and reinfused 10 weeks or 4 weeks later, respectively. Seven subjects served as controls...... week wash-out period were identified as 'suspicious', and 18.8% (-80 T) and 4.3% (+4 T) as 'positive'. In total, 7 out of 16 (43.8%) subjects had at least one sample exceeding 182.9. Compared to the currently used indirect parameters, the RBCHb:RetHb ratio is the best indicator of autologous blood...

  20. Tissue-engineered autologous grafts for facial bone reconstruction.

    Science.gov (United States)

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. Copyright © 2016, American Association for the Advancement of Science.

  1. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue.

    Science.gov (United States)

    Meric, Aysenur; Yenigun, Alper; Yenigun, Vildan Betul; Dogan, Remzi; Ozturan, Orhan

    2013-05-01

    Spontaneous cartilage regeneration is poor after a cartilage defect occurs by trauma, surgical, and other reasons. Importance of producing chondrocytes from stem cells and using tissues to repair a defect is getting popular. The aim of this study was to compare the effects of injectable cartilage produced by chondrocytes differentiated from adipose tissue-derived mesenchymal stem cells and chondrocyte cells isolated directly from cartilage tissue. Mesenchymal stem cells were isolated from rat adipose tissue and characterized by cell-surface markers. Then, they were differentiated to chondrocyte cells. The function of differentiated chondrocyte cells was compared with chondrocyte cells directly isolated from cartilage tissue in terms of collagen and glycosaminoglycan secretion. Then, both chondrocyte cell types were injected to rats' left ears in liquid and gel form, and histologic evaluation was done 3 weeks after the injection. Adipose-derived stem cells were strongly positive for the CD44 and CD73 mesenchymal markers. Differentiated chondrocyte cells and chondrocyte cells directly isolated from cartilage tissue had relative collagen and glycosaminoglycan secretion results. However, histologic evaluations did not show any cartilage formation after both chondrocyte cell types were injected to rats. Strong CD44- and CD73-positive expression indicated that adipose-derived cells had the stem cell characters. Collagen and glycosaminoglycan secretion results demonstrated that adipose-derived stem cells were successfully differentiated to chondrocyte cells.

  2. Dual mechanism for cAMP-dependent modulation of Ca2+ signalling in articular chondrocytes.

    Science.gov (United States)

    D'Andrea, P; Paschini, V; Vittur, F

    1996-09-01

    The ability of cAMP to modulate the actions of Ca(2+)-mobilizing agonists was studied in single Fura-2-loaded pig articular chondrocytes in primary culture. Forskolin and 8-Br-cAMP increased both the frequency and amplitude of Ca2+ oscillations induced by ATP, and, in unstimulated cells, induced single Ca2+ transients or even Ca2+ oscillations. The cAMP-dependent protein kinase inhibitor H89 totally prevented the effect of cAMP-elevating agents on Ca2+ signalling. Forskolin and 8-Br-cAMP promptly increased the rate of Mn2+ quenching, when administered in the presence of ATP, suggesting a potentiation of receptor-mediated Ca2+ influx. In Ca(2+)-free medium, ATP-induced Ca2+ oscillations decreased and stopped after a few cycles: subsequent ATP additions temporarily resumed the activity, an effect that could be mimicked by forskolin. The same agent induced single Ca2+ transients in 42% of the cell population maintained in Ca(2+)-free medium. Thapsigargin prevented Ca2+ responses to both ATP and forskolin. The results indicate a dual mechanism for cAMP-induced potentiation of Ca2+ signalling in articular chondrocytes: an increase of receptor-mediated Ca2+ influx and a positive modulation of intracellular Ca2+ release.

  3. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    Science.gov (United States)

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Role of G-proteins in the differentiation of epiphyseal chondrocytes.

    Science.gov (United States)

    Chagin, Andrei S; Kronenberg, Henry M

    2014-10-01

    Herein, we review the regulation of differentiation of the growth plate chondrocytes by G-proteins. In connection with this, we summarize the current knowledge regarding each family of G-protein α subunit, specifically, Gα(s), Gα(q/11), Gα(12/13), and Gα(i/o). We discuss different mechanisms involved in chondrocyte differentiation downstream of G-proteins and different G-protein-coupled receptors (GPCRs) activating G-proteins in the epiphyseal chondrocytes. We conclude that among all G-proteins and GPCRs expressed by chondrocytes, Gα(s) has the most important role and prevents premature chondrocyte differentiation. Receptor for parathyroid hormone (PTHR1) appears to be the major activator of Gα(s) in chondrocytes and ablation of either one leads to accelerated chondrocyte differentiation, premature fusion of the postnatal growth plate, and ultimately short stature. © 2014 Society for Endocrinology.

  5. Rabbit chondrocytes maintained in serum-free medium. I. Synthesis and secretion of hydrodynamically-small proteoglycans

    International Nuclear Information System (INIS)

    Malemud, C.J.; Papay, R.S.

    1986-01-01

    The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35 SO 4 in medium fraction dAl eluted as a retarded peak on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types

  6. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    Science.gov (United States)

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A hexadecylamide derivative of hyaluronan (HYMOVIS®) has superior beneficial effects on human osteoarthritic chondrocytes and synoviocytes than unmodified hyaluronan

    Science.gov (United States)

    2013-01-01

    Background Intra-articular hyaluronan (HA) injection provides symptomatic benefit in the treatment of osteoarthritis (OA). Previously we found superior beneficial effects in a large animal OA model of a hexadecylamide derivative compared with unmodified HA of the same initial molecular weight. The current study sought to define possible molecular mechanisms whereby this enhanced relief of symptoms was occurring. Methods Chondrocytes and synovial fibroblasts were isolated from tissues of patients undergoing arthroplasty for knee OA. Monolayer cultures of cells were treated with 0, 0.5, 1.0 or 1.5 mg/mL of unmodified HA (500–730 kDa) or a hexadecylamide derivative of HA of the same initial molecular weight (HYADD4®-G; HYMOVIS®) simultaneously or 1 hour before incubation with interleukin (IL)-1beta (2 ng/mL). Cultures were terminated 15 or 30 minutes later (chondrocytes and synovial fibroblasts, respectively) for quantitation of phosphorylated-(p)-JNK, p-NFkappaB, p-p38, or at 24 hours for quantitation of gene expression (MMP1 &13, ADAMTS4 &5, TIMP1 &3, CD44, COL1A1 &2A1, ACAN, PTGS2, IL6, TNF) and matrix metalloproteinase (MMP)-13 activity. Results The hexadecylamide derivative of HA had significantly better amelioration of IL-1beta-induced gene expression of key matrix degrading enzymes (MMP1, MMP13, ADAMTS5), and inflammatory mediators (IL6, PTGS2) by human OA chondrocytes and synovial fibroblasts. Pre-incubation of cells with the derivatized HA for 1 hour prior to IL-1beta exposure significantly augmented the inhibition of MMP1, MMP13, ADAMTS4 and IL6 expression by chondrocytes. The reduction in MMP13 mRNA by the amide derivative of HA was mirrored in reduced MMP-13 protein and enzyme activity in IL-1beta-stimulated chondrocytes. This was associated in part with a greater inhibition of phosphorylation of the cell signalling molecules JNK, p38 and NF-kappaB. Conclusions The present studies have demonstrated several potential key mechanisms whereby the

  8. The application of autologous platelet‑rich plasma gel in cartilage regeneration.

    Science.gov (United States)

    Xie, Aiguo; Nie, Lanjun; Shen, Gan; Cui, Ziwei; Xu, Peng; Ge, Huaqiang; Tan, Qian

    2014-09-01

    Cartilage defect caused by disease or trauma remains a challenge for surgeons, owning to the limited healing capacity of cartilage tissues. Cartilage tissue engineering provides a novel approach to address this issue, and appears promising for patients with cartilage defects. The cell scaffold, as one of the three key elements of tissue engineering, plays an important role in cartilage tissue engineering. Platelet‑rich plasma (PRP), which is a fraction of the plasma containing multiple growth factors, has become a major research focus in the context of its use as a bioactive scaffold for tissue engineering. Therefore, we investigated the value of using PRP scaffolds combined with chondrocytes in cartilage tissue engineering. In this study, we examined the levels of growth factors in PRP, and the effects of PRP on cell proliferation and matrix synthesis in rabbit chondrocytes cultured in PRP. Short-term in vitro culture followed by long‑term in vivo implantation was performed to evaluate the chondrogenesis of neocartilage in vivo. The results show that PRP may provide a suitable environment for the proliferation and maturation of chondrocytes, and can be used as a promising bioactive scaffold for cartilage regeneration.

  9. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-01-01

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα ColII , expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα ColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα ColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα ColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  10. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...

  11. Hemifacial atrophy treated with autologous fat transplantation

    Directory of Open Access Journals (Sweden)

    Gandhi Vijay

    2005-01-01

    Full Text Available A 23-year-old male developed right hemifacial atrophy following marphea profunda. Facial asymmetry due to residual atrophy was treated with autologous fat harvested from buttocks with marked cosmetic improvement.

  12. Autologous fat transplantation for labia majora reconstruction.

    Science.gov (United States)

    Vogt, P M; Herold, C; Rennekampff, H O

    2011-10-01

    A case of autologous fat transplantation for labia majora augmentation after ablative surgery is presented. The patient reported pain and deformity of the left labium majus after resection for Bowen's disease. The symptoms had not been solved by classic plastic surgical reconstructions including a pudendal thigh fasciocutaneous flap. Use of autologous fat transplantation facilitated an improved aesthetic result while preserving residual sensation to the external genitalia and improving symptoms of mucosal exposure and dryness.

  13. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P

    2011-01-01

    and interaction partners are still likely to be discovered. Our focus in this study was to characterize a novel cartilage specific gene that was identified in mouse limb cartilage during embryonic development. METHODS: Open access bioinformatics tools were used to characterize the gene, predicted protein...... subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis...... and orthologs in vertebrate species. Immunohistochemistry and mRNA expression methodology were used to study tissue specific expression. Fracture callus and limb bud micromass culture were utilized to study the effects of BMP-2 during experimental chondrogenesis. Fusion protein with C-terminal HA...

  14. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    Science.gov (United States)

    Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  15. Osteophytes - an alternative source of chondrocytes for ...

    African Journals Online (AJOL)

    ostéophytes recoltés au cours du remplacement total du genou de façon systématique pour l'ostéoarthrite étaient digérées enzymeticalement et grandie dans la culture mono couche. Des mince couches du cartilage articulaire obtenues de la région ...

  16. Statins do not inhibit the FGFR signaling in chondrocytes

    Czech Academy of Sciences Publication Activity Database

    Fafílek, B.; Hampl, Marek; Říčánková, N.; Veselá, Iva; Bálek, L.; Kunová Bosáková, M.; Gudernová, I.; Vařecha, M.; Buchtová, Marcela; Krejčí, P.

    2017-01-01

    Roč. 25, č. 9 (2017), s. 1522-1530 ISSN 1063-4584 R&D Projects: GA ČR(CZ) GA14-31540S Grant - others:GA MŠk(CZ) LH12004 Institutional support: RVO:67985904 Keywords : statins * FGF signaling * chondrocytes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 4.742, year: 2016

  17. Inhibition of Chondrocyte Hypertrophy of Osteoarthritis by Disruptor Peptide

    Science.gov (United States)

    2017-07-01

    generated the disruptor peptides conjugated with green fluorescent protein (GFP) and/or Pen. Primary chondrocytes were treated with 10 M of disruptor...were stained with Safranin-O and Fast green . Arrow indicates cartilage loss. 7 PTHrP-induced PTHR coupling to G protein subunits will be...vitro and protect cartilage damage in a mouse OA model. 15. SUBJECT TERMS Osteoarthritis; Parathyroid hormone-related protein ; PTH receptor; Beta

  18. RAGE and activation of chondrocytes and fibroblast-like synoviocytes in joint diseases

    OpenAIRE

    Steenvoorden, Marjan Maria Claziena

    2007-01-01

    This dissertation describes a new model in which cartilage degradation can be studied. New cartilage is formed by bovine chondrocytes obtained from the slaughterhouse and cocultured with synovial cells from rheumatoid arthritis (RA) patients to study the interaction between the chondrocytes and synoviocytes.The results of our study show that the role of synoviocytes in cartilage degradation is dependent on the presence of live chondrocytes. In osteoarthritis (OA) patients an increased level o...

  19. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model.

    Science.gov (United States)

    Ashwell, Melissa S; Gonda, Michael G; Gray, Kent; Maltecca, Christian; O'Nan, Audrey T; Cassady, Joseph P; Mente, Peter L

    2013-03-01

    Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype. Copyright © 2012 Orthopaedic Research Society.

  20. [Autologous fat grafting and rhinoplasty].

    Science.gov (United States)

    Nguyen, P S; Baptista, C; Casanova, D; Bardot, J; Magalon, G

    2014-12-01

    Revision rhinoplasty can be very challenging especially in cases of thin skin. Autologous fat graft is utilized in numerous applications in plastic surgery; however, its use relative to the nasal region remains uncommon. Adipose tissue, by virtue of its volumetric qualities and its action on skin trophicity, can be considered to be a gold standard implant. From 2006 until 2012, we have treated patients by lipofilling in order to correct sequelae of rhinoplasty. The mean quantity of adipose tissue injected was 2.1cm(3) depending on the importance of the deformity and the area of injection: irregularity of the nasal dorsum, visible lateral osteotomies, saddle nose. Following the course of our practice, we conceived micro-cannulas that allow a much greater accuracy in the placement of the graft and enable to perform interventions under local anesthesia. These non-traumatic micro-cannulas do not cause post-operative ecchymosis and swelling which shorten the recovery time for the patient. On patients who have undergone multiple operations, lipofilling can be a simple and reliable alternative to correct imperfections that may take place after a rhinoplasty. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Embryonic mouse pre-metatarsal development in organ culture

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  2. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  3. Transabdominal sacrocolpopexy with autologous rectus fascia graft.

    Science.gov (United States)

    Abraham, Nitya; Quirouet, Adrienne; Goldman, Howard B

    2016-08-01

    Extrusion and infection are potential postoperative complications when using synthetic mesh for abdominal sacrocolpopexy. Long-term follow-up in the Colpopexy and Urinary Reduction Efforts (CARE) trial revealed an estimated 9.9 % risk of mesh extrusion. There are 26 reports of spondylodiscitis after sacrocolpopexy with synthetic mesh. These surgical risks may be decreased by using autologous fascia. To date, there have been no reports of extrusion or spondylodiscitis after using autologous fascia for sacrocolpopexy. This video demonstrates transabdominal sacrocolpopexy with an autologous rectus fascia graft. A 76-year-old woman with symptomatic stage 3 prolapse also had a history of diverticulitis and sigmoid abscess requiring sigmoid colectomy with end colostomy and incidental left ureteral transection with subsequent left nephrostomy tube placement. She presented for colostomy reversal, ureteral reimplantation, and prolapse repair. Given the need for concomitant colon and ureteral reconstruction, the risk of infection was potentially higher if synthetic mesh were used. The patient therefore underwent transabdominal sacrocolpopexy with autologous rectus fascia graft. At 4 months' follow-up the patient reported resolution of her symptoms and on examination she had no pelvic organ prolapse. Transabdominal sacrocolpopexy using autologous rectus fascia graft is a feasible option, especially in cases in which infection and synthetic mesh extrusion risks are potentially higher.

  4. Postoperative Autologous Reinfusion in Total Knee Replacement

    Directory of Open Access Journals (Sweden)

    A. Crescibene

    2015-01-01

    Full Text Available Surgeries for total knee replacement (TKR are increasing and in this context there is a need to develop new protocols for management and use of blood transfusion therapy. Autologous blood reduces the need for allogeneic blood transfusion and the aim of the present study was to verify the safety and the clinical efficacy. An observational retrospective study has been conducted on 124 patients, undergoing cemented total knee prosthesis replacement. Observed population was stratified into two groups: the first group received reinfusion of autologous blood collected in the postoperative surgery and the second group did not receive autologous blood reinfusion. Analysis of data shows that patients undergoing autologous blood reinfusion received less homologous blood bags (10.6% versus 30%; p=0.08 and reduced days of hospitalization (7.88 ± 0.7 days versus 8.96 ± 2.47 days for the control group; p=0.03. Microbiological tests were negative in all postoperatively salvaged and reinfused units. Our results emphasize the effectiveness of this procedure and have the characteristics of simplicity, low cost (€97.53 versus €103.79; p<0.01, and easy reproducibility. Use of autologous drainage system postoperatively is a procedure that allows reducing transfusion of homologous blood bags in patients undergoing TKR.

  5. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  6. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  7. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  8. Sites of Autologous Bone Grafts in Orthopaedic Traumatology ...

    African Journals Online (AJOL)

    Background: The use of autologous bone graft in orthopaedic traumatology is not uncommon. But little work, from West African subregion, has been devoted to sites used as sources of autologous bone grafts. Objective: The purpose of this study was to evaluate the evolution of these different sampling sites of autologous ...

  9. Autologous blood transfusion - a review | Charles | South African ...

    African Journals Online (AJOL)

    The discovery of HIV and other transfusion-transmissible infections has increased the demand for alternatives to allogeneic blood transfusion. One such alternative is autologous transfusion. This review presents an analysis of autologous transfusion. We conclude that autologous transfusion should form part of a strategy to ...

  10. Autologous fibrin adhesive in experimental tubal anastomosis.

    Science.gov (United States)

    Rajaram, S; Rusia, U; Agarwal, S; Agarwal, N

    1996-01-01

    To evaluate autologous fibrin in rabbit oviduct anastomosis versus 7-0 vikryl, a conventional suture material used in tubal anastomosis. Thrombin was added to the autologous fibrinogen at the site of anastomosis to obtain a tissue adhesive. The anastomotic time, pregnancy rate, and litter size were evaluated. Three months later, a relaparotomy was done to evaluate patency and degree of adhesions, and a tubal biopsy was taken from the site of anastomosis. Analysis of results showed a statistically significant (P < .001) shortened anastomotic time and superior histopathological union in the tissue adhesive group. Patency rate, pregnancy rate, and degree of adhesions were comparable in both groups.

  11. RAGE and activation of chondrocytes and fibroblast-like synoviocytes in joint diseases

    NARCIS (Netherlands)

    Steenvoorden, Marjan Maria Claziena

    2007-01-01

    This dissertation describes a new model in which cartilage degradation can be studied. New cartilage is formed by bovine chondrocytes obtained from the slaughterhouse and cocultured with synovial cells from rheumatoid arthritis (RA) patients to study the interaction between the chondrocytes and

  12. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  13. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Yasuhiko [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya (Japan); Ohkawara, Bisei; Ito, Mikako; Masuda, Akio [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Nakashima, Hiroaki; Ishiguro, Naoki [Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya (Japan); Ohno, Kinji, E-mail: ohnok@med.nagoya-u.ac.jp [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2016-04-22

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca{sup 2+} signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases

  14. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

    International Nuclear Information System (INIS)

    Takegami, Yasuhiko; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Nakashima, Hiroaki; Ishiguro, Naoki; Ohno, Kinji

    2016-01-01

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca 2+ signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases expressions

  15. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix.

    Science.gov (United States)

    Takami, Yoshihiro; Yamaguchi, Ryo; Ono, Shimpei; Hyakusoku, Hiko

    2014-01-01

    We developed a transplantable tissue-engineered skin equivalent composed of autologous cultured keratinocytes, fibroblasts, and a decellularized allogeneic dermis (acellular allogeneic dermal matrix; ADM) obtained from cadavers. In a process taking 3 weeks, cultured autologous keratinocytes from burn patients were expanded and then grown on ADMs. The tissue-engineered autologous skin equivalents (TESEs) were then transplanted in a one-stage procedure to the debrided third-degree burn wounds of 4 patients. The mean graft survival rate was 96%. Delayed graft loss and graft fragility were not observed. Histological and immunohistological findings indicated that the transplanted TESE had similar characteristics to normal human split-thickness skin grafts. These results suggest that the TESE using ADM can be used for permanent repair of full-thickness skin defects.

  16. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA

    OpenAIRE

    Crowe, N.; Swingler, T.E.; Le, L.T.T.; Barter, M.J.; Wheeler, G.; Pais, H.; Donell, S.T.; Young, D.A.; Dalmay, T.; Clark, I.M.

    2016-01-01

    Summary Objective To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray...

  17. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Science.gov (United States)

    2011-01-01

    Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO), glycosaminoglycan (GAG), matrix metalloproteinases (MMPs), aggrecan (ACAN) and type II collagen (COL2A1) in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml) and then stimulated with IL-1β (5 ng/ml). Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p < 0.05). Supporting these gene expression results, IL-1β-induced cartilage matrix breakdown, as evidenced by GAG release from cartilage explants, was also significantly blocked (p < 0.05). Moreover, in the presence of herbal-Leucine mixture (HLM) up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p < 0.05). The inhibitory effects of HLM were mediated by inhibiting the activation of nuclear factor (NF)-kB in human OA chondrocytes in presence of IL-1β. Conclusion Our data

  18. Cord Blood Banking Standards: Autologous Versus Altruistic

    Science.gov (United States)

    Armitage, Sue

    2016-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as “biological insurance” should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards. PMID:26779485

  19. Cord Blood Banking Standards: Autologous Versus Altruistic.

    Science.gov (United States)

    Armitage, Sue

    2015-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as "biological insurance" should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards.

  20. Predonated autologous blood transfusion in elective orthopaedic ...

    African Journals Online (AJOL)

    Background: The use of homologous blood carries significant risk of viral infections and immune-mediated reactions. Preoperative autologous blood donation is an attractive alternative to homologous transfusion and has become common in elective orthopaedic surgery. Objective: To present our experience with the use of ...

  1. Extra-anatomic transplantations in autologous adult cell therapies aiding anatomical regeneration and physiological recovery – An insight and categorization

    Directory of Open Access Journals (Sweden)

    Editorial

    2015-12-01

    Full Text Available Autologous mature adult cells as well as stem cells, which are not considered pluripotent, have been reported to be safe and efficacious in clinical applications for regenerating cartilage [1] and corneal epithelium [2]. Use of primary autologous cells and stem cells expanded in number from cartilage and corneal epithelial tissues have shown abilities to reconstruct and regenerate tissues, de novo. It is to be noted that in both these cases, the source of the cells that have been used for transplantation into the cornea and cartilage have been from the same organ and tissue. The replacement cells for regeneration have also been sourced from the same germ layer, as that of the cells of the target tissue; corneal epithelial tissue embryologically originating from the ectoderm has been replaced with corneal limbal stem cells that are also of ectodermal origin from the unaffected healthy eye of the same individual. Similarly, the cartilage which developmentally is from the mesoderm has been replaced with mature chondrocytes from the non-weight bearing area of the cartilage, again of the same individual. Figure 1: Autologous, in vitro cultured, adult cell based therapies; An overview and categorization. (Click here for High Resol. Image The proceedings of the IIDIAS session published in this issue have described two novel cell therapies, where cells taken from a tissue or organ, after normal in vitro expansion, have been clinically applied to aid the regeneration of a different tissue or organ, i.e skeletal myoblasts having been used for myocardial regeneration and buccal mucosal epithelium having been used for corneal epithelial regeneration heralding the birth of a new paradigm called ‘extra-anatomic cell therapy’. The myocardium is a specialized muscle in that it works as an electrical synctitium with an intrinsic capacity to generate and propagate action potentials (involuntary as opposed to the skeletal muscles that are dependent on neuronal

  2. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Yuan, Ye; Zhu, Ben-Zhan

    2013-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg 2+ . Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg 2+ inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg 2+ . These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via the β1

  3. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  4. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide

    Directory of Open Access Journals (Sweden)

    Hanaoka Teruyasu

    2011-08-01

    Full Text Available Abstract Background Molecular hydrogen (H2 functions as an extensive protector against oxidative stress, inflammation and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO- as well as hydroxyl radicals (•OH, but not with nitric oxide radical (NO•. We hypothesized that one of the H2 functions is caused by reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2-. To verify this hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO- derived from NO• in chondrocytes. Methods We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP in the presence or absence of H2. Chondrocyte viability was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method. Results SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins, and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type II collagen and matrix metalloproteinases (such as MMP3 and MMP13 are down- and up-regulated by ONOO-, respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2 acted to restore transcriptional alterations induced by ONOO-. Conclusions These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional alterations through reducing ONOO-. Moreover, novel pharmacological strategies

  5. Autologous Fat Grafting for Whole Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Benjamin H. L. Howes, MBBS

    2014-03-01

    Full Text Available Summary: This is the first reported case of a patient who had a single-stage large-volume breast reconstruction with autologous fat grafting, following rotation flap approach (RoFA mastectomy. The purpose of this case study was to evaluate the viability of reconstruction of the breast by autologous fat grafting alone, in the context of RoFA mastectomy. The hypothesis was that there would be minimal interval loss of autologous fat on the whole breast reconstruction side. Right RoFA mastectomy was used for resection of an invasive primary breast cancer and resulted in the right breast skin envelope. Eleven months later, the patient underwent grafting of 400 ml of autologous fat into the skin envelope and underlying pectoralis major muscle. Outcome was assessed by using a validated 3D laser scan technique for quantitative breast volume measurement. Other outcome measures included the BREAST-Q questionnaire and 2D clinical photography. At 12-month follow-up, the patient was observed to have maintenance of volume of the reconstructed breast. Her BREAST-Q scores were markedly improved compared with before fat grafting, and there was observable improvement in shape, contour, and symmetry on 2D clinical photography. The 2 new techniques, RoFA mastectomy and large-volume single-stage autologous fat grafting, were used in combination to achieve a satisfactory postmastectomy breast reconstruction. Novel tools for measurement of outcome were the 3D whole-body laser scanner and BREAST-Q questionnaire. This case demonstrates the potential for the use of fat grafting for reconstruction. Outcomes in a larger patient populations are needed to confirm these findings.

  6. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty.

    Science.gov (United States)

    Huntley, J S; Bush, P G; McBirnie, J M; Simpson, A H; Hall, A C

    2005-02-01

    Autologous osteochondral transfer is an option for the treatment of articular defects. However, there are concerns about graft integration and the nature of the tissue forming the cartilage-cartilage bridge. Chondrocyte viability at graft and recipient edges is thought to be an important determinant of the quality of repair. The purpose of the present study was to evaluate early cell viability at the edges of osteochondral grafts from ex vivo human femoral condyles. Fresh human tissue was obtained from eleven knees at the time of total knee arthroplasty for the treatment of osteoarthritis. Osteochondral cylinders were harvested with use of a 4.5-mm-diameter mosaicplasty osteotome from regions of the anterolateral aspect of the femoral condyle that were macroscopically nondegenerate and histologically nonfibrillated. Plugs were assessed for marginal cell viability by means of confocal laser scanning microscopy. The diameter of the cartilaginous portion of the osteochondral plugs was a mean (and standard error of the mean) of 4.84 +/- 0.12 mm (as determined on the basis of three plugs). This value was approximately 300 microm greater than the measured internal diameter of the osteotome. There was a substantial margin of superficial zone cell death (mean thickness, 382 +/- 68.2 microm), with >99% cell viability seen more centrally (as determined on the basis of five plugs). Demiplugs were created by splitting the mosaicplasty explants with a fresh number-11 scalpel blade. The margin of superficial zone cell death at the curved edge was significantly greater than that at the site of the scalpel cut (390.3 +/- 18.8 microm compared with 34.8 +/- 3.2 microm; p = 0.0286). Similar findings were observed when the cartilage alone was breached and the bone was left intact, with the margin of superficial zone cell death being significantly greater than that obtained in association with the straight scalpel incision (268 +/- 38.9 microm compared with 41.3 +/- 13.4 microm; p = 0

  7. The Study on Biocompatibility of Porous nHA/PLGA Composite Scaffolds for Tissue Engineering with Rabbit Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Objective. To examine the biocompatibility of a novel nanohydroxyapatite/poly[lactic-co-glycolic acid] (nHA/PLGA composite and evaluate its feasibility as a scaffold for cartilage tissue engineering. Methods. Chondrocytes of fetal rabbit were cultured with nHA/PLGA scaffold in vitro and the cell viability was assessed by MTT assay first. Cells adhering to nHA/PLGA scaffold were then observed by inverted microscope and scanning electron microscope (SEM. The cell cycle profile was analyzed by flow cytometry. Results. The viability of the chondrocytes on the scaffold was not affected by nHA/PLGA comparing with the control group as it was shown by MTT assay. Cells on the surface and in the pores of the scaffold increased in a time-dependent manner. Results obtained from flow cytometry showed that there was no significant difference in cell cycle profiles between the coculture group and control (P>0.05. Conclusion. The porous nHA/PLGA composite scaffold is a biocompatible and good kind of scaffold for cartilage tissue engineering.

  8. Crucial Role of Elovl6 in Chondrocyte Growth and Differentiation during Growth Plate Development in Mice.

    Directory of Open Access Journals (Sweden)

    Manami Kikuchi

    Full Text Available ELOVL family member 6, elongation of very long chain fatty acids (Elovl6 is a microsomal enzyme, which regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 has been shown to be associated with various pathophysiologies including insulin resistance, atherosclerosis, and non-alcoholic steatohepatitis. To investigate a potential role of Elovl6 during bone development, we here examined a skeletal phenotype of Elovl6 knockout (Elovl6-/- mice. The Elovl6-/- skeleton was smaller than that of controls, but exhibited no obvious patterning defects. Histological analysis revealed a reduced length of proliferating and an elongated length of hypertrophic chondrocyte layer, and decreased trabecular bone in Elovl6-/- mice compared with controls. These results were presumably due to a modest decrease in chondrocyte proliferation and accelerated differentiation of cells of the chondrocyte lineage. Consistent with the increased length of the hypertrophic chondrocyte layer in Elovl6-/- mice, Collagen10α1 was identified as one of the most affected genes by ablation of Elovl6 in chondrocytes. Furthermore, this elevated expression of Collagen10α1 of Elovl6-null chondrocytes was likely associated with increased levels of Foxa2/a3 and Mef2c mRNA expression. Relative increases in protein levels of nuclear Foxa2 and cytoplasmic histone deacethylase 4/5/7 were also observed in Elovl6 knockdown cells of the chondrocyte lineage. Collectively, our data suggest that Elovl6 plays a critical role for proper development of embryonic growth plate.

  9. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  10. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  11. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing

    2012-01-01

    Highlights: ► Different PTH administration exerts different effects on condylar chondrocyte. ► Intermittent PTH administration suppresses condylar chondrocyte proliferation. ► Continuous PTH administration maintains condylar chondrocyte proliferating. ► Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  12. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Li, Zubing, E-mail: lizubing0827@163.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  13. [Experimental study of repairing full-thickness articular cartilage defect with chondrocyte-sodium alginate hydrogel-SIS complex].

    Science.gov (United States)

    Mo, Xiangtao; Deng, Li; Li, Xiuqun; Xie, Huiqi; Luo, Jingcong; Guo, Shangchun; Yang, Zhiming

    2009-08-01

    To explore the effect of tissue engineered cartilage reconstructed by using sodium alginate hydrogel and SIS complex as scaffold material and chondrocyte as seed cell on the repair of full-thickness articular cartilage defects. SIS was prepared by custom-made machine and detergent-enzyme treatment. Full-thickness articular cartilage of loading surface of the humeral head and the femoral condyle obtained from 8 New Zealand white rabbits (2-3 weeks old) was used to culture chondrocytes in vitro. Rabbit chondrocytes at passage 4 cultured by conventional multiplication method were diluted by sodium alginate to (5-7) x 10(7) cells/mL, and then were coated on SIS to prepare chondrocyte-sodium alginate hydrogel-SIS complex. Forty 6-month-old clean grade New Zealand white rabbits weighing 3.0-3.5 kg were randomized into two groups according to different operative methods (n = 20 rabbits per group), and full-thickness cartilage defect model of the unilateral knee joint (right or left) was established in every rabbit. In experimental group, the complex was implanted into the defect layer by layer to construct tissue engineered cartilage, and SIS membrane was coated on the surface to fill the defect completely. While in control group, the cartilage defect was filled by sodium alginate hydrogel and was sutured after being coated with SIS membrane without seeding of chondrocyte. General condition of the rabbits after operation was observed. The rabbits in two groups were killed 1, 3, 5, 7, and 9 months after operation, and underwent gross and histology observation. Eight rabbits were excluded due to anesthesia death, wound infection and diarrhea death. Sixteen rabbits per group were included in the experiment, and 3, 3, 3, 3, and 4 rabbits from each group were randomly selected and killed 1, 3, 5, 7, and 9 months after operation, respectively. Gross observation and histology Masson trichrome staining: in the experimental group, SIS on the surface of the implant was fused with

  14. Autologous Fat Grafting Improves Facial Nerve Function

    Directory of Open Access Journals (Sweden)

    Marco Klinger

    2015-01-01

    Full Text Available We describe the case of a 45-year-old male patient who presented a retractile and painful scar in the nasolabial fold due to trauma which determined partial motor impairment of the mouth movements. We subsequently treated him with autologous fat grafting according to Coleman’s technique. Clinical assessments were performed at 5 and 14 days and 1, 3, and 6 months after surgical procedure and we observed a progressive release of scar retraction together with an important improvement of pain symptoms. A second procedure was performed 6 months after the previous one. We observed total restoration of mimic movements within one-year follow-up. The case described confirms autologous fat grafting regenerative effect on scar tissue enlightening a possible therapeutic effect on peripheral nerve activity, hypothesizing that its entrapment into scar tissue can determine a partial loss of function.

  15. Exploring the use of expanded erythroid cells for autologous transfusion for anemia of prematurity.

    Science.gov (United States)

    Khodabux, Chantal M; van Hensbergen, Yvette; Slot, Manon C; Bakker-Verweij, Margreet; Giordano, Piero C; Brand, Anneke

    2013-12-01

    Autologous cord blood (CB) red blood cells (RBCs) can partly substitute transfusion needs in premature infants suffering from anemia. To explore whether expanded CB cells could provide additional autologous cells suitable for transfusion, we set up a simple one-step protocol to expand premature CB cells. CB buffy coat cells and isolated CD34-positive (CD34(pos) ) cells from premature and full-term CB and adult blood were tested with several combinations of growth factors while omitting xenogeneic proteins from the culture medium. Cell differentiation was analyzed serially during 21 days using flow cytometry, progenitor assays, and high-performance liquid chromatography. Expanded CB buffy coat cells resulted in a threefold higher number of erythroblasts than the isolated CD34(pos) cells. However, the RBCs contaminating the buffy coat remained present during the culture with uncertain quality. Premature and full-term CB CD34(pos) cells had similar fold expansion capacity and erythroid differentiation. With the use of interleukin-3, stem cell factor, and erythropoietin, the fold increases of all CD34(pos) cell sources were similar: CB 3942 ± 1554, adult peripheral mobilized blood 4702 ± 1826, and bone marrow (BM) 4143 ± 1908. The proportion of CD235a expression indicating erythroblast presence on Day 21 was slightly higher in the adult CD34(pos) cell sources: peripheral blood stem cells (96.7 ± 0.8%) and BM (98.9 ± 0.5%) compared to CB (87.7 ± 2.7%; p = 0.002). We were not able to induce further erythroid maturation in vitro. This explorative study showed that fairly pure autologous erythroid-expanded cell populations could be obtained by a simple culture method, which should be optimized. Future challenges comprise obtaining ex vivo enucleation of RBCs with the use of a minimal manipulating approach, which can add up to autologous RBCs derived from CB in the treatment of anemia of prematurity. © 2013 American Association of Blood Banks.

  16. Tumescent mastectomy technique in autologous breast reconstruction.

    Science.gov (United States)

    Vargas, Christina R; Koolen, Pieter G L; Ho, Olivia A; Ricci, Joseph A; Tobias, Adam M; Lin, Samuel J; Lee, Bernard T

    2015-10-01

    Use of the tumescent mastectomy technique has been reported to facilitate development of a hydrodissection plane, reduce blood loss, and provide adjunct analgesia. Previous studies suggest that tumescent dissection may contribute to adverse outcomes after immediate implant reconstruction; however, its effect on autologous microsurgical reconstruction has not been established. A retrospective review was conducted of all immediate microsurgical breast reconstruction procedures at a single academic center between January 2004 and December 2013. Records were queried for age, body mass index, mastectomy weight, diabetes, hypertension, smoking, preoperative radiation, reconstruction flap type, and autologous flap weight. Outcomes of interest were mastectomy skin necrosis, complete and partial flap loss, return to the operating room, breast hematoma, seroma, and infection. There were 730 immediate autologous breast reconstructions performed during the study period; 46% with the tumescent dissection technique. Groups were similar with respect to baseline patient and procedural characteristics. Univariate analysis revealed no significant difference in the incidence of mastectomy skin necrosis, complete or partial flap loss, return to the operating room, operative time, estimated blood loss, recurrence, breast hematoma, seroma, or infection in patients undergoing tumescent mastectomy. Multivariate analysis also demonstrated no significant association between the use of tumescent technique and postoperative breast mastectomy skin necrosis (P = 0.980), hematoma (P = 0.759), or seroma (P = 0.340). Use of the tumescent dissection technique during mastectomy is not significantly associated with adverse outcomes after microsurgical breast reconstruction. Despite concern for its impact on implant reconstruction, our findings suggest that this method can be used safely preceding autologous procedures. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Autologous Stem Cell Transplant for AL Amyloidosis

    OpenAIRE

    Roy, Vivek

    2012-01-01

    AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors) has increased treatment options. Autologous stem cell transplant (ASCT) has been used in the treatment of ...

  18. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    International Nuclear Information System (INIS)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-01-01

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis

  19. Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis

    DEFF Research Database (Denmark)

    Gudmann, Natasja Stæhr; Munk, Heidi Lausten; Christensen, Anne Friesgaard

    2016-01-01

    BACKGROUND: Psoriatic arthritis (PsA) and axial spondyloarthritis (axSpA) are chronic inflammatory rheumatic diseases with complex origins. Both are characterized by altered extracellular matrix remodeling in joints and entheses that results in destructive and osteochondral proliferative lesions.......30 ng/ml, 0.16-0.41) (p treatment. C-Col10 was slightly but equally elevated in the PsA and axSpA groups vs. the control group, but it was significantly lower in patients with axSpA undergoing tumor necrosis factor-α inhibitor (TNFi) treatment. ROC curve......SpA undergoing TNFi treatment may reflect that hypertrophic chondrocytes in axSpA are targeted by TNFi. ROC curve analysis showed a diagnostic potential for Pro-C2 in axSpA and PsA....

  20. Evaluation of ex vivo produced endothelial progenitor cells for autologous transplantation in primates.

    Science.gov (United States)

    Qin, Meng; Guan, Xin; Zhang, Yu; Shen, Bin; Liu, Fang; Zhang, Qingyu; Ma, Yupo; Jiang, Yongping

    2018-01-22

    Autologous transplantation of endothelial progenitor cells (EPCs) is a promising therapeutic approach in the treatment of various vascular diseases. We previously reported a two-step culture system for scalable generation of human EPCs derived from cord blood CD34 + cells ex vivo. Here, we now apply this culture system to expand and differentiate human and nonhuman primate EPCs from mobilized peripheral blood (PB) CD34 + cells for the therapeutic potential of autologous transplantation. The human and nonhuman primate EPCs from mobilized PB CD34 + cells were cultured according to our previously reported system. The generated adherent cells were then characterized by the morphology, surface markers, nitric oxide (NO)/endothelial NO synthase (eNOS) levels and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake/fluorescein isothiocyanate (FITC)-lectin binding actives. Furthermore, the efficacy and safety studies were performed by autologous transplantation via hepatic portal vein injection in a nonhuman primate model with acute liver sinusoidal endothelial cell injury. The mobilized PB CD34 + cells from both human and nonhuman primate were efficiently expanded and differentiated. Over 2 × 10 8 adherent cells were generated from 20 mL mobilized primate PB (1.51 × 10 6  ± 3.39 × 10 5 CD34 + cells) by 36-day culture and more than 80% of the produced cells were identified as EPCs/endothelial cells (ECs). In the autologous transplant model, the injected EPC/ECs from nonhuman primate PB were scattered in the intercellular spaces of hepatocytes at the hepatic tissues 14 days post-transplantation, indicating successful migration and reconstitution in the liver structure as the functional EPCs/ECs. We successfully applied our previous two-step culture system for the generation of primate EPCs from mobilized PB CD34 + cells, evaluated the phenotypes ex vivo, and transplanted autologous EPCs/ECs in a nonhuman primate model. Our study indicates that

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  2. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation

    DEFF Research Database (Denmark)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A

    2001-01-01

    Clinical and in vitro studies have demonstrated that fluoroquinolones are toxic to chondrocytes; however, the exact mechanism of fluoroquinolone arthropathy is unknown. We investigated the toxicity of ciprofloxacin on normal cartilage and on cartilaginous tumors. Normal human cartilage, enchondroma...

  3. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition

    NARCIS (Netherlands)

    Miot, Sylvie; Woodfield, T.B.F.; Daniels, Alma U.; Suetterlin, Rosemarie; Peterschmitt, Iman; Heberer, Michael; van Blitterswijk, Clemens; Riesle, J.U.; Martin, Ivan

    2005-01-01

    We investigated whether the post-expansion redifferentiation and cartilage tissue formation capacity of adult human nasal chondrocytes can be regulated by controlled modifications of scaffold composition and architecture. As a model system, we used poly(ethylene

  4. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    Science.gov (United States)

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to

  5. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  6. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.

    Science.gov (United States)

    Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul

    2015-05-11

    The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.

  7. L-carnitine enhances extracellular matrix synthesis in human primary chondrocytes.

    Science.gov (United States)

    Stoppoloni, Daniela; Politi, Laura; Dalla Vedova, Pietro; Messano, Masa; Koverech, Aleardo; Scandurra, Roberto; Scotto d'Abusco, Anna

    2013-09-01

    Osteoarthritis (OA) is one of the most common degenerative joint disease for which there is no cure. It is treated mainly with non-steroidal anti-inflammatory drugs to control the symptoms and some supplements, such as glucosamine and chondroitin sulphate in order to obtain structure-modifying effects. Aim of this study is to investigate the effects of L-carnitine, a molecule with a role in cellular energy metabolism, on extracellular matrix synthesis in human primary chondrocytes (HPCs). Dose-dependent effect of L-carnitine on cartilage matrix production, cell proliferation and ATP synthesis was examined by incubating HPCs with various amounts of molecule in monolayer (2D) and in hydromatrix scaffold (3D). L-Carnitine affected extracellular matrix synthesis in 3D in a dose-dependent manner; moreover, L-carnitine was very effective to stimulate cell proliferation and to induce ATP synthesis, mainly in 3D culture condition. In conclusion, L-carnitine enhances cartilage matrix glycosaminoglycan component production and cell proliferation, suggesting that this molecule could be useful in the treatment of pathologies where extracellular matrix is degraded, such as OA. To our knowledge, this is the first study where the effects of L-carnitine are evaluated in HPCs.

  8. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    Science.gov (United States)

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  9. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  10. Second-degree burns with six etiologies treated with autologous noncultured cell-spray grafting.

    Science.gov (United States)

    Esteban-Vives, Roger; Choi, Myung S; Young, Matthew T; Over, Patrick; Ziembicki, Jenny; Corcos, Alain; Gerlach, Jörg C

    2016-11-01

    Partial and deep partial-thickness burn wounds present a difficult diagnosis and prognosis that makes the planning for a conservative treatment versus mesh grafting problematic. A non-invasive treatment strategy avoiding mesh grafting is often chosen by practitioners based on their clinical and empirical evidence. However, a delayed re-epithelialization after conservative treatment may extend the patient's hospitalization period, increase the risk of infection, and lead to poor functional and aesthetic outcome. Early spray grafting, using non-cultured autologous cells, is under discussion for partial and deep partial-thickness wounds to accelerate the re-epithelialization process, reducing the healing time in the hospital, and minimizing complications. To address planning for future clinical studies on this technology, suitable indications will be interesting. We present case information on severe second-degree injuries after gas, chemical, electrical, gasoline, hot water, and tar scalding burns showing one patient per indication. The treatment results with autologous non-cultured cells, support rapid, uncomplicated re-epithelialization with aesthetically and functionally satisfying outcomes. Hospital stays averaged 7.6±1.6 days. Early autologous cell-spray grafting does not preclude or prevent simultaneous or subsequent traditional mesh autografting when indicated on defined areas of full-thickness injury. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Cultural

    Science.gov (United States)

    Wilbur F. LaPage

    1971-01-01

    A critical look at outdoor recreation research and some underlying premises. The author focuses on the concept of culture as communication and how it influences our perception of problems and our search for solutions. Both outdoor recreation and science are viewed as subcultures that have their own bodies of mythology, making recreation problems more difficult to...

  12. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen.

    Science.gov (United States)

    Yen, Hung-Jen; Tseng, Ching-Shiow; Hsu, Shan-Hui; Tsai, Ching-Lin

    2009-06-01

    Highly porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds for cartilage tissue engineering were fabricated in this study using the fused deposition manufacturing (FDM) process and were further modified by type II collagen. The average molecular weight of PLGA decreased to about 60% of the original value after the melt-extrusion process. Type II collagen exhibited sponge-like structure and filled the macroporous FDM scaffolds. An increase of the fiber spacing resulted in an increase of the porosity. The storage modulus of FDM scaffolds with a large fiber spacing was comparable to that of the native porcine articular cartilage. Although the FDM hybrid scaffolds were swollen in various extents after 28 days of in vitro culture, the seeded chondrocytes were well distributed in the interior of the scaffolds with a large fiber spacing and neocartilage was formed around the scaffolds. The study also suggested that a low processing temperature may be required to produce PLGA precision scaffolds using FDM.

  13. Autologous growth factor injections in chronic tendinopathy.

    Science.gov (United States)

    Sandrey, Michelle A

    2014-01-01

    de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63-77. The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich-plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of each article to determine if it met the inclusion criteria. If opinions differed on

  14. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    Science.gov (United States)

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  15. Distinct Transcriptional Programs Underlie Sox9 Regulation of the Mammalian Chondrocyte

    Directory of Open Access Journals (Sweden)

    Shinsuke Ohba

    2015-07-01

    Full Text Available Sox9 encodes an essential transcriptional regulator of chondrocyte specification and differentiation. When Sox9 nuclear activity was compared with markers of chromatin organization and transcriptional activity in primary chondrocytes, we identified two distinct categories of target association. Class I sites cluster around the transcriptional start sites of highly expressed genes with no chondrocyte-specific signature. Here, Sox9 association reflects protein-protein association with basal transcriptional components. Class II sites highlight evolutionarily conserved active enhancers that direct chondrocyte-related gene activity through the direct binding of Sox9 dimer complexes to DNA. Sox9 binds through sites with sub-optimal binding affinity; the number and grouping of enhancers into super-enhancer clusters likely determines the levels of target gene expression. Interestingly, comparison of Sox9 action in distinct chondrocyte lineages points to similar regulatory strategies. In addition to providing insights into Sox family action, our comprehensive identification of the chondrocyte regulatory genome will facilitate the study of skeletal development and human disease.

  16. Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks.

    Science.gov (United States)

    Wang, Jian; Wang, Zhen Yong; Wang, Zhao Jun; Liu, Ran; Liu, Shao Qiong; Wang, Lin

    2015-01-01

    The aim of this study was to investigate the effects of manganese (Mn) deficiency on chondrocyte development in tibia growth plate. Ninety 1-day-old Arbor Acres chicks were randomly divided into three groups and fed on control diet (60 mg Mn/kg diet) and manganese deficient diets (40 mg Mn/kg diet, manganese deficiency group I; 8.7 mg Mn/kg diet, manganese deficiency group II), respectively. The width of the proliferative zone of growth plate was measured by the microscope graticule. Chondrocyte apoptosis was estimated by TUNEL staining. Gene expression of p21 and Bcl-2, and expression of related proteins were analyzed by quantitative real time reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Compared with the control group, manganese deficiency significantly decreased the proliferative zone width and Bcl-2 mRNA expression level, while significantly increased the apoptotic rates and the expression level of p21 gene in chondrocytes. The results indicate that manganese deficiency had a negative effect on chondrocyte development, which was mediated by the inhibition of chondrocyte proliferation and promotion of chondrocyte apoptosis.

  17. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid.

    Science.gov (United States)

    Sakata, Shuhei; Hayashi, Shinya; Fujishiro, Takaaki; Kawakita, Kohei; Kanzaki, Noriyuki; Hashimoto, Shingo; Iwasa, Kenjiro; Chinzei, Nobuaki; Kihara, Shinsuke; Haneda, Masahiko; Ueha, Takeshi; Nishiyama, Takayuki; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-03-01

    Eicosapentaenoic acid (EPA) is an antioxidant and n-3 polyunsaturated fatty acid that reduces the production of inflammatory cytokines. We evaluated the role of EPA in chondrocyte apoptosis and degeneration. Normal human chondrocytes were treated with EPA and sodium nitroprusside (SNP). Expression of metalloproteinases (MMPs) was detected by real-time polymerase chain reaction (PCR) and that of apoptosis-related proteins was detected by western blotting. Chondrocyte apoptosis was detected by flow cytometry. C57BL/6J mice were used for the detection of MMP expression by immunohistochemistry and for investigation of chondrocyte apoptosis. EPA inhibited SNP-induced chondrocyte apoptosis, caspase 3 and poly(ADP-ribose) polymerase cleavage, phosphorylation of p38 MAPK and p53, and expression of MMP3 and MMP13. Intra-articular injection of EPA prevented the progression of osteoarthritis (OA) by inhibiting MMP13 expression and chondrocyte apoptosis. EPA treatment can control oxidative stress-induced OA progression, and thus may be a new approach for OA therapy. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Autologous human tissue-engineered heart valves: prospects for systemic application.

    Science.gov (United States)

    Mol, Anita; Rutten, Marcel C M; Driessen, Niels J B; Bouten, Carlijn V C; Zünd, Gregor; Baaijens, Frank P T; Hoerstrup, Simon P

    2006-07-04

    Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. Tissue-engineered human heart valves were analyzed up to 4 weeks and conditioning using bioreactors was compared with static culturing. Tissue formation and mechanical properties increased with time and when using conditioning. Organization of the tissue, in terms of anisotropic properties, increased when conditioning was dynamic in nature. Exposure of the valves to physiological aortic valve flow demonstrated proper opening motion. Closure dynamics were suboptimal, most likely caused by the lower degree of anisotropy when compared with native aortic valve leaflets. This study presents autologous tissue-engineered heart valves based on human saphenous vein cells and a rapid degrading synthetic scaffold. Tissue properties and mechanical behavior might allow for use as living aortic valve replacements.

  19. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  20. In vitro chondrocyte toxicity following long-term, high-dose exposure to Gd-DTPA and a novel cartilage-targeted MR contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Midura, Sharon; Midura, Ronald J. [Cleveland Clinic, Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States); Schneider, Erika [Cleveland Clinic, Imaging Institute, A21, Cleveland, OH (United States); NitroSci Pharmaceuticals, New Berlin, WI (United States); Rosen, Gerald M. [University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD (United States); NitroSci Pharmaceuticals, New Berlin, WI (United States); Winalski, Carl S. [Cleveland Clinic, Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States); Cleveland Clinic, Imaging Institute, A21, Cleveland, OH (United States)

    2017-01-15

    To determine the concentrations exhibiting toxicity of a cartilage-targeted magnetic resonance imaging contrast agent compared with gadopentetate dimeglumine (Gd-DT-PA) in chondrocyte cultures. A long-term Swarm rat chondrosarcoma chondrocyte-like cell line was exposed for 48 h to 1.0-20 mM concentrations of diaminobutyl-linked nitroxide (DAB4-DLN) citrate, 1.0-20 mM Gd-DTPA, 1.0 μM staurosporine (positive control), or left untreated. Cell appearance, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays of metabolic activity, quantitative PicoGreen assays of DNA content, and calcein-AM viability assays were compared. At 1.0-7.5 mM, minimal decrease in cell proliferation was found for both agents. At all doses of both agents, cell culture appearances were similar after 24 h of treatment. At the higher doses, differences in cell culture appearance were found after 48 h of treatment, with dose-dependent declines in chondrocyte populations for both agents. Concentration-dependent declines in DNA content and calcein fluorescence were found after 48 h of treatment, but beginning at a lower dose of DAB4-DLN citrate than Gd-DTPA. Dose-dependent decreases in MTT staining (cell metabolism) were apparent for both agents, but larger effects were evident at a lower dose for DAB-DLN citrate. Poor MTT staining of cells exposed for 48 h to 20 mM DAB4-DLN citrate probably indicates dead or dying cells. The minimal effect of the long-term exposure of model chondrocyte cell cultures to DAB4-DLN citrate and Gd-DTPA concentrations up to 7.5 mM (3x typical arthrographic administration) is supporting evidence that these doses are acceptable for MR arthrography. The findings are reassuring given that the experimental exposure to the contrast agents at sustained concentrations was much longer than when used clinically. (orig.)

  1. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  2. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  3. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.

    Science.gov (United States)

    Nakamachi, Eiji; Noma, Tomohiro; Nakahara, Kaito; Tomita, Yoshihiro; Morita, Yusuke

    2017-11-01

    , where chondrocytes are seeded in the culture chamber. To know the stress occurred on and in the chondrocytes is vitally important not only to understand the normal metabolic activity of the chondrocyte but also to develop a bioreactor of articular cartilage regeneration as the knee joint disease treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Adipose-Derived Stem Cells Suppress Inflammation Induced by IL-1β through Down-Regulation of P2X7R Mediated by miR-373 in Chondrocytes of Osteoarthritis.

    Science.gov (United States)

    Jin, Rilong; Shen, Miaoda; Yu, Liedao; Wang, Xuanwei; Lin, Xiangjin

    2017-03-01

    Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA.

  5. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation

    OpenAIRE

    Dailey, Lisa; Laplantine, Emmanuel; Priore, Riccardo; Basilico, Claudio

    2003-01-01

    Activating mutations in FGF receptor 3 (FGFR3) cause several human dwarfism syndromes by affecting both chondrocyte proliferation and differentiation. Using microarray and biochemical analyses of FGF-treated rat chondrosarcoma chondrocytes, we show that FGF inhibits chondrocyte proliferation by initiating multiple pathways that result in the induction of antiproliferative functions and the down-regulation of growth-promoting molecules. The initiation of growth arrest is characterized by the r...

  6. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  7. Use of autologous blood in general surgery.

    Science.gov (United States)

    D'Amato, A; Ferrazza, G; Solinas, S; Pronio, A M; Montesani, C; Ribotta, G

    2000-01-01

    Autologous blood predonation is still not as widespread as it should be in general surgery practice, even if the method is well-known and has benefits established in international literature. Authors describe the impact of an autotransfusion program, in a general surgery university department, focusing on management and cost problems. A description of the efficacy of the program during a yearlong activity period is presented. An analysis has been made about the quantity of predonated blood/plasma units, the quantity actually transfused and use of homologous blood. The problems which occurred and the cost are discussed. The most used autotransfusion method was preoperative predeposit of autologous blood. The analysis of results focused on some organizational problems that need to be avoided in order to show the methods maximum benefits. In a large number of cases (some 50%) predeposit was not made because of several managing/technical problems. In another large number of cases (38%) the quantity of units predonated did not fully supply the needs and several patients received homologous products. In another number of cases predonated blood units were not used at all (61/34%). Predeposit, preoperative hemodilution and intraoperative recovery, are methods that should all be available in a general surgery department to manage in the best way the single patients blood/plasma needs, reducing post-transfusion complication. To optimize the program and minimize waste some guidelines must be established, with the aim of a rational and correct use of the procedure. Despite the value of the method, and the favor encountered by the patients, we must not forget that the use of autologous blood is not costless.

  8. Cost effectiveness of autologous blood transfusion – A developing ...

    African Journals Online (AJOL)

    An autologous blood donation program was set up at National Orthopaedic Hospital, Igbobi Lagos in 1992 in response to the rising sero prevalence of HIV observed in our “relative replacement” donors. A retrospective batch analysis of patients who received autologous transfusion and those who received homologous ...

  9. Review of autologous blood transfusion at the Kenyatta National ...

    African Journals Online (AJOL)

    Autologous blood transfusion refers to transfusion of blood and/or blood components that are donated by the intended recipient (1). It is considered as one of the safest methods of blood transfusion (1,2). Different types of autologous blood include: preoperative blood deposit, preoperative haemodilution,intraope.

  10. Detection of accessory spleens with indium 111-labeled autologous platelets

    International Nuclear Information System (INIS)

    Davis, H.H. II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets

  11. Disseminated Fusarium infection in autologous stem cell transplant recipient

    OpenAIRE

    Avelino-Silva, Vivian Iida; Ramos, Jessica Fernandes; Leal, Fabio Eudes; Testagrossa, Leonardo; Novis, Yana Sarkis

    2015-01-01

    Disseminated infection by Fusarium is a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusarium infection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  12. Disseminated Fusarium infection in autologous stem cell transplant recipient

    Directory of Open Access Journals (Sweden)

    Vivian Iida Avelino-Silva

    2015-01-01

    Full Text Available Disseminated infection by Fusarium is a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusarium infection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  13. Autologous Bone Grafts Use in Orthopaedic Practice in Abuja ...

    African Journals Online (AJOL)

    Background: There is widespread use of autologous bone grafts in orthopaedic practice in Nigeria but detailed indications, donor sites and complications following use have not been reported in different regions. Objective: This is to highlight the indications, sources and complications of autologous bone grafts use in Abuja, ...

  14. Activated autologous T cells exert an anti-B-cell chronic lymphatic leukemia effect in vitro and in vivo.

    Science.gov (United States)

    Di Ianni, Mauro; Moretti, Lorenzo; Terenzi, Adelmo; Bazzucchi, Federico; Del Papa, Beatrice; Bazzucchi, Moira; Ciurnelli, Raffaella; Lucchesi, Alessandro; Sportoletti, Paolo; Rosati, Emanuela; Marconi, Pier Francesco; Falzetti, Franca; Tabilio, Antonio

    2009-01-01

    The impact of chronic lymphatic leukemia (CLL) tumor burden on the autologous immune system has already been demonstrated. This study attempted to elucidate the molecular mechanisms underlying T-cell immunologic deficiencies in CLL. Freshly isolated CD3(+) T cells from patients with a diagnosis of CLL and healthy donors were analyzed by gene expression profiling. Activated T cells from 20 patients with CLL were tested in vitro for cytotoxicity against mutated and unmutated autologous B cells and DAUDI, K562 and P815 cell lines. To investigate T-cell mediated cytotoxicity in vivo, we co-transplanted OKT3-activated T lymphocytes and autologous B-cell CLL (B-CLL) cells into NOD/SCID mice. Gene expression profiles of peripheral blood T cells from B-CLL patients showed 25 down-regulated, and 31 up-regulated, genes that were mainly involved in cell differentiation, proliferation, survival, apoptosis, cytoskeleton formation, vesicle trafficking and T-cell activation. After culture, the T-cell count remained unchanged, CD8 cells expanded more than CD4 and a cytotoxicity index >30% was present in 5/20 patients. Cytotoxicity against B autologous leukemic cells did not correlate with B-cell mutational status. Only activated T cells exerting cytotoxicity against autologous leukemic B cells prevented CLL in a human-mouse chimera. This study indicates that patients with CLL are affected by a partial immunologic defect that might be somewhat susceptible to repair. This study identifies the molecular pathways underlying T-cell deficiencies in CLL and shows that cytotoxic T-cell functions against autologous B-CLL can be rebuilt at least in part in vitro and in vivo.

  15. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Science.gov (United States)

    GUZMÁN-URIBE, Daniela; ALVARADO-ESTRADA, Keila Neri; PIERDANT-PÉREZ, Mauricio; TORRES-ÁLVAREZ, Bertha; SÁNCHEZ-AGUILAR, Jesus Martin; ROSALES-IBÁÑEZ, Raúl

    2017-01-01

    Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%), meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group). Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues. PMID:28403359

  16. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  17. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    Science.gov (United States)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  18. MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    David Moulin

    2017-01-01

    Full Text Available Objective. Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA cartilage. MicroRNA- (miR- 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype. Methods. After preliminary microarrays screening, miR-29b levels were measured by RT- quantitative PCR in in vitro models of chondrocyte phenotype changes (IL-1β challenge or serial subculturing and in chondrocytes from OA and non-OA patients. Potential miR-29b targets identified in silico in 3′-UTRs of collagens mRNAs were tested with luciferase reporter assays. The impact of premiR-29b overexpression in ATDC5 cells was studied on collagen mRNA levels and synthesis (Sirius red staining during chondrogenesis. Results. MiR-29b level increased significantly in IL-1β-stimulated and weakly in subcultured chondrocytes. A 5.8-fold increase was observed in chondrocytes from OA versus non-OA patients. Reporter assays showed that miR-29b targeted COL2A1 and COL1A2 3′-UTRs although with a variable recovery upon mutation. In ATDC5 cells overexpressing premiR-29b, collagen production was reduced while mRNA levels increased. Conclusions. By acting probably as a posttranscriptional regulator with a different efficacy on COL2A1 and COL1A2 expression, miR-29b can contribute to the collagens imbalance associated with an abnormal chondrocyte phenotype.

  19. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  20. Complications Following Autologous Latissimus Flap Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Mufid Burgić

    2010-02-01

    Full Text Available Use of an autologous latissimus flap in breast reconstruction accounts for a supple and natural look of reconstructed breast. Most common postoperative complication, seroma, became more of a rule then an exception when it comes to postoperative evaluation of the patients who underwent this reconstructive procedure. A retrospective study analysing and evaluating different complication rates in 20 patients who underwent breast reconstruction by autologous latissimus flap, was conducted. All patients included in the study were operated at the Department of plastic surgery of Hôpital Civil in Strasbourg, France, between 1996 and 2008. The complication rates were noted as follows: seroma in 19 of our 20 patients (95%, late hypertrophic scarring in 3 patients (15%, postoperative surgical site hematoma in 3 patients (15%, and 2 patients (10% presented postoperative chronic back pain. Different options used in seroma treatment and prevention (subcutaneous-fascia anchor sutures of donor site, application of corticosteroids by injection into donor site postoperatively, passive drainage can reduce seroma formation and thus overall complication rates, leading to much faster patient’s recovery time and return to normal daily activities.

  1. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress.

    Science.gov (United States)

    Huang, Ziwei; Zhou, Min; Wang, Qian; Zhu, Mengjiao; Chen, Sheng; Li, Huang

    2017-12-01

    To examine the role of mechanical force and hypoxia on chondrocytes apoptosis and osteoarthritis (OA)-liked pathological change on mandibular cartilage through over-activation of endoplasmic reticulum stress (ERS). We used two in vitro models to examine the effect of mechanical force and hypoxia on chondrocytes apoptosis separately. The mandibular condylar chondrocytes were obtained from three-week-old male Sprague-Dawley rats. Flexcell 5000T apparatus was used to produce mechanical forces (12%, 0.5Hz, 24h vs 20%, 0.5Hz, 24h) on chondrocytes. For hypoxia experiment, the concentration of O 2 was down regulated to 5% or 1%. Cell apoptosis rates were quantified by annexin V and propidium iodide (PI) double staining and FACS analysis. Quantitative real-time PCR and western blot were performed to evaluate the activation of ERS and cellular hypoxia. Then we used a mechanical stress loading rat model to verify the involvement of ERS in OA-liked mandibular cartilage pathological change. Histological changes in mandibular condylar cartilage were assessed via hematoxylin & eosin (HE) staining. Immunohistochemistry of GRP78, GRP94, HIF-1α, and HIF-2α were performed to evaluate activation of the ERS and existence of hypoxia. Apoptotic cells were detected by the TUNEL method. Tunicamycin, 20% mechanical forces and hypoxia (1% O 2 ) all significantly increased chondrocytes apoptosis rates and expression of ERS markers (GRP78, GRP94 and Caspase 12). However, 12% mechanical forces can only increase the apoptotic sensitivity of chondrocytes. Mechanical stress resulted in OA-liked pathological change on rat mandibular condylar cartilage which included thinning cartilage and bone erosion. The number of apoptotic cells increased. ERS and hypoxia markers expressions were also enhanced. Salubrinal, an ERS inhibitor, can reverse these effects in vitro and in vivo through the down-regulation of ERS markers and hypoxia markers. We confirmed that mechanical stress and local hypoxia both

  2. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.

    Science.gov (United States)

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2015-08-14

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  3. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    Science.gov (United States)

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  4. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Science.gov (United States)

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N.

    2015-01-01

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint. PMID:26287176

  5. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    Directory of Open Access Journals (Sweden)

    Merry ZC Ruan

    2016-01-01

    Full Text Available Osteoarthritis (OA is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs. Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab. We show that a10mab-conjugated HDV (a10mabHDV-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4 into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting.

  6. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  7. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  8. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  9. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  10. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-11-01

    The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). To examine the current clinical evidence regarding AMIC for focal chondral defects. Systematic review. A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm 2 ) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. This systematic review reveals a paucity of high-quality, randomized controlled

  11. Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation.

    Science.gov (United States)

    Wei, Hua; Gu, Shi-Xing; Liang, Yi-Dan; Liang, Zhi-Jie; Chen, Hai; Zhu, Mao-Guang; Xu, Fang-Tian; He, Ning; Wei, Xiao-Juan; Li, Hong-Mian

    2017-09-15

    Traditional autologous fat transplantation is a common surgical procedure for treating facial soft tissue depression and skin aging. However, the transplanted fat is easily absorbed, reducing the long-term efficacy of the procedure. Here, we examined the efficacy of nanofat-assisted autologous fat structural transplantation. Nanofat-derived stem cells (NFSCs) were isolated, mechanically emulsified, cultured, and characterized. Platelet-rich fibrin (PRF) enhanced proliferation and adipogenic differentiation of NFSCs in vitro . We then compared 62 test group patients with soft tissue depression or signs of aging who underwent combined nanofat, PRF, and autologous fat structural transplantation to control patients (77 cases) who underwent traditional autologous fat transplantation. Facial soft tissue depression symptoms and skin texture were improved to a greater extent after nanofat transplants than after traditional transplants, and the nanofat group had an overall satisfaction rate above 90%. These data suggest that NFSCs function similarly to mesenchymal stem cells and share many of the biological characteristics of traditional fat stem cell cultures. Transplants that combine newly-isolated nanofat, which has a rich stromal vascular fraction (SVF), with PRF and autologous structural fat granules may therefore be a safe, highly-effective, and long-lasting method for remodeling facial contours and rejuvenating the skin.

  12. Predeposit autologous blood transfusion: Do we require to promote it?

    Directory of Open Access Journals (Sweden)

    Gurjit Singh

    2015-01-01

    Full Text Available Introduction: Safest blood a patient can receive is his own. Quest for safe blood transfusion has remained of prime concern. To meet this aspiration, various forms of autologous blood transfusions can be practiced. It is especially suitable for patients with rare blood groups and religious sects such as Jehovah′s witness autologous transfusion is extremely safe. Cross matching is not required; iso-immunization to a foreign body is excluded. Fear of transfusion transmissible disease can be ignored. Therefore, autologous blood transfusion is required to be revisited. Materials and Methods: This is a prospective study carried out at Padmashree Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune between July 2010 and May 2012. Study comprised of 100 patients divided into two groups, autologous and homologous. Benefits of autologous transfusion were studied. Results: There was no significant change in hematocrit and blood parameters after blood donation. That is mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration (P < 0.001 after blood donation. Only one complication of vasovagal syncope was observed at the time of blood donation. Conclusion: Autologous blood transfusion is safe. Easy alternative to be practiced in elective surgeries, especially in patients with rare blood group or believers of Jehovah′s witness faith. It helps to reduce the shortfall in national blood inventory. Autologous blood donation should be practiced whenever possible.

  13. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  14. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3

    Science.gov (United States)

    Yahara, Yasuhito; Takemori, Hiroshi; Okada, Minoru; Kosai, Azuma; Yamashita, Akihiro; Kobayashi, Tomohito; Fujita, Kaori; Itoh, Yumi; Nakamura, Masahiro; Fuchino, Hiroyuki; Kawahara, Nobuo; Fukui, Naoshi; Watanabe, Akira; Kimura, Tomoatsu; Tsumaki, Noriyuki

    2016-01-01

    Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic. PMID:27009967

  15. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  16. Bone regeneration with autologous plasma, bone marrow stromal cells, and porous beta-tricalcium phosphate in nonhuman primates.

    Science.gov (United States)

    Torigoe, Ichiro; Sotome, Shinichi; Tsuchiya, Akio; Yoshii, Toshitaka; Maehara, Hidetsugu; Sugata, Yumi; Ichinose, Shizuko; Shinomiya, Kenichi; Okawa, Atsushi

    2009-07-01

    To potentiate the bone formation capability of bone marrow stromal cell (BMSC)/beta-tricalcium phosphate (beta-TCP) constructs, we devised an autologous plasma-based construct. We tested its effectiveness and investigated the effects of its components on a monkey ectopic bone formation model. The autologous plasma (platelet-rich plasma, PRP, or platelet-poor plasma, PPP)/BMSC/beta-TCP construct (R group or P group) showed significantly more bone formation at 3 and 6 weeks after implantation than a conventional BMSC/beta-TCP construct using a culture medium (M group). There was no significant difference between the P and R groups. Moreover, the P group constructs with a 10-fold lower cell concentration yielded equivalent bone formation to the M group at 5 weeks after implantation. To elucidate the effect of fibrin and serum contained in the plasma, five constructs were prepared using the following cell vehicles: autologous serum + fibrinogen (0, 1, 4, or 16 mg/mL) or phosphate-buffered saline + fibrinogen (4 mg/mL). The serum + fibrinogen (4 mg/mL, physiological concentration of monkeys) construct showed the most abundant bone formation at 3 weeks after implantation, though at 5 weeks no statistical difference existed among the groups. Autologous plasma efficiently promoted osteogenesis of BMSCs/porous beta-TCP constructs, and both fibrin and serum proved to play significant roles in the mechanism.

  17. In-vitro adhesion of endometrium to autologous peritoneal membranes: effect of the cycle phase and the stage of endometriosis.

    Science.gov (United States)

    Debrock, Sophie; Vander Perre, Sarah; Meuleman, Christel; Moerman, Philippe; Hill, Joseph A; D'Hooghe, Thomas M

    2002-10-01

    Endometrium can adhere to autologous peritoneum. This study was undertaken to determine the effect of the menstrual cycle phase and the presence and stage of endometriosis on in-vitro adhesion of endometrium onto autologous peritoneum. This was performed in an academic medical research centre. Sixty-seven subfertile women with a visually normal pelvis (n = 18) and with biopsy-proven endometriosis (n = 49) were included. Endometrial and peritoneal biopsies were obtained at laparoscopy during menstrual, follicular and luteal phase. Endometrium was cultured in vitro with autologous peritoneum, followed by fixation, paraffin embedding, serial sectioning, hematoxylin-eosin and immunohistochemical staining. Endometrial-peritoneal adhesion was evaluated using light microscopy. Endometrial-peritoneal adhesion was observed in approximately 80% of the adhesion assays and was not affected by the phase of the cycle, or by the presence and stage of endometriosis. The continuity of the mesothelial layer was disrupted at the attachment sites. Epithelialization was observed along the edges to integrate the endometrial implant. After adhesion, histological changes were observed within and below the implant. Endometrium obtained during menstrual, follicular or luteal phase appears to have a similar potential to implant in vitro on autologous peritoneum, and this adhesion process is not affected by the stage of endometriosis.

  18. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  19. [In vitro culture and identification of IL-1beta induced degeneration of cartilage cells in New Zealand white rabbits knee joint].

    Science.gov (United States)

    Yan, Hu; Su, You-Xin; Lin, Xue-Yi

    2014-01-01

    To explore and identify the method for IL-1beta induced New Zealand rabbit knee chondrocyte degeneration, thus providing experimental bases for Chinese medical research on osteoarthritis from in vitro cultured chondrocytes. Under aseptic conditions, bilateral knee joint cartilage was collected from 4-week old New Zealand rabbits. Chondrocytes were separated by type II collagenase digestion and mechanical blowing method. They were randomly divided into two groups when passaged to the 2nd generation, the normal control group (group Z) and the IL-1beta induced model group (group M). No intervention was given to those in group Z. 10% FBS culture media containing 10 ng/mL IL-1beta was added to group M. All cells were passaged to the 3rd generation. They were compared using morphological observation, toluidine blue staining, type II collagen immunohistochemical staining, and flow cytometry. Under inverted microscope, the second and the 3rd generation chondrocytes' phenotype of group Z was stable with good proliferation. Most cells turned into fusiform and slabstone shaped. In group M, most cells turned into long spindle shape or irregular shape. Results of toluidine blue staining and immunohistochemistry showed that the positive expression of chondrocytes after staining in group Z was superior to that in group M. Results of flow cytometry showed that there was statistical difference in the apoptosis rate of the second generation chondrocytes between group M and group Z (P New Zealand rabbit knee chondrocyte model obviously degenerated, which could be used in related experimental researches on osteoarthritis.

  20. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  1. Gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte.

    Science.gov (United States)

    Zhao, Lei; Ye, Juan; Wu, Guo-Tai; Peng, Xue-Jing; Xia, Peng-Fei; Ren, Yuan

    2015-08-22

    In traditional Chinese medicine, Gentiana macrophylla Pall have been prescribed for the treatment of pain and inflammatory conditions. In addition, it is a common Tibetan medicinal herb used for the treatment of tonsillitis, urticaria, and rheumatoid arthritis (RA), while the flowers of G. macrophylla Pall have been traditionally treated as an anti-inflammatory agent to clear heat in Mongolian medicine. The secoiridoid glycosides and their derivatives are the primary active components of G. macrophylla and have been demonstrated to be effective as anti-inflammatory agents. Solvent extraction and D101 macroporous resin columns were employed to concentratethe gentiopicroside. Gentiopicroside cytotoxicity was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; the toxicity of gentiopicroside in chondrocytes was reconfirmed using Hoechst staining. Western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were utilized to explore the protective effects and mechanisms of gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte. The MTT assay demonstrated that 50, 500, and 1,500 μg/mL of gentiopicroside exhibited no significant toxicity to chondrocytes (P>0.05) after 24h. Using immunohistochemistry, ELISA, RT-PCR, Western blot method to explore the protective effect and mechanism of gentiopicroside on chondrocytes induced by IL-1β. The results showed some pathways of IL-1β signal transduction were inhibited by gentiopicroside in rat chondrocytes: p38, ERK and JNK. Meanwhile, gentiopicroside showed inhibition in the IL-1β-induced release of MMPs while increasing Collagen type II expression. The current study demonstrated that gentiopicroside exhibited a potent protective effect on IL-1β induced inflammation response in rat articular chondrocyte. Thus, gentiopicroside could be a potential therapeutic strategy for treatment of OA. Copyright © 2015

  2. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling

    Science.gov (United States)

    Nguyen, Bac V.; Wang, Qi Guang; Kuiper, Nicola J.; El Haj, Alicia J.; Thomas, Colin R.; Zhang, Zhibing

    2010-01-01

    A chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. Single chondrocytes and chondrons isolated from bovine articular cartilage were compressed by micromanipulation between two parallel surfaces in order to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during compression to various deformations and then holding. When the nominal strain at the end of compression was 50 per cent, force relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant when the nominal strain was 30 per cent or lower. The viscoelastic behaviour might be due to the mechanical response of the cell cytoskeleton and/or nucleus at higher deformations. A finite-element analysis was applied to simulate the experimental force-displacement/time data and to obtain mechanical property parameters of the chondrocytes and chondrons. Because of the large strains in the cells, a nonlinear elastic model was used for simulations of compression to 30 per cent nominal strain and a nonlinear viscoelastic model for 50 per cent. The elastic model yielded a Young's modulus of 14 ± 1 kPa (mean ± s.e.) for chondrocytes and 19 ± 2 kPa for chondrons, respectively. The viscoelastic model generated an instantaneous elastic modulus of 21 ± 3 and 27 ± 4 kPa, a long-term modulus of 9.3 ± 0.8 and 12 ± 1 kPa and an apparent viscosity of 2.8 ± 0.5 and 3.4 ± 0.6 kPa s for chondrocytes and chondrons, respectively. It was concluded that chondrons were generally stiffer and showed less viscoelastic behaviour than chondrocytes, and that the PCM significantly influenced the mechanical properties of the cells. PMID:20519215

  3. Ski inhibits TGF-β/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes.

    Science.gov (United States)

    Kim, Kyung-Ok; Sampson, Erik R; Maynard, Robert D; O'Keefe, Regis J; Chen, Di; Drissi, Hicham; Rosier, Randy N; Hilton, Matthew J; Zuscik, Michael J

    2012-06-01

    Since transforming growing factor-β (TGF-β)/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads. We tested this hypothesis in chick upper sternal chondrocytes (USCs), where gain and loss of Ski expression experiments were performed. Over-expression of Ski not only reversed the inhibitory effect of TGF-β on the expression of hypertrophic marker genes such as type X collagen (colX) and osteocalcin, it induced these genes basally as well. Conversely, knockdown of Ski by RNA interference led to a reduction of colX and osteocalcin expression under basal conditions. Furthermore, Ski blocked TGF-β induction of cyclinD1 and caused a basal up-regulation of Runx2, consistent with the observed acceleration of hypertrophy. Regarding mechanism, not only does Ski associate with phospho-Smad2 and 3, but its association with phospho-Smad3 is required for recruitment of HDAC4 and 5. Implicating this recruitment of HDACs in the phenotypic effects of Ski in chondrocytes, the HDAC inhibitor SAHA reversed the up-regulation of colX and osteocalcin in Ski over-expressing cells. These results suggest that inhibition of TGF-β signaling by Ski, which involves its association with phospho-Smad3 and recruitment of HDAC4 and 5, leads to accelerated chondrocyte differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  4. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  5. Autologous tumor vaccine lowering postsurgical recurrent rate of hepatocellular carcinoma.

    Science.gov (United States)

    Peng, Baogang; Liang, Lijian; Chen, Zubing; He, Qiang; Kuang, Ming; Zhou, Fan; Lu, Mingde; Huang, Jiefu

    2006-01-01

    A tumor vaccine consisting of formalin-fixed hepatocellular carcinoma (HCC) tissue fragments, biodegradable sustained-releasers of granulocyte-macrophage-colony stimulating factor (GM-CSF) and interleukin-2 (IL-2), and an adjuvant was developed. The aim of this study was to evaluate the effects of autologous tumor vaccine for protective immunity against HCC. C57BL/6J mice were immunized intradermally with the Hepa1-6 tumor vaccine on day 0 and 7, followed by intrahepatic challenge with live Hepa1-6 cells. On day 21, the tumor volumes were measured and the effect of tumor vaccine was evaluated. Lymphocytes from the immunized mice were cultured and the specific cytotoxicity against Hepa1-6 was accessed. Then from March 1999 to June 2003, 67 patients with HCC undergoing curative resection were randomly divided into a tumor vaccine group (n = 32) and a control group (n = 35). Patients in the tumor vaccine group received 3 vaccinations at a 2-week interval and the control group only adjuvant treatment for symptoms. A delayed-type-hypersensitivity test was performed before and after vaccination. Primary endpoint was time to first recurrence and recurrent rates were analyzed. The tumor vaccine protected 87% of syngeneic mice from Hepa1-6 cells inoculation. In an in vitro experiment, splenocytes from the vaccinated mice exhibited a 56% lytic activity against the Hepa1-6 cells at an effector/target (E/T) ratio of 5, whereas they did not exhibit such activity against other tumor cells. The cytotoxic activity was inhibited by the treatment with anti-CD3, anti-CD8, and anti-MHC-class II monoclonal antibodies but not with anti-CD4 and anti-MHC-class I antibodies. In clinical trial, thirty-two patients had completed the tumor vaccine procedure and no essential adverse effect occurred. The follow-up averaged 33.6 months (range from 15 to 54 months). The recurrent rate was significantly better in the tumor vaccine group (1 year, 12.6%; 2 years, 35.9%; 3 years, 54%) than in the

  6. A novel compressive stress-based osteoarthritis-like chondrocyte system.

    Science.gov (United States)

    Young, In-Chi; Chuang, Sung-Ting; Gefen, Amit; Kuo, Wei-Ting; Yang, Chun-Ting; Hsu, Chia-Hsien; Lin, Feng-Huei

    2017-05-01

    Mechanical stress damage and insufficient self-repair can contribute to osteoarthritis (OA) in the affected joint. As the effects of stress on chondrocyte metabolism can regulate cartilage homeostasis, the specific stress-response condition is therefore a key to the generation of an OA disease model. We aimed to produce a specific stress- and cell-based OA model after evaluating the metabolic responses of chondrocytes in response to a series of static and cyclic compression stressors. A static load exceeding 40 psi initiated extracellular matrix (ECM) degradation through a decrease in the sulphated-glycosaminoglycan (GAG) content, upregulation of catabolic matrix metalloproteinase (MMP)-13 encoding gene expression, and downregulation of the ECM-related aggrecan and type II collagen encoding genes within 24 h. Indicators of pro-inflammatory events and oxidative stress were found to correlate with increased IL-6 expression and reactive oxygen species (ROS) production, respectively. However, chondrocytes stimulated by moderate cyclic loading (30-40 psi) exhibited increased ECM-related gene expression without significant changes in catabolic and pro-inflammatory gene expression. BMP-7 expression increased at cyclic loading levels above 30-60 psi. These results demonstrated that static compression exceeding 60 psi is sufficient to produce OA-like chondrocytes that exhibit signs of ECM degradation and inflammation. These OA-like chondrocytes could therefore be used as a novel cell-based drug screening system. Impact statement The lack of an effective treatment for osteoarthritis (OA) reflects the great need for alternative therapies and drug discovery. Disease models can be used for early-stage compound screening and disease studies. Chondrocytes are solely responsible for the maintenance of the articular cartilage extracellular matrix. Our strategy involved the generation of a cell-based model of OA, a more readily studied disease. Instead of using animal cartilage

  7. The Results of Fetal Chondrocytes Transplantation in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Natalya Krivoruchko

    2014-12-01

    Full Text Available Introduction. Nowadays anti-inflammatory and immunosuppressive therapy has significantly improved the quality of life and prognosis of rheumatoid arthritis (RA. Nevertheless, there are still many patients with progressive rheumatoid inflammation, resulting in the destruction of joints. Cell therapy seems like a promising direction in rheumatology. The aim of our research was to evaluate the efficacy of fetal chondrocyte transplantation in patients with RA.Methods. We examined 60 patients with rheumatoid arthritis (I - III stages between 20 and 63 years of age. They were divided into 2 groups: the first group underwent the fetal chondrocytes transplantation (n = 40, and the second was a control group who got conservative therapy (n = 20. Donor cells were taken from the chondrogenic layer of the humerus or femur heads and hip condyles of human embryos in gestation for 17-20 weeks. A suspension of fetal chondrocytes injected into affected areas of the articular surfaces under X-ray control. Cell viability was determined before the injection. Efficacy of the therapy was assessed by clinical, instrumental, and laboratory tests. This clinical trial was allowed by The Ministry of Public Health and Ethics Committee. All of our patients gave informed consent for the fetal chondrocytes transplantation.Results. Evaluation of the clinical manifestations of RA in the first group of patients showed 3.7 times decrease in pain and 1.6 times relief of synovitis. Complete reduction of contracture was observed in 82% of patients in the first group. Morphometric changes in X-ray demonstrated inhibition of the destruction in articular cartilage and surfaces of bones after transplantation of fetal chondrocytes. The dynamics of morphological changes in synovium showed 2.5 times reduction of the inflammatory reaction. Transplantation of fetal chondrocytes led to a significant reduction in ESR, CRP, fibrinogen , γ-globulin after a period of 12 months (p < 0

  8. Perivascular Mesenchymal Stem Cells in Sheep: Characterization and Autologous Transplantation in a Model of Articular Cartilage Repair.

    Science.gov (United States)

    Hindle, Paul; Baily, James; Khan, Nusrat; Biant, Leela C; Simpson, A Hamish R; Péault, Bruno

    2016-11-01

    Previous research has indicated that purified perivascular stem cells (PSCs) have increased chondrogenic potential compared to conventional mesenchymal stem cells (MSCs) derived in culture. This study aimed to develop an autologous large animal model for PSC transplantation and to specifically determine if implanted cells are retained in articular cartilage defects. Immunohistochemistry and fluorescence-activated cell sorting were used to ascertain the reactivity of anti-human and anti-ovine antibodies, which were combined and used to identify and isolate pericytes (CD34 - CD45 - CD146 + ) and adventitial cells (CD34 + CD45 - CD146 - ). The purified cells demonstrated osteogenic, adipogenic, and chondrogenic potential in culture. Autologous ovine PSCs (oPSCs) were isolated, cultured, and efficiently transfected using a green fluorescence protein (GFP) encoding lentivirus. The cells were implanted into articular cartilage defects on the medial femoral condyle using hydrogel and collagen membranes. Four weeks following implantation, the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect repaired with the hydrogel. These data suggest the testability in a large animal of native MSC autologous grafting, thus avoiding possible biases associated with xenotransplantation. Such a setting will be used in priority for indications in orthopedics, at first to model articular cartilage repair.

  9. Surgical management and autologous intestinal reconstruction in short bowel syndrome

    NARCIS (Netherlands)

    Hommel, Matthijs J.; van Baren, Robertine; Haveman, Jan Willem

    Short bowel syndrome (SBS) is a serious condition with considerable morbidity and mortality. When treatment with parenteral nutrition fails and life-threatening complications occur, autologous intestinal reconstruction (AIR) should be considered before intestinal transplantation (ITx). Single or

  10. Autologous bone marrow mononuclear cell delivery to dilated ...

    African Journals Online (AJOL)

    Autologous bone marrow mononuclear cell delivery to dilated cardiomyopathy patients: A clinical trial. PLN Kaparthi, G Namita, LK Chelluri, VSP Rao, PK Shah, A Vasantha, SK Ratnakar, K Ravindhranath ...

  11. Anterior cruciate ligament reconstruction in a rabbit model using canine small intestinal submucosa and autologous platelet-rich plasma.

    Science.gov (United States)

    Lee, A-Jin; Chung, Wook-Hun; Kim, Dae-Hyun; Lee, Kyung-Pil; Chung, Dai-Jung; Do, Sun Hee; Kim, Hwi-Yool

    2012-11-01

    The bone-ligament interface is the main point of failure after anterior cruciate ligament reconstruction. Synthetic ligament materials have problems such as a greater failure rate of the bone-ligament insertion than autografts. Small intestinal submucosa (SIS) is a biologic scaffold that has been used to repair musculoskeletal tissue and has been shown to promote cell migration and enhance collagen fiber regeneration. Autologous platelet-rich plasma (PRP) has also been investigated as a potential promoter of tendon healing. We investigated SIS and PRP as biomaterials that might strengthen the bone-tunnel interface and improve tendon structure formation. Anterior cruciate ligament grafts were formed of braid-twist canine SIS. These canine SIS ligament grafts were used for anterior cruciate ligament reconstruction in 20 New Zealand white rabbits. The rabbits were divided into 2 treatment groups. In 1 group (SIS group; n = 10), we only implanted the canine SIS grafts. In the second group (PRP group; n = 10), we applied autologous PRP to the surgical area after implantation of canine SIS grafts. We determined the cytokine level of the autologous PRP using a transforming growth factor-β1 enzyme-linked immunosorbent assay kit. At 1 and 4 wk after surgery, magnetic resonance imaging was performed to evaluate the grafts. The femur-graft-tibia complex was assessed histologically and biomechanically at 8 wk after surgery. At 1 wk after surgery, the magnetic resonance imaging scans of the PRP group showed high signal-intensity lesions. In biomechanical tests, the SIS group had a significantly greater maximum load, maximum stress, and ultimate load and strain than the PRP group. The histologic findings of the PRP group revealed a greater cellular response, fibrotic tissue regeneration around the graft, broad chondrocyte cell infiltration, and collagen fibers that were loosely attached to the bone. The PRP group had significantly lower tension load values than the SIS group

  12. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression.

    Science.gov (United States)

    Guo, Hongqiang; Torzilli, Peter A

    2016-01-01

    Metabolic activity of the chondrocytes in articular cartilage is strongly related to their zone-specific shape and the composition and mechanical properties of their surrounding extracellular matrix (ECM). However the mechanisms by which cell shape influences the response of the ECM microenvironment to mechanical loading is yet to be elucidated. This relationship was studied using a biphasic multiscale finite element model of different shaped chondrocytes in the superficial and deep zones of the ECM during unconfined stress relaxation. For chondrocytes in the superficial zone, increasing the cell's initial aspect ratio (length/height) increased the deformation and solid stresses of the chondrocyte and pericellular matrix (PCM) during the loading phase; for chondrocytes in the deep zone the effect of the cell shape on the solid microenvironment was time and variable dependent. However, for superficial and deep zone chondrocytes the cell shape did not affect the fluid pressure and fluid shear stress. These results suggest that mechanotransduction of chondrocytes in articular cartilage may be regulated through the solid phase rather than the fluid phase, and that high stresses and deformations in the solid microenvironment in the superficial zone may be essential for the zone-specific biosynthetic activity of the chondrocyte. The biphasic multiscale computational analysis suggests that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in tissue engineering constructs. We investigated the effect of chondrocyte shape on the cellular microenvironment using a biphasic multiscale finite element analysis. Our study showed that cell shapes affects the solid but not the fluid microenvironment of the chondrocyte, and that maintaining the cell shape is critical for regulating the microenvironment and metabolic activity of the chondrocyte in native cartilage and tissue engineering constructs. As far as we know

  13. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  14. Enteric Neural Cells From Hirschsprung Disease Patients Form Ganglia in Autologous Aneuronal ColonSummary

    Directory of Open Access Journals (Sweden)

    Benjamin N. Rollo

    2016-01-01

    Full Text Available Background & Aims: Hirschsprung disease (HSCR is caused by failure of cells derived from the neural crest (NC to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic colon tissue from patients may be colonized by autologous ENS-derived cells. Methods: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients. Aneuronal colon tissue was obtained from the distal resection margin (23 patients. ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2′-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. Results: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. Conclusions: NC-lineage cells can be obtained from HSCR

  15. Chondroprotective Effects of Ginsenoside Rg1 in  Human Osteoarthritis Chondrocytes and a Rat Model  of Anterior Cruciate Ligament Transection

    Directory of Open Access Journals (Sweden)

    Wendan Cheng

    2017-03-01

    Full Text Available This study aimed to assess whether Ginsenoside Rg1 (Rg1 inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA. Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP‐13 and cyclooxygenase‐2 (COX‐2 were determined in vitro by quantitative real‐time‐polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2 amounts in the culture medium were determined by enzyme‐linked immunosorbent assay (ELISA. For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT. Four weeks after ACLT, Rg1 (30 or 60 mg/kg or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL‐1β‐induced chondrocyte gene and protein expressions of MMP‐13, COX‐2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose‐dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP‐13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA.

  16. Botanical Extracts from Rosehip (Rosa canina, Willow Bark (Salix alba, and Nettle Leaf (Urtica dioica Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    2012-01-01

    Full Text Available The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina, willow bark (Salix alba, and nettle leaf (Urtica dioica in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG, β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  17. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Science.gov (United States)

    Shakibaei, Mehdi; Allaway, David; Nebrich, Simone; Mobasheri, Ali

    2012-01-01

    The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles. PMID:22474508

  18. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes.

    Science.gov (United States)

    Shakibaei, Mehdi; Allaway, David; Nebrich, Simone; Mobasheri, Ali

    2012-01-01

    The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  19. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  1. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Hemanth Akkiraju

    2015-12-01

    Full Text Available Articular cartilage (AC covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA. OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration.

  2. [Pulsed electromagnetic field therapy inhibits chondrocyte apoptosis in rabbits with osteoarthritis].

    Science.gov (United States)

    Xie, Wei; Zhou, Jun; Luo, Qing-Lua; Liu, Hui-Fang; He, Cheng-Qi

    2014-01-01

    To determine the effect of pulsed electromagnetic field (PEMF) treatment on chondrocyte morphology, chondrocyte apoptosis, and the expression of apoptosis related proteins in rabbits. 24 white New Zealand rabbits were randomly divided into three groups: normal control group (NC group), anterior cruciate ligament transection without treatment (ACLT group), and anterior cruciate ligament transection with pulsed electromagnetic field treatment (PEMF group). Six weeks after anterior cruciate ligament transection, the rabbits in the PEMF group were given 2 weeks of pulsed electromagnetic field treatment. Rabbits in the PEMF group had significantly lower Mankin scores than those in the ACLT group, although the scores were higher than that of the NC group. The rabbits in the PEMF groups also had significantly lower levels of apoptosis index of chondrocytes and expression of caspase-3 compared with those in the ACLT group. The expression of caspase-8 in the rabbits in the PEMF group was higher compared to the NC group, but no significant difference compared with that of the ACLT group. Pulsed electromagnetic field treatment has therapeutic effect on the experimental osteoarthritis, which is likely a result of inhibition of apoptosis in chondrocytes.

  3. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  4. Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication

    Directory of Open Access Journals (Sweden)

    Eva Skiöldebrand

    2018-01-01

    Full Text Available Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.

  5. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds

    DEFF Research Database (Denmark)

    Zwingmann, Joern; Mehlhorn, Alexander T; Südkamp, Norbert

    2007-01-01

    Cartilage tissue engineering is applied clinically to cover and regenerate articular cartilage defects. Two bioresorbable nonwoven scaffolds, polyglycolic acid (PGA) and poly(lactic-co-glycolic acid) (PLGA) (90/10 copolymer of L-lactide and glycolide), were seeded with human chondrocytes after...

  6. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients.

    Directory of Open Access Journals (Sweden)

    Serena Guidotti

    Full Text Available Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA, but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy.In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763 were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS production (2',7'-dichlorofluorescin diacetate staining. Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21, flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining.In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10.In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via

  7. Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses.

    Science.gov (United States)

    Pigott, J H; Ishihara, A; Wellman, M L; Russell, D S; Bertone, A L

    2013-01-01

    To compare the clinical and inflammatory joint responses to intra-articular injection of bone marrow-derived mesenchymal stem cells (MSC) including autologous, genetically modified autologous, allogeneic, or xenogeneic cells in horses. Six five-year-old Thoroughbred mares had one fetlock joint injected with Gey's balanced salt solution as the vehicle control. Each fetlock joint of each horse was subsequently injected with 15 million MSC from the described MSC groups, and were assessed for 28 days for clinical and inflammatory parameters representing synovitis, joint swelling, and pain. There were not any significant differences between autologous and genetically modified autologous MSC for synovial fluid total nucleated cell count, total protein, interleukin (IL)-6, IL-10, fetlock circumference, oedema score, pain-free range-of-motion, and soluble gene products that were detected for at least two days. Allogeneic and xenogeneic MSC produced a greater increase in peak of inflammation at 24 hours than either autologous MSC group. Genetically engineered MSC can act as vehicles to deliver gene products to the joint; further investigation into the therapeutic potential of this cell therapy is warranted. Intra-articular MSC injection resulted in a moderate acute inflammatory joint response that was greater for allogeneic and xenogeneic MSC than autologous MSC. Clinical management of this response may minimize this effect.

  8. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  9. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Sonia Nasi

    Full Text Available Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification.Hydroxyapatite (HA crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology.In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage.STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA.

  10. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations

    Science.gov (United States)

    Leddy, Holly A.; McNulty, Amy L.; Lee, Suk Hee; Rothfusz, Nicole E.; Gloss, Bernd; Kirby, Margaret L.; Hutson, Mary R.; Cohn, Daniel H.; Guilak, Farshid; Liedtke, Wolfgang

    2014-01-01

    Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4V620I channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of theTRPV4V620I mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4T89I mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.—Leddy, H. A., McNulty, A. L., Lee, S. H., Rothfusz, N. E., Gloss, B., Kirby, M. L., Hutson, M. R., Cohn, D. H., Guilak, F., Liedtke, W. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. PMID:24577120

  11. [Study on the method of two dimensional polycrylamide gel electrophoresis on rat condylar chondrocyte].

    Science.gov (United States)

    Wu, Tuo-jiang; Li, Huang; Ma, Qiao-lin; Wang, Wen-mei

    2010-08-01

    To investigate the protein profile by two dimensional polycrylamide gel electrophoresis on the rat condylar chondrocyte in vitro. The third-passage chondrocytes were harvested from the mandibular condyles of 2-day-old rats in this study. The protein profile of the rat mandibular condylar chondrocytes was examined by two dimensional polycrylamide gel electrophoresis (2-DE-PAGE). The 2-DE gel maps on different pH gradients were obtained. The result of modified coomassi blue-sliver staining and sliver staining was compared using Pdquest 7.1 image analysis software. The results showed that the good protein profile of the condylar chondrocytes was obtained by standard Bio-Rad manual. The protein was mainly in the field from pH4 to pH7. The 1203±86 protein points were examined on 2-DE gel map by modified coomassi blue-sliver staining, and 1769±97 protein points was examined by sliver staining. The silver staining map showed more distinctly but higher background than modified coomassi blue-sliver staining. The protein profile of the condylar chondrocytes enriches the proteomic database and gives evidence to further proteomic research. The 2-DE map obtained by modified coomassi blue-sliver staining is more suitable for MALDI-TOF mass identification. Supported by National Natural Science Foundation of China (Grant No. C30700963), China Postdoctoral Science Foundation(Grant No.20090461088), Jiangsu Provincial Postdoctoral Science Foundation (Grant No.0802003C) and Nanjing City's Science and Technology Foundation (Grant No.200905011).

  12. IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivotto

    Full Text Available BACKGROUND: The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase, has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM homeostasis and differentiation towards hypertrophy. METHODOLOGY/PRINCIPAL FINDINGS: IKKα expression was ablated in primary human osteoarthritic (OA chondrocytes and in immature murine articular chondrocytes (iMACs derived from IKKα(f/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2 deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3 protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. CONCLUSIONS/SIGNIFICANCE: IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively to maintain maximal MMP-13 activity, which is required for ECM

  13. Autologous Blood Transfusion for Postpartum Hemorrhage.

    Science.gov (United States)

    Greenawalt, Julia A; Zernell, Denise

    Postpartum hemorrhage (PPH) is a leading contributor to maternal morbidity and mortality in the United States and globally. Although the rate of PPH is generally decreasing nationally, severity of PPH appears to be increasing, potentially related to the various comorbidities associated with women of childbearing age. There is increasing evidence of risks associated with allogeneic blood transfusion, which has historically been the classic therapeutic approach for treatment to PPH. Pregnant women are particularly susceptible to the implications of sensitization to red cell antigens, a common sequela to allogenic blood transfusion. Autologous blood transfusion eliminates the potential of communicable disease transmission as well as the conceivable threat of a blood transfusion reaction. Recent technological advances allow cell salvage coupled with the use of a leukocyte filter to be used as an alternative approach for improving the outcome for women experiencing a PPH. Modest changes in standard operating procedure and continued training in use and application of cell salvaged blood may assist in minimizing negative outcomes from PPH. Salvaged blood has been demonstrated to be at least equal and often superior to banked blood. We discuss nursing implications for application of this technology for women with PPH. Continued research is warranted to evaluate the impact that application of cell salvage with filtration has on the patient experiencing a PPH.

  14. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  15. Galectin-1 and galectin-3 expression in equine mesenchymal stromal cells (MSCs, synovial fibroblasts and chondrocytes, and the effect of inflammation on MSC motility

    Directory of Open Access Journals (Sweden)

    Heidi L. Reesink

    2017-11-01

    Full Text Available Abstract Background Mesenchymal stromal cells (MSCs can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of β-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility. Methods Equine galectin-1 and -3 gene expression was quantified using qRT-PCR in cultured BMSCs, synoviocytes and articular chondrocytes, in addition to synovial membrane and articular cartilage tissues. Galectin gene expression, protein expression, and protein secretion were measured in equine BMSCs following exposure to inflammatory cytokines (IL-1β 5 and 10 ng/mL, TNF-α 25 and 50 ng/mL, or LPS 0.1, 1, 10 and 50 μg/mL. BMSC focal adhesion formation was assessed using confocal microscopy, and BMSC motility was quantified in the presence of inflammatory cytokines (IL-1β or TNF-α and the pan-galectin inhibitor β-lactose (100 and 200 mM. Results Equine BMSCs expressed 3-fold higher galectin-1 mRNA levels as compared to cultured synovial fibroblasts (p = 0.0005 and 30-fold higher galectin-1 (p < 0.0001 relative to cultured chondrocytes. BMSC galectin-1 mRNA expression was significantly increased as compared to carpal synovial membrane and articular cartilage tissues (p < 0.0001. IL-1β and TNF-α treatments decreased BMSC galectin gene expression and impaired BMSC motility in dose-dependent fashion but did not alter galectin protein expression. β-lactose abrogated BMSC focal adhesion formation and inhibited

  16. Galectin-1 and galectin-3 expression in equine mesenchymal stromal cells (MSCs), synovial fibroblasts and chondrocytes, and the effect of inflammation on MSC motility.

    Science.gov (United States)

    Reesink, Heidi L; Sutton, Ryan M; Shurer, Carolyn R; Peterson, Ryan P; Tan, Julie S; Su, Jin; Paszek, Matthew J; Nixon, Alan J

    2017-11-02

    Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of β-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs) express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility. Equine galectin-1 and -3 gene expression was quantified using qRT-PCR in cultured BMSCs, synoviocytes and articular chondrocytes, in addition to synovial membrane and articular cartilage tissues. Galectin gene expression, protein expression, and protein secretion were measured in equine BMSCs following exposure to inflammatory cytokines (IL-1β 5 and 10 ng/mL, TNF-α 25 and 50 ng/mL, or LPS 0.1, 1, 10 and 50 μg/mL). BMSC focal adhesion formation was assessed using confocal microscopy, and BMSC motility was quantified in the presence of inflammatory cytokines (IL-1β or TNF-α) and the pan-galectin inhibitor β-lactose (100 and 200 mM). Equine BMSCs expressed 3-fold higher galectin-1 mRNA levels as compared to cultured synovial fibroblasts (p = 0.0005) and 30-fold higher galectin-1 (p < 0.0001) relative to cultured chondrocytes. BMSC galectin-1 mRNA expression was significantly increased as compared to carpal synovial membrane and articular cartilage tissues (p < 0.0001). IL-1β and TNF-α treatments decreased BMSC galectin gene expression and impaired BMSC motility in dose-dependent fashion but did not alter galectin protein expression. β-lactose abrogated BMSC focal adhesion formation and inhibited BMSC motility. Equine BMSCs constitutively

  17. Repair of refractory wounds through grafting of artificial dermis and autologous epidermis aided by vacuum-assisted closure.

    Science.gov (United States)

    Zhang, Chenwei; Liu, Dalie; Liang, Zhi; Liu, Fei; Lin, Haibo; Guo, Zhengdong

    2014-08-01

    This study aimed to investigate the clinical efficacy of vacuum-assisted closure (VAC) combined with grafting of artificial dermis and autologous epidermis in the repair of refractory wounds. Patients with refractory wounds underwent debridement. Then the VAC device was used to culture wound granulation tissue. After the wound granulation tissue began to grow, artificial dermis was grafted on the wounds with VAC treatment. Then autologous epidermis was grafted on the artificial dermis to repair the wounds after survival of the artificial epidermis. The study mainly observed length of the hospital stay, survival of the artificial dermis, time required for culture of the granulation tissue using VAC before grafting of the artificial dermis, survival time of the artificial dermis, survival conditions of the autologous epidermis, influence on functions of a healed wound at a functional part, healing conditions of donor sites, and recurrence conditions of the wounds. Healing was successful for 22 patients (95.7%), but treatment failed for 1 child. The 22 patients were followed up for 6 to 24 months. According to follow-up findings, the skin grafts had good color and a soft texture. They were wear resistant and posed no influence on function. The appearance of the final results was the same as that of the full-thickness skin graft. Mild or no pigmentation and no scar formation occurred at the donor sites, and the wounds did not recur. Vacuum-assisted closure combined with grafting of artificial dermis and autologous epidermis is an effective means for repairing refractory wounds and is worth clinical popularizing and application. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  19. Cryopreservation of Autologous Blood (Red Blood Cells, Platelets and Plasma)

    Science.gov (United States)

    Ebine, Kunio

    Prevention of post-transfusion hepatitis is still a problem in cardiovascular surgery. We initiated the cryopreservation of autologous blood for the transfusion in elective cardiovascular surgery since 1981. This study includes 152 surgical cases in which autologous frozen, allogeneic frozen, and/or allogeneic non-frozen blood were used. In the 152 surgical cases, there were 69 cases in which autologous blood only (Group I) was used; 12 cases with autologous and allogeneic frozen blood (Group II); 46 cases with autologous and allgeneic frozen plus allogeneic non-frozen blood (Group III); and 25 cases with allogeneic frozen plus allogeneic non-frozen blood (Group IV). No hepatitis developed in Groups I (0%) and II (0%), but there was positive hepatitis in Groups III (4.3%) and IV (8.0%) . In 357 cases of those who underwent surgery with allogeneic non-frozen whole blood during the same period, the incidence rate of hepatitis was 13.7% (49/357). Patients awaiting elective surgery can store their own blood in the frozen state. Patients who undergo surgery with the cryoautotransfusion will not produce any infections or immunologic reactions as opposed to those who undergo surgery with the allogeneic non-frozen blood.

  20. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes

    DEFF Research Database (Denmark)

    Sondergaard, B C; Wulf, H; Henriksen, K

    2006-01-01

    OBJECTIVE: Calcitonin was recently reported to counter progression of cartilage degradation in an experimental model of osteoarthritis, and the effects were primarily suggested to be mediated by inhibition of subchondral bone resorption. We investigated direct effects of calcitonin on chondrocytes...

  1. Role of Map Kinase in Mediating the Effects of Vitamin D3 Metabolites on Growth Plate Chondrocytes

    National Research Council Canada - National Science Library

    Haris, Ehland

    2003-01-01

    .... The process is required for normal long bone growth and in certain kinds of bone repair. Vitamin D3 plays an important regulatory role in chondrocyte differentiation and maturation and therefore is essential for proper endochondral ossification...

  2. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  3. Long-term and real-time monitoring of chondrocyte behavior synthesizing extracellular matrix with biologically coupled field effect transistor

    Science.gov (United States)

    Satake, Hiroto; Saito, Akiko; Mizuno, Shuichi; Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, we report the differential measurement method of accurately monitoring cellular metabolism with a semiconductor-based field effect transistor (FET), focusing on the proliferation potency of chondrocytes utilized in the field of orthopedics. By adding growth factors to chondrocytes on the gate, cellular activity was induced and continuously monitored as a change in pH during a cellular respiration for ten days using the FET biosensor. Moreover, the electrical signal of the FET device reflected the reproduction property of chondrocytes to synthesize extracellular matrix (ECM). A platform based on the FET device is suitable as a noninvasive, real-time and long-term monitoring system for cellular functions; it will contribute to the elucidation of the mechanism of ECM synthesis by chondrocytes.

  4. Effectiveness of autologous transfusion system in primary total hip and knee arthroplasty.

    LENUS (Irish Health Repository)

    Schneider, Marco M

    2014-01-01

    Autologous transfusion has become a cost-efficient and useful option in the treatment of patients with high blood loss following major orthopaedic surgery. However, the effectiveness of autologous transfusion in total joint replacement remains controversial.

  5. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  6. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Tohoku University School of Medicine, Sendai (Japan); Andres, MC de [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Hashimoto, Ko [Hospital for Special Surgery, NY (United States); Pitt, Dominic [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan); Goldring, Mary B. [Hospital for Special Surgery, NY (United States); Roach, Helmtrud I.; Oreffo, Richard O.C. [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom)

    2011-02-18

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N

  7. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    International Nuclear Information System (INIS)

    Imagawa, Kei; Andres, MC de; Hashimoto, Ko; Pitt, Dominic; Itoi, Eiji; Goldring, Mary B.; Roach, Helmtrud I.; Oreffo, Richard O.C.

    2011-01-01

    Research highlights: → Glucosamine and a NF-kB inhibitor reduce inflammation in OA. → Cytokine induced demethylation of CpG site in IL1β promoter prevented by glucosamine. → Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1β, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1β and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma

  8. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Järvinen, Elina; Muhonen, Virpi; Haaparanta, Anne-Marie; Kellomäki, Minna; Kiviranta, Ilkka

    2014-01-01

    Biomaterial scaffolds have been used in autologous chondrocyte implantation to facilitate the repair of large lesions and to advance the formation of articular cartilage [Exp. Biol. Med. (Maywood) 237(1) (2012), 10-17]. Biomaterial scaffolds are usually three-dimensional (3-D) porous structures consisting of biodegradable materials to support articular cartilage formation. Adequate porosity of the scaffold is necessary for uniform cell distribution and cell attachment, and the density of the cells in the scaffold should be appropriate for cartilage formation [Cartilage 3(2) (2012), 108-117]. There have been only a restricted number of studies on the spatial distribution of cells in scaffolds, and on the role of this to cartilage formation [J. Biotechnol. 129 (2007), 516-531; Biotechnol. Progr. 14 (1998), 193-202; Biotechnol. Bioeng. 84 (2003), 205-214]. This may be due to the limited availability of appropriate visualization methods. Acquiring 3-D images throughout the scaffold by histology or confocal methods are not applicable to all types of scaffolds, and moreover, they are time consuming, laborious and thus not very feasible for a large scale analysis. To make the visualization of the spatial distribution of the cells easier in biomaterial scaffolds we have applied optical projection tomography (OPT). OPT microscope produces high-resolution 3-D images of both fluorescent and non-fluorescent specimens [Science 296(5567) (2002), 541-545]. Here we demonstrate that the OPT method can be used for the evaluation and visualization of the cell seeding method, spatial distribution and density of cells in biomaterial scaffolds and thus establish the OPT as a valid tool for analysis of cell distribution in cartilage tissue engineering samples.

  9. Impact of isolation method on doubling time and the quality of chondrocyte and osteoblast differentiated from murine dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Rohaya Megat Abdul Wahab

    2017-06-01

    Full Text Available Background Stem cells are normally isolated from dental pulps using the enzymatic digestion or the outgrowth method. However, the effects of the isolation method on the quality of the isolated stem cells are not studied in detail in murine models. The aim of this study was to compare the matrices secreted by osteoblast and chondrocytes differentiated from dental pulp stem cells isolated through different means. Method DPSC from murine incisors were isolated through either the outgrowth (DPSC-OG or the enzymatic digestion (DPSC-ED method. Cells at passage 4 were used in this study. The cells were characterized through morphology and expression of cell surface markers. The cells’ doubling time when cultured using different seeding densities was calculated and analyzed using one-way ANOVA and Tukey’s multiple comparison post-test. The ability of cells to differentiate to chondrocyte and osteoblast was evaluated through staining and analysis on the matrices secreted. Results Gene expression analysis showed that DPSC-OG and DPSC-ED expressed dental pulp mesenchymal stem cell markers, but not hematopoietic stem cell markers. The least number of cells that could have been used to culture DPSC-OG and DPSC-ED with the shortest doubling time was 5 × 102 cells/cm2 (11.49 ± 2.16 h and 1 × 102 cells/cm2 (10.55 h ± 0.50, respectively. Chondrocytes differentiated from DPSC-ED produced  2 times more proteoglycan and at a faster rate than DPSC-OG. FTIR revealed that DPSC-ED differentiated into osteoblast also secreted matrix, which more resembled a calvaria. Discussion Isolation approaches might have influenced the cell populations obtained. This, in turn, resulted in cells with different proliferation and differentiation capability. While both DPSC-OG and DPSC-ED expressed mesenchymal stem cell markers, the percentage of cells carrying each marker might have differed between the two methods. Regardless, enzymatic digestion clearly yielded cells

  10. Improving diagnosis of appendicitis. Early autologous leukocyte scanning.

    Science.gov (United States)

    DeLaney, A R; Raviola, C A; Weber, P N; McDonald, P T; Navarro, D A; Jasko, I

    1989-10-01

    A prospective nonrandomized study investigating the accuracy and utility of autologous leukocyte scanning in the diagnosis of apendicitis was performed. One hundred patients in whom the clinical diagnosis of appendicitis was uncertain underwent indium 111 oxyquinoline labelling of autologous leukocytes and underwent scanning 2 hours following reinjection. Of 32 patients with proved appendicitis, three scans revealed normal results (false-negative rate, 0.09). Of 68 patients without appendicitis, three scans had positive results (false-positive rate, 0.03; sensitivity, 0.91; specificity, 0.97; predictive value of positive scan, 0.94; predictive value of negative scan, 0.96; and overall accuracy, 0.95). Scan results altered clinical decisions in 19 patients. In 13 cases, the scan produced images consistent with diagnoses other than appendicitis, expediting appropriate management. Early-imaging111 In oxyquinoline autologous leukocyte scanning is a practical and highly accurate adjunct for diagnosing appendicitis.

  11. [Treatment of relapsed Hodgkin lymphoma after autologous stem cell transplantation].

    Science.gov (United States)

    Illés, Árpád; Simon, Zsófia; Udvardy, Miklós; Magyari, Ferenc; Jóna, Ádám; Miltényi, Zsófia

    2017-08-01

    Approximately 10-30% of Hodgkin lymphoma patients relapses or experience refractory disease after first line treatment. Nowadays, autologous stem cell transplantation can successfully salvage half of these patients, median overall survival is only 2-2.5 years. Several prognostic factors determine success of autologous stem cell transplantation. Result of transplantation can be improved considering these factors and using consolidation treatment, if necessary. Patients who relapse after autologous transplantation had worse prognosis, treatment of this patient population is unmet clinical need. Several new treatment options became available in the recent years (brentuximab vedotin and immuncheckpoint inhibitors). These new treatment options offer more chance for cure in relapsed/refractory Hodgkin patients. Outcome of allogenic stem cell transplantation can be improved by using haploidentical donors. New therapeutic options will be discussed in this review. Orv Hetil. 2017; 158(34): 1338-1345.

  12. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  13. Transdifferentiation of autologous bone marrow cells on a collagen-poly(ε-caprolactone) scaffold for tissue engineering in complete lack of native urothelium.