WorldWideScience

Sample records for autologous cultured chondrocytes

  1. The first experience of autologous chondrocytes transplantation after lumbar microdiscectomy

    OpenAIRE

    Pedachenko, Eugene; Khyzhnyak, Mykhaylo; Gorbatyuk, Kostyantyn; Pedachenko, Yuriy; Krasilenko, Elena; Shabliy, Volodymyr

    2014-01-01

    The purpose. To develop and provide into clinical practice the hi-tech method of autologous chondrocytes transplantation for treatment of patients with intervertebral discs herniation after lumbar microdiscectomy.Material and methods. The chondrocytes were isolated from tissues of intervertebral disc hernia, cultivated and preserved, and administrated as percutaneous puncture in the operated intervertebral disc (3 months after microdiscectomy).We plan to study the influence of transplanted au...

  2. The use of fibrin matrix-mixed gel-type autologous chondrocyte implantation in the treatment for osteochondral lesions of the talus

    OpenAIRE

    Lee, Kyung Tai; Kim, Jin Su; Young, Ki Won; Lee, Young Koo; Park, Young Uk; Kim, Yong Hoon; Cho, Hun ki

    2012-01-01

    Purpose This study assessed the clinical results and second-look arthroscopy after fibrin matrix-mixed gel-type autologous chondrocyte implantation to treat osteochondral lesions of the talus. Methods Chondrocytes were harvested from the cuboid surface of the calcaneus in 38 patients and cultured, and gel-type autologous chondrocyte implantation was performed with or without medial malleolar osteotomy. Preoperative American orthopedic foot and ankle society ankle-hind foot scores, visual anal...

  3. Effect of freezing on rabbit cultured chondrocytes

    Directory of Open Access Journals (Sweden)

    R.R Filgueiras

    2011-02-01

    Full Text Available This work evaluated the effect of freezing on chondrocytes maintained in culture, aiming the establishment of a cell bank for future application as heterologous implant. Chondrocytes extracted from joint cartilage of nine healthy New Zealand White rabbits were cultivated and frozen with the cryoprotector 5% dimethylsulfoxide for six months. Phenotypic and scanning electron microscopy analyses were carried out to identify morphological and functional differences between fresh and thawed cells. After enzymatic digestion, a total of 4.8x10(5cells per rabbit were obtained. Fresh chondrocytes showed a high mitotic rate and abundant matrix was present up to 60 days of culture. Loss of phenotypic stability was notable in the thawed chondrocytes, with a low labeling of proteoglycans and weak immunostaining of type II collagen. The present study showed important loss of chondrocyte viability under the freezing conditions. For future in vivo studies of heterologous implant, these results suggests that a high number of cells should be implanted in the host site in order to achieve an adequate number of viable cells. Furthermore, the chondrocytes should be implanted after two weeks of culture, when the highest viability rate is found

  4. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  5. Effective implantation of autologous chondrocytes in a patient suffering from a painful and invalidating rizoarthrosis: a case report.

    Science.gov (United States)

    Carelli, Francesco; Sgherzi, Stefano; Sillani, Alessandro; Magris, Cecilia

    2009-01-01

    A 45-year-old patient, caucasian, affected by severe, painful and invalidating rizoarthrosis has been treated by implanting autologous chondrocytes, normally used for degenerative joint diseases of the knee and ankle. PMID:19918494

  6. Effective implantation of autologous chondrocytes in a patient suffering from a painful and invalidating rizoarthrosis: a case report

    OpenAIRE

    Carelli, Francesco; Sgherzi, Stefano; Sillani, Alessandro; Magris, Cecilia

    2009-01-01

    A 45-year-old patient, caucasian, affected by severe, painful and invalidating rizoarthrosis has been treated by implanting autologous chondrocytes, normally used for degenerative joint diseases of the knee and ankle.

  7. Matrix-induced autologous chondrocyte implantation addressing focal chondral defect in adolescent knee

    Institute of Scientific and Technical Information of China (English)

    DAI Xue-song; CAI You-zhi

    2012-01-01

    Background Matrix-induced autologous chondrocyte implantation(MACI)is the third generation tissue-engineering technique for the treatment of full-thickness articular cartilage defects.The aim of this study was to describe this new technique and the postoperative findings in adolescent knee with focal chondral defect.Methods The MACI consists of diagnostic arthroscopy and cartilage harvest,chondrocyte culture and seeding in tissue-engineering collagenous membrane,and implantation of the scaffold.Clinical outcome at minimum 1-year follow-up was assessed in seven patients(mean age(16.6±1.5)years;14-19 years)with full-thickness cartilage defects,with International Knee Documentation Committee(IKDC)score,the International Cartilage Repair Society(ICRS)score and the Knee Injury and Osteoarthritis Outcome Score(KOOS).Besides,MR imaging was performed with T1 and T2-weighted imaging and three-dimensional spoiled gradient-recalled(3D-SPGR)MR imaging.Results Clinical evaluation showed significant improvement and MRI analysis showed that the structure was homogeneous and the implant surface was regular and intact in six patients,but irregular in one.Of all the seven patients,the cartilage defect site was nearly totally covered by the implanted scaffold.Conclusions These results indicated that MACl technique is an option for cartilage defect in adolescent knee joint,especially large defect of over 2 cm2.Long-term assessment is necessary to determine the true value of this technique.

  8. Cartilage-derived extracellular matrix extract promotes chondrocytic phenotype in three-dimensional tissue culture.

    Science.gov (United States)

    Youngstrom, Daniel W; Cakstina, Inese; Jakobsons, Eriks

    2016-05-01

    Cell transplantation is a promising regenerative therapy for cartilage degeneration. However, obtaining sufficient numbers of cells for this purpose is a challenge, due a lack of autologous donor tissue and the difficulty of culturing chondrocytes in vitro. Tissue engineering strategies that induce or maintain chondrocytic phenotype may solve these problems by (1) broadening the range of available donor tissue, and (2) facilitating the expansion of these cells while controlling phenotypic drift. In this study, bone marrow-derived mesenchymal stem cells (MSCs) and cartilage-derived cells (CDCs) were cultured on composite hydrogels containing agarose and homogenized cartilage extracellular matrix (ECM). MSCs cultured on agarose-ECM scaffolds did not show significant signs of chondrogenic differentiation in the absence of additional cues. However, CDCs cultured on agarose-ECM scaffolds proliferated more rapidly than their ECM-free counterparts and MSCs, while retaining chondrocytic morphology. These results were corroborated via expression of cartilage marker genes: in autologous constructs, SOX 9 expression was upregulated by 12.6 ± 5.3-fold, and COL II was upregulated by 2.0 ± 0.3-fold. Agarose-ECM composite hydrogels are therefore useful for expanding partially differentiated CDCs for applications in regenerative medicine. PMID:25707441

  9. Autologous chondrocyte implantation (ACI for the treatment of large and complex cartilage lesions of the knee

    Directory of Open Access Journals (Sweden)

    Ossendorf Christian

    2011-05-01

    Full Text Available Abstract Background Complex cartilage lesions of the knee including large cartilage defects, kissing lesions, and osteoarthritis (OA represent a common problem in orthopaedic surgery and a challenging task for the orthopaedic surgeon. As there is only limited data, we performed a prospective clinical study to investigate the benefit of autologous chondrocyte implantation (ACI for this demanding patient population. Methods Fifty-one patients displaying at least one of the criteria were included in the present retrospective study: (1. defect size larger than 10 cm2; (2. multiple lesions; (3. kissing lesions, cartilage lesions Outerbridge grade III-IV, and/or (4. mild/moderate osteoarthritis (OA. For outcome measurements, the International Cartilage Society's International Knee Documentation Committee's (IKDC questionnaire, as well as the Cincinnati, Tegner, Lysholm and Noyes scores were used. Radiographic evaluation for OA was done using the Kellgren score. Results and Discussion Patient's age was 36 years (13-61, defects size 7.25 (3-17.5 cm2, previous surgical procedures 1.94 (0-8, and follow-up 30 (12-63 months. Instruments for outcome measurement indicated significant improvement in activity, working ability, and sports. Mean ICRS grade improved from 3.8 preoperatively to grade 3 postoperatively, Tegner grade 1.4 enhanced to grade 3.39. The Cincinnati score enhanced from 25.65 to 66.33, the Lysholm score from 33.26 to 64.68, the Larson score from 43.59 to 79.31, and Noyes score from 12.5 to 46.67, representing an improvement from Cincinnati grade 3.65 to grade 2.1. Lysholm grade 4 improved to grade 3.33, and Larson grade 3.96 to 2.78 (Table 1, (p Table 1 Mean scores and grades at surgery (Tx and at follow-up Tx Follow-up Score Grade Score Grade ICRS 4 3 Tegner 1 3 Noyes 13 47 Cincinnati 26 4 66 2 Lysholm 33 4 65 3 Larson 44 4 79 3 Conclusion Our results suggest that ACI provides mid-term results in patients with complex cartilage lesions of

  10. Access to Chondrocyte Culture, with Alginate, In Iran

    Directory of Open Access Journals (Sweden)

    Ebrahim Esfandiary

    2008-01-01

    Full Text Available In this study, chondrocyte culture was established for the first time in Iran,and calcium alginate was used for longer culture of chondrocyte in vitro. Thestudy was programmed in order to be used for future human chondrocytetransplantation. The cartilage specimen obtained from 50 patients whounderwent total knee and hip operations in Isfahan University of MedicalSciences. Cartilage specimens were used for monolayer as well as suspensionculture in alginate beads. Approximately 12±1 millions cells were harvestedfrom the 3rd passage. The cells were round with large euchromatic nucleusand several nucleoli and small vacuoles. The cells derived from passages 1to 4, which were grown up then, in alginate beads, showed higher stainingwith alcian blue. The harvested cells in some patients were immediately andsuccessfully used for autologus transplantation. This later work will be reportedseparately.

  11. Chondrocytes expressing intracellular collagen type II enter the cell cycle and co-express collagen type I in monolayer culture.

    Science.gov (United States)

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2014-11-01

    For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to 95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue. PMID:25043137

  12. A practical way to prepare primer human chondrocyte culture.

    Science.gov (United States)

    Isyar, Mehmet; Yilmaz, Ibrahim; Yasar Sirin, Duygu; Yalcin, Sercan; Guler, Olcay; Mahirogullari, Mahir

    2016-09-01

    Biological cartilage repair is one of the most important targets for orthopedic surgeons currently. For this purpose, it is mandatory to know how to prepare a chondrocyte culture. In this study, our purpose was to introduce a method enabling orthopedic surgeons to practice their knowledge and skills on molecular experimental setup at cellular level, based on our experiences from previous pilot studies. Thus, we believe it will encourage orthopedic surgeons. PMID:27408489

  13. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, D.B.F.; Vonk, L.A.; Rijen, van M.H.P.; Akrum, V.; Langeveld, D.; Boxtel, van A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently, ho

  14. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Kon, E. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Di Martino, A., E-mail: a.dimartino@biomec.ior.it [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Filardo, G. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Tetta, C.; Busacca, M. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Iacono, F. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Delcogliano, M. [Orthopaedic Departement San Carlo di Nancy Hospital, Rome (Italy); Albisinni, U. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Marcacci, M. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy)

    2011-09-15

    Objective: To evaluate the clinical outcome of hyaluronan-based arthroscopic autologous chondrocyte transplantation at a minimum of 5 years of follow-up and to correlate it with the MRI evaluation parameters. Methods: Fifty consecutive patients were included in the study and evaluated clinically using the Cartilage Standard Evaluation Form as proposed by ICRS and the Tegner score. Forty lesions underwent MRI evaluation at a minimum 5-year follow-up. For the description and evaluation of the graft, we employed the MOCART-scoring system. Results: A statistically significant improvement in all clinical scores was observed at 2 and over 5 years. The total MOCART score and the signal intensity (3D-GE-FS) of the repair tissue were statistically correlated to the IKDC subjective evaluation. Larger size of the treated cartilage lesions had a negative influence on the degree of defect repair and filling, the integration to the border zone and the subchondral lamina integrity, whereas more intensive sport activity had a positive influence on the signal intensity of the repair tissue, the repair tissue surface, and the clinical outcome. Conclusion: Our findings confirm the durability of the clinical results obtained with Hyalograft C and the usefulness of MRI as a non-invasive method for the evaluation of the repaired tissue and the outcome after second-generation autologous transplantation over time.

  15. Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model.

    Science.gov (United States)

    Kazemnejad, Somaieh; Khanmohammadi, Manijeh; Mobini, Sahba; Taghizadeh-Jahed, Masoud; Khanjani, Sayeh; Arasteh, Shaghayegh; Golshahi, Hannaneh; Torkaman, Giti; Ravanbod, Roya; Heidari-Vala, Hamed; Moshiri, Ali; Tahmasebi, Mohammad-Naghi; Akhondi, Mohammad-Mehdi

    2016-06-01

    The reconstruction capability of osteochondral (OCD) defects using silk-based scaffolds has been demonstrated in a few studies. However, improvement in the mechanical properties of natural scaffolds is still challengeable. Here, we investigate the in vivo repair capacity of OCD defects using a novel Bombyx mori silk-based composite scaffold with great mechanical properties and porosity during 36 weeks. After evaluation of the in vivo biocompatibility and degradation rate of these scaffolds, we examined the effectiveness of these fabricated scaffolds accompanied with/without autologous chondrocytes in the repair of OCD lesions of rabbit knees after 12 and 36 weeks. Moreover, the efficiency of these scaffolds was compared with fibrin glue (FG) as a natural carrier of chondrocytes using parallel clinical, histopathological and mechanical examinations. The data on subcutaneous implantation in mice showed that the designed scaffolds have a suitable in vivo degradation rate and regenerative capacity. The repair ability of chondrocyte-seeded scaffolds was typically higher than the scaffolds alone. After 36 weeks of implantation, most parts of the defects reconstructed by chondrocytes-seeded silk scaffolds (SFC) were hyaline-like cartilage. However, spontaneous healing and filling with a scaffold alone did not eventuate in typical repair. We could not find significant differences between quantitative histopathological and mechanical data of SFC and FGC. The fabricated constructs consisting of regenerated silk fiber scaffolds and chondrocytes are safe and suitable for in vivo repair of OCD defects and promising for future clinical trial studies. PMID:26822846

  16. Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts.

    Science.gov (United States)

    Kokubo, Mami; Sato, Masato; Yamato, Masayuki; Mitani, Genya; Kutsuna, Toshiharu; Ebihara, Goro; Okano, Teruo; Mochida, Joji

    2016-06-01

    Conventional culture methods using temperature-responsive culture dishes require 4-5 weeks to prepare layered chondrocyte sheets that can be used in articular cartilage repair and regeneration. This study investigated whether the use of synovial tissue obtained from the same joint as the chondrocyte nutritive supply source could more quickly facilitate the preparation of chondrocyte sheets. After culturing derived synoviocytes and chondrocytes together (i.e. combined culture or co-culture) on temperature-responsive inserts, chondrocyte growth was assessed and a molecular analysis of the chondrocyte sheets was performed. Transplantable tissue could be obtained more quickly using this method (average 10.5 days). Real-time polymerase chain reaction and immunostaining of the three-layer chondrocyte sheets confirmed the significant expression of genes critical to cartilage maintenance, including type II collagen (COL2), aggrecan-1 and tissue metallopeptidase inhibitor 1. However, the expression of COL1, matrix metalloproteinase 3 (MMP3), MMP13 and A-disintegrin and metalloproteinase with thrombospondin motifs 5 was suppressed. The adhesive factor fibronectin-1 (FN1) was observed in all sheet layers, whereas in sheets generated using conventional preparation methods positive FN1 immunostaining was observed only on the surface of the sheets. The results indicate that synoviocyte co-cultures provide an optimal environment for the preparation of chondrocyte sheets for tissue transplantation and are particularly beneficial for shortening the required culture period. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23868865

  17. Three-Dimensional Matrix-Induced Autologous Chondrocytes Implantation for Osteochondral Lesions of the Talus: Midterm Results

    Directory of Open Access Journals (Sweden)

    B. Magnan

    2012-01-01

    Full Text Available Introduction. We evaluate the midterm results of thirty patients who underwent autologous chondrocytes implantation for talus osteochondral lesions treatment. Materials and Methods. From 2002 to 2009, 30 ankles with a mean lesion size of 2,36 cm2 were treated. We evaluated patients using American Orthopaedic Foot and Ankle Surgery and Coughlin score, Van Dijk scale, recovering time, and Musculoskeletal Outcomes Data Evaluation and Management System. Results. The mean AOFAS score varied from 36.9 to 83.9 at follow-up. Average of Van Dijk scale was 141.1. Coughlin score was excellent/good in 24 patients. MOCART score varied from 6.3 to 3.8. Discussion. This matrix is easy to handle conformable to the lesion and apply by arthroscopy. No correlation between MRI imaging and clinical results is found. Conclusions. Our results, compared with those reported in literature with other surgical procedures, show no superiority evidence for our technique compared to the others regarding the size of the lesions.

  18. Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes

    International Nuclear Information System (INIS)

    This study tests the hypothesis that articular chondrocytes shift from a characteristically glycolytic to an oxidative energy metabolism during population expansion in monolayer. Bovine articular chondrocytes were cultured in monolayer under standard incubator conditions for up to 14 days. Cellular proliferation, oxygen consumption, lactate production, protein content, ROS generation and mitochondrial morphology were examined. Lactate release increased ∼5-fold within 1 week, but this was limited to ∼2-fold increase when normalized to cellular protein content. By contrast, per cell oxidative phosphorylation increased 98-fold in 1 week. The increase in oxidative phosphorylation was evident within 24 h, preceding cell proliferation and was associated with augmented reactive oxygen species generation. The autologous chondrocyte implantation procedure requires 14-21 days for population expansion. The alterations in metabolic phenotype we report within 7 days in vitro are thus pertinent to autologous chondrocyte implantation with significant implications for the chondrocyte functionality

  19. MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomoki [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto University, Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Kumamoto (Japan); Tins, Bernhard; McCall, Iain W.; Ashton, Karen [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Department of Diagnostic Imaging, Oswestry, Shropshire (United Kingdom); Richardson, James B. [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); RJAH Orthopaedic Hospital, Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Takagi, Katsumasa [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto Aging Research Institute, Kumamoto (Japan)

    2006-01-01

    To relate the magnetic resonance imaging (MRI) appearance of autologous chondrocyte implantation (ACI) in the knee in the 1st postoperative year with other knee features on MRI and with clinical outcome. Forty-nine examinations were performed in 49 patients at 1 year after ACI in the knee. Forty-one preoperative magnetic resonance (MR) examinations were also available. The grafts were assessed for smoothness, thickness in comparison with that of adjacent cartilage, signal intensity, integration to underlying bone and adjacent cartilage, and congruity of subchondral bone. Presence of overgrowth and bone marrow appearance beneath the graft were also assessed. Presence of osteophyte formation, further cartilage defects, appearance of the cruciate ligaments and the menisci were also recorded. An overall graft score was constructed, using the graft appearances. This was correlated with the knee features and the Lysholm score, a clinical self-assessment score. The data were analysed by a Kruskal-Wallis H test followed by a Mann-Whitney U test with Bonferroni correction as post-hoc test. Of 49 grafts, 32 (65%) demonstrated complete defect filling 1 year postoperatively. General overgrowth was seen in eight grafts (16%), and partial overgrowth in 13 grafts (26%). Bone marrow change underneath the graft was seen; oedema was seen in 23 grafts (47%), cysts in six grafts (12%) and sclerosis in two grafts (4%). Mean graft score was 8.7 (of maximal 12) (95% CI 8.0-9.5). Knees without osteophyte formation or additional other cartilage defects (other than the graft site) had a significantly higher graft score than knees with multiple osteophytes (P=0.0057) or multiple further cartilage defects (P=0.014). At 1 year follow-up improvement in the clinical scores was not significantly different for any subgroup. (orig.)

  20. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Objective: To evaluate the use of diffusion-weighted imaging (DWI) for the assessment of cartilage maturation in patients after matrix-associated autologous chondrocyte transplantation (MACT). Materials and methods: Fifteen patients after MACT were examined by 3.0-T magnetic-resonance-tomography; the examination was up to 13 month after surgery in group 1, and later than 13 month after surgery in group 2. Both groups had a follow-up one-year later. DWI was acquired using a steady-state gradient-echo sequence. Mean values of the diffusion quotients of regions of interest within cartilage repair tissue and of reference regions were assessed. Each region-of-interest was subdivided into a deep, and a superficial area. Results: Mean diffusion quotients of cartilage repair tissues were 1.44 (baseline), and 1.44 (follow-up). Mean diffusion quotients of reference tissues were 1.29 (baseline) and 1.28 (follow-up). At the follow-up diffusion quotients of cartilage repair tissue were significantly higher than those of reference cartilage. In group 1 the diffusion quotients were significantly lower at the follow-up (1.45 versus 1.65); in group 2 no statistically significant differences between follow-up (1.39) and baseline (1.41) were found. Reference cartilages and cartilage repair tissues of group 2 showed a decrease of diffusion quotients from the deep to the superficial area being stable at the follow-up. In group 1 initially a significant increase (1.49 versus 1.78) of the diffusion quotients from deep to superficial area of the cartilage repair tissue was found changing into a decrease (1.65 versus 1.52) at the follow-up. Conclusions: DWI detected changes of diffusion within cartilage repair tissue that may reflect cartilage maturation. Changes in diffusity occurred up to two years after surgery and were stable later. Zonal variations within cartilage could be measured.

  1. MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome

    International Nuclear Information System (INIS)

    To relate the magnetic resonance imaging (MRI) appearance of autologous chondrocyte implantation (ACI) in the knee in the 1st postoperative year with other knee features on MRI and with clinical outcome. Forty-nine examinations were performed in 49 patients at 1 year after ACI in the knee. Forty-one preoperative magnetic resonance (MR) examinations were also available. The grafts were assessed for smoothness, thickness in comparison with that of adjacent cartilage, signal intensity, integration to underlying bone and adjacent cartilage, and congruity of subchondral bone. Presence of overgrowth and bone marrow appearance beneath the graft were also assessed. Presence of osteophyte formation, further cartilage defects, appearance of the cruciate ligaments and the menisci were also recorded. An overall graft score was constructed, using the graft appearances. This was correlated with the knee features and the Lysholm score, a clinical self-assessment score. The data were analysed by a Kruskal-Wallis H test followed by a Mann-Whitney U test with Bonferroni correction as post-hoc test. Of 49 grafts, 32 (65%) demonstrated complete defect filling 1 year postoperatively. General overgrowth was seen in eight grafts (16%), and partial overgrowth in 13 grafts (26%). Bone marrow change underneath the graft was seen; oedema was seen in 23 grafts (47%), cysts in six grafts (12%) and sclerosis in two grafts (4%). Mean graft score was 8.7 (of maximal 12) (95% CI 8.0-9.5). Knees without osteophyte formation or additional other cartilage defects (other than the graft site) had a significantly higher graft score than knees with multiple osteophytes (P=0.0057) or multiple further cartilage defects (P=0.014). At 1 year follow-up improvement in the clinical scores was not significantly different for any subgroup. (orig.)

  2. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  3. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  4. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. (Osaka Univ. (Japan))

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  5. Studies on a Novel Bioreactor Design for Chondrocyte Culture

    OpenAIRE

    Patil, Harshad; Chandel, Ishan Saurav; Rastogi, Amit K.; Srivastava, Pradeep

    2013-01-01

    A bioreactor system plays an important role in tissue engineering and enables reproduction and controlled changes in the environmental factor. The bioreactor provides technical means to perform controlled processes in safe and reduced reproducible generation of time. Cartilage cells were grown in vitro by mimicking the in vivo condition. The basic unit of cartilage, that is, chondrocyte, requires sufficient shear, strain, and hydrodynamic pressure for regular growth as it is nonvascular tissu...

  6. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    Science.gov (United States)

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  7. Changes in Morphology, Gene Expression and Protein Content in Chondrocytes Cultured on a Random Positioning Machine

    Science.gov (United States)

    Aleshcheva, Ganna; Sahana, Jayashree; Ma, Xiao; Hauslage, Jens; Hemmersbach, Ruth; Egli, Marcel; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    Tissue engineering of chondrocytes on a Random Positioning Machine (RPM) is a new strategy for cartilage regeneration. Using a three-dimensional RPM, a device designed to simulate microgravity on Earth, we investigated the early effects of RPM exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of RPM exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis (TGF-β1, osteopontin); and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours of RPM exposure disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours on the RPM, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced during RPM culture for 24 h. Taking these results together, we suggest that chondrocytes exposed to the RPM seem to change their extracellular matrix production behaviour while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates. PMID:24244418

  8. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  9. Serum-free media for articular chondrocytes in vitro expansion

    Institute of Scientific and Technical Information of China (English)

    SHAO Xin-xin; Neil A.Duncan; LIN Lin; FU Xin; ZHANG Ji-ying; YU Chang-long

    2013-01-01

    Background In vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair.Classical culture conditions usually use animal serum as a medium supplement,which raises a number of undesirable questions.In the present study,two kinds of defined,serum-free media were developed to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering.Methods Bovine chondrocytes were expanded in serum-free media supplemented with fibroblast growth factor-2 and platelet-derived growth factor or fibroblast growth factor-2 and insulin-like growth factor.Expansion culture in a conventional 10% fetal bovine serum (FBS) medium served as control.Fibronectin coating was used to help cell adhesion in serum-free medium.Next,in vitro three-dimensional pellet culture was used to evaluate the chondrocyte capacity.Cell pellets were expanded in different media to re-express the differentiated phenotype (re-differentiation) and to form cartilaginous tissue.The pellets were assessed by glycosaminoglycans contents,collagen II,collagen I and collagen X immunohistological staining.Results Chondrocytes cultured in serum-free media showed no proliferation difference than cells grown with 10% FBS medium.In addition,chondrocytes expanded in both serum-free media expressed more differentiated phenotypes at the end of monolayer culture,as indicated by higher gene expression ratios of collagen type Ⅱ to collagen type Ⅰ.Pellets derived from chondrocytes cultured in both serum-free media displayed comparable chondrogenic capacities to pellets from cells expanded in 10% FBS medium.Conclusion These findings provide alternative culture approaches for chondrocytes in vitro expansion,which may benefit the clinical use of autologous chondrocytes implantation.

  10. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2016-07-01

    Full Text Available Gelatin hydrogels can mimic the microenvironments of natural tissues and encapsulate cells homogeneously, which makes them attractive for cartilage tissue engineering. Both the mechanical and biochemical properties of hydrogels can affect the phenotype of chondrocytes. However, the influence of each property on chondrocyte phenotype is unclear due to the difficulty in separating the roles of these properties. In this study, we aimed to study the influence of hydrogel stiffness on chondrocyte phenotype while excluding the role of biochemical factors, such as adhesion site density in the hydrogels. By altering the degree of methacryloyl functionalization, gelatin hydrogels with different stiffnesses of 3.8, 17.1, and 29.9 kPa Young’s modulus were prepared from the same concentration of gelatin methacryloyl (GelMA macromers. Bovine articular chondrocytes were encapsulated in the hydrogels and cultured for 14 days. The influence of hydrogel stiffness on the cell behaviors including cell viability, cell morphology, and maintenance of chondrogenic phenotype was evaluated. GelMA hydrogels with high stiffness (29.9 kPa showed the best results on maintaining chondrogenic phenotype. These results will be useful for the design and preparation of scaffolds for cartilage tissue engineering.

  11. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression

    Directory of Open Access Journals (Sweden)

    Mallein-Gerin Frédéric

    2008-09-01

    Full Text Available Abstract Background Articular cartilage is exposed to high mechanical loads under normal physiological conditions and articular chondrocytes regulate the composition of cartilaginous matrix, in response to mechanical signals. However, the intracellular pathways involved in mechanotransduction are still being defined. Using the well-characterized chondrocyte/agarose model system and dynamic compression, we report protocols for preparing and characterizing constructs of murine chondrocytes and agarose, and analyzing the effect of compression on steady-state level of mRNA by RT-PCR, gene transcription by gene reporter assay, and phosphorylation state of signalling molecules by Western-blotting. The mouse model is of particular interest because of the availability of a large choice of bio-molecular tools suitable to study it, as well as genetically modified mice. Results Chondrocytes cultured in agarose for one week were surrounded by a newly synthesized pericellular matrix, as revealed by immunohistochemistry prior to compression experiments. This observation indicates that this model system is suitable to study the role of matrix molecules and trans-membrane receptors in cellular responsiveness to mechanical stress. The chondrocyte/agarose constructs were then submitted to dynamic compression with FX-4000C™ Flexercell® Compression Plus™ System (Flexcell. After clearing proteins off agarose, Western-blotting analysis showed transient activation of Mitogen-activated protein kinases (MAPK in response to dynamic compression. After assessment by capillary electrophoresis of the quality of RNA extracted from agarose, steady-state levels of mRNA expression was measured by real time PCR. We observed an up-regulation of cFos and cJun mRNA levels as a response to compression, in accordance with the mechanosensitive character observed for these two genes in other studies using cartilage explants submitted to compression. To explore further the

  12. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  13. Assessment of Growth Factor Treatment on Fibrochondrocyte and Chondrocyte Co-Cultures for TMJ Fibrocartilage Engineering

    OpenAIRE

    Kalpakci, Kerem N.; Kim, Eric J.; Athanasiou, Kyriacos A.

    2010-01-01

    Treatments for patients suffering from severe temporomandibular joint (TMJ) dysfunction are limited, motivating the development of strategies for tissue regeneration. In this study, co-cultures of fibrochondrocytes (FC) and articular chondrocytes (AC) were seeded in agarose wells, and supplemented with growth factors, to engineer tissue with biomechanical properties and ECM composition similar to native TMJ fibrocartilage. In the first phase, growth factors were applied alone and in combinati...

  14. Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials.

    Science.gov (United States)

    Drobnic, M; Radosavljevic, D; Cör, A; Brittberg, M; Strazar, K

    2010-04-01

    We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The ex vivo simulation of all five techniques was carried out on six juvenile equine stifle joints. The OPEN, SH and SHCU techniques were tested on knees harvested from six adult human cadavers. The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface. PMID:20357342

  15. Effect of Carnosine in Experimental Arthritis and on Primary Culture Chondrocytes.

    Science.gov (United States)

    Ponist, S; Drafi, F; Kuncirova, V; Mihalova, D; Rackova, L; Danisovic, L; Ondrejickova, O; Tumova, I; Trunova, O; Fedorova, T; Bauerova, K

    2016-01-01

    Carnosine's (CARN) anti-inflammatory potential in autoimmune diseases has been but scarcely investigated as yet. The aim of this study was to evaluate the therapeutic potential of CARN in rat adjuvant arthritis, in the model of carrageenan induced hind paw edema (CARA), and also in primary culture of chondrocytes under H2O2 injury. The experiments were done on healthy animals, arthritic animals, and arthritic animals with oral administration of CARN in a daily dose of 150 mg/kg b.w. during 28 days as well as animals with CARA treated by a single administration of CARN in the same dose. CARN beneficially affected hind paw volume and changes in body weight on day 14 and reduced hind paw swelling in CARA. Markers of oxidative stress in plasma and brain (malondialdehyde, 4-hydroxynonenal, protein carbonyls, and lag time of lipid peroxidation) and also activity of gamma-glutamyltransferase were significantly corrected by CARN. CARN also reduced IL-1alpha in plasma. Suppression of intracellular oxidant levels was also observed in chondrocytes pretreated with CARN. Our results obtained on two animal models showed that CARN has systemic anti-inflammatory activity and protected rat brain and chondrocytes from oxidative stress. This finding suggests that CARN might be beneficial for treatment of arthritic diseases. PMID:26885252

  16. Effect of Carnosine in Experimental Arthritis and on Primary Culture Chondrocytes

    Directory of Open Access Journals (Sweden)

    S. Ponist

    2016-01-01

    Full Text Available Carnosine’s (CARN anti-inflammatory potential in autoimmune diseases has been but scarcely investigated as yet. The aim of this study was to evaluate the therapeutic potential of CARN in rat adjuvant arthritis, in the model of carrageenan induced hind paw edema (CARA, and also in primary culture of chondrocytes under H2O2 injury. The experiments were done on healthy animals, arthritic animals, and arthritic animals with oral administration of CARN in a daily dose of 150 mg/kg b.w. during 28 days as well as animals with CARA treated by a single administration of CARN in the same dose. CARN beneficially affected hind paw volume and changes in body weight on day 14 and reduced hind paw swelling in CARA. Markers of oxidative stress in plasma and brain (malondialdehyde, 4-hydroxynonenal, protein carbonyls, and lag time of lipid peroxidation and also activity of gamma-glutamyltransferase were significantly corrected by CARN. CARN also reduced IL-1alpha in plasma. Suppression of intracellular oxidant levels was also observed in chondrocytes pretreated with CARN. Our results obtained on two animal models showed that CARN has systemic anti-inflammatory activity and protected rat brain and chondrocytes from oxidative stress. This finding suggests that CARN might be beneficial for treatment of arthritic diseases.

  17. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Domayer, S.E. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: stephan.domayer@meduniwien.ac.at; Welsch, G.H. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Nehrer, S. [Centre of Regenerative Medicine, Danube University of Krems, Dr.-Karl-Dorrek-Strasse, 30 A-3500 Krems (Austria)], E-mail: stefan.nehrer@donau-uni.ac.at; Chiari, C.; Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); Szomolanyi, P. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Mamisch, T.C. [Department of Orthopedics, Inselspital, University of Bern, 3010 Bern (Switzerland); Yayon, A. [ProChon Biotech Ltd., Weizmann Science Park, Nes Ziona (Israel); Trattnig, S. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: siegfried.trattnig@meduniwien.ac.at

    2010-03-15

    Objective: To assess repair tissue (RT) after the implantation of BioCart{sup TM}II, an autologous chondrocyte implantation (ACI) technique with a fibrin-hyaluronan polymer as scaffold. T2 mapping and delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) were used to gain first data on the biochemical properties of BioCart{sup TM}II RT in vivo. Methods: T2 mapping and dGEMRIC were performed at 3 T in five patients (six knee joints) who had undergone ACI 15-27 months before. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. For quantitative T1 mapping a dual flip angle 3D GRE sequence was used and T1 maps were calculated pre- and post-contrast using IDL software. Subsequent region of interest analysis was carried out in comparison with morphologic MRI. Results: A spatial variation of T2 values in both hyaline, normal cartilage (NC) and RT was found. Mean RT T2 values and mean NC T2 values did not differ significantly. Relative T2 values were calculated from global RT and NC T2 and showed a small range (0.84-1.07). The relative delta relaxation rates (r{delta}R1) obtained from the T1 maps had a wider range (0.77-4.91). Conclusion: T2 mapping and dGEMRIC provided complementary information on the biochemical properties of the repair tissue. BioCart{sup TM}II apparently can provide RT similar to hyaline articular cartilage and may become a less-invasive alternative to ACI with a periosteal flap.

  18. Optimization of transport media for human chondrocytes

    International Nuclear Information System (INIS)

    Full text: Autologous chondrocytes transplantation is a method used in treatment of cartilage defects in joints. Small fragments of patient healthy cartilage are removed and sent to a laboratory or tissue bank for cultivating chondrocytes. Obtained cells are reimplanted into areas of damaged cartilage. Since the transport of cartilage from a recovery site to a cell culture laboratory may be extended, it is very important to optimize the cartilage storage conditions in order to provide specimens with the best cell viability. Fresh human cartilage is stored in Ringer's solution or in normal saline at 4 degree C. Supplements such as hyaluronic acid and glucosamine have been shown to have chondroprotective effects. The aim of this experiment was to evaluate potential new storage media for improving chondrocytes viability. Cartilage fragments were harvested from fresh human femoral condyles. Cartilage samples from each condyle were separately stored at 4 degree C in: normal saline, Ringer solution, normal saline amended with hyaluronic acid and normal saline amended with glucosamine. The cartilage from each donor for each storage method was assayed for viability by MTT reduction assay on the day of recovery and after duration of one, two, three, six, twelve, and twenty-one days. Chondrocytes viability decreased with time in all media except for normal saline amended with glucosamine. The decline in chondrocytes viability was especially distinct for samples maintained in normal saline amended with hyaluronic acid when compared with standard media (normal saline and Ringer solution). In contrast, chondrocytes viability remained high for the whole duration of the experiment in samples maintained in normal saline amended with glucosamine. This finding suggests that the glucosamine supplementation of normal saline reduces the decline in chondrocytes viability and consequently extends the acceptable storage period of cartilage specimens. Further investigations are needed to

  19. Human Bone-Forming Chondrocytes Cultured in the Hydrodynamic Focusing Bioreactor Retain Matrix Proteins: Similarities to Spaceflight Results

    Science.gov (United States)

    Duke, P. J.; Hecht, J.; Montufar-Solis, D.

    2006-01-01

    Fracture healing, crucial to a successful Mars mission, involves formation of a cartilaginous fracture callus which differentiates, mineralizes, ossifies and remodels via the endochondral process. Studies of spaceflown and tailsuspended rats found that, without loading, fracture callus formation and cartilage differentiation within the callus were minimal. We found delayed differentiation of chondrocytes within the rat growth plate on Cosmos 1887, 2044, and Spacelab 3. In the current study, differentiation of human bone-forming chondrocytes cultured in the hydrodynamic focusing bioreactor (HFB) was assessed. Human costochondral chondrocytes in suspension were aggregated overnight, then cultured in the HFB for 25 days. Collagen Type II, aggrecan and unsulfated chondroitin were found extracellularly and chondroitin sulfates 4 and 6 within the cell. Lack of secretion was also found in pancreatic cells of spaceflown rats, and in our SL3 studies. The HFB can be used to study cartilage differentiation in simulated microgravity.

  20. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    International Nuclear Information System (INIS)

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive® Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 ± 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: ► Human-like collagen was first used to prepare cartilage tissue engineering scaffold. ► Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. ► We chose market product as a control.

  1. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Liping; Duan, Zhiguang [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Mi, Yu; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Chang, Le [School of Chemical Engineering, Northwest University, Xi' an, Shaanxi 710069 (China)

    2013-03-01

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive Registered-Sign Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 {+-} 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: Black-Right-Pointing-Pointer Human-like collagen was first used to prepare cartilage tissue engineering scaffold. Black-Right-Pointing-Pointer Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. Black-Right-Pointing-Pointer We chose market product as a control.

  2. Effect of nitrogen-rich cell culture surfaces on type X collagen expression by bovine growth plate chondrocytes

    Directory of Open Access Journals (Sweden)

    Wertheimer Michael R

    2011-01-01

    Full Text Available Abstract Background Recent evidence indicates that osteoarthritis (OA may be a systemic disease since mesenchymal stem cells (MSCs from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification. We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.% of N. Methods In the present study, we examined the expression of type X collagen in fetal bovine growth plate chondrocytes (containing hypertrophic chondrocytes cultured on PPE:N. We also studied the effect of PPE:N on the expression of matrix molecules such as type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13 (MMP-13 and molecules implicated in cell division (cyclin B2. Two other culture surfaces, "hydrophilic" polystyrene (PS, regular culture dishes and nitrogen-containing cation polystyrene (Primaria®, were also investigated for comparison. Results Results showed that type X collagen mRNA levels were suppressed when cultured for 4 days on PPE:N, suggesting that type X collagen is regulated similarly in hypertrophic chondrocytes and in human MSCs from OA patients. However, the levels of type X collagen mRNA almost returned to control value after 20 days in culture on these surfaces. Culture on the various surfaces had no significant effects on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels. Conclusion Hypertrophy is diminished by culturing growth plate chondrocytes on nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis. Furthermore, one major advantage of such "intelligent surfaces" over recombinant growth factors for tissue engineering and cartilage repair is potentially large cost-saving.

  3. Transplante autólogo de condrócitos: relato de três casos Autologous chondrocyte implantation: series of 3 cases

    Directory of Open Access Journals (Sweden)

    Riccardo Gomes Gobbi

    2010-01-01

    Full Text Available A cartilagem hialina recobre as superfícies articulares e tem um papel importante na redução da fricção e da carga mecânica das articulações sinoviais, como o joelho. Este tecido não é suprido de vasos, nervos ou circulação linfática, o que pode ser uma das razões pela qual a cartilagem articular tem uma péssima capacidade de cicatrização. As lesões condrais, quando atingem o osso subcondral (lesão osteocondral, não cicatrizam e podem progredir para artrose com o passar do tempo. Em pacientes jovens, o tratamento dos defeitos condrais do joelho ainda é um desafio, principalmente as lesões maiores de 4cm. Uma das opções de tratamento nesses pacientes é o transplante autólogo de condrócitos, que por não violar o osso subcondral e por reparar o defeito com tecido semelhante à cartilagem hialina, teria a vantagem teórica de ser mais biológico e mecanicamente superior, quando comparado a outras técnicas. Descreveremos nesse artigo a experiência do Instituto de Ortopedia e Traumatologia do Hospital das Clínicas da Universidade de São Paulo (IOT-HCFMUSP com o transplante autólogo de condrócitos (ACI, através do relato de três casos.Hyaline cartilage in the surface of synovial joints plays an important role in lowering stress and attrition in joints such as the knee. This tissue has no blood vessels, nerves, nor lymphatic drainage, which in part explains why articular cartilage has such poor capacity for healing. Chondral lesions reaching the subchondral bone (osteochondral lesions do not heal and may progress to osteoarthritis as time passes. In young patients, treatment of such defects is challenging, especially in lesions larger than 4 cm. One option in young adults is the autologous chondrocyte implantation, capable of filling the defect with tissue similar to hyaline cartilage without violating the subchondral bone. Theoretically, it has biological and mechanical advantages over other surgical options. In this

  4. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    International Nuclear Information System (INIS)

    The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (∝50 ms), T2* relaxation times (∝16 ms), and the diffusion constant for DWI (∝1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p≥0.05) compared to the control cartilage; however, a significantly higher diffusivity (∝1.5; p<0.05) was noted in the cartilage repair tissue. The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences. (orig.)

  5. Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds.

    Science.gov (United States)

    Jayawarna, V; Smith, A; Gough, J E; Ulijn, R V

    2007-06-01

    The design of self-assembled peptide-based structures for three-dimensional cell culture and tissue repair has been a key objective in biomaterials science for decades. In search of the simplest possible peptide system that can self-assemble, we discovered that combinations of di-peptides that are modified with aromatic stacking ligands could form nanometre-sized fibres when exposed to physiological conditions. For example, we demonstrated that a number of Fmoc (fluoren-9-ylmethyloxycarbonyl) modified di- and tri-peptides form highly ordered hydrogels via hydrogen-bonding and pi-pi interactions from the fluorenyl rings. These highly hydrated gels allowed for cell proliferation of chondrocytes in three dimensions [Jayawarna, Ali, Jowitt, Miller, Saiani, Gough and Ulijn (2006) Adv. Mater. 18, 611-614]. We demonstrated that fibrous architecture and physical properties of the resulting materials were dictated by the nature of the amino acid building blocks. Here, we report the self-assembly process of three di-phenylalanine analogues, Fmoc-Phe-Phe-OH, Nap (naphthalene)-Phe-Phe-OH and Cbz (benzyloxycarbonyl)-Phe-Phe-OH, to compare and contrast the self-assembly properties and cell culture conditions attributable to their protecting group difference. Fibre morphology analysis of the three structures using cryo-SEM (scanning electron microscopy) and TEM (transmission electron microscopy) suggested fibrous structures with dramatically varying fibril dimensions, depending on the aromatic ligand used. CD and FTIR (Fourier-transform IR) data confirmed beta-sheet arrangements in all three samples in the gel state. The ability of these three new hydrogels to support cell proliferation of chondrocytes was confirmed for all three materials. PMID:17511646

  6. THE EFFECT ON PROTEOGLYCAN METABOLISM OF DEOXYNIVALENOL AND SELENIUM IN THE CULTURED HUMAN FETAL CHONDROCYTES IN VITRO

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate the effect of deoxynivalenol (DON) and selenium (Se) on the morphology of chondrocytes and the metabolism of cartilage matrix, and the expression of aggrecanase-1, 2 mRNA in monolayer cultured chondrocytes in vitro. Methods To plant human fetal chondrocytes on the BMG, the expression of Aggrecanase-1, 2 mRNA were analyzed by RT-PCR, the immunohistochemistry of NITEGE epitope was quantitativly analyzed by the image collection and analysis system. Results With the increase of the concentration of DON, the damage of cultured chondrocytes was more and more severe; the expression of NITEGE epitope showed an increasing trend and the fluorescent bands of aggrecanase-1, 2 mRNA were more and more obvious. After adding Se, the damage was relieved, and there was a decreasing trend of NITEGE epitope expressed in matrix. Conclusion DON can enhance transcription of aggrecanase gene and increase the expression of NITEGE epitope which eventually lead to the metabolic disorder of cartilage proteoglycan. It suggested that Se can partially alleviate the damage of DON on cartilage, but can not completely prevent the occurrence of these changes.

  7. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping, E-mail: Guoping.Chen@nims.go.jp [Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-08-15

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  8. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  9. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  10. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    International Nuclear Information System (INIS)

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA

  11. The use of dynamic culture devices in articular cartilage tissue engineering.

    OpenAIRE

    Akmal, M.

    2006-01-01

    Tissue engineered repair of articular cartilage has now become a clinical reality with techniques for cell culture having advanced from laboratory experimentation to clinical application. Despite the advances in the use of this technology in clinical applications, the basic cell culture techniques for autologous chondrocytes are still based on primitive in-vitro monolayer culture methods. Articular chondrocytes are known to undergo fibroblastic change in monolayer culture as this is not their...

  12. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes.

    Science.gov (United States)

    Shin, Hyunjun; Lee, Mi Nam; Choung, Jin Seung; Kim, Sanghee; Choi, Byung Hyune; Noh, Minsoo; Shin, Jennifer H

    2016-08-01

    The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661891

  13. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sandy, J.D.; Plaas, A.H.

    1989-06-01

    Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with (35S)sulfate, (3H)leucine, and (35S)cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with (35S)sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M.

  14. The interplay between chondrocyte redifferentiation pellet size and oxygen concentration.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available Chondrocytes dedifferentiate during ex vivo expansion on 2-dimensional surfaces. Aggregation of the expanded cells into 3-dimensional pellets, in the presence of induction factors, facilitates their redifferentiation and restoration of the chondrogenic phenotype. Typically 1×10(5-5×10(5 chondrocytes are aggregated, resulting in "macro" pellets having diameters ranging from 1-2 mm. These macropellets are commonly used to study redifferentiation, and recently macropellets of autologous chondrocytes have been implanted directly into articular cartilage defects to facilitate their repair. However, diffusion of metabolites over the 1-2 mm pellet length-scales is inefficient, resulting in radial tissue heterogeneity. Herein we demonstrate that the aggregation of 2×10(5 human chondrocytes into micropellets of 166 cells each, rather than into larger single macropellets, enhances chondrogenic redifferentiation. In this study, we describe the development of a cost effective fabrication strategy to manufacture a microwell surface for the large-scale production of micropellets. The thousands of micropellets were manufactured using the microwell platform, which is an array of 360×360 µm microwells cast into polydimethylsiloxane (PDMS, that has been surface modified with an electrostatic multilayer of hyaluronic acid and chitosan to enhance micropellet formation. Such surface modification was essential to prevent chondrocyte spreading on the PDMS. Sulfated glycosaminoglycan (sGAG production and collagen II gene expression in chondrocyte micropellets increased significantly relative to macropellet controls, and redifferentiation was enhanced in both macro and micropellets with the provision of a hypoxic atmosphere (2% O2. Once micropellet formation had been optimized, we demonstrated that micropellets could be assembled into larger cartilage tissues. Our results indicate that micropellet amalgamation efficiency is inversely related to the time cultured as

  15. Effects of non-steroidal anti-inflammatory drugs on cell proliferation and death in cultured epiphyseal-articular chondrocytes of fetal rats

    International Nuclear Information System (INIS)

    Previous reports indicated that non-steroidal anti-inflammatory drugs (NSAIDs) suppress bone repair. Our previous study further found that ketorolac delayed the endochondral bone formation, and the critical effective timing was at the early stage of repair. Furthermore, we found that NSAIDs suppressed proliferation and induced cell death of cultured osteoblasts. In this study, we hypothesized that chondrocytic proliferation and death, which plays an important role at the early stage of endochondral bone formation, might be affected by NSAIDs. Non-selective NSAIDs, indomethacin, ketorolac, diclofenac and piroxicam; cyclooxygenase-2 (COX-2) selective NSAIDs, celecoxib and DFU (an analog of rofecoxib); prostaglandins (PGs), PGE1, PGE2 and PGF2α; and each NSAID plus each PG were tested. The effects of NSAIDs on proliferation, cell cycle kinetics, cytotoxicity and cell death of epiphyseal-articular chondrocytes of fetal rats were examined. The results showed that all the tested NSAIDs, except DFU, inhibited thymidine incorporation of chondrocytes at a concentration range (10-8 to 10-4 M) covering the theoretic therapeutic concentrations. Cell cycle was arrested by NSAIDs at the G /G1 phase. Upon a 24 h treatment, LDH leakage and cell death (both apoptosis and necrosis) were significantly induced by the four non-selective NSAIDs in chondrocyte cultures. However, COX-2 inhibitors revealed non-significant effects on cytotoxicity of chondrocytes except higher concentration of celecoxib (10-4 M). Replenishments of PGE1, PGE2 or PGF2α could not reverse the effects of NSAIDs on chondrocytic proliferation and cytotoxicity. In this study, we found that therapeutic concentrations of non-selective NSAIDs caused proliferation suppression and cell death of chondrocytes, suggesting these adverse effects may be one of the reasons that NSAIDs delay the endochondral ossification during bone repair found in previous studies. Furthermore, these effects of NSAIDs may act via PG

  16. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Moon

    Full Text Available Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs, we isolated extracts (UCE and collagen (UC-collagen from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases.

  17. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes

    International Nuclear Information System (INIS)

    There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. The authors have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35SO4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35SO4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [3H]serine incorporation into core protein was also stimulated. Cytochalasm D-treatment of cells in suspension caused no further stimulation of 35SO4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se

  18. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine.

    Science.gov (United States)

    Nazempour, A; Van Wie, B J

    2016-05-01

    Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies. PMID:26987846

  19. STUDY ON THE EFFECT OF T-2 TOXIN AND SELENIUM ON CD44 EXPRESSION IN THE CULTURED HUMAN FETAL CHONDROCYTES IN VITRO

    Institute of Scientific and Technical Information of China (English)

    谢龙; 曹峻岭; 岳燕; 朱建宏; 张增铁; 张富军; 李思远

    2003-01-01

    Objective To investigate the effect on the structure of reestablished cartilage in vitro and CD44 expression on chondrocytes and compare the inducing effect on the reestablished cartilage in vitro between cortical bone matrix gelatin and cancellous bone matrix gelatin. Methods To plant human fetal chondrocytes on the BMG, the damage of the cultured chondrocytes was observed by the optical microscope (HE staining). The immunohistochemistry of CD44 was quantitative analysis by the image collection and analysis system. Results With the increasing concentration of T-2 toxin, the damage of chondroytes was more and more evident and CD44 expression was lowered. After adding selenium, the damage was relieved and CD44 expression increased. The density of chondrocytes on the cortical bone matrix gelatin was much higher than that on the cancellous bone matrix gelatin. Conclusion T-2 toxin can lower the CD44 expression on the chondrocytes and adding selenium can relieve the damage caused by T-2toxin and increased CD44 expression. The inducing effect on reestablished cartilage in vitro of cortical bone matrix gelatin was much higher than that of cancellous bone matrix gelatin.

  20. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sushmita [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Kirkham, Jennifer [Biomineralisation Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom); Wood, David [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Curran, Stephen [Smith and Nephew Research Centre, YO105DF (United Kingdom); Yang, Xuebin, E-mail: X.B.Yang@leeds.ac.uk [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom)

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  1. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    International Nuclear Information System (INIS)

    Research highlights: → This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. → Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. → Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. → Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the

  2. Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1β-Induced MMP-2 Expression in Equine Chondrocyte Culture

    OpenAIRE

    Tangyuenyong, Siriwan; Viriyakhasem, Nawarat; Peansukmanee, Siriporn; Kongtawelert, Prachya; Ongchai, Siriwan

    2014-01-01

    Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant cultu...

  3. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla-Preliminary results

    International Nuclear Information System (INIS)

    Objectives: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. Material and Methods: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. Results: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p < 0.05). There was a decrease between the earlier and the later time point after surgery. Conclusions: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment

  4. Decreased synthesis of extracellular matrix components by chondrocytes cultured in scorbutic guinea pig serum plus vitamin C

    Energy Technology Data Exchange (ETDEWEB)

    Oyamada, I.; Bird, T.A.; Peterkofsky, B.

    1986-05-01

    The authors have previously shown that cartilage collagen (col) and proteoglycan (PG) syntheses decreased coordinately in guinea pig (GP) receiving a vitamin C deficient (C-def) diet for more than 2 weeks. The defects were related to the fasting state induced during the 3rd and 4th weeks of scurvy, rather than to the role of ascorbate in proline (pro) hydroxylation. These results and the generalized effect on col synthesis suggested the involvement of humoral factors. Sera from normal (NGPS) and scorbutic (SGPS) GP supported growth of BALB 3T3 cells under conditions where EGF plus insulin (or IGF I) were required, for up to 2 weeks after initiation of the C-def diet. Thereafter activity was lost from SGPS. The ability of NGPS and 4-week-SGPS, both with added ascorbate, to maintain normal rates of col and PG syntheses in cultured chick embryo chondrocytes was measured by incorporation of (/sup 14/C)pro into collagenase digestible protein and (/sup 35/S)sulfate into PG. Although pro hydroxylation and col secretion were normal in cells cultured with SGPS for 2 days, col and PG synthetic rates were decreased to 40-50% of rates in cells cultured in NGPS, with no change in the types of col and PG synthesized. These results provide evidence that depletion of growth factors during the fasting stage of scurvy may cause decreased synthesis of extracellular matrix components.

  5. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts

    Directory of Open Access Journals (Sweden)

    Endres Michaela

    2012-11-01

    Full Text Available Abstract Background Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA/fibrin biomaterials for scaffold-assisted cartilage repair. Methods Ovine chondrocytes harvested from adult articular cartilage were expanded in monolayer and re-assembled three-dimensionally in PGA-fibrin scaffolds. De- and re-differentiation of ovine chondrocytes in PGA-fibrin scaffolds was assessed by histological and immuno-histochemical staining as well as by real-time gene expression analysis of typical cartilage marker molecules and the matrix-remodelling enzymes matrix metalloproteinases (MMP -1, -2 and −13 as well as their inhibitors. PGA scaffolds characteristics including degradation and stiffness were analysed by electron microscopy and biomechanical testing. Results Histological, immuno-histochemical and gene expression analysis showed that dedifferentiated chondrocytes re-differentiate in PGA-fibrin scaffolds and form a cartilaginous matrix. Re-differentiation was accompanied by the induction of type II collagen and aggrecan, while MMP expression decreased in prolonged tissue culture. Electron microscopy and biomechanical tests revealed that the non-woven PGA scaffold shows a textile structure with high tensile strength of 3.6 N/mm2 and a stiffness of up to 0.44 N/mm2, when combined with gel-like fibrin. Conclusion These data suggest that PGA-fibrin is suited as a mechanically stable support structure for scaffold-assisted chondrocyte grafts, initiating chondrogenic re-differentiation of expanded chondrocytes.

  6. Assay for inorganic pyrophosphate in chondrocyte culture using anion-exchange high-performance liquid chromatography and radioactive orthophosphate labeling

    International Nuclear Information System (INIS)

    A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (32Pi). Intra- and extracellular 32PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added 32Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated

  7. The effect of a slightly acidic somatomedin peptide (ILAs) on the sulphation of proteoglycans from articular and growth plate chondrocytes in culture

    International Nuclear Information System (INIS)

    Chondrocyte cultures were prepared from rabbit growth plate (GPC) and articular (ARC) chondrocytes. These two cell types have distinct morphological characteristics. The cells reached maximum numbers by days 10 and 21 for ARC and GPC, respectively. The proteoglycans (PG) contained in the cellular pool were extracted and purified by DEAE cellulose chromatography. The effect of a partially purified somatomedin peptide with insulin-like activity on [35S]sulphate incorporation into PG was evaluated. In both ARC and GPC a significant stimulation of [35S]sulphate uptake into PG subunits was obtained with 1 ng Eq./ml of somatomedin peptide. In order to obtain the same stimulatory effect with porcine insulin, a 1000-fold greater concentration was required. The electrophoretic patterns of the PG subunits on acrylamide-agarose electrophoresis were identical on control incubations and after stimulation with the somatomedin peptide. These data demonstrate in vitro biological activity of this peptide on well differentiated articular and epiphyseal growth plate chondrocytes in culture. These cultures appear to provide a sensitive biological assay for somatomedin peptides. (author)

  8. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  9. Autologous transplantation of oral mucosal epithelial cell sheets cultured on an amniotic membrane substrate for intraoral mucosal defects.

    Directory of Open Access Journals (Sweden)

    Takeshi Amemiya

    Full Text Available The human amniotic membrane (AM is a thin intrauterine placental membrane that is highly biocompatible and possesses anti-inflammatory and anti-scarring properties. Using AM, we developed a novel method for cultivating oral mucosal epithelial cell sheets. We investigated the autologous transplantation of oral mucosal epithelial cells cultured on AM in patients undergoing oral surgeries. We obtained specimens of AM from women undergoing cesarean sections. This study included five patients without any history of a medical disorder who underwent autologous cultured oral epithelial transplantation following oral surgical procedures. Using oral mucosal biopsy specimens obtained from these patients, we cultured oral epithelial cells on an AM carrier. We transplanted the resultant cell sheets onto the oral mucosal defects. Patients were followed-up for at least 12 months after transplantation. After 2-3 weeks of being cultured on AM, epithelial cells were well differentiated and had stratified into five to seven layers. Immunohistochemistry revealed that the cultured cells expressed highly specific mucosal epithelial cell markers and basement membrane proteins. After the surgical procedures, no infection, bleeding, rejection, or sheet detachment occurred at the reconstructed sites, at which new oral mucous membranes were evident. No recurrence was observed in the long-term follow-up, and the postoperative course was excellent. Our results suggest that AM-cultured oral mucosal epithelial cell sheets represent a useful biomaterial and feasible method for oral mucosal reconstruction. However, our primary clinical study only evaluated their effects on a limited number of small oral mucosal defects.

  10. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  11. The effect of piroxicam on the metabolism of isolated human chondrocytes.

    Science.gov (United States)

    Bulstra, S K; Kuijer, R; Buurman, W A; Terwindt-Rouwenhorst, E; Guelen, P J; van der Linden, A J

    1992-04-01

    The effect of piroxicam on the metabolism of healthy and osteoarthrotic (OA) chondrocytes was studied in vitro. The chondrocytes were obtained from five healthy, five moderately OA, and four severely OA hips or knees. The chondrocytes were cultured in a high-density, short-term in vitro model. In this culture, the healthy chondrocytes as well as the OA chondrocytes retain their metabolic properties. Piroxicam was used in concentrations ranging from 0 to 10 micrograms/ml, which is comparable to the concentrations reached in vivo after oral administration. In cultures of healthy chondrocytes, piroxicam inhibited proliferation and synthesis of proteoglycans. The metabolism of moderately damaged chondrocytes was not influenced by piroxicam. In severely damaged chondrocytes, the proliferation was significantly inhibited by piroxicam. In order to avoid the possible negative side effects of piroxicam on the metabolism of healthy and severely OA chondrocytes, piroxicam treatment of an OA joint with synovitis should be restricted to the period of the effusion. PMID:1555353

  12. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro

    Directory of Open Access Journals (Sweden)

    S Giovannini

    2010-10-01

    Full Text Available Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.

  13. 骨髓源性肥大细胞对软骨细胞表达Ⅱ型胶原及糖胺多糖的影响%Effects of bone marrow- derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes

    Institute of Scientific and Technical Information of China (English)

    欧阳晴晴; 赵进军; 杨敏

    2014-01-01

    Objective To investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs. Methods Primarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1∶10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM). Results After a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co- cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P0.05),C48/80组Ⅱ型胶原与GAG含量相对于对照组和BMMCs组显著降低(P0.05)。结论C48/80激活的BMMCs可降低软骨细胞Ⅱ型胶原以及GAG表达。

  14. Treatment of Hypertrophic Scar in Human with Autologous Transplantation of Cultured Keratinocytes and Fibroblasts along with Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Ehsan Taghiabadi

    2015-04-01

    Full Text Available Objective: Hypertrophic scar involves excessive amounts of collagen in dermal layer and may be painful. Nowadays, we can’t be sure about effectiveness of procedure for hypertrophic scar management. The application of stem cells with natural scaffold has been the best option for treatment of burn wounds and skin defect, in recent decades. Fibrin glue (FG was among the first of the natural biomaterials applied to enhance skin deformity in burn patients. This study aimed to identify an efficient, minimally invasive and economical transplantation procedure using novel FG from human cord blood for treatment of hypertrophic scar and regulation collagen synthesis. Materials and Methods: In this case series study, eight patients were selected with hypertrophic scar due to full-thickness burns. Human keratinocytes and fibroblasts derived from adult skin donors were isolated and cultured. They were tested for the expression of cytokeratin 14 and vimentin using immunocytochemistry. FG was prepared from pooled cord blood. Hypertrophic scars were extensively excised then grafted by simply placing the sheet of FG containing autologous fibroblast and keratinocytes. Histological analyses were performed using Hematoxylin and eosin (H&E and Masson’s Trichrome (MT staining of the biopsies after 8 weeks. Results: Cultured keratinocytes showed a high level of cytokeratin 14 expression and also fibroblasts showed a high level of vimentin. Histological analyses of skin biopsies after 8 weeks of transplantation revealed re-epithelialization with reduction of hypertrophic scars in 2 patients. Conclusion: These results suggest may be the use of FG from cord blood, which is not more efficient than previous biological transporters and increasing hypertrophic scar relapse, but could lead to decrease pain rate.

  15. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    Science.gov (United States)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10

  16. Derepression of miRNA-138 contributes to loss of the human articular chondrocyte phenotype

    OpenAIRE

    Seidl, C; Martinez-Sanchez, A; Murphy, CL

    2016-01-01

    Objective: To investigate the function of microRNA-138 (miR-138) in human articular chondrocytes (HACs). Methods: The expression of miR-138 in intact cartilage and cultured chondrocytes and the effects of miR-138 overexpression on chondrocyte marker genes were investigated. Targets of miR-138 relevant to chondrocytes were identified and verified by overexpression of synthetic miRNA mimics and inhibitors, luciferase assays, chromatin immunoprecipitation, and RNA immunoprecipitation o...

  17. Case Report: Industrial X-Ray Injury Treated With Non-Cultured Autologous Adipose-Derived Stromal Vascular Fraction (SVF).

    Science.gov (United States)

    Iddins, C J; Cohen, S R; Goans, R E; Wanat, R; Jenkins, M; Christensen, D M; Dainiak, N

    2016-08-01

    Local cutaneous injuries induced by ionizing radiation (IR) are difficult to treat. Many have reported local injection of adipose-derived stromal vascular fraction (SVF), often with additional therapies, as an effective treatment of IR-induced injury even after other local therapies have failed. The authors report a case of a locally recurrent, IR-induced wound that was treated with autologous, non-cultured SVF without other concurrent therapy. A nondestructive testing technician was exposed to 130 kVp x rays to his non-dominant right thumb on 5 October 2011. The wound healed 4 mo after initial conservative therapy with oral/topical α-tocopherol, oral pentoxifylline, naproxen sodium, low-dose oral steroids, topical steroids, hyperbaric oxygen therapy (HBOT), oral antihistamines, and topical aloe vera. Remission lasted approximately 17 mo with one minor relapse in July 2012 after minimal trauma and subsequent healing. Aggressive wound breakdown during June 2013 required additional therapy with HBOT. An erythematous, annular papule developed over the following 12 mo (during which time the patient was not undergoing prescribed treatment). Electron paramagnetic resonance (EPR) done more than 2 mo after exposure to IR revealed dose estimates of 14 ± 3 Gy and 19 ± 6 Gy from two centers using different EPR techniques. The patient underwent debridement of the 0.5 cm papular area, followed by SVF injection into and around the wound bed and throughout the thumb without complication. Eleven months post SVF injection, the patient has been essentially asymptomatic with an intact integument. These results raise the possibility of prolonged benefit from SVF therapy without the use of cytokines. Since there is currently no consensus on the use of isolated SVF therapy in chronic, local IR-induced injury, assessment of this approach in an appropriately powered, controlled trial in experimental animals with local radiation injury appears to be indicated. PMID:27356054

  18. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture.

    Science.gov (United States)

    Yang, Hsiao-yin; van Ee, Renz J; Timmer, Klaas; Craenmehr, Eric G M; Huang, Julie H; Öner, F Cumhur; Dhert, Wouter J A; Kragten, Angela H M; Willems, Nicole; Grinwis, Guy C M; Tryfonidou, Marianna A; Papen-Botterhuis, Nicole E; Creemers, Laura B

    2015-09-01

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in cartilaginous tissues. Effectiveness of siRNA transfection using pNIPAAM formulated with either MgAl-LDH or MgFe-LDH platelets was investigated using osteoarthritic chondrocytes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing. No significant adverse effects of pNIPAAM/LDH hydrogels on cell viability were noticed. Cellular uptake of fluorescently labeled siRNA was greatly enhanced (>75%) in pNIPAAM/LDH hydrogel constructs compared to alginate, hyaluronan and fibrin gels, and was absent in pNIPAAM hydrogel without LDH platelets. When using siRNA against GAPDH, 82-98% reduction of gene expression was found in both types of pNIPAAM/LDH hydrogel constructs after 6 days of culturing. In the pNIPAAM/MgAl-LDH hybrid hydrogel, 80-95% of GAPDH enzyme activity was reduced in parallel with gene. Our findings show that the combination of a cytocompatible hydrogel and therapeutic RNA oligonucleotides is feasible. Thus it might hold promise in treating degeneration of cartilaginous tissues by providing supporting scaffolds for cells and interference with locally produced degenerative factors. PMID:26022968

  19. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    International Nuclear Information System (INIS)

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α1(II), procollagen α1(X), and procollagen α2(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α1(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α2(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage repair. • Cell culture

  20. Oxygen tension affects lubricin expression in chondrocytes.

    Science.gov (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology. PMID:24712343

  1. CartiGenea®-AC: A Mesenchymal stem cells enriched Autologous Chondrocytes for the Treatment of patients with cartilaginous defects on a New Drug-Cell Combinatory Effect Prediction Algorithm on the Cell Based on Chondro defects Gene Expression and Dose-Response Curve.

    OpenAIRE

    Grigoriadis Ioannis

    2015-01-01

    CartiGenea®-AC: Chondrocytes, the predominant cell type within AC, synthesize matrix components. Because AC lacks a major vascular supply, lymphatic drainage, and nervous system innervation, chondrocytes function under avascular, anaerobic conditions, obtaining nutrients by diffusion from synovial fluid. Within AC, metabolic and morphologic profiles of deep-zone chondrocytes are distinct from those populating the superficial tangential zone. The factors responsible for this variation are ...

  2. Articular chondrocyte metabolism and osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  3. Looping Mediated Interaction between the Promoter and 3′ UTR Regulates Type II Collagen Expression in Chondrocytes

    OpenAIRE

    Jash, Arijita; Yun, Kangsun; Sahoo, Anupama; So, Jae-Seon; Im, Sin-Hyeog

    2012-01-01

    Type II collagen is the major component of articular cartilage and is mainly synthesized by chondrocytes. Repeated sub-culturing of primary chondrocytes leads to reduction of type II collagen gene (Col2a1) expression, which mimics the process of chondrocyte dedifferentiation. Although the functional importance of Col2a1 expression has been extensively investigated, mechanism of transcriptional regulation during chondrocyte dedifferentiation is still unclear. In this study, we have investigate...

  4. Early efficacy study of matrix-induced autologous chondrocyte implantation repairing knee joint cartilage injury%基质诱导自体软骨细胞移植修复膝关节软骨损伤的早期疗效

    Institute of Scientific and Technical Information of China (English)

    王庆; 黄华扬; 张涛; 郑小飞; 李凭跃; 沈洪园; 陈加荣

    2016-01-01

    目的:探讨基质诱导自体软骨细胞移植修复膝关节软骨损伤的可行性及早期疗效。方法回顾性分析2012年4月至2013年3月13例单侧膝关节局灶性软骨缺损患者资料,男11例,女2例;年龄19~37岁,平均27.5岁;膝关节软骨缺损面积2.3~7.5 cm2,平均4.2 cm2;国际软骨损伤修复协会(ICRS )分级为Ⅲ级3例,Ⅳ级10例,均出现膝关节疼痛症状[视觉模拟评分(visual analogue scale, VAS)>3分]。13例患者均使用基质诱导软骨细胞移植技术进行软骨细胞移植。术后进行规范化功能康复锻炼。结果术后随访1年,1例患者因术后6.5个月下楼梯时扭伤膝关节致半月板损伤行关节镜下半月板修补术而剔除该患者术后12个月的评分,以避免结果偏倚。膝关节活动度,术后3个月(123.1°±8.0°)较术前(135.4°±5.7°)减少,膝关节损伤和骨关节炎评分(knee injury and use osteoarthritis outcome score, KOOS)的5个子集均较术前降低,Lysholm评分[(65.7±9.4)分]较术前[(71.2±12.3)分]无明显变化,国际膝关节评分委员会评分(International Knee Documentation Committee, IKDC)[(26.1±3.9)分]较术前[(43.5±6.5)分]减少;术后6、12个月的膝关节活动度(136.1°±6.1°、135.1°±3.6°)、Lysholm评分[(80.6±9.6)分、(86.6±9.2)分]、IKDC评分[(53.3±5.8)分、(62.8±7.2)分]、KOOS评分均较术前明显提高。术后12个月软骨修复组织磁共振评分[(73.3±17.9)分]较术前[(51.5±12.6)分]明显提高。结论基质诱导自体软骨细胞移植技术可有效修复膝关节软骨损伤,改善膝关节功能,具有良好的近期疗效。%Objective To study the feasibility and early efficacy of matrix⁃induced autologous chondrocyte implantation repairing knee joint cartilage injury. Methods The Matrix⁃induced autologous chondrocyte implantation was used to repair knee joint

  5. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  6. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  7. Growth differentiation factor-5 stimulates the growth and anabolic metabolism of articular chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Guo Xiong; Yao Jianfeng; Zhang Yingang; Klaus von der Mark

    2005-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱ collagen by RT-PCR,the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture,MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and X collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic expression of chondrocytes in mono-layer culture.

  8. [Growth behavior of chondrocytes on various biomaterials].

    Science.gov (United States)

    Rudert, M; Hirschmann, F; Wirth, C J

    1999-01-01

    Chondrocytes can be cultured on different three-dimensional culture systems suitable for transplantation to enhance the repair of localized cartilage defects. Articular cartilage chondrocytes from adult rabbit knees and from bovine calf metacarpophalangeal joints were isolated by enzymatic digestion and cultured in a monolayer system to amplify cell count. After amplification the cells were seeded on different biocompatible materials. We investigated two types of bioresorbable polymer fleece matrices (a composite fleece of polydioxanon and polyglactin and a resorbable poly-L-lactic acid fleece) and lyophilized dura as a biological carrier. On all three types of transport media the phenotypic and morphological appearance of cultured chondrocytes could be observed. The production of glycosaminoglycans was revealed by Alcian blue staining and immunohistochemical detection of Chondroitin-4 and 6-sulfate in the created constructs. The material properties of the carriers allow for transplantation of the artificial cartilage-like products into full thickness articular cartilage defects and could therefore improve the minor intrinsic healing capacity of cartilage tissue. Bioartificial cartilage may become a future perspective in the treatment options of orthopaedic and plastic surgery. PMID:10081046

  9. The Biological Effects of Sex Hormones on Rabbit Articular Chondrocytes from Different Genders

    OpenAIRE

    Shwu Jen Chang; Shyh Ming Kuo; Yen Ting Lin; Shan-Wei Yang

    2014-01-01

    The aim of this study was to investigate the biological effects of sex hormones (17 β -estradiol and testosterone) on rabbit articular chondrocytes from different genders. We cultured primary rabbit articular chondrocytes from both genders with varying concentration of sex hormones. We evaluate cell proliferation and biochemical functions by MTT and GAG assay. The chondrocyte function and phenotypes were analyzed by mRNA level using RT-PCR. Immunocytochemical staining was also used to evaluat...

  10. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    International Nuclear Information System (INIS)

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes

  11. Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni

    2010-01-01

    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  12. Studies of the humoral factors produced by layered chondrocyte sheets.

    Science.gov (United States)

    Hamahashi, K; Sato, M; Yamato, M; Kokubo, M; Mitani, G; Ito, S; Nagai, T; Ebihara, G; Kutsuna, T; Okano, T; Mochida, J

    2015-01-01

    The authors aimed to repair and regenerate articular cartilage with layered chondrocyte sheets, produced using temperature-responsive culture dishes. The purpose of this study was to investigate the humoral factors produced by layered chondrocyte sheets. Articular chondrocytes and synovial cells were harvested during total knee arthroplasty. After co-culture, the samples were divided into three groups: a monolayer, 7 day culture sheet group (group M); a triple-layered, 7 day culture sheet group (group L); and a monolayer culture group with a cell count identical to that of group L (group C). The secretion of collagen type 1 (COL1), collagen type 2 (COL2), matrix metalloproteinase-13 (MMP13), transforming growth factor-β (TGFβ), melanoma inhibitory activity (MIA) and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay (ELISA). Layered chondrocyte sheets produced the most humoral factors. PGE2 expression declined over time in group C but was significantly higher in groups M and L. TGFβ expression was low in group C but was significantly higher in groups M and L (p<0.05). Our results suggest that the humoral factors produced by layered chondrocyte sheets may contribute to cartilaginous tissue repair and regeneration. PMID:23165985

  13. Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity

    International Nuclear Information System (INIS)

    An experimental model used to test in vivo myogenicity of autologous satellite cells multiplied in vitro is described. Free muscle autotransplantation served as the basis and was combined with x-irradiation. Administration of 1500, 2500, and 3500 rad doses 24 hours before or after ischemia showed that inhibition of spontaneous regeneration is dose dependent and more efficient when irradiation was applied before injury. A single dose of 2500 rad before injury resulted in the formation of a cystic structure ideal for cell implantation. FITC-latex beads and/or carbocyanine dyes were internalized by mononucleated satellite cells in vitro. Labeling did not affect survival or development of these cells. No sign of marker release or spreading from labeled to unlabeled cells was detectable unless by the fusion process. These labels were retained for several weeks. Grafting of labeled dense cellular suspensions into x-irradiated ischemic muscles indicated that satellite cells retain their myogenic characteristic and are able to reform fully differentiated muscle fibers. 55 references

  14. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    International Nuclear Information System (INIS)

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture

  15. Growth Differentiation Factor-5 Stimulates the Growth and Anabolic Metabolism of Articular Chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Guo Xiong; Zhang Yingang; Klaus von der Mark

    2009-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTr assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type 11 collagen by RT-PCR, the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture, MTF assay showed that GDF-5 enhanced the growth of ehondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the colal mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was gready enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and Ⅹ collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chon-drocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic ex-pression of chondrocytes in mono-layer culture.

  16. Fibroblast Growth Factor 18 Increases the Trophic Effects of Bone Marrow Mesenchymal Stem Cells on Chondrocytes Isolated from Late Stage Osteoarthritic Patients

    Directory of Open Access Journals (Sweden)

    Zhenyu Zhang

    2014-01-01

    Full Text Available Coculture of mesenchymal stem cells with chondrocytes increases production of cartilaginous matrix. Chondrocytes isolated from late stage osteoarthritic patients usually lost their phenotype of producing cartilaginous matrix. Fibroblast growth factor 18 is believed to redifferentiate OA chondrocyte into functionally active chondrocytes. The aim of this study is to investigate the supportive effects of MSCs on OA chondrocytes and test if FGF18 could enhance the responsiveness of OA chondrocytes to the support of MSCs in a coculture system. Both pellet and transwell co-cultures were used. GAG quantification, hydroxyproline assay, and qPCR were performed. An ectopic models of cartilage formation was also applied. Our data indicated that, in pellets coculture of MSCs and OA chondrocytes, matrix production was increased in the presence of FGF18, comparing to the monoculture of chondrocytes. Results from transwell coculture study showed that expression of matrix producing genes in OA chondrocytes increased when cocultured with MSCs with FGF18 in culture medium, while hypertrophic genes were not changed by coculture. Finally, coimplantation of MSCs with OA chondrocytes produces more matrix than chondrocytes only. In conclusion, FGF18 can restore the responsiveness of OA chondrocytes to the trophic effects of MSCs. Coimplantation of MSCs and OA chondrocytes treated with FGF18 may be a good alternative cell source for regenerating cartilage tissue that is degraded during OA pathological changes.

  17. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies. PMID:27566509

  18. Choosing the right chondrocyte cell line: Focus on nitric oxide.

    Science.gov (United States)

    Santoro, Anna; Conde, Javier; Scotece, Morena; Abella, Vanessa; López, Verónica; Pino, Jesús; Gómez, Rodolfo; Gómez-Reino, Juan Jesús; Gualillo, Oreste

    2015-12-01

    Nitric oxide (NO) has been considered a catabolic factor that contributes to OA pathology by inducing chondrocytes apoptosis, matrix metalloproteinases synthesis, and pro-inflammatory cytokines expression. Thus, the research on NO regulation in chondrocytes represents a relevant field which needs to be explored in depth. However, to date, only the murine ATDC-5 cell line and primary chondrocytes are well-established cells to study NO production in cartilage tissues. The goal of this study is to determine whether two commonly used human chondrocytic cell lines: SW-1353 and T/C-28a2 cell lines are good models to examine lipopolysaccharide and/or pro-inflammatory cytokine-driven NO release and iNOS expression. To this aim, we carefully examined NO production and iNOS protein expression in human T/C-28a2 and SW-1353 chondrocytes stimulated with LPS and interleukin (IL)-1 alone or in combination. We also use ATDC-5 cells as a positive control for NO production. NO accumulation has been determined by colorimetric Griess reaction, whereas NOS type II expression was determined by Western Blot analysis. Our results clearly demonstrated that neither human T/C-28a2 nor SW-1353 chondrocytes showed a detectable increase in NO production or iNOS expression after bacterial endotoxin or cytokines challenge with IL-1. Our study demonstrated that T/C-28a2 and SW-1353 human cell lines are not suitable for studying NO release and iNOS expression confirming that ATDC5 and human primary cultured chondrocytes are the best in vitro cell system to study the actions derived from this mediator. PMID:26016689

  19. Characterization of collagenase-3 binding and internalization by rabbit chondrocytes

    International Nuclear Information System (INIS)

    Full text: Collagenase-3 (MMP-13) is an extracellular matrix metalloproteinase that cleaves type II collagen, the major protein component of cartilage, with high specificity. Several studies have identified increased levels of MMP-13 in arthritic synovial fluid where it may contribute to matrix destruction in this disease. Our laboratory has previously documented a process where by osteoblastic cells remove MMP-13 from the surrounding milieu by binding the enzyme to a specific receptor. The enzyme is then internalized and degraded through the actions of the endocytotic receptor, the low-density lipoprotein receptor-related protein (LRP). Such a mechanism provides for a controlled elimination of a potentially destructive enzyme from the extracellular environment. This process of MMP-13 internalization also occurs in chondrocytes and is significantly reduced in OA chondrocytes. We are currently characterizing the internalization of MMP-13 in normal rabbit chondrocytes. Primary rabbit chondrocytes were harvested and cultured in monolayers for three passages. Reverse transcription polymerase chain reaction (RT-PCR) was used to asses the cell phenotype during the culture period and the rabbit chondrocytes were found to express the cartilage specific genes aggrecan and type II collagen throughout this time. 125I-MMP-13 was used to assess the ability of the rabbit chondrocytes to bind MMP-13. Appreciable specific cell-association of MMP-13 was detected after 10 mm of exposure to the ligand and equilibrium was obtained after 2 h. After identifying the time to equilibrium we determined whether binding was saturable by incubating the chondrocytes with increasing concentrations of 125I-MMP-13 ranging from 0 to 100 nM at 4 deg C for 2h. The amount of specifically associated MMP-13 approached saturation at 75 nM, allowing assessment of the receptor kinetics. Finally, we have assessed the ability of rabbit chondrocytes to internalize a single cohort of 125I-MMP-13 over time at

  20. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  1. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  2. Autologous blood donation

    OpenAIRE

    Goodnough, Lawrence T

    2004-01-01

    Although preoperative autologous blood donation is employed in elective surgery, this is declining because of the increasingly safe allogeneic blood supply. However, it continues to be used because of the public's perception of allogeneic blood risks and increasing blood shortages. Patients may donate a unit of blood (450 ± 45 ml) as often as twice weekly, up to 72 hours before surgery. Preoperative autologous blood is most beneficial in procedures that cause significant blood loss. It has be...

  3. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    OpenAIRE

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.; Knudson, Warren

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treat...

  4. Fibroblast growth factor receptor 3 effects on proliferation and telomerase activity in sheep growth plate chondrocytes

    Directory of Open Access Journals (Sweden)

    Smith Logan B

    2012-12-01

    Full Text Available Abstract Background Fibroblast growth factor receptor 3 (FGFR3 inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (T3 plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT and RNA component of telomerase (TR, and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions The results suggest that FGFR3 inhibits chondrocyte proliferation by down-regulating TERT expression and reducing telomerase activity indicating an important role for telomerase in sustaining chondrocyte proliferative capacity during bone elongation.

  5. Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis.

    Science.gov (United States)

    Yin, Melinda; Gentili, Chiara; Koyama, Eiki; Zasloff, Michael; Pacifici, Maurizio

    2002-01-01

    Hypertrophic chondrocytes have important roles in promoting invasion of cartilage by blood vessels and its replacement with bone. However, it is unclear whether blood vessels exert reciprocal positive influences on chondrocyte maturation and function. Therefore, we implanted beads containing the antiangiogenic molecule squalamine around humeral anlagen in chick embryo wing buds and monitored the effects over time. Fluorescence microscopy showed that the drug diffused from the beads and accumulated in humeral perichondrial tissues, indicating that these tissues were the predominant targets of drug action. Diaphyseal chondrocyte maturation was indeed delayed in squalamine-treated humeri, as indicated by reduced cell hypertrophy and expression of type X collagen, transferrin, and Indian hedgehog (Ihh). Although reduced in amount, Ihh maintained a striking distribution in treated and control humeri, being associated with diaphyseal chondrocytes as well as inner perichondrial layer. These decreases were accompanied by lack of cartilage invasion and tartrate-resistant acid phosphatase-positive (TRAP+) cells and a significant longitudinal growth retardation. Recovery occurred at later developmental times, when in fact expression in treated humeri of markers such as matrix metalloproteinase 9 (MMP-9) and connective tissue growth factor (CTGF) appeared to exceed that in controls. Treating primary cultures of hypertrophic chondrocytes and osteoblasts with squalamine revealed no obvious changes in cell phenotype. These data provide evidence that perichondrial tissues and blood vessels in particular influence chondrocyte maturation in a positive manner and may cooperate with hypertrophic chondrocytes in dictating the normal pace and location of the transition from cartilage to bone. PMID:11771670

  6. Linked decreases in Liver Kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes

    OpenAIRE

    Petursson, Freyr; Husa, Matt; June, Ron; Lotz, Martin; Terkeltaub, Robert; Liu-Bryan, Ru

    2013-01-01

    Abstract Introduction AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and p...

  7. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance

    Indian Academy of Sciences (India)

    Giulia Bernardini; Federico Chellini; Bruno Frediani; Adriano Spreafico; Annalisa Santucci

    2015-03-01

    In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.

  8. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.

    Science.gov (United States)

    Oseni, Adelola O; Butler, Peter E; Seifalian, Alexander M

    2015-11-01

    Despite extensive research into cartilage tissue engineering (CTE), there is still no scaffold ideal for clinical applications. Various synthetic and natural polymers have been investigated in vitro and in vivo, but none have reached widespread clinical use. The authors investigate the potential of POSS-PCU, a synthetic nanocomposite polymer, for use in CTE. POSS-PCU is modified with silsesquioxane nanostructures that improve its biological and physical properties. The ability of POSS-PCU to support the growth of ovine nasoseptal chondrocytes was evaluated against a polymer widely used in CTE, polycaprolactone (PCL). Scaffolds with varied concentrations of the POSS molecule were also synthesized to investigate their effect on chondrocyte growth. Chondrocytes were seeded onto scaffold disks (PCU negative control; POSS-PCU 2%, 4%, 6%, 8%; PCL). Cytocompatibilty was evaluated using cell viability, total DNA, collagen and GAG assays. Chondrocytes cultured on POSS-PCU (2% POSS) scaffolds had significantly higher viability than PCL scaffolds (p PCU scaffolds compared with PCL (p > 0.05). POSS-PCU (6% and 8% POSS) had improved viability and proliferation over an 18 day culture period compared with 2% and 4% POSS-PCU (p PCU has excellent potential for use in CTE. It supports the growth of chondrocytes in vitro and the POSS modification significantly enhances the growth and proliferation of nasoseptal chondrocytes compared with traditional scaffolds such as PCL. PMID:23576328

  9. Efficient, Low-Cost Nucleofection of Passaged Chondrocytes.

    Science.gov (United States)

    Parreno, Justin; Delve, Elizabeth; Andrejevic, Katarina; Paez-Parent, Sabrina; Wu, Po-Han; Kandel, Rita

    2016-01-01

    Nucleofection of chondrocytes has been shown to be an adequate method of transfection. Using Amaxa's nucleofection system, transfection efficiencies up to 89% were achievable for vector (pmaxGFP) and 98% for siRNA (siGLO) into passaged chondrocytes. However, such methods rely on costly commercial kits with proprietary reagents limiting its use in basic science labs and in clinical translation. Bovine-passaged chondrocytes were plated in serum reduced media conditionsand then nucleofected using various in laboratory-produced buffers. Cell attachment, confluency, viability, and transfection efficiency was assessed following nucleofection. For each parameter the buffers were scored and a final rank for each buffer was determined. Buffer denoted as 1M resulted in no significant difference for cell attachment, confluency, and viability as compared to non-nucleofected controls. Nucleofection in 1M buffer, in the absence of DNA vectors, resulted in increased col2, ki67, ccnd1 mRNA levels, and decreased col1 mRNA levels at 4 days of culture. Flow cytometry revealed that the transfection efficiency of 1M buffer was comparable to that obtained using the Amaxa commercial kit. siRNA designed against lamin A/C resulted in an average reduction of lamin A and C proteins to 19% and 8% of control levels, respectively. This study identifies a cost-effective, efficient method of nonviral nucleofection of bovine-passaged chondrocytes using known buffer formulations. Human-passaged chondrocytes could also be successfully nucleofected in 1M buffer. Thus this method should facilitate cost-efficient gene targeting of cells used for articular cartilage repair in a research setting. PMID:26958320

  10. Nanosized fibers' effect on adult human articular chondrocytes behavior

    International Nuclear Information System (INIS)

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum

  11. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the 14C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 μg/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 μg/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur

  12. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  13. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Nehrer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.nehrer@meduniwien.ac.at; Domayer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schatz, K. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bindreiter, U. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kotz, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Repair of articular cartilage represents a significant clinical problem and although various new techniques - including the use of autologous chondrocytes - have been developed within the last century the clinical efficacy of these procedures is still discussed controversially. Although autologous chondrocyte transplantation (ACT) has been widely used with success, it has several inherent limitations, including its invasive nature and problems related to the use of the periosteal flap. To overcome these problems autologous chondrocytes transplantation combined with the use of biodegradable scaffolds has received wide attention. Among these, a hyaluronan-based scaffold has been found useful for inducing hyaline cartilage regeneration. In the present study, we have investigated the mid-term efficacy and safety of Hyalograft[reg] C grafts in a group of 36 patients undergoing surgery for chronic cartilage lesions of the knee. Clinical Outcome was assessed prospectively before and at 12, 24, and 36 months after surgery. No major adverse events have been reported during the 3-year follow-up. Significant improvements of the evaluated scores were observed (P < 0.02) at 1 year and a continued increase of clinical performance was evident at 2 and 3 years follow-up. Patients under 30 years of age with single lesions showed statistically significant improvements at all follow-up visits compared to those over 30 with multiple defects (P < 0.01). Hyalograft[reg] C compares favorably with classic ACT and is particularly indicated in younger patients with single lesions. The graft can be implanted through a miniarthrotomy and needs no additional fixation with sutures except optional fibrin gluing at the defect borders. These results suggest that Hyalograft[reg] C is a valid alternative to ACT.

  14. TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions.

    Science.gov (United States)

    Das, R; Timur, U T; Edip, S; Haak, E; Wruck, C; Weinans, H; Jahr, H

    2015-03-01

    Culturing chondrocytes under oxygen tension closely resembling their in vivo environment has been shown to have positive effects on matrix synthesis. In redifferentiation of expanded chondrocytes, hypoxia increased collagen type II expression. However, the mechanism by which hypoxia enhances redifferentiation is still unknown. We employed novel bioreactor technology to investigate the role of TGF-β, a growth factor heavily implicated in matrix production, in chondrocytes under hypoxia. Dedifferentiated chondrocytes in alginate were cultured for 48h under hypoxic (1% pO2) or normoxic (20%) conditions, using specialized bioreactor technology. Hypoxia induced gene expression (GDF1-, PHD3, HAS2, VEGF, COX2), chondrocyte markers (SOX9, COL2, COL1, AGC1 and MMP13), as well as components of the TGF-β signaling pathway (TGF-β isoforms, receptors, and downstream effectors) were analyzed by qPCR after 48h. In addition, protein expression of COL2 and TGF-β2 were evaluated. To further elucidate the involvement of the TGF-β2, we used siRNA and ALK5 inhibition. Hypoxic culture showed robust upregulation of hypoxic markers as well as upregulation of SOX9 and COL2 expression. Of all TGF-β isoforms, only TGF-β2 was upregulated under hypoxia on both gene and protein level. In addition, both type I receptors (ALK1 and ALK5) were upregulated under hypoxia, but type II and III receptors were not. TGF-β2 downregulation via siRNA abrogated the hypoxia-induced COL2 expression, as did ALK5 inhibition, giving a strong indication that this pathway is involved in chondrocyte redifferentiation under low oxygen tension. Hypoxic culture is a common approach for cartilage tissue engineering, but its underlying mechanisms are still poorly understood. Here, we show that increased TGF-β2 signaling through ALK5 plays a role in hypoxia-induced redifferentiation of chondrocytes. PMID:25621374

  15. Expression of Transient Receptor Potential Vanilloid (TRPV Channels in Different Passages of Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Richard Barrett-Jolley

    2012-04-01

    Full Text Available Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0 and cells from passages 1–3 (P1, P2 and P3 by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes.

  16. Cell-Engineered Human Elastic Chondrocytes Regenerate Natural Scaffold In Vitro and Neocartilage with Neoperichondrium in the Human Body Post-Transplantation

    OpenAIRE

    Yanaga, Hiroko; Imai, Keisuke; Koga, Mika; Yanaga, Katsu

    2012-01-01

    We have developed a unique method that allows us to culture large volumes of chondrocyte expansion from a small piece of human elastic cartilage. The characteristic features of our culturing method are that fibroblast growth factor-2 (FGF2), which promotes proliferation of elastic chondrocytes, is added to a culture medium, and that cell-engineering techniques are adopted in the multilayered culture system that we have developed.1–4 We have subsequently discovered that once multilayered chond...

  17. Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone.

    Science.gov (United States)

    Wang, Baoli; Jin, Hongting; Shu, Bing; Mira, Ranim R; Chen, Di

    2015-01-01

    Bone marrow stromal cells/osteoblasts were originally thought to be the major player in regulating osteoclast differentiation through expressing RANKL/OPG cytokines. Recent studies have established that chondrocytes also express RANKL/OPG and support osteoclast formation. Till now, the in vivo function of chondrocyte-produced OPG in osteoclast formation and postnatal bone growth has not been directly investigated. In this study, chondrocyte-specific Opg transgenic mice were generated by using type II collagen promoter. The Col2-Opg transgenic mice showed delayed formation of secondary ossification center and localized increase of bone mass in proximal metaphysis of tibiae. TRAP staining showed that osteoclast numbers were reduced in both secondary ossification center and proximal metaphysis. This finding was further confirmed by in vitro chondrocyte/spleen cell co-culture assay. In contrast, the mineral apposition rates were not changed in Col2-Opg transgenic mice. TUNEL staining revealed more apoptotic hypertrophic chondrocytes in the growth plate of Col2-Opg mice. Flow cytometry analysis showed fewer RANK-expressing cells in the marrow of Col2a1-Opg mice, suggesting the role of OPG in blocking the differentiation of early mesenchymal progenitors into RANK-expressing pre-osteoclasts. Our results demonstrated that OPG expression in chondrocyte increases bone mass in the proximal metaphysis of tibiae through negative regulation of osteoclast formation. PMID:26329493

  18. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes

    International Nuclear Information System (INIS)

    Decellularized extracellular matrix (ECM) has recently gained a lot of interest as an instructive biomaterial for regenerative medicine applications. In this study, the ability of adult human mesenchymal stem cell (hMSC)-derived ECM to rescue the phenotype of osteoarthritic (OA) chondrocytes and to further stimulate the differentiation of healthy (HL) chondrocytes was evaluated. ECMs were prepared by decellularizing hMSCs cultured in basic medium (BM) and chondrogenic medium (CM). The obtained ECM was then combined with a polymeric solution of Poly (ε-caprolactone) (PCL) dissolved in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP) and electrospun meshes were fabricated. Electrospun ECM scaffolds were characterized using scanning electron microscopy (SEM) and picrosirius red staining was used to confirm the presence of collagen. OA and HL chondrocytes were cultured on scaffolds containing hMSC ECM in BM or CM and compared to PCL electrospun scaffolds without ECM. Metabolic activity and chondrogenic gene expression were assessed by Alamar blue assay and quantitative PCR (qPCR) analysis, respectively. The ECM presence resulted in a significant difference in chondrocyte metabolic activity compared to PCL scaffolds alone. HL chondrocytes cultured for 21 days in chondrogenic medium on electrospun scaffolds containing hMSC ECM from BM showed a significant increase in collagen II and aggrecan expression compared to hMSC ECM from CM and PCL scaffolds without ECM incorporation. No significant influence of hMSC ECM presence on the chondrogenic signature of OA chondrocytes was found. The influence of decellularized hMSC ECM on HL chondrocytes suggests that hMSC-derived ECM scaffolds are promising candidates for cartilage tissue engineering applications. (paper)

  19. Simvastatin inhibits CD44 fragmentation in chondrocytes.

    Science.gov (United States)

    Terabe, Kenya; Takahashi, Nobunori; Takemoto, Toki; Knudson, Warren; Ishiguro, Naoki; Kojima, Toshihisa

    2016-08-15

    In human osteoarthritic chondrocytes, the hyaluronan receptor CD44 undergoes proteolytic cleavage at the cell surface. CD44 cleavage is thought to require transit of CD44 into cholesterol-rich lipid rafts. The purpose of this study was to investigate whether statins exert a protective effect on articular chondrocytes due to diminution of cholesterol. Three model systems of chondrocytes were examined including human HCS-2/8 chondrosarcoma cells, human osteoarthritic chondrocytes and normal bovine articular chondrocytes. Treatment with IL-1β + Oncostatin M resulted in a substantial increase in CD44 fragmentation in each of the three chondrocyte models. Pre-incubation with simvastatin prior to treatment with IL-1β + Oncostatin M decreased the level of CD44 fragmentation, decreased the proportion of CD44 that transits into the lipid raft fractions, decreased ADAM10 activity and diminished the interaction between CD44 and ADAM10. In HCS-2/8 cells and bovine articular chondrocytes, fragmentation of CD44 was blocked by the knockdown of ADAM10. Inhibition of CD44 fragmentation by simvastatin also resulted in improved retention of pericellular matrix. Addition of cholesterol and farnesyl-pyrophosphate reversed the protective effects of simvastatin. Thus, the addition of simvastatin exerts positive effects on chondrocytes including reduced CD44 fragmentation and enhanced the retention of pericellular matrix. PMID:27242325

  20. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.

    Science.gov (United States)

    Dahlin, Rebecca L; Kinard, Lucas A; Lam, Johnny; Needham, Clark J; Lu, Steven; Kasper, F Kurtis; Mikos, Antonios G

    2014-08-01

    This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects. PMID:24927682

  1. Edited by SONG Shuang-mingEffect of basic fibroblast growth factor and hyaluronic acid on proliferation of rabbit chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    沈雁; 李斯明; 唐毅; 钟灿灿; 梁佩红; 陈鸿辉

    2004-01-01

    Objective: To investigate the effect of basic fibroblast growth factor (bFGF) and hyaluronic acid (HA) on the proliferation of rabbit chondrocytes in vitro.Methods: Chondrocytes from the knee joints of New Zealand white rabbits were cultured. bFGF or HA or both were added into the culture medium respectively, and the proliferation of the chondrocytes was measured with MTT 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl-tetra-zolium bromide. (MTT, Sigma, M2128).Results: Basic fibroblast growth factor (10 ng/ml) with low concentration of fetal bovine serum in the culture medium promoted the proliferation of chondrocytes significantly, and this effect reached its maximum when concentration of bFGF reached 50 ng/ml. HA itself had no effect on the proliferation of chondrocytes. However, when bFGF was used in combination with HA, especially when the concentration of bFGF was 50-500 ng/ml and that of HA was 10-50 ng/ml, the effect on the proliferation of chondrocytes was much more than when bFGF or HA was used alone. Conclusions: bFGF can promote the proliferation of chondrocytes. HA, which has no effect on the proliferation of the cells, can maintain a normal growth of chondrocytes. When bFGF is used in combination with HA, more proliferation is obtained.

  2. Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-kun; LIU Yi; SONG Zhi-ming; FU Chang-feng; XU Xin-xiang

    2007-01-01

    Objective:To label the primary articular chondrocytes overexpressing human insulin-like growth factor ( hIGF-1 ) with green fluorescent protein (GFP) for repair of articular cartilage defects in rabbits. Methods:GFP cDNA was inserted into pcDNA3.1-hIGF-1 to label the expression vector.The recombinant vector,pcGI,a mammalian expression vector with multiple cloning sites under two respective cytomegalovirus promoters/enhancers,was transfected into the primary articular chondrocytes with the help of lipofectamine.After the positive cell clones were selected by G418,G418-resistant chondrocytes were cultured in medium for 4 weeks.The stable expression of hIGF-1 in the articular chondrocytes was determined by in situ hybridization and immunocytochemical analysis and the GFP was confirmed under a fluorescence microscope. Methyl thiazolyl tetrazolium (MTT) and flow cytometer methods were employed to determine the effect of transfection on proliferation of chondrocytes. Gray value was used to analyze quantitatively the expression of type Ⅱ collagen. Results:The expression of hIGF-1 and GFP was confirmed in transfected chondrocytes by in situ hybridization, immunocytochemical analysis and fluorescence microscope observation. Green articular chondrocytes overexpressing hIGF-1 could expand and maintain their chondrogenic phenotypes for more than 4 weeks.After the transfection of IGF-1,the proliferation of chondrocytes was enhanced and the chondrocytes could effectively maintain the expression of type Ⅱ collagen. Conclusions:The hIGF-1 eukaryotic expression vector containing GFP marker gene has been successfully constructed.GFP,which can be visualized in real time and in situ, is stably expressed in articular chondrocytes overexpressing hIGF-1.The labeled articular chondrocytes overexpressing hIGF-1 can be applied in cell-mediated gene therapy as well as for other biomedical purposes of transgenic chondrocytes.

  3. Doublecortin May Play a Role in Defining Chondrocyte Phenotype

    Directory of Open Access Journals (Sweden)

    Dongxia Ge

    2014-04-01

    Full Text Available Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.

  4. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies. PMID:26210205

  5. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  6. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving. PMID:24750320

  7. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    Science.gov (United States)

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  8. Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro.

    Science.gov (United States)

    Shakibaei, Mehdi; Mobasheri, Ali; Buhrmann, Constanze

    2011-05-01

    The mitogen-activated protein kinase (MAPK) pathway is stimulated in differentiated chondrocytes and is an important signaling cascade for chondrocyte differentiation and survival. Pro-inflammatory cytokines such as interleukin 1β (IL-1β) play important roles in the pathogenesis of osteoarthritis (OA) and rheumatoid arthritis (RA). In this study, we investigated whether curcumin and resveratrol can synergistically inhibit the catabolic effects of IL-1β, specifically the inhibition of the MAPK and subsequent apoptosis in human articular chondrocytes. Chondrocytes were either left untreated or treated with 10 ng/ml IL-1β or 1 μM U0126, a specific inhibitor of MAPK pathway alone for the indicated time periods or pre-treated with 10 μM curcumin, 10 μM resveratrol or 10 μM resveratrol and 10 μM curcumin for 4 h followed by co-treatment with 10 ng/ml IL-1β or 1 μM U0126 and 10 μM resveratrol, 10 μM curcumin or 10 μM resveratrol and 10 μM curcumin for the indicated time periods. Cultures were evaluated by immunoblotting and transmission electron microscopy. Incubation of chondrocytes with IL-1β resulted in induction of apoptosis, downregulation of β1-integrins and the extracellular signal-regulated kinase 1/2 (Erk1/2). Interestingly, U0126 induced apoptosis and blocked the above-mentioned proteins in a similar way to IL-1β. Furthermore, curcumin and resveratrol inhibited IL-1β- or U0126-induced apoptosis and downregulation of β1-integrins and Erk1/2 in human articular chondrocytes. These results suggest that combining these two natural compounds activates MEK/Erk signaling, a pathway that is involved in the maintenance of chondrocyte differentiation and survival. PMID:21484156

  9. Synergistic Chondroprotective Effect of α-Tocopherol, Ascorbic Acid, and Selenium as well as Glucosamine and Chondroitin on Oxidant Induced Cell Death and Inhibition of Matrix Metalloproteinase-3—Studies in Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Anne-Christi Graeser

    2009-12-01

    Full Text Available Overproduction of reactive oxygen species and impaired antioxidant defence accompanied by chronic inflammatory processes may impair joint health. Pro-inflammatory cytokines such as interleukin-1β (IL-1β and tumor necrosis factor alpha (TNF-α stimulate the expression of metalloproteinases which degrade the extracellular matrix. Little is known regarding the potential synergistic effects of natural compounds such as α-tocopherol (α-toc, ascorbic acid (AA and selenium (Se on oxidant induced cell death. Furthermore studies regarding the metalloproteinase-3 inhibitory activity of glucosamine sulfate (GS and chondroitin sulfate (CS are scarce. Therefore we have studied the effect of α-toc (0.1–2.5 µmol/L, AA (10–50 µmol/L and Se (1–50 nmol/L on t-butyl hydroperoxide (t-BHP, 100–500 µmol/L-induced cell death in SW1353 chondrocytes. Furthermore we have determined the effect of GS and CS alone (100–500 µmol/L each and in combination on MMP3 mRNA levels and MMP3 secretion in IL-1β stimulated chondrocytes. A combination of α-toc, AA, and Se was more potent in counteracting t-BHP-induced cytotoxicity as compared to the single compounds. Similarly a combination of CS and GS was more effective in inhibiting MMP3 gene expression and secretion than the single components. The inhibition of MMP3 secretion due to GS plus CS was accompanied by a decrease in TNF-α production. Combining natural compounds such as α-toc, AA, and Se as well as GS and CS seems to be a promising strategy to combat oxidative stress and cytokine induced matrix degradation in chondrocytes.

  10. Effect of transforming growth factor-β3 on mono and multilayer chondrocytes.

    Science.gov (United States)

    Sefat, Farshid; Youseffi, Mansour; Khaghani, Seyed Ali; Soon, Chin Fhung; Javid, Farideh

    2016-07-01

    Articular cartilage is an avascular and flexible connective tissue found in joints. It produces a cushioning effect at the joints and provides low friction to protect the ends of the bones from wear and tear/damage. It has poor repair capacity and any injury can result pain and loss of mobility. Transforming growth factor-beta (TGF-β), a cytokine superfamily, regulates cell function, including differentiation and proliferation. Although the function of the TGF-βs in various cell types has been investigated, their function in cartilage repair is as yet not fully understood. The effect of TGF-β3 in biological regulation of primary chondrocyte was investigated in this work. TGF-β3 provided fibroblastic morphology to chondrocytes and therefore overall reduction in cell proliferation was observed. The length of the cells supplemented with TGF-β3 were larger than the cells without TGF-β3 treatment. This was caused by the fibroblast like cells (dedifferentiated chondrocytes) which occupied larger areas compared to cells without TGF-β3 addition. The healing process of the model wound closure assay of chondrocyte multilayer was slowed down by TGF-β3, and this cytokine negatively affected the strength of chondrocyte adhesion to the cell culture surface. PMID:27108397

  11. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae

    International Nuclear Information System (INIS)

    The synthesis of a new low-molecular-weight collagen by cultured chicken embryo chondrocytes has been recently demonstrated. In this paper the authors report results on the location of chondrocytes synthesizing this new collagen (64K collagen) in the developing chicken embryo. The 64K collagen is synthesized in very large amounts by cells concentrated at the diaphysis of 9-day-old and at the epiphysis of 17-day-old embryo tibiae. These regions are characterized by a remodeling of the cartilage matrix leading to the replacement of the cartilage with bone tissue; therefore, this collagen appears to be a marker of a specific developmental stage of chondrocytes. The origin of cells competent for the synthesis of the 64K collagen is also discussed

  12. Biochemical and proteomic characterization of alkaptonuric chondrocytes.

    Science.gov (United States)

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as "black" AKU chondrocytes, while those coming from the white portion were referred to as "white" AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both "white" and "black" AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in "black" AKU chondrocytes. PMID:22213341

  13. Chimeric autologous/allogeneic constructs for skin regeneration.

    Science.gov (United States)

    Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn

    2014-08-01

    The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. PMID:25102552

  14. Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes.

    Science.gov (United States)

    Bar Oz, Michal; Kumar, Ashok; Elayyan, Jinan; Reich, Eli; Binyamin, Milana; Kandel, Leonid; Liebergall, Meir; Steinmeyer, Juergen; Lefebvre, Veronique; Dvir-Ginzberg, Mona

    2016-06-01

    Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age-related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three-dimensional alginate microbeads (3D). SOX9 was hypo-acetylated in 3D cultures and displayed enhanced binding to a -10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co-immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN. PMID:26910618

  15. Autologous blood storage in obstetrics.

    Science.gov (United States)

    Herbert, W N; Owen, H G; Collins, M L

    1988-08-01

    Autologous transfusion, storage of one's own blood for subsequent infusion if needed, is safe and effective in a variety of scheduled operative procedures. Obstetric involvement in such programs is very limited, however. Thirty pregnant women with placenta previa or other potential complications underwent 55 phlebotomies in an autologous transfusion program. Phlebotomies were performed at an average gestational age of 32.4 weeks (range 13-40). Changes in mean diastolic blood pressure and pulse were minimal. Electronic fetal monitoring tracings were normal during the 34 procedures in which it was used. The frequency of mild donor reactions (4%) was consistent with that in nonpregnant donors. After entry into this program, 15 patients received a total of 29 U of packed red blood cells (23 autologous; six homologous). Homologous transfusion was avoided in 86.7% of patients receiving blood. Selected pregnant women can participate safely in autologous blood collection programs, minimizing the need, and therefore the risks, of homologous transfusion. PMID:3292974

  16. Disturbance of nivalenol on expression of adhesion molecule CD44 on surface of cultured chondrocytes%雪腐镰刀菌烯醇能干扰培养软骨细胞表面黏附分子CD44的表达

    Institute of Scientific and Technical Information of China (English)

    孙健; 曹峻岭; 杨旭东; 孟列素

    2006-01-01

    BACKGROUND: Deficit of nivalenol (NIV) and selenium (Se) is related with kashin-beck disease (KBD) to certain extent. Hyaluronic acid (HA) metabolism affects directly the polymerization of proteoglycans (PG) and normal structure and function of cartilage. The integration with HA receptor on surface of cartilage tissue is the key link in HA metabolism. Being the main receptor of HA on chondrocytic membrane, CD44 expression impacts directly HA metabolism, further affects cartilage matrix metabolism, which is extremely important to maintaining the structure and function of cartilage matrix.OBJECTIVE: To probe into the injury and protection of related etiology of KBD to target tissue cells and the mechanism on degenerative necrosis of chondrocytes.DESIGN: Randomized controlled observation was designed.SETTING: Department of Genetics and Molecular-Biology of Medical College of Xi' an Jiaotong University.MATERIALS: The experiment was performed in Key Laboratory Room on Ministry of Education associated with Environment and Disease of Xian Jiaotong University from October 2002 to July 2004. One New Zealand pedigree young rabbit aged 30 days was employed and its humerus, femurs and tibia were cut out in surgery.METHODS: With cell culture, the model of bone tissue was reconstructed in vitro, in which, NIV of various concentrations, KBD suspicious infectious agent and Se, the protective factor were added. HA receptor CD44 on chondrocytic membrane and soluble CD44 in cell culture solution were determined.MAIN OUTCOME MEASURES: ① Microscopic observation of adhesion molecule CD44 on chondrocytic surface. ② Soluble CD44 in chongrocytic culture solution.RESULTS: ① Microscopic observation of adhesion molecule CD44 on chondrocytic surface: CD expression in chondrocytic membrane was decreased with increasing of NIV concentration and it was in tendency of increasing with Se added. ② Soluble CD44 in chongrocytic culture solution:The concentration of soluble CD44 in cell culture

  17. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Sofia; Kratz, Gunnar [Laboratory for Reconstructive Plastic Surgery, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Wetteroe, Jonas [Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Tengvall, Pentti, E-mail: sofia.pettersson@liu.se [Institute of Clinical Sciences, Department of Biomaterials, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg (Sweden)

    2011-12-15

    This study investigates human chondrocyte expansion on four macroporous gelatine microcarriers (CultiSpher) differing with respect to two manufacturing processes-the amount of emulsifier used during initial preparation and the gelatine cross-linking medium. Monolayer-expanded articular chondrocytes from three donors were seeded onto the microcarriers and cultured in spinner flask systems for a total of 15 days. Samples were extracted every other day to monitor cell viability and establish cell counts, which were analysed using analysis of variance and piecewise linear regression. Chondrocyte densities increased according to a linear pattern for all microcarriers, indicating an ongoing, though limited, cell proliferation. A strong chondrocyte donor effect was seen during the initial expansion phase. The final cell yield differed significantly between the microcarriers and our results indicate that manufacturing differences affected chondrocyte densities at this point. Remaining cells stained positive for chondrogenic markers SOX-9 and S-100 but extracellular matrix formation was modest to undetectable. In conclusion, the four gelatine microcarriers supported chondrocyte adhesion and proliferation over a two week period. The best yield was observed for microcarriers produced with low emulsifier content and cross-linked in water and acetone. These results add to the identification of optimal biomaterial parameters for specific cellular processes and populations.

  18. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    OpenAIRE

    Edda Francioso; Giacomo Rossi; Luca Lacitignola; Antonio Crovace

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random or...

  19. Preliminary clinical observations on autologous cultured skin fibroblasts transplantation to treat the facial soft tissue deficiencies%自体成纤维细胞移植充填面部凹陷的初步临床观察

    Institute of Scientific and Technical Information of China (English)

    曾玮; 魏子人; 刘岱; 柴密; 赵玉明

    2013-01-01

    Objective To observe the effect and safety of autologous cultured skin fibroblasts transplantation for treating depressed facial skin defects.Methods A total of 19 patients were treated from Jan,2010 to Oct,2010.Autologous skin fibroblasts were separated from postauricular skin biopsy or resected skin tissue in other surgeries such as blepharoplasty.They were cultured and expanded with exclusive method.Cells (2 × 107/ml) within three passages were injected intradermally at the site of skin depression three times at one-month interval.Adverse events were observed and recorded.Clinical effects were evaluated and graded by two unrelated physicians before and 6 months after the first injection.Results Cells from 16 patients were successfully cultured at the first time.The other 3 patients underwent a second harvest.A total amount of 6 × 108 cells could be reached within three passages in 45 days.16 out of 19 patients accomplished the whole course of this study.Minor adverse events were observed in two patients including small ulcer caused by over injection in one patient and slightly redness and swelling in the other.The redness disappeared after a week without any treatment.No serious complications were observed.Significant difference was noticed between the scores obtained before and after the treatment.Conclusions From this study,neither serious complications nor excessive cell proliferation or scar formation was found after cell injection.The effect of using autologous fibroblast transplantation was obvious and long-lasting,which provides a new choice for the treatment of depressed facial skin defects.%目的 观察自体成纤维细胞移植治疗面部痤疮、瘢痕等软组织凹陷的临床安全性和有效性.方法 2010年1月至11月,通过自体成纤维细胞移植,对19例患者进行面部软组织凹陷治疗.皮肤标本选用耳后皮肤或其他手术中切除的皮肤组织,利用特殊的培养方法体外培养扩

  20. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism.

    Science.gov (United States)

    Rajpurohit, R; Koch, C J; Tao, Z; Teixeira, C M; Shapiro, I M

    1996-08-01

    In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP-1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP-1 binding activities. Chondrocyte nuclear preparations bound an HIF-oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was

  1. Loss of the mammalian DREAM complex deregulates chondrocyte proliferation.

    Science.gov (United States)

    Forristal, Chantal; Henley, Shauna A; MacDonald, James I; Bush, Jason R; Ort, Carley; Passos, Daniel T; Talluri, Srikanth; Ishak, Charles A; Thwaites, Michael J; Norley, Chris J; Litovchick, Larisa; DeCaprio, James A; DiMattia, Gabriel; Holdsworth, David W; Beier, Frank; Dick, Frederick A

    2014-06-01

    Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes. PMID:24710275

  2. Loss of the Mammalian DREAM Complex Deregulates Chondrocyte Proliferation

    Science.gov (United States)

    Forristal, Chantal; Henley, Shauna A.; MacDonald, James I.; Bush, Jason R.; Ort, Carley; Passos, Daniel T.; Talluri, Srikanth; Ishak, Charles A.; Thwaites, Michael J.; Norley, Chris J.; Litovchick, Larisa; DeCaprio, James A.; DiMattia, Gabriel; Holdsworth, David W.; Beier, Frank

    2014-01-01

    Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes. PMID:24710275

  3. Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation

    OpenAIRE

    Wu, Wenjun; Gao, Xinghua; Xu, Xianxiang; Luo, Yubin; Liu, Mei; Xia, Yufeng; Dai, Yue

    2012-01-01

    Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SN...

  4. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes.

    Science.gov (United States)

    Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo; Schiraldi, Chiara

    2016-09-01

    Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti-inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time-lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis-like in vitro model, chondrocytes were treated with IL-1β and the anti-inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL-1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158-2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27018169

  5. Prostaglandin E2 regulates the expression of connective tissue growth factor (CTGF/CCN2 in human osteoarthritic chondrocytes via the EP4 receptor

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroshi

    2010-01-01

    Full Text Available Abstract Background The regulatory mechanisms of the expression of connective tissue growth factor/CCN family member 2 (CTGF/CCN2 in human articular chondrocytes have not been clarified. We investigated the effect of prostaglandin E2 (PGE2 on CTGF/CCN2 expression in chondrocytes. Findings Articular cartilage samples were obtained from patients with osteoarthritis (OA and chondrocytes were isolated and cultured in vitro. Chondrocytes were stimulated with PGE2, PGE receptor (EP-specific agonists, or interleukin (IL-1. CTGF expression was analyzed using quantitative polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. The inhibitory effects of EP receptor antagonists (for EP2 and EP4 against PGE2 stimulation were also investigated. Stimulation of chondrocytes with PGE2 or IL-1 significantly suppressed CTGF expression. The suppressive effect of PGE2 was reproduced by EP2/EP4 receptor agonists but not by EP1/EP3 receptor agonists, and was partially blocked by an EP4 receptor antagonist, suggesting that the EP4 receptor has a dominant role. Conclusions PGE2 may be involved in the regulation of CTGF/CCN2 expression in human articular chondrocytes via the EP4 receptor. Elucidation of EP4-mediated signaling in chondrocytes may contribute to a better understanding of the effects of PGE2 in arthritis.

  6. Platelet rich plasma associated with heterologous fresh and thawed chondrocytes on osteochondral lesions of rabbits

    Directory of Open Access Journals (Sweden)

    R.R. Filgueiras

    2014-02-01

    Full Text Available Chondrocytes obtained from stifle joint of New Zealand White rabbits were cultivated. Half of cells were maintained in culture for later implantation and the others frozen during six months to evaluate viability. A circular osteochondral defect was created in the right stifle of other twenty seven rabbits. The control group (CG received no treatment. The thawed (TH and fresh (FH heterologous groups received, respectively, an implant of cultivated thawed or fresh heterologous chondrocytes associated with platelet rich plasma (PRP. The CG group showed greatest pain and lameness compared to the other groups seven days after the implantation. Microscopically, at 45 and 90 days, the TH and FH groups showed filling with cartilaginous tissue containing chondrocytes surrounded by a dense matrix of glycosaminoglycans. In the CG group, healing occurred with vascularized fibrous connective tissue without integration to the subchondral bone. Cryopreserved heterologous chondrocytes were viable for implantation and healing of osteochondral lesions; the association with PRP allows the fixation of cells in the lesion and offers growth factors which accelerates repair with tissue similar to articular hyaline cartilage.

  7. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  8. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  9. Evaluation of Differentially Expressed Genes by Shear Stress in Human Osteoarthritic Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Mel S. Lee

    2009-02-01

    Full Text Available Background: The pathogenesis of osteoarthritis is related to abnormal mechanical stressesthat alter cartilage metabolism and chondrocyte survival. Among themechanical stresses, shear stress is held responsible for the development ofarthritis.Methods: Monolayer cultures of human osteoarthritic chondrocytes were subjected tofluid-induced shear stress in vitro. A cDNA microarray technology was usedto screen the differentially regulated genes and quantitative real-time polymerasechain reaction (Q-RT-PCR was used to confirm the results. The significanceof the expression ratio for each gene was determined on the lowestassociated false discovery rate calculated from the changes of gene expressionin relation to the standard deviation of repeated measurements for thatgene.Results: Exposure of human osteoarthritic chondrocytes to shear stress (0.82 Pa for 2hours differentially regulated 373 and 227 clones in two independentmicroarray analyses with at least a 1.7-fold change. By comparing the differentiallyregulated clones, 14 upregulated and 6 downregulated genes wereidentified. Many of the differentially expressed genes were related to cellproliferation/differentiation (TGF-β, acidic FGF, cell survival/apoptosis(CYP1B1, BCL2L3, TNFRSF11B, chemokine ligands, ADM, and matrixhomeostasis (DCN, SDC2, MGP, WISP2.Conclusion: The gene expression patterns following shear stress show a high similarity tothe gene expression in the reparative process of osteoarthritis chondrocytes.Using microarray analysis, this study suggests a close interaction betweenshear stress and the pathogenesis of osteoarthritis.

  10. Xenotransplantation of pig chondrocytes: therapeutic potential and barriers for cartilage repair.

    Science.gov (United States)

    Sommaggio, R; Uribe-Herranz, M; Marquina, M; Costa, C

    2016-01-01

    Transplantation may be the best option for the repair of many cartilage lesions including early osteoarthritis. Currently, autologous and allogeneic chondrocytes are grafted into cartilage defects to treat selected patients with moderate clinical success. However, their limited use justifies exploring novel therapies for cartilage repair. Xenotransplantation could become a solution by offering high cell availability, quality and genetic engineering capabilities. The rejection process of xenogeneic cartilage is thus being elucidated in order to develop counteractive strategies. Initial studies determined that pig cartilage xenografts are rejected by a slow process comprising humoral and cellular responses in which the galactose α1,3-galactose antigen participates. Since then, our group has identified key mechanisms of the human response to pig chondrocytes (PCs). In particular, human antibody and complement contribute to PC rejection by inducing a pro-inflammatory milieu. Furthermore, PCs express and up-regulate molecules which are functionally relevant for a variety of cellular immune responses (SLA-I, the potent co-stimulatory molecule CD86, and adhesion molecules VCAM-1 and ICAM-1). These participate by triggering a T cell response, as well as supporting a prominent role of the innate immune responses led by natural killer (NK) cells and monocytes/macrophages. Human NK cells lyse PCs by using selected NK activating receptors, whereas human monocytes are activated by PCs to secrete cytokines and chemokines. All this knowledge sets the bases for the development of genetic engineering approaches designed to avert rejection of xenogeneic chondrocytes and leads the way to developing new clinical applications for cartilage repair. PMID:27377665

  11. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.

    Science.gov (United States)

    Chen, Cheng; Yin, Li; Song, Xiongbo; Yang, Hao; Ren, Xiang; Gong, Xiaoyuan; Wang, Fuyou; Yang, Liu

    2016-01-01

    Human articular cartilage is subjected to repetitive mechanical loading during life time. As the only cellular component of articular cartilage, chondrocytes play a key role in the mechanotransduction within this tissue. The mechanoresponses of chondrocytes are largely determined by the cytoskeleton. Vimentin intermediate filaments, one of the major cytoskeletal components, have been shown to regulate chondrocyte phenotype. However, the contribution of vimentin in chondrocyte mechanoresponses remains less studied. In this study, we seeded goat articular chondrocytes on a soft polyacrylamide gel, and disrupted the vimentin cytoskeleton using acrylamide. Then we applied a transient stretch or compression to the cells, and measured the changes of cellular stiffness and traction forces using Optical Magnetic Twisting Cytometry and Traction Force Microscopy, respectively. In addition, to study the effects of vimentin disruption on the intracellular force generation, we treated the cells with a variety of reagents that are known to increase or decrease cytoskeletal tension. We found that, after a compression, the contractile moment and cellular stiffness were not affected in untreated chondrocytes, but were decreased in vimentin-disrupted chondrocytes; after a stretch, vimentin-disrupted chondrocytes showed a lower level of fluidization-resolidification response compared to untreated cells. Moreover, vimentin-disrupted chondrocytes didn't show much difference to control cells in responding to reagents that target actin and ROCK pathway, but showed a weaker response to histamine and isoproterenol. These findings confirmed chondrocyte vimentin as a major contributor in withstanding compressive loading, and its minor role in regulating cytoskeletal tension. PMID:26616052

  12. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis

    OpenAIRE

    1995-01-01

    We have investigated the early cellular events that take place during the change in lineage commitment from hypertrophic chondrocytes to osteoblast-like cells. We have induced this osteogenic differentiation by cutting through the hypertrophic cartilage of embryonic chick femurs and culturing the explants. Immunocytochemical characterization, [3H]thymidine pulse-chase labeling, in situ nick translation or end labeling of DNA breaks were combined with ultrastructural studies to characterize th...

  13. Hyaluronan Does Not Affect Bupivacaine’s Inhibitory Action on Voltage-Gated Potassium Channel Activities in Bovine Articular Chondrocytes

    OpenAIRE

    William Hester; Jinnan Yang; Guo-Yong Wang; Sen Liu; Michael J O'Brien; Savoie, Felix H.; Zongbing You

    2012-01-01

    Objectives. The objective of this paper is to determine if hyaluronan affects bupivacaine's anesthetic function. Methods. Whole cell patch clamp recordings were performed on bovine articular chondrocytes cultured in 60 mm dishes. The chondrocytes were treated with phosphate-buffered saline (control group), 7.5 mg/mL hyaluronan (Orthovisc), 0.25% bupivacaine, or a mixture of 7.5 mg/mL hyaluronan and 0.25% bupivacaine. Outward currents were elicited by step depolarization from −90 mV to 150 mV ...

  14. In vitro effects of sodium hyaluronate on the proliferation and the apoptosis in chondrocytes from patients with Kashin-Beck disease and osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    Zongqiang Gao; Xiong Guo; Chen Duan; Weijuan Ma; Peng Xu; Ruiyu Liu; Qisheng Gu; Junchang Chen

    2009-01-01

    Objective:To identify the in vitro effects of sodium hyaluronate(HA) on the proliferation and the apoptosis of chondrocytes from patients with Kashin-Beck disease(KBD) and osteoarthritis(OA). Methods:Samples of articular cartilages from KBD and OA patients, as well as healthy volunteers(6 subjects in each of the 3 groups) were dissected, digested with collagenase and the cells cultured in monolayers. Chondrocytes from each sample were assigned to an untreated group and two HA-treated groups: H0(no HA), H100(HA, 0.1 g/L) and H500(HA, 0.5 g/L). The first passage chondrocytes were used to observe proliferation using the MTT assay, and apoptosis by flow cytometry through Annexin V/PI staining. Results:HA promoted proliferation of chondrocytes in all the three groups, and in KBD and OA groups, for cells cultured for 4 and 6 days, H500 significantly promoted the cell proliferation. The apoptotic rates of both KBD and OA group chondrocytes were in the order H500 < HA100 < H0. Conclusion:Sodium hyaluronate administration has a dose-dependendent vitro effect to promote proliferation and inhibit apoptosis of chondrocytes from patients with KBD and OA.

  15. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling.

    Science.gov (United States)

    Xing, Weirong; Cheng, Shaohong; Wergedal, Jon; Mohan, Subburaman

    2014-10-01

    Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. PMID:24753031

  16. Nanosized fibers' effect on adult human articular chondrocytes behavior

    Energy Technology Data Exchange (ETDEWEB)

    Stenhamre, Hanna [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Thorvaldsson, Anna, E-mail: anna.thorvaldsson@swerea.se [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Swerea IVF, Mölndal (Sweden); Enochson, Lars [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Walkenström, Pernilla [Swerea IVF, Mölndal (Sweden); Lindahl, Anders [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Brittberg, Mats [Cartilage Research Unit, University of Gothenburg, Department Orthopaedics, Kungsbacka Hospital, Kungsbacka (Sweden); Gatenholm, Paul [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2013-04-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum.

  17. In vitro evidence for effects of magnesium supplementation on quinolone-treated horse and dog chondrocytes.

    Science.gov (United States)

    Egerbacher, M; Wolfesberger, B; Gabler, C

    2001-03-01

    Quinolones and magnesium deficiency cause similar lesions in joint cartilage of young animals. Chondrocytes cultivated in the presence of quinolones and in Mg-free medium show severe alterations in cytoskeleton and decreased ability to adhere to the culture dish. We investigated whether Mg2+ supplementation can prevent quinolone-mediated effects on chondrocytes in vitro. Chondrocytes cultivated in Dulbecco's modified Eagle's medium/HAM's F-12 medium were treated with ciprofloxacin (80 and 160 microg/ml) and enrofloxacin (100 and 150 microg/ml). Mg2+ was added at a concentration of 0.0612 mg/ml (MgCl) and 0.0488 mg/ml (MgSO4) or a triple dose. In addition, cells were cultivated in Mg-free medium and accordingly treated with Mg2+ supplementation. After 5 days in culture, the number of adherent cells per milliliter was determined. The number of chondrocytes in quinolone-treated groups decreased to 12-36% that of the control group within the culture period. With Mg2+ supplementation, the number of attached cells increased to 40-70% that of control cells. The threefold dose of Mg2+ led to better results than did the single dose. Cell proliferation tested by immunohistochemical staining with Ki67 (clone MIB5) decreased from 70% in control groups to 55%, 48%, and 30% in enrofloxacin-treated groups in a concentration dependent manner (50, 100, and 150 microg/ml). Addition of Mg2+ did not increase the rate of cell proliferation. These results suggest that a great part of quinolone-induced damage is due to magnesium complex formation, as Mg2+ supplementation is able to reduce the effects in vitro. However, quinolone effects on cell proliferation seem to be an independent process that is not influenced by magnesium supplementation. PMID:11280370

  18. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh

    OpenAIRE

    Wang, Weiguang; Lian, Na; Ma., Yun; LI, LINGZHEN; Gallant, Richard C.; Elefteriou, Florent; Yang, Xiangli

    2012-01-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4–/–;Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteog...

  19. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Science.gov (United States)

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  20. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  1. Evidence for regulated interleukin-4 expression in chondrocyte-scaffolds under in vitro inflammatory conditions.

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Rai

    Full Text Available OBJECTIVE: To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions. METHODS: Mature articular chondrocytes from dogs (n = 3 were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive or pCOX-2.cIL-4 (cytokine-responsive plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS® to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc IL-1β (100 ng/ml plus rcTNFα (50 ng/ml in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic properties of cIL-4. RESULTS: cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE(2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable. Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and

  2. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential

    Institute of Scientific and Technical Information of China (English)

    Karen E JAY; Anne ROULEAU; T Michael UNDERHILL; Mickie BHATIA

    2004-01-01

    With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes.Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34-cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.

  3. Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation.

    Science.gov (United States)

    Wu, Wenjun; Gao, Xinghua; Xu, Xianxiang; Luo, Yubin; Liu, Mei; Xia, Yufeng; Dai, Yue

    2013-03-01

    Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SNP), a NO donor. After treatment with different concentrations of SFC (30, 100, 300, 1,000 μg/ml) for 24 h, nucleic morphology, apoptotic rate, mitochondrial function and caspase-3 activity of chondrocytes were examined. The results showed that SNP induced remarkable apoptosis of rabbit chondrocytes evidenced by Hoechst 33258 staining and flow cytometry analysis, and SFC prevented the apoptosis in a concentration-dependent manner. Further studies indicated that SFC could prevent the depolarization of mitochondrial membrane potential (∆ψm) in SNP-treated chondrocytes and suppress the activation of caspase-3. It can be concluded that the protection of SFC on articular chondrocytes is associated with the anti-apoptosis effects via inhibiting the mitochondrion impairment and caspase-3 activation. PMID:22821055

  4. Autologous Fat Injection for Augmented Mammoplasty

    International Nuclear Information System (INIS)

    Autologous fat injection is one of the methods utilized for augmented mammoplasty methods. In this surgical procedure, the fat for transfer is obtained from the donor site of the patient's own body by liposuction and the fat is then injected into the breast. We report here cases of three patients who underwent autologous fat injection. Two of the patients had palpable masses that were present after surgery. The serial imaging findings and surgical method of autologous fat transfer are demonstrated

  5. Autologous Fat Injection for Augmented Mammoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eul Sik; Seo, Bo Kyoung; Yi, Ann; Cho, Kyu Ran [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2008-12-15

    Autologous fat injection is one of the methods utilized for augmented mammoplasty methods. In this surgical procedure, the fat for transfer is obtained from the donor site of the patient's own body by liposuction and the fat is then injected into the breast. We report here cases of three patients who underwent autologous fat injection. Two of the patients had palpable masses that were present after surgery. The serial imaging findings and surgical method of autologous fat transfer are demonstrated

  6. Evaluation of the effect of antiarthritic drugs on the secretion of proteoglycans by lapine chondrocytes using a novel assay procedure.

    OpenAIRE

    Collier, S; P. Ghosh

    1989-01-01

    A new method is described for separating free 35SO4-- from 35SO4 labelled proteoglycans synthesised by rabbit articular chondrocytes cultured in the presence of excess 35SO4--. The procedure uses the low solubility product of barium sulphate to remove, by precipitation, free 35SO4-- from culture medium. Optimum recovery of 35SO4 labelled proteoglycans was achieved after papain digestion to release 35SO4-glycosaminoglycans, and addition of chondroitin sulphate before the precipitation step. Us...

  7. Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity

    Institute of Scientific and Technical Information of China (English)

    YIN Jing; YANG Zheng; CAO Yong-ping; GE Zi-gang

    2011-01-01

    Background There is a difficulty in evaluating the in vivo functionality of individual chondrocytes,and there is much heterogeneity among cartilage affected by osteoarthritis (OA).In this study,in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.Methods Cartilage of varying degeneration of end-stage OA was harvested,while cell yield and matrix glycosaminoglycan (GAG) content were measured.Cell morphology,proliferation,and gene expression of collagen type Ⅰ,Ⅱ,and Ⅹ,aggrecan,matrix metalloproteinase 13 (MMP-13),and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.Results Both the number of cells and the GAG content increased with increasing severity of OA.Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture.Gene expression of collagen type Ⅱ,collagen type X as well as GAG decreased with severity of cartilage degeneration,while expression of collagen type Ⅰ increased.Expression of MMP-13 increased with severity of cartilage degeneration,while expression of ADAMTS-5 remained stable.Expression of collagen type Ⅱ,X,GAG,and MMP-13 substantially decreased with in vitro culture.Expression of collagen type Ⅰ increased with in vitro cultures,while expression of ADAMTS 5 remained stable.Conclusions Expression of functional genes such as collagen type Ⅱ and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation.Gene expression of collagen Ⅰ and MMP-13 increased with severity of cartilage degeneration.

  8. Effect of the disruption of three cytoskeleton components on chondrocyte metabolism in rabbit knee cartilage

    Institute of Scientific and Technical Information of China (English)

    Duan Wangping; Wei Lei; Cao Xiaoming; Guo Heng; Wang Lei; Hao Yongzhuang; Wei Xiaochun

    2014-01-01

    Background Chondrocytes' phenotype and biosynthesis of matrix are dependent on having an intact cytoskeletal structure.Microfilaments,microtubules,and intermediate filaments are three important components of the cytoskeletal structure of chondrocytes.The aims of this study were to determine and compare the effects of the disruption of these three cytoskeletal elements on the apoptosis and matrix synthesis by rabbit knee chondrocytes in vitro.Methods Chondrocytes were isolated from full-thickness knee cartilage of two-month-old rabbits using enzymatic methods (n=24).The isolated cells were stabilized for three days and then exposed to low,medium,and high doses of chemical agents that disrupt the three principal cytoskeletal elements of interest:colchicine for microtubules,acrylamide for intermediate filaments,and cytochalasin D for actin microfilaments.A group of control cells were treated with carrier.Early apoptosis was assessed using the Annexin-FITC binding assay by flow cytometry on days 1 and 2 after exposure to the disrupting chemical agents.The components and distribution of the cytoskeleton within the cells were analyzed by laser scanning confocal microscopy (LSCM) with immunofluorescence staining on day 3.The mRNA levels of aggrecan (AGG) and type Ⅱ collagen (Col-2) and their levels in culture medium were analyzed using real-time PCR and enzymelinked immunosorbent serologic assay (ELISA) on days 3,6,and 9.Results In the initial drug-dose-response study,there was no significant difference in the vitality of cells treated with 0.1 μmol/L colchicine,2.5 mmol/L acrylamide,and 10 μg/L cytochalasin D for two days when compared with the control group of cells.The concentrations of colchicine and acrylamide treatment selected above significantly decreased the number of viable cells over the nine-day culture and disrupted significantly more cell nuclei.Real-time PCR and ELISA results showed that the mRNA levels and medium concentrations of AGG and Col-2 were

  9. Effect of hyaluronic acid on chondrocyte apoptosis

    OpenAIRE

    Barreto, Ronald Bispo; Sadigursky, David; de Rezende, Marcia Uchoa; Hernandez, Arnaldo José

    2015-01-01

    OBJECTIVE: To determine the percentage of apoptotic cells in a contusion model of osteoarthritis (OA) and to assess whether intra-articular injection of high doses of hyaluronic acid (HA) immediately after trauma reduces chondrocyte apoptosis. METHODS: Forty knees from adult rabbits were impacted thrice with a 1 kg block released through a 1 meter tall cylinder (29.4 Joules). Subsequently, 2 mL of HA was injected in one knee and 2 mL saline in the contra-lateral knee. Medication were administ...

  10. Bioimaging: An Useful Tool to Monitor Differentiation of Human Embryonic Stem Cells into Chondrocytes.

    Science.gov (United States)

    Suchorska, Wiktoria M; Lach, Michał S; Richter, Magdalena; Kaczmarczyk, Jacek; Trzeciak, Tomasz

    2016-05-01

    To improve the recovery of damaged cartilage tissue, pluripotent stem cell-based therapies are being intensively explored. A number of techniques exist that enable monitoring of stem cell differentiation, including immunofluorescence staining. This simple and fast method enables changes to be observed during the differentiation process. Here, two protocols for the differentiation of human embryonic stem cells into chondrocytes were used (monolayer cell culture and embryoid body formation). Cells were labeled for markers expressed during the differentiation process at different time points (pluripotent: NANOG, SOX2, OCT3/4, E-cadherin; prochondrogenic: SOX6, SOX9, Collagen type II; extracellular matrix components: chondroitin sulfate, heparan sulfate; beta-catenin, CXCR4, and Brachyury). Comparison of the signal intensity of differentiated cells to control cell populations (articular cartilage chondrocytes and human embryonic stem cells) showed decreased signal intensities of pluripotent markers, E-cadherin and beta-catenin. Increased signal intensities of prochondrogenic markers and extracellular matrix components were observed. The changes during chondrogenic differentiation monitored by evaluation of pluripotent and chondrogenic markers signal intensity were described. The changes were similar to several studies over chondrogenesis. These results were confirmed by semi-quantitative analysis of IF signals. In this research we indicate a bioimaging as a useful tool to monitor and semi-quantify the IF pictures during the differentiation of hES into chondrocyte-like. PMID:26354117

  11. Bioluminescence imaging of chondrocytes in rabbits by intraarticular injection of D-luciferin

    International Nuclear Information System (INIS)

    Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease

  12. Effects of cytokines, growth factors and drugs on matrix metalloproteinases activities of osteoarthritic chondrocytes and synoviocytes

    Institute of Scientific and Technical Information of China (English)

    GUAN Jian-long; HAN Xing-hai; SHI Gui-ying; YUAN Guo-hua

    2001-01-01

    Objective: To evaluate the effects of some cytokines, TGF-β1 and drugs on matrix metalloproteinases (MMPs) activities in culture medium of arthritic chondrocytes and synoviocytes. Methods: The chondrocyte and synoviocyte monolayers isolated from the cartilages and synovial fluids in 10 knee OA patients were treated with IL-1β TGF-β1, TNF-α, diclofenac acid, dexamethasone or doxycycline individually and together for 72 h. Zymography was used to determine the activities of MMP-2 and -9. Results: The chondrocyte monolayers produced MMP-2 and -9, while the synoviocytes only produced MMP-2. The MMP-9 activity was markedly enhanced by IL-1β TNF-α and diclofenac. IL-1β was the most effective stimulus, and had synergistic effect with TNF-α or diclifenac. MMP-2 activity was not affected. Doxcycline, TGF-β1 and dexamethasone could depress the activities of MMP-9 and MMP-2, and antagonize the enhancing effect of IL-1β TNF-α or diclofenac. Conclusion: IL-1β and TNF-α may play important roles degrading OA cartilage, while TGF-β1 and doxycycline may be protective factors.

  13. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis.

    Science.gov (United States)

    Liu, Chao; Cao, Yongping; Yang, Xin; Shan, Pengcheng; Liu, Heng

    2015-10-01

    The main pathogenic events in osteoarthritis (OA) include loss and abnormal remodeling of cartilage extracellular matrix. The present study aimed to evaluate the protective effect of tauroursodeoxycholic acid on chondrocyte apoptosis induced by endoplasmic reticulum (ER) stress. Articular cartilage tissues were collected from 18 patients who underwent total knee arthroplasty and were analyzed histologically. Subsequently, chondrocyte apoptosis was assessed by TUNEL. Quantitative polymerase chain reaction and western blot analysis were employed to evaluate gene and protein expression, respectively, of ER stress markers, including glucose‑regulated protein 78 (GRP78), growth arrest and DNA‑damage‑inducible gene 153 (GADD153) and caspase‑12 along with type II collagen. Chondrocytes obtained from osteoarthritis patients at different stages were cultured in three conditions including: No treatment (CON group), tunicamycin treatment to induce ER stress (ERS group) and tauroursodeoxycholic acid treatment after 4 h of tunicamycin (TDA group); and cell proliferation, apoptosis, function and ER stress level were assessed. Degradation of cartilage resulted in histological damage with more apoptotic cartilage cells observed. Of note, GRP78, GADD153 and caspase‑12 mRNA and protein expression increased gradually from grade I to III cartilage tissue, while type II collagen expression decreased. Tunicamycin induced ER stress, as shown by a high expression of ER stress markers, reduced cell proliferation, increased apoptosis and decreased synthesis of type II collagen. Notably, tauroursodeoxycholic acid treatment resulted in the improvement of tunicamycin‑induced ER stress. These results indicated that ER stress is highly involved in the tunicamycin‑induced apoptosis in chondrocytes, which can be prevented by tauroursodeoxycholic acid. PMID:26238983

  14. Femtosecond laser microstructuring and bioactive nanocoating of titanium surfaces in relation to chondrocyte growth

    Science.gov (United States)

    Ilgner, Justus; Biedron, Slavomir; Fadeeva, Elena; Chichkov, Boris; Klee, Doris; Loos, Anneke; Sowa-Söhle, Eveline; Westhofen, Martin

    2010-02-01

    Introduction: Titanium implants can be regarded as the current gold standard for restoration of sound transmission in the middle ear following destruction of the ossicular chain by chronic inflammation. Many efforts have been made to improve prosthesis design, while less attention had been given to the role of the interface. We present a study on chemical nanocoating on microstructured titanium contact surface with bioactive protein. Materials and Methods: Titanium samples of 5mm diameter and 0,25mm thickness were structured by means of a Ti:Sapphire femtosecond laser operating at 970nm with parallel lines of 5μm depth, 5μm width and 10μm inter-groove distance. In addition, various nanolayers were applied to titanium samples by aminosilanization, to which Star-Polyethylene glycole (Star-PEG) molecules plus biomarkers (e.g. RGD peptide sequence) were linked. Results: Chondrocytes could be cultured on microstructured surfaces without reduced rate of vital / dead cells compared to native surfaces. Chondrocytes also showed contact guidance by growing along ridges particularly on 5μm lines. On nanocoated titanium samples, first results showed a strong effect of Star-PEG suppressing unspecific protein absorption, while RGD peptide sequence did not promote chondrocyte cell growth. Discussion: According to these results, the idea of promoting cell growth on titanium prosthesis contact surfaces compared to non-contact surfaces (e.g. prosthesis shaft) by nanocoating is practicable. However, relative selectivity induced by microstructures for growth of chondrocytes compared to fibrocytes is subject to further evaluation.

  15. Screening for autologous blood transfusions

    DEFF Research Database (Denmark)

    Mørkeberg, J; Belhage, B; Ashenden, M;

    2009-01-01

    The ratio between the amount of hemoglobin in the mature erythrocyte population and the reticulocytes (RBCHb:RetHb ratio) has previously been suggested as a marker to screen for EPO-abuse. We speculated that the reinfusion of blood would lead to a marked increase in this ratio, making it a valuable...... parameter in the screening for autologous blood doping. Three bags of blood (approximately 201+/-11 g of Hb) were withdrawn from 16 males and stored at either -80 degrees C (-80 T, n=8) or +4 degrees C (+4 T, n=8) and reinfused 10 weeks or 4 weeks later, respectively. Seven subjects served as controls...... week wash-out period were identified as 'suspicious', and 18.8% (-80 T) and 4.3% (+4 T) as 'positive'. In total, 7 out of 16 (43.8%) subjects had at least one sample exceeding 182.9. Compared to the currently used indirect parameters, the RBCHb:RetHb ratio is the best indicator of autologous blood...

  16. Carotid Repair Using Autologous Adipose-Derived Endothelial Cells

    Science.gov (United States)

    Froehlich, Harald; Gulati, Rajiv; Boilson, Barry; Witt, Tyra; Harbuzariu, Adriana; Kleppe, Laurel; Dietz, Allan B.; Lerman, Amir; Simari, Robert D.

    2009-01-01

    Background and Purpose Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function following vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was employed. Methods Autologous rabbit ADECS were generated utilizing defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intra-arterially following acute balloon injury. Additional delivery studies were performed following functional selection of cells prior to delivery. Results Following rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked re-endothelialization 48 hours following acute vascular injury as compared to saline controls (82.2 ±26.9% vs 4.2±3.0% pADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation following vascular injury. Conclusions Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells which demonstrate the capacity to rapidly improve re-endothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model. PMID:19286583

  17. Novel Elements of the Chondrocyte Stress Response Identified Using an in Vitro Model of Mouse Cartilage Degradation.

    Science.gov (United States)

    Wilson, Richard; Golub, Suzanne B; Rowley, Lynn; Angelucci, Constanza; Karpievitch, Yuliya V; Bateman, John F; Fosang, Amanda J

    2016-03-01

    The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis. PMID:26794603

  18. Optimization of dual effects of Mg-1Ca alloys on the behavior of chondrocytes and osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    Yana Dou; Ayeesha Mujeeb; Yufeng Zheng; Zigang Ge

    2014-01-01

    Mg ions can enhance the proliferation and redifferentiation of chondrocytes and the osteogenic differentiation of osteoblasts at specific concentrations, respectively. However, degradation of Mg alloys at varying degradation rates could lead to complex changes in the surrounding tissue environment, such as changes in the dynamic concentration of Mg ions and subsequent pH value. Considering the above mentioned factors, the comprehensive effects of Mg alloys on chondrocytes and osteoblasts behaviors have not yet been optimized. In this study, we evaluated the effects of Mg–1Ca microspheres on cell behavior with an aim to optimize conditions favorable for both cell types. Cells were cultured with Mg–1Ca microspheres prepared using the following concentrations:250μg/ml, 500μg/ml and 1000μg/ml. At specific time points, cytotoxicity, expression of specific genes and extracellular matrix deposition by cells (Alizarin Red Staining of osteoblasts and Alcian blue staining for chondrocytes) were evaluated. The experimental results revealed that Mg–1Ca microspheres prepared at a concentration of 250μg/ml were optimum for both cell types, where chondrocytes were found to be in hypertrophy state while osteoblasts in close proximity to the microspheres showed osteogenetic differentiation. Interestingly, a slight change in osteoblasts behavior was observed nearer to and at a relative distance away from Mg–1Ca microspheres, an important observation for administering the application of microspheres as potential scaffolds.

  19. DEC2 is a negative regulator for the proliferation and differentiation of chondrocyte lineage-committed mesenchymal stem cells.

    Science.gov (United States)

    Sasamoto, Tomoko; Fujimoto, Katsumi; Kanawa, Masami; Kimura, Junko; Takeuchi, Junpei; Harada, Naoko; Goto, Noriko; Kawamoto, Takeshi; Noshiro, Mitsuhide; Suardita, Ketut; Tanne, Kazuo; Kato, Yukio

    2016-09-01

    Differentiated embryo chondrocyte 2 (DEC2) is a basic helix-loop-helix-Orange transcription factor that regulates cell differentiation in various mammalian tissues. DEC2 has been shown to suppress the differentiation of mesenchymal stem cells (MSCs) into myocytes and adipocytes. In the present study, we examined the role of DEC2 in the chondrogenic differentiation of human MSCs. The overexpression of DEC2 exerted minimal effects on the proliferation of MSCs in monolayer cultures with the growth medium under undifferentiating conditions, whereas it suppressed increases in DNA content, glycosaminoglycan content, and the expression of several chondrocyte-related genes, including aggrecan and type X collagen alpha 1, in MSC pellets in centrifuge tubes under chondrogenic conditions. In the pellets exposed to chondrogenesis induction medium, DEC2 overexpression downregulated the mRNA expression of fibroblast growth factor 18, which is involved in the proliferation and differentiation of chondrocytes, and upregulated the expression of p16INK4, which is a cell cycle inhibitor. These findings suggest that DEC2 is a negative regulator of the proliferation and differentiation of chondrocyte lineage-committed mesenchymal cells. PMID:27430159

  20. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Han, Yohan; Kim, Song Ja

    2016-08-15

    Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis. PMID:27475840

  1. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts.

    Science.gov (United States)

    Vonk, Lucienne A; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2010-06-01

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying enzymes are affected by glucose deprivation. Chondrocytes obtained from nucleus pulposus, annulus fibrosus, articular cartilage, and meniscus and dermal fibroblasts were cultured under control conditions or exposed to the ER stress-inducing treatments of tunicamycin addition or glucose withdrawal. Both treatments resulted in an up-regulation of the gene expression of the ER stress markers in all cell types, but dermal fibroblasts showed a delayed response to glucose deprivation. Collagen gene expression was down-regulated, and less collagen protein was present in the cells under both ER stress-inducing conditions. The expression levels of the prolyl 4-hydroxylases were either not affected (P4ha3) or increased (P4ha1 and P4ha2), the levels of the lysyl hydroxylases decreased, and the N-propeptidase Adamts2 decreased. Both treatments induced apoptosis. Chondrocytes respond more quickly to glucose deprivation, but it appears that chondrocytes can cope better with tunicamycin-induced ER stress than fibroblasts. Although collagen synthesis was inhibited by the treatments, some collagen-modifying enzymes and chaperones were up-regulated, suggesting that there is no causal relation between them. PMID:20555395

  2. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    Science.gov (United States)

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels+SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface

  3. Autologous Transfusion in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Radmehr H

    2003-11-01

    Full Text Available Preoperative autologous blood donation is commonly used to reduce exposure to homologous blood transfusions among patients undergoing elective cardiac surgery. The aim of this study was to evaluate the effect of autologous transfusion on patients' hematocryte value, intra and postoperative blood loss, hospitalization time, the development of infective complications and other factors. Materials and Methods: Between June 2001 to April 2002, 208 patients were underwent cardiac surgery in cardiac surgery ward in Imam Khomeini Medical Center. One or more blood units donate from 104 Patients before cardiopulmonary bypass and heparin injection, and transfused to them after CPB and Protamin injection (autologous Group, group 1. 104 patients underwent cardiac surgery routinely (control group, group 2."nResults: Mean of age was 55.9±8.6 in group 1 and 56.6±9.3 in group 2 (P=NS. 73 male and 31 females were in group 1 and 79 males and 25 females were in group 2 (P=NS. Smoking, familial history, hyperlipidemia, diabetes mellitus, renal failure, hypertension, stroke, and history of myocardial infarction was similar in two groups."nSeverity of angina, urgency operation, number vessels disease, duration of cardiopulmonary bypass, duration of aortic cross clamp time, use of internal thoracic artery graft, and number of grafts was similar in both groups. Mean of bleeding post operation was 548 cc in group 1 and 803 cc in-group 2 (P=0.003. Bleeding that need to operation was 1.8% in group 1 and 8.6% in group 2 (P=0.002. Wound infection, mediastinitis, renal failure, ventilatory prolonged, stroke, need to Intra-aortic Balloon Pump (IABP, intraoperative bleeding, and hospital stay was similar in both groups. Mean of extubationt time was 10.2 hours in group 1 and 14.8 hours in group 2 (P=0.001."nConclusion: Preoperative and intra-operative donations are safe and continue to contribute uniquely to blood conservation, providing important options in comprehensive

  4. Beneficial effect of a sturgeon-based bioactive compound on gene expression of tumor necrosis factor-alpha, matrix metalloproteinases and type-10 collagen in human chondrocytes.

    Science.gov (United States)

    Catanzaro, R; Marotta, F; Jain, S; Rastmanesh, R; Allegri, F; Celep, G; Lorenzetti, A; Polimeni, A; Yadav, H

    2012-01-01

    In the present study, we examined the effect of a marine bioactive compound containing high-purity caviar-derived DNA, collagen elastin and protein extracts from sturgeon (LD-1227, Caviarlieri, Laboratoires Dom, Switzerland) on IL-1beta-induced activation and production of TNFalpha and MMP-13 in human osteo-arthritis (OA) chondrocytes and intracellular signaling factors. Human chondrocytes were derived from OA cartilage and stimulated with IL-1beta. Gene expression of TNFalpha, MMP-13, MMP-1 and Col10A1 was measured by quantitative RT-PCR. TNFalpha protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium and the activation of NF-kB. DNA binding activity of NF-kB p65 was determined using a highly sensitive and specific ELISA. MMP-13 activity in the culture medium was assayed by gelatine zymography. LD-1227 significantly decreased IL-1beta-stimulated gene expression and production of TNFalpha, MMP-1, MMP-13 and Col10A1 in human chondrocytes. The inhibitory effect of LD-1227 on the IL-1beta-induced expression of these genes was mediated at least in part via suppression of NF-kB p65. These data show that LD-1227 can inhibit IL-1beta-induced proliferation and inflammatory reactions via inhibited activation of the transcription factor NF-kB pathway in human chondrocytes derived from OA patients. These novel pharmacological actions of LD-1227 on IL-1beta-stimulated human OA chondrocytes provide suggestions that this marine biology compound may inhibit cartilage degradation by suppressing IL-1beta-mediated activation and the catabolic response in human chondrocytes. PMID:23034253

  5. A suppressive effect of prostaglandin E2 on the expression of SERPINE1/plasminogen activator inhibitor-1 in human articular chondrocytes: An in vitro pilot study

    Directory of Open Access Journals (Sweden)

    Kayo Masuko

    2009-04-01

    Full Text Available Kayo Masuko1, Minako Murata2, Naoya Suematsu1, Kazuki Okamoto1, Kazuo Yudoh2, Hiroyuki Shimizu3, Moroe Beppu3, Hiroshi Nakamura4, Tomohiro Kato11Department of Biochemistry; 2Department of Frontier Medicine, Institute of Medical Science; 3Department of Orthopedic Surgery, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan; 4Department of Joint Disease and Rheumatism, Nippon Medical School, Bunkyo-ku, Tokyo, JapanAbstract: Prostaglandin E2 (PGE2 is expressed in articular joints with inflammatory arthropathy and may exert catabolic effects leading to cartilage degradation. As we observed in a preliminary experiment that PGE2 suppressed the expression of SERPINE1/plasminogen activator inhibitor (PAI-1 mRNA in chondrocytes, we focused on the effect of PGE2 on PAI-1 in a panel of cultured chondrocytes obtained from osteoarthritic patients. Specifically, articular cartilage specimens were obtained from patients with osteoarthritis who underwent joint surgery. Isolated chondrocytes were cultured in vitro as a monolayer and stimulated with PGE2. Stimulated cells and culture supernatants were analyzed using Western blotting and enzyme-linked immunosorbent assay. The results confirmed that the in vitro PGE2 stimulation suppressed the expression of PAI-1 in the tested chondrocyte samples. The inhibitory effect was partly abrogated by an antagonist of EP4 receptor of PGE2, but not by an EP2 antagonist. Although PGE2 induced activations of mitogen-activated protein kinases (MAPK, blocking of the MAPK did not abrogate the suppressive effect of PGE2, implying a distinct signaling pathway. In summary, prostaglandin is suggested to modulate the plasminogen system in chondrocytes. Further elucidation of the interaction might open a new avenue to understand the degradative process of cartilage.Keywords: chondrocyte, prostaglandin, PGE2, PAI-1

  6. Optimized alkylated cyclodextrin polysulphates with reduced risks on thromboembolic accidents improve osteoarthritic chondrocyte metabolism

    OpenAIRE

    Groeneboer, Sara; Lambrecht, Stijn; Dhollander, Aad; Jacques, Peggy; Cruyssen, Bert Vander; Lories, Rik J.; Devreese, Katrien; Chiers, Koen; Elewaut, Dirk; Verbruggen, Gust

    2011-01-01

    Objectives. To compare the ability of different cyclodextrin polysulphate (CDPS) derivatives to affect human articular cartilage cell metabolism in vitro. Methods. OA chondrocytes were cultured in alginate and exposed to 5 µg/ml of 2,3,6-tri-O-methyl-β-cyclodextrin (ME-CD), 2,3-di-O-methyl-6-sulphate-β-cyclodextrin (ME-CD-6-S), 2,6-di-O-methyl-3-sulphate-β-cyclodextrin (ME-CD-3-S), (2-carboxyethyl)-β-CDPS (CE-CDPS), (2-hydroxypropyl)-β-CDPS (HP-CDPS), 6-monoamino-6-monodeoxy-β-CDPS (MA-CDPS) ...

  7. Phenotypic Characterization of Mycoplasma synoviae Induced Changes in the Metabolic and Sensitivity Profile of In Vitro Infected Chicken Chondrocytes

    OpenAIRE

    Daliborka Dušanić; Dušan Benčina; Mojca Narat; Irena Oven

    2014-01-01

    In infectious synovitis caused by Mycoplasma synoviae chicken chondrocytes (CCH) may come into direct contact with these bacteria that are also capable of invading CCH in vitro. In this study, phenotype microarrays were used to evaluate the influence of Mycoplasma synoviae on the global metabolic activity of CCH. Therefore, CCH were cultured in the presence of 504 individual compounds, spotted in wells of 11 phenotype microarrays for eukaryotic cells, and exposed to Mycoplasma synoviae membra...

  8. Wnt/β-Catenin and Retinoic Acid Receptor Signaling Pathways Interact to Regulate Chondrocyte Function and Matrix Turnover*

    OpenAIRE

    Yasuhara, Rika; Yuasa, Takahito; Williams, Julie A.; Byers, Stephen W.; Shah, Salim; Pacifici, Maurizio; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2009-01-01

    Activation of the Wnt/β-catenin and retinoid signaling pathways is known to tilt cartilage matrix homeostasis toward catabolism. Here, we investigated possible interactions between these pathways. We found that all-trans-retinoic acid (RA) treatment of mouse epiphyseal chondrocytes in culture did increase Wnt/β-catenin signaling in the absence or presence of exogenous Wnt3a, as revealed by lymphoid enhancer factor/T-cell factor/β-catenin reporter activity and β-catenin nuclear accumulation. T...

  9. Low-Frequency High-Magnitude Mechanical Strain of Articular Chondrocytes Activates p38 MAPK and Induces Phenotypic Changes Associated with Osteoarthritis and Pain

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2014-08-01

    Full Text Available Osteoarthritis (OA is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF. Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.

  10. Injection of Autologous Fat Alone and in Combination With Autologous Platelet Gel for Nasolabial Fold Augmentation

    OpenAIRE

    Ghasemi; Tabaie; Azizjalali; Berenjiardestani; Fereshtenejad; Amirizadeh; Fateh

    2015-01-01

    Background Recently, soft tissue augmentation has become popular due to development of convenient techniques. Autologous fat is one of the safest fillers for this purpose. Moreover, healing effects of autologous platelet gel on acute and chronic human skin wounds have been shown in recent studies. Objectives In this study, the effect of subcutaneous injection of autologous fat alone and in combination with platelet gel was compare...

  11. Immortalization of human articular chondrocytes and induction of their phenotype

    Institute of Scientific and Technical Information of China (English)

    何清义; 李起鸿; 杨柳; 许建中

    2003-01-01

    Objective To immortalize human articular chondrocytes (HACs) using gene transfection and to maintain stable phenotype of transformed HACs after induction.Methods HACs were transfected with the retroviral vector pLXSN encoding human papillomavirus 16E7 (HPV16E7), and the transformed clones were sorted and proliferated. Karyotype analysis, clone forming tests and nude mice tumor forming tests were applied to check the characteristics of the transformation. Type Ⅱ collagen of transformed chondrocytes was inducted with free serum medium (FSM) supplemented with nutridoma-sp and ascorbate. Results Immortalized HACs were isolated with fifty passages achieved. The HPV16E7 transformed cells were confirmed to be benign. Induction of FSM with nutridoma-sp and ascorbate promoted type Ⅱ collagen of transformed chondrocytes to the high levels of normal chondrocytes. Conclusion HACs transformed with HPV16E7 survive for long periods in vitro, and type Ⅱ collagen can maintain stability after induction.

  12. Experimental study of tissue-engineered cartilage allograft with RNAi chondrocytes in vivo

    Directory of Open Access Journals (Sweden)

    Wang ZH

    2014-05-01

    Full Text Available Zhenghui Wang,1 Xiaoli Li,2 Xi-Jing He,3 Xianghong Zhang,1 Zhuangqun Yang,4 Min Xu,1 Baojun Wu,1 Junbo Tu,5 Huanan Luo,1 Jing Yan11Department of Otolaryngology – Head and Neck Surgery, 2Department of Dermatology, 3Department of Orthopedics, The Second Hospital, Xi’an Jiaotong University, 4Department of Plastic and Burns Surgery, The First Hospital, Xi’an Jiaotong University, 5Department of Oral and Maxillofacial Plastic Surgery, The Stomatological Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of ChinaPurpose: To determine the effects of RNA interference (RNAi on chondrocyte proliferation, function, and immunological rejection after allogenic tissue-engineered cartilage transplantation within bone matrix gelatin scaffolds.Methods: Seven million rat normal and RNAi chondrocytes were harvested and separately composited with fibrin glue to make the cell suspension, and then transplanted subcutaneously into the back of Sprague Dawley rats after being cultured for 10 days in vitro. Untransplanted animals served as the control group. The allograft and immunological response were examined at 1, 2, 4, 8, and 12 months postoperatively with hematoxylin and eosin histochemical staining, immunohistochemical staining (aggrecan, type II collagen, class I and II major histocompatibility complex, and flow cytometry for peripheral blood cluster of differentiation 4+ (CD4+ and CD8+ T-cells.Results: There was no infection or death in the rats except one, which died in the first week. Compared to the control group, the RNAi group had fewer eukomonocytes infiltrated, which were only distributed around the graft. The ratio of CD4+/CD8+ T-cells in the RNAi group was significantly lower than the normal one (P<0.05. There were many more positively stained chondrocytes and positively stained areas around the cells in the RNAi group, which were not found in the control group.Conclusion: The aggrecanase-1 and aggrecanase-2 RNAi for chondrocytes

  13. IFT88 influences chondrocyte actin organization and biomechanics

    OpenAIRE

    Z. Wang; Wann, A.K.T.; Thompson, C L; Hassen, A.; Wang, W; Knight, M.M.

    2016-01-01

    Summary Objectives Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. Methods The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88orpk). Confocal microscopy was used to quantif...

  14. Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes

    OpenAIRE

    Ho, L.; Ali, S A; Al-Jazrawe, M; R. Kandel; Wunder, J S; Alman, B. A.

    2012-01-01

    Primary cilia can act as either a negative or positive regulator of the hedgehog (Hh) signaling pathway. Many cartilage tumors are characterized by abnormal activation of the Hh pathway. Here, we report that the presence of primary cilia occurs at a low frequency (12.4%) in neoplastic chondrocytes from malignant human chondrosarcomas, compared with chondrocytes from normal articular cartilage (67.7%). To determine the function of primary cilia in cartilaginous neoplasia, we studied benign car...

  15. Role of CCN2 in Amino Acid Metabolism of Chondrocytes.

    Science.gov (United States)

    Murase, Yurika; Hattori, Takako; Aoyama, Eriko; Nishida, Takashi; Maeda-Uematsu, Aya; Kawaki, Harumi; Lyons, Karen M; Sasaki, Akira; Takigawa, Masaharu; Kubota, Satoshi

    2016-04-01

    CCN2/connective tissue growth factor (CTGF) is a multi-functional molecule that promotes harmonized development and regeneration of cartilage through its matricellular interaction with a variety of extracellular biomolecules. Thus, deficiency in CCN2 supply profoundly affects a variety of cellular activities including basic metabolism. A previous study showed that the expression of a number of ribosomal protein genes was markedly enhanced in Ccn2-null chondrocytes. Therefore, in this study, we analyzed the impact of CCN2 on amino acid and protein metabolism in chondrocytes. Comparative metabolome analysis of the amino acids in Ccn2-null and wild-type mouse chondrocytes revealed stable decreases in the cellular levels of all of the essential amino acids. Unexpectedly, uptake of such amino acids was rather enhanced in Ccn2-null chondrocytes, and the addition of exogenous CCN2 to human chondrocytic cells resulted in decreased amino acid uptake. However, as expected, amino acid consumption by protein synthesis was also accelerated in Ccn2-null chondrocytes. Furthermore, we newly found that expression of two genes encoding two glycolytic enzymes, as well as the previously reported Eno1 gene, was repressed in those cells. Considering the impaired glycolysis and retained mitochondrial membrane potential in Ccn2-null chondrocytes, these findings suggest that Ccn2 deficiency induces amino acid shortage in chondrocytes by accelerated amino acid consumption through protein synthesis and acquisition of aerobic energy. Interestingly, CCN2 was found to capture such free amino acids in vitro. Under physiological conditions, CCN2 may be regulating the levels of free amino acids in the extracellular matrix of cartilage. J. Cell. Biochem. 117: 927-937, 2016. © 2015 Wiley Periodicals, Inc. PMID:26364758

  16. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.

    Science.gov (United States)

    Appelman, Taly P; Mizrahi, Joseph; Elisseeff, Jennifer H; Seliktar, Dror

    2011-02-01

    Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical

  17. Anti-apoptotic Activity of Ginsenoside Rb1 in Hydrogen Peroxide-treated Chondrocytes: Stabilization of Mitochondria and the Inhibition of Caspase-3.

    Science.gov (United States)

    Na, Ji-Young; Kim, Sokho; Song, Kibbeum; Lim, Kyu-Hee; Shin, Gee-Wook; Kim, Jong-Hoon; Kim, Bumseok; Kwon, Young-Bae; Kwon, Jungkee

    2012-07-01

    Chondrocyte apoptosis has been recognized as an important factor in the pathogenesis of osteoarthritis (OA). Hydrogen peroxide (H2O2), which produces reactive oxygen species, reportedly induces apoptosis in chondrocytes. The ginsenoside Rb1 (GRb1) is the principal component in ginseng and has been shown to have a variety of biological activities, such as anti-arthritis, anti-inflammation, and anti-tumor activities. In this study, we evaluated the effects of G-Rb1 on the mitochondrial permeability transition (MPT) and caspase-3 activity of chondrocyte apoptosis induced by H2O2. Cultured rat articular chondrocytes were exposed to H2O2 with or without G-Rb1 and assessed for viability, MPT, Bcl-xL/Bax expression, caspase-3 activity, and apoptosis. The co-treatment with G-Rb1 showed an inhibition of MPT, caspase-3 activity, and cell death. Additionally, the levels of the apoptotic protein Bax were significantly lower and the levels of the anti-apoptotic protein Bcl-xL were higher compared with H2O2 treatment alone. The results of this study demonstrate that G-Rb1 protects chondrocytes against H2O2-induced apoptosis, at least in part via the inhibition of MPT and caspase-3 activity. These results demonstrate that G-Rb1 is a potentially useful drug for the treatment of OA patients. PMID:23717124

  18. ISOLATION AND INDUCTION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS TO EXPRESS CHONDROCYTIC PHENOTYPE

    Institute of Scientific and Technical Information of China (English)

    尹战海; 刘淼; 王金堂; 曹峻岭; 张璟; 郑钧

    2002-01-01

    Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Zealand rabbit. TGF-β1, IGF-I, Vitamin C and dexamethasone were added into culture medium to induce proliferation and differention of MSCs. Procollagen α1(Ⅱ) mRNA in cells was detected by RT-PCR to observe the chondrogenous effect of inducing factors. ALP in culture medium was detected by automatic biochemical analyser, and lipid droplet in cells was stained by Sudan Ⅲ to clarify whether these factors given had osteogenic and adipogenic potential. Results Expression of articular cartilage specific procollagen α1 (Ⅱ)mRNA was promoted by inducing factors-TGF-β1, IGF-I, Vitamine C and dexamethasone; elevated level of ALP in culture medium and lipid droplet in cells were also detected. Whereas ALP level was decreased and lipid stain were negative in groups without dexamethasone. Conclusion ① Expression of chondrocytic phenotype by MSCs could be induced by the synergistic action of TGF-β1, IGF-I and Vitamine C. ② Dexmathasone had osteogenic and adipogenic potential, it should not be chosen to induce chondrogenic differention of MSCs.

  19. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY581/591 was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe2+/EDTA complex to t-BHP or hydrogen peroxide (H2O2) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe2+/EDTA complex was added to t-BHP or H2O2, BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis

  20. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    Science.gov (United States)

    Zhang, Yongchun; Sheu, Tzong-Jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. © 2015 American Society for Bone and Mineral Research. PMID:26363286

  1. Hemifacial atrophy treated with autologous fat transplantation

    Directory of Open Access Journals (Sweden)

    Gandhi Vijay

    2005-01-01

    Full Text Available A 23-year-old male developed right hemifacial atrophy following marphea profunda. Facial asymmetry due to residual atrophy was treated with autologous fat harvested from buttocks with marked cosmetic improvement.

  2. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue with...... its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...... events were noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro...

  3. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  4. [Autologous transfusion in obstetrics and fetal safety].

    Science.gov (United States)

    Rech, F; Patella, A; Cecchi, A; Ippolito, M; Indraccolo, S R

    1994-06-01

    It is common knowledge that for modern medicine transfusion therapy represents a precious resource and an often mandatory option. It is equally known that autohemotransfusion (or autologous transfusion) provides further advantages: certainty of blood availability when necessary, absence of transfusion reactions, elimination of the risk of infections that is still associated with the traditional homologous transfusions. In its most widespread application, autotransfusion provides for the donation of one or more units of autologous blood, mostly before elective surgery. Even in obstetrics the practice of autologous blood donation with the aim of autotransfusion is finding increasing employment. However, there are still controversial aspects and the need is pointed out for more authoritative verifications as refers to the alleged innocuity to the fetus of acute maternal blood loss. The present study was performed to contribute personal experience to a better definition of the possible interactions between autologous blood donation during pregnancy and unborn child welfare. To this end, 80 term pregnant women underwent fetal heart rate electronic monitoring before, during and after the donation of one unit of autologous blood. Both during and after the phlebotomy there were no cardiotocographic signs of fetal hypo-oxygenation. Even the non stress tests performed at a distance of 24 hours and those that were periodically repeated afterwards were normal, confirming the safety of autologous predonation during pregnancy. However, the authors think that in obstetrics it is still premature to consider the experimental phase of autotransfusion as definitively exhausted. PMID:7936387

  5. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  6. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu [Department of Plastic and Reconstructive Surgery, Shanghai Tissue Engineering Center, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Spector, Myron, E-mail: luzhangmd@gmail.co [Tissue Engineering, VA Boston Healthcare System, Boston, MA (United States)

    2009-08-15

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  7. Chondrocyte outgrowth into a gelatin scaffold in a single impact load model of damage/repair – effect of BMP-2

    Directory of Open Access Journals (Sweden)

    Vincent Thea

    2007-12-01

    Full Text Available Abstract Background Articular cartilage has little capacity for repair in vivo, however, a small number of studies have shown that, in vitro, a damage/repair response can be induced. Recent work by our group has shown that cartilage can respond to single impact load and culture by producing repair cells on the articular surface. The purpose of this study was to identify whether chondrocyte outgrowth into a 3D scaffold could be observed following single impact load and culture. The effect of bone morphogenic-2 (BMP-2 on this process was investigated. Methods Cartilage explants were single impact loaded, placed within a scaffold and cultured for up to 20 days +/- BMP-2. Cell numbers in the scaffold, on and extruding from the articular surface were quantified and the immunohistochemistry used to identify the cellular phenotype. Results Following single impact load and culture, chondrocytes were observed in a 3D gelatin scaffold under all culture conditions. Chondrocytes were also observed on the articular surface of the cartilage and extruding out of the parent cartilage and on to the cartilage surface. BMP-2 was demonstrated to quantitatively inhibit these events. Conclusion These studies demonstrate that articular chondrocytes can be stimulated to migrate out of parent cartilage following single impact load and culture. The addition of BMP-2 to the culture medium quantitatively reduced the repair response. It may be that the inhibitory effect of BMP-2 in this experimental model provides a clue to the apparent inability of articular cartilage to heal itself following damage in vivo.

  8. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage.

    Science.gov (United States)

    Seol, Dongrim; Yu, Yin; Choe, Hyeonghun; Jang, Keewoong; Brouillette, Marc J; Zheng, Hongjun; Lim, Tae-Hong; Buckwalter, Joseph A; Martin, James A

    2014-07-01

    Depending on the damage extent and adjacent tissue condition in traumatic cartilage injury, it is possible to heal the tissue by resident cells. Unlike autologous chondrocyte implantation, short-term enzymatic treatment is an effective single-step procedure without extra cell expansion. Moreover, this method has been shown to significantly increase cellularity in lesion edges, resulting in enhanced integration and interfacial strength. We hypothesize that the locally digested extracellular matrix by treatment allows effortless cell migration from the adjacent tissue. Full-thickness cartilage discs and osteochondral explants were prepared from mature bovine stifle joints. These specimens were treated with collagenase in a culture medium. Two concentrations, 0.25 and 0.5 mg/mL, were used with various treating time of 10, 30, and 180 min. The cartilages were subsequently washed and cultured with fibrin hydrogel. The effect of enzymatic treatment on cell migration was apparent in both experiments of the cartilage disc and full-thickness cartilage defect model. In the disc culture, the treatment resulted in an approximately three to four times higher number of migrated cells than nontreated control. In short-term collagenase-treated groups, the proteoglycan (PG) loss was localized in the edge of tissue with minimal cell death. The treatment also accelerated cell migration in the full-thickness cartilage defects and some cells differentiated into chondrocytes with the deposit of PG. Gene expression results could support the characteristics of migrated cells, which had migratory ability and chondrogenic differentiation potential with overexpression of collagen type I and II, respectively. Based on these results, short-term enzymatic treatment, which can accelerate cell migration into traumatically injured cartilage, has great potential for clinical application. PMID:24428547

  9. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro.

    Science.gov (United States)

    Zhuang, Chao; Xu, Nan-Wei; Gao, Gong-Ming; Ni, Su; Miao, Kai-Song; Li, Chen-Kai; Wang, Li-Ming; Xie, Hong-Guang

    2016-06-01

    This study aimed to explore the protective effects of Angelica sinensis polysaccharide (ASP) on rat chondrocyte injury induced by hydrogen peroxide (H2O2). Rat chondrocytes were cultured and treated with different concentrations of ASP alone or in combination with H2O2, and they were measured with cell viability, apoptosis, release of inflammatory cytokines, such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), activity of superoxide dismutase (SOD), and catalase (CAT), and levels of malondialdehyde (MDA) production, respectively. In addition, quantitative real-time reverse transcription polymerase chain reaction was used to estimate the relative expression levels of osteoarthritis (OA)-associated genes, such as collagen type II (Col2a1), aggrecan, SOX9, matrix metalloproteinase (MMP)-1, -3, and -9, as well as tissue inhibitor of matrix metalloproteinase (TIMP)-1, respectively. Results indicated that ASP protected chondrocytes from H2O2-induced oxidative stress and subsequent cell injury through its antioxidant, antiapoptotic and anti-inflammatory effects in vitro. Our study suggests that ASP could become a therapeutic supplementation for the treatment of OA. PMID:26893055

  10. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes.

    Science.gov (United States)

    Wang, Feng; Wu, Longhuo; Li, Linfu; Chen, Siyi

    2014-12-01

    Osteoarthritis, characterized by a loss of articular cartilage accompanied with inflammation, is the most common age-associated degenerative disease. Monotropein, an iridoids glycoside isolated from the roots of Morinda officinalis How, has been demonstrated to exhibit anti-inflammatory activity. In the present study, monotropein was firstly to exhibit cartilage protective activity by down regulating the pro-inflammatory cytokines in the knee synovial fluid in vivo. The anti-apoptotic and anti-catabolic effects of monotropein on rat OA chondrocytes treated by IL-1β were investigated in vitro. In cultured chondrocytes, monotropein attenuated apoptosis in a dose-dependent manner in response to IL-1β stimulation. Moreover, treatment with monotropein, the expressions of MMP-3 and MMP-13 were significantly decreased, the expression of COL2A1 was increased. Taken together, these findings suggested that monotropein exerted anti-apoptosis and anti-catabolic activity in chondrocytes, which might support its possible therapeutic role in OA. PMID:25466264

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. Cultura autóloga de células-tronco mesenquimais de tecido adiposo para o tratamento de rítides faciais Autologous mesenchymal stem cells culture from adipose tissue for treatment of facial rhytids

    Directory of Open Access Journals (Sweden)

    César Claudio-da-Silva

    2009-08-01

    Full Text Available OBJETIVO: Testar o efeito das c élulas tronco mesenquimais (CTM de tecido adiposo no preenchimento cutâneo de rítides na região naso-labial. MÉTODOS: Foram coletados 50 cc de gordura da região infra-umbilical e 20 mL de sangue periférico de 15 voluntárias do sexo feminino para obtenção das CTM e de plasma autólogo, respectivamente. As voluntárias foram agrupadas de acordo com as estratégias de injeções intra-dérmicas: grupo (1 somente o ácido hialurônico; grupo (2 somente as CTM; grupo (3 CTM associadas ao ácido hialurônico. Tratando-se de um estudo prospectivo e qualitativo o acompanhamento das voluntárias era mensal através de fotografias. RESULTADOS: No grupo (1 foi observado um efeito de preenchimento imediato ao contrário do grupo (2 onde o efeito de preenchimento pleno foi alcançado aproximadamente após dois meses. No grupo (3 o preenchimento ocorreu de maneira mais efetiva e também progressiva, devido à combinação dos efeitos de curto e de longo prazo gerados pelo ácido hialurônico e pelas CTM, respectivamente. CONCLUSÃO: As CTM quando associadas ao ácido hialurônico foram capazes de promover o preenchimento de sulcos profundos, com melhora progressiva do tônus da pele e diminuição das linhas de expressão.OBJECTIVE: To test the effect of mesenchymal stem cells (MSC from adipose tissue on the dermal filling for nasolabial rhytids correction. MEHTODS: 50 cc of infraumbilical fat and 20 ml of peripheral blood were harvested to isolate MSC and autologous plasma from 15 female volunteers, respectively. The volunteers were grouped in according to the following strategies of intra-dermal injection: Group (I only hyaluronic acid; Group (II only MSC; Group (III MSC combined with hyaluronic acid. For this qualitative and prospective study photographic monitoring was done monthly. RESULTS: In the group (I we observed an immediate effect of filling; in the group (II the effect of filling was reached after

  13. Sweet Syndrome After Autologous Stem Cell Transplant.

    Science.gov (United States)

    Alkan, Ali; İdemen, Celal; Okçu Heper, Aylin; Utkan, Güngör

    2016-02-01

    Sweet syndrome (acute febrile neutrophilic dermatosis) is a rare clinical entity characterized by skin lesions, neutrophilia, fever, and neutrophilic infiltration of the dermis. It may be a consequence of malignant disease, comorbidities, or drugs. We present a case of acute febrile neutrophilic dermatosis in a patient after autologous stem cell transplant. PMID:25748978

  14. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways.

    Directory of Open Access Journals (Sweden)

    Anna Santoro

    Full Text Available Osteoarthritis (OA is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs in chondrocytes, contributing thus to the extracellular matrix (ECM degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2, under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.

  15. Injection of Autologous Fat Alone and in Combination With Autologous Platelet Gel for Nasolabial Fold Augmentation

    Directory of Open Access Journals (Sweden)

    Ghasemi

    2015-09-01

    Full Text Available Background Recently, soft tissue augmentation has become popular due to development of convenient techniques. Autologous fat is one of the safest fillers for this purpose. Moreover, healing effects of autologous platelet gel on acute and chronic human skin wounds have been shown in recent studies. Objectives In this study, the effect of subcutaneous injection of autologous fat alone and in combination with platelet gel was compared in the treatment of nasolabial skin folds in nine cases. Patients and Methods Nine volunteers (three males and six females were referred to the dermatology clinic of Rasoul-e-Akram hospital. For each patient, one side of the lateral nasolabial folds underwent injections with the combination of autologous fat and platelet gel and the other side with autologous fat alone. Improvement of nasolabial fold was monitored by clinical assessment and digital photographs over a six-month period. Results All patients experienced improvement in the wrinkles of the side treated by the combination therapy compared to the other side. In addition, less complication was observed in the side that underwent combination therapy. Conclusions Our study showed that autologous fat in combination with platelet gel might have better cosmetic results as well as lesser complications in the healing of nasolabial wrinkles. However, the findings of this pilot study should be examined in further studies with larger sample size.

  16. An ECHO in biology II: Insights in chondrocyte cell fate

    NARCIS (Netherlands)

    Schivo, S.; Scholma, J.; Huang, X.; Zhong, L.; Pol, van de J.C.; Karperien, H.B.J.; Langerak, R.; Post, J.N.

    2016-01-01

    Purpose: An intricate network of regulatory processes determines the chondrocyte cell fate during development and maintains tissue homeostasis. In the event of a disease such as OA, the regulatory network is critically compromised. To cure the disease, we need to restore the regulatory processes to

  17. Autologous Fat Grafting for Whole Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Benjamin H. L. Howes, MBBS

    2014-03-01

    Full Text Available Summary: This is the first reported case of a patient who had a single-stage large-volume breast reconstruction with autologous fat grafting, following rotation flap approach (RoFA mastectomy. The purpose of this case study was to evaluate the viability of reconstruction of the breast by autologous fat grafting alone, in the context of RoFA mastectomy. The hypothesis was that there would be minimal interval loss of autologous fat on the whole breast reconstruction side. Right RoFA mastectomy was used for resection of an invasive primary breast cancer and resulted in the right breast skin envelope. Eleven months later, the patient underwent grafting of 400 ml of autologous fat into the skin envelope and underlying pectoralis major muscle. Outcome was assessed by using a validated 3D laser scan technique for quantitative breast volume measurement. Other outcome measures included the BREAST-Q questionnaire and 2D clinical photography. At 12-month follow-up, the patient was observed to have maintenance of volume of the reconstructed breast. Her BREAST-Q scores were markedly improved compared with before fat grafting, and there was observable improvement in shape, contour, and symmetry on 2D clinical photography. The 2 new techniques, RoFA mastectomy and large-volume single-stage autologous fat grafting, were used in combination to achieve a satisfactory postmastectomy breast reconstruction. Novel tools for measurement of outcome were the 3D whole-body laser scanner and BREAST-Q questionnaire. This case demonstrates the potential for the use of fat grafting for reconstruction. Outcomes in a larger patient populations are needed to confirm these findings.

  18. Embryonic mouse pre-metatarsal development in organ culture

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  19. In vitro exposure of human osteoarthritic chondrocytes to ELF fields and new therapeutic application of musically modulated electromagnetic fields: biological evidence.

    Science.gov (United States)

    Vannoni, D; Albanese, A; Battisti, E; Aceto, E; Giglioni, S; Corallo, C; Carta, S; Ferrata, P; Fioravanti, A; Giordano, N

    2012-01-01

    Osteoarthritis (OA) is the most frequently occurring rheumatic disease, caused by metabolic changes in chondrocytes, the cells that maintain cartilage. Treatment with electromagnetic fields (MF) produces benefits in patients affected by this pathology. Isolated human osteoarthritic (OA) chondrocytes were cultured in vitro under standard conditions or stimulated with IL-1beta or IGF-1, to mimic the imbalance between chondroformation and chondroresorption processes observed in OA cartilage in vivo. The cells were exposed for a specific time to extremely low frequency (ELF; 100-Hz) electromagnetic fields and to the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEF), which are characterized by variable frequencies, intensities, and waveforms. Using flow cytometry, we tested the effects of the different types of exposure on chondrocyte metabolism. The exposure of the cells to both systems enhances cell proliferation, does not generate reactive oxygen species, does not cause glutathione depletion or changes in mitochondrial transmembrane potential and does not induce apoptosis. This study presents scientific support to the fact that MF could influence OA chondrocytes from different points of view (viability, ROS production and apoptosis). We can conclude that both ELF and TAMMEF systems could be recommended for OA therapy and represent a valid non-pharmacological approach to the treatment of this pathology. PMID:22475096

  20. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes.

    Science.gov (United States)

    Wu, Guang-Wen; Liu, Xian-Xiang; Wu, Ming-Xia; Zhao, Jin-Yan; Chen, Wen-Lie; Lin, Ru-Hui; Lin, Jiu-Mao

    2009-04-01

    Low power millimeter wave irradiation is widely used in clinical medicine. We describe the effects of this treatment on cultured mesenchymal stem cells (MSCs) and attempted to identify the underlying mechanism. Cells cultured using the whole marrow attachment culture method proliferated dispersedly or in clones. Flow cytometric analyses showed that the MSCs were CD90 positive, but negative for CD45. The negative control group (A) did not express detectable levels of Cbfa1 or Sox9 mRNA at any time point, while cells in the millimeter wave-induced groups (B and C) increasingly expressed both genes after the fourth day post-induction. Statistical analysis showed that starting on the fourth day post-induction, there were very significant differences in the expression of Cbfa1 and Sox9 mRNA between groups A and B as well as A and C at any given time point, between treated groups B and C after identical periods of induction, and within each treated group at different induction times. Transition electron microscopy analysis showed that the rough endoplasmic reticulum of cells in the induced groups was richer and more developed than in cells of the negative control group, and that the shape of cells shifted from long-spindle to near ellipse. Toluidine blue staining revealed heterochromia in the cytoplasm and extracellular matrix of cells in the induced groups, whereas no obvious heterochromia was observed in negative control cells. Induced cells also exhibited positive immunohistochemical staining of collagen II, in contrast to the negative controls. These results show that millimeter wave treatment successfully induced MSCs to differentiate as chondrocytes and the extent of differentiation increased with treatment duration. Our findings suggest that millimeter wave irradiation can be employed as a novel non-drug inducing method for the differentiation of MSCs into chondrocytes. PMID:19288021

  1. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Guang-Ping Ruan

    Full Text Available INTRODUCTION: Renal interstitial fibrosis (RIF is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. METHODS: A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP. These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. RESULTS: Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05 were observed in serum creatinine (SCr (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L and blood urea nitrogen (BUN (119 ± 22 µmol/L to 97 ± 13 µmol/L, indicating improvement in renal function. CONCLUSIONS: We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.

  2. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  3. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERαColII, expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERαColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERαColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERαColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  4. Chondrocyte growth dynamics and spatial pattern formation

    OpenAIRE

    Palumberi, Viviana

    2010-01-01

    In this thesis we study the generation of patterns in cell culture refering to the important work of Elsdale where fibroblast cultures were analyzed to investigate how densely packed cells organize. A mathematical model was introduced in Edelstein-Keshet and Ermentrout (1990) to prove that the pattern formation can be caused by the mere interactions of individual cells, although it is a population phenomena. Until then the formation of structures was only attributed to other m...

  5. The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGFβ

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Bernstein, Anke;

    2016-01-01

    BACKGROUND: Synovial mesenchymal stem cells (SMSC) possess a high chondrogenic differentiation potential, which possibly supports natural and surgically induced healing of cartilage lesions. We hypothesized enhanced chondrogenesis of SMSC caused by the vicinity of chondrocytes (CHDR). METHODS....... RESULTS: After 7 days, phase-contrast microscopy revealed cell aggregation of SMSC in coculture with CHDR. Afterwards, cells formed spheres and lost adherence. However, this phenomenon was not observed when culturing SMSC alone. Fluorescence labeling showed concurrent collagen type II expression. Addition...

  6. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification.

    Science.gov (United States)

    Takegami, Yasuhiko; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Nakashima, Hiroaki; Ishiguro, Naoki; Ohno, Kinji

    2016-04-22

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca(2+) signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. PMID:27012200

  7. Implication of interleukin 18 in production of matrix metalloproteinases in articular chondrocytes in arthritis: direct effect on chondrocytes may not be pivotal

    OpenAIRE

    Dai, S.; Shan, Z; Nishioka, K.; Yudoh, K

    2005-01-01

    Objective: To clarify the effect of interleukin (IL) 18 on cartilage degeneration by studying the profile of IL18 receptor (IL18R) on chondrocytes and the direct effect of IL18 on production of matrix metalloproteinases (MMPs), aggrecanases, and tissue inhibitors of metalloproteinases (TIMPs) in articular chondrocytes.

  8. Breast Augmentation With Autologous Fat Injection

    OpenAIRE

    Li, Fa-Cheng; Chen, Bing; Cheng, Lin

    2014-01-01

    Introduction Autologous fat transplantation has attracted great interest in breast augmentation for cosmetic purpose. In the present study, we reported our experience in fat grafting in breast in 105 cases, and some detailed procedure concerning efficacy and safety of grafting was evaluated. Methods Fat was harvested using 20-mL syringe attached to a 3-hole blunt cannula in a diameter not beyond 3 mm. After washing with cool normal saline to remove blood, the fat was managed with open method ...

  9. Postoperative Autologous Reinfusion in Total Knee Replacement

    OpenAIRE

    A. Crescibene; Martire, F.; Gigliotti, P.; Rende, A.; Candela, M

    2015-01-01

    Surgeries for total knee replacement (TKR) are increasing and in this context there is a need to develop new protocols for management and use of blood transfusion therapy. Autologous blood reduces the need for allogeneic blood transfusion and the aim of the present study was to verify the safety and the clinical efficacy. An observational retrospective study has been conducted on 124 patients, undergoing cemented total knee prosthesis replacement. Observed population was stratified into two g...

  10. Facial wrinkles correction through autologous fat microinjection.

    Directory of Open Access Journals (Sweden)

    Heriberto Cháves Sánchez

    2008-12-01

    Full Text Available Background: autologous fat microinjection is a technique which allows the correction of different dispositions that appear in the face in a very fast, effective and simple way compared to other procedures implying more pain, incisions, and elevated doses of anesthesia. Objective: to show the effectiveness of the autologous fat microinjection in the correction of facial wrinkles. Methods: a series study was carried out from May 2005 to May 2006 at the University Hospital “Dr. Gustavo Aldereguía Lima” in Cienfuegos city, Cuba. 60 patients of both sexes constituted this series study. They had facial wrinkles and this procedure was performed on them. Age, sex, patient’s race, localization and the type of wrinkle as well as the satisfaction level of the patient with the surgical procedure were analyzed. Results: Female sex was predominant, as well as white race and the ages from 45-50. A good aesthetic result was obtained. The satisfaction level of the patients was more elevated in short and medium terms. Conclusions: the level of satisfaction reached in the studied series reassure the advantages of the autologous fat microinjection technique so that, it is recommended for the elimination of facial wrinkles.

  11. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair.

    Science.gov (United States)

    Deng, Yujie; Wu, Ailing; Li, Pikshan; Li, Gang; Qin, Ling; Song, Hai; Mak, Kinglun Kingston

    2016-03-01

    Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration. PMID:26923596

  12. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair

    Directory of Open Access Journals (Sweden)

    Yujie Deng

    2016-03-01

    Full Text Available Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration.

  13. Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone

    OpenAIRE

    Baoli Wang; Hongting Jin; Bing Shu; Ranim R. Mira; Di Chen

    2015-01-01

    Bone marrow stromal cells/osteoblasts were originally thought to be the major player in regulating osteoclast differentiation through expressing RANKL/OPG cytokines. Recent studies have established that chondrocytes also express RANKL/OPG and support osteoclast formation. Till now, the in vivo function of chondrocyte-produced OPG in osteoclast formation and postnatal bone growth has not been directly investigated. In this study, chondrocyte-specific Opg transgenic mice were generated by using...

  14. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  15. Metabolic Effects of Avocado/Soy Unsaponifiables on Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Louis Lippiello

    2008-01-01

    Full Text Available Avocado/soy unsaponifiable (ASU components are reported to have a chondroprotective effect by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity of the active component(s remains unknown. In general, sterols, the major component of unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and in animal models. These studies were designed to clarify whether the sterol content of ASU preparations were the primary contributors to biological activity in articular chondrocytes. ASU samples were analyzed by high pressure liquid chromatography (HPLC and GC mass spectrometry. The sterol content was normalized between diverse samples prior to in vitro testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of interleukin-1 (IL-1-induced synthesis of PGE2 and metalloproteases and release of label from tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at sterol doses of 1–10 μg/ml. Non-collagenous protein (NCP and collagen synthesis were similarly up-regulated. All ASU were equally effective in dose dependently inhibiting IL-1-induced MMP-3 activity (23–37%, labeled sulfate release (15–23% and PGE2 synthesis (45–58%. Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1 effects in cartilage are consistent with chondroprotective activity. The similarity of activity of ASU from diverse sources when tested at equal sterol levels suggests sterols are important for biologic effects in articular chondrocytes.

  16. Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix

    OpenAIRE

    1993-01-01

    Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assemb...

  17. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    Science.gov (United States)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  18. INCREASED OSMOLARITY AND CELL CLUSTERING PRESERVES CANINE NOTOCHORDAL CELL PHENOTYPE IN CULTURE

    OpenAIRE

    Spillekom, S; Smolders, L.A.; Grinwis, G.C.M.; Arkesteijn, I.; Ito, K.; Meij, B. P.; Tryfonidou, M.A.

    2013-01-01

    Abstract Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive for designing new tissue engineering approaches for IVD regeneration. However, optimal conditions, such as osmolarity and other characteristics of the culture media, for long-term culture...

  19. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  20. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Chao Pin-Zhir

    2011-11-01

    Full Text Available Abstract Background Osteoarthritis (OA is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. Methods We investigated the effects of the CC chemokine eotaxin-1 (CCL11 on the matrix metalloproteinase (MMP expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Results Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs, a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC-protein kinase C (PKC cascade and c-Jun N-terminal kinase (JNK/mitogen-activated protein (MAP kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Conclusions Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.

  1. Comparison of the cellular composition of two different chondrocyte-seeded biomaterials and the results of their transplantation in humans.

    Science.gov (United States)

    Horák, M; Handl, M; Podškubka, A; Kaňa, R; Adler, J; Povýšil, C

    2014-01-01

    Our study compares the histological and immunohistochemical cellular composition of two different chondrocyte-seeded biomaterials and the results of their transplantation. Our study cohort included 21 patients, comprising 19 men and two women with a mean age of 32 years, who were affected by single chondral lesions of the femoral condyles. These patients were enrolled in our study and treated with arthroscopic implantation of the tissue Hyalograft C and/or Brno culture. Brno culture bioengineered with a fibrin-based scaffold contains round cells showing features of differentiated chondrocytes expressing S-100 protein and α-smooth muscle actin. In contrast, in the case of Hyalograft C, the scaffold was made up of a fibrillar network composed of biomaterial fibres of the esters of hyaluronic acid and cells resembling fibroblasts and myofibroblasts and expressing only α-smooth muscle actin. The average size of the defects was 2.5 cm2. Patients were evaluated using the standardized guidelines of the International Knee Documentation Committee. During the comparison of bioptic samples obtained from both patient cohorts, we did not observe any important differences in the histological makeup of the newly formed cartilage. The histological analysis of these two groups of homogeneous patients shows that this bioengineered approach, under proper indications, may offer favourable and stable clinical results over time, in spite of the different matrix and cellular composition of the two transplants used. PMID:24594051

  2. Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction--a preliminary histological observation.

    Science.gov (United States)

    Wong, Margaret W N; Qin, Lin; Tai, Jenny K O; Lee, Simon K M; Leung, K S; Chan, K M

    2004-08-15

    This study examined histologically the potential of using allogeneic cultured chondrocyte pellet (CCP) in enhancing bone-tendon junction (BTJ) healing using a rabbit partial patellectomy model. Chondrocytes isolated from the cartilaginous ribs of 6-week-old New Zealand white rabbits were cultured for 14 days to form CCP. Partial patellectomy was performed on 30 18-week-old rabbits. After removal of the distal third patella, the BTJ gap was repaired surgically with or without CCP interposition. Four samples of patella-patellar tendon complexes (PPTC) for each group were harvested each at 8, 12, and 16 weeks; and two additional PPTC for each group were harvested at 2, 4, and 6 weeks for early observation of fibrocartilage zone regeneration, histologically. Results showed that CCP interposition demonstrated earlier structural integration at the BTJ after 8, 12, and 16 weeks of healing, and formation of a fibrocartilage zone like structure, compared with control specimens. In addition, no immune rejection was observed in CCP experimental group. The results suggested that CCP had a stimulatory effect on BTJ healing. This bioengineering approach might have potential clinical application in treatment of difficult BTJ healing. However, systemic histomorphometric, immunological tests, and biomechanical evaluations are needed before any clinical trials. PMID:15264320

  3. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    International Nuclear Information System (INIS)

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  4. Lymphoscintigraphy and autologous stem cell implantation

    International Nuclear Information System (INIS)

    Lymphoscintigraphy is the criterion standard technique for the diagnosis of lymphedema. Advances of the application of autologous hematopoietic stem cells in ischemic disorders of lower limbs have increased the attention of researchers in this field. Aim: To determine the usefulness of lymphoscintigraphy for the assessment the efficacy of autologous stem cell implantation in patients with chronic lymphedema of the upper and lower limbs. Methods: Sixty-five patients were included. Clinical evaluation and lymphoscintigraphy were performed before and six months after stem cells implantation. The stem cells implantations were carried out by multiple superficial and deep injections in the trajectory of the lymphatic vessels and also in the inguinal region. A volume of 0.75 to 1.00 mL of cell suspension (1.0-2.2 x 109 stem cells) was administered in each injection site. Lymphoscintigraphy: Whole-body scans were acquired at 20 minutes, 1 hour, and 3 hours after administration of 185 to 259 MBq (5–7mCi) of 99mTc-albumin nanocolloids in the interdigital space of both limbs. The anatomy and function of the lymphatic system were evaluated. Results: Functional assessment before implantation of stem cells showed that 69.2% of the patients had severe lymphatic insufficiency. The 61.5% of patients showed clinical improvement, confirmed by the results of the lymphoscintigraphy. The 46.1% of the cases evaluated showed a clear improvement. The study showed that the isotopic lymphography can evaluate the therapeutic response and its intensity. Conclusion: Lymphoscintigraphy is a useful technique for the evaluation and monitoring of autologous stem cell transplantation in patients with chronic lymphedema. (author)

  5. Autologous cell sources in therapeutic vasculogenesis

    DEFF Research Database (Denmark)

    Szöke, Krisztina; Reinisch, Andreas; Østrup, Esben;

    2016-01-01

    BACKGROUND AIMS: Autologous endothelial cells are promising alternative angiogenic cell sources in trials of therapeutic vasculogenesis, in the treatment of vascular diseases and in the field of tissue engineering. A population of endothelial cells (ECs) with long-term proliferative capability...... functional assays, we wanted to evaluate the potential of these EC populations for use in clinical neovascularization. RESULTS: Global gene expression profiling of ECFCs, AT-ECs and the classical EC population, human umbilical vein ECs, showed that the EC populations clustered as unique populations, but very...

  6. Disseminated Fusarium infection in autologous stem cell transplant recipient

    OpenAIRE

    Vivian Iida Avelino-Silva; Jessica Fernandes Ramos; Fabio Eudes Leal; Leonardo Testagrossa; Yana Sarkis Novis

    2015-01-01

    Disseminated infection by Fusariumis a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusariuminfection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  7. Ginkgo biloba extract individually inhibits JNK activation and induces c-Jun degradation in human chondrocytes: potential therapeutics for osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ling-Jun Ho

    Full Text Available Osteoarthritis (OA is a common joint disorder with varying degrees of inflammation. The ideal anti-OA drug should have immunomodulatory effects while at the same time having limited or no toxicity. We examined the anti-inflammatory effects of Ginkgo biloba extract (EGb in interleukin-1 (IL-1-stimulated human chondrocytes. Chondrocytes were prepared from cartilage specimens taken from patients with osteoarthritis who had received total hip or total knee replacement. The concentrations of chemokines and the degree of cell migration were determined by ELISA and chemotaxis assays, respectively. The activation of inducible nitric oxide synthase (iNOS, mitogen-activated protein kinases (MAPKs, activator protein-1 (AP-1, and nuclear factor-kappaB (NF-κB was determined by immunoblotting, immunohistochemistry, and electrophoretic mobility shift assay. We found that EGb inhibited IL-1-induced production of chemokines, which in turn resulted in attenuation of THP-1 cell migration toward EGb-treated cell culture medium. EGb also suppressed IL-1-stimulated iNOS expression and release of nitric oxide (NO. The EGb-mediated suppression of the iNOS-NO pathway correlated with the attenuation of activator protein-1 (AP-1 but not nuclear factor-kappaB (NF-κB DNA-binding activity. Of the mitogen-activated protein kinases (MAPKs, EGb inhibited only c-Jun N-terminal kinase (JNK. Unexpectedly, EGb selectively caused degradation of c-Jun protein. Further investigation revealed that EGb-mediated c-Jun degradation was preceded by ubiquitination of c-Jun and could be prevented by the proteosome inhibitor MG-132. The results imply that EGb protects against chondrocyte degeneration by inhibiting JNK activation and inducing ubiquitination-dependent c-Jun degradation. Although additional research is needed, our results suggest that EGb is a potential therapeutic agent for the treatment of OA.

  8. RAGE and activation of chondrocytes and fibroblast-like synoviocytes in joint diseases

    NARCIS (Netherlands)

    Steenvoorden, Marjan Maria Claziena

    2007-01-01

    This dissertation describes a new model in which cartilage degradation can be studied. New cartilage is formed by bovine chondrocytes obtained from the slaughterhouse and cocultured with synovial cells from rheumatoid arthritis (RA) patients to study the interaction between the chondrocytes and syno

  9. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  10. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  11. Staphylococcal protein A primed leukocytes enhance the autologous mixed lymphocyte reaction

    International Nuclear Information System (INIS)

    Human peripheral blood mononuclear cells (PBMC) were preincubated for 3 days in medium alone or with various mitogens then washed and irradiated. The preincubated cells then were cultured with autologous T-cells in an autologous mixed lymphocyte reaction (AMLR). Staphylococcal protein A (SPA) pretreatment of PBMC enhanced autologous T-lymphocyte proliferation from 1375 +/- 321 cpm (mean +/- SEM untreated PBMC) to 42,467 +/- 7985 cpm (SPA primed PBMC) (p less than 0.01). The ability of SPA treated PBMC to enhance the AMLR was not simply a reflection of their proliferation in preculture, as PBMC precultured with phytohemagglutinin and concanavalin A showed greater proliferation than SPA-treated PBMC yet only minimally enhanced the AMLR. Kinetic studies and pre-exposure of PBMC to graded doses of gamma radiation showed that SPA augmentation of the AMLR was mediated by 2 components which differed in kinetics and radiosensitivity. Although incubation of PBMC with SPA did not increase the percentage of cells with detectable surface Ia antigen, SPA did increase the density of Ia in the preincubated cells. Cell separation studies revealed that SPA enhancement of the AMLR was not mediated by T-cells, but was mediated by a non-adherent non-E-rosetting fraction of cells. SPA enhancement of the AMLR was associated with an increased Ia density in the stimulator population but not with an increase in Ia positive cells and was mediated by proliferation-dependent and proliferation-independent mechanisms

  12. Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes

    Science.gov (United States)

    Lee, Won Kil; Kang, Jin Seok

    2016-01-01

    This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ (50~200 μg/mL) rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the control (p < 0.01). SSZ treatment clearly increased the SNP-reduced proliferation levels in a concentration-dependent manner (p < 0.01). SNP treatment induced significant dedifferentiation and inflammation compared with control chondrocytes (p < 0.01). Type II collagen expression levels increased in a concentration-dependent manner in response to SSZ treatment but were unaltered in SNP-treated chondrocytes (p < 0.05 and < 0.01, respectively). Cylooxygenase-2 (COX-2) expression increased in a concentration-dependent manner in response to SSZ treatment but was unaltered in SNP-treated chondrocytes (p < 0.05). Immunofluorescence staining showed that SSZ treatment increased type II collagen expression compared with that in SNP-treated chondrocytes. Furthermore, phosphorylated extracellular regulated kinase (pERK) expression levels were decreased significantly in the SNP-treated group compared with those in control chondrocytes (p < 0.01). Expression levels of pERK increased in a concentration-dependent manner by SSZ but were unaltered in SNP-treated chondrocytes. pp38 kinase expression levels increased in a concentration-dependent manner by SSZ but were unaltered in control chondrocytes (p < 0.01). In summary, SSZ significantly inhibited nitric oxide-induced cell death and dedifferentiation, and regulated extracellular regulated kinases 1 and 2 and p38 kinase in rabbit articular chondrocytes. PMID:27123162

  13. Effects of mesenchymal stem cells on interleukin-1β-treated chondrocytes and cartilage in a rat osteoarthritic model.

    Science.gov (United States)

    Tang, Jilei; Cui, Weiding; Song, Fanglong; Zhai, Chenjun; Hu, Hansheng; Zuo, Qiang; Fan, Weimin

    2015-08-01

    In the present study, the effects and mechanisms of mesenchymal stem cells (MSCs) on interleukin (IL)-1β-stimulated rat chondrocytes, as well as cartilage from a rat model of osteoarthritis (OA) induced by anterior cruciate ligament transection and medial meniscectomy were investigated. Confluent rat chondrocytes were treated with IL-1β (10 ng/ml), then cultured indirectly with or without MSCs at a ratio of 2:1. Total RNA and protein were collected at various time-points, and western blot and reverse transcription-quantitative polymerase chain reaction analyses were used to investigate the expression of type II collagen (Col2), aggrecan, matrix metalloproteinase-13 (MMP-13) and cyclooxygenase-2 (COX-2). The activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB) p65 and inhibitory-κ-B-α (IκBα) were also assessed by western blotting. In addition, the in vivo effects of MSCs in a rat OA model were assessed by histology and western blot analysis. The results indicated that in vitro, IL-1β markedly upregulated the expression of MMP-13, COX-2, phosphorylated ERK1/2, JNK, p38 MAPK and NF-κB p65, and inhibited the expression of Col2, aggrecan and IκBα. Conversely, MSCs enhanced the expression of Col2, aggrecan and IκBα, and inhibited the expression of MMP-13 and NF-κB p65 in IL-1β-stimulated rat chondrocytes. In vivo histological and western blot analyses revealed analogous results to the in vitro findings. The results of the present study demonstrated that MSCs suppressed the inflammatory response and extracellular matrix degradation in IL-1β‑induced rat chondrocytes, as well as cartilage in a osteoarthritic rat model, in part via the NF-κB signaling pathway. PMID:25892273

  14. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide

    Directory of Open Access Journals (Sweden)

    Hanaoka Teruyasu

    2011-08-01

    Full Text Available Abstract Background Molecular hydrogen (H2 functions as an extensive protector against oxidative stress, inflammation and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO- as well as hydroxyl radicals (•OH, but not with nitric oxide radical (NO•. We hypothesized that one of the H2 functions is caused by reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2-. To verify this hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO- derived from NO• in chondrocytes. Methods We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP in the presence or absence of H2. Chondrocyte viability was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method. Results SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins, and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type II collagen and matrix metalloproteinases (such as MMP3 and MMP13 are down- and up-regulated by ONOO-, respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2 acted to restore transcriptional alterations induced by ONOO-. Conclusions These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional alterations through reducing ONOO-. Moreover, novel pharmacological strategies

  15. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  16. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  17. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  18. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  19. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  20. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  1. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs

    Institute of Scientific and Technical Information of China (English)

    Chun-ling FAN; Ping-jin GAO; Zai-qian CHE; Jian-jun LIU; Jian WEI; Ding-liang ZHU

    2005-01-01

    Aim: To investigate the hypothesis that transplantation with expanded autologous endothelial progenitor cells (EPC) could enhance neovascularization.Methods: Peripheral blood mononuclear cells (PB-MNC) isolated from New Zealand White rabbits were cultured in vitro. At d 7, the adherent cells were collected for autologous transplantation. Rabbits with severe unilateral hind limb ischemia were randomly assigned to receive phosphate-buffered saline or expanded EPC in phosphate-buffered saline, administered by intramuscular injection in 6 sites of the ischemic thigh at postoperative d 7. Neovascularization was monitored by using the calf blood pressure ratio to indicate tissue perfusion, digital subtraction angiography to identify collateral vessel development and histological analysis of capillary density in the ischemic limb at d 35 after surgery. Results: Autologous EPC transplantation produced significant amelioration in ischemic hind limbs,as indicated by a greater calf blood pressure ratio (0.52±0.04 vs 0.42±0.05, P<0.01),angiographic score (1.44±0.06 vs 0.98±0.08, P<0.01) and capillary density in muscle (195.2±5.4/mm2 vs 169.4±6.4/mm2, P<0.05), than controls. Conclusion: Transplantation of autologous expanded EPC can promote neovascularization in ischemic hindlimbs.

  2. Radiolabelled Autologous Cells: Methods and Standardization for Clinical Use

    International Nuclear Information System (INIS)

    This publication serves as a useful resource for nuclear medicine physicians, radiologists, radiopharmacists, pharmacologists and other researchers engaged with radiolabelling of autologous products for clinical application. It provides practical guidelines towards clinical work with radiolabelled autologous products and aims to streamline the variety of strategies that have evolved, for example, in the handling of radiolabelled red and white blood cells. The publication highlights the importance of the quality of radiolabelling services, provides advice on safety issues, and also addresses the use of other radiolabelled autologous products and their translation into the clinical environment

  3. Indium-111 autologous leukocyte imaging in pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Spence, R.A.; Laird, J.D.; Ferguson, W.R.; Kennedy, T.L.

    1986-03-01

    Thirty-nine patients with acute pancreatitis have been assessed using a prognostic factor grading system, abdominal ultrasound, and autologous leukocyte imaging. Both prognostic factor grading and leukocyte imaging can accurately assess the severity of the disease early in its course. All patients with a negative indium-labeled leukocyte image recovered without sequelae, whereas five of the 12 patients with a positive image developed complications, including two deaths. Abdominal ultrasound is of no value in assessing severity, but is a useful method of detecting those patients with gallstone-associated disease. In patients with suspected abscess formation following acute pancreatitis, indium leukocyte imaging does not differentiate between fat necrosis and abscess formation. In this situation, computerized tomography should be carried out before laparotomy is undertaken.

  4. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  5. Mitogenic and metabolic actions of epidermal growth factor on rat articular chondrocytes: modulation by fetal calf serum, transforming growth factor-beta, and tyrphostin.

    Science.gov (United States)

    Ribault, D; Khatib, A M; Panasyuk, A; Barbara, A; Bouizar, Z; Mitrovic, R D

    1997-01-15

    The effects of human recombinant epidermal growth factor (EGF) on rat articular chondrocytes from humeral and femoral head cartilage of 21-day-old Wistar rats were analyzed. The cells were cultured under standard conditions as monolayers. Cell proliferation was studied by [3H]thymidine incorporation and determination of DNA content, proteoglycan synthesis by [35S]sulfate incorporation, and collagen synthesis by [3H]proline incorporation. The presence of specific receptors was confirmed by [125I]-EGF binding and that of EGF and EGF-receptor (EGF-R) mRNA by reverse transcription and the polymerase chain reaction. EGF (0.5-2.5 ng/ml) stimulated [3H]thymidine incorporation and increased DNA content of cultures. The effect was strongest when serum concentration was low ( or =7.5%) serum concentrations. The EGF-induced effect on deoxynucleic acid synthesis was inhibited by transforming growth factor-beta and tyrphostin, a tyrosine kinase inhibitor that blocks the phosphorylation of tyrosine residues on EGF-R. Cultured rat articular chondrocytes possess a single class of high-affinity binding sites (Kd 0.18 nM). There were about 4.5 x 10(9) binding sites per microgram of DNA or about 37,800 binding sites per cell with 8.3 pg DNA per cell. Cultured cells contained EGF mRNA and EGF-R mRNA. Incubation of cells with EGF for 24 h decreased the EGF mRNA transcripts and increased the EGF-R mRNA levels. These findings suggest that EGF probably takes part in the regulation of chondrocyte activity under normal and presumably pathological conditions. PMID:9016808

  6. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  7. 99mTc-labeled chondroitin sulfate-uptake by chondrocytes and cartilage. Potential agent for osteoarthritis imaging?

    International Nuclear Information System (INIS)

    Aim: Chondroitin sulfate (CS) is an endogenous component of cartilage proteoglycan which could monitor osteoarthritic cartilage degradation after radiolabeling. This substance is used in the treatment of human osteoarthritis as a slow acting symptomatic drug (CONDROSULF; Sanova Pharma, Vienna; Ibsa, Switzerland). Material and Methods: Radiolabeling of CS was performed using 99mTcO4-/stannous chloride in 0.50 M sodium acetate buffer at pH 5.0. The quality control of the tracer was performed using ITLC-SG chromatography and 0.2 M saline in 10% ethanol as solvent to detect colloid content. Aluminium oxide IB-F TLC-sheets and ethanol as solvent were used to estimate free pertechnetate. For uptake studies cultured human chondrocytes and age-matched cartilage were used. Uptake of the tracer in chondrocytes was studied in monolayer and in suspension cultures at 370C. Uptake was monitored for a total of 120-180 minutes, samples being drawn every 10 minutes. Because the commercially available drug Condrosulf contains calcium stearate as additive to improve the resorption of the drug, we investigated also the uptake with and without additive. Results: The tracer was stable over 6h period after labeling (95% of the radiochemical purity). In plasma the stability was lower amounting to 75%. Viability of chondrocytes after incubation with either CS-preparation was found by trypan blue exclusion to be above 95 %. Uptake of the tracer performed in monolayer ± additives was low and amounted to 0.5%±0.05%, n=6. The cells were saturated already after an incubation interval of 10 minutes. In suspension cultures a maximal uptake of 1.0%±0.1%, n=6 and 5.9%±0.65%, n=6 was found, without and with additives, respectively, the saturation was achieved after 100 min. Thus, not only the resorption of the drug is enhanced by Ca-stearate, but also uptake increases in presence of this additive. Using human rib cartilage the uptake of the tracer was much higher amounting to 4.9%±2.3%, n=6

  8. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  9. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Highlights: ► Different PTH administration exerts different effects on condylar chondrocyte. ► Intermittent PTH administration suppresses condylar chondrocyte proliferation. ► Continuous PTH administration maintains condylar chondrocyte proliferating. ► Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  10. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Gu, Yuantong

    2016-01-01

    The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspiration and atomic force microscopy experiments, respectively. The newly developed PVHE model is compared thoroughly with the standard neo-Hookean solid and PHE models. It has been found that the PVHE can accurately capture both creep and stress relaxation behaviors of chondrocytes better than other two models. Hence, the PVHE is a promising model to investigate mechanical properties of single chondrocytes. PMID:25588670

  11. Autologous stem cell transplantation in the treatment of Hodgkin's disease

    OpenAIRE

    Tarabar Olivera; Tukić Ljiljana; Stamatović Dragana; Balint Bela; Elez Marija; Ostojić Gordana; Tatomirović Željka; Marjanović Slobodan

    2009-01-01

    Background/Aim. High-dose chemotherapy with autologous stem cell transplantacion (ASCT) has shown to produce long-term disease-free survival in patients with chemotherapysensitive Hodgkin disease. The aim of the study was to evaluate efficacy of ASCT in the treatment of Hodgkin's disease. Methods. Between May 1997 and September 2008, 34 patients with Hodgkin's disease in median age of 25 (range 16-60) years, underwent ASCT. Autologous SCT were performed as consolidation therapy in one poor-ri...

  12. Lumbar herniation following extended autologous latissimus dorsi breast reconstruction

    OpenAIRE

    Fraser, Sheila Margaret; Fatayer, Hiba; Achuthan, Rajgopal

    2013-01-01

    Background Reconstructive breast surgery is now recognized to be an important part of the treatment for breast cancer. Surgical reconstruction options consist of implants, autologous tissue transfer or a combination of the two. The latissimus dorsi flap is a pedicled musculocutaneous flap and is an established method of autologous breast reconstruction. Lumbar hernias are an unusual type of hernia, the majority occurring after surgery or trauma in this area. The reported incidence of a lumbar...

  13. 威灵仙提取物干预膝骨关节炎软骨细胞的生长活力★%Effect of radix clematidis extract on viability of knee osteoarthritis chondrocytes

    Institute of Scientific and Technical Information of China (English)

    徐扬; 桂鉴超; 高峰; 徐燕; 王黎明; 陆一鸣; 尹昭伟

    2013-01-01

    clematidis extract on cel viability of the knee osteoarthritis chondrocytes. METHODS:Joint cartilage was shredded after harvested from the patients of osteoarthritis undergoing the knee replacements, and chondrocytes were isolated and cultured by the way of enzymatic digestion. The third-passage cel s in the logarithmic growth phase were cultured in vitro and randomly divided into six groups after adherence. The experimental groups were cultured in Dulbecco’s modified Eagle’s medium with 0.01, 0.05, 0.1, 0.5, and 1.0 g/L radix clematidis extract, while the control group was given normal medium alone. Live/Dead assay method was adopted to observe the effect of radix clematidis extract with different concentrations on cel viability of the knee osteoarthritis chondrocytes, and TUNEL method was used to assay apoptosis index of the knee osteoarthritis chondrocytes. RESULTS AND CONCLUSION:0.05 and 0.1 g/L radix clematidis extracts increased cel viability of chondrocytes, while 0.5 and 1.0 g/L radix clematidis extracts decreased the cel viability of chondrocytes. There was a significant difference in the cel viability between 0.05, 0.1, 0.5, 1.0 g/L radix clematidis extract groups and the control group (P<0.05). 0.01, 0.05, 0.1 g/L radix clematidis extracts effectively inhibited apoptosis of chondrocytes, while 1.0 g/L radix clematidis extract promote the apoptosis of chondrocytes. There was a significant difference in the apoptotic index between 0.01, 0.05, 0.1, 1.0 g/L radix clematidis extract groups and the control group (P<0.05). The appropriate concentration of radix clematidis extract could improve chondrocytes viability and restrain chondrocytes apoptosis, and the peak was at 0.1 g/L group. But excessive concentration of radix clematidis extract could reduce chondrocytes viability and promote chondrocytes apoptosis, representing the toxic effects on human articular chondrocytes.

  14. Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes.

    Science.gov (United States)

    Lee, Bobae; Han, Lin; Frank, Eliot H; Chubinskaya, Susan; Ortiz, Christine; Grodzinsky, Alan J

    2010-02-10

    The success of cell-based tissue engineering approaches in restoring biological function will be facilitated by a comprehensive fundamental knowledge of the temporal evolution of the structure and properties of the newly synthesized matrix. Here, we quantify the dynamic oscillatory mechanical behavior of the engineered matrix associated with individual chondrocytes cultured in vitro for up to 28 days in alginate scaffolds. The magnitude of the complex modulus (|E*|) and phase shift (delta) were measured in culture medium using Atomic Force Microscopy (AFM)-based nanoindentation in response to an imposed oscillatory deformation (amplitude approximately 5nm) as a function of frequency (f=1-316Hz), probe tip geometry (2.5microm radius sphere and 50nm radius square pyramid), and in the absence and presence of growth factors (GF, insulin growth factor-1, IGF-1, and osteogenic protein-1, OP-1). |E*| for all conditions increased nonlinearly with frequency dependence approximately f(1/2) and ranged between approximately 1 and 25kPa. This result, along with theoretical calculations of the characteristic poroelastic relaxation frequency, f(p), (approximately 50-90Hz) suggested that this time-dependent behavior was governed primarily by fluid flow-dependent poroelasticity, rather than flow-independent viscoelastic processes associated with the solid matrix. |E*(f)| increased, (f) decreased, and the hydraulic permeability, k, decreased with time in culture and with growth factor treatment. This trend of a more elastic-like response was thought to be associated with increased macromolecular biosynthesis, density, and a more mature matrix structure/organization. PMID:19889416

  15. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  16. Autologous rosette-forming T cells as the responding cells in human autologous mixed-lymphocyte reaction.

    OpenAIRE

    Palacios, R; Llorente, L; Alarcón-Segovia, D; Ruíz-Arguelles, A; Díaz-Jouanen, E

    1980-01-01

    Autologous rosette-forming cells (Tar cells) have surface and functional characteristics of post-thymic precursors and among these characteristics there are some that have been identified in the responsive cell of the autologous mixed-lymphocyte reaction (AMLR). We therefore did AMLR with circulating mononuclear cells from normal subjects using as responding cells either total T cells, T cells depleted of Tar cells, or purified Tar cells. The response of Tar cells in AMLR was significantly gr...

  17. The mechanism of inhibition of endothelin-1-induced stimulation of DNA synthesis in rat articular chondrocytes.

    Science.gov (United States)

    Khatib, A M; Ribault, D; Quintero, M; Barbara, A; Fiet, J; Mitrovic, D R

    1997-09-19

    Endothelin-1 (ET-1) is a potent mitogen for rat articular chondrocytes (AC) in short term culture (24 h). Prolonged incubation (72 h) of AC with ET-1 resulted in inhibition of [3H]thymidine incorporation. This inhibition seemed to be mediated by prostaglandins (PGs) released in response to ET-1, since indomethacin (INDO) enhanced ET-1-induced [3H]thymidine incorporation. In agreement with this hypothesis, exogenous prostaglandins (PGE2, PGF2alpha and TxB2) blocked all basal, ET-1-induced and ET-1 induced-INDO-enhanced [3H]thymidine incorporation and ET-1 stimulated PGE2 release in a time and concentration-dependent manner. INDO also blocked cGMP production and 6-anilino-5,8-quinolinedione, a relatively specific inhibitor of cGMP formation, enhanced the stimulation and suppressed the inhibition of ET-1-induced DNA synthesis. In addition, 8-bromo-cGMP, an analogue of cGMP, blocked at all time periods studied, both basal and ET-1-induced incorporations of [3H]thymidine. Thus, PGs produced in response to ET-1 counteract the ET-1-induced stimulation of [3H]thymidine incorporation into rat AC by increasing cGMP production. PMID:9324043

  18. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes.

    Science.gov (United States)

    Lin, Zhao; Rodriguez, Nicholas E; Zhao, Junjun; Ramey, Allison N; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2016-07-01

    Matrix vesicles (MVs) are membrane organelles found in the extracellular matrix of calcifying cells, which contain matrix processing enzymes and regulate the extracellular environment via action of these enzymes. It is unknown whether MVs are also exosomic mediators of cell-cell communication via transfer of RNA material, and specifically, microRNA (miRNA). We investigated the presence of RNA in MVs isolated from cultures of costochondral growth zone chondrocytes. Our results showed that the average yield of MV RNA was 1.93±0.78ng RNA/10(4) cells, which was approximately 0.1% of the parent cell's total RNA. MV RNA was well-protected from RNase by the lipid membrane and was highly enriched in small RNA molecules compared to cells. Moreover, coding and non-coding small RNAs in MVs were in proportions that differed from parent cells. Enrichment of specific miRNAs was consistently observed in all three miRNA detection platforms that we used, suggesting that miRNAs are selectively packaged into MVs. MV-enriched miRNAs were related to different signaling pathways associated with bone formation. This study suggests a significant role for MVs as "matrisomes" in cell-cell communication in cartilage and bone development via transfer of specific miRNAs. PMID:27080510

  19. Influence of intra-articular administration of trichostatin a on autologous osteochondral transplantation in a rabbit model.

    Science.gov (United States)

    Hou, Huacheng; Zheng, Ke; Wang, Guanghu; Ikegawa, Shiro; Zheng, Minghao; Gao, Xiang; Qin, Jinzhong; Teng, Huajian; Jiang, Qing

    2015-01-01

    Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O'Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β (IL-1β) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury. PMID:25866784

  20. Influence of Intra-Articular Administration of Trichostatin A on Autologous Osteochondral Transplantation in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Huacheng Hou

    2015-01-01

    Full Text Available Autologous osteochondral transplantation (AOT is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS macroscopic scores, the modified O’Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2, aggrecan, matrix metalloproteinase (MMP, and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5 expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β (IL-1β in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury.

  1. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    International Nuclear Information System (INIS)

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis

  2. Skeletal Characterization of Smurf2-Deficient Mice and In Vitro Analysis of Smurf2-Deficient Chondrocytes.

    Science.gov (United States)

    Huang, Henry; Veien, Eric S; Zhang, Hong; Ayers, David C; Song, Jie

    2016-01-01

    Overexpression of Smad ubiquitin regulatory factor 2 (Smurf2) in chondrocytes was reported to cause spontaneous osteoarthritis (OA) in mice. However, it is unclear whether Smurf2 is involved in bone and cartilage homeostasis and if it is required for OA pathogenesis. Here we characterized age-related changes in the bone and articular cartilage of Smurf2-deficient (MT) mice by microCT and histology, and examined whether reduced Smurf2 expression affected the severity of OA upon surgical destabilization of the medial meniscus (DMM). Using immature articular chondrocytes (iMAC) from MT and wild-type (WT) mice, we also examined how Smurf2 deficiency affects chondrogenic and catabolic gene expressions and Smurf2 and Smurf1 proteins upon TGF-β3 or IL-1β treatment in culture. We found no differences in cortical, subchondral and trabecular bone between WT and MT in young (4 months) and old mice (16-24 months). The articular cartilage and age-related alterations between WT and MT were also similar. However, 2 months following DMM, young MT showed milder OA compared to WT (~70% vs ~30% normal or exhibiting only mild OA cartilage phenotype). The majority of the older WT and MT mice developed moderate/severe OA 2 months after DMM, but a higher subset of aged MT cartilage (27% vs. 9% WT) remained largely normal. Chondrogenic gene expression (Sox9, Col2, Acan) trended higher in MT iMACs than WT with/without TGF-β3 treatment. IL-1β treatment suppressed chondrgenic gene expression, but Sox9 expression in MT remained significantly higher than WT. Smurf2 protein in WT iMACs increased upon TGF-β3 treatment and decreased upon IL-1β treatment in a dose-dependent manner. Smurf1 protein elevated more in MT than WT upon TGF-β3 treatment, suggesting a potential, but very mild compensatory effect. Overall, our data support a role of Smurf2 in regulating OA development but suggest that inhibiting Smurf2 alone may not be sufficient to prevent or consistently mitigate post-traumatic OA

  3. Skeletal Characterization of Smurf2-Deficient Mice and In Vitro Analysis of Smurf2-Deficient Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Henry Huang

    Full Text Available Overexpression of Smad ubiquitin regulatory factor 2 (Smurf2 in chondrocytes was reported to cause spontaneous osteoarthritis (OA in mice. However, it is unclear whether Smurf2 is involved in bone and cartilage homeostasis and if it is required for OA pathogenesis. Here we characterized age-related changes in the bone and articular cartilage of Smurf2-deficient (MT mice by microCT and histology, and examined whether reduced Smurf2 expression affected the severity of OA upon surgical destabilization of the medial meniscus (DMM. Using immature articular chondrocytes (iMAC from MT and wild-type (WT mice, we also examined how Smurf2 deficiency affects chondrogenic and catabolic gene expressions and Smurf2 and Smurf1 proteins upon TGF-β3 or IL-1β treatment in culture. We found no differences in cortical, subchondral and trabecular bone between WT and MT in young (4 months and old mice (16-24 months. The articular cartilage and age-related alterations between WT and MT were also similar. However, 2 months following DMM, young MT showed milder OA compared to WT (~70% vs ~30% normal or exhibiting only mild OA cartilage phenotype. The majority of the older WT and MT mice developed moderate/severe OA 2 months after DMM, but a higher subset of aged MT cartilage (27% vs. 9% WT remained largely normal. Chondrogenic gene expression (Sox9, Col2, Acan trended higher in MT iMACs than WT with/without TGF-β3 treatment. IL-1β treatment suppressed chondrgenic gene expression, but Sox9 expression in MT remained significantly higher than WT. Smurf2 protein in WT iMACs increased upon TGF-β3 treatment and decreased upon IL-1β treatment in a dose-dependent manner. Smurf1 protein elevated more in MT than WT upon TGF-β3 treatment, suggesting a potential, but very mild compensatory effect. Overall, our data support a role of Smurf2 in regulating OA development but suggest that inhibiting Smurf2 alone may not be sufficient to prevent or consistently mitigate post

  4. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  5. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation

    DEFF Research Database (Denmark)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A;

    2001-01-01

    Clinical and in vitro studies have demonstrated that fluoroquinolones are toxic to chondrocytes; however, the exact mechanism of fluoroquinolone arthropathy is unknown. We investigated the toxicity of ciprofloxacin on normal cartilage and on cartilaginous tumors. Normal human cartilage, enchondroma...

  6. The cytoskeleton of chondrocytes of Sepia officinalis (Mollusca, Cephalopoda: an immunocytochemical study

    Directory of Open Access Journals (Sweden)

    F Leone

    2009-06-01

    Full Text Available Our previous electron microscope study showed that chondrocytes from cephalopod cartilage possess a highly developed cytoskeleton and numerous cytoplasmic processes that ramify extensively through the tissue. We have now carried out a light microscope immunocytochemical study of chondrocytes from the orbital cartilage of Sepia officinalis to obtain indications as to the nature of the cytoskeletal components. We found clear positivity to antibodies against mammalian tubulin, vimentin, GFAP, and actin, but not keratin. The simultaneous presence of several cytoskeletal components is consistent with the hypothesis that cephalopod chondrocytes have the characteristics of both chondrocytes and osteocytes of vertebrates, which endow the tissue as a whole with some of the properties of vertebrate bone. We confirm, therefore, the presence in molluscs of the ubiquitous cytoskeletal proteins of metazoan cells that have remained highly conserved throughout phylogenetic evolution.

  7. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  8. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  9. Inhibition of β-Catenin Signaling in Chondrocytes Induces Delayed Fracture Healing in Mice

    OpenAIRE

    Huang, Yang; Zhang, Xiaoling; Du, Kewei; Yang, Fei; Shi, Yu; Huang, Jingang; TANG, TINGTING; Chen, Di; DAI, KERONG

    2011-01-01

    Appropriate and controlled chondrogenesis and endochondral ossification play fundamental roles in the fracture healing cascade, a regenerative process involved in highly coordinated biological events, including the Wnt/β-catenin signaling pathway. To examine the role and importance of this pathway in chondrocytes, we studied bone repair of closed tibias fractures in Col2a1-ICAT transgenic mice, in which the Wnt/β-catenin signaling pathway is specially inhibited in chondrocytes. Radiological, ...

  10. Profilin 1 is required for abscission during late cytokinesis of chondrocytes

    OpenAIRE

    Böttcher, Ralph T.; Wiesner, Sebastian; Braun, Attila; Wimmer, Reiner; Berna, Alejandro; Elad, Nadav; Medalia, Ohad; Pfeifer, Alexander; Aszódi, Attila; Costell, Mercedes; Fässler, Reinhard

    2009-01-01

    Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indic...

  11. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    OpenAIRE

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2007-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 n...

  12. Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes

    OpenAIRE

    Lee, Won Kil; Kang, Jin Seok

    2016-01-01

    This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ (50~200 μg/mL) rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the co...

  13. Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization

    OpenAIRE

    Chahine, Nadeen O.; Collette, Nicole M.; Thomas, Cynthia B.; Genetos, Damian C.; Loots, Gabriela G

    2014-01-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and bioc...

  14. Chondrocyte Senescence and Telomere Regulation: Implications in Cartilage Aging and Cancer (A Brief Review)

    OpenAIRE

    Mollano, Anthony V; Martin, James A.; Buckwalter, Joseph A

    2002-01-01

    Recent studies on osteoarthritis and the cartilage aging in our laboratory demonstrate that chronologic age correlates with molecular changes in human chondrocytes that affect cell cycle control and replicative life span. These findings indicate that age-related changes in chondrocytes may explain the heightened risk for development of primary osteoarthritis (OA) with increasing age. Concomitant studies of human chondrosarcoma suggest that these aging mechanisms may also play a role in preven...

  15. Chronic phase CML patients possess T cells capable of recognising autologous tumour cells.

    Science.gov (United States)

    Müller, Ludmila; Pawelec, Graham

    2002-05-01

    Much circumstantial evidence points to the immunogenicity of chronic myloid leukemia (CML) cells, most impressively the well-established T cell-dependent GvL effect seen in bone marrow transplantation. However, only a small number of shared antigens expressed by CML cells have been identified as potential targets for T cell-mediated immune responses which might be exploited for immunotherapy. It may be that unique antigens expressed by individual tumours are more potent rejection antigens if the patient's own T cells could be encouraged to react against them. Work is reviewed here which documents that in vitro mixed cultures between autologous T cells and dendritic cells of chronic-phase CML patients can give rise to sensitised T cells capable of recognising the patient's tumour cells. Additionally, mixed autologous tumour cell/lymphocyte cultures, modified by the addition of cytokine cocktails, may also result in the generation of similarly sensitised T cells. These results could be exploited for adoptive immunotherapy, and possibly, after identification of the antigens recognised, also for active immunotherapy, i.e. including therapeutic vaccination. PMID:12148904

  16. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-07-01

    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound. PMID:27475127

  17. Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.

    Science.gov (United States)

    Zhou, Zi-Qiang; Ota, Sara; Deng, Chuxia; Akiyama, Haruhiko; Hurlin, Peter J

    2015-03-15

    Fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification, and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation, and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3. PMID:25432534

  18. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  19. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs.

    Science.gov (United States)

    Marx, Camila; Silveira, Maiele Dornelles; Selbach, Isabel; da Silva, Ariel Silveira; Braga, Luisa Maria Gomes de Macedo; Camassola, Melissa; Nardi, Nance Beyer

    2014-01-01

    Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n = 4) or allogeneic cultured adipose-derived stem cells (ASCs, n = 5) injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases. PMID:25180040

  20. ACTIVITY OF CANONICAL WNT SIGNAL SYSTEM IN HYALINE CARTILAGE ARTICULAR CHONDROCYTES IN PROCESS OF SYNOVIAL JOINT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.O. Molotkov

    2009-03-01

    Full Text Available Canonical and non-canonical Wnt systems are essential regulators of chondrogenesis and bone development. However, the roles of these systems in synovial joint development are not well studied. To determine if canonical Wnt system is active in developing articular chondrocytes we used immunohistochemistry for в-galactosidase and doublecortin (cell-type specific marker for articular chondrocytes to double label sections through joint regions of E14.5, E18.5, P10 and adult mice. Here the following results are presented. Canonical Wnt signal system does not work in developing articular chondrocytes at early embryonic stages (E14.5; it is active in the articular chondrocytes at late embryonic stages (E16.5-E18.5 and during postnatal development (P7-P10, but is turned off again in the adult articular chondrocytes. These results suggest that canonical Wnt signaling is being regulated during articular chondrocytes differentiation and joint formation.

  1. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  2. Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee

    Institute of Scientific and Technical Information of China (English)

    DUAN Wang-ping; SUN Zhen-wei; LI Qi; LI Chun-jiang; WANG Li; CHEN Wei-yi; Jennifer Tickner; ZHENG Ming-hao; WEI Xiao-chun

    2012-01-01

    Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint.The pericellular matrix,cellular membrane of the chondrocytes,and their cytoskeletal structures are key elements in the mechanical environment.The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties.Methods Three age groups of rabbit knees were evaluated:(1) young (2 months,n=10);(2) adult (8 months,n=10);and (3) old (31 months,n=10).Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods.Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation.The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining.Results In response to an applied constant 0.3-0.4 kPa of negative pressure,all chondrocytes exhibited standard linear viscoelastic solid properties.Model predictions of the creep data showed that the average equilibrium modulus (E∞),instantaneous modulus (E0).and apparent viscosity (μ) of old chondrocytes was significantly lower than the young and adult chondrocytes (P<0.001);however,no difference was found between young and adult chondrocytes (P>0.05).The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells.The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1kPa) without the deformation seen in the old chondrons.The viscoelastic properties (E∞,E0,and u) of young and adult chondrons were significantly greater than that observed

  3. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.

    Science.gov (United States)

    Chen, Chongwei; Wei, Xiaochun; Wang, Shaowei; Jiao, Qiang; Zhang, Yang; Du, Guoqing; Wang, Xiaohu; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2016-07-01

    Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation. PMID:27106144

  4. Autologous Blood Transfusion in Sports: Emerging Biomarkers.

    Science.gov (United States)

    Salamin, Olivier; De Angelis, Sara; Tissot, Jean-Daniel; Saugy, Martial; Leuenberger, Nicolas

    2016-07-01

    Despite being prohibited by the World Anti-Doping Agency, blood doping through erythropoietin injection or blood transfusion is frequently used by athletes to increase oxygen delivery to muscles and enhance performance. In contrast with allogeneic blood transfusion and erythropoietic stimulants, there is presently no direct method of detection for autologous blood transfusion (ABT) doping. Blood reinfusion is currently monitored with individual follow-up of hematological variables via the athlete biological passport, which requires further improvement. Microdosage is undetectable, and suspicious profiles in athletes are often attributed to exposure to altitude, heat stress, or illness. Additional indirect biomarkers may increase the sensitivity and specificity of the longitudinal approach. The emergence of "-omics" strategies provides new opportunities to discover biomarkers for the indirect detection of ABT. With the development of direct quantitative methods, transcriptomics based on microRNA or messenger RNA expression is a promising approach. Because blood donation and blood reinfusion alter iron metabolism, quantification of proteins involved in metal metabolism, such as hepcidin, may be applied in an "ironomics" strategy to improve the detection of ABT. As red blood cell (RBC) storage triggers changes in membrane proteins, proteomic methods have the potential to identify the presence of stored RBCs in blood. Alternatively, urine matrix can be used for the quantification of the plasticizer di(2-ethyhexyl)phthalate and its metabolites that originate from blood storage bags, suggesting recent blood transfusion, and have an important degree of sensitivity and specificity. This review proposes that various indirect biomarkers should be applied in combination with mathematical approaches for longitudinal monitoring aimed at improving ABT detection. PMID:27260108

  5. Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor

    Directory of Open Access Journals (Sweden)

    Md. Shakhawath Hossain

    2015-03-01

    Full Text Available Mathematical and numerical modelling of the tissue culture process in a perfusion bioreactor is able to provide insight into the fluid flow, nutrients and wastes transport, dynamics of the pH value, and the cell growth rate. Knowing the complicated interdependence of these processes is essential for optimizing the culture process for cell growth. This paper presents a resolved scale numerical simulation, which allows one not only to characterize the supply of glucose inside a porous tissue scaffold in a perfusion bioreactor, but also to assess the overall culture condition and predict the cell growth rate. The simulation uses a simplified scaffold that consists of a repeatable unit composed of multiple strands. The simulation results explore some problematic regions inside the simplified scaffold where the concentration of glucose becomes lower than the critical value for the chondrocyte cell viability and the cell growth rate becomes significantly reduced.

  6. Effectiveness of autologous transfusion system in primary total hip and knee arthroplasty.

    LENUS (Irish Health Repository)

    Schneider, Marco M

    2014-01-01

    Autologous transfusion has become a cost-efficient and useful option in the treatment of patients with high blood loss following major orthopaedic surgery. However, the effectiveness of autologous transfusion in total joint replacement remains controversial.

  7. Effects of PTHrP on chondrocytes of sika deer antler.

    Science.gov (United States)

    Guo, Bin; Wang, Shou-Tang; Duan, Cui-Cui; Li, Dang-Dang; Tian, Xue-Chao; Wang, Qu-Yuan; Yue, Zhan-Peng

    2013-11-01

    Parathyroid-hormone-related peptide (PTHrP) is an important regulator of chondrocyte differentiation in growth plates but little is known about its role in deer antler cartilage. The aim of the present study was to use the deer antler as a model to determine the possible role of PTHrP in regulating chondrocyte differentiation of deer antler. PTHrP and its receptor PTH1R mRNA were highly expressed in the perichondrium and cartilage of sika deer antler, as shown by in situ hybridization. Chondrocytes of deer antler were identified by toluidine blue staining of glycosaminoglycan and immunocytochemical staining of type II collagen (Col II). Treatment with PTHrP (1-34) reduced the expression of prehypertrophic chondrocyte marker Col IX and hypertrophic chondrocyte marker Col X. In order to confirm the mechanism of action of PTHrP, we initially examined the expression of cyclin D1, Bcl-2 and runt-related transcription factor 2 (Runx2) in sika deer antler by in situ hybridization and found that cyclin D1, Runx2 and Bcl-2 mRNA were also expressed in antler chondrocytes. Exogenous PTHrP induced the expression of cyclin D1 and Bcl-2 mRNA by various signalling pathways, whereas it inhibited Runx2 expression through PKA, p38MAPK, MEK and PI3K signalling pathways. Thus, PTHrP might promote the proliferation of antler chondrocytes and prevent their differentiation; it might furthermore influence the growth and development of sika deer antler. PMID:23824099

  8. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    Science.gov (United States)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  9. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes.

    Science.gov (United States)

    Huang, Hao; Quan, Ying-Yao; Wang, Xiao-Ping; Chen, Tong-Sheng

    2016-12-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA). PMID:27178054

  10. Improving diagnosis of appendicitis. Early autologous leukocyte scanning

    International Nuclear Information System (INIS)

    A prospective nonrandomized study investigating the accuracy and utility of autologous leukocyte scanning in the diagnosis of appendicitis was performed. One hundred patients in whom the clinical diagnosis of appendicitis was uncertain underwent indium 111 oxyquinoline labelling of autologous leukocytes and underwent scanning 2 hours following reinjection. Of 32 patients with proved appendicitis, three scans revealed normal results (false-negative rate, 0.09). Of 68 patients without appendicitis, three scans had positive results (false-positive rate, 0.03; sensitivity, 0.91; specificity, 0.97; predictive value of positive scan, 0.94; predictive value of negative scan, 0.96; and overall accuracy, 0.95). Scan results altered clinical decisions in 19 patients. In 13 cases, the scan produced images consistent with diagnoses other than appendicitis, expediting appropriate management. Early-imaging In 111 oxyquinoline autologous leukocyte scanning is a practical and highly accurate adjunct for diagnosing appendicitis

  11. Distinct Effect of TCF4 on the NFκB Pathway in Human Primary Chondrocytes and the C20/A4 Chondrocyte Cell Line

    NARCIS (Netherlands)

    Landman, E.B.M.; Periyasamy, P.C.; Blitterswijk, van C.A.; Post, J.N.; Karperien, M.

    2014-01-01

    Objective: Previous studies indicated a difference in crosstalk between canonical WNT pathway and nuclear factor-κB (NFκB) signaling in human and animal chondrocytes. To assess whether the differences found were dependent on cell types used, we tested the effect of WNT modulation on NFκB signaling i

  12. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  13. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  14. Breast Imaging after Breast Augmentation with Autologous Tissues

    International Nuclear Information System (INIS)

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  15. Breast fistula repair after autologous fat graft: a case report

    OpenAIRE

    Luca Maione; Giorgio Pajardi; Valeriano Vinci; Davide Forcellini; Fabio Caviggioli; Francesco Maria Klinger; Marco Klinger

    2011-01-01

    We report the case of a 55-year-old female patient who attended our clinic for the presence of a scar retraction in the upper pole of the left breast as a complication of breast augmentation. In the scar area, we observed an orifice that probing revealed to be a fistula. The patient was referred to surgical intervention under general anesthesia to obtain scar contracture release using autologous fat graft; one month after autologous fat injection, following healing of the fistula, the patient...

  16. A review of the application of autologous blood transfusion.

    Science.gov (United States)

    Zhou, J

    2016-01-01

    Autologous blood transfusion (ABT) has been gradually attracting more attention due to the increasingly prominent problem of blood transfusion safety and blood shortage in recent years. With the rapid development of blood conservation techniques, blood component separation technology, blood transfusion medicine and a constant increase in clinical needs, ABT technology has been expanded and innovated to a large degree. In this study, the development of preoperative autologous blood donation (PABD), acute normovolemic hemodilution (ANH), intraoperative and postoperative autotransfusion, and other new technologies and theories are reviewed and existing questions are analyzed. Challenges and applications are also discussed in order to provide reference for peers. PMID:27533770

  17. Short-term Effect of Chemotherapy Concomitant with Multiple Autologous Immunocytes on Patients with Colorectal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Liu Junquan; Zhu Yun; Zhang Nanzheng; Chen Fuxing; Chen Ling; Zhang Song; Yang Wanying; Zhou Zhonghai; Lv Xiaoting

    2013-01-01

    Objective:To compare the differences of cellular immunological functional changes and survival time of chemotherapy concomitant with multiple autologous immunocytes with single chemotherapy on patients with colorectal carcinoma (CRC). Methods: Of the 83 CRC patients, 43 were treated with single chemotherapy (single chemotherapy group) while the other 40 were given chemotherapy concomitant with multiple autologous immunocytes (combined chemotherapy group). Blood cell separator was applied to collect autologous peripheral blood mononuclear (PBMC) which was used to induce the cultures of peripheral blood CD3AK cell, CIK cell, dendritic cell (DC), γδT cell and NK cell based on routine approaches. Peripheral blood CD3+, CD4+, CD8+, CD19+, CD16+, CD56+, CD4/CD8 andγδT cell ratio as well as the positive expression rates of perforin, granular enzyme B and CD107a in PBMC were determined by lfow cytometer. Same chemotherapy (oxaliplatin + CF + 5-FU) was intravenously given to both groups, while in combination group, 4, 6, 9, 11 and 10 patients received 3, 6, 7, 10 and>16 courses of treatment, respectively. Results:Subgroup of immunocytes and absolute value in combined chemotherapy group were evidently higher than in single chemotherapy group, but there was no significant difference in Karnofsky score. In addition, combined chemotherapy group was apparently higher after treatment than treatment before and single chemotherapy group in the results of perforin, granular enzyme B (GranB) and CD107a in PBMC. Additionally, 1-, 2- and 5-year survival rates in combined chemotherapy group (in phases Ⅱ, Ⅲand Ⅳ) were 70.0%(28/40), 20.0%(8/40) and 10.0%(4/40), higher than those in single chemotherapy group [23.2% (10/43), 7.0% (3/43) and 4.6%(2/43)], respectively, in which the differences in phases Ⅱand Ⅲwere more signiifcant (P Conclusion:Chemotherapy concomitant with multiple autologous immunocytes can improve the immunological function and prolong survival time for

  18. Short-term Effect of Chemotherapy Concomitant with Multiple Autologous Immunocytes on Patients with Colorectal Carcinoma

    Directory of Open Access Journals (Sweden)

    Junquan Liu

    2013-12-01

    Full Text Available Objective: To compare the differences of cellular immunological functional changes and survival time of chemotherapy concomitant with multiple autologous immunocytes with single chemotherapy on patients with colorectal carcinoma (CRC. Methods: Of the 83 CRC patients, 43 were treated with single chemotherapy (single chemotherapy group while the other 40 were given chemotherapy concomitant with multiple autologous immunocytes (combined chemotherapy group. Blood cell separator was applied to collect autologous peripheral blood mononuclear (PBMC which was used to induce the cultures of peripheral blood CD3AK cell, CIK cell, dendritic cell (DC, γδT cell and NK cell based on routine approaches. Peripheral blood CD3+, CD4+, CD8+, CD19+, CD16+, CD56+, CD4/CD8 and γδT cell ratio as well as the positive expression rates of perforin, granular enzyme B and CD107a in PBMC were determined by flow cytometer. Same chemotherapy (oxaliplatin + CF + 5-FU was intravenously given to both groups, while in combination group, 4, 6, 9, 11 and 10 patients received 3, 6, 7, 10 and > 16 courses of treatment, respectively. Results: Subgroup of immunocytes and absolute value in combined chemotherapy group were evidently higher than in single chemotherapy group, but there was no significant difference in Karnofsky score. In addition, combined chemotherapy group was apparently higher after treatment than treatment before and single chemotherapy group in the results of perforin, granular enzyme B (GranB and CD107a in PBMC. Additionally, 1-, 2- and 5-year survival rates in combined chemotherapy group (in phases Ⅱ , Ⅲ and Ⅳ were 70.0% (28/40, 20.0% (8/40 and 10.0% (4/40, higher than those in single chemotherapy group [23.2% (10/43, 7.0% (3/43 and 4.6% (2/43], respectively, in which the differences in phases Ⅱ and Ⅲ were more significant (P <0.05, but no difference was observed between two groups in 5-year survival rate in patients in phase Ⅳ . Conclusion

  19. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  20. Human lymphokine-activated killer cell system. V. Purified recombinant interleukin 2 activates cytotoxic lymphocytes which lyse both natural killer-resistant autologous and allogeneic tumors and trinitrophenyl-modified autologous peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Culture of human peripheral blood lymphocytes (PBL) in purified natural or recombinant interleukin 2 in the absence of exogenous antigen or mitogen causes the differentiation of nonlytic precursor cells into lymphokine-activated killers (LAK). A titration of purified Jurkat IL-2 (BRMP, FCRC, NIH) IL-2 showed that the relatively low concentration of 5 U/ml was optimal for LAK activation. When the responding PBL were pretreated with either mitomycin C or gamma irradiation, LAK activation did not occur, indicating that proliferation, in addition to differentiation, is required. The spectrum of target cells susceptible to LAK lysis in a 4-hr chromium-51-release assay includes fresh NK-resistant tumor cells and trinitrophenyl (TNP)-modified autologous PBL. Unmodified PBL are not lysed. Cold target inhibition studies indicated that LAK lysis of autologous TNP-PBL is totally inhibited by fresh tumors cells, and that tumor lysis is inhibited by TNP-PBL. Additionally, allogeneic tumors totally inhibit lysis of autologous tumor cells in other cold target studies. These results demonstrate that the lytic activity expressed by LAK is not HLA restricted, is not limited to tumor cells, and is polyspecific as indicated by the cross-reactive recognition of multiple target cell types in these cold target inhibition studies

  1. Serum after autologous transplantation stimulates proliferation and expansion of human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Thomas Walenda

    Full Text Available Regeneration after hematopoietic stem cell transplantation (HSCT depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+, CD133(+, CD45(- for more cell divisions and increased colony forming units (CFU as well as the number of cobblestone area-forming cells (CAFC. The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT. Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1 increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.

  2. G-protein stimulatory subunit alpha and Gq/11α G-proteins are both required to maintain quiescent stem-like chondrocytes

    OpenAIRE

    Chagin, Andrei S; Vuppalapati, Karuna K; Kobayashi, Tatsuya; Guo, Jun; Hirai, Takao; Chen, Min; Offermanns, Stefan; Lee S Weinstein; Kronenberg, Henry M.

    2014-01-01

    Round chondrocytes in the resting zone of the growth plate provide precursors for columnar chondrocytes and have stem-like properties. Here we demonstrate that these stem-like chondrocytes undergo apoptosis in the absence of the receptor (PPR) for parathyroid hormone-related protein. We examine the possible roles of heterotrimeric G-proteins activated by the PPR. Inactivation of the G-protein stimulatory α-subunit (Gsα) leads to accelerated differentiation of columnar chondrocytes, as seen in...

  3. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  4. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  5. The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation.

    Science.gov (United States)

    Appelman, Taly P; Mizrahi, Joseph; Elisseeff, Jennifer H; Seliktar, Dror

    2009-02-01

    This study aims to explore the differential effect of scaffold composition and architecture on chondrogenic response to dynamic strain stimulation using encapsulating PEG-based hydrogels and primary bovine chondrocytes. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic materials to be used as scaffolds. Four different compositions were tested, including: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only. Primary articular chondrocytes were encapsulated in the hydrogel scaffolds and subjected to 15% dynamic compressive strain stimulation at 1-Hz frequency for 28 days. Stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the unconfined true compressive modulus by 32%, 45.4%, 33.6%, and 28.2%, compared to their static controls. The PF showed a significantly larger relative increase in the modulus in comparison to all other scaffolds tested. These results support the hypothesis that mechanical stimulation and material bioactivity have a significant effect on the reported chondrocyte response. Similar trends were observed with the swelling ratio of the constructs. These findings indicate that while stimulation causes metabolic changes in chondrocytes seeded in PEG hydrogels, the matrix bioactivity has a significant role in enhancing chondrocyte mechanotransduction in encapsulating scaffolds subjected to physical deformations. PMID:19000634

  6. Coptisine Prevented IL-β-Induced Expression of Inflammatory Mediators in Chondrocytes.

    Science.gov (United States)

    Zhou, Kai; Hu, Li; Liao, Wenjun; Yin, Defeng; Rui, Feng

    2016-08-01

    Interleukin 1β (IL-1β) is a pleiotropic pro-inflammatory cytokine that plays a critical role in the development of osteoarthritis (OA). Coptisine is an isoquinoline alkaloid extracted from Coptidis rhizome and has been reported to possess anti-inflammatory activity. However, the anti-inflammatory effects of coptisine on interleukin-1 beta (IL-1β)-stimulated chondrocytes have not been reported. Therefore, the aim of this study was to investigate the effects of coptisine on IL-1β-induced inflammation in human articular chondrocytes. Our results showed that coptisine greatly inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes induced by IL-1β. It also inhibited the expression of matrix metalloproteinase-3 (MMP-3) and MMP-13 in IL-1β-stimulated human OA chondrocytes. Furthermore, coptisine significantly inhibited the IL-1β-induced NF-kB activation in human OA chondrocytes. Taken together, these data suggest that coptisine inhibits the IL-1β-induced inflammatory response by suppressing the NF-kB signaling pathway. Thus, coptisine may be a potential agent in the treatment of OA. PMID:27294276

  7. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis

    Science.gov (United States)

    Wang, Zhen; Tran, Misha C.; Bhatia, Namrata J.; Hsing, Alexander W.; Chen, Carol; LaRussa, Marie F.; Fattakhov, Ernst; Rashidi, Vania; Jang, Kyu Yun; Choo, Kevin J.; Nie, Xingju; Mathy, Jonathan A.; Longaker, Michael T.; Dauskardt, Reinhold H.; Helms, Jill A.; Yang, George P.

    2016-01-01

    Objective We identified significant expression of the matricellular protein, DEL1, in hypertrophic and mature cartilage during development. We hypothesized that this tissue-specific expression indicated a biological role for DEL1 in cartilage biology. Methods Del1 KO and WT mice had cartilage thickness evaluated by histomorphometry. Additional mice underwent medial meniscectomy to induce osteoarthritis, and were assayed at 1 week for apoptosis by TUNEL staining and at 8 weeks for histology and OA scoring. In vitro proliferation and apoptosis assays were performed on primary chondrocytes. Results Deletion of the Del1 gene led to decreased amounts of cartilage in the ears and knee joints in mice with otherwise normal skeletal morphology. Destabilization of the knee led to more severe OA compared to controls. In vitro, DEL1 blocked apoptosis in chondrocytes. Conclusion Osteoarthritis is among the most prevalent diseases worldwide and increasing in incidence as our population ages. Initiation begins with an injury resulting in the release of inflammatory mediators. Excessive production of inflammatory mediators results in apoptosis of chondrocytes. Because of the limited ability of chondrocytes to regenerate, articular cartilage deteriorates leading to the clinical symptoms including severe pain and decreased mobility. No treatments effectively block the progression of OA. We propose that direct modulation of chondrocyte apoptosis is a key variable in the etiology of OA, and therapies aimed at preventing this important step represent a new class of regenerative medicine targets. PMID:27505251

  8. Elevation of IGFBP2 contributes to mycotoxin T-2-induced chondrocyte injury and metabolism.

    Science.gov (United States)

    Wang, Xiaoqing; Zhang, Yan; Chang, Yanhai; Duan, Dapeng; Sun, Zhengming; Guo, Xiong

    2016-09-01

    Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy. The mycotoxin of T-2 toxin is extensively accepted as a major etiological contributor to KBD. However, its function and mechanism in KBD remains unclearly elucidated. Here, T-2 toxin treatment induced chondrocyte injury in a time- and dose-dependent manner by repressing cell viability and promoting cell necrosis and apoptosis. Importantly, T-2 suppressed the transcription of type II collagen and aggrecan, as well as the release of sulphated glycosaminoglycan (sGAG). Furthermore, exposure to T-2 enhanced the transcription of matrix metalloproteinases (MMPs), including MMP-1, -2, -3 and -9. In contrast to control groups, higher expression of insulin-like growth factor binding protein 2 (IGFBP2) was observed in chondrocytes from KBD patients. Interestingly, T-2 toxin caused a dramatical elevation of IGFBP2 expression in chondrocytes. Mechanism analysis corroborated that cessation of IGFBP2 expression alleviated T-2-induced damage to chondrocytes. Simultaneously, transfection with IGFBP2 siRNA also attenuated matrix synthesis and catabolism-related gene expressions of MMPs. Together, this study validated that T-2 toxin exposure might promote the progression of KBD by inducing chondrocyte injury, suppressing matrix synthesis and accelerating cellular catabolism through IGFBP2. Therefore, this research will elucidate a new insight about how T-2 toxin participate in the pathogenesis of KBD. PMID:27416762

  9. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds

    International Nuclear Information System (INIS)

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT. (paper)

  10. Dedifferentiated Human Articular Chondrocytes Redifferentiate to a Cartilage-Like Tissue Phenotype in a Poly(ε-Caprolactone/Self-Assembling Peptide Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Lourdes Recha-Sancho

    2016-06-01

    Full Text Available Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D woven microfiber poly (ε-caprolactone (PCL scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.

  11. PKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Jian-lin Zhou

    2013-12-01

    The results may be showed that PKCa regulate the expresion of caspase-3, which contribute to the apoptosis of chondrocytes induced by NO. PKC α agonists enhance the protective effect of hyaluronic acid on nitric oxide-induced articular chondrocytes apoptosis.

  12. Osteoarthritis treatment using autologous conditioned serum after placebo

    NARCIS (Netherlands)

    Rutgers, Marijn; Creemers, Laura B; Auw Yang, Kiem Gie; Raijmakers, Natasja J H; Dhert, Wouter J A; Saris, Daniel B F

    2015-01-01

    BACKGROUND AND PURPOSE: Autologous conditioned serum (ACS) is a disease-modifying drug for treatment of knee osteoarthritis, and modest superiority over placebo was reported in an earlier randomized controlled trial (RCT). We hypothesized that when given the opportunity, placebo-treated patients fro

  13. Experimental autologous substitute vascular graft for transplantation surgery

    NARCIS (Netherlands)

    Kobori, L; Dallos, G; Gouw, ASH; Nemeth, T; Nemes, B; Fehervari, I; Tegzess, Adam; Slooff, MJH; Perner, F; De Jong, KP

    2000-01-01

    Vascular complications in fiver transplantation are a major cause of graft failure and mortality. The aim of the study was to create autologous vascular graft without risk of rejection. Posterior rectus fascia sheath lined with peritoneum was used for iliac artery replacement in seven mongrel dogs.

  14. SECOND MALIGNANCIES AFTER AUTOLOGOUS HEMATOPOIETIC CELL TRANSPLANTATION IN CHILDREN

    OpenAIRE

    Danner-Koptik, Karina E; Majhail, Navneet S.; Brazauskas, Ruta; Wang, Zhiwei; Buchbinder, David; Cahn, Jean-Yves; Dilley, Kimberley J.; Frangoul, Haydar A.; Gross, Thomas G.; Hale, Gregory A.; Hayashi, Robert J.; Hijiya, Nobuko; Kamble, Rammurti T.; Lazarus, Hillard M.; Marks, David I.

    2012-01-01

    Childhood autologous hematopoietic cell transplant (AHCT) survivors can be at risk for secondary malignant neoplasms (SMNs). We assembled a cohort of 1,487 pediatric AHCT recipients to investigate the incidence and risk factors for SMNs. Primary diagnoses included neuroblastoma (39%), lymphoma (26%), sarcoma (18%), CNS tumors (14%), and Wilms tumor (2%). Median follow-up was 8 years (range,

  15. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind;

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  16. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  17. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  18. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  19. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network.

    Science.gov (United States)

    Lee, Jennifer K; Hu, Jerry C Y; Yamada, Soichiro; Athanasiou, Kyriacos A

    2016-02-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell-cell and cell-matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  20. Hyperosmolarity regulates SOX9 mRNA posttranscriptionally in human articular chondrocytes

    OpenAIRE

    Tew, Simon R.; Peffers, Mandy J.; McKay, Tristan R; Lowe, Emma T.; Khan, Wasim S; Hardingham, Timothy E.; Clegg, Peter D

    2009-01-01

    The transcription factor SOX9 regulates cartilage extracellular matrix gene expression and is essential for chondrocyte differentiation. We previously showed that activation of p38 MAPK by cycloheximide in human chondrocytes leads to stabilization of SOX9 mRNA (Tew SR and Hardingham TE. J Biol Chem 281: 39471–39479, 2006). In this study we investigated whether regulation of p38 MAPK caused by changes in osmotic pressure could control SOX9 mRNA levels expression by a similar mechanism. Primary...

  1. Derivation of Chondrocyte and Osteoblast Reporter Mouse Embryonic Stem Cell Lines

    OpenAIRE

    Fu, Yu; Maye, Peter

    2015-01-01

    With the establishment of methods that provide evidence for the generation of chondrocyte and osteoblast cell types from ESCs, there is a need for reagents that will enable their further characterization. Here we report on the derivation of chondrocyte and osteoblast reporter ESCs from previously generated and characterized transgenic mouse lines, Collagen type 2 alpha 1(Col2a1)-ECFP, Bone Sialoprotein (BSP)-Topaz, and BSP-Topaz/Dentin Matrix Protein 1 (DMP1)-Cherry dual reporter mice. Col2a1...

  2. The Results of Fetal Chondrocytes Transplantation in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Natalya Krivoruchko

    2014-12-01

    Full Text Available Introduction. Nowadays anti-inflammatory and immunosuppressive therapy has significantly improved the quality of life and prognosis of rheumatoid arthritis (RA. Nevertheless, there are still many patients with progressive rheumatoid inflammation, resulting in the destruction of joints. Cell therapy seems like a promising direction in rheumatology. The aim of our research was to evaluate the efficacy of fetal chondrocyte transplantation in patients with RA.Methods. We examined 60 patients with rheumatoid arthritis (I - III stages between 20 and 63 years of age. They were divided into 2 groups: the first group underwent the fetal chondrocytes transplantation (n = 40, and the second was a control group who got conservative therapy (n = 20. Donor cells were taken from the chondrogenic layer of the humerus or femur heads and hip condyles of human embryos in gestation for 17-20 weeks. A suspension of fetal chondrocytes injected into affected areas of the articular surfaces under X-ray control. Cell viability was determined before the injection. Efficacy of the therapy was assessed by clinical, instrumental, and laboratory tests. This clinical trial was allowed by The Ministry of Public Health and Ethics Committee. All of our patients gave informed consent for the fetal chondrocytes transplantation.Results. Evaluation of the clinical manifestations of RA in the first group of patients showed 3.7 times decrease in pain and 1.6 times relief of synovitis. Complete reduction of contracture was observed in 82% of patients in the first group. Morphometric changes in X-ray demonstrated inhibition of the destruction in articular cartilage and surfaces of bones after transplantation of fetal chondrocytes. The dynamics of morphological changes in synovium showed 2.5 times reduction of the inflammatory reaction. Transplantation of fetal chondrocytes led to a significant reduction in ESR, CRP, fibrinogen , γ-globulin after a period of 12 months (p < 0

  3. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.

    Science.gov (United States)

    Dong, Yu-Feng; Soung, Do Y; Schwarz, Edward M; O'Keefe, Regis J; Drissi, Hicham

    2006-07-01

    We investigated the molecular mechanisms underlying canonical Wnt-mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over-expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP-2)-induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF-beta-induced expression of Sox9 and col2a1. Over-expression of beta-catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and beta-catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical beta-catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of beta-catenin-TCF/Lef on Runx2 promoter. Co-transfection of lymphoid enhancer factor (Lef1) and beta-catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt-mediated induction of Runx2. Mutation of the TCF/Lef binding site in the -128 fragment of the Runx2 promoter resulted in loss of its responsiveness to beta-catenin. Additionally, gel-shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site-directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/beta-catenin signaling is regulated by TGF-beta and BMP-2 in chick upper sternal chondrocytes, and mediates

  4. Chondroprotective effects and mechanisms of resveratrol in advanced glycation end products-stimulated chondrocytes

    OpenAIRE

    Liu, Feng-Cheng; Hung, Li-Feng; Wu, Wan-Lin; Chang, Deh-Ming; Huang, Chuan-Yueh; Lai, Jenn-Haung; Ho, Ling-Jun

    2010-01-01

    Introduction Accumulation of advanced glycation end products (AGEs) in joints contributes to the pathogenesis of cartilage damage in osteoarthritis (OA). We aim to explore the potential chondroprotective effects of resveratrol on AGEs-stimulated porcine chondrocytes and cartilage explants. Methods Chondrocytes were isolated from pig joints. Activation of the IκB kinase (IKK)-IκBα-nuclear factor-kappaB (NF-κB) and c-Jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)-activa...

  5. An efficient strategy to induce and maintain in vitro human T cells specific for autologous non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Glenda Canderan

    Full Text Available BACKGROUND: The efficient expansion in vitro of cytolytic CD8+ T cells (CTLs specific for autologous tumors is crucial both for basic and translational aspects of tumor immunology. We investigated strategies to generate CTLs specific for autologous Non-Small Cell Lung Carcinoma (NSCLC, the most frequent tumor in mankind, using circulating lymphocytes. PRINCIPAL FINDINGS: Classic Mixed Lymphocyte Tumor Cultures with NSCLC cells consistently failed to induce tumor-specific CTLs. Cross-presentation in vitro of irradiated NSCLC cells by autologous dendritic cells, by contrast, induced specific CTL lines from which we obtained a high number of tumor-specific T cell clones (TCCs. The TCCs displayed a limited TCR diversity, suggesting an origin from few tumor-specific T cell precursors, while their TCR molecular fingerprints were detected in the patient's tumor infiltrating lymphocytes, implying a role in the spontaneous anti-tumor response. Grafting NSCLC-specific TCR into primary allogeneic T cells by lentiviral vectors expressing human V-mouse C chimeric TCRalpha/beta chains overcame the growth limits of these TCCs. The resulting, rapidly expanding CD4+ and CD8+ T cell lines stably expressed the grafted chimeric TCR and specifically recognized the original NSCLC. CONCLUSIONS: This study defines a strategy to efficiently induce and propagate in vitro T cells specific for NSCLC starting from autologous peripheral blood lymphocytes.

  6. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  7. Characteristics of an autologous leukocyte and platelet-rich fibrin patch intended for the treatment of recalcitrant wounds

    DEFF Research Database (Denmark)

    Lundquist, Rasmus; Holmstrøm, Kim; Clausen, Christian;

    2012-01-01

    , antibody arrays, and cell culture assays, we show that the patch is a three-layered membrane comprising a fibrin sheet, a layer of platelets, and a layer of leukocytes. Mean recovery of platelets from the donated blood was 98% (±95%CI 0.8%). Mean levels of platelet-derived growth factor AB, human......We have investigated the physical, biochemical, and cellular properties of an autologous leukocyte and platelet-rich fibrin patch. This was generated in an automated device from a sample of a patient's blood at the point of care. Using microscopy, cell counting, enzyme-linked immunosorbent assay...

  8. Therapeutic effect of autologous dendritic cell vaccine on patients with chronic hepatitis B: A clinical study

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yong-Guo Li; Da-Zhi Zhang; Zhi-Yi Wang; Wei-Qun Zeng; Xiao-Feng Shi; Yuan Guo; Shu-Hua Guo; Hong Ren

    2005-01-01

    AIM: To investigate the therapeutic effect of autologous HBsAg-loaded dendritic cells (DCs) on patients with chronic hepatitis B.METHODS: Monocytes were isolated from fresh peripheral blood of 19 chronic HBV-infected patients by Ficoll-Hypaque density gradient centrifugation and cultured by plastic-adherence methods. DCs were induced and proliferated in the culture medium with recombinant human granulocyte-macrophage-colony- stimulating factor (rhGM-CSF) and human interleukin-4 (rhIL-4). DCs pulsed with HBsAg for twelve hours were injected into patients subcutaneously twice at intervals of two weeks. Two patients received 100 mg oral lamivudine daily for 12 mo at the same time. HBV-DNA and viral markers in sera of patients were tested every two months.RESULTS: By the end of 2003, 11 of 19 (57.9%) patients had a clinical response to DC-treatment. HBeAg of 10(52.6%) patients became negative, and the copies of HBVDNA decreased 101.77±2.39 averagely (t = 3.13, P<0.01).Two cases co-treated with DCs and lamivudine had a complete clinical response. There were no significant differences in the efficient rate between the cases with ALT level lower than 2xULN and those with ALT level higher than 2xULN before treatment (χ2 = 0.0026).CONCLUSION: Autologous DC-vaccine induced in vitro can effectively suppress HBV replication, reduce the virus load in sera, eliminate HBeAg and promote HBeAg/antiHBe transformation. Not only the patients with high serum ALT levels but also those with normal ALT levels can respond to DC vaccine treatment, and the treatment combining DCs with lamivudine can eliminate viruses more effectively.

  9. Botanical Extracts from Rosehip (Rosa canina, Willow Bark (Salix alba, and Nettle Leaf (Urtica dioica Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    2012-01-01

    Full Text Available The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina, willow bark (Salix alba, and nettle leaf (Urtica dioica in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG, β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  10. Effect of mature dendritic cells primed with autologous tumor antigens, patients with epithelial ovarian cancer to stimulate the cytotoxic activity of mononuclear cells in vitro.

    OpenAIRE

    Irina Obleuhova

    2013-01-01

    Along with conservative treatment of epithelial ovarian carcinoma, which has the highest frequency of occurrence of gynecological cancers, specific immunotherapy is a modern and advanced way of treating the disease. Special role in the immunotherapy vaccine therapy is based on dendritic cells (DC). Therefore, the purpose of this study was to assess the effectiveness of the modulation of cytotoxic activity in vitro (in a culture of mononuclear cells) using autologous dendritic cells and tumor ...

  11. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR1, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR1 was suppressed with its siRNA. The protein levels of TNFα, TNFR1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR1, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR1–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners. • TNF/TNFR1

  12. 不同浓度硝普钠诱导兔软骨细胞凋亡模型的比较研究%Rabbit Chondrocytes Apoptosis Models Induced by Different Concentrations of SNP

    Institute of Scientific and Technical Information of China (English)

    陈启鑫; 韩冠英; 郭斌; 郭跃伟

    2015-01-01

    chondrocytes apoptosis.Methods Eight 4-week-old healthy New Zealand male rabbits (weight, 200-250 g) were selected from September to December in 2014.Rabbit chondrocytes were cultured and researched in vitro .Different concentrations of SNP (0.062 5, 0.125, 0.25, 0.5, 1, 2 mmol/L) were used to induce rabbit chondrocytes .At 12, 24 and 48 h, MTT method and TUNEL method were employed to evaluate the chondrocytes apoptosis models induced by different concentrations of SNP .The OD value and apoptosis rate of rabbit chondrocytes were recorded .Results At different time points , chondrocytes apoptosis models induced by different concentrations of SNP were significantly different ( P<0.05) in OD value.At 12, 24 and 48 h, chondrocytes apoptosis models induced by 0.062 5 mmol/L and 0.125 mmol/L of SNP were higher ( P <0.05 ) than the chondrocytes apoptosis model induced by 0 mmol/L of SNP in OD value; at 12, 24 and 48 h, chondrocytes apoptosis models induced by 0.25, 0.5, 1 and 2 mmol/L of SNP were lower ( P<0.05) than the chondrocytes apoptosis model induced by 0 mmol/L of SNP in OD value; at 12, 24 and 48 h, chondrocytes apoptosis models induced by 0.25, 0.5, 1 and 2 mmol/L of SNP were significantly different ( P<0.05 ) in OD value.At different time points , chondrocytes apoptosis models induced by different concentrations of SNP were significantly different ( P <0.05) in apoptosis rate.At 12, 24 and 48 h, chondrocytes apoptosis models induced by 0.25, 0.5, 1 and 2 mmol/L of SNP were higher (P<0.05) than the chondrocytes apoptosis model induced by 0 mmol/L of SNP in apoptosis rate; chondrocytes apoptosis models induced by different concentrations of SNP were significantly different ( P<0.05) in apoptosis rate.Conclusion Chondrocytes apoptosis models of different severity degrees can be build by SNP with the concentration ranging from 0.25 mmol/L to 2 mmol/L, which provides theoretical support for the regulating effect of drugs on chondrocytes apoptosis .

  13. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    Science.gov (United States)

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embedded osteochondral samples (7 OC, 8 normal) and cDNA from whole cartilage (7 OC, 10 normal) and chondrocytes surrounding cartilage canals and osteochondral junctions captured with laser capture microdissection (4 OC, 6 normal) were obtained from femoropatellar joints of 17 immature horses. Equine-specific Wnt signaling molecule mRNA expression levels were evaluated by two-step real-time qPCR. Spatial tissue protein expression of β-catenin, Wnt-11, Wnt-4, and Dkk-1 was determined by immunohistochemistry. There was significantly decreased Wnt-11 and increased β-catenin, Wnt-5b, Dkk-1, Lrp6, Wif-1, Axin1, and SC-PEP gene expression in early OC cartilage canal chondrocytes compared to controls. There was also significantly increased β-catenin gene expression in early OC osteochondral junction chondrocytes compared to controls. Based on this study, abundant gene expression differences in OC chondrocytes surrounding cartilage canals suggest pathways associated with catabolism and inhibition of chondrocyte maturation are targeted in early OC pathogenesis. PMID:25676127

  14. Differentiation of hMSC in Micromass Culture

    Institute of Scientific and Technical Information of China (English)

    Natalia; De; ISIA; Céline; HUSELSTEIN; Luc; MARCHAL; Marie-Nathalie; SARDA-KOLOPP; Jing-Ping; OU; YANG; Jean-Franois; STOLTZ; Assia; ELJAAFARI

    2005-01-01

    1 Introduction Mesenchymal stem cells (MSCs) are multipotential stem cells which can be expanded in culture while still maintaining their undifferentiated state. They have the potential to differentiate into distinct mesenchymal tissue cells, including chondrocytes. Thus, they are an attractive cell source for cartilage tissue engineering. In vitro high density micromass culture has been widely used for chondrogenesis induction. The objective of our study was to analyze viability and differentiation of hMSC...

  15. Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds

    OpenAIRE

    Lebourg, Myriam; Rodenas Rochina, Joaquín; Sousa, Tiago; Mano, J. F.; Gómez Ribelles, J. L.

    2013-01-01

    Scaffolds for cartilage tissue engineering should promote both adequate biomechanical environment and chondrogenic stimulation. Hyaluronic acid (HA) has been used in cartilage engineering for its chondrogenic and chondroprotective properties, nevertheless its mechanical properties are limited. Influence of HA microstructure in chondrocyte response has not been addressed yet. In this work, polycaprolactone (PCL) scaffolds were modified using HA following two coating str...

  16. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  17. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    Science.gov (United States)

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016. PMID:26991030

  18. NF-κB regulates Lef1 gene expression in chondrocytes

    International Nuclear Information System (INIS)

    The relation of Wnt/β-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-κB-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1β augmented Lef1 upregulation and nuclear translocation of NF-κB in chondrocytes. Under IL-1β signaling, treatment of NF-κB nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-κB-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-κB binding to the site was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-κB with Lef1/β-catenin in chondrocytes. Our results suggest a pivotal role of NF-κB in Lef1 expression in arthritic chondrocytes or cartilage degeneration

  19. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    Science.gov (United States)

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering. PMID:24039062

  20. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    Science.gov (United States)

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  1. 自体血清(血浆)在基础医学研究中的应用%Application of autologous serum (plasma) on preclinical medicine

    Institute of Scientific and Technical Information of China (English)

    董萍; 杨永鹏; 丁克祥; 罗迎霞; 左夏林; 丁宇; 刘敏; 丁振华

    2011-01-01

    Rich in a broad spectrum of basic nutritional ingredients and bioactive substances and cytokines which regulated or promoted the cell viability, cell growth and vital movement, autologous serum (plasma) embraced the characteristics of biological diversity, security, stability, compatibility and so on. These advantages helped the increasingly wide application of autologous serum (plasma) in modem preclinical medicine studies. To further explore the scientific application of autologous serum (plasma) in cell culture and tissue engineering in vitro, this paper analyzed the main components and basic bionomics of autologous serum (plasma), and explained its application in cytobiology and histology within the field of preclinical medicine. Literature review suggested that autologous serum played an active role in normal or abnormal cell culture in vitro, cell proliferation and differentiation, cell morphology, structure and metabolism, as well as the in vitro tissue culture, self- renewal, and self-repair. Moreover, the diversity of its biological characteristics and security justifed the application of autologous serum (plasma) in preclinical medicine studies.%自体血清(血浆)因其富含广谱、齐全的基本营养成分和生物活性物质及对细胞生存、生长和生命活动具有调控或促进作用的细胞因子等,加上来源于自体的成分,因此,通常在应用上具备生物多样性、安全性、稳定性和相容性等特点和优势,使其在现代基础医学研究中的应用越来越广泛.为了进一步探究和更加科学地将自体血清(血浆)应用于体外细胞培养和组织工程研究中,本文通过对自体血清(血浆)的主要成分及基本生物学特性阐述自体血清(血浆)在细胞生物学和组织生物学研究中的应用.

  2. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    International Nuclear Information System (INIS)

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 (51Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  3. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    Energy Technology Data Exchange (ETDEWEB)

    Parney, I.F.; Farr-Jones, M.A. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada); Kane, K.; Chang, L.-J. [Univ. of Alberta, Dept. of Surgery and Dept. of Medical Microbiology and Immunology, Edmonton, Alberta (Canada); Petruk, K.C. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada)

    2002-08-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ({sup 51}Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  4. Autologous Stem Cell Transplantation in Patient with Critical Limb Ischemia

    International Nuclear Information System (INIS)

    Critical limb ischemia (CLI) is clinical manifestation of an end-stage peripheral arterial obstruction disease. Progressive ischemia leads to development of ischemic rest pain and skin defects. Early recognition, medicamentous treatment and revascularisation are standard treatment practise in these patients. However, up to 30% of patients are not eligible for endovascular or surgical revascularisation. Remaining patients are threatened with disease progression and high risk for leg amputation. Some clinical studies demonstrated, that therapeutic angio genesis with autologous stem cells therapy may be effective in ulcer healing and prevention of limb amputation. This case report describes a 47-year old male with history of one year non-healing ulcer after the third and fifth finger amputation without option of endovascular or surgical revascularisation. Patient was successfully treated with intramuscular autologous bone marrow therapy with ulcer healing and limb salvage after 12-month follow-up. (author)

  5. Computer-assisted selection of donor sites for autologous grafts

    Science.gov (United States)

    Krol, Zdzislaw; Zeilhofer, Hans-Florian U.; Sader, Robert; Hoffmann, Karl-Heinz; Gerhardt, Paul; Horch, Hans-Henning

    1997-05-01

    A new method is proposed for a precise planning of autologous bone grafts in cranio- and maxillofacial surgery. In patients with defects of the facial skeleton, autologous bone transplants can be harvested from various donor sites in the body. The preselection of a donor site depends i.a. on the morphological fit of the available bone mass and the shape of the part that is to be transplanted. A thorough planning and simulation of the surgical intervention based on 3D CT studies leads to a geometrical description and the volumetric characterization of the bone part to be resected and transplanted. Both, an optimal fit and a minimal lesion of the donor site are guidelines in this process. We use surface similarity and voxel similarity measures in order to select the optimal donor region for an individually designed transplant.

  6. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor;

    2012-01-01

    the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications. In...... the human studies, so-called cell assisted lipotransfer (CAL) increased the ASC concentration 2-5 times compared with non-manipulated fat grafts, which caused a questionable improvement in survival of fat grafts, compared with that of traditional lipofilling. In contrast, in two of the murine studies......Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...

  7. SECOND AUTOLOGOUS STEM CELL TRANSPLANTATION FOR RELAPSED LYMPHOMA AFTER A PRIOR AUTOLOGOUS TRANSPLANT

    Science.gov (United States)

    Smith, Sonali M.; van Besien, Koen; Carreras, Jeanette; Bashey, Asad; Cairo, Mitchell S.; Freytes, Cesar O.; Gale, Robert Peter; Hale, Gregory A.; Hayes-Lattin, Brandon; Holmberg, Leona A.; Keating, Armand; Maziarz, Richard T.; McCarthy, Philip L.; Navarro, Willis H.; Pavlovsky, Santiago; Schouten, Harry C.; Seftel, Matthew; Wiernik, Peter H.; Vose, Julie M.; Lazarus, Hillard M.; Hari, Parameswaran

    2012-01-01

    We determined treatment-related mortality (TRM), progression free survival (PFS), and overall survival (OS) after a second autologous HCT (HCT2) for patients with lymphoma relapse after a prior HCT (HCT1). Outcomes for patients with either Hodgkin lymphoma (HL, n=21) or non-Hodgkin lymphoma (NHL, n=19) receiving HCT2 reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) were analyzed. The median age at HCT2 was 38 years (range, 16–61) and 22 (58%) patients had a Karnofsky performance score less than 90. HCT2 was performed >1 year after HCT1 in 82%. The probability of TRM at day 100 was 15% (95% CI, 3–22%). The 1, 3 and 5 yr probabilities of PFS were 50% (95% CI, 34–66%), 36% (95% CI, 21–52%) and 30% (95% CI, 16–46%), respectively. Corresponding probabilities of survival were 65% (95% CI, 50–79%), 36% (95% CI, 22–52%) and 30% (95% CI, 17–46%), respectively. At a median follow up of 72 months (range, 12–124 months) after HCT2, 29 patients (73%) have died, 18 (62%) secondary to relapsed lymphoma. The outcomes of patients with HL and NHL were similar. In summary, this series represents the largest reported group of patients with relapsed lymphomas undergoing SCT2 following failed SCT1, and with long-term follow-up. Our series suggests that SCT2 is feasible in patients relapsing after prior HCT1, with a lower TRM than that reported for allogeneic transplant in this setting. HCT2 should be considered for patients with relapsed HL or NHL after HCT1 without alternative allogeneic stem cell transplant options. PMID:18640574

  8. From fresh heterologous oocyte donation to autologous oocyte banking

    OpenAIRE

    Stoop, D.

    2012-01-01

    Introduction: Today, oocyte donation has become well established, giving rise to thousands of children born worldwide annually. The introduction of oocyte cryopreservation through vitrification allows the introduction of egg banking, improving the efficiency and comfort of oocyte donation. Moreover, the vitrification technique can now enable autologous donation of oocytes to prevent future infertility. Methods: We evaluated fresh heterologous oocyte donation in terms of obstetrical and perina...

  9. Treatment of velopharyngeal insufficiency by autologous fat injection

    OpenAIRE

    Leuchter, I; Pasche, P; Hohlfeld, J.; Schweizer, V

    2007-01-01

    Velopharyngeal insufficiency (VPI) is a structural or a functional trouble which causes an hypernasal speech. Velopharyngeal flaps, speech therapy and augmentation velopharyngoplasty using different implants have all been used to address this trouble. We present our results after autologous fat injection in 9 patients with mild velopharyngeal insufficiency (7 soft palate clefts, 1 functional VPI, 1 myopathy). Fourteen injections were made between 2004 and 2007. The degree of hypernasal speech...

  10. Locally Advanced Breast Cancer: Autologous Versus Implant-based Reconstruction

    OpenAIRE

    Tanos, Grigorios; Prousskaia, Elena; Chow, Whitney; Angelaki, Anna; Cirwan, Cleona; Hamed, Hisham; Farhadi, Jian

    2016-01-01

    Background: Recent papers and guidelines agree that patients with locally advanced breast cancer (LABC) should be offered breast reconstruction. Yet, the type of reconstruction in this group of patients is still a point of controversy. Methods: One hundred fourteen patients, treated for LABC from 2007 to 2013, were divided into 3 groups based on the reconstructive option: no reconstruction (NR), implant-based/expander-based reconstruction (IBR), and autologous tissue reconstruction (ATR). We ...

  11. Autologous miniature punch skin grafting in stable vitiligo

    OpenAIRE

    Savant S

    1992-01-01

    Autologous split thickness miniature punch skin grafting is one of the surgical modes of treatment of stable vitiligo. Out of 87 different sites, of stable vitiligo, occurring in 62 cases, (32 focal, 22 segmental and 8 generalised) 75 sites showed total repigmentation with excellent cosmetic colour match. Out of the 62 cases, 46 cases who were treated postsurgically with PUVA therapy repigmented within 2 ½ to 3 months, 10 cases, who received no treatment postsurgically repigmented by 3...

  12. Autologous Fat Transfer in a Patient with Lupus Erythematosus Profundus

    Directory of Open Access Journals (Sweden)

    Jimi Yoon

    2012-10-01

    Full Text Available Lupus erythematosus profundus, a form of chronic cutaneous lupus erythematosus, is a rare inflammatory disease involving in the lower dermis and subcutaneous tissues. It primarily affects the head, proximal upper arms, trunk, thighs, and presents as firm nodules, 1 to 3 cm in diameter. The overlying skin often becomes attached to the subcutaneous nodules and is drawn inward to produce deep, saucerized depressions. We present a rare case of lupus erythematosus profundus treated with autologous fat transfer.

  13. Long term results in refractory tennis elbow using autologous blood

    OpenAIRE

    Naseem ul Gani; Hayat Ahmad Khan; Younis Kamal; Munir Farooq; Hina Jeelani; Adil Bashir Shah

    2014-01-01

    Tennis elbow (TE) is one of the commonest myotendinosis. Different treatment options are available and autologous blood injection has emerged as the one of the acceptable modalities of treatment. Long term studies over a larger group of patients are however lacking. The purpose of this study was to evaluate these patients on longer durations. One-hundred and twenty patients of TE, who failed to respond to conventional treatment including local steroid injections were taken up for this prospec...

  14. Long Term Results in Refractory Tennis Elbow Using Autologous Blood

    OpenAIRE

    Gani, Naseem ul; Khan, Hayat Ahmad; Kamal, Younis; Farooq, Munir; Jeelani, Hina; Shah, Adil Bashir

    2014-01-01

    Tennis elbow (TE) is one of the commonest myotendinosis. Different treatment options are available and autologous blood injection has emerged as the one of the acceptable modalities of treatment. Long term studies over a larger group of patients are however lacking. The purpose of this study was to evaluate these patients on longer durations. One-hundred and twenty patients of TE, who failed to respond to conventional treatment including local steroid injections were taken up for this prospec...

  15. Fenestration of bone flap during interval autologous cranioplasty

    OpenAIRE

    Ha Son Nguyen; Ninh Doan; Christopher Wolfla; Glen Pollock

    2015-01-01

    Background: Symptomatic extra-axial fluid may complicate cranioplasty and require urgent evacuation. Fenestration (F) of the bone flap may encourage extra-axial fluid absorption; however, literature has not explored this technique. Methods: Thirty-two consecutive patients who underwent interval autologous cranioplasty were divided into two groups: Fenestration, n = 24, and no fenestration (NF), n = 8. Fenestration involves placement of twist-drill holes 1-2 cm apart throughout the bone fl...

  16. Use of Autologous Platelet Gel in Bariatric Surgery

    OpenAIRE

    Brady, Chad; Vang, See; Christensen, Kevin; Isler, Jack; Vollstedt, Keith; Holt, David

    2006-01-01

    Gastric bypass surgery is a common corrective procedure for obesity that is associated with many risks. Recent studies describing the use of autologous platelet gel (APG) have shown promise in preventing certain operative complications and improved healing processes. These improvements have been credited to the concentrated platelets and growth factors present in APG, as well as the native concentrations of fibrinogen. There are numerous applications for the use of APG in surgery, and the lis...

  17. Management of Contaminated Autologous Grafts in Plastic Surgery

    OpenAIRE

    Centeno, Robert F; Desai, Ankit R; Watson, Marla E

    2008-01-01

    Background: Contamination of autologous grafts unfortunately occurs in plastic surgery, but the literature provides no guidance for management of such incidents. Methods: American Society of Aesthetic Plastic Surgery members were asked to complete an online survey that asked about the number and causes of graft contaminations experienced, how surgeons dealt with the problem, the clinical outcomes, and patient disclosure. Results: Nineteen hundred surgeons were asked to participate in the surv...

  18. Facial Fat Necrosis Following Autologous Fat Transfer and its Management

    OpenAIRE

    Sweta Rai; Marsland, Alexander M; Vishal Madan

    2014-01-01

    Autologous fat transfer (AFT) is an increasingly popular cosmetic procedure practiced by dermatologic surgeons worldwide. As this is an office based procedure performed under local or tumescent anaesthesia with fat transferred within the same individual and limited associated down time its is considered relatively safe and risk free in the cosmetic surgery arena. We describe a case of AFT related fat necrosis causing significant facial dysmorphia and psychosocial distress. We also discuss the...

  19. Autologous Fat Transfer: An Aesthetic and Functional Refinement for Parotidectomy

    OpenAIRE

    Pierre G. Vico; Axel Delange; Axel De Vooght

    2014-01-01

    Parotidectomy is a surgical procedure associated to functional (Frey’s syndrome) as well as aesthetic (facial asymmetry) complications that can be very disturbing for the patient. Several procedures have been described to primarily avoid or secondarily reconstruct the facial defect and treat the neurological iatrogenic syndrome. Autologous fat transfer was primarily used in 10 cases to avoid such complications. It is an easy technique widely used in cosmetic and reconstructive surgery. Th...

  20. Autologous Blood Injection to Model Spontaneous Intracerebral Hemorrhage in Mice

    OpenAIRE

    Sansing, Lauren H.; Kasner, Scott E.; McCullough, Louise; Agarwal, Puneet; Welsh, Frank A.; Kariko, Katalin

    2011-01-01

    Investigation of the pathophysiology of injury after intracerebral hemorrhage (ICH) requires a reproducible animal model. While ICH accounts for 10-15% of all strokes, there remains no specific effective therapy. The autologous blood injection model in mice involves the stereotaxic injection of arterial blood into the basal ganglia mimicking a spontaneous hypertensive hemorrhage in man. The response to hemorrhage can then be studied in vivo and the neurobehavioral defi...

  1. IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivotto

    Full Text Available BACKGROUND: The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase, has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM homeostasis and differentiation towards hypertrophy. METHODOLOGY/PRINCIPAL FINDINGS: IKKα expression was ablated in primary human osteoarthritic (OA chondrocytes and in immature murine articular chondrocytes (iMACs derived from IKKα(f/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2 deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3 protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. CONCLUSIONS/SIGNIFICANCE: IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively to maintain maximal MMP-13 activity, which is required for ECM

  2. The Effect of Platelet Rich Plasma on Chondrogenic Differentiation of Human Adipose Derived Stem Cells in Transwell Culture

    Directory of Open Access Journals (Sweden)

    Mohammad Mardani

    2013-11-01

    : Our findings indicate that autologous PRP at an optimum concentration had beneficial effects on differentiation of hADSCs in Transwell culture. Further, in vivo studies are necessary to fully define the clinical implications of PRP.

  3. Delayed Cranioplasty: Outcomes Using Frozen Autologous Bone Flaps.

    Science.gov (United States)

    Hng, Daniel; Bhaskar, Ivan; Khan, Mumtaz; Budgeon, Charley; Damodaran, Omprakash; Knuckey, Neville; Lee, Gabriel

    2015-09-01

    Reconstruction of skull defects following decompressive craniectomy is associated with a high rate of complications. Implantation of autologous cryopreserved bone has been associated with infection rates of up to 33%, resulting in considerable patient morbidity. Predisposing factors for infection and other complications are poorly understood. Patients undergoing cranioplasty between 1999 and 2009 were identified from a prospectively maintained database. Records and imaging were reviewed retrospectively. Demographics, the initial craniectomy and subsequent cranioplasty surgeries, complications, and outcomes were recorded. A total of 187 patients underwent delayed cranioplasty using autologous bone flaps cryopreserved at -30°C following decompressive craniectomy. Indications for craniectomy were trauma (77.0%), stroke (16.0%), subarachnoid hemorrhage (2.67%), tumor (2.14%), and infection (2.14%). There were 64 complications overall (34.2%), the most common being infection (11.2%) and bone resorption (5.35%). After multivariate analysis, intraoperative cerebrospinal fluid (CSF) leak was significantly associated with infection, whereas longer duration of surgery and unilateral site were associated with resorption. Cranioplasty using frozen autologous bone is associated with a high rate of infective complications. Intraoperative CSF leak is a potentially modifiable risk factor. Meticulous dissection during cranioplasty surgery to minimize the chance of breaching the dural or pseudodural plane may reduce the chance of bone flap. PMID:26269726

  4. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  5. Gallium-67 scanning and autologous transplantation for lymphoma

    International Nuclear Information System (INIS)

    Full text: Gallium-67 (67Ga) scanning in the malignant Iymphomas has been performed for over 20 years. Its major contributions are in staging and in detecting relapse, residual or progressive disease. Autologous bone marrow or peripheral blood stem cell transplantation is now an accepted therapy for refractory and relapsed Iymphoma. Between May 1991 and December 1995, 19 patients underwent autologous bone marrow or peripheral blood stem cell transplantation for Non-Hodgkin's Iymphoma or Hodgkin's disease. Five patients had high grade Non-Hodgkin's Iymphoma with widespread disease and did not undergo 67Ga scanning. There was one transplant related death. Thirteen patients had 67Ga scanning pre- and post-transplantation. Six patients remained in clinical remission with no evidence of gallium avid active disease at a median of 11 months (range 3 to 19 months) post-transplant. Five of these patients had intermediate grade Non-Hodgkin's Iymphoma and one had Hodgkin's disease. The other seven patients all demonstrated evidence of active disease on 67Ga scanning and subsequent clinical relapse. In all patients shown to have 67Ga avid disease pre-transplant, 67Ga scanning post-transplant is useful in detecting relapse These results suggest that 67Ga avid disease pre-transplant, 67Ga scanning post-autologous transplantation as it is for conventional chemotherapy and radiotherapy

  6. Delayed lipogranuloma of the cheek following autologous fat injection: report of 2 cases

    OpenAIRE

    Park, Hee Eun; Kim, Hee Tae; Lee, Cha Hee; Bae, Jung Ho

    2014-01-01

    We presented 2 cases of lipogranuloma of the cheek following autologous fat injection. Facial autologous fat injection for soft tissue augmentation is a frequently used technique in the field of plastic surgery. Although this procedure was thought to be a safe procedure without foreign body reactions, there had been several case reports on lipogranuloma following autologous fat injection, especially into the periorbital area. In our cases, we experienced delayed lipogranulomas of the cheek ar...

  7. Injection of porous polycaprolactone beads containing autologous myoblasts in a dog model of fecal incontinence

    OpenAIRE

    Kang, Sung-Bum; Lee, Hye Seung; Lim, Jae-Young; Oh, Se Heang; Kim, Sang Joon; Hong, Sa-Min; Jang, Je-Ho; Cho, Jeong-Eun; Lee, Sung-Min; Lee, Jin Ho

    2013-01-01

    Purpose Few studies have examined whether bioengineering can improve fecal incontinence. This study designed to determine whether injection of porous polycaprolactone beads containing autologous myoblasts improves sphincter function in a dog model of fecal incontinence. Methods The anal sphincter of dogs was injured and the dogs were observed without and with (n = 5) the injection of porous polycaprolactone beads containing autologous myoblasts into the site of injury. Autologous myoblasts pu...

  8. Autologous Cell Delivery to the Skin-Implant Interface via the Lumen of Percutaneous Devices in vitro

    Directory of Open Access Journals (Sweden)

    Antonio Peramo

    2010-11-01

    Full Text Available Induced tissue regeneration around percutaneous medical implants could be a useful method to prevent the failure of the medical device, especially when the epidermal seal around the implant is disrupted and the implant must be maintained over a long period of time. In this manuscript, a novel concept and technique is introduced in which autologous keratinocytes were delivered to the interfacial area of a skin-implant using the hollow interior of a fixator pin as a conduit. Full thickness human skin explants discarded from surgeries were cultured at the air-liquid interface and were punctured to fit at the bottom of hollow cylindrical stainless steel fixator pins. Autologous keratinocytes, previously extracted from the same piece of skin and cultured separately, were delivered to the specimens thorough the interior of the hollow pins. The delivered cells survived the process and resembled undifferentiated epithelium, with variations in size and shape. Viability was demonstrated by the lack of morphologic evidence of necrosis or apoptosis. Although the cells did not form organized epithelial structures, differentiation toward a keratinocyte phenotype was evident immunohistochemically. These results suggest that an adaptation of this technique could be useful for the treatment of complications arising from the contact between skin and percutaneous devices in vivo.

  9. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Tohoku University School of Medicine, Sendai (Japan); Andres, MC de [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Hashimoto, Ko [Hospital for Special Surgery, NY (United States); Pitt, Dominic [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan); Goldring, Mary B. [Hospital for Special Surgery, NY (United States); Roach, Helmtrud I.; Oreffo, Richard O.C. [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom)

    2011-02-18

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N

  10. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    International Nuclear Information System (INIS)

    Research highlights: → Glucosamine and a NF-kB inhibitor reduce inflammation in OA. → Cytokine induced demethylation of CpG site in IL1β promoter prevented by glucosamine. → Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1β, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1β and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma

  11. Cardiac atrioventricular conduction improved by autologous transplantation of mesenchymal stem cells in canine atrioventricular block models

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Ren; Jielin Pu; Shu Zhang; Liang Meng; Fangzheng Wang

    2007-01-01

    Objective Atrioventricular block (AVB) is a common and serious arrhythmia. At present, there is no perfect method of treatment for this kind of arrhythmia. The purpose of this study was to regenerate cardiac atrioventricular conduction by autologous transplantation of bone marrow mesenchymal stem cells (MSCs), and explore new methods for therapy of atrioventricular block. Methods Eleven Mongrel canines were randomized to MSCs transplantation (n=6) or control (n=5) group. The models of permanent and complete AVB in 11 canines were established by ablating His bundle with radiofrequency technique. At 4 weeks after AVB, bone marrow was aspirated from the iliac crest. MSCs were isolated and culture-expanded by means of gradient centrifugal and adherence to growth technique, and differentiated by 5-azacytidine in vitro. Differentiated MSCs (1ml, 1.5×107cells) labeled with BrdU were autotransplanted into His bundle area of canines by direct injection in the experimental group, and 1ml DMEM in the control group. At 1-12 weeks after operation,the effects of autologous MSCs transplantation on AVB models were evaluated by electrocardiogram, pathologic and immunohistochemical staining technique. Results Compared with the control group, there was a distinct improvement in atrioventricular conduction function in the experimental group. MSCs transplanted in His bundle were differentiated into analogous conduction system cells and endothelial cells in vivo, and established gap junction with host cardiomyocytes. Conclusions The committed-induced MSCs transplanted into His bundle area could differentiate into analogous conduction system cells and improve His conduction function in canine AVB models.

  12. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  13. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    International Nuclear Information System (INIS)

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds

  14. Dual effects of 17ß-oestradiol on interleukin 1ß-induced proteoglycan degradation in chondrocytes

    OpenAIRE

    Richette, P; Dumontier, M.; Francois, M; Tsagris, L.; Korwin-Zmijowska, C; Rannou, F; Corvol, M

    2004-01-01

    Objective: To determine whether 17ß-oestradiol (E2) modulates interleukin (IL) 1ß-induced proteoglycan degradation in chondrocytes, and to analyse the part played by metalloproteinases (MMPs) in this process.

  15. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  16. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  17. Myeloid CD34+CD13+ Precursor Cells Transdifferentiate into Chondrocyte-Like Cells in Atherosclerotic Intimal Calcification

    OpenAIRE

    Doehring, Lars Christian; Heeger, Christian; Aherrahrou, Zouhair; Kaczmarek, Piotr Maciel; Erdmann, Jeanette; Schunkert, Heribert; Ehlers, Eva-Maria

    2010-01-01

    Chondrogenic differentiation is pivotal in the active regulation of artery calcification. We investigated the cellular origin of chondrocyte-like cells in atherosclerotic intimal calcification of C57BL/6 LDLr−/− mice using bone marrow transplantation to trace ROSA26-LacZ-labeled cells. Immunohistochemical costaining of collagen type II with LacZ and leukocyte defining surface antigens was performed and analyzed by high-resolution confocal microscopy. Chondrocyte-like cells were detected in me...

  18. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  19. High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Tang Rining

    2012-09-01

    Full Text Available Abstract Background Vascular calcification is one of the common complications in diabetes mellitus. Many studies have shown that high glucose (HG caused cardiovascular calcification, but its underlying mechanism is not fully understood. Recently, medial calcification has been most commonly described in the vessels of patients with diabetes. Chondrocytes were involved in the medial calcification. Recent studies have shown that the conversion into mesenchymal stem cells (MSCs via the endothelial-to-mesenchymal transition (EndMT could be triggered in chondrocytes. Our previous research has indicated that HG induced EndMT in human aortic endothelial cells (HAECs. Therefore, we addressed the question of whether HG-induced EndMT could be transitioned into MSCs and differentiated into chondrocytes. Methods HAECs were divided into three groups: a normal glucose (NG group, HG group (30 mmol/L, and mannitol (5.5 mmol/L NG + 24.5 mmol/L group. Pathological changes were investigated using fluorescence microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of endothelial markers, such as CD31, and fibroblast markers, such as fibroblast-specific protein 1 (FSP-1. The expression of FSP-1 was detected by real time-PCR and western blots. Endothelial-derived MSCs were grown in MSC medium for one week. The expression of the MSCs markers STRO-1, CD44, CD10 and the chondrocyte marker SOX9 was detected by immunofluorescence staining and western blots. Chondrocyte expression was detected by alcian blue staining. Calcium deposits were analyzed by alizarin red staining. Results The incubation of HAECs exposed to HG resulted in a fibroblast-like phenotype. Double staining of the HAECs indicated a co-localization of CD31 and FSP-1. The expression of FSP-1 was significantly increased in the HG group, and the cells undergoing EndMT also expressed STRO-1, CD44 and SOX9 compared with the controls (P  Conclusions Our

  20. Morphological evidence of the shedding of chondrocytes from the articular surface in neonatal rats: relationship to the interlacunar network.

    Science.gov (United States)

    Cole, M B; Narine, K R; Ellinger, J

    1983-08-01

    The superficial zone of the femoral head articular cartilage of 5- to 15-day old rats was examined by light and electron microscopy for evidence of shedding into the joint space. Chondrocytes deepest in the superficial zone were round, surrounded by a capsule, and connected to adjacent chondrocytes by the interlacunar network, whereas cells in the middle of the zone appeared similar but with less cytoplasm. At the circular surface, chondrocytes were small, with pyknotic nuclei and poorly defined organelles. These cells occasionally protruded from the articular surface but maintained at least partial connection with the network and their capsule. Depressions in the articular surface were lined with material similar to that of the network and were the only locations found where the network did not terminate at a cell surface. This static evidence suggested at least two hypotheses: 1) Degenerating chondrocytes moved up through the superficial zone to the articular surface and were shed into the joint space. This movement may be facilitated by the network as part of neonatal cartilage development. 2) During joint formation, the surface of the articular cartilage was eroded down to the chondrocytes, which were exposed to the joint fluid, causing cell degeneration, death, and shedding. Evidence of cell shedding was rarely seen after 2 weeks of age. Likewise, the interlacunar network disappeared from the superficial zone during this period. A physiological as well as structural relationship may exist between the chondrocytes and interlacunar network. PMID:6625202

  1. Autologous blood transfusion in patients undergoing hip replacement surgery

    Directory of Open Access Journals (Sweden)

    Tešić Ivana

    2014-01-01

    Full Text Available Introduction. Autologous blood transfusion is a set of procedures done in order to collect a patient’s blood and reinfuse it during or after a surgical intervention. The aim is to meet the patient’s need for blood products without allogeneic transfusion. By observing the hemoglobin and hematocrit values during blood donation in the pre-operative and post-operative period and by counting transfused blood units, the aim of this article was to detect whether there was any difference between the patients receiving autologous blood and those receiving only allogeneic blood. Material and Methods. This prospective study was performed at the General Hospital ”Đorđe Joanović” Zrenjanin from October 24th, 2011 to January 24th, 2013. The study included 60 patients who were divided into the experimental group of 30 patients who had been transfused autologous blood and the control group of 30 patients who had been transfused only allogeneic blood. Results. The average values of hemoglobin and hematocrit in the first and the second donation were 148.9 g/l and 44.2%, and 138.7 g/l and 40.8%, respectively. Oral iron preparation was given to 12 patients for two weeks before the first donation. The level of hemoglobin and hematocrit in both groups of patients had approximately the same values in the pre-operative and post-operative period. In the post-operative period, 2.53 units were transfused per patient in the experimental group and 3.73 units were transfused per patient in the control group. Conclusion. Administration of pre-operatively donated autogenous blood reduces the number of transfused deplasmatised erythrocytes units in comparison to the number of units transfused to the patients receiving only allogeneic blood products. The pre-operative use of oral iron preparations increases hemoglobin values significantly.

  2. Quantitative analysis of rough endoplasmic reticulum in chondrocytes of articular and tracheal cartilage of rabbits following the systemic administration of hydrocortisone.

    OpenAIRE

    T. Itani; Kanai, K.; Watanabe, J.; Ogawa, R; Kanamura, S

    1992-01-01

    The rough endoplasmic reticulum (RER) in chondrocytes was analysed stereologically in articular cartilage of knee joints and in tracheal cartilage of rabbits injected intramuscularly with 5 mg/kg hydrocortisone daily for 4 wk. In articular cartilage, RER area per unit cytoplasmic volume decreased in chondrocytes in all (superficial, middle and deep) zones, although the volume of glycogen deposits per unit cytoplasmic volume increased in the middle and deep zones. RER area per chondrocyte also...

  3. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    OpenAIRE

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed redu...

  4. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  5. Facial fat necrosis following autologous fat transfer and its management

    Directory of Open Access Journals (Sweden)

    Sweta Rai

    2014-01-01

    Full Text Available Autologous fat transfer (AFT is an increasingly popular cosmetic procedure practiced by dermatologic surgeons worldwide. As this is an office based procedure performed under local or tumescent anaesthesia with fat transferred within the same individual and limited associated down time its is considered relatively safe and risk free in the cosmetic surgery arena. We describe a case of AFT related fat necrosis causing significant facial dysmorphia and psychosocial distress. We also discuss the benefits and risks of AFT highlighting common causes of fat graft failure.

  6. Ocular toxicity following high dose chemotherapy and autologous transplant.

    Science.gov (United States)

    Rubin, P; Hulette, C; Khawly, J A; Elkordy, M; Hussein, A; Vredenburgh, J J; Jaffe, G J; Peters, W P

    1996-07-01

    A 49-year-old woman received an autologous transplant for breast cancer. Six weeks later she noticed visual disturbance of the left eye which correlated with a visual field abnormality. There was a milder degree of visual disturbance in the right eye. Treatment with high-dose steroids partially stabilized the problem, which was felt to be an ischemic optic neuropathy. She ultimately died of respiratory failure. Pathology of the optic nerves revealed demyelination. Visual disturbances following high-dose chemotherapy are uncommon; the pathology to date has not been elucidated. Steroid therapy may be useful. PMID:8832031

  7. Autologous Fat Grafting: The Science Behind the Surgery.

    Science.gov (United States)

    Zielins, Elizabeth R; Brett, Elizabeth A; Longaker, Michael T; Wan, Derrick C

    2016-04-01

    An invaluable part of the plastic surgeon's technical arsenal for soft tissue contouring, fat grafting continues to be plagued by unpredictable outcomes, resulting in either reoperation and/or patient dissatisfaction. Thus, extensive research has been conducted into the effects of adipose tissue procurement, processing, and placement on fat graft quality at both the cellular level and in terms of overall volume retention. Herein, we present an overview of the vast body of literature in these areas, with additional discussion of cell-assisted lipotransfer as a therapy to improve volume retention, and on the controversial use of autologous fat in the setting of prior irradiation. PMID:26961989

  8. Autologous Blood Injection for Treatment of Tennis Elbow

    OpenAIRE

    Karimi Mobarakeh, Mahmood; Nemati, Ali; Fazli, Ali; Fallahi, Amirhossein; Safari, Saeid

    2013-01-01

    Background Tennis elbow (TE) is a common myotendinosis. It was first described by Runge in 1873; different modes of treatment are used in management of TE. Objectives This study aimed to report the results of autologous blood injection (ABI) in the treatment of TE. Materials and Methods A prospective case study was performed to evaluate the results of ABI in the management of TE. The level of pain based on Nirschl phase scale (NPS) and a visual analogue scale (VAS) was calculated before and 1...

  9. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  10. Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro.

    Science.gov (United States)

    Liu, Qin; Li, Mu-Yan; Lin, Xiao; Lin, Cui-Wu; Liu, Bu-Ming; Zheng, Li; Zhao, Jin-Min

    2014-09-25

    The ideal therapeutic agent for treatment of osteoarthritis (OA) should have not only potent anti-inflammatory effect but also favorable biological properties to restore cartilage function. Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on OA (Singh et al., 2003) [1]. However, GA has much weaker antioxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel sulfonamido-based gallate named sodium salt of 3,4,5-trihydroxy-N-[4-(thiazol-2-ylsulfamoyl)-phenyl]-benzamide (SZNTC) and analyzed its chondro-protective and pharmacological effects. Comparison of SZNTC with GA and sulfathiazole sodium (ST-Na) was also performed. Results showed that SZNTC could effectively inhibit the Interleukin-1 (IL-1)-mediated induction of metalloproteinase-1 (MMP-1) and MMP-3 and could induce the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), which demonstrated ability to reduce the progression of OA. SZNTC can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Expression of the collagen I gene was effectively down-regulated, revealing the inhibition of chondrocytes dedifferentiation by SZNTC. Hypertrophy that may lead to chondrocyte ossification was also undetectable in SZNTC groups. The recommended dose of SZNTC ranges from 3.91μg/ml to 15.64μg/ml, among which the most profound response was observed with 7.82μg/ml. In contrast, its source products of GA and ST-Na have a weak effect in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed SZNTC as a promising novel agent in the treatment of chondral and osteochondral lesions. PMID:25130855

  11. Hyaluronan fragments activate nitric oxide synthase and the production of nitric oxide by articular chondrocytes

    OpenAIRE

    Iacob, Stanca; Knudson, Cheryl B.

    2005-01-01

    Chondrocyte CD44 receptors anchor hyaluronan to the cell surface, enabling the assembly and retention of proteoglycan aggregates in the pericellular matrix. Hyaluronan–CD44 interactions also provide signaling important for maintaining cartilage homeostasis. Disruption of chondrocyte–hyaluronan contact alters CD44 occupancy, initiating alternative signaling cascades. Treatment with hyaluronan oligosaccharides is one approach to uncouple CD44 receptors from its native ligand, hyaluronan. In bov...

  12. Recombinant equine interleukin-1β induces putative mediators of articular cartilage degradation in equine chondrocytes

    OpenAIRE

    Tung, J. T.; Fenton, J. I.; Arnold, C; Alexander, L.; Yuzbasiyan-Gurkan, V.; Venta, P J; Peters, T. L.; Orth, M W; Richardson, D. W.; Caron, J P

    2002-01-01

    Interleukin-1 is considered a central mediator of cartilage loss in osteoarthritis in several species, however an equine recombinant form of this cytokine is not readily available for in vitro use in equine osteoarthritis research. Equine recombinant interleukin-1β was cloned and expressed and its effects on the expression and activity of selected chondrocytic proteins implicated in cartilage matrix degradation were characterized. Reverse transcriptase polymerase chain reaction methods were u...

  13. Vav1 Regulates Mesenchymal Stem Cell Differentiation Decision Between Adipocyte and Chondrocyte via Sirt1.

    Science.gov (United States)

    Qu, Peng; Wang, Lizhen; Min, Yongfen; McKennett, Lois; Keller, Jonathan R; Lin, P Charles

    2016-07-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells residing in the bone marrow. MSCs have the potential to differentiate to adipocytes, chondrocytes, and other types of cells. In this study, we investigated the molecular mechanism that controls MSC cell fate decisions for differentiation. We found that Vav1, a guanine nucleotide exchange factor for Rho GTPase, was highly expressed in MSCs. Interestingly, loss of Vav1 in MSCs led to spontaneous adipogenic but impaired chondrogenic differentiation, and accordingly Vav1 null mice displayed an increase in fat content and a decrease in cartilage. Conversely, ectopic expression of Vav1 in MSCs reversed this phenotype, and led to enhanced MSC differentiation into chondrocyte but retarded adipogenesis. Mechanistically, loss of Vav1 reduced the level of Sirt1, which was responsible for an increase of acetylated PPARγ. As acetylation activates PPARγ, it increased C/EBPα expression and promoted adipogenesis. On the other hand, loss of Vav1 resulted in an increase of acetylated Sox9, a target of Sirt1. As acetylation represses Sox9 activity, it led to a dramatic reduction of collagen 2α1, a key regulator in chondrocyte differentiation. Finally, we found that Vav1 regulates Sirt1 in MSCs through Creb. Together this study reveals a novel function of Vav1 in regulating MSC cell fate decisions for differentiation through Sirt1. Sirt1 deacetylates PPARγ and Sox9, two key mediators that control adipocyte and chondrocyte differentiation. The acetylation status of PPARγ and Sox9 has opposite effects on its activity, thereby controlling cell fate decision. Stem Cells 2016;34:1934-1946. PMID:26990002

  14. Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2006-11-01

    Full Text Available Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc. In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II and Npr3 (natriuretic peptide decoy receptor genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor, as well as the Npr2 gene (encoding the CNP receptor. Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine

  15. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    OpenAIRE

    Li-ke Luo; Qing-jun Wei; Lei Liu; Li Zheng; Jin-min Zhao

    2015-01-01

    As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that n...

  16. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes.

    Science.gov (United States)

    Schwager, Joseph; Richard, Nathalie; Fowler, Ann; Seifert, Nicole; Raederstorff, Daniel

    2016-01-01

    Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL), carnosic acid (CA), carnosic acid-12-methylether (CAME), 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT) in murine macrophages (RAW264.7 cells) and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in LPS-stimulated macrophages (i.e., acute inflammation). They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6) and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis. PMID:27070563

  17. Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative

    OpenAIRE

    Mendes, Ana C.; Baran, Erkan T.; Pereira, Rui C.; Azevedo, Helena S.; Reis, Rui L.

    2011-01-01

    A chemical derivative of xanthan gum polysaccharide is investigated as a new artificial matrix for the encapsulation of chondrocytic cells. Toward this goal, a novel micro-droplet generator is developed to produce microcapsules. Microcapsules with an average diameter of 500 mm, smooth surface, and homogeneous size distribution are obtained. ATDC5 cells encapsulated in carboxymethyl xanthan (CMX) microcapsules remain viable and are observed to proliferate for prolonged ...

  18. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient

    OpenAIRE

    Kayoko Hayakawa; Tomohiko Takasaki; Hiroko Tsunemine; Shuzo Kanagawa; Satoshi Kutsuna; Nozomi Takeshita; Momoko Mawatari; Yoshihiro Fujiya; Kei Yamamoto; Norio Ohmagari; Yasuyuki Kato

    2015-01-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein.

  19. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  20. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  1. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Directory of Open Access Journals (Sweden)

    Salvador Fernández-Arroyo

    2015-10-01

    Full Text Available Background: Imbalances in the functional binding of fibroblast growth factors (FGFs to their receptors (FGFRs have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.

  2. Comparison of proteomic datasets from hypertrophic chondrocytes in response to ER stress.

    Science.gov (United States)

    Kudelko, Mateusz; Sharma, Rakesh; Cheah, Kathryn S E; Chan, Danny

    2016-06-01

    Cartilage proteomics is challenging due to the dominance of poorly soluble matrix components and limited available tissue. Using a "spatial" strategy coupled to MS/MS analysis we have specifically labeled and extracted hypertrophic chondrocytes within the growth plate providing thus a comprehensive proteomic map of normal hypertrophic chondrocytes. Furthermore our established 13del mouse model in which the activation of ER stress did not lead to apoptosis of the hypertrophic cells allowed us to address the natural consequences of ER stress in vivo. Thus our data provide also an overview of proteomic changes occurring in cells under ER stress. Associated with the published study [1] this dataset article provided the detailed information of experimental designing, methods, features as well as the raw data of mass spectrometry (MS) identification. Furthermore the data presented here allow the reader to assert the extent of proteomic changes occurring under ER stress in hypertrophic chondrocytes as well as address the data technical reproducibility in both wild type and stress condition. The mass spectrometry proteomics data can be fully accessed from the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD002125. PMID:27014728

  3. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  4. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  5. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sandra Fernandes

    2015-03-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

  6. Autologous Blood Injection and Wrist Immobilisation for Chronic Lateral Epicondylitis

    Directory of Open Access Journals (Sweden)

    Nicola Massy-Westropp

    2012-01-01

    Full Text Available Purpose. This study explored the effect of autologous blood injection (with ultrasound guidance to the elbows of patients who had radiologically assessed degeneration of the origin of extensor carpi radialis brevis and failed cortisone injection/s to the lateral epicondylitis. Methods. This prospective longitudinal series involved preinjection assessment of pain, grip strength, and function, using the patient-rated tennis elbow evaluation. Patients were injected with blood from the contralateral limb and then wore a customised wrist support for five days, after which they commenced a stretching, strengthening, and massage programme with an occupational therapist. These patients were assessed after six months and then finally between 18 months and five years after injection, using the patient-rated tennis elbow evaluation. Results. Thirty-eight of 40 patients completed the study, showing significant improvement in pain; the worst pain decreased by two to five points out of a 10-point visual analogue for pain. Self-perceived function improved by 11–25 points out of 100. Women showed significant increase in grip, but men did not. Conclusions. Autologous blood injection improved pain and function in a worker’s compensation cohort of patients with chronic lateral epicondylitis, who had not had relief with cortisone injection.

  7. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering

    Directory of Open Access Journals (Sweden)

    He X

    2015-03-01

    Full Text Available Xiaomin He,1,* Bei Feng,1,2,* Chuanpei Huang,1 Hao Wang,1 Yang Ge,1 Renjie Hu,1 Meng Yin,1 Zhiwei Xu,1 Wei Wang,1 Wei Fu,1,2 Jinghao Zheng1 1Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC/chondrocyte cocultures (75% BMSCs and 25% chondrocytes in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young’s modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs. Keywords: electrospinning, nanocomposite, cartilage tissue engineering, nanomaterials, stem cells

  8. Autologous plasma and its supporting role in fat graft survival: A relevant vector to counteract resorption in lipofilling.

    Science.gov (United States)

    Stillaert, Filip; Depypere, Bernard; Doornaert, Maarten; Creytens, David; De Clercq, Heidi; Cornelissen, Ria; Monstrey, Stan; Blondeel, Phillip

    2016-07-01

    Fat grafting has become a widespread technique for different reconstructive and esthetic purposes. However, the disadvantage of fat grafting is the unpredictable resorption rate that often necessitates repetitive procedures, which in turn may have an impact on the morbidity. During the immediate, post-graft, ischemic period, cells survive due to the process of plasmatic imbibition. This biological phenomenon precedes the ingrowth of neo-capillaries that eventually nourish the graft and help establish a long-term homeostatic equilibrium. Both partners, the graft and the recipient bed, contribute to the revascularization process. Hypothetically, enrichment of the recipient site with autologous plasma could have a beneficial role to enhance fat graft survival. We investigated whether plasma supported the viability of the lipoaspirate (LA) material. Plasma was isolated from blood samples collected from eight patients during the elective lipofilling procedures. An in vitro study assessed the viability of LA cells using plasma as a culture medium compared to the traditional culture media. In vitro analysis confirmed sustained viability of LA cells compared to the standard media and control media during 7 consecutive days. The behavior of the fat grafts in plasma showed similarities with those incubated in the traditional culture media. In future, these findings could be translated to a clinical setting. Plasma is the only autologous substrate available in large quantities in the human body. The addition of the supporting agents, such as plasma, could contribute to a better graft survival with more stable clinical outcomes in the long term. The rationale behind the technique is based on the phenomenon of plasmatic imbibition and the reasoning that the extracellular matrix plays a pivotal role in cellular survival. PMID:27117776

  9. In-vitro interactions of human chondrocytes and mesenchymal stem cells, and of mouse macrophages with phospholipid-covered metallic implant materials

    Directory of Open Access Journals (Sweden)

    R Willumeit

    2007-03-01

    Full Text Available Phospholipid-coatings on metallic implant surfaces were evaluated in terms of adhesion, proliferation and matrix production of skeletal cells, and of macrophage stimulation. The working hypothesis is that mimicking a model biomembrane by phospholipids on surfaces to which cells adhere, the surface recognition by surrounding cells is altered. In this study, 1 mirror-like polished Ti-6Al-7Nb and 2 porous Ti-6Al-4V specimens were covered with the phospholipids POPE (palmitoyl-oleoyl phosphatidyl-ethanolamine and POPC (palmitoyl-oleoyl phosphatidyl-choline, and the interactions of a human articular chondrocytes (HAC, b human mesenchymal stem cells (HMSC, and c mouse macrophages (RAW 264.7 were tested in vitro. On POPE-covered polished surfaces adherence of HAC (42% of seeded cells after 2 hrs and metabolic activity (MTT after 3 days were reduced, while on porous surfaces 99% HAC adhered, and metabolic activity was significantly increased, compared to respective native surfaces. On both POPE-covered surfaces the chondrocyte phenotype was present. After 3 weeks of chondrogenic differentiation, cartilage matrix production (measuring chondroitin sulphate per HAC number was significantly increased by about 30% on both POPE-covered metallic surfaces. On both POPC-covered surfaces nearly no adhering and surviving HAC were found. HMSC grown on POPE-covered porous substrates showed osteogenic differentiation by improved osteopontin and collagen I expression in RT-PCR, and osteocalcin fluorescence and bone nodule formation was only detectable on POPE-covered porous surfaces. In contrast to POPC and other phospholipids used as positive controls, POPE did not stimulate the NO production in mouse macrophage cultures. We therefore conclude that a phospholipid coating by POPE shows potential as surface modification for metallic implant materials.

  10. Overexpression of Galnt3 in Chondrocytes Resulted in Dwarfism Due to the Increase of Mucin-type O-Glycans and Reduction of Glycosaminoglycans*

    Science.gov (United States)

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-01-01

    Galnt3, UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-d-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2−/− cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3−/− mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3−/− mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. PMID:25107907

  11. Overexpression of Galnt3 in chondrocytes resulted in dwarfism due to the increase of mucin-type O-glycans and reduction of glycosaminoglycans.

    Science.gov (United States)

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-09-19

    Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. PMID:25107907

  12. Clinical studies on the ex-vivo expansion of autologous adipose derived stem cells for the functional reconstruction of mucous membrane in empty nose syndrome

    Directory of Open Access Journals (Sweden)

    Liang LI

    2014-10-01

    Full Text Available Objective To analyze and evaluate the feasibility and effectiveness of using autologous adipose derived stem cells (ASCs for rebuilding the function of nasal mucosa in patients with empty nose syndrome (ENS. Methods Autologous adipose tissue 15-20ml were obtained from each of 5 ENS patients admitted from Aug. 2013 to Feb. 2014, and from which stem cells were isolated, cultured and expanded in vitro. The phenotype, differentiation, and genetic stability of the third generation of amplified stem cells were identified. For the patients with rudimental turbinate (n=3, ASCs were injected into the damaged nasal mucosa for 4 times (once every 10 days. For the patients with no rudimental turbinate (n=2, autologous pure fat granules 1-5ml were extracted after 3 times of ASCs injection into the damaged nasal mucosa, and mixed with the 3rd-6th generation of ASCs for inferior or middle nasal turbinate angioplasty. Nasal endoscopic examination was performed before treatment and 3, 6 and 9 months after treatment for comparison, and the data of SNOT-20 questionnaire, nasality resistance and nasal mucociliary clearance action were statistically analyzed. Results With injection transplantation of the 3rd-6th generation of ASCs in 2 patients with no rudimental turbinate, and 3, 6 and 9 months after the combined ASCs and fat granules transplantation in 3 patients with rudimental turbinate, nasal endoscopy showed that no obvious absorption in conchoplasty, nasal mucosa was improved significantly, and same as SNOT-20 scores, with statistically significant difference (P0.05. Conclusions The reconstruction of mucosa function by nasal turbinate angioplasty combined with adipose derived stem cells and autologous adipose transplantation may significantly improve the symptoms in patients with ENS with lasting effects. It is a new procedure which is helpful for the mucosal repair in patients with ENS. DOI: 10.11855/j.issn.0577-7402.2014.10.11

  13. 碱性成纤维细胞生长因子转染兔关节软骨细胞的研究%Transfection of basic fibroblast growth factor in rabbits' articular chondrocytes

    Institute of Scientific and Technical Information of China (English)

    曾庆彩; 鲍丽娟; 龙源深; 杨炎馨; 董文其; 李明

    2004-01-01

    背景:软骨细胞体外培养困难和表型难以维持是软骨组织工程研究的一大难题.目的:探讨碱性成纤维细胞生长因子(basic Fibroblast Growth Factor,bFGF)基因转染兔关节软骨细胞后对培养的关节软骨细胞形态、分裂增殖及代谢等方面的影响.设计:完全随机对照实验研究.地点和方法:实验在解放军第一军医大学热带军队卫生学系完成,对象为兔软骨细胞(3周龄新西兰新生兔购于第一军医大学实验动物中心).干预:将bFGF基因克隆于真核表达载体pHβ0AP-1中,构建重组真核表达载体pHβ-bFGF,转染兔关节软骨细胞.G418筛选阳性克隆,检测阳性细胞bFGF基因的表达水平.测定培养软骨细胞的DNA含量、糖醛酸含量、软骨细胞增殖情况及进行细胞周期分析.主要观察指标:DNA含量、糖醛酸含量、软骨细胞增殖情况及细胞周期分析.结果:bFGF基因转染软骨细胞表型未见显著变化;bFGF基因转染组、载体对照组、空白对照组DNA含量分别为(77.37±6 21),(40.39±4.33),(33.77±4.25)μg/瓶(P<0.01),糖醛酸含量分别为(308.8±10.2),(77.9±8.7),(80.2±10.5)μg/瓶(P<0.01),软骨细胞G1期分别为59.3±2.1,69.5±4.0,73.1±3.9(P<0.05).结论:bFGF转染关节软骨细胞后,可显著促进细胞分裂增殖并缩短细胞周期,为软骨组织工程研究提供新的技术路线及理论基础.%BACKGROUND: The difficulties in the culture in vitro of chondrocytes and in the maintenance of phenotype are big problems in the research of cartilage engineering.OBJECTIVE: To discuss the impact of basic fibroblast growth factor(bFGF)gene on the morphology, division, proliferation and metabolism of chondrocytes in culture after the transfection in articular chondrocytes of rabbits.DESIGN: A complete randomized controlled study was conducted.SETTING and PARTICIPANTS: The study was completed in the Department of Military Tropical Medicine and Hygiene, First Military Medical

  14. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  15. 三氧化二砷对体外培养大鼠软骨细胞增殖和凋亡的影响%Effects of arsenic trioxide on rat primary chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    王娇; 崔洋; 刘伟东; 孟红梅

    2013-01-01

    Objective To study the cell viability,proliferation and apoptosis of cultured rat primary chondrocytes exposed to different doses of arsenic trioxide (As2O3) in vitro.Methods The third generation of primary cultured chondrocytes were treated with As2O3 at 0.5,1.0,2.0,4.0 and 8.0 μmol/L for 24,48 and 72 h.The cell vitality was detected with Cell Counting Kits-8 and the proliferation and apoptosis of chondrocytes were detected by flow cytometry.Results Compared to the control group,the vitality of chondrocytes exposed to each concentrations of As2O3 was inhibited (except the group at 0.5 μmnol/L for 24 h).Both of the distribution of cell cycle and the rate of apoptosis of chondrocytes analyzed by flow cytometry showed that As2O3 induced G2 cell-cycle arrest and increased apoptotic rate.Conclusion As2O3 could inhibit the proliferation and promote the apoptosis of rat primary chondrocytes in vitro.%目的 探讨三氧化二砷(As2O3)对体外培养大鼠软骨细胞活力、增殖和凋亡的影响.方法 采用细胞培养的方法,原代培养1~3天Wistar大鼠的关节软骨细胞,取第3代细胞进行实验,按染砷剂量不同分为0(对照)、0.5、1.0、2.0、4.0、8.0 μmol/L组.采用细胞增殖与毒性检测方法(CCK-8法),在染砷24、48、72 h测定细胞活力变化;流式细胞仪检测砷对软骨细胞周期及凋亡的影响.结果 与对照组相比,各浓度染砷大鼠软骨细胞(除0.5 μmol/L 24 h无统计学意义)活力均被抑制(P<0.01);流式细胞仪分析结果显示,As2O3将大鼠软骨细胞周期阻滞于G2期(P<0.05),使细胞凋亡率明显增加(P<0.05).结论 As2O3可以抑制体外培养大鼠软骨细胞的增殖,促进细胞凋亡.

  16. Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes

    Directory of Open Access Journals (Sweden)

    Rainer Beckmann

    2014-09-01

    Full Text Available Expression of the pro-angiogenic vascular endothelial growth factor (VEGF stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1. The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies.

  17. Potential of Raloxifene in reversing osteoarthritis-like alterations in rat chondrocytes: An in vitro model study

    Indian Academy of Sciences (India)

    Aysegul Kavas; Seda Tuncay Cagatay; Sreeparna Banerjee; Dilek Keskin; Aysen Tezcaner

    2013-03-01

    The aim of this study was to investigate the effects of Raloxifene (Ral) on degeneration-related changes in osteoarthritis (OA)-like chondrocytes using two- and three-dimensional models. Five-azacytidine (Aza-C) was used to induce OA-like alterations in rat articular chondrocytes and the model was verified at molecular and macrolevels. Chondrocytes were treated with Ral (1, 5 and 10 M) for 10 days. Caspase-3 activity, gene expressions of aggrecan, collagen II, alkaline phosphatase (ALP), collagen X, matrix metalloproteinases (MMP-13, MMP-3 and MMP-2), and MMP-13, MMP-3 and MMP-2 protein expressions were studied in two-dimensional model. Matrix deposition and mechanical properties of agarose-chondrocyte discs were evaluated in three-dimensional model. One M Ral reduced expression of OA-related genes, decreased apoptosis, and MMP-13 and MMP-3 protein expressions. It also increased aggrecan and collagen II gene expressions relative to untreated OA-like chondrocytes. In three-dimensional model, 1 M Ral treatment resulted in increased collagen deposition and improved mechanical properties, although a significant increase for sGAG was not observed. In summation, 1 M Ral improved matrix-related activities, whereas dose increment reversed these effects except ALP gene expression and sGAG deposition. These results provide evidence that low-dose Ral has the potential to cease or reduce the matrix degeneration in OA.

  18. Double-door laminoplasty using autologous spinous process for the management of cervical myelopathy

    International Nuclear Information System (INIS)

    We describe a technique of double-door laminoplasty for the management of cervical myelopathy using the autologous spinous process instead of an artificial spacer. The aims in the present study were to determine the fusion rate and the incidence rate of breakage in the autologous spinous process, and to assess its efficacy for cervical laminoplasty. Twenty-three patients of cervical myelopathy were treated with double-door laminoplasty followed by implantation of the autologous spinous process. The spinous process from C3 to C7 was resected, at 8 mm from the basal part of the spinous process. The autologous spinous process was made from the removed spinous process, and was implanted between each expanded laminae. Post-operative CT scanning determined the fusion rate between the expanded laminae and the autologous spinous process as 70.4% at 3 months, and 93.5% at 6 months, after the operation. There was no dissociation and no breakage in the autologous spinous process during the follow-up observation period. There were certain advantages to our technique including the high fusion rate and good stability in the autologous spinous process. In addition, this technique was less expensive than other techniques using an artificial spacer. These findings indicated that this technique was a reliable procedure for effectively treating of cervical myelopathy which are caused by multisegmental cervical canal stenosis. (author)

  19. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Fagundes Neves

    2013-09-01

    Full Text Available OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each: control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.

  20. Increased serum erythropoietin concentration after allogeneic compared with autologous blood transfusion.

    Science.gov (United States)

    Avall, A; Hyllner, M; Swolin, B; Bengtson, J p; Carlsson, L; Bengtsson, A

    2002-12-01

    Serum erythropoietin (sEPO) level is known to increase as hemoglobin (Hb) concentration decreases during and after preoperative autologous blood donation (PAD). The endogenous erythropoietin (EPO) production after allogeneic blood transfusion has not to our knowledge, been studied. The aim of the present study was to determine whether there is, after surgery, any change in sEPO concentration after allogeneic blood transfusion, and whether there is any difference in EPO response after autologous or allogeneic blood transfusion. Thirty-one patients approaching total hip-joint replacement surgery, were randomized to receive either allogeneic red blood cells (n = 15) or predeposited autologous whole blood transfusion (n = 16). The relationship between Hb, sEPO, and reticulocytes in the recipients were repeatedly analyzed before, during and after surgery. The Hb followed an expected pattern, with a decreased concentration after PAD in the autologous group, then in both groups after surgery. The sEPO concentration was significantly higher in the allogeneic than in the autologous group on day one and day 4-5 postoperatively. The reticulocyte level, on the contrary, was higher in the autologous patients before, one hour after, and one day after surgery. The study showed a greater increase in sEPO concentration after allogeneic blood transfusion than after autologous blood transfusion. There may be an inverse relationship between sEPO and the reticulocyte level. PMID:12509214

  1. Long Term Results in Refractory Tennis Elbow Using Autologous Blood

    Science.gov (United States)

    Gani, Naseem ul; Khan, Hayat Ahmad; Kamal, Younis; Farooq, Munir; Jeelani, Hina; Shah, Adil Bashir

    2014-01-01

    Tennis elbow (TE) is one of the commonest myotendinosis. Different treatment options are available and autologous blood injection has emerged as the one of the acceptable modalities of treatment. Long term studies over a larger group of patients are however lacking. The purpose of this study was to evaluate these patients on longer durations. One-hundred and twenty patients of TE, who failed to respond to conventional treatment including local steroid injections were taken up for this prospective study over the period from year 2005 to 2011 and were followed up for the minimum of 3 years (range 3-9 years). Two mL of autologous blood was taken from the ipsilateral limb and injected into the lateral epicondyle. The effectiveness of the procedure was assessed by Pain Rating Sscale and Nirschl Staging, which was monitored before the procedure, at first week, monthly for first three months, at 6 months and then 3 monthly for first year, six monthly for next 2 years and then yearly. Statistical analysis was done and a P value of <0.05 was taken as significant. The patients (76 females and 44 males) were evaluated after procedure. The mean age group was 40.67±8.21. The mean follow up was 5.7±1.72 (range 3 to 9 years). The mean pain score and Nirschl stage before the procedure was 3.3±0.9 and 6.2±0.82 respectively. At final follow up the pain score and Nirschl were 1.1±0.9 and 1.5±0.91 respectively. Autologous blood injection was found to be one of the modalities for treatment of TE. Being cheap, available and easy method of treatment, it should be considered as a treatment modality before opting for the surgery. Universal guidelines for the management of tennis elbow should be made as there is lot of controversy regarding the treatment. PMID:25568727

  2. Long term results in refractory tennis elbow using autologous blood

    Directory of Open Access Journals (Sweden)

    Naseem ul Gani

    2014-11-01

    Full Text Available Tennis elbow (TE is one of the commonest myotendinosis. Different treatment options are available and autologous blood injection has emerged as the one of the acceptable modalities of treatment. Long term studies over a larger group of patients are however lacking. The purpose of this study was to evaluate these patients on longer durations. One-hundred and twenty patients of TE, who failed to respond to conventional treatment including local steroid injections were taken up for this prospective study over the period from year 2005 to 2011 and were followed up for the minimum of 3 years (range 3-9 years. Two mL of autologous blood was taken from the ipsilateral limb and injected into the lateral epicondyle. The effectiveness of the procedure was assessed by Pain Rating Sscale and Nirschl Staging, which was monitored before the procedure, at first week, monthly for first three months, at 6 months and then 3 monthly for first year, six monthly for next 2 years and then yearly. Statistical analysis was done and a P value of <0.05 was taken as significant. The patients (76 females and 44 males were evaluated after procedure. The mean age group was 40.67±8.21. The mean follow up was 5.7±1.72 (range 3 to 9 years. The mean pain score and Nirschl stage before the procedure was 3.3±0.9 and 6.2±0.82 respectively. At final follow up the pain score and Nirschl were 1.1±0.9 and 1.5±0.91 respectively. Autologous blood injection was found to be one of the modalities for treatment of TE. Being cheap, available and easy method of treatment, it should be considered as a treatment modality before opting for the surgery. Universal guidelines for the management of tennis elbow should be made as there is lot of controversy regarding the treatment.

  3. Age-related decrease in the responsiveness of rat articular chondrocytes to EGF is associated with diminished number and affinity for the ligand of cell surface binding sites.

    Science.gov (United States)

    Ribault, D; Habib, M; Abdel-Majid, K; Barbara, A; Mitrovic, D

    1998-01-12

    The effect of age on the responsiveness of articular chondrocytes (AC) to epidermal growth factor (EGF) was examined. Cells were isolated by digesting cartilage fragments from the humeral and femoral heads of 21-day old, 8- and 14-month old rats with collagenase. The cells were cultured under standard conditions, as monolayers. DNA synthesis was measured by [3H]thymidine incorporation and cell proliferation by the DNA content of subconfluent cultures. [125I]EGF binding and the amounts of EGF and EGF-receptor mRNAs were determined using confluent cells. DNA synthesis was decreased with age of animals. EGF stimulated DNA synthesis in cultures in 1- and 8-month old rats at low serum concentrations (< 5%), and in cultures in 14-month old animals at high serum concentrations. It also increased 5-day DNA content of cultures compared to serum-treated controls but this effect was weak in cultures in 14-month old rats. The number of high affinity binding sites for [125I]EGF decreased from 37,800 in the 1-month old to 1950 in the 14-month old rat AC. The apparent dissociation constant (Kd) also decreased with age: 0.18 nmol/l in the 1-month old; 0.12 nmol/l in the 8-month old; and 0.07 nmol/l in the 14-month old cells. AC in older rats contained more EGF mRNA and less EGF-receptor mRNA. Incubation of the cells with EGF resulted in down regulation of the EGF- and upregulation of EGF-receptor mRNA expressions. These findings show the age-related quantitative and qualitative alterations in EGF and EGF-receptor which may account, at least in part, for the diminished responsiveness of senescent AC to EGF. PMID:9509392

  4. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome.

    Directory of Open Access Journals (Sweden)

    Fabien Forcheron

    Full Text Available Cutaneous radiation syndrome (CRS is the delayed consequence of localized skin exposure to high doses of ionizing radiation. Here we examined for the first time in a large animal model the therapeutic potential of autologous adipose tissue-derived stroma cells (ASCs. For experiments, Göttingen minipigs were locally gamma irradiated using a (60Co source at the dose of 50 Gy and grafted (n = 5 or not (n = 8. ASCs were cultured in MEM-alpha with 10% fetal calf serum and basic fibroblast growth factor (2 ng.mL(-1 and post irradiation were intradermally injected on days 25, 46, 67 and finally between days 95 and 115 (50 × 10(6 ASCs each time into the exposed area. All controls exhibited a clinical evolution with final necrosis (day 91. In grafted pigs an ultimate wound healing was observed in four out of five grafted animals (day 130 +/- 28. Immunohistological analysis of cytokeratin expression showed a complete epidermis recovery. Grafted ASCs accumulated at the dermis/subcutis barrier in which they attracted numerous immune cells, and even an increased vasculature in one pig. Globally this study suggests that local injection of ASCs may represent a useful strategy to mitigate CRS.

  5. A novel scoring system for evaluation of results of autologous transplantation methods in vitiligo

    Directory of Open Access Journals (Sweden)

    Gupta Somesh

    2002-01-01

    Full Text Available Autologous transplantation of melanocyte/melanocytes bearing epidermis for vitiligo can be done by mini-punch grafting (MPG, suction blister epidermal grafting (SBEG, thin split -thickness skin grafting (TSTG, transplantation of basal cell layer enriched suspension and cultured epithelial/melanocyte transplantation. To date no comparative study of these transplantation procedures has been published. Comparison of different studies carried out at different centers may be difficult in the absence of uniform evaluation criteria. In most of the published studies, the results were evaluated in terms of extent of pigmentation. Complictions and color match were evaluated separately. This approach, however, may not give a fair idea about the results. We have developed a scoring system with holistic approach considering the extent of pigmentation, color match and the complications of both the donor and the recipient areas, all taken together. In the scoring system, the score for individual criteria was multiplied with a factor, the value of which was decided on the basis of relative importance of each criteria. The use of this scoring system is exemplified in twelve patients who underwent TSTG, SBEG and MPG. In the scoring system the results were judged as excellent and fair in 3 patients each, as good in 4 patients and as poor in 2 patients.

  6. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  7. Feasibility of Bone Marrow Stromal Cells Autologous Transplantation for Dilated Cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng; YANG Chenyuan; XIAO Shiliang; FEI Hongwen

    2007-01-01

    The feasibility of bone marrow stromal cells autologous transplantation for rabbit model of dilated cardiomyopathy induced by adriamycin was studied. Twenty rabbits received 2 mg/kg of adriamycin intravenously once a week for 8 weeks (total dose, 16 mg/kg) to induce the cardiomyopathy model with the monitoring of cardiac function by transthoracic echocardiography. Marrow stromal cells were isolated from cell-transplanted group rabbits and were culture-expanded on the 8th week. On the 10th week, cells were labeled with 4,6-diamidino-2-phenylindole (DAPI), and then injected into the myocardium of the same rabbits. The results showed that viable cells labeled with DAPI could be identified in myocardium at 2nd week after transplantation. Histological findings showed the injury of the myocardium around the injection site was relieved with less apoptosis and more expression of bcl-2. The echocardiography found the improvement of local tissue movement from (2.12±0.51) cm/s to (3.81±0.47) cm/s (P<0.05) around the inject site, but no improvement of heart function as whole. It was concluded bone marrow stromal cells transplantation for dilated cardiomyopathy was feasibe. The management of cells in vitro, the quantity and the pattern of the cells transplantation and the action mechanism still need further research.

  8. Tissue engineering penoplasty with biodegradable scaffold Maxpol-T cografted autologous fibroblasts for small penis syndrome.

    Science.gov (United States)

    Jin, Zhe; Wu, Yi-Guang; Yuan, Yi-Ming; Peng, Jing; Gong, Yan-Qing; Li, Guang-Yong; Song, Wei-Dong; Cui, Wan-Shou; He, Xue-You; Xin, Zhong-Cheng

    2011-01-01

    In this study, we investigated the safety and efficacy of a poly acid-co-glycolide biodegradable scaffold (Maxpol-T) coated by autologous fibroblasts (AF) for penile girth enlargement in small penis syndrome (SPS). Eighty patients with SPS were enrolled in a clinical study at 2 medical centers; 69 patients completed the study protocol. Scrotal skin was harvested under local anesthesia, and AFs were cultured and seeded on a Maxpol-T scaffold; the cografted scaffold was implanted under the Buck's fascia of penile shaft via a circumcising incision. Patients were followed up at 1, 3, and 6 months to evaluate penile girth changes. Patient satisfaction was assessed via Visual Analogue Scale and scored on the International Index of Erectile Function-5 (IIEF-5). Mean preoperative penile girth in the flaccid and erect state was 8.18 ± 0.83 cm and 10.26 ± 1.22 cm, respectively. At the 6-month postoperative follow-up, mean penile girth in the flaccid and erect state was increased to 12.19 ± 1.27 cm and 13.18 ± 1.31 cm, respectively (P penile girth enhancement in patients with SPS. PMID:21164145

  9. Expression Profiling and Functional Implications of a Set of Zinc Finger Proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in Primary Osteoarthritic Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Maria Mesuraca

    2014-01-01

    Full Text Available Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA. To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.

  10. Value of detection of atherosclerotic lesions using autologous labelled platelets

    Energy Technology Data Exchange (ETDEWEB)

    Sinzinger, H.; Silberbauer, K.; Fitscha, P.; Kaliman, J. (Vienna Univ. (Austria). 2. Medizinische Klinik; Vienna Univ. (Austria). Kardiologische Abt.; Allgem. Poliklinik, Vienna (Austria). 2. Medizinische Abteilung)

    1982-01-01

    In 44 patients with clinical signs of carotid artery stenosis a positive Doppler-ultrasound was obtained. In all patients the lesions were confirmed by angiography. In the patients labelling of autologous platelets with 111 Indium-oxine-sulphate was done in order to calculate the platelet half-life. In addition we tried to visualize the verified atherosclerotic lesions under a gamma-camera. In all patients the platelet half-life was significantly shortened in comparison to the controls. In none of the patients studied a visualization of the angiographically verified atherosclerotic lesions could be obtained. These findings point out, that only in recently developed and very severe atherosclerotic lesions the number of platelets deposed on the vascular surface is enough to allow gamma-camera imaging.

  11. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Stenholm, A C; Kronborg, O; Fenger, C; Jensenius, Jens Christian; Zeuthen, J; Kristensen, T; Christensen, P B

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression of...... immune-response-related surface molecules on the tumour cells in the vaccine correlated with survival. The first and second vaccine comprised of 107 irradiated tumour cells mixed with BCG, the third of irradiated tumour cells only. Thirty-nine patients were considered, but only 6 patients fulfilled the...... criteria for inclusion. No serious side effects were observed. With three years of observation time, two patients are healthy, while the rest have had recurrence, and two of them have died. In all vaccines, all tumour cells expressed HLA class I, some expressed HLA class II and none expressed CD80. There...

  12. Putting a price tag on novel autologous cellular therapies.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Bauer, Gerhard; Medcalf, Nicholas; Volk, Hans-Dieter; Reinke, Petra

    2016-08-01

    Cell therapies, especially autologous therapies, pose significant challenges to researchers who wish to move from small, probably academic, methods of manufacture to full commercial scale. There is a dearth of reliable information about the costs of operation, and this makes it difficult to predict with confidence the investment needed to translate the innovations to the clinic, other than as small-scale, clinician-led prescriptions. Here, we provide an example of the results of a cost model that takes into account the fixed and variable costs of manufacture of one such therapy. We also highlight the different factors that influence the product final pricing strategy. Our findings illustrate the need for cooperative and collective action by the research community in pre-competitive research to generate the operational models that are much needed to increase confidence in process development for these advanced products. PMID:27288308

  13. An ethical framework for the disposal of autologous stem cells.

    Science.gov (United States)

    Petrini, Carlo

    2013-01-01

    The disposal of haematopoietic stem cells stored for autologous transplantation purposes becomes a problem for hospitals when the conditions for their preservation cease to exist. When these cells have been stored for a considerable time the problem often becomes an ethical one involving informed consent and is linked to at least two simultaneous circumstances: (i) the indications regarding disposal contained in available informed consent papers are either absent or too generic; (ii) the person who provided the sample can no longer be traced. This article proposes and discusses some of the ethical criteria for addressing this problem on the basis of the so-called "principles" of North American bioethics, and compares them with some of the principles and values proposed in other models of bioethics. PMID:23412868

  14. In vitro cartilage culture: flow, transport and reaction in fibrous porous media

    OpenAIRE

    AHMADI-SENICHAULT, Azita; Lasseux, Didier; LETELLIER, Samuel

    2007-01-01

    Flow and transport in fibrous media are encountered in a wide variety of domains ranging from biotechnology to filtration in chemical engineering. The context of this work is the in vitro cartilage cell culture on a fibrous biodegradable polymer scaffold placed in a bioreactor. A seeding process using a liquid containing cells (chondrocytes) initiates the culture and an imposed continuous flow through the scaffold allows both the transport of nutrients necessary for cell-growth and of metabol...

  15. Induction of type Ⅱ collagen phenotype in transformed human articular chondrocytes%诱导转化人关节软骨细胞Ⅱ型胶原表型的有效方式

    Institute of Scientific and Technical Information of China (English)

    何清义; 李起鸿; 许建中

    2004-01-01

    BACKGROUND: Soft agar suspended culture is the main method for inducing the dedifferentiated chondrocytes to reexpress type Ⅱ collagen.OBJECTIVE: To induce collagen phenotype in dedifferentiated transformed human articular chondrocytes with centrifuge tube aggregate culture.DESIGN: A non-random uncontrolled study was conducted.SETTING and PARTICIPANTS: The experiment was completed in the Department of Orthopaedics, Southwest Hospital, Third Military Medical University. Subjects were transformed human articular chondrocytes, products of Hyclone Company, USA.INTERVENTIONS: The 30th, 40th 50th generation of dedifferentiated transformed chondrocytes (DTCs) were digested and cultivated in centrifuge tube. The expression of type Ⅰ, Ⅱ, Ⅲ collagen and the production of extracellular matrix from these cells were compared under the circumstances of monolayer culture and centrifuge tube aggregate culture with ordinary medium and BAI induced medium(bone morphogenetic protein 2 +ascorbate +insulin).MAIN OUTCOME MEASURES: Immunohistochemical staining of type Ⅰ, Ⅱ, Ⅲ collagen; mRNA expression of type Ⅱ collagen.RESULTS: In monolayer culture with ordinary medium, only type Ⅰ collagen was expressed in the DTCs, while in aggregate culture with BAI induced medium, massive type Ⅱ collagen and extracellular matrix were expressed in the DTCs.CONCLUSION: Centrifuge tube aggregate culture and BAI induced medium are effective manners in inducing DTCs to express type Ⅱ collagen.%背景:诱导去分化软骨细胞重新表达Ⅱ型胶原主要基于软琼脂悬浮培养法.目的:用离心管聚集体培养(aggregate culture)诱导去分化转化人关节细胞的Ⅱ型胶原.设计:非随机非对照实验研究.地点和对象:实验在第三军医大学西南医院骨科完成,对象为转化人关节软骨细胞,美国Hyclone公司产品.干预:将体外长期培养的第30,40,50代去分化转化软骨细胞消化后进行离心管培养,比较细胞在单层培

  16. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Laurent Schibler

    Full Text Available Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD, achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM structure and turnover, especially glycosaminoglycan (GAG and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These

  17. Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway

    International Nuclear Information System (INIS)

    Quinolones (QNs)-induced arthropathy is an important toxic effect in immature animals leading to restriction of their therapeutic use in pediatrics. However, the exact mechanism still remains unclear. Recently, we have demonstrated that ofloxacin, a typical QN, induces apoptosis of alginate microencapsulated juvenile rabbit joint chondrocytes by disturbing the β1 integrin functions and inactivating the ERK/MAPK signaling pathway. In this study, we extend our initial observations to further elucidate the mechanism(s) of ofloxacin-induced apoptosis by utilizing specific caspase inhibitors. Pretreatment with both caspase-9-specific inhibitor zLEHD-fmk and caspase-8 inhibitor zIETD-fmk attenuated ofloxacin-induced apoptosis and activation of caspase-3 of chondrocyte in a concentration-dependent manner, as determined by fluorescent dye staining, enzyme activity assay and immunoblotting. Furthermore, the activation of caspase-9, -8 and -3 stimulated by ofloxacin was significantly inhibited in the presence of zIETD-fmk while pretreatment with zLEHD-fmk only blocked the activation of caspase-9 and -3. Ofloxacin also stimulated a concentration-dependent translocation of cytochrome c from mitochondria into the cytosol and a decrease of mitochondrial transmembrane potential, which was completely inhibited by zIETD-fmk. In addition, ofloxacin was found to increase the level of Bax, tBid, p53 in a concentration- and time-dependent manner. Taken together, The current results indicate that the caspase-8-dependent mitochondrial pathway is primarily involved in the ofloxacin-induced apoptosis of microencapsulated juvenile rabbit joint chondrocytes

  18. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, Eliane, E-mail: eliane.antonioli@einstein.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Lobo, Anderson O., E-mail: aolobo@univap.br [Laboratory of Biomedical Nanotechnology, Universidade do Vale do Paraiba, Sao Jose dos Campos, Sao Paulo (Brazil); Ferretti, Mario, E-mail: ferretti@einstein.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Ortophedic Division, Federal University of Sao Paulo, SP (Brazil); Cohen, Moises, E-mail: m.cohen@uol.com.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Ortophedic Division, Federal University of Sao Paulo, SP (Brazil); Marciano, Fernanda R., E-mail: femarciano@uol.com.br [Laboratory of Biomedical Nanotechnology, Universidade do Vale do Paraiba, Sao Jose dos Campos, Sao Paulo (Brazil); Corat, Evaldo J., E-mail: corat@las.inpe.br [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Sao Paulo (Brazil); Trava-Airoldi, Vladimir J., E-mail: vladimir@las.inpe.br [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Sao Paulo (Brazil)

    2013-03-01

    Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O{sub 2} plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair. Highlights: Black-Right-Pointing-Pointer Chondrocytes were cultivated on Superhydrophilic Vertically Aligned Multiwall Carbon Nanotubes (VACNT). Black-Right-Pointing-Pointer We have shown a correlation between gene expression and thermodynamics aspects. Black-Right-Pointing-Pointer Superhydrhophilic VACNT will be an excellent substrate for cartilage and bone tissue regeneration.

  19. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films

    International Nuclear Information System (INIS)

    Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O2 plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair. Highlights: ► Chondrocytes were cultivated on Superhydrophilic Vertically Aligned Multiwall Carbon Nanotubes (VACNT). ► We have shown a correlation between gene expression and thermodynamics aspects. ► Superhydrhophilic VACNT will be an excellent substrate for cartilage and bone tissue regeneration.

  20. Mycoplasma synoviae induces upregulation of apoptotic genes, secretion of nitric oxide and appearance of an apoptotic phenotype in infected chicken chondrocytes

    Directory of Open Access Journals (Sweden)

    Dusanic Daliborka

    2012-01-01

    Full Text Available Abstract The role of chondrocytes in the development of infectious arthritis is not well understood. Several examples of mycoplasma-induced arthritis in animals indicate that chondrocytes come into direct contact with bacteria. The objective of this study was to analyze the interaction of an arthrogenic Mycoplasma synoviae strain WVU 1853 with chicken chondrocytes. We found that M. synoviae significantly reduces chondrocyte respiration. This was accompanied by alterations in chondrocyte morphology, namely cell shrinkage and cytoplasm condensation, as well as nuclear condensation and formation of plasma membrane invaginations containing nuclear material, which appeared to cleave off the cell surface. In concordance with these apoptosis-like events in chondrocytes, transcription was increased in several pro-apoptotic genes. Twenty-four hours after infection, strong upregulation was assayed in NOS2, Mapk11, CASP8 and Casp3 genes. Twenty-four and 72 h incubation of chondrocytes with M. synoviae induced upregulation of AIFM1, NFκB1, htrA3 and BCL2. Casp3 and NOS2 remained upregulated, but upregulation ceased for Mapk11 and CASP8 genes. Increased production of nitric oxide was also confirmed in cell supernates. The data suggests that chicken chondrocytes infected with M. synoviae die by apoptosis involving production of nitric oxide, caspase 3 activation and mitochondrial inactivation. The results of this study show for the first time that mycoplasmas could cause chondrocyte apoptosis. This could contribute to tissue destruction and influence the development of arthritic conditions. Hence, the study gives new insights into the role of mycoplasma infection on chondrocyte biology and development of infectious arthritis in chickens and potentially in humans.

  1. Non-woven PGA/PVA Fibrous Mesh as an Appropriate Scaffold for Chondrocyte Proliferation

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Košťáková, E.; Filová, Eva; Prosecká, Eva; Plencner, Martin; Ocheretná, L.; Lytvynets, Andriy; Lukáš, D.; Amler, Evžen

    2010-01-01

    Roč. 59, č. 5 (2010), s. 773-781. ISSN 0862-8408 R&D Projects: GA AV ČR IAA500390702; GA ČR GAP304/10/1307 Grant ostatní: GA UK(CZ) 119209; EU(XE) BIOSCENT ID 214539; GA MŠk(CZ) 1M0510; GA ČR(CZ) GA202/09/1151; GA MŠk(CZ) 2B06130 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50390512 Keywords : PGA * PVA * chondrocyte Subject RIV: BO - Biophysics Impact factor: 1.646, year: 2010

  2. Nitric oxide compounds have different effects profiles on human articular chondrocyte metabolism

    OpenAIRE

    de Andrés, María C.; Maneiro, Emilia; Martín, Miguel A.; Arenas, Joaquín; Francisco J Blanco

    2013-01-01

    Introduction The pathogenesis of osteoarthritis (OA) is characterized by the production of high amounts of nitric oxide (NO), as a consequence of up-regulation of chondrocyte-inducible nitric oxide synthase (iNOS) induced by inflammatory cytokines. NO donors represent a powerful tool for studying the role of NO in the cartilage in vitro. There is no consensus about NO effects on articular cartilage in part because the differences between the NO donors available. The aim of this work is to com...

  3. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes

    OpenAIRE

    Chen, Wei-Ping; Wu, Li-Dong

    2014-01-01

    We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS...

  4. ESE-1 Is a Potent Repressor of Type II Collagen Gene (COL2A1) Transcription In Human Chondrocytes

    OpenAIRE

    Peng, Haibing; TAN, LUJIAN; Osaki, Makoto; Zhan, Yumei; Ijiri, Kosei; Tsuchimochi, Kaneyuki; Otero, Miguel; Wang, Hong; CHOY, BOB K.; GRALL, FRANCK T.; Gu, Xuesong; Libermann, Towia A; Oettgen, Peter; Goldring, Mary B.

    2008-01-01

    The epithelium-specific ETS (ESE)-1 transcription factor is induced in chondrocytes by interleukin-1β (IL-1β). We reported previously that early activation of EGR-1 by IL-1β results in suppression of the proximal COL2A1 promoter activity by displacement of Sp1 from GC boxes. Here we report that ESE-1 is a potent transcriptional suppressor of COL2A1 promoter activity in chondrocytes and accounts for the sustained, NF-κB-dependent inhibition by IL-1β. Of the ETS factors tested, this response wa...

  5. Generation of a Transgenic Mouse Model With Chondrocyte-Specific and Tamoxifen-Inducible Expression of Cre Recombinase

    OpenAIRE

    Chen, Mo; Lichtler, Alexander C.; Sheu, Tzong-Jen; Xie, Chao; Zhang, Xinping; O’Keefe, Regis J.; Chen, Di

    2007-01-01

    Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreERT2) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determin...

  6. Magna-field irradiation and autologous marrow rescue in the treatment of pediatric solid tumors

    International Nuclear Information System (INIS)

    Marrow ablative therapy has been given to pediatric patients with a variety of disseminated tumors. Eight patients with advanced neuroblastoma received autologous marrow reinfusion after intensive therapy. Three of eight are in continuous complete remission from 7 to 60 months. An additional four patients received allogeneic marrow transplantation and two remain in continuous complete response at 21 and 39 months. Intensive therapy and autologous marrow reinfusion have been applied to Ewing's sarcoma, but only preliminary results are available. Six patients with disseminated rhabdomyosarcoma and extra-osseous Ewing's sarcoma received conventional chemotherapy followed by sequential hemi-body irradiation. Four of six patients received autologous marrow rescue. Their median disease-free survival is 17 months. This preliminary experience demonstrates the feasibility of using marrow ablative therapy with autologous marrow transplantation in the treatment of pediatric solid tumors. Continuing Phase II studies are required to substantiate its efficacy

  7. Busulfan,cyclophosphamide and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    张春阳

    2013-01-01

    Objective To evaluate the efficacy and safety of dose-reduced intravenous busulfan,cyclophosphamide and etoposide(BCV)as conditioning for autologous stem cell transplantation(ASCT)in multiple myeloma(MM)

  8. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet

    OpenAIRE

    Liang, Wei; Wang, Hui; Sun, Tie-Mie; Yao, Wen-Qing; Chen, Li-Li; Jin, Yu; Chun-ling LI; Meng, Fan-Juan

    2003-01-01

    AIM: To treat patients with stage I-IV malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect.

  9. Chemokine receptor polymorphism and autologous neutralizing antibody response in long-term HIV-1 infection

    DEFF Research Database (Denmark)

    Schønning, Kristian; Joost, Mette; Gram, G J;

    1998-01-01

    We have previously reported that slowly progressing HIV infection (SPI) was associated with the presence of contemporaneous autologous neutralizing antibodies. In contrast, a group of individuals with more rapidly progressing infection (RPI) generally lacked these antibodies. To understand the im...

  10. Transplantation of autologous noncultured epidermal cell suspension in treatment of patients with stable vitiligo

    Institute of Scientific and Technical Information of China (English)

    XU Ai-e; WEI Xiao-dong; CHENG Dong-qing; ZHOU He-fen; QIAN Guo-pei

    2005-01-01

    @@ Treatment of vitiligo by transplantation of noncultured melanocytes containing keratino-cytes has been successful since 1992,1 We report the encouraging results of autologous epidermal cell suspension in the treatment of 24 patients with stable vitiligo since 1998.

  11. Local administration of autologous platelet-rich plasma in a female patient with skin ulcer defect

    Directory of Open Access Journals (Sweden)

    S M Noskov

    2011-02-01

    Full Text Available The paper describes a clinical observation of the efficiency of local therapy with autologous platelet-rich plasma for .skin ulcer defect in a female with chronic lymphocytic leukemia

  12. Periorbital Lipogranuloma after Facial Autologous Fat Injection and Its Treatment Outcomes

    OpenAIRE

    Park, Jun Young; Kim, Namju

    2016-01-01

    Purpose To investigate periorbital lipogranuloma cases that developed after autologous fat injection and to determine various treatment outcomes from these cases. Methods This retrospective study involved 27 patients who presented with periocular mass (final diagnosis of lipogranuloma) and had history of facial autologous fat injection. The collected data included information on patient sex, age, clinical presentation, number and site of fat injections, interval between injections, duration f...

  13. Autologous fat injection to face and neck: from soft tissue augmentation to regenerative medicine

    OpenAIRE

    MAZZOLA, R.F.; Cantarella, G; Torretta, S.; Sbarbati, A.; Lazzari, L; Pignataro, L

    2011-01-01

    SUMMARY Minimally-invasive autologous fat injection of the head and neck region can be considered a valid alternative to major invasive surgical procedures both for aesthetic and functional purposes. The favourable outcomes of autologous fat injection in otolaryngological practice are due to the filling of soft tissue and, mainly, to the potential regenerative effect of adipose-derived mesenchymal stem cells. Herewith, some important biological preliminary remarks are described underlying the...

  14. Ophthalmic Artery Obstruction and Cerebral Infarction Following Periocular Injection of Autologous Fat

    OpenAIRE

    Lee, Chang Mok; Hong, In Hwan; Park, Sung Pyo

    2011-01-01

    We report a case of ophthalmic artery obstruction combined with brain infarction following periocular autologous fat injection. The patient, a 44-year-old woman, visited our hospital for decreased visual acuity in her left eye and dysarthria one hour after receiving an autologous fat injection in the periocular area. Her best corrected visual acuity for the concerned eye was no light perception. Also, a relative afferent pupillary defect was detected in this eye. The left fundus exhibited wid...

  15. Autologous conditioned serum and platelet-rich plasma in equine orthopedic therapeutics

    OpenAIRE

    Cynthia Prado Vendruscolo; Ana Liz Garcia Alves; Patrícia Monaco Brossi; Raquel Yvonne Arantes Baccarin

    2014-01-01

    Musculoskeletal injuries that occur in horses during sports activities are often disabling and require a long period of treatment and rehabilitation, most resulting in scar tissue, predisposing to recurrence. In search of more effective therapies and tissue regeneration, studies have been carried out with blood derivatives - platelet rich plasma and autologous conditioned serum. In spite of both being bloodderived therapies, platelet rich plasma and autologous conditioned serum are distinct p...

  16. Autologous Myoblast Transplantation for Oculopharyngeal Muscular Dystrophy: a Phase I/Iia Clinical Study

    OpenAIRE

    Périé, Sophie; Trollet, Capucine; Mouly, Vincent; Vanneaux, Valérie; Mamchaoui, Kamel; Bouazza, Belaïd; Marolleau, Jean Pierre; Laforêt, Pascal; Chapon, Françoise; Eymard, Bruno; Butler-Browne, Gillian; Larghero, Jérome; St Guily, Jean Lacau

    2013-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myob...

  17. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  18. Regional transfusion centre preoperative autologous blood donation programme: the first two years.

    OpenAIRE

    Howard, M R; Chapman, C E; Dunstan, J. A.; Mitchell, C.; Lloyd, H. L.

    1992-01-01

    OBJECTIVE--To assess the efficacy of a regional autologous blood donation programme. DESIGN--Clinical and laboratory data were collected and stored prospectively. Transfusion data were collected retrospectively from hospital blood bank records. SETTING--Northern Region Blood Transfusion Service and 14 hospitals within the Northern Regional Health Authority. SUBJECTS--505 patients referred for autologous blood donation before elective surgery. MAIN OUTCOME MEASURES--Patient eligibility, advers...

  19. Targeted Preoperative Autologous Blood Donation in Total Knee Arthroplasty Reduces the Need for Postoperative Transfusion

    OpenAIRE

    Bou Monsef, Jad; Buckup, Johannes; Mayman, David; Marx, Robert; Ranawat, Amar; Boettner, Friedrich

    2013-01-01

    Background Preoperative donation of autologous blood has been widely used to minimize the potential risk of allogeneic transfusions in total knee arthroplasty. A previous study from our center revealed that preoperative autologous donation reduces the allogeneic blood exposure for anemic patients but has no effect for non-anemic patients. Questions/Purposes The current study investigates the impact of a targeted blood donation protocol on overall transfusion rates and the incidence of allogen...

  20. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    OpenAIRE

    Forlenza, Christopher J.; Kushner, Brian H.; Nancy Kernan; Farid Boulad; Heather Magnan; Leonard Wexler; Wolden, Suzanne L.; LaQuaglia, Michael P.; Shakeel Modak

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT), a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days) + thiotepa (300 mg/m2/day fo...

  1. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  2. Heterogeneity of clones from a human metastatic melanoma detected by autologous cytotoxic T lymphocyte clones

    OpenAIRE

    1986-01-01

    The possibility that a single human tumor may be composed of an heterogeneous population of cells with respect to susceptibility to lysis by autologous CTL clones was investigated by testing six cytolytic clones derived by micromanipulation against the autologous metastatic melanoma, Me28, and against 31 clones derived from Me28 by cloning in soft agar. Highly significant differences in the lysis of many tumor clones were observed by three of the CTL effectors in comparison with the cytotoxic...

  3. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study

    OpenAIRE

    Putzier, Michael; Strube, Patrick; Funk, Julia F.; GROSS, Christian; Mönig, Hans-Joachim; Perka, Carsten; Pruss, Axel

    2009-01-01

    The current gold standard in lumbar fusion consists of transpedicular fixation in combination with an interbody interponate of autologous bone from iliac crest. Because of the limited availability of autologous bone as well as the still relevant donor site morbidity after iliac crest grafting the need exists for alternative grafts with a comparable outcome. Forty patients with degenerative spinal disease were treated with a monosegmental spondylodesis (ventrally, 1 PEEK-cage; dorsally, a scre...

  4. Current state and future directions of autologous hematopoietic stem cell transplantation in systemic lupus erythematosus

    OpenAIRE

    Illei, Gabor G.; Cervera, Ricard; Burt, Richard K.; Doria, Andrea; Hiepe, Falk; Jayne, David; Pavletic, Steven; Martin, Thierry; Marmont, Alberto; Saccardi, Riccardo; Voskuyl, Alexandre E; Farge, Dominique

    2011-01-01

    Autologous hematopoietic stem cell transplantation (AHSCT) has been proposed as a treatment modality which may arrest the autoimmune disease process and lead to sustained treatment-free remissions. Since the first consensus statement in 1997, approximately 200 autologous bone marrow or hematopoietic stem cell transplantations have been reported world-wide for SLE. The current state of AHSCT in SLE was reviewed at a recent meeting of the Autoimmune Working Party of the European Group for Blood...

  5. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting.

    Directory of Open Access Journals (Sweden)

    Mohssen Hakimi

    Full Text Available One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC. The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group. In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG, whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting.

  6. Autologous Platelet Gel: An In Vitro Analysis of Platelet-Rich Plasma Using Multiple Cycles

    OpenAIRE

    Christensen, Kevin; Vang, See; Brady, Chad; Isler, Jack; Allen, Keith; Anderson, John; Holt, David

    2006-01-01

    Autologous platelet gel (APG) has become an expanding field for perfusionists. By mixing platelet-rich plasma (PRP) with thrombin and calcium, platelet gel is prepared and used in many surgical settings. There are many devices used to produce PRP. This study evaluates the Medtronic Magellan Autologous Platelet Separator. The purpose of this study was to show that processing two cycles of the same syringe could reduce the amount of blood required to produce a specific volume of PRP. Three 60-m...

  7. Autologous Fat Grafting as a Novel Approach to Parastomal Soft-tissue Volume Deficiencies

    OpenAIRE

    Robert C. Wu, MD; Ian Maxwell, MD; Ilun Yang, MD, FRCSC; Mario B. Jarmuske, MD, FRCSC; Robin P. Boushey, MD, PhD, FRCSC

    2014-01-01

    Summary: The aim of this study is to describe a novel approach to revise maladaptive soft-tissue contour around an ileostomy. A patient with permanent ileostomy suffered from significant defects in soft-tissue contour due to scarring and wound contraction. He underwent autologous fat grafting to achieve sealing of his stoma appliance and improve cosmesis. Due to numerous surgeries, the stoma appliance would not seal and required daily appliance changes. The patient received autologous fat gra...

  8. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation

    OpenAIRE

    Armenian, Saro H; Sun, Can-Lan; Shannon, Tabitha; Mills, George; Francisco, Liton; Venkataraman, Kalyanasundaram; Wong, F. Lennie; Forman, Stephen J.; Bhatia, Smita

    2011-01-01

    Advances in autologous hematopoietic cell transplantation (HCT) strategies have resulted in a growing number of long-term survivors. However, these survivors are at increased risk of developing cardiovascular complications due to pre-HCT therapeutic exposures and conditioning and post-HCT comorbidities. We examined the incidence and predictors of congestive heart failure (CHF) in 1244 patients undergoing autologous HCT for a hematologic malignancy between 1988 and 2002. The cumulative inciden...

  9. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses

    OpenAIRE

    Shaw, S. W. Steven; Bollini, Sveva; Nader, Khalil Abi; Gastadello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H. Bobby; Qasim, Waseem; Coppi, Paolo; David, Anna L.

    2011-01-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection.