WorldWideScience

Sample records for autologous cultured chondrocytes

  1. Cell manipulation in autologous chondrocyte implantation: from research to cleanroom.

    Science.gov (United States)

    Roseti, Livia; Serra, Marta; Tigani, Domenico; Brognara, Irene; Lopriore, Annamaria; Bassi, Alessandra; Fornasari, Pier Maria

    2008-04-01

    In the field of orthopaedics, autologous chondrocyte implantation is a technique currently used for the regeneration of damaged articular cartilage. There is evidence of the neo-formation of tissue displaying characteristics similar to hyaline cartilage. In vitro chondrocyte manipulation is a crucial phase of this therapeutic treatment consisting of different steps: cell isolation from a cartilage biopsy, expansion in monolayer culture and growth onto a three-dimensional biomaterial to implant in the damaged area. To minimise the risk of in vitro cell contamination, the manipulation must be performed in a controlled environment such as a cleanroom. Moreover, the choice of reagents and raw material suitable for clinical use in humans and the translation of research protocols into standardised production processes are important. In this study we describe the preliminary results obtained by the development of chondrocyte manipulation protocols (isolation and monolayer expansion) in cleanrooms for the application of autologous implantation.

  2. Autologous chondrocyte implantation in children and adolescents

    DEFF Research Database (Denmark)

    Schmal, H; Pestka, J M; Salzmann, G

    2013-01-01

    PURPOSE: Autologous chondrocyte implantation (ACI) is a well-established treatment method for cartilage defects in knees. Age-related grouping was based on expression data of cartilage-specific markers. Specificities of ACI in the different populations were analysed. METHODS: Two hundred and sixt...... months after the operation. CONCLUSIONS: Age-related expression of cartilage-specific markers allows definition of adolescents in cartilage regenerating surgery. Chondromalacia in these patients is mainly caused by OCD or trauma. LEVEL OF EVIDENCE: Case series, Level IV....

  3. The Knee Joint Loose Body as a Source of Viable Autologous Human Chondrocytes

    Science.gov (United States)

    Melrose, J.

    2016-01-01

    Loose bodies are fragments of cartilage or bone present in the synovial fluid. In the present study we assessed if loose bodies could be used as a source of autologous human chondrocytes for experimental purposes. Histochemical examination of loose bodies and differential enzymatic digestions were undertaken, the isolated cells were cultured in alginate bead microspheres and immunolocalisations were undertaken for chondrogenic markers such as aggrecan, and type II collagen. Isolated loose body cells had high viability (≥90% viable), expressed chondrogenic markers (aggrecan, type II collagen) but no type I collagen. Loose bodies may be a useful source of autologous chondrocytes of high viability. PMID:27349321

  4. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Lenz, Philipp; Kreuz, Peter C;

    2010-01-01

    PURPOSE: We report the 2-year clinical results and identify prognostic factors in patients treated with autologous chondrocyte transplantation by use of a collagen membrane to seed the chondrocytes (ACT-CS). METHODS: This is a prospective study of 59 patients who were treated with ACT-CS...... Repair Society (ICRS) rating, the percentage of patients rated A (normal) and B (nearly normal) increased from 33.9% preoperatively to 92.5% at 24 months after ACT-CS. IKDC and Lysholm scores increased from 50.1 points (SD, 13.4) and 60.5 points (SD, 9.4), respectively, to 76.1 points (SD, 15.2) (P...... CS as a salvage procedure. The rate of failures in patients with isolated cartilage defects was 5.9%. CONCLUSIONS: ACT-CS...

  5. Autologous chondrocyte implantation for treatment of cartilage defects of the knee

    DEFF Research Database (Denmark)

    Jungmann, Pia M; Salzmann, Gian M; Schmal, Hagen;

    2012-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) is a well-established treatment option for isolated cartilage defects of the knee joint, providing satisfying outcome. However, cases of treatment failure with the need for surgical reintervention are reported; typical patient's individual and...

  6. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation.

    Science.gov (United States)

    Mistry, Hema; Connock, Martin; Pink, Joshua; Shyangdan, Deepson; Clar, Christine; Royle, Pamela; Court, Rachel; Biant, Leela C; Metcalfe, Andrew; Waugh, Norman

    2017-01-01

    BACKGROUND The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. OBJECTIVE To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). DATA SOURCES A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. REVIEW METHODS Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. RESULTS Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI(®)) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT

  7. Influence of cell quality on clinical outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Salzmann, Gian M;

    2012-01-01

    BACKGROUND: Several factors influence clinical outcome after autologous chondrocyte implantation (ACI) for the treatment of cartilage defects of the knee joint. HYPOTHESIS/PURPOSE: The aim of the present study was to investigate the influence of cell quality on clinical outcome after ACI. The hyp...

  8. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee

    DEFF Research Database (Denmark)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian;

    2014-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. PURPOSE: To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of ca...

  9. Effect of freezing on rabbit cultured chondrocytes

    Directory of Open Access Journals (Sweden)

    R.R Filgueiras

    2011-02-01

    Full Text Available This work evaluated the effect of freezing on chondrocytes maintained in culture, aiming the establishment of a cell bank for future application as heterologous implant. Chondrocytes extracted from joint cartilage of nine healthy New Zealand White rabbits were cultivated and frozen with the cryoprotector 5% dimethylsulfoxide for six months. Phenotypic and scanning electron microscopy analyses were carried out to identify morphological and functional differences between fresh and thawed cells. After enzymatic digestion, a total of 4.8x10(5cells per rabbit were obtained. Fresh chondrocytes showed a high mitotic rate and abundant matrix was present up to 60 days of culture. Loss of phenotypic stability was notable in the thawed chondrocytes, with a low labeling of proteoglycans and weak immunostaining of type II collagen. The present study showed important loss of chondrocyte viability under the freezing conditions. For future in vivo studies of heterologous implant, these results suggests that a high number of cells should be implanted in the host site in order to achieve an adequate number of viable cells. Furthermore, the chondrocytes should be implanted after two weeks of culture, when the highest viability rate is found

  10. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  11. Matrix-induced autologous chondrocyte implantation addressing focal chondral defect in adolescent knee

    Institute of Scientific and Technical Information of China (English)

    DAI Xue-song; CAI You-zhi

    2012-01-01

    Background Matrix-induced autologous chondrocyte implantation(MACI)is the third generation tissue-engineering technique for the treatment of full-thickness articular cartilage defects.The aim of this study was to describe this new technique and the postoperative findings in adolescent knee with focal chondral defect.Methods The MACI consists of diagnostic arthroscopy and cartilage harvest,chondrocyte culture and seeding in tissue-engineering collagenous membrane,and implantation of the scaffold.Clinical outcome at minimum 1-year follow-up was assessed in seven patients(mean age(16.6±1.5)years;14-19 years)with full-thickness cartilage defects,with International Knee Documentation Committee(IKDC)score,the International Cartilage Repair Society(ICRS)score and the Knee Injury and Osteoarthritis Outcome Score(KOOS).Besides,MR imaging was performed with T1 and T2-weighted imaging and three-dimensional spoiled gradient-recalled(3D-SPGR)MR imaging.Results Clinical evaluation showed significant improvement and MRI analysis showed that the structure was homogeneous and the implant surface was regular and intact in six patients,but irregular in one.Of all the seven patients,the cartilage defect site was nearly totally covered by the implanted scaffold.Conclusions These results indicated that MACl technique is an option for cartilage defect in adolescent knee joint,especially large defect of over 2 cm2.Long-term assessment is necessary to determine the true value of this technique.

  12. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  13. Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen.

    Science.gov (United States)

    König, Josephine; Kohl, Benjamin; Kratz, Karl; Jung, Friedrich; Lendlein, Andreas; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    In vitro cultured autologous chondrocytes can be used for implantation to support cartilage repair. For this purpose, a very small number of autologous cells harvested from a biopsy have to be expanded in monolayer culture. Commercially available polymer surfaces lead to chondrocyte dedifferentiation. Hence, the demanding need for optimized polymers and surface topologies supporting chondrocytes' differentiated phenotypes in vitro arises. In this study we explored the effect of tailored cell culture plate inserts prepared from polystyrene (PS) and polyether imide (PEI) exhibiting three different roughness levels (R0, RI, RII) on chondrocyte morphology, metabolism and gene expression profile. As a control, commercially available tissue culture plastic (TCP) dishes were included. Primary porcine articular chondrocytes were seeded on tailored PS and PEI inserts with three different roughness levels. The metabolic activity of the chondrocytes was determined after 24 hours using alamar blue assay. Chondrocyte gene expression profiles (aggrecan, type I and type II collagen) were monitored after 48 hours using Real Time Detection (RTD)-PCR. Chondrocytes cultured on PS and PEI surfaces formed cell clusters after 24 and 48 hours, which was not observed on TCP. The metabolic activity of chondrocytes cultured on PS was lower than of chondrocytes cultured on PEI, but also lower than on TCP. Gene expression analyses revealed an elevated expression of cartilage-specific aggrecan and an impaired expression of both collagen types by chondrocytes on PS and PEI compared with TCP. In summary, PEI is a biocompatible biomaterial suitable for chondrocyte culturing, which can be further chemically functionalized for generating specific surface interactions or covalent binding of biomolecules.

  14. Gel-type autologous chondrocyte (Chondron™ implantation for treatment of articular cartilage defects of the knee

    Directory of Open Access Journals (Sweden)

    Chun Chung-Woo

    2010-05-01

    Full Text Available Abstract Background Gel-type autologous chondrocyte (Chondron™ implantations have been used for several years without using periosteum or membrane. This study involves evaluations of the clinical results of Chondron™ at many clinical centers at various time points during the postoperative patient follow-up. Methods Data from 98 patients with articular cartilage injury of the knee joint and who underwent Chondron™ implantation at ten Korean hospitals between January 2005 and November 2008, were included and were divided into two groups based on the patient follow-up period, i.e. 13~24-month follow-up and greater than 25-month follow-up. The telephone Knee Society Score obtained during telephone interviews with patients, was used as the evaluation tool. Results On the tKSS-A (telephone Knee Society Score-A, the score improved from 43.52 ± 20.20 to 89.71 ± 13.69 (P Conclusion Gel-type autologous chondrocyte implantation for chondral knee defects appears to be a safe and effective method for both decreasing pain and improving knee function.

  15. Increased Production of Clusterin in Biopsies of Repair Tissue following Autologous Chondrocyte Implantation

    Science.gov (United States)

    Malda, Jos; Richardson, James B.; Roberts, Sally

    2013-01-01

    Objective. To characterize the immunolocalization of clusterin in the repair cartilage of patients having undergone autologous chondrocyte implantation (ACI) and evaluate correlation to clinical outcome. Design. Full-depth core biopsies of repair tissue were obtained from 38 patients who had undergone ACI at an average of 18 ± 13 months previously (range 8-67 months). The biopsies were snap frozen, cryosectioned, and clusterin production immunolocalized using a specific monoclonal clusterin antibody and compared with normal and osteoarthritic cartilage. Clinical outcome was assessed from patients preoperatively, at the time of biopsy, and annually postoperatively. Results. Intensity of immunostaining for clusterin decreased with age in healthy cartilage tissue. Clusterin was detected to a variable degree in 37 of the 38 ACI cartilage biopsies, in single and clustered chondrocytes, in the pericellular capsule and the cartilage extracellular matrix, as well as the osteocytes and osteoid within the bone. Chondrocytes in hyaline repair tissue were significantly more immunopositive than those in fibrocartilage repair tissue. Clinical outcome improved significantly post-ACI, but did not correlate with the presence of clusterin in the repair tissue. Conclusions. These results demonstrate the presence of clusterin in actively repairing human cartilage and indicate a different distribution of clusterin in this tissue compared to normal cartilage. Variability in clusterin staining in the repair tissue could indicate different states of chondrogenic differentiation. The clinical significance of clusterin within repair tissue is difficult to assess, although the ideal functioning repair tissue morphology should resemble that of healthy adult cartilage. PMID:26069669

  16. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Feucht, Matthias;

    2014-01-01

    membrane was utilized in second generation ACI. To date, however, no study has proven the superiority of this modification in terms of long-term clinical outcome. The purpose of this matched-pair analysis was therefore to compare the clinical long-term outcome of first and second generation ACI...... treated with first generation ACI. In both groups, four patients (17.4%) received surgical reintervention during follow-up. CONCLUSIONS: The use of a collagen membrane in combination with autologous chondrocytes (second generation ACI) leads to superior clinical long-term outcome compared to first......PURPOSE: Since the introduction of autologous chondrocyte implantation (ACI) for the treatment of cartilage defects, the initial technique has undergone several modifications. Whereas an autologous periosteum flap was used for defect coverage in first generation ACI, a standardized collagen...

  17. Extracellular matrix domain formation as an indicator of chondrocyte dedifferentiation and hypertrophy

    NARCIS (Netherlands)

    Wu, Ling; Gonzalez, Stephanie; Shah, Saumya; Kyupelyan, Levon; Petrigliano, Frank A.; McAllister, David R.; Adams, John S.; Karperien, Marcel; Tuan, Tai-Lan; Benya, Paul D.; Evseenko, Denis

    2014-01-01

    Cartilage injury represents one of the most significant clinical conditions. Implantation of expanded autologous chondrocytes from noninjured compartments of the joint is a typical strategy for repairing cartilage. However, two-dimensional culture causes dedifferentiation of chondrocytes, making the

  18. Evaluating Joint Morbidity after Chondral Harvest for Autologous Chondrocyte Implantation (ACI)

    Science.gov (United States)

    McCarthy, Helen S.; Richardson, James B.; Parker, Jane C. E.; Roberts, Sally

    2016-01-01

    Objective To establish if harvesting cartilage to source chondrocytes for autologous chondrocyte implantation (ACI) results in donor site morbidity. Design Twenty-three patients underwent ACI for chondral defects of either the ankle or the hip. This involved cartilage harvest from the knee (stage I), chondrocyte expansion in the laboratory and implantation surgery (stage II) into the affected joint. Prior to chondral harvest, no patient had sought treatment for their knee. Lysholm knee scores were completed prior to chondral harvest and annually post-ACI. Histological analyses of the donor site were performed at 12.3 ± 1.5 months for 3 additional patients who had previously had ACI of the knee. Results The median preoperative Lysholm score was 100, with no significant differences observed at either 13.7±1.7 months or 4.8±1.8 years postharvest (median Lysholm scores 91.7 and 87.5, respectively). Patients whose cartilage was harvested from the central or medial trochlea had a significantly higher median Lysholm score at latest follow-up (97.9 and 93.4, respectively), compared with those taken from the intercondylar notch (median Lysholm score 66.7). The mean International Cartilage Repair Society (ICRS) II histological score for the biopsies taken from the donor site of 3 additional knee ACI patients was 117 ± 10 (maximum score 140). Conclusions This study suggests that the chondral harvest site in ACI is not associated with significant joint morbidity, at least up to 5 years postharvest. However, one should carefully consider the location for chondral harvest as this has been shown to affect knee function in the longer term. PMID:26958313

  19. Linoleate impairs collagen synthesis in primary cultures of avian chondrocytes.

    Science.gov (United States)

    Watkins, B A; Xu, H; Turek, J J

    1996-06-01

    The effects of supplemental fatty acids, vitamin E (VIT E), and iron-induced oxidative stress on collagen synthesis, cellular injury, and lipid peroxidation were evaluated in primary cultures of avian epiphyseal chondrocytes. The treatments included oleic and linoleic acids (O or 50 microM) complexed with BSA and dl-alpha-tocopheryl acetate (VIT E at 0 or 100 microM). After 14 days of preculture, the chondrocytes were enriched with fatty acids for 8 days then cultured with VIT E for 2 days. The chondrocytes were then treated with ferrous sulfate (O or 20 microM) for 24 hr to induce oxidative stress. Collagen synthesis was the lowest and the activity of lactate dehydrogenase (LDH) was the highest in chondrocyte cultures treated with 50 microM linoleic acid and 0 VIT E. In contrast, VIT E supplemented at 100 microM partially restored collagen synthesis in the chondrocytes enriched with linoleic acid and lowered LDH activity in the media. The iron oxidative inducer significantly increased the values of thiobarbituric acid-reactive substances (TBARS) in the culture medium. The data showed that linoleic acid impaired chondrocyte cell function and caused cellular injury but that VIT E reversed these effects. Results from a previous study demonstrated that VIT E stimulated bone formation in chicks fed unsaturated fat, and the present findings in cultures of epiphyseal chondrocytes suggest that VIT E is important for chondrocyte function in the presence of polyunsaturated fatty acids. VIT E appears to be beneficial for growth cartilage biology and in optimizing bone growth.

  20. Knee chondral lesions treated with autologous chondrocyte transplantation in a tridimensional matrix: clinical evaluation at 1-year follow-up

    OpenAIRE

    Vilchez, Félix; Lara, Jorge; Álvarez-Lozano, Eduardo; Cuervo, Carlos E.; Mendoza, Oscar F.; Acosta-Olivo, Carlos A.

    2009-01-01

    Background Despite the many studies on chondral injury repair, no outcomes have been evaluated with the Western Ontario and McMaster (WOMAC) Universities osteoarthritis index, the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Oxford Knee Score, all of which are specific for evaluating the presence of osteoarthritis. Materials and methods We evaluated the clinical progress of patients following autologous chondrocyte implantation (ACI) performed by our Bone and Tissue Bank using...

  1. Outcomes of Autologous Chondrocyte Implantation in the Knee following Failed Microfracture

    Science.gov (United States)

    Riff, Andrew Joseph; Yanke, Adam Blair; Tilton, Annemarie K.; Cole, Brian J.

    2016-01-01

    Objectives: Marrow stimulation techniques such as drilling or microfracture are first-line treatment options for symptomatic cartilage defects of the knee. For young patients who have failed microfracture, cartilage restoration techniques such as autologous chondrocyte implantation (ACI), OATS, and osteochondral allograft and are frequently employed. Nevertheless, there a few reports in the literature evaluating the results of ACI following failed microfracture and those available suggest inferior outcomes compared to primary ACI. This study was performed to evaluate the clinical outcomes of autologous chondrocyte implantation (ACI) following failed microfracture in the knee and compare these outcomes to those of primary ACI. Methods: Patients were identified who underwent autologous chondrocyte implantation for symptomatic chondral lesions of the knee refractory to previous microfracture. Postoperative data were collected using several subjective scoring systems (Noyes, Tegner, Lysholm, IKDC, KOOS, SF12). An age-matched cohort of 103 patients who underwent primary ACI of the knee was used as a control group. Statistics were performed in a paired manner using a Student’s t-test for ordinal data and chi-square test for categorical data. Results: Ninety-two patients met the inclusion criteria. The average patient age was 30.1 years (range, 14-49 years) at the time of ACI. The average duration from microfracture to ACI was 21.2 months (range, 1-88 months). ACI was performed in the tibiofemoral compartment in 42 patients, the patellofemoral compartments in 38 patients, and in both in 12 patients. The primary lesion treated with ACI involved the MFC in 38 patients, the trochlea in 25 patients, the patella in 19 patients, and the LFC in 10 patients. The lesions averaged 467mm3 in the trochlea, 445mm3 in the LFC, 265mm3 in the patella, and 295mm3 in the patella. Nineteen patients underwent concurrent ACI to multiple lesions. Thirty-one patients underwent concomitant

  2. Age-Independent Cartilage Generation for Synovium-Based Autologous Chondrocyte Implantation.

    Science.gov (United States)

    Hunziker, Ernst B; Lippuner, Kurt; Keel, Marius J B; Shintani, Nahoko

    2015-07-01

    The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of

  3. Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes

    Directory of Open Access Journals (Sweden)

    N Kaneshiro

    2007-05-01

    Full Text Available The extracellular matrix (ECM of articular cartilage has several functions that are unique to joints. Although a technique for transplanting cultured chondrocytes has already been introduced, it is difficult to collect intact ECM when using enzymes to harvest samples. Temperature-responsive culture dishes have already been clinically applied in the fields of myocardial and corneal transplantation. Earlier studies have shown that a sheet of cultured cells with intact ECM and adhesive factors can be harvested using such culture dishes, which allow the surface properties of the dish to be reversibly altered by changing the temperature. Human chondrocytes were subjected to enzymatic digestion and then were seeded in temperature-responsive culture dishes. A sheet of chondrocytes was harvested by only reducing the temperature after the cultured cells reached confluency. A real-time PCR analysis of the chondrocyte sheets confirmed that type II collagen, aggrecan, and fibronectin were present. These results suggested that, although chondrocytes undergo dedifferentiation in a monolayer culture, multilayer chondrocyte sheets grown in a similar environment to that of three-dimensional culture may be able to maintain a normal phenotype. A histological examination suggested that multilayer chondrocyte sheets could thus prevent the loss of proteoglycans because the area covered by the sheets was well stained by safranin-O. The present experiments suggested that temperature-responsive culture dishes are useful for obtaining cultured chondrocytes, which may then be clinically employed as a substitute for periosteal patches because such sheets can be applied without a scaffold.

  4. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs.

    Science.gov (United States)

    Zhang, Lu; He, Aijuan; Yin, Zongqi; Yu, Zheyuan; Luo, Xusong; Liu, Wei; Zhang, Wenjie; Cao, Yilin; Liu, Yu; Zhou, Guangdong

    2014-06-01

    Previously, we had addressed the issues of shape control/maintenance of in vitro engineered human-ear-shaped cartilage. Thus, lack of applicable cell source had become a major concern that blocks clinical translation of this technology. Autologous microtia chondrocytes (MCs) and bone marrow stromal cells (BMSCs) were both promising chondrogenic cells that did not involve obvious donor site morbidity. However, limited cell availability of MCs and ectopic ossification of chondrogenically induced BMSCs in subcutaneous environment greatly restricted their applications in external ear reconstruction. The current study demonstrated that MCs possessed strong proliferation ability but accompanied with rapid loss of chondrogenic ability during passage, indicating a poor feasibility to engineer the entire ear using expanded MCs. Fortunately, the co-transplantation results of MCs and BMSCs (25% MCs and 75% BMSCs) demonstrated a strong chondroinductive ability of MCs to promote stable ectopic chondrogenesis of BMSCs in subcutaneous environment. Moreover, cell labeling demonstrated that BMSCs could transform into chondrocyte-like cells under the chondrogenic niche provided by co-cultured MCs. Most importantly, a human-ear-shaped cartilaginous tissue with delicate structure and proper elasticity was successfully constructed by seeding the mixed cells (MCs and BMSCs) into the pre-shaped biodegradable ear-scaffold followed by 12 weeks of subcutaneous implantation in nude mouse. These results may provide a promising strategy to construct stable ectopic cartilage with MCs and stem cells (BMSCs) for autologous external ear reconstruction.

  5. Biological Knee Reconstruction With Concomitant Autologous Chondrocyte Implantation and Meniscal Allograft Transplantation

    Science.gov (United States)

    Ogura, Takahiro; Bryant, Tim; Minas, Tom

    2016-01-01

    Background: Treating articular cartilage defects and meniscal deficiency is challenging. Although some short- to mid-term follow-up studies report good clinical outcomes after concurrent autologous chondrocyte implantation (ACI) and meniscal allograft transplantation (MAT), longer follow-up is needed. Purpose: To evaluate mid- to long-term outcomes after combined ACI with MAT. Study Design: Case series; Level of evidence, 4. Methods: We performed a retrospective review of prospectively gathered data from patients who had undergone ACI with MAT between 1999 and 2013. A single surgeon treated 18 patients for symptomatic full-thickness chondral defects with meniscal deficiency. One patient was lost to follow-up. Thus, 17 patients (18 knees; mean age, 31.7 years) were evaluated over a mean 7.9-year follow-up (range, 2-16 years). A mean 1.8 lesions per knee were treated over a total surface area of 7.6 cm2 (range, 2.3-21 cm2) per knee. Seventeen lateral and 1 medial MATs were performed. Survival was analyzed using the Kaplan-Meier method. The modified Cincinnati Knee Rating Scale, Western Ontario and McMaster Universities Osteoarthritis Index, visual analog scale, and Short Form–36 were used to evaluate clinical outcomes. Patients also self-reported knee function and satisfaction. Standard radiographs were scored for Kellgren-Lawrence (K-L) grade. Results: Both 5- and 10-year survival rates were 75%. Outcomes for 6 knees were considered failures. Of the 6 failures, 4 knees were converted to arthroplasty and the other 2 knees underwent biological revision surgery. Of the 12 successfully operated knees, all clinical measures significantly improved postoperatively. Ten patients representing 11 of the 12 knees rated outcomes for their knees as good or excellent, and 1 rated their outcome as fair. Eight patients representing 9 of the 12 knees were satisfied with the procedure. There was no significant osteoarthritis progression based on K-L grading from preoperatively to a

  6. Intermediate- to Long-Term Results of Combined Anterior Cruciate Ligament Reconstruction and Autologous Chondrocyte Implantation

    Science.gov (United States)

    Pike, Andrew N.; Bryant, Tim; Ogura, Takahiro; Minas, Tom

    2017-01-01

    Background: Cartilage injury associated with anterior cruciate ligament (ACL) ruptures is common; however, relatively few reports exist on concurrent cartilage repair with ACL reconstruction. Autologous chondrocyte implantation (ACI) has been utilized successfully for treatment of moderate to large chondral defects. Hypothesis: ACL insufficiency with relatively large chondral defects may be effectively managed with concurrent ACL reconstruction and ACI. Study Design: Case series; Level of evidence, 4. Methods: Patients undergoing concurrent ACL primary or revision reconstruction with ACI of single or multiple cartilage defects were prospectively evaluated for a minimum 2 years. Pre- and postoperative outcome measures included the modified Cincinnati Rating Scale (MCRS), Western Ontario and McMaster Universities Osteoarthritis Index, visual analog pain scales, and postsurgery satisfaction surveys. ACI graft failure or persistent pain without functional improvement were considered treatment failures. Results: Twenty-six patients were included, with 13 primary and 13 revision ACL reconstructions performed. Mean defect total surface area was 8.4 cm2, with a mean follow-up of 95 months (range, 24-240 months). MCRS improved from 3.62 ± 1.42 to 5.54 ± 2.32, Western Ontario and McMaster Universities Osteoarthritis Index from 45.31 ± 17.27 to 26.54 ± 17.71, and visual analog pain scale from 6.19 ± 1.27 to 3.65 ± 1.77 (all Ps <.001). Eight patients were clinical failures, 69% of patients were improved at final follow-up, and 92% stated they would likely undergo the procedure again. No outcome correlation was found with regard to age, body mass index, sex, defect size/number, follow-up time, or primary versus revision ACL reconstruction. In subanalysis, revision ACL reconstructions had worse preoperative MCRS scores and greater defect surface areas. However, revision MCRS score improvements were greater, resulting in similar final functional scores when compared with

  7. Access to Chondrocyte Culture, with Alginate, In Iran

    Directory of Open Access Journals (Sweden)

    Ebrahim Esfandiary

    2008-01-01

    Full Text Available In this study, chondrocyte culture was established for the first time in Iran,and calcium alginate was used for longer culture of chondrocyte in vitro. Thestudy was programmed in order to be used for future human chondrocytetransplantation. The cartilage specimen obtained from 50 patients whounderwent total knee and hip operations in Isfahan University of MedicalSciences. Cartilage specimens were used for monolayer as well as suspensionculture in alginate beads. Approximately 12±1 millions cells were harvestedfrom the 3rd passage. The cells were round with large euchromatic nucleusand several nucleoli and small vacuoles. The cells derived from passages 1to 4, which were grown up then, in alginate beads, showed higher stainingwith alcian blue. The harvested cells in some patients were immediately andsuccessfully used for autologus transplantation. This later work will be reportedseparately.

  8. Growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro

    Directory of Open Access Journals (Sweden)

    Ling ZHANG

    2014-08-01

    Full Text Available Objective To evaluate the growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro. Methods The chondrocytes isolated from cartilage of 3-week old SD rats were cultured in vitro, then the 2nd passage cells were identified and implanted in porous tantalum scaffolds with a density of 1×106 cells/ml. The morphological characteristics of the chondrocytes cultured in porous tantalum were observed under inverted microscope, scanning electron microscope (SEM and transmission electron microscope (TEM, and the content of glycosaminoglycan (GAG in the chondrocytes was measured by chromatometry. Results The harvested cells were identified as chondrocytes by type Ⅱ collagen immunocytochemical staining, toluidine blue staining and safranin-O staining. Many chondrocytes adhering to the edge of porous tantalum were found by inverted microscope. Observation under SEM showed that chondrocytes spread well on the surface and distributed in the holes of porous tantalum, and they proliferated and secreted some extracellular matrixes. TEM observation showed that the ultrastructure of chondrocytes cultured in porous tantalum was similar to that of normal chondrocytes. Chromatometry determination showed that the chondrocytes in porous tantalum could secrete GAG continuously. Conclusion Porous tantalum is shown to have a satisfactory biocompatibility with chondrocytes in vitro, and may be used as a scaffold for cartilage tissue engineering. DOI: 10.11855/j.issn.0577-7402.2014.06.08

  9. Long-term T2 and Qualitative MRI Morphology After First-Generation Knee Autologous Chondrocyte Implantation

    DEFF Research Database (Denmark)

    Salzmann, Gian M; Erdle, Benjamin; Porichis, Stella;

    2014-01-01

    significantly correlated with the mKOSS (P quantitative imaging data and clinical function. Qualitative imaging data are much better correlated to functional outcomes.......BACKGROUND: There are several reports on long-term clinical outcomes after autologous chondrocyte implantation (ACI) for knee cartilage defect treatment. Few published articles have evaluated defect quality using quantitative magnetic resonance (MR) imaging techniques. PURPOSE: To evaluate clinical...... outcomes and the quality of repair tissue (RT) after first-generation periosteum-covered ACI (ACI-P) using qualitative MR outcomes and T2-weighted relaxation times. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: All patients (n = 86) who underwent knee joint ACI-P (from 1997 through 2001...

  10. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Kon, E. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Di Martino, A., E-mail: a.dimartino@biomec.ior.it [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Filardo, G. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Tetta, C.; Busacca, M. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Iacono, F. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy); Delcogliano, M. [Orthopaedic Departement San Carlo di Nancy Hospital, Rome (Italy); Albisinni, U. [Radiology, Rizzoli Orthopaedic Institute, Bologna (Italy); Marcacci, M. [Biomechanics Laboratory, III Clinic, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136 Bologna (Italy)

    2011-09-15

    Objective: To evaluate the clinical outcome of hyaluronan-based arthroscopic autologous chondrocyte transplantation at a minimum of 5 years of follow-up and to correlate it with the MRI evaluation parameters. Methods: Fifty consecutive patients were included in the study and evaluated clinically using the Cartilage Standard Evaluation Form as proposed by ICRS and the Tegner score. Forty lesions underwent MRI evaluation at a minimum 5-year follow-up. For the description and evaluation of the graft, we employed the MOCART-scoring system. Results: A statistically significant improvement in all clinical scores was observed at 2 and over 5 years. The total MOCART score and the signal intensity (3D-GE-FS) of the repair tissue were statistically correlated to the IKDC subjective evaluation. Larger size of the treated cartilage lesions had a negative influence on the degree of defect repair and filling, the integration to the border zone and the subchondral lamina integrity, whereas more intensive sport activity had a positive influence on the signal intensity of the repair tissue, the repair tissue surface, and the clinical outcome. Conclusion: Our findings confirm the durability of the clinical results obtained with Hyalograft C and the usefulness of MRI as a non-invasive method for the evaluation of the repaired tissue and the outcome after second-generation autologous transplantation over time.

  11. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, D.B.F.; Vonk, L.A.; Rijen, van M.H.P.; Akrum, V.; Langeveld, D.; Boxtel, van A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently, ho

  12. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

    Science.gov (United States)

    Parreno, Justin; Nabavi Niaki, Mortah; Andrejevic, Katarina; Jiang, Amy; Wu, Po-Han; Kandel, Rita A

    2017-02-01

    Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P  0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore, culture of bovine P2 chondrocytes in 3D culture on porous bone substitute resulted in actin depolymerization, which correlated with decreased expression of COL1 and proliferation molecules. In 3D cultures, aggrecan gene expression was increased by cytochalasin D treatment and COL1 was further decreased. These results reveal that actin polymerization

  13. MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomoki [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto University, Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Kumamoto (Japan); Tins, Bernhard; McCall, Iain W.; Ashton, Karen [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Department of Diagnostic Imaging, Oswestry, Shropshire (United Kingdom); Richardson, James B. [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); RJAH Orthopaedic Hospital, Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Takagi, Katsumasa [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto Aging Research Institute, Kumamoto (Japan)

    2006-01-01

    To relate the magnetic resonance imaging (MRI) appearance of autologous chondrocyte implantation (ACI) in the knee in the 1st postoperative year with other knee features on MRI and with clinical outcome. Forty-nine examinations were performed in 49 patients at 1 year after ACI in the knee. Forty-one preoperative magnetic resonance (MR) examinations were also available. The grafts were assessed for smoothness, thickness in comparison with that of adjacent cartilage, signal intensity, integration to underlying bone and adjacent cartilage, and congruity of subchondral bone. Presence of overgrowth and bone marrow appearance beneath the graft were also assessed. Presence of osteophyte formation, further cartilage defects, appearance of the cruciate ligaments and the menisci were also recorded. An overall graft score was constructed, using the graft appearances. This was correlated with the knee features and the Lysholm score, a clinical self-assessment score. The data were analysed by a Kruskal-Wallis H test followed by a Mann-Whitney U test with Bonferroni correction as post-hoc test. Of 49 grafts, 32 (65%) demonstrated complete defect filling 1 year postoperatively. General overgrowth was seen in eight grafts (16%), and partial overgrowth in 13 grafts (26%). Bone marrow change underneath the graft was seen; oedema was seen in 23 grafts (47%), cysts in six grafts (12%) and sclerosis in two grafts (4%). Mean graft score was 8.7 (of maximal 12) (95% CI 8.0-9.5). Knees without osteophyte formation or additional other cartilage defects (other than the graft site) had a significantly higher graft score than knees with multiple osteophytes (P=0.0057) or multiple further cartilage defects (P=0.014). At 1 year follow-up improvement in the clinical scores was not significantly different for any subgroup. (orig.)

  14. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture.

    Science.gov (United States)

    Kaupp, J A; Waldman, S D

    2008-07-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it still has proven a challenge to produce tissue from the limited number of cells that can be extracted from a single individual. Relatively few cell expansion methods exist without the problems of dedifferentiation and/or loss of potency. Previously, it has been shown that mechanical vibrations can enhance chondrocyte proliferation in monolayer culture. Thus, it was hypothesized that chondrocytes grown in high-density culture would respond in a similar fashion while maintaining phenotypic stability. Isolated bovine articular chondrocytes were seeded in high-density culture on Millicell filters and subjected to mechanical vibrations 48 h after seeding. Mechanical vibrations enhanced chondrocyte proliferation at frequencies above 350 Hz, with the peak response occurring at a 1g amplitude for a duration of 30 min. Under these conditions, the gene expression of cartilage-specific and dedifferentiation markers (collagen II, collagen I, and aggrecan) were unchanged by the imposed stimulus. To determine the effect of accumulated extracellular matrix (ECM) on this proliferative response, selected cultures were stimulated under the same conditions after varying lengths of preculture. The amount of accumulated ECM (collagen and proteoglycans) decreased this proliferative response, with the cultures becoming insensitive to the stimulus after 1 week of preculture. Thus, mechanical vibration can serve as an effective means preferentially to stimulate the proliferation of chondrocytes during culture, but its effects appear to be limited to the early stages where ECM accumulation is at a minimum.

  15. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  16. Ultrastructural study of grafted autologous cultured human epithelium.

    Science.gov (United States)

    Aihara, M

    1989-01-01

    An electron microscopical study of grafted autologous cultured human epithelium is presented. Biopsy samples were collected from four patients with full thickness burns at 9 days, 6 weeks and 5-21 months after grafting of the cultured epithelium. By the sixth week after transplantation, grafted cultured epithelial sheets had developed to consist of 10 to 20 layers of cells and the epithelium showed distinct basal, spinous, granular and horny layers, and a patchy basement membrane had formed. Langerhans cells and melanocytes were identifiable. From 5 months onwards flat basal cells became oval, and oval keratohyalin granules in the keratinocytes also assumed a normal irregular shape. Membrane-coating granules in the keratinocytes increased in number. The fine structures of desmosomes also showed a normal mature appearance. Furthermore, complete extension of the basement membrane could be observed. The maturation of cultured human epithelium is complete by 5 months after grafting.

  17. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  18. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  19. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes.

    Science.gov (United States)

    Surazynski, Arkadiusz; Miltyk, Wojciech; Czarnomysy, Robert; Grabowska, Joanna; Palka, Jerzy

    2009-07-01

    Experimental inflammation induced in cultured chondrocytes by inflammatory cytokine IL-1 beta stimulates collagen degradation by metalloproteinases. We propose that nitric oxide (NO) may represent down stream signaling molecule of IL-1-induced collagen degradation in chondrocytes. It was found that IL-1 beta induced the activity of MMP-2 and MMP-9 during the 48 h time course of the experiment, especially after 24h incubation, while DETA/NO, donor of NO, stimulated the process at 12h incubation. The mechanism of IL-1-dependent stimulation of NO production was found at the level of iNOS expression and activation of NF-kappaB. We found that hyaluronic acid (HA) counteracted IL-induced degradation of collagen in chondrocytes. Although, HA by itself had no effect on the metaloproteinases activity, when added to IL-1 beta or DETA/NO treated chondrocytes it contributed to the restoration of the MMPs activity to the control level. The mechanism of this phenomenon involves inhibition of NF-kappaB activation. The data suggest that NO may represent a target molecule for protective effect of hyaluronic acid on interleukin-1-induced stimulation of metaloproteinases activity in cultured human chondrocytes.

  20. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Steinwachs, Matthias;

    2010-01-01

    INTRODUCTION: Since introduction of autologous chondrocyte implantation (ACI), various factors have been described that influence the clinical outcome. The present paper investigates the influence of bone marrow edema at time of treatment on clinical function before and in the early clinical course...... after ACI. METHODS: 67 patients treated with ACI for cartilage defects of the knee joint were included. Presence of subchondral bone marrow edema was graded as absent (1), mild (2), moderate (3) or severe (4) using magnetic resonance (MR) imaging before surgery. All patients were assessed in terms...... of clinical function before surgery and 6 as well as 12 months after ACI using IKDC and Lysholm scores. Presence of subchondral edema was correlated with functional outcome. RESULTS: In 18 patients edema on initial MRI was graded as "absent", while 17 patients had grade 2 edema, 19 patients had grade 3 edema...

  1. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics

    DEFF Research Database (Denmark)

    Pestka, Jan M; Schmal, Hagen; Salzmann, Gian;

    2011-01-01

    between chondrocyte quality after in vitro cultivation and possible correlations with patient-specific factors. DESIGN: Cell quality of 252 consecutive ACI patients was assessed after chondrocyte in vitro expansion by determination of the expression of cartilage relevant surface marker CD44 and cartilage......-specific differentiation markers (aggrecan and collagen type II). All cell quality parameters were correlated with patient-specific parameters, such as age, size and defect location, number of defects and grade of joint degeneration according to the Kellgren-Lawrence classification. RESULTS: Neither the expression of CD44......, aggrecan or collagen type II nor cell density or viability after proliferation seemed to correlate with the grade of joint degeneration, defect aetiology or patient gender. However, chondrocytes harvested from the knee joints of patients at less than 20 years of age showed significantly higher expression...

  2. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    Science.gov (United States)

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  3. Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee.

    Science.gov (United States)

    Niemeyer, Philipp; Uhl, Markus; Salzmann, Gian M; Morscheid, Yannik P; Südkamp, Norbert P; Madry, Henning

    2015-06-01

    Graft hypertrophy represents a characteristic complication following autologous chondrocyte implantation (ACI) for treatment of cartilage defects. Although some epidemiological data suggest that incidence is associated with first-generation ACI using autologous chondrocyte implantation, it has also been reported in other technical modifications of ACI using different biomaterials. Nevertheless, it has not been described in autologous, non-periosteum, implant-free associated ACI. In addition, little is known about histological and T2-relaxation appearance of graft hypertrophy. The present case report provides a rare case of extensive graft hypertrophy following ACI using an autologous spheres technique with clinical progression over time. Detailed clinical, MR tomographic and histological evaluation has been performed, which demonstrates a high quality of repair tissue within the hypertrophic as well as non-hypertrophic transplanted areas of the repair tissue. No expression of collagen type X (a sign of chondrocyte hypertrophy), only slight changes of the subchondral bone and a nearly normal cell-matrix ratio suggest that tissue within the hypertrophic area does not significantly differ from intact and high-quality repair tissue and therefore seems not to cause graft hypertrophy. This is in contrast to the assumption that histological hypertrophy might cause or contribute to an overwhelming growth of the repair tissue within the transplantation site. Data presented in this manuscript might contribute to further explain the etiology of graft hypertrophy following ACI.

  4. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  5. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2016-07-01

    Full Text Available Gelatin hydrogels can mimic the microenvironments of natural tissues and encapsulate cells homogeneously, which makes them attractive for cartilage tissue engineering. Both the mechanical and biochemical properties of hydrogels can affect the phenotype of chondrocytes. However, the influence of each property on chondrocyte phenotype is unclear due to the difficulty in separating the roles of these properties. In this study, we aimed to study the influence of hydrogel stiffness on chondrocyte phenotype while excluding the role of biochemical factors, such as adhesion site density in the hydrogels. By altering the degree of methacryloyl functionalization, gelatin hydrogels with different stiffnesses of 3.8, 17.1, and 29.9 kPa Young’s modulus were prepared from the same concentration of gelatin methacryloyl (GelMA macromers. Bovine articular chondrocytes were encapsulated in the hydrogels and cultured for 14 days. The influence of hydrogel stiffness on the cell behaviors including cell viability, cell morphology, and maintenance of chondrogenic phenotype was evaluated. GelMA hydrogels with high stiffness (29.9 kPa showed the best results on maintaining chondrogenic phenotype. These results will be useful for the design and preparation of scaffolds for cartilage tissue engineering.

  6. Induction of vascular endothelial growth factor by nitric oxide in cultured human articular chondrocytes.

    Science.gov (United States)

    Turpaev, K; Litvinov, D; Dubovaya, V; Panasyuk, A; Ivanov, D; Prassolov, V

    2001-06-01

    We investigated the role of nitric oxide (NO) in the control of vascular endothelial growth factor A (VEGF) gene expression in cultured human articular chondrocytes. Cell treatment with the NO-generating compound nitrosoglutathione (GSNO) caused a significant accumulation of 4.4 kb VEGF mRNA, a major VEGF mRNA isoform expressing in chondrocytes. This is the first demonstration that NO can induce VEGF mRNA expression in chondrocytes. VEGF mRNA level was not affected in cells exposed to dibutyryl cGMP, a non-hydrolyzable analog of cGMP, suggesting that the cGMP system is not involved in NO-dependent transcriptional activation of VEGF gene. The GSNO-stimulated induction of VEGF mRNA was slightly attenuated by MAP protein kinase inhibitors PD98058 and SB203580, but was completely blocked in cells incubated with GSNO in the presence of catalase and superoxide dismutase, enzymes scavenging reactive oxygen species (ROS), or in the presence of thiol-containing antioxidants, N-acetyl cysteine and reduced glutathione. These results suggest that in articular chondrocytes the GSNO-induced VEGF gene transcriptional activation is dependent on endogenous ROS production and oxidative thiol modifications.

  7. Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture

    NARCIS (Netherlands)

    Wu, Ling; Leijten, Jeroen; Blitterswijk, van Clemens A.; Karperien, Marcel

    2013-01-01

    Previously, we showed that mesenchymal stromal cells (MSCs) in co-culture with primary chondrocytes secrete soluble factors that increase chondrocyte proliferation. The objective of this study is to identify these factors. Human primary chondrocytes (hPCs) isolated from late-stage osteoarthritis pat

  8. Serum-free media for articular chondrocytes in vitro expansion

    Institute of Scientific and Technical Information of China (English)

    SHAO Xin-xin; Neil A.Duncan; LIN Lin; FU Xin; ZHANG Ji-ying; YU Chang-long

    2013-01-01

    Background In vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair.Classical culture conditions usually use animal serum as a medium supplement,which raises a number of undesirable questions.In the present study,two kinds of defined,serum-free media were developed to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering.Methods Bovine chondrocytes were expanded in serum-free media supplemented with fibroblast growth factor-2 and platelet-derived growth factor or fibroblast growth factor-2 and insulin-like growth factor.Expansion culture in a conventional 10% fetal bovine serum (FBS) medium served as control.Fibronectin coating was used to help cell adhesion in serum-free medium.Next,in vitro three-dimensional pellet culture was used to evaluate the chondrocyte capacity.Cell pellets were expanded in different media to re-express the differentiated phenotype (re-differentiation) and to form cartilaginous tissue.The pellets were assessed by glycosaminoglycans contents,collagen II,collagen I and collagen X immunohistological staining.Results Chondrocytes cultured in serum-free media showed no proliferation difference than cells grown with 10% FBS medium.In addition,chondrocytes expanded in both serum-free media expressed more differentiated phenotypes at the end of monolayer culture,as indicated by higher gene expression ratios of collagen type Ⅱ to collagen type Ⅰ.Pellets derived from chondrocytes cultured in both serum-free media displayed comparable chondrogenic capacities to pellets from cells expanded in 10% FBS medium.Conclusion These findings provide alternative culture approaches for chondrocytes in vitro expansion,which may benefit the clinical use of autologous chondrocytes implantation.

  9. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  10. Determinants of microstructural load transfer in cartilage tissue from chondrocyte culture

    Science.gov (United States)

    Fedewa, Michelle Marie

    2000-10-01

    The goals of this research were to (i) develop a tissue model system for studying the microstructure of matrix produced by chondrocytes, (ii) characterize the biochemical and mechanical properties of the chondrocyte culture tissue, (iii) evaluate the response of the chondrocyte culture tissue to various stimulants (retinoic acid, interleukin-1beta, and xyloside), (iv) investigate the roles of proteoglycan and collagen in the tearing and tensile properties of a chondrocyte culture tissue, and (v) develop a finite element model of the chondrocyte culture tissue microstructure to study its tensile pre-failure properties. The roles of proteoglycan and collagen were explored by experimentation using a cultured cartilage tissue, and by development of a theoretical finite element model which related the cartilage tissue microstructure to its macroscopic properties. Tear and tensile testing was performed. Failure testing is valuable because it is known that cracks exist and propagate from the cartilage surface in osteoarthritic joints. It was found that collagen was important for providing the material stiffness of the cultured tissue, and that both collagen and proteoglycan were important for providing the tear toughness of the tissue. It was also found that as the collagen density or collagen material stiffness increased, the material stiffness of the cultured tissue increased, and as the proteoglycan or collagen densities increased, the tear toughness of the tissue increased. A three-dimensional finite element microstructural model of cartilage was developed, consisting of linear elastic collagen fibrils embedded in a linear viscoelastic proteoglycan solid matrix. Fluid flow in the cartilage matrix was not included in this model. Viscoelastic time dependent behavior was an appropriate model for the cartilage. The results of this model were comparable to the experimental results, as well as to past continuum models of cartilage. Collagen and proteoglycan material moduli

  11. Treatment of osteonecrosis of the femoral head using autologous cultured osteoblasts: a case report

    Directory of Open Access Journals (Sweden)

    Kim Seok-Jung

    2008-02-01

    Full Text Available Abstract Introduction Osteonecrosis of the femoral head is a progressive disease that leads to femoral head collapse and osteoarthritis. Our goal in treating osteonecrosis is to preserve, not to replace, the femoral head. Case presentation We present the case of a patient with bilateral osteonecrosis of the femoral head treated with autologous cultured osteoblast injection. Conclusion Although our experience is limited to one patient, autologous cultured osteoblast transplantation appears to be effective for treating the osteonecrosis of femoral head.

  12. Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials.

    Science.gov (United States)

    Drobnic, M; Radosavljevic, D; Cör, A; Brittberg, M; Strazar, K

    2010-04-01

    We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The ex vivo simulation of all five techniques was carried out on six juvenile equine stifle joints. The OPEN, SH and SHCU techniques were tested on knees harvested from six adult human cadavers. The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface.

  13. Effect of Carnosine in Experimental Arthritis and on Primary Culture Chondrocytes

    Directory of Open Access Journals (Sweden)

    S. Ponist

    2016-01-01

    Full Text Available Carnosine’s (CARN anti-inflammatory potential in autoimmune diseases has been but scarcely investigated as yet. The aim of this study was to evaluate the therapeutic potential of CARN in rat adjuvant arthritis, in the model of carrageenan induced hind paw edema (CARA, and also in primary culture of chondrocytes under H2O2 injury. The experiments were done on healthy animals, arthritic animals, and arthritic animals with oral administration of CARN in a daily dose of 150 mg/kg b.w. during 28 days as well as animals with CARA treated by a single administration of CARN in the same dose. CARN beneficially affected hind paw volume and changes in body weight on day 14 and reduced hind paw swelling in CARA. Markers of oxidative stress in plasma and brain (malondialdehyde, 4-hydroxynonenal, protein carbonyls, and lag time of lipid peroxidation and also activity of gamma-glutamyltransferase were significantly corrected by CARN. CARN also reduced IL-1alpha in plasma. Suppression of intracellular oxidant levels was also observed in chondrocytes pretreated with CARN. Our results obtained on two animal models showed that CARN has systemic anti-inflammatory activity and protected rat brain and chondrocytes from oxidative stress. This finding suggests that CARN might be beneficial for treatment of arthritic diseases.

  14. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes.

    Science.gov (United States)

    Solursh, M; Jensen, K L; Reiter, R S; Schmid, T M; Linsenmayer, T F

    1986-09-01

    We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences

  15. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds.

    Science.gov (United States)

    Theerathanagorn, Tharinee; Klangjorhor, Jeerawan; Sakulsombat, Morakot; Pothacharoen, Peraphan; Pruksakorn, Dumnoensun; Kongtawelert, Prachya; Janvikul, Wanida

    2015-01-01

    Porous poly(glycerol sebacate) (PGS) scaffolds were prepared using a salt leaching technique and subsequently surface modified by a low oxygen plasma treatment prior to the use in the in vitro culture of human chondrocytes. Condensation polymerization of glycerol and sebacic acid used at various mole ratios, i.e. 1:1, 1:1.25, and 1:1.5, was initially conducted to prepare PGS prepolymers. Porous elastomeric PGS scaffolds were directly fabricated from the mixtures of each prepolymer and 90% (w/w) NaCl particles and then subjected to the plasma treatment to enhance the surface hydrophilicity of the materials. The properties of both untreated and plasma-treated PGS scaffolds were comparatively evaluated, in terms of surface morphology, surface chemical composition, porosity, and storage modulus using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, micro-computed tomography, and dynamic mechanical analysis, respectively. The responses of chondrocytes cultured on individual PGS scaffolds were assessed, in terms of cell proliferation and ECM production. The results revealed that average pore sizes and porosity of the scaffolds were increased with an increasing sebacic acid concentration used. The storage moduli of the scaffolds were raised after the plasma treatment, possibly due to the further crosslinking of PGS upon treatment. Moreover, the scaffold prepared with a higher sebacic acid content demonstrated a greater capability of promoting cell infiltration, proliferation, and ECM production, especially when it was plasma-treated; the greatest HA, sGAG, uronic acid, and collagen contents were detected in matrix of this scaffold. The H & E and safranin O staining results also strongly supported this finding. The storage modulus of the scaffold was intensified after incubation with the chondrocytes for 21 days, indicating the accretion and retention of matrix ECM on the cell-cultured scaffold.

  16. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mandl, Irena [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Haller, Joerg [Department of Radiology, Hanusch Hospital, Heinrich-Collin-Strasse, A-1140 Vienna (Austria); Trattnig, Siegfried [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    In an observational study, the validity and reliability of magnetic resonance imaging (MRI) for the assessment of autologous chondrocyte transplantation (ACT) in the knee joint was determined. Two years after implantation, high-resolution MRI was used to analyze the repair tissue with nine pertinent variables. A complete filling of the defect was found in 61.5%, and a complete integration of the border zone to the adjacent cartilage in 76.9%. An intact subchondral lamina was present in 84.6% and an intact subchondral bone was present in 61.5%. Isointense signal intensities of the repair tissue compared to the adjacent native cartilage were seen in 92.3%. To evaluate interobserver variability, a reliability analysis with the determination of the intraclass correlation coefficient (ICC) was calculated. An 'almost perfect' agreement, with an ICC value >0.81, was calculated in 8 of 9 variables. The clinical outcome after 2 years showed the visual analog score (VAS) at 2.62 (S.D. {+-}0.65). The values for the knee injury and osteoarthritis outcome score (KOOS) subgroups were 68.29 ({+-}23.90) for pain, 62.09 ({+-}14.62) for symptoms, 75.45 ({+-}21.91) for ADL function, 52.69 ({+-}28.77) for sport and 70.19 ({+-}22.41) for knee-related quality of life. The clinical scores were correlated with the MRI variables. A statistically significant correlation was found for the variables 'filling of the defect,' 'structure of the repair tissue,' 'changes in the subchondral bone,' and 'signal intensities of the repair issue'. High resolution MRI and well-defined MRI variables are a reliable, reproducible and accurate tool for assessing cartilage repair tissue.

  17. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Liping; Duan, Zhiguang [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Mi, Yu; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Chang, Le [School of Chemical Engineering, Northwest University, Xi' an, Shaanxi 710069 (China)

    2013-03-01

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive Registered-Sign Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 {+-} 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: Black-Right-Pointing-Pointer Human-like collagen was first used to prepare cartilage tissue engineering scaffold. Black-Right-Pointing-Pointer Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. Black-Right-Pointing-Pointer We chose market product as a control.

  18. Suitability of porcine chondrocyte micromass culture to model osteoarthritis in vitro.

    Science.gov (United States)

    Schlichting, Niels; Dehne, Tilo; Mans, Karsten; Endres, Michaela; Stuhlmüller, Bruno; Sittinger, Michael; Kaps, Christian; Ringe, Jochen

    2014-07-07

    In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potential of porcine chondrocyte micromass cultures to mimic human articular cartilage and essential aspects of osteoarthritis (OA) in vitro. Primary chondrocytes were enzymatically isolated from porcine femoral condyles and were maintained in 96-multiwell format to establish micromass cultures in a high-throughput scale. Recombinant porcine tumor necrosis factor alpha (TNF-α) was used to induce OA-like changes documented on histological (Safranin O, collagen type II staining), biochemical (hydroxyproline assay, dimethylmethylene blue method), and gene expression level (Affymetrix porcine microarray, real time PCR) and were compared with published data from human articular cartilage and human micromass cultures. After 14 days in micromass culture, porcine primary chondrocytes produced ECM rich in proteoglycans and collagens. On gene expression level, significant correlations of detected genes with porcine cartilage (r = 0.90), human cartilage (r = 0.71), and human micromass culture (r = 0.75) were observed including 34 cartilage markers such as COL2A1, COMP, and aggrecan. TNF-α stimulation led to significant proteoglycan (-75%) and collagen depletion (-50%). Comparative expression pattern analysis revealed the involvement of catabolic enzymes (MMP1, -2, -13, ADAM10), chemokines (IL8, CCL2, CXCL2, CXCL12, CCXL14), and genes associated with cell death (TNFSF10, PMAIPI, AHR) and skeletal development (GPNMB, FRZB) including transcription factors (WIF1, DLX5, TWIST1) and growth factors (IGFBP1, -3, TGFB1) consistent with published data from human OA cartilage. Expression of genes related to cartilage ECM formation (COL2A1, COL9A1, COMP, aggrecan) as well as hypertrophic bone

  19. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  20. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2013-11-01

    Full Text Available Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2 and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

  1. The Study of the Frequency Effect of Dynamic Compressive Loading on Primary Articular Chondrocyte Functions Using a Microcell Culture System

    Directory of Open Access Journals (Sweden)

    Wan-Ying Lin

    2014-01-01

    Full Text Available Compressive stimulation can modulate articular chondrocyte functions. Nevertheless, the relevant studies are not comprehensive. This is primarily due to the lack of cell culture apparatuses capable of conducting the experiments in a high throughput, precise, and cost-effective manner. To address the issue, we demonstrated the use of a perfusion microcell culture system to investigate the stimulating frequency (0.5, 1.0, and 2.0 Hz effect of compressive loading (20% and 40% strain on the functions of articular chondrocytes. The system mainly integrates the functions of continuous culture medium perfusion and the generation of pneumatically-driven compressive stimulation in a high-throughput micro cell culture system. Results showed that the compressive stimulations explored did not have a significant impact on chondrocyte viability and proliferation. However, the metabolic activity of chondrocytes was significantly affected by the stimulating frequency at the higher compressive strain of 40% (2 Hz, 40% strain. Under the two compressive strains studied, the glycosaminoglycans (GAGs synthesis was upregulated when the stimulating frequency was set at 1 Hz and 2 Hz. However, the stimulating frequencies explored had no influence on the collagen production. The results of this study provide useful fundamental insights that will be helpful for cartilage tissue engineering and cartilage rehabilitation.

  2. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture.

    Science.gov (United States)

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X Lucas

    2015-04-13

    Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

  3. A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use.

    Science.gov (United States)

    Jubin, K; Martin, Y; Lawrence-Watt, D J; Sharpe, J R

    2011-12-01

    Autologous keratinocytes can be used to augment cutaneous repair, such as in the treatment of severe burns and recalcitrant ulcers. Such cells can be delivered to the wound bed either as a confluent sheet of cells or in single-cell suspension. The standard method for expanding primary human keratinocytes in culture uses lethally irradiated mouse 3T3 fibroblasts as feeder cells to support keratinocyte attachment and growth. In an effort to eliminate xenobiotic cells from clinical culture protocols where keratinocytes are applied to patients, we investigated whether human autologous primary fibroblasts could be used to expand keratinocytes in culture. At a defined ratio of a 6:1 excess of keratinocytes to fibroblasts, this co-culture method displayed a population doubling rate comparable to culture with lethally irradiated 3T3 cells. Furthermore, morphological and molecular analysis showed that human keratinocytes expanded in co-culture with autologous human fibroblasts were positive for proliferation markers and negative for differentiation markers. Keratinocytes expanded by this method thus retain their proliferative phenotype, an important feature in enhancing rapid wound closure. We suggest that this novel co-culture method is therefore suitable for clinical use as it dispenses with the need for lethally irradiated 3T3 cells in the rapid expansion of autologous human keratinocytes.

  4. In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction.

    Science.gov (United States)

    Miot, Sylvie; Gianni-Barrera, Roberto; Pelttari, Karoliina; Acharya, Chitrangada; Mainil-Varlet, Pierre; Juelke, Henriette; Jaquiery, Claude; Candrian, Christian; Barbero, Andrea; Martin, Ivan

    2010-02-01

    We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.

  5. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin.

    Science.gov (United States)

    Musumeci, Giuseppe; Lo Furno, Debora; Loreto, Carla; Giuffrida, Rosario; Caggia, Silvia; Leonardi, Rosalia; Cardile, Venera

    2011-11-01

    The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.

  6. Effects of sesamin on the biosynthesis of chondroitin sulfate proteoglycans in human articular chondrocytes in primary culture.

    Science.gov (United States)

    Pothacharoen, Peraphan; Najarus, Sumet; Settakorn, Jongkolnee; Mizumoto, Shuji; Sugahara, Kazuyuki; Kongtawelert, Prachya

    2014-04-01

    Osteoarthritis (OA) is a degenerative joint disease that progressively causes a loss of joint functions and the impaired quality of life. The most significant event in OA is a high degree of degradation of articular cartilage accompanied by the loss of chondroitin sulfate-proteoglycans (CS-PGs). Recently, the chondroprotective effects of sesamin, the naturally occurring substance found in sesame seeds, have been proved in a rat model of papain-induced osteoarthritis. We hypothesized that sesamin may be associated with possible promotion of the biosynthesis of CS-PGs in human articular chondrocytes. The aim of the study was to investigate the effects of sesamin on the major CS-PG biosynthesis in primary human chondrocyte. The effects of sesamin on the gene expression of the PG core and the CS biosynthetic enzymes as well as on the secretion of glycosaminoglycans (GAGs) in monolayer and pellet culture systems of articular chondrocytes. Sesamin significantly increased the GAGs content both in culture medium and pellet matrix. Real-time-quantitative PCR showed that sesamin promoted the expression of the genes encoding the core protein (ACAN) of the major CS-PG aggrecan and the biosynthetic enzymes (XYLT1, XYLT2, CHSY1 and CHPF) required for the synthesis of CS-GAG side chains. Safranin-O staining of sesamin treated chondrocyte pellet section confirmed the high degree of GAG accumulation. These results were correlated with an increased level of secreted GAGs in the media of cultured articular chondrocytes in both culture systems. Thus, sesamin would provide a potential therapeutic strategy for treating OA patients.

  7. THE EFFECT ON PROTEOGLYCAN METABOLISM OF DEOXYNIVALENOL AND SELENIUM IN THE CULTURED HUMAN FETAL CHONDROCYTES IN VITRO

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate the effect of deoxynivalenol (DON) and selenium (Se) on the morphology of chondrocytes and the metabolism of cartilage matrix, and the expression of aggrecanase-1, 2 mRNA in monolayer cultured chondrocytes in vitro. Methods To plant human fetal chondrocytes on the BMG, the expression of Aggrecanase-1, 2 mRNA were analyzed by RT-PCR, the immunohistochemistry of NITEGE epitope was quantitativly analyzed by the image collection and analysis system. Results With the increase of the concentration of DON, the damage of cultured chondrocytes was more and more severe; the expression of NITEGE epitope showed an increasing trend and the fluorescent bands of aggrecanase-1, 2 mRNA were more and more obvious. After adding Se, the damage was relieved, and there was a decreasing trend of NITEGE epitope expressed in matrix. Conclusion DON can enhance transcription of aggrecanase gene and increase the expression of NITEGE epitope which eventually lead to the metabolic disorder of cartilage proteoglycan. It suggested that Se can partially alleviate the damage of DON on cartilage, but can not completely prevent the occurrence of these changes.

  8. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  9. Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture

    NARCIS (Netherlands)

    Malda, J.; Brink, van den P.; Meeuwse, P.; Grojec, M.; Martens, D.E.; Tramper, J.; Riesle, J.; Blitterswijk, van C.A.

    2004-01-01

    Tissue-engineering approaches for cartilage repair hold promise for the treatment of cartilage defects. Various methods to prevent or reduce dedifferentiation during chondrocyte expansion are currently under investigation. In the present study we evaluated the effect of oxygen on chondrocyte prolife

  10. Precipitant induced porosity augmentation of polystyrene preserves the chondrogenicity of human chondrocytes.

    Science.gov (United States)

    Joergensen, Natasja L; Foldager, Casper B; Le, Dang Q S; Lind, Martin; Lysdahl, Helle

    2016-12-01

    Cells constantly sense and receive chemical and physical signals from neighboring cells, interstitial fluid, and extracellular matrix, which they integrate and translate into intracellular responses. Thus, the nature of the surface on which cells are cultured in vitro plays an important role for cell adhesion, proliferation, and differentiation. Autologs chondrocyte implantation is considered the treatment of choice for larger cartilage defects in the knee. To obtain a sufficient number of chondrocytes for implantation multiple passaging is often needed, which raises concerns about the changes in the chondrogenic phenotype. In the present study, we analyzed the effect at cellular and molecular level of precipitant induced porosity augmentation (PIPA) of polystyrene surfaces on proliferation and differentiation of human chondrocytes. Human chondrocytes were isolated from healthy patients undergoing anterior cruciate ligament reconstruction and cultured on PIPA modified polystyrene surfaces. Microscopical analysis revealed topographically arranged porosity with micron pores and nanometer pits. Chondrocytes cultured on PIPA surfaces revealed no difference in cell viability and proliferation, but gene- and protein expressions of collagen type II were pronounced in the first passage of chondrocytes when compared to chondrocytes cultured on control surfaces. Additionally, an analysis of 40 kinases revealed that chondrocytes expanded on PIPA caused upregulated PI3K/mTOR pathway activation and inhibition of mTORC1 resulted in reduced sGAG synthesis. These findings indicate that PIPA modified polystyrene preserved the chondrogenicity of expanded human chondrocytes at gene and protein levels, which clinically may be attractive for the next generation of cell-culture surfaces for ex vivo cell growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3073-3081, 2016.

  11. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  12. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    Science.gov (United States)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  13. In vitro exposure of human chondrocytes to pulsed electromagnetic fields

    Directory of Open Access Journals (Sweden)

    V Nicolin

    2009-08-01

    Full Text Available The effect of pulsed electromagnetic fields (PEMFs on the proliferation and survival of matrix-induced autologous chondrocyte implantation (MACI®-derived cells was studied to ascertain the healing potential of PEMFs. MACI-derived cells were taken from cartilage biopsies 6 months after surgery and cultured. No dedifferentiation towards the fibroblastic phenotype occurred, indicating the success of the surgical implantation. The MACI-derived cultured chondrocytes were exposed to 12 h/day (short term or 4 h/day (long term PEMFs exposure (magnetic field intensity, 2 mT; frequency, 75 Hz and proliferation rate determined by flow cytometric analysis. The PEMFs exposure elicited a significant increase of cell number in the SG2M cell cycle phase. Moreover, cells isolated from MACI® scaffolds showed the presence of collagen type II, a typical marker of chondrocyte functionality. The results show that MACI® membranes represent an optimal bioengineering device to support chondrocyte growth and proliferation in surgical implants. The surgical implant of MACI® combined with physiotherapy is suggested as a promising approach for a faster and safer treatment of cartilage traumatic lesions.

  14. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model.

    Science.gov (United States)

    Pomerantseva, Irina; Bichara, David A; Tseng, Alan; Cronce, Michael J; Cervantes, Thomas M; Kimura, Anya M; Neville, Craig M; Roscioli, Nick; Vacanti, Joseph P; Randolph, Mark A; Sundback, Cathryn A

    2016-02-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  15. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    Science.gov (United States)

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  16. Detection of auto antibodies and transplantation of cultured autologous melanocytes for the treatment of vitiligo

    Science.gov (United States)

    Zhu, Mei-Cai; Ma, Hong-Yu; Zhan, Zhi; Liu, Cheng-Gang; Luo, Wei; Zhao, Guang

    2017-01-01

    The aim of the present study was to establish an immunofluorescence method of antibody detection to identify melanocytes in the serum of vitiligo patients. Furthermore, we aimed to establish a method for the culture and proliferation of autologous pure melanocytes and to observe the effect of their transplantation for the treatment of vitiligo. Suspension of epidermal cells with melanocytes was performed using trypsin digestion of normal epiderm from eyelid operation and melanocytes were selectively cultured and proliferated in serum-free M2 medium. FITC-labeled rabbit anti-human antibody was used to detect the relative fluorescence intensity of the melanocytes. After identification with immunological and biological examinations, the melanocytes were transplanted to depigmented areas of vitiligo. Repigmentation was observed continuously. The results indicated that melanocytes could be selectively proliferated in the medium. Subsequently, pure melanocytes without contamination of fibroblast and keratinocyte were harvested. A total of 34 patients suffering vitiligo for between 3 months and 20 years with depigmented area (between 4 cm2 and 70% of body surface) were divided into 19 cases of developing stage and 15 cases of stable stage, according to the change of depigmentation. A total of 15 developing cases were positive for the antibody against melanocytes, with the positive rate of 79%. The titers of serum was >1:50 in 10 patients at the developing stage, and 5 developing patients were 1:10. Among the 15 stable cases, four were positive, with a positive rate of 27%. Fluorescence of antibody was localized in the cytoplasm of the melanocytes. Autologous melanocytes of vitiligo patients could be selectively proliferated in the medium. Next, pure melanocytes without contamination with fibroblasts and keratinocytes were harvested. A total of 16 vitiligo patients with 28 depigmented areas (2–200 cm2) were treated with transplantation of melanocytes. Repigmentation of

  17. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine.

    Science.gov (United States)

    Nazempour, A; Van Wie, B J

    2016-05-01

    Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.

  18. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee

    Energy Technology Data Exchange (ETDEWEB)

    Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Iwasa, Junji [Shimane University School of Medicine, Department of Orthopaedic Surgery, Izumo-shi, Shimane-ken (Japan); Fukuba, Eiji; Kitagaki, Hajime [Shimane University School of Medicine, Department of Radiology, Izumo-shi, Shimane-ken (Japan); Ochi, Mitsuo [Hiroshima University, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Minami-ku, Hiroshima (Japan)

    2016-10-15

    To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1{sub implant} and T2{sub implant} values were compared with those of the control cartilage region (T1{sub control} and T2{sub control}). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1{sub implant} (386.64 ± 101.78 ms) and T1{sub control} (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1{sub implant} and clinical outcomes, but not between T2{sub implant} and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1{sub implant} value, but not the T2 value, might be a predictor of clinical outcome after ACI. (orig.)

  19. Resveratrol protects bone marrow mesenchymal stem cell derived chondrocytes cultured on chitosan-gelatin scaffolds from the inhibitory effect of interleukin-1β

    Institute of Scientific and Technical Information of China (English)

    Ming LEI; Shi-qing LIU; Yu-lan LIU

    2008-01-01

    Aim: To investigate the effects of resveratrol on interleukin-lbeta (IL-1β) induced catabolism in bone marrow mesenchymal stem cell (MSC) derived chon-drocytes cultured on chitosan-gelatin scaffolds (CGS). Methods: The chondro-genesis of alginate-encapsulated MSCs was evaluated by toluidine blue staining, RT-PCR, and immunostaing. MSC-derived chondrocyte morphology cultured on CGS was evaluated by a scanning electron microscope (SEM) and a laser confocal microscope (LCM). When these cells on CGS were pre-stimulated with IL-1β or co-treated with IL-1β and resveratrol in the absence and presence of the specific β1-integrin blocking antibody, collagen type Ⅱ, aggrecan, matrix metalloproteinase-13 (MMP-13) expression, and the translocation of nuclear factor kappaB (NF-κB) were analyzed by Western blot analysis. Results: Transforming growth factor beta 3 (TGF-β3) combined with insulin-like growth factor Ⅰ (IGF-Ⅰ) induced the cartilage-specific collagen type Ⅱ, aggrecan expression and extracellular matrix (ECM) accumulation at the end of a 3-week culture. CGS supported those differentiated chondrocytes' attachment, proliferation, migration, and ECM formation. When those cells cultured on CGS were stimulated with IL-1β alone, collagen type Ⅱ and aggrecan expression was inhibited. However, MMP-13 expression increased. Resveratrol reversed the catabolic effects by reducing the translocation of NF-κB. A specific β1-integrin blocking antibody abrogated the effects of resveratrol on IL-1β stimulated MSC-derived chondrocytes. Conclusion: These results indicated that resveratrol acta as a NF-κB inhibitor to protect MSC-derived chondrocytes on the CGS from the IL-1β catabolism and these effects are mediated by β1-integrin.

  20. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  1. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  2. Implants composed of carbon fiber mesh and bone-marrow-derived, chondrocyte-enriched cultures for joint surface reconstruction.

    Science.gov (United States)

    Robinson, D; Efrat, M; Mendes, D G; Halperin, N; Nevo, Z

    1993-01-01

    The current study integrates two distinct approaches in joint resurfacing into a combined type of implant, composed of carbon fiber mesh impregnated and coated with a hyaluronic-acid-based delivery substance containing cultured cells. Rabbit autogeneic chondrocyte-enriched cultures obtained from mesenchymal stem cells (chondroprogenitor cells) derived from adult rabbit bone marrow were grown in vitro under conditions favoring chondrogenesis. The improvement in quality of repair when a combined implant containing both cells and a carbon scaffold was used, in comparison to the utilization of carbon fiber mesh alone, was clearly demonstrated using clinical, histological, biochemical, and biomechanical examinations. Evaluations of the joints were performed at 6 weeks and 6 months after implantation. The repair tissue in the cell-implanted joints consisted of a typical hyaline cartilage, which was more cellular and thicker than the repair tissue in the hyaluronic-acid-impregnated carbon-fiber-implanted control joints. The hyaline cartilage in the experimental group formed a superficial layer above the carbon fibers, flush with the joint surface. In the controls, in which carbon fiber and the delivery substance alone were implanted, a histologically and biochemically fibrous tissue that was inferior biomechanically to the new cartilage was formed by the cells containing implants.

  3. Effect of Transforming Growth Factor Beta (TGF Beta) and Vitamin D3 Metabolites on Protein Kinase C Mediated Signal Transduction in Rat Costochondral Chondrocyte Cultures.

    Science.gov (United States)

    1995-05-01

    that catalyze the transfer of phosphate groups from one compound to another ( Lehninger , 1982). Protein kinase C (PKC) has been intensively studied...metabolism ( Lehninger , 1982). In vitamin D deficient chicks the growth zone of the cartilage fails to mineralize. When given vitamin D (Atkin et al., 1985...chondrocyte cultures. Calcif. Tissue Int., 47:230-236. Lehninger , A.L. (1982) In: Principles of Biochemistry. New York: Worth Publishers, pp.377- 380

  4. Characterization of Human Vaginal Mucosa Cells for Autologous In Vitro Cultured Vaginal Tissue Transplantation in Patients with MRKH Syndrome

    Directory of Open Access Journals (Sweden)

    Cristina Nodale

    2014-01-01

    Full Text Available Mayer-Rokitansky-Küster-Hauser (MRKH is a rare syndrome characterized by congenital aplasia of the uterus and vagina. The most common procedure used for surgical reconstruction of the neovagina is the McIndoe vaginoplasty, which consists in creation of a vaginal canal covered with a full-thickness skin graft. Here we characterized the autologous in vitro cultured vaginal tissue proposed as alternative material in our developed modified McIndoe vaginoplasty in order to underlie its importance in autologous total vaginal replacement. To this aim human vaginal mucosa cells (HVMs were isolated from vaginal mucosa of patients affected by MRKH syndrome and characterized with respect to growth kinetics, morphology, PAS staining, and expression of specific epithelial markers by immunofluorescence, Western blot, and qRT-PCR analyses. The presence of specific epithelial markers along with the morphology and the presence of mucified cells demonstrated the epithelial nature of HMVs, important for an efficient epithelialization of the neovagina walls and for creating a functional vaginal cavity. Moreover, these cells presented characteristics of effective proliferation as demonstrated by growth kinetics assay. Therefore, the autologous in vitro cultured vaginal tissue might represent a highly promising and valid material for McIndoe vaginoplasty.

  5. Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures.

    Science.gov (United States)

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, S

    2007-05-04

    Conventional medications in articular disease are often effective for symptom relief, but they can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective as non-steroidal anti-inflammatory drugs at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favourable influence on the course of the disease. In this study, we assay the anti-inflammatory/chondroprotective effect of some lyophilised extracts obtained from Opuntia ficus indica (L.) cladodes and of hyaluronic acid (HA) on the production of key molecules released during chronic inflammatory events such as nitric oxide (NO), glycosaminoglycans (GAGs), prostaglandins (PGE(2)) and reactive oxygen species (ROS) in human chondrocyte culture, stimulated with proinflammatory cytokine interleukin-1 beta (IL-1 beta). Further the antioxidant effect of these extracts was evaluated in vitro employing the bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test). All the extracts tested in this study showed an interesting profile in active compounds. Particularly some of these extracts were characterized by polyphenolic and polysaccharidic species. In vitro results pointed out that the extracts of Opuntia ficus indica cladodes were able to contrast the harmful effects of IL-1 beta. Our data showed the protective effect of the extracts of Opuntia ficus indica cladodes in cartilage alteration, which appears greater than that elicited by hyaluronic acid (HA) commonly employed as visco-supplementation in the treatment of joint diseases.

  6. Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges

    Science.gov (United States)

    Talò, Giuseppe; Lovati, Arianna B.; Pasdeloup, Marielle; Riboldi, Stefania A.; Moretti, Matteo; Mallein-Gerin, Frédéric

    2016-01-01

    Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage. PMID:27584727

  7. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation.

    Science.gov (United States)

    Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming

    2016-10-01

    Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Cartilage storage at 4 °C with regular culture medium replacement benefits chondrocyte viability of osteochondral grafts in vitro.

    Science.gov (United States)

    Qi, Jianhong; Hu, Zunjie; Song, Hongqiang; Chen, Bin; Xie, Di; Zhou, Lu; Zhang, Yanming

    2016-09-01

    Maintenance of articular cartilage allografts in culture media is a common method of tissue storage; however, the technical parameters of graft storage remain controversial. In this study, we examined the optimal temperature and culture medium exchange rate for the storage of osteochondral allografts in vitro. Cylindrical osteochondral grafts (n = 120), harvested from the talar joint surface of ten Boer goats, were randomly classified into four groups and stored under the following conditions: Group A1 was maintained at 4 °C in culture medium that was refreshed every 2 days; Group A2 was maintained at 4 °C in the same culture medium, without refreshing; Group B1, was maintained at 37 °C in culture medium that was refreshed every 2 days; Group B2, was maintained at 37 °C in the same culture medium, without refreshing. Chondrocyte viability in the grafts was determined by ethidium bromide/fluorescein diacetate staining on days 7, 21, and 35. Proteoglycan content was measured by Safranin-O staining. Group A1 exhibited the highest chondrocyte survival rates of 90.88 %, 88.31 % and 78.69 % on days 7, 21, and 35, respectively. Safranin O staining revealed no significant differences between groups on days 21 and 35. These results suggest that storage of osteochondral grafts at 4 °C with regular culture medium replacement should be highly suitable for clinical application.

  9. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes.

    Science.gov (United States)

    Heywood, Hannah K; Lee, David A

    2010-01-01

    Autologous chondrocyte implantation requires a phase of in vitro cell expansion, achieved by monolayer culture under atmospheric oxygen levels. Chondrocytes reside under low oxygen conditions in situ and exhibit a glycolytic metabolism. However, oxidative phosphorylation rises progressively during culture, with concomitant reactive oxygen species production. We determine if the high oxygen environment in vitro provides the transformation stimulus. Articular chondrocytes were cultured in monolayer for up to 14 days under 2%, 5%, or 20% oxygen. Expansion under 2% and 5% oxygen reduced the rate at which the cells developed an oxidative phenotype compared to 20% oxygen. However, at 40 +/- 4 fmol cell(-1) h(-1) the oxygen consumption by chondrocytes expanded under 2% oxygen for 14 days was still 14 times the value observed for freshly isolated cells. Seventy-five to 78% of the increased oxygen consumption was accounted for by oxidative phosphorylation (oligomycin sensitive). Expansion under low oxygen also reduced cellular proliferation and 8-hydroxyguanosine release, a marker of oxidative DNA damage. However, these parameters remained elevated compared to freshly isolated cells. Thus, expansion under physiological oxygen levels reduces, but does not abolish, the induction of an oxidative energy metabolism. We conclude that simply transferring chondrocytes to low oxygen is not sufficient to either maintain or re-establish a normal energy metabolism. Furthermore, a hydrophobic polystyrene culture surface which promotes rounded cell morphology had no effect on the development of an oxidative metabolism. Although the shift towards an oxidative energy metabolism is often accompanied by morphological changes, this study does not support the hypothesis that it is driven by them.

  10. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  11. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    Science.gov (United States)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  12. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Directory of Open Access Journals (Sweden)

    Huh Jeong-Eun

    2012-12-01

    Full Text Available Abstract Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs, inflammatory mediators, and mitogen-activated protein kinases (MAPKs pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK, and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only

  13. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Science.gov (United States)

    2012-01-01

    Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic

  14. Effect of Stratified Culture Compared to Confluent Culture in Monolayer on Proliferation and Differentiation of Human Articular Chondrocytes

    NARCIS (Netherlands)

    Hendriks, Jeanine; Riesle, Jens; Blitterswijk, van Clemens A.

    2006-01-01

    With conventional tissue culture of cells, it is generally assumed that when the available 2D substrate is fully occupied, growth ceases or is greatly reduced.However, in naturewound repairmostly involves proliferation of cells that are attracted to the defect site in a 3D environment.Hence, prolife

  15. Low oxygen tension stimulates redifferentiation of dedifferentiated adult human nasal chondrocytes

    NARCIS (Netherlands)

    Malda, J.; Blitterswijk, van C.A.; Geffen, van M.; Martens, D.E.; Tramper, J.; Riesle, J.

    2004-01-01

    Objective: To determine the effect of dissolved oxygen tension (DO) on the redifferentiation of dedifferentiated adult human nasal septum chondrocytes cultured as pellets. Design: After isolation, human nasal chondrocytes were expanded in monolayer culture, which resulted in their dedifferentiation.

  16. Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes

    NARCIS (Netherlands)

    Malda, J.; Blitterswijk, van C.A.; Geffen, van M.; Martens, D.E.; Tramper, J.; Riesle, J.

    2004-01-01

    Objective: To determine the effect of dissolved oxygen tension (DO) on the redifferentiation of dedifferentiated adult human nasal septum chondrocytes cultured as pellets. - Design: After isolation, human nasal chondrocytes were expanded in monolayer culture, which resulted in their dedifferentiati

  17. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  18. Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions.

    Science.gov (United States)

    Hoshiba, Takashi; Lu, Hongxu; Kawazoe, Naoki; Yamada, Tomoe; Chen, Guoping

    2013-01-01

    Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0-ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein-coated substrata and P0-ECM. Low chondrocyte attachment was observed on aggrecan-coated substratum and P0-ECM. Cell proliferation on aggrecan- and type II collagen/aggrecan-coated substrata and P0-ECM was lower than that on the other ECM protein (type I collagen and type II collagen)-coated substrata. When chondrocytes were subcultured on aggrecan-coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0-ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0-ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM.

  19. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  20. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro

    Directory of Open Access Journals (Sweden)

    S Giovannini

    2010-10-01

    Full Text Available Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.

  1. The use of a biostatic fascia lata thigh allograft as a scaffold for autologous human culture of fibroblasts--An in vitro study.

    Science.gov (United States)

    Żurek, Jarek; Dominiak, Marzena; Botzenhart, Ute; Bednarz, Wojciech

    2015-05-01

    The method for covering gingival recession defects and augmenting keratinized gingiva involves the use of autogenuous connective tissue grafts obtained from palatal mucosa in combination with various techniques of flap repositioning or tunnel techniques. In the case of multiple gingival recession defects the amount of connective tissue available for grafting is insufficient. Therefore, the use of substitutes is necessary. The most widely used material in recent years has been the acellular dermal matrix allograft. The disadvantage of its application lies in the absence of cells and blood vessels, which increases incorporation time. Primary cultured human autologic fibroblasts are commonly used to optimize the healing process. The aim of this study was to examine the in vitro biocompatibility of human fascia lata allograft as a new scaffold for primary cultured human autologic fibroblasts. For that, a fibroblast culture obtained from a fragment of gingival tissue taken from the hard palate mucosa of a subject was used. After 14 days the colony cells were inoculated on a fragment of human fascia lata allograft. After a further 7 days of incubation the material was frozen, cut and prepared for histochemical examination. After two weeks of incubation, and 7 days after inoculation on a fragment of fascia lata allograft numerous accumulations of the cultured fibroblast were found that had a typical structure and produced collagen fibres. A human fascia lata allograft can be used as a scaffold for primary cultured human autologic fibroblasts. Further studies should confirm the clinical efficacy of this solution.

  2. Cultura de condrócitos em arcabouço tridimensional: hidrogel de alginato Chondrocyte cultures in tridimensional scaffold: alginate hydrogel

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Camargo Bittencourt

    2009-01-01

    Full Text Available OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA e caracterizar a produção de matriz extracelular (ECM. MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v, em seguida fez-se o processo de gelatinização em CaCl2 (102 mM, permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE. RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.OBJECTIVES: The aim of this study was to culture chondrocytes from knee joint cartilage of rabbits encapsulated in alginate hydrogel (HA and to characterize the production of extracelular matrix (ECM. METHODS: Joint cartilage was obtained from rabbits' knees, three to six months old, fragmented into 1-mm pieces and submitted to enzymatic digestion. A concentration of 1x106 cells/mL were re-suspended into a 1.5% (w/v sodium alginate solution, followed by gel formation process with CaCl2 (102 mM, allowing HA to build for culturing it into a DMEM-F12 medium for four weeks. The distribution of cells and ECM were assessed from histological slices stained toluidine

  3. Chondrocyte physiopathology and drug efficacy.

    Science.gov (United States)

    Serni, U; Mannoni, A

    1991-01-01

    After a brief exposition on the physiopathology of cartilage, and characteristic features of chondrocytes and proteoglycans (PGs) in osteoarthritis (OA), it is underlined how different molecules of GAGs and aggregated PGs added to the culture media can prevent damage and reduction of GAGs and fibril production in chondrocytes cultured with NSAIDs and corticosteroids. In animal models of OA, the local or general administration of GAGPS reduces the proteinase activity, the level of uronic acid in synovial fluid and the number of inflammatory cells in synovia. In the Pond-Nuki dog, GAGPS improves the cartilage surface. These favourable events can also occur in human OA, where it is, moreover, difficult to monitor the patients. For this purpose, patients must be selected in the first two stages of primary OA, and followed using NMR, the only device able to scan cartilage and subchondral bone, to determine their consistency and thickness, and to provide information on water content.

  4. Treatment of Hypertrophic Scar in Human with Autologous Transplantation of Cultured Keratinocytes and Fibroblasts along with Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Ehsan Taghiabadi

    2015-04-01

    Full Text Available Objective: Hypertrophic scar involves excessive amounts of collagen in dermal layer and may be painful. Nowadays, we can’t be sure about effectiveness of procedure for hypertrophic scar management. The application of stem cells with natural scaffold has been the best option for treatment of burn wounds and skin defect, in recent decades. Fibrin glue (FG was among the first of the natural biomaterials applied to enhance skin deformity in burn patients. This study aimed to identify an efficient, minimally invasive and economical transplantation procedure using novel FG from human cord blood for treatment of hypertrophic scar and regulation collagen synthesis. Materials and Methods: In this case series study, eight patients were selected with hypertrophic scar due to full-thickness burns. Human keratinocytes and fibroblasts derived from adult skin donors were isolated and cultured. They were tested for the expression of cytokeratin 14 and vimentin using immunocytochemistry. FG was prepared from pooled cord blood. Hypertrophic scars were extensively excised then grafted by simply placing the sheet of FG containing autologous fibroblast and keratinocytes. Histological analyses were performed using Hematoxylin and eosin (H&E and Masson’s Trichrome (MT staining of the biopsies after 8 weeks. Results: Cultured keratinocytes showed a high level of cytokeratin 14 expression and also fibroblasts showed a high level of vimentin. Histological analyses of skin biopsies after 8 weeks of transplantation revealed re-epithelialization with reduction of hypertrophic scars in 2 patients. Conclusion: These results suggest may be the use of FG from cord blood, which is not more efficient than previous biological transporters and increasing hypertrophic scar relapse, but could lead to decrease pain rate.

  5. 骨髓源性肥大细胞对软骨细胞表达Ⅱ型胶原及糖胺多糖的影响%Effects of bone marrow- derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes

    Institute of Scientific and Technical Information of China (English)

    欧阳晴晴; 赵进军; 杨敏

    2014-01-01

    Objective To investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs. Methods Primarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1∶10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM). Results After a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co- cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P0.05),C48/80组Ⅱ型胶原与GAG含量相对于对照组和BMMCs组显著降低(P0.05)。结论C48/80激活的BMMCs可降低软骨细胞Ⅱ型胶原以及GAG表达。

  6. Case Report: Industrial X-Ray Injury Treated With Non-Cultured Autologous Adipose-Derived Stromal Vascular Fraction (SVF).

    Science.gov (United States)

    Iddins, C J; Cohen, S R; Goans, R E; Wanat, R; Jenkins, M; Christensen, D M; Dainiak, N

    2016-08-01

    Local cutaneous injuries induced by ionizing radiation (IR) are difficult to treat. Many have reported local injection of adipose-derived stromal vascular fraction (SVF), often with additional therapies, as an effective treatment of IR-induced injury even after other local therapies have failed. The authors report a case of a locally recurrent, IR-induced wound that was treated with autologous, non-cultured SVF without other concurrent therapy. A nondestructive testing technician was exposed to 130 kVp x rays to his non-dominant right thumb on 5 October 2011. The wound healed 4 mo after initial conservative therapy with oral/topical α-tocopherol, oral pentoxifylline, naproxen sodium, low-dose oral steroids, topical steroids, hyperbaric oxygen therapy (HBOT), oral antihistamines, and topical aloe vera. Remission lasted approximately 17 mo with one minor relapse in July 2012 after minimal trauma and subsequent healing. Aggressive wound breakdown during June 2013 required additional therapy with HBOT. An erythematous, annular papule developed over the following 12 mo (during which time the patient was not undergoing prescribed treatment). Electron paramagnetic resonance (EPR) done more than 2 mo after exposure to IR revealed dose estimates of 14 ± 3 Gy and 19 ± 6 Gy from two centers using different EPR techniques. The patient underwent debridement of the 0.5 cm papular area, followed by SVF injection into and around the wound bed and throughout the thumb without complication. Eleven months post SVF injection, the patient has been essentially asymptomatic with an intact integument. These results raise the possibility of prolonged benefit from SVF therapy without the use of cytokines. Since there is currently no consensus on the use of isolated SVF therapy in chronic, local IR-induced injury, assessment of this approach in an appropriately powered, controlled trial in experimental animals with local radiation injury appears to be indicated.

  7. THE EFFECT OF PIROXICAM ON THE METABOLISM OF ISOLATED HUMAN CHONDROCYTES

    NARCIS (Netherlands)

    BULSTRA, SK; KUIJER, R; BUURMAN, WA; TERWINDTROUWENHORST, E; GUELEN, PJM; VANDERLINDEN, AJ

    1992-01-01

    The effect of piroxicam on the metabolism of healthy and osteoarthrotic (OA) chondrocytes was studied in vitro. The chondrocytes were obtained from five healthy, five moderately OA, and four severely OA hips or knees. The chondrocytes were cultured in a high-density, short-term in vitro model. In th

  8. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation

    NARCIS (Netherlands)

    Malda, J.; Kreijveld, E.; Temenoff, J.S.; Blitterswijk, van C.A.; Riesle, J.

    2003-01-01

    Articular cartilage has a limited capacity for self-repair. To overcome this problem, it is expected that functional cartilage replacements can be created from expanded chondrocytes seeded in biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems often results in dedif

  9. Expansion of human nasal chondrocytes on macroporous macrocarriers enhances redifferentiation

    NARCIS (Netherlands)

    Malda, J.; Kreijveld, E.; Temenoff, J.; Blitterswijk, van C.A.; Riesle, J.

    2003-01-01

    Articular cartilage has a limited capacity for self-repair. To overcome this problem, it is expected that functional cartilage replacements can be created from expanded chondrocytes seeded in biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems often results in dedif

  10. Cyclic tensile stretch load and oxidized low density lipoprotein synergistically induce lectin-like oxidized ldl receptor-1 in cultured bovine chondrocytes, resulting in decreased cell viability and proteoglycan synthesis.

    Science.gov (United States)

    Akagi, Masao; Nishimura, Shunji; Yoshida, Kohji; Kakinuma, Takumi; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-08-01

    Mechanical stimulation is known to be an essential factor in the regulation of cartilage metabolism. We tested the hypothesis that expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) can be modulated by cyclic tensile stretch load in chondrocytes. Cyclic loading of repeated stretch stress at 10 cycles per minute with 10 kPa of stress for 6 h induced expression of LOX-1 to 2.6 times control in cultured bovine articular chondrocytes, equivalent to the addition of 10 microg/mL oxidized low density lipoprotein (ox-LDL) (2.4 times control). Application of the cyclic load to the chondrocytes along with 10 microg/mL ox-LDL resulted in synergistically increased LOX-1 expression to 6.3 times control. Individual application of cyclic loading and 10 microg/mL ox-LDL significantly suppressed chondrocytes viability (84.6% +/- 3.4% and 80.9% +/- 3.2% of control at 24 h, respectively; n = 3; p LDL (n = 3)]. Cyclic loading and 10 microg/mL ox-LDL synergistically affected cell viability and proteoglycan synthesis, which were significantly suppressed to 45.6% +/- 4.9% and 48.7% +/- 6.7% of control at 24 h, respectively (n = 3; p LDL). In this study, we demonstrated synergistic effects of cyclic tensile stretch load and ox-LDL on cell viability and proteoglycan synthesis in chondrocytes, which may be mediated through enhanced expression of LOX-1 and which has important implications in the progression of cartilage degeneration in osteoarthritis.

  11. Sulfation of p-nitrophenyl-N-acetyl-beta-D-galactosaminide with a microsomal fraction from cultured chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Habuchi, O.; Conrad, H.E.

    1985-10-25

    Chick embryo chondrocyte microsomes containing intact Golgi vesicles took up 3'-phosphoadenosine-5'-phospho(TVS)sulfate ((TVS)PAPS) in a time- and temperature-dependent, substrate-saturable manner. When (TVS)PAPS and p-nitrophenyl-N-acetyl-beta-D-galactosaminide (pNP-GalNAc) were added to the incubation in the absence of detergent, the microsomes catalyzed the transfer of sulfate from (TVS)PAPS to pNP-GalNAc to form pNP-GalNAc-6-TVSO4. The apparent Km values for PAPS in the uptake and the pNP-GalNAc sulfation reactions were 2 X 10(-7) and 2 X 10(-6) M, respectively. The sulfation of pNP-GalNAc by the microsomal preparation was inhibited by detergent. The microsomal fraction also catalyzed the transfer of sulfate from (TVS)PAPS to oligosaccharides prepared from chondroitin. However, in contrast to the sulfation of pNP-GalNAc, the rate of sulfation of these oligosaccharides was low in the absence of detergent and was markedly stimulated when detergent was added. Sulfation of pNP-GalNAc by the freeze-thawed microsomes was inhibited when the octasaccharide prepared from chondroitin was present in the reaction mixture. As the PAPS that had been internalized in the microsomal vesicles was consumed in the sulfation of pNP-GalNAc, more (TVS)PAPS was taken up and the sulfated pNP-GalNAc was released from the vesicles. These observations suggest that pNP-GalNAc may serve as a model membrane-permeable substrate for study of the 6-sulfo-transferase reaction involved in sulfation of chondroitin sulfate in intact Golgi vesicles.

  12. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter intrapatient comparative trial

    NARCIS (Netherlands)

    Gardien, K.L.M.; Marck, R.E.; Bloemen, M.C.T.; Waaijman, T.; Gibbs, S.; Uhlrich, M.M.W.; Middelkoop, E.

    2016-01-01

    Standard treatment for large burns is transplantation with meshed split skin autografts (SSGs). A disadvantage of this treatment is that healing is accompanied by scar formation. Application of autologous epidermal cells (keratinocytes and melanocytes) may be a suitable therapeutic alternative, sinc

  13. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Prittinen, Juha [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Jiang, Yu [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Ylärinne, Janne H. [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Lammi, Mikko J., E-mail: mikko.lammi@uef.fi [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Qu, Chengjuan [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland)

    2014-10-01

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α{sub 1}(II), procollagen α{sub 1}(X), and procollagen α{sub 2}(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α{sub 1}(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α{sub 2}(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage

  14. Oxygen tension affects lubricin expression in chondrocytes.

    Science.gov (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  15. Culture and identification of the chondrocytes from auricular cartilage of rhesus monkey%猕猴耳廓软骨细胞的体外培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    张金宁; 王旭东; 杨驰

    2001-01-01

    Objective:To culture the auricular chondrocytes of rhesus monkeyin vitro,and to certify the possibility of auricular cartilage as an ideal donor site for chondrocytes transplantation.Methods:The auricular cartilages of 6 rhesus monkeys were dissected and digested,the chondrocytes were isolated and cultured in F-12 medium.The changes of cellular morphology were investigated with inverted microscope.The cellular activities were studied with immunohistochemistry(IHC).Results:The homogenous,high-activity chondrocytes were harvested and cultured iv vitro successfully and IHC showed that there was no significant difference between type Ⅰ and type Ⅱ collagen stain in 3rd generation.Conclusions:Auricular cartilage of rhesus monkey is an ideal donor site for chondrocytes transplantation.%目的 掌握猕猴耳廓软骨细胞的体外分离、培养和鉴定技术,探讨耳廓软骨作为软骨细胞供区的可行性。材料与方法:对6只猕猴进行耳廓软骨取材、软骨细胞的分离,并行单层贴壁培养。通过倒置显微镜观察细胞生长情况并行细胞生长曲线的绘制;通过免疫组织化学染色对细胞分泌的基质成分进行鉴定。结果:6只猕猴的耳廓软骨经分离后,获得了高纯度、高活性的软骨细胞,并成功地进行了体外培养;软骨细胞倍增时间为98小时;免疫组织化学染色发现体外培养的软骨细胞具有分泌胶原基质的能力,但第三代细胞分泌Ⅰ、Ⅱ型胶原的能力无明显区别。结论:利用猕猴耳廓软骨细胞体外分离及培养,能成功地获得具有体内活性的软骨细胞,耳廓软骨是一种易获取的软骨细胞供区。

  16. Articular chondrocyte metabolism and osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  17. Pilose antler polypeptides promote chondrocyte proliferation via the tyrosine kinase signaling pathway

    Directory of Open Access Journals (Sweden)

    Lin Jian-Hua

    2011-11-01

    Full Text Available Abstract Background Pilose antler polypeptides (PAP have been reported to promote chondrocyte proliferation. However, the underlying mechanism remains unclear. The present study was to investigate the effects of PAP on the proliferation of chondrocytes and its underlying mechanism. Methods Chondrocytes isolated from the knee of Zealand white rabbits were cultured. The second generation chondrocytes were collected and identified using safranin-O staining. The chondrocytes were divided into the following 4 groups including serum-free, PAP, genistein (an inhibitor of tyrosine kinases, and PAP plus genistein group. Cell viability was analyzed using the MTT assay. The cell cycle distribution of the chondrocytes was analyzed by flow cytometry. The expression levels of cyclin A was detected using immunocytochemical staining. Results No significant difference was observed between serum-free and genistein group. Treatment of the cultures with PAP produced a significant dose-dependent increase in cell viability, the percentage proportion of chondrocytes in the S phase and Cyclin A expression as well. However, the promoting effect of PAP on chondrocyte proliferation were dose-dependently inhibited by genistein, whereas genistein alone had no effect on proliferation of isolated chondrocytes. Conclusions The data demonstrate that PAP promotes chondrocyte proliferation with the increased cell number, percentage proportion of chondrocytes in S phase and expression of protein cyclin A via the TK signaling pathway.

  18. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    Science.gov (United States)

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  19. Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model

    Directory of Open Access Journals (Sweden)

    A Marmotti

    2013-08-01

    Full Text Available We propose a culture-free approach to osteochondral repair with minced autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA-derived membrane, platelet-rich fibrin matrix (PRFM and fibrin glue. The aim of the study was to demonstrate in vitro the outgrowth of chondrocytes from cartilage fragments onto this scaffold and, in vivo, the formation of functional repair tissue in goat osteochondral defects. Two sections were considered: 1 in vitro: minced articular cartilage from goat stifle joints was loaded onto scaffolds, cultured for 1 or 2 months, and then evaluated histologically and immunohistochemically; 2 in vivo: 2 unilateral critically-sized trochlear osteochondral defects were created in 15 adult goats; defects were treated with cartilage fragments embedded in the scaffold (Group 1, with the scaffold alone (Group 2, or untreated (Group 3. Repair processes were evaluated morphologically, histologically, immunohistochemically and biomechanically at 1, 3, 6 and 12 months. We found that in vitro, chondrocytes from cartilage fragments migrated to the scaffold and, at 2 months, matrix positive for collagen type II was observed in the constructs. In vivo, morphological and histological assessment demonstrated that cartilage fragment-loaded scaffolds led to the formation of functional hyaline-like repair tissue. Repair in Group 1 was superior to that of control groups, both histologically and mechanically. Autologous cartilage fragments loaded onto an HA/PRFM/fibrin glue scaffold provided a viable cell source and allowed for an improvement of the repair process of osteochondral defects in a goat model, representing an effective alternative for one-stage repair of osteochondral lesions.

  20. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study.

    Science.gov (United States)

    Moradi, Lida; Vasei, Mohammad; Dehghan, Mohammad M; Majidi, Mohammad; Farzad Mohajeri, Saeed; Bonakdar, Shahin

    2017-05-01

    The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm(3) in Ch1 to 0.11 mJ/mm(3) in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process.

  1. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    Full Text Available Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/- mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/- mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/- mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/- mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/- mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/- mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/- mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/- mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  2. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  3. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    Directory of Open Access Journals (Sweden)

    Srujana Vedicherla

    2017-01-01

    Full Text Available Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT, Allogeneic Juvenile Chondrocyte Implantation (NuQu®, and Matrix-Induced Autologous Chondrocyte Implantation (MACI. Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml and incubation time (1 and 12 h, combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation.

  4. Spontaneous Redifferentiation of Dedifferentiated Human Articular Chondrocytes on Hydrogel Surfaces

    OpenAIRE

    2010-01-01

    Chondrocytes rapidly dedifferentiate into a more fibroblastic phenotype on a two-dimensional polystyrene substratum. This impedes fundamental research on these cells as well as their clinical application. This study investigated the redifferentiation behavior of dedifferentiated chondrocytes on a hydrogel substratum. Dedifferentiated normal human articular chondrocyte–knee (NHAC-kn) cells were released from the sixth-passage monolayer cultured on a polystyrene surface. These cells were then s...

  5. Growth differentiation factor-5 stimulates the growth and anabolic metabolism of articular chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Guo Xiong; Yao Jianfeng; Zhang Yingang; Klaus von der Mark

    2005-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱ collagen by RT-PCR,the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture,MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and X collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic expression of chondrocytes in mono-layer culture.

  6. Collagen complex gradient tricalcium phosphate composite scaffold with chondrocytes cultured in vitro%胶原复合梯度磷酸三钙负载软骨细胞的体外培养

    Institute of Scientific and Technical Information of China (English)

    查国庆; 廖威明; 黄保丁; 吴刚

    2009-01-01

    Objective To evaluate the feasibility of collagen complex gradient tricalcium phosphate composite scaffolds for cartilage tissue engineering by observing the compatibility and adhesion of chondrocytes. Methods High purified chondrocytes from knee joints of 8-week-old New Zealand rabbits were obtained by enzyme digestion, then the chondrocytes of the third generation were cultured combined with collagen complex gradient tricalcium phosphate composite scaffolds in vitro.Chondrocyte morphology, collagen Ⅱ expression, chondrogenesis, the compatibility of chondroeyte and scaffolds were evaluated with inverted microscope, HE staining, scanning electron microscope (SEM) and immunohistochemistry.Results By SEM, the scaffold had regular, porous architecture of communicated microholes.The average pore diameter was 100-150 μm.Observation revealed good hydrophilicity of the composite scaffold.The chondrocytes adhered to the surface, proliferated and migrated into the inside of the scaffold.Chondrocytes attached to wall of microholes of the scaffold had largely maintained morphology and could secrete the extracellular matrix on the porous scaffold.Conclusions Collagen complex gradient tricalcium phosphate composite scaffold possesses good cellular compatibility.%目的 观察新型三维支架材料胶原复合梯度磷酸三钙在体外与软骨细胞的相容性和黏附性,评价其作为软骨组织工程支架的可行性.方法 取8周龄新两兰大白兔膝关节软骨,以酶消化法获得高纯度软骨细胞,培养3代后与三维支架材料胶原复合梯度磷酸三钙在体外复合培养.用倒置相差显微镜、HE染色、免疫组织化学及扫描电镜观察软骨细胞形态、Ⅱ型胶原表达及成软骨能力,同时观察支架材料与软骨细胞的相容性.结果 扫描电镜观察显示支架材料具有疏松多孔结构,孔隙结构规则,孔径100~150 μm,材料内部孔与孔之间贯通良好.支架亲水性好.软骨细胞吸附于支

  7. Comparative, osteochondral defect repair: Stem cells versus chondrocytes versus Bone Morphogenetic Protein-2, solely or in combination

    Directory of Open Access Journals (Sweden)

    R Reyes

    2013-07-01

    Full Text Available Full-thickness articular cartilage damage does not resolve spontaneously. Studies with growth factors, implantation of autologous chondrocytes and mesenchymal stem cells have led to variable, to some extent inconsistent, results. This work compares osteochondral knee-defect repair in rabbits upon implantation of a previously described alginate/(poly(lactic-co-glycolic acid (PLGA osteochondral scaffold in distinct conditions. Systems were either in vitro pre-cultured with a small number of allogeneic chondrocytes under fibroblast growth factor (FGF-2 stimulation or the same amount of allogeneic, marrow derived, mesenchymal stem cells (without any pre-differentiation, or loaded with microsphere-encapsulated bone morphogenetic protein (BMP-2 within the alginate layer, or holding combinations of one or the other cell type with BMP-2. The experimental limit was 12 weeks, because a foregoing study with this release system had shown a maintained tissue response for at least 24 weeks post-operation. After only 6 weeks, histological analyses revealed newly formed cartilage-like tissue, which resembled the adjacent, normal cartilage in cell as well as BMP-2 treated defects, but cell therapy gave higher histological scores. This advantage evened out until 12 weeks. Combinations of cells and BMP-2 did not result in any additive or synergistic effect. Equally efficient osteochondral defect repair was achieved with chondrocyte, stem cell, and BMP-2 treatment. Expression of collagen X and collagen I, signs of ongoing ossification, were histologically undetectable, and the presence of aggrecan protein indicated cartilage-like tissue. In conclusion, further work should demonstrate whether spatiotemporally controlled, on-site BMP-2 release alone could become a feasible therapeutic approach to repair large osteochondral defects.

  8. Growth Differentiation Factor-5 Stimulates the Growth and Anabolic Metabolism of Articular Chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Guo Xiong; Zhang Yingang; Klaus von der Mark

    2009-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTr assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type 11 collagen by RT-PCR, the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture, MTF assay showed that GDF-5 enhanced the growth of ehondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the colal mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was gready enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and Ⅹ collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chon-drocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic ex-pression of chondrocytes in mono-layer culture.

  9. Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee

    Directory of Open Access Journals (Sweden)

    J-I Lee

    2011-11-01

    Full Text Available Autologous chondrocyte implantation (ACI is the treatment of choice for osteoarthritis. However, to regenerate articular cartilage using this method, the procedure paradoxically demands that the cell source of the articular chondrocytes (ACs for ex vivo expansion be from the patient’s own healthy cartilage, which can result in donor site morbidity. Accordingly, it is essential to develop a substitute for AC. In the present study, we investigated whether synovium-derived cells (SYs could be used as a partial replacement for ACs in ACI. ACs and SYs from the knees of rabbits were isolated and cultured, and the growth rates of the cells were compared. To manufacture the cellular transplants, we developed a high-density suspension-shaking culture method (HDSS, which circulates the cells in culture media, promoting self-assembly of scaffold-free cellular aggregates. ACs and SYs were mixed in various ratios using HDSS. Injectable cellular transplants were harvested and transplanted into full-thickness osteochondral defects. Simultaneously, histological evaluations were conducted with toluidine blue and safranin O, and immunohistochemistry of collagen type I and II was conducted. Gene expression to evaluate chondrocyte-specific differentiation was also performed. We successfully prepared a large quantity of spheroids (spheroidal cell aggregates in a short time using mixed ACs and SYs, for all cellular composition ratios. Our data showed that the minimal therapeutic unit for the transplants contributed to in situ regeneration of cartilage. In summary, SYs can be used as a replacement for ACs in clinical cases of ACI in patients with broad areas of osteoarthritic lesions.

  10. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  11. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum.

    Science.gov (United States)

    Karim, Asima; Hall, Andrew C

    2017-05-01

    Changes to chondrocyte volume/morphology may have deleterious effects on extracellular matrix (ECM) metabolism potentially leading to cartilage deterioration and osteoarthritis (OA). The factors controlling chondrocyte properties are poorly understood, however, pericellular matrix (PCM) weakening may be involved. We have studied the density, volume, morphology, and clustering of cultured bovine articular chondrocytes within stiff (2% w/v) and soft (0.2% w/v) three-dimensional agarose gels. Gels with encapsulated chondrocytes were cultured in Dulbecco's Modified Eagle's Medium (DMEM; fetal calf serum (FCS) 1-10%;380 mOsm) for up to 7 days. Chondrocytes were fluorescently labeled after 1, 3, and 7 days with 5-chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI) or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5) to identify cytoplasmic space or DNA and imaged by confocal laser scanning microscopy (CLSM). Chondrocyte density, volume, morphology, and clustering were quantified using Volocity™ software. In stiff gels after 7 d with 10% FCS, chondrocyte density remained unaffected and morphology was relatively normal with occasional cytoplasmic processes. However, in soft gels by day 1, chondrocyte volume increased (P = 0.0058) and by day 7, density increased (P = 0.0080), along with the percentage of chondrocytes of abnormal morphology (P stiff gels. FCS exacerbated changes to density (P stiffness and/or increased FCS concentrations promoted chondrocyte proliferation and clustering, increased cell volume, and stimulated abnormal morphology, producing similar changes to those occurring in OA. The increased penetration of factors in FCS into soft gels may be important in the development of these abnormal chondrocyte properties. J. Cell. Physiol. 232: 1041-1052, 2017. © 2016 Wiley Periodicals, Inc.

  12. 自体黑素细胞培养移植治疗白癜风的临床研究%Clinical research of autologous melanocytes culture and transplantation for the treatment of vitiligo

    Institute of Scientific and Technical Information of China (English)

    罗卫; 马春林; 吕俊卿; 蔡瑞康

    2012-01-01

    目的 进一步研究和探索黑素细胞培养移植治疗白癜风的方法 和疗效.方法 从发疱壁上获取黑素细胞,行纯黑素细胞培养与增殖,采用移植区刮除种植法行自体黑素细胞培养移植治疗白癜风.结果 本组18例白癜风患者(21块皮损)进行了自体黑素细胞培养移植,总有效率90.48%.结论 此方法较简单,可治疗面积大,治疗后色素分部均匀,值得临床推广和应用.%Objective To explore the method and efficacy of the autologous melanocytes culture and transplantation for the treatment of vitiligo. Methods The melanocytes obtained from suction blisters wall and then culture and proliferation the melanocytes. The vitiliginous lesion is scratched and then transplanted the cultured melanocytes. Results Totally 21 lesions of 18 patients with vitiligo were performed the treatment of autologous melanocytes culture and transplantation, and the total effective rate was 90. 48% . Conclusion It is an optimal approach of autologous melanocytes culture and transplantation for the treatment of vitiligo, which is easy to perform that could cure bigger area with equally distributed pigment. It is worth spreading in clinic.

  13. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)

    Science.gov (United States)

    Gradišnik, Lidija; Gorenjak, Mario; Vogrin, Matjaž

    2017-01-01

    Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very

  14. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA

    Directory of Open Access Journals (Sweden)

    Jakob Naranda

    2017-03-01

    Full Text Available Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2, collagen 1 (COL1 and aggrecan (ACAN was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a

  15. Use of autologous bone marrow mononuclear cells and cultured bone marrow stromal cells in dogs with orthopaedic lesions.

    Science.gov (United States)

    Crovace, A; Favia, A; Lacitignola, L; Di Comite, M S; Staffieri, F; Francioso, E

    2008-09-01

    The aim of the study is to evaluate the clinical application in veterinary orthopedics of bone marrow mononuclear cells (BMMNCs) and cultured bone marrow stromal cells (cBMSCs) for the treatment of some orthopaedic lesions in the dog. The authors carried out a clinical study on 14 dogs of different breed, age and size with the following lesions: 1 bone cyst of the glenoid rime; 2 nonunion of the tibia; 3 nonunion of the femur; 2 lengthening of the radius; 1 large bone defect of the distal radius;1 nonunion with carpus valgus; 4 Legg-Calvé-Perthés disease. In 9 cases the BMMCNs were used in combination with a three dimensional resorbable osteogenic scaffold the chemical composition and size of which facilitates the ingrowth of bone. In these cases the BMMNCs were suspended in an adequate amount of fibrin glue and then distribuited uniformly on a Tricalcium-Phosphate (TCP) scaffold onto which were also added some drops of thrombin. In 1 case of nonunion of the tibia and in 3 cases of Legg-Calvè-Perthés (LCP) disease the cultured BMSCs were used instead because of the small size of the dogs and of the little amount of aspirated bone marrow. X-ray examinations were performed immediately after the surgery. Clinical, ultrasounds and X-ray examinations were performed after 20 days and then every month. Until now the treated dogs have shown very good clinical and X-ray results. One of the objectives of the study was to use the BMMNCs in clinical application in orthopaedic lesions in the dog. The advantages of using the cells immediately after the bone marrow is collected, are that the surgery can be performed the same day, the cells do not need to be expanded in vitro, they preserve their osteogenic potential to form bone and promote the proper integration of the implant with the bone and lastly, the technique is easier and the costs are lower.

  16. Changes of membrane potential in chondrocytes from normal and osteoarthritis rabbits during in vitro passage culture%骨关节炎兔软骨细胞传代后膜电位的变化

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 武文婷; 傅世祥; 孙静磊; 陈康; 师晨霞

    2016-01-01

    vitro passage culture .Methods Hulth method in rabbits was established by using surgical techniques to create OA model . Articular chondrocytes were enzymatic digested and subcultured in vitro to the 5 th generation ( named P1 -P5 ) . The gene expressions of collagen type Ⅱ(COL2A1), aggrecan (ACAN) and collagen type Ⅰ(COL1A1) in chondrocytes were detected by quantitative real-time polymerase chain reaction (qRT-PCR).RMP was recorded by patch clamp , and the mechanisms were analyzed in general .When homogeneity of variance assumptions were satisfied , both OA group and control group were compared with two independent samples t test, and the statistical significance of the differences between multiple groups was evaluated using single factor analysis of variance , followed by Bonferroni test for independent two group comparisons .Results The P1-P3 cells were ovoid or polygonal and P 4-P5 cells were fibroblast-like spindle shape in the control and OA groups.Compared to the control group P1 cells, the mRNA expression levels of COL2A1 and ACAN decreased (t=5.90, P<0.01;t=3.46, P<0.05), the value of RMP reduced (t=-8.0, P<0.01), and voltage-dependent chloride channel ClC-3 (CLCN3) mRNA expression increased significantly (t=-17.7, P<0.01) in P1 cells of the OA group.The difference of P1 cells between the two groups was statistically significant .Compared to P1 cells of each group , the P2-P5 cells showed a passage-dependent reduction of the mRNA expressions in COL 2A1 and ACAN, and an increase in COL1A1.The membrane potential values of P 1-P3 cells in the control group were similar , while the values of P4 and P5 chondrocytes decreased (F=47.75, P<0.01).The difference of membrane potential in the first three generation cells was not statistically significant in the OA group , while the values of P4 and P5 chondrocytes increased (F =15.41, P<0.01).Conclusions The depolarization of membrane potential in OA chondrocytes may be associated with an increased mRNA expression of

  17. Reduction of Environmental Temperature Mitigates Local Anesthetic Cytotoxicity in Bovine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Tarik Onur, Alexis Dang

    2014-09-01

    Full Text Available The purpose of this study was to assess whether reducing environmental temperature will lead to increased chondrocyte viability following injury from a single-dose of local anesthetic treatment. Bovine articular chondrocytes from weight bearing portions of femoral condyles were harvested and cultured. 96-well plates were seeded with 15,000 chondrocytes per well. Chondrocytes were treated with one of the following conditions: ITS Media, 1x PBS, 2% lidocaine, 0.5% bupivacaine, or 0.5% ropivacaine. Each plate was then incubated at 37°C, 23°C, or 4°C for one hour and then returned to media at 37°C. Chondrocyte viability was assessed 24 hours after treatment. Chondrocyte viability is presented as a ratio of the fluorescence of the treatment group over the average of the media group at that temperature (ratio ± SEM. At 37°C, lidocaine (0.35 ± 0.04 and bupivacaine (0.30 ± 0.05 treated chondrocytes show low cell viability when compared to the media (1.00 ± 0.03 control group (p < 0.001. Lidocaine treated chondrocytes were significantly more viable at 23°C (0.84 ± 0.08 and 4°C (0.86±0.085 than at 37°C (p < 0.001. Bupivacaine treated chondrocytes were significantly more viable at 4°C (0.660 ± 0.073 than at 37°C or 23°C (0.330 ± 0.069 (p < 0.001 and p = 0.002 respectively. Reducing the temperature from 37°C to 23°C during treatment with lidocaine increases chondrocyte viability following injury. Chondrocytes treated with bupivacaine can be rescued by reducing the temperature to 4°C.

  18. Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway.

    Science.gov (United States)

    Zhang, Tao; Gong, Tao; Xie, Jing; Lin, Shiyu; Liu, Yao; Zhou, Tengfei; Lin, Yunfeng

    2016-09-01

    Due to its evascular, aneural, and alymphatic conditions, articular cartilage shows extremely poor regenerative ability. Thus, directing chondrocyte toward a desired location and function by utilizing the mechanical cues of biomaterials is a promising approach for effective tissue regeneration. However, chondrocytes cultured on Petri dish will lose their typical phenotype which may lead to compromised results. Therefore, we fabricated polydimethylsiloxane (PDMS) materials with various stiffness as culture substrates. Cell morphology and focal adhesion of chondrocytes displayed significant changes. The cytoskeletal tension of the adherent cells observed by average myosin IIA fluorescent intensity increased as stiffness of the underlying substrates decreased, consistent with the alteration of chondrocyte phenotype in our study. Immunofluorescent images and q-PCR results revealed that chondrocyte cultured on soft substrates showed better chondrocyte functionalization by more type II collagen and aggrecan expression, related to the lowest mRNA level of Rac-1, RhoA, ROCK-1, and ROCK-2. Taken together, this work not only points out that matrix elasticity can regulate chondrocyte functionalization via RhoA/ROCK pathway, but also provides new prospect for biomechanical control of cell behavior in cell-based cartilage regeneration.

  19. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  20. Human chondrocytes respond discordantly to the protein encoded by the osteoarthritis susceptibility gene GDF5.

    Directory of Open Access Journals (Sweden)

    Madhushika Ratnayake

    Full Text Available A genetic deficit mediated by SNP rs143383 that leads to reduced expression of GDF5 is strongly associated with large-joint osteoarthritis. We speculated that this deficit could be attenuated by the application of exogenous GDF5 protein and as a first step we have assessed what effect such application has on primary osteoarthritis chondrocyte gene expression. Chondrocytes harvested from cartilage of osteoarthritic patients who had undergone joint replacement were cultured with wildtype recombinant mouse and human GDF5 protein. We also studied variants of GDF5, one that has a higher affinity for the receptor BMPR-IA and one that is insensitive to the GDF5 antagonist noggin. As a positive control, chondrocytes were treated with TGF-β1. Chondrocytes were cultured in monolayer and micromass and the expression of genes coding for catabolic and anabolic proteins of cartilage were measured by quantitative PCR. The expression of the GDF5 receptor genes and the presence of their protein products was confirmed and the ability of GDF5 signal to translocate to the nucleus was demonstrated by the activation of a luciferase reporter construct. The capacity of GDF5 to elicit an intracellular signal in chondrocytes was demonstrated by the phosphorylation of intracellular Smads. Chondrocytes cultured with TGF-β1 demonstrated a consistent down regulation of MMP1, MMP13 and a consistent upregulation of TIMP1 and COL2A1 with both culture techniques. In contrast, chondrocytes cultured with wildtype GDF5, or its variants, did not show any consistent response, irrespective of the culture technique used. Our results show that osteoarthritis chondrocytes do not respond in a predictable manner to culture with exogenous GDF5. This may be a cause or a consequence of the osteoarthritis disease process and will need to be surmounted if treatment with exogenous GDF5 is to be advanced as a potential means to overcome the genetic deficit conferring osteoarthritis

  1. Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C

    NARCIS (Netherlands)

    Mahmood, Tahir A.; Jong, de Ruben; Riesle, Jens; Langer, Robert; Blitterswijk, van Clemens A.

    2004-01-01

    Chondrocyte ‘dedifferentiation’ involves the switching of the cell phenotype to one that no longer secretes extracellular matrix found in normal cartilage and occurs frequently during chondrocyte expansion in culture. It is also characterized by the differential expression of receptors and intracell

  2. Differences in Cartilage-Forming Capacity of Expanded Human Chondrocytes From Ear and Nose and Their Gene Expression Profiles

    NARCIS (Netherlands)

    Hellingman, C.A.; Verwiel, E.T.P.; Slagt, I.; Koevoet, W.; Poublon, R.M.L.; Nolst-Trenite, G.J.; de Jong, R.J.B.; Jahr, H.; van Osch, G.J.V.M.

    2011-01-01

    The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular chondroc

  3. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  4. Effects of basic fibroblast growth factor on cartilaginous tissue formation from epiphyseal plate chondrocytes cultured in centrifuge tube%碱性成纤维细胞生长因子对离心管内培养骺板细胞生成软骨组织的作用

    Institute of Scientific and Technical Information of China (English)

    李文超; 许瑞江; 黄靖香; 张丽; 聂少波

    2011-01-01

    BACKGROUND: There have been many reports regarding epiphyseal plate cells cultured in the centrifuge tube technique.OBJECTIVE: To observe the effects of basic fibroblast growth factor (bFGF) on cartilaginous tissue formation from epiphysealplate chondrocytes cultured in centrifuge tube.METHODS: Chondrocytes were isolated from 3-week-old New Zealand rabbits using the method of tissue-yarn. A total of 5×106chondrocytes obtained by centrifugation were cultured in a plasti c centrifuge tube (15 mL) with the DMEM culture fluid including10 μg/L bFGF for 4 weeks continuously. Cell morphology was investigated with light and inverted microscope, and the histologicalstructure of new cartilaginous tissue was observed by histological staining.RESULTS AND CONCLUSIONS: Cartilaginous tissue regenerated from growth plate chondrocytes cultured in centrifuge tubewith bFGF in the DMEM culture medium. The periphery of the cartilaginous tissue was resembled with the germinal layer of growthplate, consisting of several cellular layers. The chondrocytes in the centre of tissue grew well, and several were differentiating tothe mast chondrocytes. The cartilaginous tissue appeared strongly positive for safranine "O" and toluidine blue staining, whichshowed that the chondrocytes could synthesize the proteoglycans. Type II collagen immunohistochemistry appeared stronglymetachromatic. bFGF could promote the formation of cartilaginous tissue, rich in proteoglycans and type II collagen, fromepiphyseal plate cells cultured in centrifuge tune.%背景:采用离心管技术体外培养骺板细胞的报道已很多.目的:观察碱性成纤维细胞生长因子对离心管内培养的骺板细胞生成类骺板组织的影响.方法:获取3周龄新西兰白兔股骨远端的骺板组织,利用组织块纱巾培养法获得骺板细胞,加入含有10 μg/L碱性成纤维细胞生长因子的DMEM培养液,连续培养4周.结果与结论:离心管内聚集的骺板细胞在含有碱性成纤维细

  5. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling.

    Directory of Open Access Journals (Sweden)

    Chongwei Chen

    Full Text Available This paper aims to investigate whether equibiaxial tensile strain alters chondrocyte gene expression via controlling subcellular localization of histone deacetylase 4 (HDAC4.Murine chondrocytes transfected with GFP-HDAC4 were subjected to 3 h cyclic equibiaxial tensile strain (CTS, 6% strain at 0.25 Hz by a Flexcell® FX-5000™ Tension System. Fluorescence microscope and western blot were used to observe subcellular location of HDAC4. The gene expression was analyzed by real-time RT-PCR. The concentration of Glycosaminoglycans in culture medium was quantified by bimethylmethylene blue dye; Collagen II protein was evaluated by western blot. Cells phenotype was identified by immunohistochemistry. Cell viability was evaluated by live-dead cell detect kit. Okadaic acid, an inhibitor of HDAC4 nuclear relocation, was used to further validate whether HDAC4 nuclear relocation plays a role in gene expression in response to tension stimulation.87.5% of HDAC4 was located in the cytoplasm in chondrocytes under no loading condition, but it was relocated to the nucleus after CTS. RT-PCR analysis showed that levels of mRNA for aggrecan, collagen II, LK1 and SOX9 were all increased in chondrocytes subjected to CTS as compared to no loading control chondrocytes; in contrast, the levels of type X collagen, MMP-13, IHH and Runx2 gene expression were decreased in the chondrocytes subjected to CTS as compared to control chondrocytes. Meanwhile, CTS contributed to elevation of glycosaminoglycans and collagen II protein, but did not change collagen I production. When Okadaic acid blocked HDAC4 relocation from the cytoplasm to nucleus, the changes of the chondrocytes induced by CTS were abrogated. There was no chondrocyte dead detected in this study in response to CTS.CTS is able to induce HDAC4 relocation from cytoplasm to nucleus. Thus, CTS alters chondrocytes gene expression in association with the relocation of HDAC4 induced by CTS.

  6. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes.

    Science.gov (United States)

    Yang, Xiaohong; Liu, Shaojie; Li, Siming; Wang, Pengzhen; Zhu, Weicong; Liang, Peihong; Tan, Jianrong; Cui, Shuliang

    2017-02-28

    Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT-PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2-α1, Acan and Sox9, the key Wnt signalling molecule β-catenin and paracrine cytokine Cytl-1. The treatments using CYTL-1 protein significantly increased expression of Col2-α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell-based therapies for cartilage repair.

  7. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation.

    Science.gov (United States)

    Xu, Jiaming; Zhang, Changqing

    2014-08-01

    The purpose of this study was to evaluate the repair effects of chondrocytes that were cultured in vitro on osteoarthritis (OA). Chondrocytes were isolated from fetal rabbits and cultured in Biosilon microcarriers. Sixty rabbits were randomly divided into three groups equally (blank group, model group, treatment group). The rabbit knee OA model was established by inducing papain. Rabbits in the treatment group were injected with the chondrocytes that were cultured in vitro. Hematoxylin-eosin (HE) staining and gross morphologic observation were conducted. Expression level of cytokines such as IL-1bβ, IL-6, and TNF-α in cartilage synovial cells was also analyzed by an ELISA assay. The cultured chondrocyte was validated by a positive stain of type II collagen and vimentin by immunofluorescence. Compared to the model group, the articular cartilage of the rabbit knee in the treatment group showed a normal color, smooth surface, and none of malacia and coloboma. HE staining indicated that the articular surface of the treatment group tended to be smooth and flat; the matrix stained tinge and the cartilage destruction and fiber hyperplasia of the synovia were lightened. The expression levels of IL-1bβ, IL-6, and TNF-α also declined in the treatment group. OA symptoms were improved by treating with chondrocytes. In summary, the animal experiment in the present study indicated that chondrocyte injection played an active effect on renovation of OA.

  8. Human pituitary tissue secretes a potent growth factor for chondrocyte proliferation.

    Science.gov (United States)

    Kasper, S; Friesen, H G

    1986-01-01

    We report the secretion from human pituitary tumor fragments in organ culture of a potent mitogen for chondrocyte proliferation. Primary human pituitary cell and organ cultures were established from pituitary fragments obtained from patients with acromegaly, prolactinomas, and nonfunctional adenomas. The conditioned culture medium contained a mitogenic factor(s) that stimulated rabbit fetal chondrocyte proliferation, causing up to an 8-fold increase in cell number when added to Ham's F-10 medium in the presence of 10% fetal bovine serum. Blood leaking into the surgical field after the adenomectomy is known to contain very high concentrations of pituitary hormones. Serum samples, obtained from this venous "ooze" collected at the site of pituitary surgery, also were found to contain chondrocyte growth-promoting activity. Some venous serum samples stimulated chondrocyte proliferation in a dose-dependent manner down to a 1:10 dilution of 1 microliter serum, indicating that the material being secreted was very potent indeed. Gel filtration on Sephadex G-100 and analytical gel isoelectric focusing of culture media or serum samples from the pituitary fossa demonstrated that the growth factor secreted from the pituitary tumor fragments as well as from the venous serum is similar, if not identical, to chondrocyte growth factor (mol wt, 43,000; pI 7.6-7.9) purified from human pituitaries collected at autopsy. These results suggest that the chondrocyte growth-promoting factor(s) may not only be secreted by pituitary tumor fragments but by normal human pituitary tissue as well.

  9. Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis.

    Science.gov (United States)

    Yin, Melinda; Gentili, Chiara; Koyama, Eiki; Zasloff, Michael; Pacifici, Maurizio

    2002-01-01

    Hypertrophic chondrocytes have important roles in promoting invasion of cartilage by blood vessels and its replacement with bone. However, it is unclear whether blood vessels exert reciprocal positive influences on chondrocyte maturation and function. Therefore, we implanted beads containing the antiangiogenic molecule squalamine around humeral anlagen in chick embryo wing buds and monitored the effects over time. Fluorescence microscopy showed that the drug diffused from the beads and accumulated in humeral perichondrial tissues, indicating that these tissues were the predominant targets of drug action. Diaphyseal chondrocyte maturation was indeed delayed in squalamine-treated humeri, as indicated by reduced cell hypertrophy and expression of type X collagen, transferrin, and Indian hedgehog (Ihh). Although reduced in amount, Ihh maintained a striking distribution in treated and control humeri, being associated with diaphyseal chondrocytes as well as inner perichondrial layer. These decreases were accompanied by lack of cartilage invasion and tartrate-resistant acid phosphatase-positive (TRAP+) cells and a significant longitudinal growth retardation. Recovery occurred at later developmental times, when in fact expression in treated humeri of markers such as matrix metalloproteinase 9 (MMP-9) and connective tissue growth factor (CTGF) appeared to exceed that in controls. Treating primary cultures of hypertrophic chondrocytes and osteoblasts with squalamine revealed no obvious changes in cell phenotype. These data provide evidence that perichondrial tissues and blood vessels in particular influence chondrocyte maturation in a positive manner and may cooperate with hypertrophic chondrocytes in dictating the normal pace and location of the transition from cartilage to bone.

  10. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering.

    Science.gov (United States)

    Choi, Jaehoon; Chung, Jee-Hyeok; Kwon, Geun-Yong; Kim, Ki-Wan; Kim, Sukwha; Chang, Hak

    2013-09-01

    In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10%) on expansion and adipogenic differentiation of adipose-derived stem cells using 10% fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10% autologous serum > 10% fetal bovine serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10% fetal bovine serum > 10% autologous serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. Ten percent autologous serum and 10% fetal bovine serum had greater differentiation capacity than 1 and 2% autologous serum in vivo, and no significant difference was observed between the groups at ≥ 5% concentration at 14 weeks. In conclusion, 10% autologous serum was at least as effective as 10% fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2% autologous serum was inferior.

  11. GROWTH DIFFERENTIATION FACTOR-5 STIMULATES THE GROWTH AND ANABOLIC METABOLISM OF ARTICULAR CHONDROCYTES

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.

  12. MicroRNA-33 suppresses CCL2 expression in chondrocytes.

    Science.gov (United States)

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-06-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3'UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3'UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA.

  13. Nitric Oxide Inhibits the Synthesis of Type Ⅱ Collagen in Rabbit Cultured Chondrocytes%一氧化氮抑制兔关节软骨细胞II型胶原的合成

    Institute of Scientific and Technical Information of China (English)

    邵欣欣; 田得祥; 于长隆; 陈启明

    2001-01-01

    一氧化氮(NO)在骨关节炎和关节软骨代谢中具有重要的病理生理作用。为研究NO与关节软骨II型胶原的关系,我们在培养的兔关节软骨细胞中以药物刺激产生NO后,分别用ELISA及RT-PCR法测定II型胶原及前II型胶原α1链(COL2A1)mRNA表达量的变化。结果表明,0.2mM的硝普钠(SNP)可释放出大量NO,使软骨细胞II型胶原的含量减低,同时,RT-PCR法证实前II型胶原mRNA表达量也减少。100u/ml白细胞介素-1(IL-1)可刺激软骨细胞释放NO并使II型胶原量降低,其COL2A1mRNA表达量也减少。加用1mg/ml 精氨酸甲酯(NAME,NO合酶抑制剂)后,则抑制了IL-1的作用,使NO产量下降,II型胶原含量部分恢复,COL2A1完全恢复。本试验证实了NO作为IL-1的下游分子抑制II型胶原的合成;其抑制作用是通过减少前II型胶原α1链mRNA表达量完成的。这在软骨细胞反分化过程中具有重要意义。%Nitric oxide (NO) plays an important pathophysiological role in osteoarthritis and cartilage metabolism. To determine the relationship between NO and the synthesis of type II collagen in cartilage, we measured levels of type II collagen by ELISA and procollagen (II) mRNA by RT-PCR in cultured lapine chondrocytes that were incubated with some kinds of reagents. 0.2mM sodium nitroprusside (SNP, a NO donor) can release high levels of NO, decreasing type II collagen, suppressing the expression of procollagen (II) mRNA (COL2A1).At the same time, chondrocytes showed a large increase in NO synthesis, a decrease in type II collagen and COL2A1 mRNA in response to 100u/ml IL-1. When 1mg/ml N-nitro-L-arginine methyl easter (NAME, an inhibitor of NO synthase) was mixed with IL-1, NO production was inhibited, the amounts of type II collagen recovered partially and COL2A1 mRNA recovered completely.These data indicate NO can inhibit type II collagen synthesis as IL-1 downstream molecule by suppressing

  14. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance

    Indian Academy of Sciences (India)

    Giulia Bernardini; Federico Chellini; Bruno Frediani; Adriano Spreafico; Annalisa Santucci

    2015-03-01

    In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.

  15. Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products

    Directory of Open Access Journals (Sweden)

    Michiyo Nasu

    2016-01-01

    Full Text Available The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0 and Passage 1 (P1 cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.

  16. The Effects of Vitamin D3 on Proliferation and Apoptosis of Primary Cultured Chondrocytes from Human Articular Cartilage%活性维生素D3对体外原代培养人骨关节炎软骨细胞的影响

    Institute of Scientific and Technical Information of China (English)

    张良; 郭艾

    2012-01-01

    Objective To obtain articular chondrocyte from patients with osteoarthritis by primary culture,to explore the relationship between different concentrate [1, 25-(OH)2D3]and proliferation, apoptosis of chondrocytes. Methods Human articular chondrocytes were obtained by modified digestive method with enzyme in vitro and inden-tified by alkaline phosphatase (AKP) staining. OA Chondrocytes were cultured in medium with different concentrate [1,25-(OH)2D3]. MMT method was used to assay proliferation of chondrocytes. Optical density(OD) at 490nm was determined by ELISA. Flow cytometry was used to assay the apoptosis ratio at different time point. Results 10~5 u-mol/L[l ,25-(OH)2D3]can promote the proliferation of chondrocytes obviously,and the proper react time point is 48 hour(P<0. 01). At the same time 10-5 umol/L[1, 25-(OH)2D3]can inhibit the apoptosis ratio obviously at 48 hour time point. Conclusion To promote the proliferation and inhibit the apoptosis of OA chondrocytes in vitro,the better concentration of [1,25-(OH)2D3]is 1×10-5 umol/L. 48 hour after[1,25-(OH)2D3]added is the best time for the experiment objective.%目的 探讨不同浓度的1α,25二羟基维生素D3[1,25 -(OH)2D3]对体外培养的人骨关节炎患者关节软骨细胞的增殖及凋亡率的影响.方法 酶二步消化法体外分离培养人软骨细胞,以碱性磷酸酶染色法鉴定.加入不同剂量的[1,25 (OH)2D3],通过噻唑蓝比色试验检测细胞存活和增殖情况,以及用流式细胞仪检测软骨细胞在不同药物浓度、不同作用时间的凋亡率.结论 [1,25 (OH)2D3]作用于入骨关节炎软骨细胞的最佳作用浓度为1×10-5umol/L,最佳作用时间点为48h.高浓度的[1,25-(OH)2D3]能明显促进细胞坏死,极低浓度的[1,25 -(OH)2D3]对软骨细胞增殖、凋亡无明显影响.

  17. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam;

    2006-01-01

    -matrix interaction, as well as collagen type II expression in the cartilage graft after two weeks of in vitro cultivation. Basic fibroblast growth factor (bFGF) treated chondrocytes showed increased adhesion to collagen types I and II, fibronectin, and fibrinogen. Attachment to these investigated proteins......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...... significantly enhanced cell proliferation. Matrix design in cartilage engineering must meet the biological demands of amplified cells, because adhesion of chondrocytes depends on their differentiation status and is regulated by bFGF....

  18. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  19. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Elena Alegre-Aguarón

    Full Text Available To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs. However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.

  20. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Mello Maria

    2003-04-01

    Full Text Available Abstract Background Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. Results Cultured cells were characterized on the basis of morphology (light microscopy and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen. Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo 1, were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. Conclusions The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro.

  1. Expression of Transient Receptor Potential Vanilloid (TRPV Channels in Different Passages of Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Richard Barrett-Jolley

    2012-04-01

    Full Text Available Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0 and cells from passages 1–3 (P1, P2 and P3 by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes.

  2. Autologous Costochondral Microtia Reconstruction.

    Science.gov (United States)

    Patel, Sapna A; Bhrany, Amit D; Murakami, Craig S; Sie, Kathleen C Y

    2016-04-01

    Reconstruction with autologous costochondral cartilage is one of the mainstays of surgical management of congenital microtia. We review the literature, present our current technique for microtia reconstruction with autologous costochondral graft, and discuss the evolution of our technique over the past 20 years. We aim to minimize donor site morbidity and create the most durable and natural appearing ear possible using a stacked framework to augment the antihelical fold and antitragal-tragal complex. Assessment of outcomes is challenging due to the paucity of available objective measures with which to evaluate aesthetic outcomes. Various instruments are used to assess outcomes, but none is universally accepted as the standard. The challenges we continue to face are humbling, but ongoing work on tissue engineering, application of 3D models, and use of validated questionnaires can help us get closer to achieving a maximal aesthetic outcome.

  3. Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-11-1-0673 TITLE: Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse PRINCIPAL...CONTRACT NUMBER Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse 5b. GRANT NUMBER: W81XWH-11-1-0673 5c. PROGRAM...Tolerance, Drug abuse , Cell cultures, Spinal transplantation of autologous stem cells, Animal behavioral tests 16. SECURITY CLASSIFICATION OF: 17

  4. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

    OpenAIRE

    Juin-Yih Su; Shi-Hui Chen; Yu-Pin Chen; Wei-Chuan Chen

    2017-01-01

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microsco...

  5. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin alpha 1 and discoidin domain receptor 2 : a protein kinase C-dependent pathway

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Doulabi, Behrouz Z.; Huang, ChunLing; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.

    2011-01-01

    Methods. Goat articular chondrocytes and chondrons were cultured on collagen coatings. Small interfering RNA (siRNA) oligonucleotides targeted against ITG alpha 1 and DDR2 were transfected into primary chondrocytes. Chemical inhibitors for mitogen-activated protein kinase kinase (MEK1) (PD98059), fo

  6. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro.

    Science.gov (United States)

    Nehrer, S; Breinan, H A; Ramappa, A; Shortkroff, S; Young, G; Minas, T; Sledge, C B; Yannas, I V; Spector, M

    1997-01-01

    Synthetic and natural absorbable polymers have been used as vehicles for implantation of cells into cartilage defects to promote regeneration of the articular joint surface. Implants should provide a pore structure that allows cell adhesion and growth, and not provoke inflammation or toxicity when implanted in vivo. The scaffold should be absorbable and the degradation should match the rate of tissue regeneration. To facilitate cartilage repair the chemical structure and pore architecture of the matrix should allow the seeded cells to maintain the chondrocytic phenotype, characterized by synthesis of cartilage-specific proteins. We investigated the behavior of canine chondrocytes in two spongelike matrices in vitro: a collagen-glycosaminoglycan (GAG) copolymer produced from bovine hide consisting of type I collagen and a porous scaffold made of type II collagen by extraction of porcine cartilage. Canine chondrocytes were seeded on both types of matrices and cultured for 3 h, 7 days, and 14 days. The histology of chondrocyte-seeded implants showed a significantly higher percentage of cells with spherical morphology, consistent with chondrocytic morphology, in the type II sponge at each time point. Pericellular matrix stained for proteoglycans and for type II collagen after 14 days. Biochemical analysis of the cell seeded sponges for GAG and DNA content showed increases with time. At day 14 there was a significantly higher amount of DNA and GAG in the type II matrix. This is the first study that directly compares the behavior of chondrocytes in type I and type II collagen matrices. The type II matrix may be of value as a vehicle for chondrocyte implantation on the basis of the higher percentage of chondrocytes retaining spherical morphology and greater biosynthetic activity that was reflected in the greater increase of GAG content.

  7. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  8. Autologous bone marrow transplantation by photodynamic therapy

    Science.gov (United States)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  9. 组织工程化软骨细胞和骨髓间充质干细胞用于修复同种异体关节软骨缺损%Tissue engineered chondrocytes and bone marrow mesenchymal stem cells for the repair of articular cartilage defects

    Institute of Scientific and Technical Information of China (English)

    孙皓; 左健

    2012-01-01

    BACKGROUND: As the articular cartilage almost has no self-repair capacity, and in clinic, the repair on it mainly depends on the autologous or allogenic cartilage transplantation, perichondrium or periosteal transplantation and the chondrocytes transplantation. The limitation of autologous cartilage source and the chronic immune rejection of allograft cartilage may eventually lead to the poor prognosis. The cartilage repaired by perichondrium or periosteum transplantation is easy to degenerate which may lead to a poor repair result.OBJECTIVE: To review the research progress of tissue engineered chondrocytes , bone marrow mesenchymal stem cells and the co-culture of them on the repair of allogeneic cartilage defects.METHODS: A computer-based search on the PubMed database and CNKI database from January 1994 to January 2012 was performed for the articles on tissue engineered chondrocytes and bone marrow mesenchymal stem cells for the repair of allograft articular cartilage defects. The English key words were "cartilage defect, allograft, chondrocyte, mesenchymal stem cells, bone marrow mesenchymal stem cells" and the Chinese keywords were "cartilage defect, allograft, chondrocyte, bone marrow mesenchymal stem cells". The repetitive articles and the articles not in English or Chinese were eliminated, and finally, a total of 35 articles were included to review.RESULTS AND CONCLUSION: With the continuous improvement of in vitro cell culture methods, chondrocytes can be isolated from the tough cartilage, and a large number of high-purity chondrocytes and new chondrocytes can be obtained. Due to the low proliferative capacity of the chondrocytes, subculture may easily lead to aging and dedifferentiation; however, the content of bone marrow mesenchymal stem cells is low in adult bone marrow, with the increasing of the passages number, the chondrogenic potential is significantly decreased. When the bone marrow mesenchymal stem cells co-cultured with chondrocytes, they can

  10. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving.

  11. Doublecortin May Play a Role in Defining Chondrocyte Phenotype

    Directory of Open Access Journals (Sweden)

    Dongxia Ge

    2014-04-01

    Full Text Available Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.

  12. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  13. Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-kun; LIU Yi; SONG Zhi-ming; FU Chang-feng; XU Xin-xiang

    2007-01-01

    Objective:To label the primary articular chondrocytes overexpressing human insulin-like growth factor ( hIGF-1 ) with green fluorescent protein (GFP) for repair of articular cartilage defects in rabbits. Methods:GFP cDNA was inserted into pcDNA3.1-hIGF-1 to label the expression vector.The recombinant vector,pcGI,a mammalian expression vector with multiple cloning sites under two respective cytomegalovirus promoters/enhancers,was transfected into the primary articular chondrocytes with the help of lipofectamine.After the positive cell clones were selected by G418,G418-resistant chondrocytes were cultured in medium for 4 weeks.The stable expression of hIGF-1 in the articular chondrocytes was determined by in situ hybridization and immunocytochemical analysis and the GFP was confirmed under a fluorescence microscope. Methyl thiazolyl tetrazolium (MTT) and flow cytometer methods were employed to determine the effect of transfection on proliferation of chondrocytes. Gray value was used to analyze quantitatively the expression of type Ⅱ collagen. Results:The expression of hIGF-1 and GFP was confirmed in transfected chondrocytes by in situ hybridization, immunocytochemical analysis and fluorescence microscope observation. Green articular chondrocytes overexpressing hIGF-1 could expand and maintain their chondrogenic phenotypes for more than 4 weeks.After the transfection of IGF-1,the proliferation of chondrocytes was enhanced and the chondrocytes could effectively maintain the expression of type Ⅱ collagen. Conclusions:The hIGF-1 eukaryotic expression vector containing GFP marker gene has been successfully constructed.GFP,which can be visualized in real time and in situ, is stably expressed in articular chondrocytes overexpressing hIGF-1.The labeled articular chondrocytes overexpressing hIGF-1 can be applied in cell-mediated gene therapy as well as for other biomedical purposes of transgenic chondrocytes.

  14. Posttraumatic Chondrocyte Apoptosis in the Murine Xiphoid

    Science.gov (United States)

    Davis, Christopher G.; Eisner, Eric; McGlynn, Margaret; Shelton, John M.; Richardson, James

    2013-01-01

    Objective. To demonstrate posttraumatic chondrocyte apoptosis in the murine xiphoid after a crush-type injury and to ultimately determine the pathway (i.e., intrinsic or extrinsic) by which chondrocytes undergo apoptosis in response to mechanical injury. Design. The xiphoids of adult female wild-type mice were injured with the use of a modified Kelly clamp. Postinjury xiphoid cartilage was analyzed via 3 well-described independent means of assessing apoptosis in chondrocytes: hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and activated caspase-3 staining. Results. Injured specimens contained many chondrocytes with evidence of apoptosis, which is characterized by cell shrinkage, chromatin condensation, nuclear fragmentation, and the liberation of apoptotic bodies. There was a statistically significant increase in the number of chondrocytes undergoing apoptosis in the injured specimens as compared with the uninjured specimens. Conclusions. Chondrocytes can be stimulated to undergo apoptosis as a result of mechanical injury. These experiments involving predominantly cartilaginous murine xiphoid in vivo establish a baseline for future investigations that employ the genetic and therapeutic modulation of chondrocyte apoptosis in response to mechanical injury. PMID:26069679

  15. Nano-Se-chondroitin sulfate inhibits T-2 toxin-induced apoptosis of cultured chondrocytes from patients with Kashin-Beck disease%硫酸软骨素纳米硒可抑制T-2毒素诱导的大骨节病软骨细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    韩晶; 郭雄; 吴翠艳; 李春燕; 何淑兰; 段琛; 宁玉洁

    2013-01-01

    Objective To observe the effect of nano-Se-chondroitin sulfate on the growth and apoptosis of chondrocytes from patients with Kashin-Beck disease (KBD) exposed to T-2 toxin in vitro. Methods Samples of the articular cartilage were obtained from 6 patients with grade Ⅱ/Ⅲ KBD diagnosed in line with the National Clinical Diagnostic Criteria of KBD (WS/T 207-2010) for chondrocyte separation and culture in vitro. The separated chondrocytes were treated with synthesized nano-Se-chondroitin sulfate particles and T-2 toxin, alone or in combination, and the cell growth and apoptosis were observed using MTT assay, HE staining and flow cytometry. Results The synthesized nano-Se-chondroitin sulfate, with a selenium entrapment ratio of 10.1%, spontaneously formed nanoparticles in distilled water with sizes ranging from 30 to 200 run. Fourier-transform infrared spectroscopy suggested a possible covalent bond that bound Nano-Se and chondroitin sulfate. Within the concentration range of 50-200 ng/ml, nano-Se-chondroitin sulfate significantly inhibited T-2 toxin-induced apoptosis of the cultured chondrocytes and reduced the early apoptosis rate to (8.64±1.57)% (P<0.05). Conclusion Nano-Se-chondroitin sulfate can inhibit T-2 toxin-induced apoptosis of cultured chondrocytes from KBD patients in vitro, and serves as a promising candidate therapeutic agent for KBD.%目的 确定硫酸软骨素纳米硒对T-2毒素干预体外大骨节病软骨细胞生长的影响.方法 合成并表征硫酸软骨素纳米硒粒子,依据《大骨节病临床诊断标准》(WS/T 207-2010),选择Ⅱ/Ⅲ度KBD患者6例关节软骨进行体外分离、培养.分别给予硫酸软骨素纳米硒联合T-2毒素进行干预,采用MTT、HE染色和流式细胞仪观察细胞生长和凋亡的变化.结果 合成的硫酸软骨素纳米硒中硒的含量为10.1%,可在蒸馏水中自组装成粒径为30~200 nm纳米粒子,红外图谱提示纳米硒与硫酸软骨素可能以共价键的方式结

  16. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  17. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    Science.gov (United States)

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  18. Transduction of anti-cell death protein FNK suppresses graft degeneration after autologous cylindrical osteochondral transplantation.

    Science.gov (United States)

    Nakachi, Noriki; Asoh, Sadamitsu; Watanabe, Nobuyoshi; Mori, Takashi; Matsushita, Takashi; Takai, Shinro; Ohta, Shigeo

    2009-03-01

    This study shows that artificial super antiapoptotic FNK protein fused with a protein transduction domain (PTD-FNK) maintains the quality of osteochondral transplant by preventing chondrocyte death. Cylindrical osteochondral grafts were obtained from enhanced green fluorescent protein (EGFP)-expressing transgenic rats, in which living chondrocytes express green fluorescence, and submerged into medium containing PTD-FNK, followed by transplantation into cartilage defects of wild-type rats by impact insertion simulating autologous transplantation. The tissues were histologically evaluated by hematoxylin-eosin and Safranin-O staining. At 1 week, chondrocyte alignment was normal in the PTD-FNK treatment group, whereas all grafts without PTD-FNK treatment showed mixed cluster cell distribution. At 4 weeks, all grafts with PTD-FNK treatment showed almost normal matrix, whereas two grafts without PTD-FNK treatment showed fibrocartilage. Notably, all grafts with PTD-FNK retained high intensity of Safranin-O staining, but all grafts without PTD-FNK largely lost Safranin-O staining. PTD-FNK significantly suppressed a decrease in the survival rate and the density of EGFP-positive cells at 1 and 2 weeks, and this tendency continued at 4 weeks. The results of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-nick end-labeling staining showed that PTD-FNK inhibited cell death, indicating that PTD-FNK protects chondrocyte death and suppresses graft degeneration.

  19. 低氧对脂肪干细胞和关节软骨细胞三维共培养成软骨能力的影响%Hypoxia effects on the chondrogenic differentiation of three-dimensional co-cultured adipose-derived stem cells and articular chondrocytes

    Institute of Scientific and Technical Information of China (English)

    戴兵; 徐海艇; 金海东; 陈辉; 蔡建武; 范时洋; 潘骏

    2014-01-01

    背景:多项体内外研究表明低氧和共培养均促进干细胞向软骨细胞方向分化。  目的:观察低氧对脂肪干细胞和关节软骨细胞三维共培养成软骨能力的影响。  方法:脂肪干细胞和关节软骨细胞二者按3∶1比例混合,以5×1010 L-1接种于聚乳酸-羟基乙酸共聚物/明胶支架上,分别在常氧(体积分数为20% O2)、低氧(体积分数为5% O2  结果与结论:低氧组苏木精-伊红染色显示大量细胞及细胞外基质生成,阿尔新蓝染色显示有大量糖胺多糖生成,免疫组化显示Ⅱ型胶原表达强阳性,且DNA、糖胺聚糖、羟脯氨酸等各项指标均高于常氧组。表明低氧促进脂肪干细胞和关节软骨细胞共培养成软骨分化。  行组织学分析,阿尔新蓝染色鉴定糖胺多糖的合成,免疫组化鉴定Ⅱ型胶原的表达,并测定各组支架-细胞复合物的DNA、糖胺聚糖、羟脯氨酸含量。%BACKGROUND:Many in vivo and in vitro experiments indicate that hypoxic co-cultures promote stem cells differentiate into chondrocytes. OBJECTIVE:To evaluate the influence of hypoxia on the chondrogenic differentiation of three-dimensional co-cultured adipose-derived stem cells and articular chondrocytes. METHODS:Adipose-derived stem cells and articular chondrocytes were mixed at the ratio of 3:1, then the mixed cells were seeded onto poly(lactic-co-glycolic acid)-gelatin scaffold at the ultimate concentration of 5.0×1010/L. The cells were cultured in normoxia (20%O 2 ) and hypoxic (5%O 2 ) conditions for 6 weeks. After culture, hematoxylin and eosin staining was performed for histological structure analysis, and alcian blue staining was used to evaluate glycosaminoglycan synthesis. Type II col agen expression was detected by immunohistochemistry staining. The content of DNA, glycosaminoglycan and hydroxyproline in the scaffold-cellcomplex was measured. RESULTS AND CONCLUSION:In the hypoxia group

  20. Transplantation of individualized cultured autologous melanocytes for the treatment of vitiligo%个体化培养自体黑素细胞移植治疗白癜风

    Institute of Scientific and Technical Information of China (English)

    张迪敏; 洪为松; 傅丽芳; 钱国培; 许爱娥

    2010-01-01

    目的 探讨使用个体化培养基进行自体黑素细胞培养移植治疗白癜风的疗效.方法 负压吸疱获取患者正常表皮片,制成细胞悬液,在Hu16黑素细胞选择性培养基中培养.检测黑素细胞分裂时间(DOT)和黑素含量,根据DOT的大小、黑素含量和细胞形态,调整血清、细胞因子浓度及补充内皮素-1,进行个体化黑素细胞培养.经2~5次传代后收集黑素细胞,白斑区用超脉冲CO2激光磨削后进行黑素细胞移植,随访观察复色效果.结果 共治疗155例稳定期白癜风患者的204处皮损,进行1次移植119例,进行2~4次移植36例.应用个体化黑素细胞培养后细胞扩增可达50~80倍.84.80%的皮损复色面积超过50%,其中52.94%的皮损复色画积超过90%,且复色均匀,未见瘢痕及其他不良反应.性别、年龄、病程长短和皮损面积大小对疗效没有影响.节段型白癜风移植疗效好于寻常型白癜风,两组有效率分别为93.62%和82.16%,痊愈率分别为65.96%和49.04%.手臂和腿部的皮损(不包括肘部和膝盖)移植后痊愈率达73.08%,疗效好于躯干、面颈;肢端皮损疗效最差,痊愈率仅为25.93%.结论 个体化培养技术能提高白癜风患者黑素细胞的培养成功率与细胞扩增倍数.体外培养的自体黑素细胞移植治疗稳定期白癜风疗效肯定,用少量供皮区即可治疗大面积皮损,值得临床应用.%Objective To evaluate the therapeutic effect of transplantation of autologous melanocytes cultured with individualized medium in vitiligo. Methods Donor skin was obtained by suction blisters from a normally pigmented area of the abdomen of 155 patients with vitiligo. The roof of the blisters was clipped and digested with trypsin, then the suspension of epidermal cells and melanocytes were cultured in Hu16 medium.The cell division time (DOT) and melanin content of cultured melanocytes were measured followed by the adjustment of concentration of fetal calf

  1. Customized biomaterials to augment chondrocyte gene therapy.

    Science.gov (United States)

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-02-07

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins.

  2. Laryngospasm after autologous blood transfusion.

    Science.gov (United States)

    Hong, Jung; Grecu, Loreta

    2006-07-01

    Although perioperative autologous blood transfusions are associated with few side effects, transfusion reactions can occur and can be life-threatening. We report the occurrence of postoperative laryngospasm in a patient who underwent spinal anesthesia for hip surgery. The laryngospasm could not be attributed to any cause other than the autologous blood transfusion and recurred when the transfusion was restarted. Laryngospasm was successfully treated both times with positive pressure ventilation. Autologous transfusions can trigger febrile nonhemolytic transfusion reactions, which may result in airway compromise.

  3. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes.

    Directory of Open Access Journals (Sweden)

    Javier Conde

    Full Text Available BACKGROUND: Osteoarthritis (OA and rheumatoid arthritis (RA, the most common rheumatic diseases, are characterized by irreversible degeneration of the joint tissues. There are several factors involved in the pathogenesis of these diseases including pro-inflammatory cytokines, adipokines and adhesion molecules. OBJECTIVE: Up to now, the relationship between adipokines and adhesion molecules at cartilage level was not explored. Thus, the aim of this article was to study the effect of leptin and adiponectin on the expression of VCAM-1 in human and murine chondrocytes. For completeness, intracellular signal transduction pathway was also explored. METHODS: VCAM-1 expression was assessed by quantitative RT-PCR and western blot analysis upon treatment with leptin, adiponectin and other pertinent reagents in cultured human primary chondrocytes. Signal transduction pathways have been explored by using specific pharmacological inhibitors in the adipokine-stimulated human primary chondrocytes and ATDC5 murine chondrocyte cell line. RESULTS: Herein, we demonstrate, for the first time, that leptin and adiponectin increase VCAM-1 expression in human and murine chondrocytes. In addition, both adipokines have additive effect with IL-1β. Finally, we demonstrate that several kinases, including JAK2, PI3K and AMPK are at a play in the intracellular signalling of VCAM-1 induction. CONCLUSIONS: Taken together, our results suggest that leptin and adiponectin could perpetuate cartilage-degrading processes by inducing also factors responsible of leukocyte and monocyte infiltration at inflamed joints.

  4. Effects of RNAi-mediated inhibition of aggrecanase-1 and aggrecanase-2 on rat costochondral chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Zheng-hui WANG; Zhuang-qun YANG; Xi-jing HE; Li WANG; Li-xia LI; Jun-bo TU

    2008-01-01

    Aim:Failure of transplanted cartilage or allogenic chondrocytes is attributed mainly to immunological rejection and cartilage degradation.A major feature is the loss of aggrecan from the cartilage matrix,primarily due to the action of the specific proteinases aggrecanase-1 and aggrecanase-2.The aim of this in vitro study was to determine whether the specific inhibition of aggrecanase-1 and aggrecanase-2 by RNAi would mitigate aggrecan loss from cultured chondrocytes.Methods:Expression plasmid vectors of shRNA targeting aggrecanase-1 and aggrecanase-2 were constructed and transfected into cultured rattus costochondral chondrocytes.The transfected cells were induced with interleukin-1 β (IL-1β).Gene mRNA levels were analyzed by RT-PCR.Aggrecan and collagen Ⅱ content were measured by immunohistochemistry and Western blotting.Results:As the chondrocytes underwent dedifferentiation,agggrecanase-1 increased significantly.The specific inhibition of aggrecanase-1 and aggrecanase-2 by RNAi had no negative effect on the morphology and growth velocity of the chondrocytes.The mRNA of aggrecanase-1 and aggrecanase-2 decreased significantly.The α-2-macroglobulin expression level was increased by the shRNA specific for aggrecanase-1.Other genes of the chondrocytic extracellular matrix were not affected.RNAi significantly increased the aggrecan and collagen Ⅱ content of chondrocytes treated with IL-1β.Conclusion:The results suggest that inhibition of aggrecanase-1 and aggrecanase-2 by RNAi can mitigate aggrecan degradation,without interfering with chondrocytic gene phenotype recovery.RNAi technology can be a useful tool for studying degenerative processes in cartilage.

  5. The Experimental Studies of the Tissue Engineering Cartilage by Co-Culturing Microtia Chondrocytes and Adipose Tissue-Derived Stem Cells in Vivo%残耳软骨细胞与脂肪干细胞共培养体内构建软骨的实验研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 蒋海越; 何乐仁; 赵延勇; 杨庆华; 韩娟; 宋宇鹏

    2011-01-01

    Objective To explore the feasibility of the chondrogenesis by co-culturing microtia chondrocytes and human adipose tissue-derived stem cells in vivo. Methods hADSCs and microtia chondrocytes were isolated in vitro. 24 nude mice were randomly divided into 4 groups: ①Exp group, injected with microtia chondrocytes and hADSCs by a mixing ratio of 1:1 and the cell concentration was 5.0×l07 cells/mL; ②Ctrl 1 group, injected with only microtia chondrocytes and the cell concentration was 5.0×107 cellshnL; ③Ctrl 2 group, injected with only hADSCs and the cell concentration was 5.0×l07 cells/mL;④Ctrl 3 group, injected with only microtia chondrocytes and the cell concentration was 2.5×107 cells/mL. 6 nude mice were injected each group at a dose of 0.2 mL. All samples were harvested 10 weeks after culturingin vivo. Gross observation, average wet weights, glycosaminoglycan (GAG) quantification, histology and immunohistochemisty were used to evaluate the chondrogenesis of all groups. Results In Exp, Ctrl 1, and Ctrl 3 group, all the specimens formed homogeneous cartilagelike tissue with typical histological structure at different extent. In Ctrl 2 group, the specimens formed fiber-like tissue.Average wet weight and GAG content of specimens in Exp group were more than 88% of Ctrl 1 group while they were less than 40% in Ctrl 3 group. Cartilage lacuna was detected by HE staining in Exp, Ctrl 1 and Ctrl 3 group at different extent,but not in Ctrl 2 group. Collagen type Ⅱ was detected by immunohistochemistry in Exp, Ctrl 1 and Ctrl 3 group at different extent, but not in Ctrl 2 group. Conclusion Microtia chondrocytes could promote chondrogenesis of ADSCs in vivo under the co-culturing system. Tissue engineering cartilage by co-culturing microtia chondrocytes and ADSCs in vivo is feasible.%目的 验证残耳软骨细胞与脂肪来源的间充质干细胞(Adipose derived stem cells,ADSCs)共培养,体内构建软骨的可行性.方法 分离培养同一先天性

  6. Cartilage tissue engineering using pre-aggregated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-12-01

    Full Text Available In this study, we first aimed at determining whether human articular chondrocytes (HAC proliferate in aggregates in the presence of strong chondrocyte mitogens. We then investigated if the aggregated cells have an enhanced chondrogenic capacity as compared to cells cultured in monolayer. HAC from four donors were cultured in tissue culture dishes either untreated or coated with 1% agarose in the presence of TGFb-1, FGF-2 and PDGF-BB. Proliferation and stage of differentiation were assessed by measuring respectively DNA contents and type II collagen mRNA. Expanded cells were induced to differentiate in pellets or in Hyaff®-11 meshes and the formed tissues were analysed biochemically for glycosaminoglycans (GAG and DNA, and histologically by Safranin O staining. The amount of DNA in aggregate cultures increased significantly from day 2 to day 6 (by 3.2-fold, but did not further increase with additional culture time. Expression of type II collagen mRNA was about two orders of magnitude higher in aggregated HAC as compared to monolayer expanded cells. Pellets generated by aggregated HAC were generally more intensely stained for GAG than those generated by monolayer-expanded cells. Scaffolds seeded with aggregates accumulated more GAG (1.3-fold than scaffolds seeded with monolayer expanded HAC. In conclusion, this study showed that HAC culture in aggregates does not support a relevant degree of expansion. However, aggregation of expanded HAC prior to loading into a porous scaffold enhances the quality of the resulting tissues and could thus be introduced as an intermediate culture phase in the manufacture of engineered cartilage grafts.

  7. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.

    Science.gov (United States)

    Oseni, Adelola O; Butler, Peter E; Seifalian, Alexander M

    2015-11-01

    Despite extensive research into cartilage tissue engineering (CTE), there is still no scaffold ideal for clinical applications. Various synthetic and natural polymers have been investigated in vitro and in vivo, but none have reached widespread clinical use. The authors investigate the potential of POSS-PCU, a synthetic nanocomposite polymer, for use in CTE. POSS-PCU is modified with silsesquioxane nanostructures that improve its biological and physical properties. The ability of POSS-PCU to support the growth of ovine nasoseptal chondrocytes was evaluated against a polymer widely used in CTE, polycaprolactone (PCL). Scaffolds with varied concentrations of the POSS molecule were also synthesized to investigate their effect on chondrocyte growth. Chondrocytes were seeded onto scaffold disks (PCU negative control; POSS-PCU 2%, 4%, 6%, 8%; PCL). Cytocompatibilty was evaluated using cell viability, total DNA, collagen and GAG assays. Chondrocytes cultured on POSS-PCU (2% POSS) scaffolds had significantly higher viability than PCL scaffolds (p  0.05). POSS-PCU (6% and 8% POSS) had improved viability and proliferation over an 18 day culture period compared with 2% and 4% POSS-PCU (p < 0.0001). Increasing the percentage of POSS in the scaffolds increased the size of the pores found in the scaffolds (p < 0.05). POSS-PCU has excellent potential for use in CTE. It supports the growth of chondrocytes in vitro and the POSS modification significantly enhances the growth and proliferation of nasoseptal chondrocytes compared with traditional scaffolds such as PCL.

  8. Chondrogenesis of synovial mesenchymal stem cells co-cultured with chondrocytes on the three-dimensional scaffold%滑膜间充质干细胞与软骨细胞三维条件下混合培养向软骨细胞的分化

    Institute of Scientific and Technical Information of China (English)

    宁晓婷; 胡露露; 邵博; 龚忠诚; 刘慧; 凌彬; 克热木•阿巴斯; 林兆全; 杨萌; 尹小朋

    2014-01-01

    BACKGROUND:Articular chondrocytes with the ability of autocrine and paracrine can provide the growth factors and microenvironment for synovial mesenchymal stem cels differentiating into the chondrocyte. The three-dimensional scaffold could provide space for cels adhesion, proliferation and differentiation. OBJECTIVE: To study the ability of chondrogenesis by co-culturing synovial mesenchymal stem cels and chondrocytes under the three-dimensional condition. METHODS:The synovial membrane and articular cartilage were harvested from rat knee joint. The synovial mesenchymal stem cels and chondrocytes were obtained through the method of enzyme digestion. The passage 3 synovial mesenchymal stem cels and passage 2 chondrocytes were co-cultured in the chitosan/I colagen composite scaffolds at the ratio of 1:2. Then, the cels/scaffold composite was harvested to be examined morphologicaly, histologicaly and immunohistochemicaly after being cultured 21 days. The confocal laser was also employed to detect the cels distribution in the scaffold. RESULTS AND CONCLUSION: After being cultured 72 hours, it could be observed from the cels/scaffold composite examined through the scanning electron microscope that the cels adhered on the surface of the scaffold and extracelular matrix surrounding the cels was seen on the scaffold. After being cultured 21 days, it could be found through the confocal laser scanning that the cels were wel-distributed on the scaffold, and cels decreased gradualy. Type II colagen was positive in the extracelular matrix immunohistochamicaly. It suggested from this study that the synovial mesenchymal stem cels could be co-cultured with chondrocytes in the chitosan/I colagen composite scaffolds and have the ability of chondrogenesis differentiation.%背景:软骨细胞通过自分泌及旁分泌的作用可以为滑膜间充质干细胞向软骨细胞分化提供所需的生长因子及微环境,三维条件下更有利于细胞的黏附增殖与分化

  9. 人真皮成纤维细胞体外构建组织工程化软骨的初步探索%Preliminary study on tissue-engineered cartilage with human dermal fibroblasts co-cultured with porcine chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    刘霞; 周广东; 刘伟; 曹谊林

    2009-01-01

    Objective To explore the feasibility of constructing tissue-engineered cartilage with human dermal fibroblasts(HDFs)in vitro. Methods Porcine articular chondrocytes and HDFs were isolated and in vitro expanded respectively. Then they were mixed at the ratio of 1:1 (chondrocytes: fibroblasts). The mixed cells were seeded onto polyglycolic acid(PGA)scaffold at the ultimate concentration of 5.0×10~7/ml as co-culture group.Chondrocytes and HDFs at the same ultimate concentration were seeded respectively onto the scaffold as chondrocyte group (positive control group)and fibroblast group(negative control group). The specimens were collected after in vitro culture for 8 weeks. Gross observation, histology and immunohistochemistry were used to evaluate the results. Results In chondrocyte group, the cell-scaffold constructs could maintain the original size and shape during in vitro culture. The new formed cartilage-like tissue had typical histological structure and extracellular matrix staining similar to normal cartilage. In co-culture group the constructs shrunk slightly at 8 weeks, cartilage-like tissue formed and GAG could be detected for strong expression by Safranin O staining.Furthermore, using the specific identification, a few HDFs derived cells were found to form lacuna structure at the peripheral area of cartilage-like tissue. In fibroblast group, the constructs deformed and shrunk gradually without mature cartilage lacuna in histology. Conclusion The 3D-co-culture system can effectively induce the differenciation of HDFs to chondrocytes. The tissue-engineered cartilage can be constructed in vitro with the 3D-co-culture system.%目的 利用软骨细胞提供的体外软骨诱导微环境,探讨人真皮成纤维细胞在体外构建软骨的可行性.方法 分别培养猪的软骨细胞与人真皮成纤维细胞,将2种细胞按1:1(软骨细胞:成纤维细胞)比例混匀,以5.0×10~7/ml的终浓度接种于聚羟基乙酸支架(PGA,直径9 mm,高2mm)作为

  10. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  11. [The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs].

    Science.gov (United States)

    Niu, Kai; Zhao, Yong-Jian; Zhang, Lei; Li, Chen-Guang; Wang, Yong-Jun; Zheng, Wei-Chao

    2014-08-01

    The effect of amygdalin joint hydroxysafflor yellow A (HSYA) on the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and the possible mechanism were studied and explored. Chondrocytes were obtained from endplate of one-month SD rat intervertebral discs and cultured primary endplate chondrocytes. After identification, they were divided into normal group, induced group, amygdalin group, HSYA group and combined group. CCK-8 kit was adopted to detect the proliferation of the endplate chondrocytes. FCM was measured to detect the apoptosis. Real-time PCR method was adopted to observe the mRNA expression of Aggrecan, Col 2 alpha1, Col 10 alpha1, MMP-13 and the inflammatory cytokines IL-1beta. The protein expression of Col II, Col X was tested through immunofluorescence. Compared with the normal group, the proliferation of the endplate chondrocytes decreased while the apoptosis increased (P amygdalin group, HSYA group, the combined group could inhibit the apoptosis and promote the proliferation (P amygdalin and HSYA. Amygdalin joint HSYA could inhibit the degeneration of the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and better than the single use of amygdalin or HSYA.

  12. MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes.

    Science.gov (United States)

    Parreno, Justin; Raju, Sneha; Wu, Po-Han; Kandel, Rita A

    2016-10-14

    Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.

  13. Repairing cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor

    Institute of Scientific and Technical Information of China (English)

    SUN Shui; REN Qiang; WANG Dong; ZHANG Lei; WU Shuai; SUN Xi-tao

    2011-01-01

    Background Articular cartilage injury is a common disease, and the incidence of articular wear, degeneration, trauma and sports injury is increasing, which often lead to disability and reduced quality of life. Unfortunately repair of articular cartilage defects do not always provide satisfactory outcomes.Methods Chondrocyte and osteoblast composites were co-cultured using a bioreactor. The cartilage defects were treated with cell-β-tricalcium phosphate (β-TCP) composites implanted into osteochondral defects in dogs, in vivo, using mosaicplasty, by placing chondrocyte-β-TCP scaffold composites on top of the defect and osteoblast-β-TCP scaffold composites below the defect.Results Electron microscopy revealed that the induced chondrocytes and osteoblast showed fine adhesive progression and proliferation in the β-TCP scaffold. The repaired tissues in the experimental group maintained their thickness to the full depth of the original defects, as compared with the negative control group (q=12.3370, P <0.01; q=31.5393, P <0.01).Conclusions Perfusion culture provided sustained nutrient supply and gas exchange into the center of the large scaffold. This perfusion bioreactor enables the chondrocytes and osteoblasts to survive and proliferate in a three-dimensional scaffold.

  14. Aquaporin 1 contributes to chondrocyte apoptosis in a rat model of osteoarthritis.

    Science.gov (United States)

    Gao, Hangfei; Gui, Jiancao; Wang, Liming; Xu, Yan; Jiang, Yiqiu; Xiong, Mingyue; Cui, Yongguang

    2016-12-01

    Aquaporins (AQPs) have been found to be associated with a number of diseases. However, the role of AQP‑1 in the pathogenesis of osteoarthritis remains unclear. We previously found that AQP‑1 expression was upregulated in osteoarthritic cartilage and strongly correlated with caspase‑3 expression and activity. The aim of this study was to further investigate the association of AQP‑1 expression with chondrocyte apoptosis in a rat model of osteoarthritis, using RNA interference to knock down AQP‑1. For this purspose, 72 male Sprague‑Dawley rats were randomly assigned to 3 groups as follows: the control group not treated surgically (n=24), the sham‑operated group (n=24), and the osteoarthritis group (n=24). Osteoarthritis was induced by amputating the anterior cruciate ligament and medial collateral ligament and partially excising the medial meniscus. Chondrocytes from the rats with osteoarthritis were isolated and cultured. shRNAs were used to knock down AQP‑1 expression in the cultured chondrocytes. The expression of AQP‑1 and caspase‑3 was determined by reverse transcription-quantitative polymerase chain reaction. Caspase‑3 activity was measured using a caspase‑3 colorimetric assay. The rats in our model of osteoarthritis exhibited severe cartilage damage. The knockdown of AQP‑1 decreased caspase‑3 expression and activity in the cultured chondrocytes. In addition, the expression of AQP‑1 positively correlated with caspase‑3 expression and activity. Thus, the findings of our study, suggest that AQP‑1 promotes caspase‑3 activation and thereby contributes to chondrocyte apoptosis and to the development of osteoarthritis.

  15. JNK phosphorylation promotes degeneration of cervical endplate chondrocytes through down-regulation of the expression of ANK in humans

    Institute of Scientific and Technical Information of China (English)

    XU Hong-guang; SONG Jun-xing; CHENG Jia-feng; ZHANG Ping-Zhi; WANG Hong; LIU Ping; L(U) Kun

    2013-01-01

    Background C-Jun N-terminal kinase (JNK) signaling pathway and ankylosis gene (ANK) play a critical role in endplate chondrocytes degeneration.The purpose of this study was to investigate whether the expression levels of ANK was associated with the activation of JNK.Methods Cartilage endplates of 49 patients were divided into the control group (n=19) and the experimental group (n=30).The patients in the control group were graded 0 and those in the experimental group were graded Ⅰ-Ⅲ according to Miller's classification.Endplate chondrocytes were isolated by enzyme digestion and cultured in vitro.The inverted phase contrast microscope,teluidine blue staining,HE staining,real time RT-PCR,and MTT were used to observe morphological appearances,biological characteristics,and growth curve of endplate chondrocytes from the cartilage endplate of the two groups.Real time RT-PCR and Western blotting were used to analyze the mRNA and protein expression levels of associated factors in the degeneration process in the cultured endplate chondrocytes with or without subjected SP600125.Results The expression levels of type Ⅱ collagen,aggrecan,and ANK in endplate chondrocytes of experimental group were lower than that of control group and phosphorylation level of JNK in the experimental group which was higher than that in the control group.Application of JNK phosphorylation inhibitor to degeneration chondrocytes resulted in a marked decrease in the phosphorylation level of JNK and a significant increase in the expression levels of type Ⅱ collagen,aggrecan,and ANK.Conclusion The degeneration of the human cervical endplate chondrocytes might be promoted by JNK phosphorylation by down-regulating the expression of ANK

  16. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis

    Science.gov (United States)

    Garciadiego-Cázares, David; Aguirre-Sánchez, Hilda I.; Abarca-Buis, René F.; Kouri, Juan B.; Velasquillo, Cristina; Ibarra, Clemente

    2015-01-01

    The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy

  17. Study of cryopreservation of articular chondrocytes using the Taguchi method.

    Science.gov (United States)

    Lyu, Shaw-Ruey; Wu, Wei Te; Hou, Chien Chih; Hsieh, Wen-Hsin

    2010-04-01

    This study evaluates the effect of control factors on cryopreservation of articular cartilage chondrocytes using the Taguchi method. Freeze-thaw experiments based on the L(8)(2(7)) two-level orthogonal array of the Taguchi method are conducted, and ANOVA (analysis of variables) is adopted to determine the statistically significant control factors that affect the viability of the cell. Results show that the type of cryoprotectant, freezing rate, thawing rate, and concentration of cryoprotectant (listed in the order of influence) are the statistically significant control factors that affect the post-thaw viability. The end temperature and durations of the first and second stages of freezing do not affect the post-thaw viability. Within the ranges of the control factors studied in this work, the optimal test condition is found to be a freezing rate of 0.61+/-0.03 degrees C/min, a thawing rate of 126.84+/-5.57 degrees C/min, Me(2)SO cryoprotectant, and a cryoprotectant concentration of 10% (v/v) for maximum cell viability. In addition, this study also explores the effect of cryopreservation on the expression of type II collagen using immunocytochemical staining and digital image processing. The results show that the ability of cryopreserved chondrocytes to express type II collagen is reduced within the first five days of monolayer culture.

  18. 体外共培养软骨细胞与脂肪基质细胞用于软骨构建的实验研究%Experimental study of in vitro co-culture of chondrocytes and adipose-de-rived stromal cells for cartilage construction

    Institute of Scientific and Technical Information of China (English)

    贾黎; 崔军

    2014-01-01

    Objective To investigate the feasibility of in vitro co-culture of chondrocytes and adipose-derived stromal cells (ADSCs) for cartilage construction. Methods ADSCs and porcine auricular chomdrocytes were collected and cul-tured in v itro,and then three groups were set as the experimental group,the positive control group and the negative con-trol group,which were inoculated ADSCs and chondrocytes(7:3 mixing ratio),simple chondrocytes,simply ADSCs respec-tively.And the contrast morphological changes,the wet weight,the proteoglycan content changes and type II collagen in the expression of histological feature of the three groups was observed and analyzed respectively. Results After eight weeks in v itro culture,the tissue of experimental group had a regular shape,which looked like the structure of cartilage tissue and was certain flexibility.For detection of the average wet weight and proteoglycan quantitative,the average wet weight and proteoglycan could reach 73.1%,81.9% of that in the positive experimental group respectively,which were significantly higher than that in the negative control group(P<0.01).HE staining showed that the experimental group oc-curred consecutive cartilage-like tissue,mature cartilage and fibrous tissue,and new cartilage thickness was more obvi-ous.Type II collagen immunohistochemical staining found that brownish yellow occurred near lacunas of cartilage in the experimental group. Conclusion Chondrocytes and ADSCs co-culture in vitro can be used to build cartilage,but further research is need to determine the direct evidence of ADSCs converted to mature chondrocytes.%目的:探讨体外共培养软骨细胞与脂肪基质细胞(ADSCs)用于软骨构建的可行性。方法分别收集并培养人ADSCs与猪耳软骨细胞,设置实验组、阳性对照组、阴性对照组,分别接种ADSCs和软骨细胞(以7:3比例混合)、单纯软骨细胞、单纯ADSCs,观察并对比三组的形态学变化、湿重、蛋白多糖含量

  19. The effect of oxygen tension on human articular chondrocyte matrix synthesis: integration of experimental and computational approaches.

    Science.gov (United States)

    Li, S; Oreffo, R O C; Sengers, B G; Tare, R S

    2014-09-01

    Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental-computational approach in a "scaffold-free" 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21-day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a "scaffold-free" 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches.

  20. Increased chondrocyte adhesion on nanotubular anodized titanium.

    Science.gov (United States)

    Burns, Kevin; Yao, Chang; Webster, Thomas J

    2009-03-01

    Previous studies have demonstrated increased osteoblast (bone-forming cells) functions (including adhesion, synthesis of intracellular collagen, alkaline phosphatase activity, and deposition of calcium-containing minerals) on titanium anodized to possess nanometer features compared with their unanodized counterparts. Such titanium materials were anodized to possess novel nanotubes also capable of drug delivery. Since titanium has not only experienced wide spread commercial use in orthopedic but also in cartilage applications, the objective of the present in vitro study was for the first time to investigate chondrocyte (cartilage synthesizing cells) functions on titanium anodized to possess nanotubes. For this purpose, titanium was anodized in dilute hydrofluoric acid at 20 V for 20 min. Results showed increased chondrocyte adhesion on anodized titanium with nanotube structures compared with unanodized titanium. Importantly, the present study also provided evidence why. Since material characterization studies revealed significantly greater nanometer roughness and similar chemistry as well as crystallinity between nanotubular anodized and unanodized titanium, the results of the present study highlight the importance of the nanometer roughness provided by anodized nanotubes on titanium for enhancing chondrocyte adhesion. In this manner, the results of the present in vitro study indicated that anodization might be a promising quick and inexpensive method to modify the surface of titanium-based implants to induce better chondrocyte adhesion for cartilage applications.

  1. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Schmal, Hagen;

    2012-01-01

    , EMBASE, CINAHL, Life Science Citations, British National Library of Health, and Cochrane Central Register of Controlled Trials (CENTRAL). Literature search period was from the beginning of 1994 to February 2011. Of 54 studies that were identified, a total of 16 studies met the inclusion criteria...... of the present meta-analysis. Those studies were systematically evaluated. RESULTS: All studies identified represented case series (EBM Leven IV). 213 cases with various treatment for osteochondral and chondral defects with a mean size of 2.3 cm(2) (±0.6) have been reported. A total of 9 different scores have...

  2. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  3. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

    Science.gov (United States)

    Collins, John A; Wood, Scott T; Nelson, Kimberly J; Rowe, Meredith A; Carlson, Cathy S; Chubinskaya, Susan; Poole, Leslie B; Furdui, Cristina M; Loeser, Richard F

    2016-03-25

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.

  4. Curcuminoids extract, hydrolyzed collagen and green tea extract synergically inhibit inflammatory and catabolic mediator's synthesis by normal bovine and osteoarthritic human chondrocytes in monolayer.

    Science.gov (United States)

    Comblain, Fanny; Sanchez, Christelle; Lesponne, Isabelle; Balligand, Marc; Serisier, Samuel; Henrotin, Yves

    2015-01-01

    The main objective of this study was to assess the in vitro effects of curcuminoids extract, hydrolyzed collagen and green tea extract in normal bovine chondrocytes and osteoarthritic human chondrocytes cultured in monolayer. This study also investigated the synergic or additive effects of these compounds. Enzymatically isolated primary bovine or human chondrocytes were cultured in monolayer until confluence and then incubated for 24 hours or 48 hours in the absence or in the presence of interleukin-1β and with or without curcuminoids extract, hydrolyzed collagen or green tea extract, added alone or in combination, at different concentrations. Cell viability was neither affected by these compounds, nor by interleukin 1β. In the absence of interleukin-1β, compounds did not significantly affect bovine chondrocytes metabolism. In human chondrocytes and in the absence of interleukin 1β, curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract significantly inhibited matrix metalloproteinase-3 production. In interleukin-1β-stimulated bovine chondrocytes, interleukin-6, inducible nitric oxide synthase, cyclooxygenase2, matrix metalloproteinase 3, a disintegrin and metalloproteinase with thrombospondin type I motifs 4 and a disintegrin and metalloproteinase with thrombospondin type I motifs 5 expressions were decreased by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. The combination of the three compounds was significantly more efficient to inhibit interleukin-1β stimulated matrix metalloproteinase-3 expression than curcuminoids extract alone. In interleukin-1β-stimulated human chondrocytes, nitric oxide, interleukin-6 and matrix metalloproteinase 3 productions were significantly reduced by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. These findings indicate that a mixture of curcuminoids extract, hydrolyzed collagen and green tea

  5. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  6. bFGF influences human articular chondrocyte differentiation

    DEFF Research Database (Denmark)

    Schmal, H; Zwingmann, J; Fehrenbach, M

    2007-01-01

    FGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained...... in monolayer. bFGF-dependent cell proliferation, production of collagen type II and aggrecan were monitored 10 days after isolation. Furthermore, effect of bFGF on cell cycle, cell morphology, and mRNA expression of integrins and chondrogenic markers determined by real time PCR were analyzed. RESULTS: b...... unchanged. Supplementation of cell culture with bFGF reduced collagen type II mRNA by 49%, but increased expression of the integrin alpha(2) by 70%. bFGF did not significantly regulate the integrins alpha(1), alpha(5), alpha(10), alpha(v) and type I collagen. bFGF reduced the amount of collagen type II...

  7. Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan.

    Science.gov (United States)

    Hong, Hyun Jun; Chang, Jae Won; Park, Ju-Kyeong; Choi, Jae Won; Kim, Yoo Suk; Shin, Yoo Seob; Kim, Chul-Ho; Choi, Eun Chang

    2014-11-01

    Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction. Chondrocytes from rabbit articular cartilage were expanded and cultured with fibrin/HA hydrogel and injected into a 5 × 10 mm-sized, curved patch-shape PLGA scaffold. After 4 weeks in vitro culture, the scaffold was implanted on a tracheal defect in eight rabbits. Six and 10 weeks postoperatively, the implanted sites were evaluated by bronchoscope and radiologic and histologic analyses. Ciliary beat frequency (CBF) of regenerated epithelium was also evaluated. None of the eight rabbits showed any sign of respiratory distress. Bronchoscopic examination did not reveal stenosis of the reconstructed trachea and the defects were completely recovered with respiratory epithelium. Computed tomography scan showed good luminal contour of trachea. Histologic data showed that the implanted chondrocytes successfully formed neocartilage with minimal granulation tissue. CBF of regenerated epithelium was similar to that of normal epithelium. Partial tracheal defect was successfully reconstructed anatomically and functionally using allogeneic chondrocytes cultured with PLGA-fibrin/HA composite scaffold.

  8. Nanosized fibers' effect on adult human articular chondrocytes behavior

    Energy Technology Data Exchange (ETDEWEB)

    Stenhamre, Hanna [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Thorvaldsson, Anna, E-mail: anna.thorvaldsson@swerea.se [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Swerea IVF, Mölndal (Sweden); Enochson, Lars [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Walkenström, Pernilla [Swerea IVF, Mölndal (Sweden); Lindahl, Anders [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Brittberg, Mats [Cartilage Research Unit, University of Gothenburg, Department Orthopaedics, Kungsbacka Hospital, Kungsbacka (Sweden); Gatenholm, Paul [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2013-04-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum.

  9. In vitro effects of sodium hyaluronate on the proliferation and the apoptosis in chondrocytes from patients with Kashin-Beck disease and osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    Zongqiang Gao; Xiong Guo; Chen Duan; Weijuan Ma; Peng Xu; Ruiyu Liu; Qisheng Gu; Junchang Chen

    2009-01-01

    Objective:To identify the in vitro effects of sodium hyaluronate(HA) on the proliferation and the apoptosis of chondrocytes from patients with Kashin-Beck disease(KBD) and osteoarthritis(OA). Methods:Samples of articular cartilages from KBD and OA patients, as well as healthy volunteers(6 subjects in each of the 3 groups) were dissected, digested with collagenase and the cells cultured in monolayers. Chondrocytes from each sample were assigned to an untreated group and two HA-treated groups: H0(no HA), H100(HA, 0.1 g/L) and H500(HA, 0.5 g/L). The first passage chondrocytes were used to observe proliferation using the MTT assay, and apoptosis by flow cytometry through Annexin V/PI staining. Results:HA promoted proliferation of chondrocytes in all the three groups, and in KBD and OA groups, for cells cultured for 4 and 6 days, H500 significantly promoted the cell proliferation. The apoptotic rates of both KBD and OA group chondrocytes were in the order H500 < HA100 < H0. Conclusion:Sodium hyaluronate administration has a dose-dependendent vitro effect to promote proliferation and inhibit apoptosis of chondrocytes from patients with KBD and OA.

  10. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  11. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  12. Chondrocyte hypertrophy in skeletal development, growth, and disease.

    Science.gov (United States)

    Sun, Margaret Man-Ger; Beier, Frank

    2014-03-01

    Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.

  13. Osteogenic differentiation of nucleus puplousus cells co-cultured with autologous periosteal cells%骨膜细胞与髓核细胞共培养向成骨方向的分化

    Institute of Scientific and Technical Information of China (English)

    杨宇明; 袁峰; 陆海涛; 张峻伟; 盛晓磊; 李智多

    2015-01-01

    BACKGROUND:Periosteal cel s have been used in bone repair, but whether nucleus puplousus cel s co-cultured with autologous periosteal cel s can differentiate into osteoblasts in spinal fusion is rarely reported. OBJECTIVE:To isolate nucleus puplousus cel s and periosteal cel s so as to observe the osteogenic ability of nucleus puplousus cel s co-cultured with periosteal cel s or not. METHODS:Type II col agenase digestion method was used to isolate and purify nucleus pulposus cel s, which were confirmed by toluidine blue and immunohistochemical staining. Periosteal cel s were isolated histological y and cultured in complete medium, and cel surface antigens CD90, CD105 were identified by immunofluorescence staining. According to the experimental needs, the cel s were assigned into two groups. Nucleus pulposus cel s and periosteal cel s were co-cultured by osteogenic induction medium in the experimental group. Nucleus pulposus cel s in the control group were cultured alone in osteogenic induction medium. Cel morphology was observed by inverted microscopy, and cel proliferation was detected by cel counting kit-8. The osteogenic differentiation indexes of cel s in each group were measured using alkaline phosphatase staining, alizarin red staining, and type I col agen immunohistoehemical staining. The expression of osteopontin was tested by western blot assay. RESULTS AND CONCLUSION:CD105 and CD90 expressions of the periosteal cel s were positive. Nucleus puplousus cel s were positive for toluidine blue and col agen type II immunohistochemical staining. The proliferative ability of nucleus puplousus cel s was significantly higher in the experimental group than the control group at days 1, 3, 5, 7, 9. After 2 weeks of induction, the cel s were positive for alkaline phosphatase staining, alizarin red staining, and type I col agen immunohistoehemical staining, but the experimental group showed higher positive expressions than the control group (P  目的:分离培

  14. A novel rat tail collagen type-I gel for the cultivation of human articular chondrocytes in low cell density.

    Science.gov (United States)

    Muller-Rath, R; Gavénis, K; Andereya, S; Mumme, T; Schmidt-Rohlfing, B; Schneider, U

    2007-12-01

    Collagen type-I matrix systems have gained growing importance as a cartilage repair device. However, most of the established matrix systems use collagen type-I of bovine origin seeded in high cell densities. Here we present a novel collagen type-I gel system made of rat tail collagen for the cultivation of human chondrocytes in low cell densities. Rat tail collagen type-I gel (CaReS, Arthro Kinetics, Esslingen, Germany) was seeded with human passage 2 chondrocytes in different cell densities to evaluate the optimal cell number. In vitro, the proliferation factor of low density cultures was more than threefold higher compared with high density cultures. After 6 weeks of in vitro cultivation, freshly prepared chondrocytes with an initial cell density of 2x10(5) cells/mL showed a proliferation factor of 33. A cell density of 2x10(5) cells/mL was chosen for in vitro and in vivo cultivation using the common nude mouse model as an in vivo system. Chondrocytes stayed viable as a Live/Dead fluorescence assay and TUNEL staining revealed. During in vitro cultivation, passage 0 cells partly dedifferentiated morphologically. In vivo, passage 0 cells maintained the chondrocyte phenotype and demonstrated an increased synthesis of collagen type-II protein and gene expression compared to passage 2 cells. Passage 2 cells did not redifferentiate in vivo. Cultivating a cell-seeded collagen gel of bovine origin as a control (AtelocollagenTM, Koken, Tokyo, Japan) did not lead to superior results with regard to cell morphology, col-II protein production and col-II gene expression. With the CaReS collagen gel system the best quality of repair tissue was obtained by seeding freshly isolated chondrocytes.

  15. Association between the chondrocyte phenotype and the expression of adipokines and their receptors: evidence for a role of leptin but not adiponectin in the expression of cartilage-specific markers.

    Science.gov (United States)

    Francin, Pierre-Jean; Guillaume, Cécile; Humbert, Anne-Claude; Pottie, Pascale; Netter, Patrick; Mainard, Didier; Presle, Nathalie

    2011-11-01

    Although extensive evidence support the key role of adipokines in cartilage homeostasis, contradictory data have been found for their expression and their effects in chondrocytes. This study was then undertaken to determine whether a phenotypic modulation may affect the expression of adipokines and their receptors in human chondrocytes. The expression of leptin, adiponectin and their receptors, as well as cartilage-specific genes was examined in chondrocytes obtained from patients with osteoarthritis either directly after cells harvest or after culture in monolayer or in alginate beads. The results showed major changes in the gene expression pattern after culture in monolayer with a shift from the adipokines to their receptors. Interestingly, this downregulation of adipokines was associated with a loss of chondrocyte phenotype, and chondrocytes recovered a cartilage-like expression profile of leptin and adiponectin when cultured in a tridimensional chondrocyte phenotype-inducing system, but ceased expressing their receptors. Further experiments clearly showed that leptin but not adiponectin promoted the expression of cartilage-specific markers through mitogen-activated protein kinase, Janus kinase and phosphatidylinositol-3 kinase signaling pathways. In conclusion, our data indicate that any phenotypic modulation could affect chondrocyte responsiveness to leptin or adiponectin, and provide evidence for an important role for leptin in regulating the expression of cartilage-specific markers.

  16. Autologous Fat Injection for Augmented Mammoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eul Sik; Seo, Bo Kyoung; Yi, Ann; Cho, Kyu Ran [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2008-12-15

    Autologous fat injection is one of the methods utilized for augmented mammoplasty methods. In this surgical procedure, the fat for transfer is obtained from the donor site of the patient's own body by liposuction and the fat is then injected into the breast. We report here cases of three patients who underwent autologous fat injection. Two of the patients had palpable masses that were present after surgery. The serial imaging findings and surgical method of autologous fat transfer are demonstrated

  17. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  18. Voltage-gated K+ currents in mouse articular chondrocytes regulate membrane potential.

    Science.gov (United States)

    Clark, Robert B; Hatano, Noriyuki; Kondo, Colleen; Belke, Darrell D; Brown, Barry S; Kumar, Sanjay; Votta, Bartholomew J; Giles, Wayne R

    2010-01-01

    Membrane currents and resting potential of isolated primary mouse articular chondrocytes maintained in monolayer cell culture for 1-9 days were recorded using patch clamp methods. Quantitative RT-PCR showed that the most abundantly expressed transcript of voltage-gated K(+) channels was for K(V)1.6, and immunological methods confirmed the expression of K(V)1.6 α-subunit proteins. These chondrocytes expressed a large time- and potential-dependent, Ca(2+)-independent 'delayed rectifier' K(+) current. Steady-state activation was well-fit by a Boltzmann function with a threshold near -50 mV, and a half-activation potential of -34.5 mV. The current was 50% blocked by 1.48 mM tetraethylammonium, 0.66 mM 4-aminopyridine and 20.6 nM α-dendrotoxin. The current inactivated very slowly at membrane potentials in the range of the resting potential of the chondrocytes. Resting membrane potential of the chondrocytes at room temperature (19-21°C) and in 5 mM external K(+) was -46.4 ± 1.3 mV (mean ± s.e.m; n = 23), near the 'foot' of the activation curve of this K(+) current. Resting potential was depolarized by an average of 4.2 ± 0.8 mV by 25 mM TEA, which blocked about 95% of the K(+) current. At a membrane potential of -50 mV, the apparent time constant of inactivation (tau(in)) was 37.9 s, and the 'steady-state' current level was 19% of that at a holding potential of -90 mV; at -40 mV, tau(in) was 20.3 s, and 'steady-state' current was 5% of that at -90 mV. These results demonstrate that in these primary cultured, mouse articular chondrocytes steady-state activation of a voltage-gated K(+) current contributes to resting membrane potential. However, this current is also likely to have a significant physiological role in repolarizing the chondrocyte following depolarizing stimuli that might occur in conditions of membrane stretch. For example, activation of TRP('transient receptor potential') non-specific cation channels in these cells during cyclic loading and unloading

  19. Subculture of chondrocytes on a collagen type I-coated substrate with suppressed cellular dedifferentiation.

    Science.gov (United States)

    Kino-Oka, Masahiro; Yashiki, Shino; Ota, Yuka; Mushiaki, Yuko; Sugawara, Katsura; Yamamoto, Takeyuki; Takezawa, Toshiaki; Taya, Masahito

    2005-01-01

    To evaluate the degree of cellular dedifferentiation, subculture of chondrocytes was conducted on a surface coated with collagen type I at a density of 1.05 mg/cm(2). In the primary culture, most of the cells were round in shape on the collagen (CL) substrate, whereas fibroblastic and partially extended cells were dominant on the polystyrene plastic (PS) substrate. Stereoscopic observation revealed that the round-shaped cells on the CL substrate were hemispherical with nebulous and punctuated F-actin filaments, whereas the fibroblastic cells on the PS substrate were flattened with fully developed stress fibers. This suggested that cell polarization was suppressed during culture on the former substrate. Although serial passages of chondrocytes through subcultures on the CL and PS substrates caused a decrease in the number of round-shaped cells, the morphological change was appreciably suppressed on the CL substrate, as compared with that on the PS substrate. It was found that only round-shaped cells formed collagen type II, which supports the view that cellular dedifferentiation can be suppressed to some extent on the CL substrate. Three-dimensional cultures in collagen gel were performed with cells isolated freshly and passaged on the CL or PS substrate. Cell density at 21 days in the culture of cells passaged on the CL substrate was comparable to that in the culture of freshly isolated cells, in spite of a significant reduction in cell density observed in the culture of cells passaged on the PS substrate. In addition, histological analysis revealed that the expression of glycosaminoglycans and collagen type II was of significance in the collagen gel with cells passaged on the CL substrate, and likewise in the gel with freshly isolated cells. This indicated that the CL substrate could offer a monolayer culture system for expanding chondrocyte cells.

  20. Evidence for regulated interleukin-4 expression in chondrocyte-scaffolds under in vitro inflammatory conditions.

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Rai

    Full Text Available OBJECTIVE: To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions. METHODS: Mature articular chondrocytes from dogs (n = 3 were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive or pCOX-2.cIL-4 (cytokine-responsive plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS® to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc IL-1β (100 ng/ml plus rcTNFα (50 ng/ml in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic properties of cIL-4. RESULTS: cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE(2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable. Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and

  1. Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes.

    Science.gov (United States)

    Gu, Yunpeng; Kang, Ning; Dong, Ping; Liu, Xia; Wang, Qian; Fu, Xin; Yan, Li; Jiang, Haiyue; Cao, Yilin; Xiao, Ran

    2016-11-15

    The remnant auricular cartilage from microtia has become a valuable cell source for ear regeneration. It is important to clarify the issue of whether the genetically defective microtia chondrocytes could engineer cartilage tissue comparable to healthy ear chondrocytes. In the current study, the histology and cell yield of native microtia and normal ear cartilage were investigated, and the biological characteristics of derived chondrocytes examined, including proliferation, chondrogenic phenotype and cell migration. Furthermore, the in vivo cartilage-forming capacity of passaged microtia and normal auricular chondrocytes were systematically compared by seeding them onto polyglycolic acid/polylactic acid scaffold to generate tissue engineered cartilage in nude mice. Through histological examinations and quantitative analysis of glycosaminoglycan, Young's modulus, and the expression of cartilage-related genes, it was found that microtia chondrocytes had a slower dedifferentiation rate with the decreased expression of stemness-related genes, and weaker migration ability than normal ear chondrocytes, and the microtia chondrocytes-engineered cartilage was biochemically and biomechanically inferior to that constructed using normal ear chondrocytes. This study provides valuable information for the clinical application of the chondrocytes derived from congenital microtia to engineer cartilage. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential

    Institute of Scientific and Technical Information of China (English)

    Karen E JAY; Anne ROULEAU; T Michael UNDERHILL; Mickie BHATIA

    2004-01-01

    With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes.Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34-cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.

  3. 银屑病患者外周血单个核细胞对自身角质形成细胞的促生长作用%Psoriatic peripheral blood mononuclear cells stimulate the proliferation of epidermal keratinocytes in autologous mixed culture reaction

    Institute of Scientific and Technical Information of China (English)

    王刚; 刘玉峰

    2001-01-01

    目的了解银屑病患者外周血单个核细胞(PBMCs)对自体表皮角质形成细胞(KCs)增生的作用. 方法分离3例银屑病患者的PBMCs,经30 Gy钴照射后与来自同一患者的%AIM To learn the effect of psoriatic peripheral blood mononuclear cells (PBMC) on the proliferation of autologous epidermal keratinocytes. METHODS Peripheral blood mononuclear cells were isolated from 3 patients with psoriasis vulgaris. After irradiating in Cobalt gamma ray of 30 Gy, the cells were cocultured with psoriatic epidermal keratinocytes that were obtained from the same patient. The changes of keratinocyte proliferation were detected by 3H-TdR incorporation assay. RESULTS Keratinocytes involved and uninvolved in Psoriatic underwent a significant proliferation response to autologous peripheral blood mononuclear cells in the mixed cultures. CONCLUSION Interaction of keratinocytes with infiltrated mononuclear cells in epidermis may induce the hyperproliferation of the keratinocytes and thus play an important role in the pathogenesis of psoriasis.

  4. The effects of interleukin-1b in modulating osteoclast-conditioned medium’s influence on gelatinases in chondrocytes through mitogen-activated protein kinases

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xiao Cai

    2015-01-01

    Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1b (IL-1b)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1b induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1b restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1b restores gelatinase activity through MAPK inhibitors;this information can help to increase the understanding of the gelatinase modulation in articular cartilage.

  5. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte.

    Science.gov (United States)

    Ying, Xiaozhou; Chen, Xiaowei; Cheng, Shaowen; Shen, Yue; Peng, Lei; Xu, Hua Zi

    2013-10-01

    Black pepper (Piper nigrum) is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. The present study aimed to assess the effects of piperine, the active phenolic component in black pepper extract, on human OA chondrocytes. In this study, human OA chondrocytes were pretreated with piperine at 10, 50 or 100μg/ml and subsequently stimulated with IL-1β (5ng/ml) for 24h. Production of PGE2 and NO was evaluated by the Griess reaction and an ELISA. Gene expression of MMP-3, MMP-13, iNOS and COX-2 was measured by real-time PCR. MMP-3 and MMP-13 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the iNOS and COX-2 protein production in the culture medium. The regulation of NF-kB activity and the degradation of IkB were explored using luciferase and Western immunoblotting, respectively. We found that piperine inhibited the production of PGE2 and NO induced by IL-1β. Piperine significantly decreased the IL-1β-stimulated gene expression and production of MMP-3, MMP-13, iNOS and COX-2 in human OA chondrocytes. Piperine inhibited the IL-1β-mediated activation of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm. The present report is first to demonstrate the anti-inflammatory activity of piperine in human OA chondrocytes. Piperine can effectively abrogate the IL-1β-induced over-expression of inflammatory mediators; suggesting that piperine may be a potential agent in the treatment of OA.

  6. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung-Hoon [Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Seung-Yoon [Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714 (Korea, Republic of); Crombrugghe, Benoit de [Department of Genetics, University of Texas, M.D. Anderson Cancer Center, Houston (United States); Kim, Jung-Eun, E-mail: kjeun@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Conditional ablation of Osterix (Osx) in chondrocytes leads to skeletal defects. Black-Right-Pointing-Pointer Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes. Black-Right-Pointing-Pointer Osx has an autonomous function in chondrocytes during endochondral ossification. -- Abstract: Osterix (Osx) is an essential transcription factor required for osteoblast differentiation during both intramembranous and endochondral ossification. Endochondral ossification, a process in which bone formation initiates from a cartilage intermediate, is crucial for skeletal development and growth. Osx is expressed in differentiating chondrocytes as well as osteoblasts during mouse development, but its role in chondrocytes has not been well studied. Here, the in vivo function of Osx in chondrocytes was examined in a chondrocyte-specific Osx conditional knockout model using Col2a1-Cre. Chondrocyte-specific Osx deficiency resulted in a weak and bent skeleton which was evident in newborn by radiographic analysis and skeletal preparation. To further understand the skeletal deformity of the chondrocyte-specific Osx conditional knockout, histological analysis was performed on developing long bones during embryogenesis. Hypertrophic chondrocytes were expanded, the formation of bone trabeculae and marrow cavities was remarkably delayed, and subsequent skeletal growth was reduced. The expression of several chondrocyte differentiation markers was reduced, indicating the impairment of chondrocyte differentiation and endochondral ossification in the chondrocyte-specific Osx conditional knockout. Taken together, Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes, suggesting an autonomous function of Osx in chondrocytes during endochondral ossification.

  7. Fibroblast-like synoviocyte-chondrocyte interaction in cartilage degradation

    NARCIS (Netherlands)

    Steenvoorden, M.M.C.; Bank, R.A.; Ronday, H.K.; Toes, R.E.M.; Huizinga, T.W.J.; Groot, J. de

    2007-01-01

    Objective: In vitro models for joint diseases often focus on a single cell type, such as chondrocytes in osteoarthritis (OA) or fibroblast-like synoviocytes (synoviocytes) in rheumatoid arthritis (RA). However, these joint diseases affect the whole joint and interaction between chondrocytes and syno

  8. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation.

    Science.gov (United States)

    Kobayashi, Tatsuya; Lu, Jun; Cobb, Bradley S; Rodda, Stephen J; McMahon, Andrew P; Schipani, Ernestina; Merkenschlager, Matthias; Kronenberg, Henry M

    2008-02-12

    Small noncoding RNAs, microRNAs (miRNAs), bind to messenger RNAs through base pairing to suppress gene expression. Despite accumulating evidence that miRNAs play critical roles in various biological processes across diverse organisms, their roles in mammalian skeletal development have not been demonstrated. Here, we show that Dicer, an essential component for biogenesis of miRNAs, is essential for normal skeletal development. Dicer-null growth plates show a progressive reduction in the proliferating pool of chondrocytes, leading to severe skeletal growth defects and premature death of mice. The reduction of proliferating chondrocytes in Dicer-null growth plates is caused by two distinct mechanisms: decreased chondrocyte proliferation and accelerated differentiation into postmitotic hypertrophic chondrocytes. These defects appear to be caused by mechanisms downstream or independent of the Ihh-PTHrP signaling pathway, a pivotal signaling system that regulates chondrocyte proliferation and differentiation. Microarray analysis of Dicer-null chondrocytes showed limited expression changes in miRNA-target genes, suggesting that, in the majority of cases, chondrocytic miRNAs do not directly regulate target RNA abundance. Our results demonstrate the critical role of the Dicer-dependent pathway in the regulation of chondrocyte proliferation and differentiation during skeletal development.

  9. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    Science.gov (United States)

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM.

  10. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    Directory of Open Access Journals (Sweden)

    Alice Roffi

    2014-01-01

    Full Text Available PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes.

  11. Osthole Inhibits Proliferation and Induces Catabolism in Rat Chondrocytes and Cartilage Tissue

    Directory of Open Access Journals (Sweden)

    Guoqing Du

    2015-08-01

    Full Text Available Background/Aims: Cartilage destruction is thought to be the major mediator of osteoarthritis. Recent studies suggest that inhibition of subchrondral bone loss by anti-osteoporosis (OP drug can protect cartilige erosion. Osthole, as a promising agent for treating osteoporosis, may show potential in treating osteoarthritis. The purpose of this study was to investigate whether Osthole affects the proliferation and catabolism of rat chondrocytes, and the degeneration of cartilage explants. Methods: Rat chondrocytes were treated with Osthole (0 μM, 6.25 μM, 12.5 μM, and 25 μM with or without IL1-β (10ng/ml for 24 hours. The expression levels of type II collagen and MMP13 were detected by western Blot. Marker genes for chondrocytes (A-can and Sox9, matrix metalloproteinases (MMPs, aggrecanases (ADAMTS5 and genes implicated in extracellular matrix catabolism were evaluated by qPCR. Cell proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA expression and fluorescence activated cell sorter. Wnt7b/β-catenin signaling was also investigated. Cartilage explants from two-week old SD rats were cultured with IL-1β, Osthole and Osthole plus IL-1β for four days and glycosaminoglycan (GAG synthesis was assessed with toluidine blue staining and Safranine O/Fast Green FCF staining, collagen type II expression was detected by immunofuorescence. Results: Osthole reduced expression of chondrocyte markers and increased expression of MMP13, ADAMTS5 and MMP9 in a dose-dependent manner. Catabolic gene expression levels were further improved by Osthole plus IL-1β. Osthole inhibited chondrocyte proliferation. GAG synthesis and type II collagen were decreased in both the IL-1β groups and the Osthole groups, and significantly reduced by Osthole plus IL-1β. Conclusions: Our data suggested that Osthole increases the catabolism of rat chondrocytes and cartilage explants, this effect might be mediated through inhibiting Wnt7b

  12. [Autologous fat grafting in children].

    Science.gov (United States)

    Baptista, C; Bertrand, B; Philandrianos, C; Degardin, N; Casanova, D

    2016-10-01

    Lipofilling or fat grafting transfer is defined as a technique of filling soft tissue by autologous fat grafting. The basic principle of lipofilling is based on a harvest of adipose tissue, followed by a reinjection after treatment. Lipofilling main objective is a volume defect filling, but also improving cutaneous trophicity. Lipofilling specificities among children is mainly based on these indications. Complications of autologous fat grafting among children are the same as those in adults: we distinguish short-term complications (intraoperative and perioperative) and the medium and long-term complications. The harvesting of fat tissue is the main limiting factor of the technique, due to low percentage of body fat of children. Indications of lipofilling among children may be specific or similar to those in adults. There are two types of indications: cosmetic, in which the aim of lipofilling is correcting a defect density, acquired (iatrogenic, post-traumatic scar) or malformation (otomandibular dysplasia, craniosynostosis, Parry Romberg syndrom, Poland syndrom, pectus excavatum…). The aim of functional indications is correcting a velar insufficiency or lagophthalmos. In the paediatric sector, lipofilling has become an alternative to the conventional techniques, by its reliability, safety, reproducibility, and good results.

  13. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.

  14. Autologous serum can induce mesenchymal stem cells into hepatocyte-like cells

    Institute of Scientific and Technical Information of China (English)

    Yang Yi; Huo Jianhua; Qu Bo; Wu Shenli; Zhang Mingyu; Wang Zuoren

    2008-01-01

    Objective: To investigate whether the rabbit serum after radiofrequency ablation to liver tumor can induce mesenchymal stem cells (MSCs) differentiating into hepatocyte-like cells in order to find a new source and culture process for repairing liver injury. Methods: A tumor piece of 1 mm×1 mm×1 mm was transplanted into a tunnel at right liver of rabbits. The model of liver tumor was established after 2-3 weeks. The serum was collected from rabbits 72 h after being subjected to radiofrequency ablation of the liver tumor. Mesenchymal stem cells were isolated from rabbit bone marrow and cultured in DMEM containing autologous rabbit serum. Three kinds of media (L-DMEM) were tested respectively: ① containing 10% fetal calf serum (FCS);② containing 30% rabbit autologous serum after radiofrequency ablation of the liver tumor (ASRF); ③ containing 30% rabbit autologous serum (AS). MSCs were cultured on 12-well plates until passage 2 and examined under the light and electron microscopy at indicted intervals. The expression of albumin and CK18 was detected using immunofluorescence to identify the characteristics of differentiated cells. Results: MSCs performed differently in the presence of fetal calf serum, rabbit autologous serum and rabbit autologous serum after radiofrequency ablation of the liver tumor. Induced by the serum after radiofrequency ablation to liver tumor for 7 d, the spindle-shaped MSCs turned into round shaped and resembled hepatocyte-like cells. The reactions were not found in MSCs cultured in FCS and AS groups. After induction for 14 d, slender microvilli, cell-cell junction structure and cholangiole emerged, and the differentiated cells expressed albumin and CK18. All those could not been observed in 10% FCS and 30% autologous serum groups. Conclusion: Mesenchymal stem cells differentiate into hepatocyte-like cells in the serum after radiofrequency ablation of liver tumor, providing us a potential cell source and culture process for clinical

  15. Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity

    Institute of Scientific and Technical Information of China (English)

    YIN Jing; YANG Zheng; CAO Yong-ping; GE Zi-gang

    2011-01-01

    Background There is a difficulty in evaluating the in vivo functionality of individual chondrocytes,and there is much heterogeneity among cartilage affected by osteoarthritis (OA).In this study,in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.Methods Cartilage of varying degeneration of end-stage OA was harvested,while cell yield and matrix glycosaminoglycan (GAG) content were measured.Cell morphology,proliferation,and gene expression of collagen type Ⅰ,Ⅱ,and Ⅹ,aggrecan,matrix metalloproteinase 13 (MMP-13),and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.Results Both the number of cells and the GAG content increased with increasing severity of OA.Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture.Gene expression of collagen type Ⅱ,collagen type X as well as GAG decreased with severity of cartilage degeneration,while expression of collagen type Ⅰ increased.Expression of MMP-13 increased with severity of cartilage degeneration,while expression of ADAMTS-5 remained stable.Expression of collagen type Ⅱ,X,GAG,and MMP-13 substantially decreased with in vitro culture.Expression of collagen type Ⅰ increased with in vitro cultures,while expression of ADAMTS 5 remained stable.Conclusions Expression of functional genes such as collagen type Ⅱ and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation.Gene expression of collagen Ⅰ and MMP-13 increased with severity of cartilage degeneration.

  16. Effect of the disruption of three cytoskeleton components on chondrocyte metabolism in rabbit knee cartilage

    Institute of Scientific and Technical Information of China (English)

    Duan Wangping; Wei Lei; Cao Xiaoming; Guo Heng; Wang Lei; Hao Yongzhuang; Wei Xiaochun

    2014-01-01

    Background Chondrocytes' phenotype and biosynthesis of matrix are dependent on having an intact cytoskeletal structure.Microfilaments,microtubules,and intermediate filaments are three important components of the cytoskeletal structure of chondrocytes.The aims of this study were to determine and compare the effects of the disruption of these three cytoskeletal elements on the apoptosis and matrix synthesis by rabbit knee chondrocytes in vitro.Methods Chondrocytes were isolated from full-thickness knee cartilage of two-month-old rabbits using enzymatic methods (n=24).The isolated cells were stabilized for three days and then exposed to low,medium,and high doses of chemical agents that disrupt the three principal cytoskeletal elements of interest:colchicine for microtubules,acrylamide for intermediate filaments,and cytochalasin D for actin microfilaments.A group of control cells were treated with carrier.Early apoptosis was assessed using the Annexin-FITC binding assay by flow cytometry on days 1 and 2 after exposure to the disrupting chemical agents.The components and distribution of the cytoskeleton within the cells were analyzed by laser scanning confocal microscopy (LSCM) with immunofluorescence staining on day 3.The mRNA levels of aggrecan (AGG) and type Ⅱ collagen (Col-2) and their levels in culture medium were analyzed using real-time PCR and enzymelinked immunosorbent serologic assay (ELISA) on days 3,6,and 9.Results In the initial drug-dose-response study,there was no significant difference in the vitality of cells treated with 0.1 μmol/L colchicine,2.5 mmol/L acrylamide,and 10 μg/L cytochalasin D for two days when compared with the control group of cells.The concentrations of colchicine and acrylamide treatment selected above significantly decreased the number of viable cells over the nine-day culture and disrupted significantly more cell nuclei.Real-time PCR and ELISA results showed that the mRNA levels and medium concentrations of AGG and Col-2 were

  17. Up-regulation of the chemo-attractive receptor ChemR23 and occurrence of apoptosis in human chondrocytes isolated from fractured calcaneal osteochondral fragments.

    Science.gov (United States)

    Sena, Paola; Manfredini, Giuseppe; Benincasa, Marta; Mariani, Francesco; Smargiassi, Alberto; Catani, Fabio; Palumbo, Carla

    2014-06-01

    To study the expression level of a panel of pro/anti-apoptotic factors and inflammation-related receptors in chondral fragments from patients undergoing surgical treatment for intra-articular calcaneal fractures, cartilage fragments were retrieved from calcaneal fractures of 20 patients subjected to surgical treatment. Primary cultures were performed using chondral fragments from fractured and control patients. Chondrocyte cultures from each patient of the fractured and control groups were subjected to immunofluorescence staining and quantitatively analyzed under confocal microscopy. Proteins extracted from the cultured chondrocytes taken from the fractured and control groups were processed for Western blot experiments and densitometric analysis. The percentage of apoptotic cells was determined using the cleaved PARP-1 antibody. The proportion of labelled cells was 35% for fractured specimens, compared with 7% for control samples. Quantification of caspase-3 active and Bcl-2 proteins in chondrocyte cultures showed a significant increase of the apoptotic process in fractured specimens compared with control ones. Fractured chondrocytes were positively stained for ChemR23 with statistically significant differences with respect to control samples. Densitometric evaluation of the immunoreactive bands confirmed these observations. Human articular chondrocytes obtained from patients with intra-articular calcaneal fractures express higher levels of pivotal pro-apoptotic factors, and of the chemo-attractive receptor ChemR23, compared with control cultures. On the basis of these observations, the authors hypothesize that consistent prolonged chondrocyte death, associated with the persistence of high levels of pro-inflammatory factors, could enhance the deterioration of cartilage tissue with consequent development of post-traumatic arthritis following intra-articular bone fracture.

  18. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions.

    Directory of Open Access Journals (Sweden)

    Thomas J Kean

    Full Text Available Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5% oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential.Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%, and atmospheric (20% oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically.Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions

  19. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Pedersen Christian

    2010-04-01

    Full Text Available Abstract Background Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglycans and collagen-type-II synthesis in osteoarthritic (OA cartilage. Methods Human OA cartilage explants were cultured with salmon calcitonin [100 pM-100 nM]. Direct effects of calcitonin on articular cartilage were evaluated by 1 measurement of proteoglycan synthesis by incorporation of radioactive labeled 35SO4 [5 μCi] 2 quantification of collagen-type-II formation by pro-peptides of collagen type II (PIINP ELISA, 3 QPCR expression of the calcitonin receptor in OA chondrocytes using four individual primer pairs, 4 activation of the cAMP signaling pathway by EIA and, 5 investigations of metabolic activity by AlamarBlue. Results QPCR analysis and subsequent sequencing confirmed expression of the calcitonin receptor in human chondrocytes. All doses of salmon calcitonin significantly elevated cAMP levels (P 35SO4 incorporation, with a 96% maximal induction at 10 nM (P Conclusion Calcitonin treatment increased proteoglycan and collagen synthesis in human OA cartilage. In addition to its well-established effect on subchondral bone, calcitonin may prove beneficial to the management of joint diseases through direct effects on chondrocytes.

  20. Effects of cytokines, growth factors and drugs on matrix metalloproteinases activities of osteoarthritic chondrocytes and synoviocytes

    Institute of Scientific and Technical Information of China (English)

    GUAN Jian-long; HAN Xing-hai; SHI Gui-ying; YUAN Guo-hua

    2001-01-01

    Objective: To evaluate the effects of some cytokines, TGF-β1 and drugs on matrix metalloproteinases (MMPs) activities in culture medium of arthritic chondrocytes and synoviocytes. Methods: The chondrocyte and synoviocyte monolayers isolated from the cartilages and synovial fluids in 10 knee OA patients were treated with IL-1β TGF-β1, TNF-α, diclofenac acid, dexamethasone or doxycycline individually and together for 72 h. Zymography was used to determine the activities of MMP-2 and -9. Results: The chondrocyte monolayers produced MMP-2 and -9, while the synoviocytes only produced MMP-2. The MMP-9 activity was markedly enhanced by IL-1β TNF-α and diclofenac. IL-1β was the most effective stimulus, and had synergistic effect with TNF-α or diclifenac. MMP-2 activity was not affected. Doxcycline, TGF-β1 and dexamethasone could depress the activities of MMP-9 and MMP-2, and antagonize the enhancing effect of IL-1β TNF-α or diclofenac. Conclusion: IL-1β and TNF-α may play important roles degrading OA cartilage, while TGF-β1 and doxycycline may be protective factors.

  1. Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis.

    Science.gov (United States)

    El-Seoudi, Abdellatif; El Kader, Tarek Abd; Nishida, Takashi; Eguchi, Takanori; Aoyama, Eriko; Takigawa, Masaharu; Kubota, Satoshi

    2017-03-25

    Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.

  2. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

  3. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    Science.gov (United States)

    Hyzy, Sharon L.; Doroudi, Maryam; Williams, Joseph K.; Gall, Ken; Boyan, Barbara D.; Schwartz, Zvi

    2017-01-01

    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process. PMID:28095466

  4. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic Acid Biphasic Scaffold

    Directory of Open Access Journals (Sweden)

    Juin-Yih Su

    2017-01-01

    Full Text Available Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM, transmission electron (TEM microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9 levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.

  5. Hydroxytyrosol prevents increase of osteoarthritis markers in human chondrocytes treated with hydrogen peroxide or growth-related oncogene α.

    Directory of Open Access Journals (Sweden)

    Annalisa Facchini

    Full Text Available Hydroxytyrosol (HT, a phenolic compound mainly derived from olives, has been proposed as a nutraceutical useful in prevention or treatment of degenerative diseases. In the present study we have evaluated the ability of HT to counteract the appearance of osteoarthritis (OA features in human chondrocytes. Pre-treatment of monolayer cultures of chondrocytes with HT was effective in preventing accumulation of reactive oxidant species (ROS, DNA damage and cell death induced by H2O2 exposure, as well as the increase in the mRNA level of pro-inflammatory, matrix-degrading and hypertrophy marker genes, such as iNOS, COX-2, MMP-13, RUNX-2 and VEGF. HT alone slightly enhanced ROS production, but did not enhance cell damage and death or the expression of OA-related genes. Moreover HT was tested in an in vitro model of OA, i.e. three-dimensional micromass cultures of chondrocytes stimulated with growth-related oncogene α (GROα, a chemokine involved in OA pathogenesis and known to promote hypertrophy and terminal differentiation of chondrocytes. In micromass constructs, HT pre-treatment inhibited the increases in caspase activity and the level of the messengers for iNOS, COX-2, MMP-13, RUNX-2 and VEGF elicited by GROα. In addition, HT significantly increased the level of SIRT-1 mRNA in the presence of GROα. In conclusion, the present study shows that HT reduces oxidative stress and damage, exerts pro-survival and anti-apoptotic actions and favourably influences the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features.

  6. Screening for autologous blood transfusions

    DEFF Research Database (Denmark)

    Mørkeberg, J; Belhage, B; Ashenden, M

    2009-01-01

    The ratio between the amount of hemoglobin in the mature erythrocyte population and the reticulocytes (RBCHb:RetHb ratio) has previously been suggested as a marker to screen for EPO-abuse. We speculated that the reinfusion of blood would lead to a marked increase in this ratio, making it a valuab...... doping after reinfusion, and the parameter could be used in a testing setting, once stability validation has been performed....... parameter in the screening for autologous blood doping. Three bags of blood (approximately 201+/-11 g of Hb) were withdrawn from 16 males and stored at either -80 degrees C (-80 T, n=8) or +4 degrees C (+4 T, n=8) and reinfused 10 weeks or 4 weeks later, respectively. Seven subjects served as controls...

  7. In vitro and in vivo characterization of nonbiomedical- and biomedical-grade alginates for articular chondrocyte transplantation.

    Science.gov (United States)

    Heiligenstein, Susanne; Cucchiarini, Magali; Laschke, Matthias W; Bohle, Rainer M; Kohn, Dieter; Menger, Michael D; Madry, Henning

    2011-08-01

    Alginate is a key hydrogel for cartilage tissue engineering. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to support the in vitro culture and in vivo transplantation of articular chondrocytes. Chondrocytes in all ultrapure alginates maintained high cell viability. Spheres composed of biomedical-grade, low-viscosity, high-mannuronic acid content alginate showed the lowest decrease in size over time. Biomedical-grade, low-viscosity, high-guluronic acid content alginate allowed for optimal cell proliferation. Biomedical-grade, medium-viscosity, high-mannuronic acid content alginate promoted the highest production of proteoglycans. When transplanted into osteochondral defects in the knee joint of sheep in vivo, empty spheres were progressively surrounded by a granulation tissue. In marked contrast with these observations, all alginate spheres carrying allogeneic chondrocytes were gradually invaded by a granulation tissue containing multinucleated giant cells, lymphocytes, and fibroblasts, regardless whether they were based on biomedical- or nonbiomedical-grade alginates. After 21 days in vivo, transplanted chondrocytes were either viable or underwent necrosis, and apoptosis played a minor role in their early fate. The individual characteristics of these alginates may be valuable to tailor specific experimental and clinical strategies for cartilage tissue engineering.

  8. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma.

    Science.gov (United States)

    Kwak, Hong Suk; Nam, Jinwoo; Lee, Ji-Hye; Kim, Hee Joong; Yoo, Jeong Joon

    2017-02-01

    The objective of this study was to test the hypothesis that platelet-rich plasma (PRP) pretreatment on a poly-lactic-co-glycolic acid (PLGA) mesh scaffold enhances the healing capacity of the meniscus with human chondrocyte-seeded scaffolds in vivo, even when the seeded number of cells was reduced from 10 million to one million. A flexible PLGA mesh scaffold was pretreated with PRP using a centrifugal technique. One million human articular chondrocytes were seeded onto the scaffold by dynamic oscillation. After 7 days, scaffolds were placed between human meniscal discs and were implanted subcutaneously in nude mice for 6 weeks (n = 16/group). Fluorescence microscopy demonstrated uniform attachment of the chondrocytes throughout the scaffolds 24 h following seeding. Cell attachment analysis revealed a significantly increased number of chondrocytes on PRP-pretreated than non-treated scaffolds (p network at 24 h and day 7 of culture. Of the 16 constructs containing PRP-pretreated scaffolds implanted in mice, six menisci healed completely, nine healed incompletely and one did not heal. Histological results from the 16 control constructs containing non-treated scaffolds revealed that none had healed completely, four healed incompletely and 12 did not heal. The histological outcome between the groups was significantly different (p mesh scaffolds demonstrate increased cell attachment and enhance the healing capacity of meniscus with a reduced number of seeding cells in a meniscal repair mouse model. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Chondrocalcin is internalized by chondrocytes and triggers cartilage destruction via an interleukin-1β-dependent pathway.

    Science.gov (United States)

    Bantsimba-Malanda, Claudie; Cottet, Justine; Netter, Patrick; Dumas, Dominique; Mainard, Didier; Magdalou, Jacques; Vincourt, Jean-Baptiste

    2013-01-01

    Chondrocalcin is among the most highly synthesized polypeptides in cartilage. This protein is released from its parent molecule, type II pro-collagen, after secretion by chondrocytes. A participation of extracellular, isolated chondrocalcin in mineralization was proposed more than 25 years ago, but never demonstrated. Here, exogenous chondrocalcin was found to trigger MMP13 secretion and cartilage destruction ex vivo in human cartilage explants and did so by modulating the expression of interleukin-1β in primary chondrocyte cultures in vitro. Chondrocalcin was found internalized by chondrocytes. Uptake was found mediated by a single 18-mer peptide of chondrocalcin, which does not exhibit homology to any known cell-penetrating peptide. The isolated peptide, when artificially linked as a tetramer, inhibited gene expression regulation by chondrocalcin, suggesting a functional link between uptake and gene expression regulation. At the same time, the tetrameric peptide potentiated chondrocalcin uptake by chondrocytes, suggesting a cooperative mechanism of entry. The corresponding peptide from type I pro-collagen supported identical cell-penetration, suggesting that this property may be conserved among C-propeptides of fibrillar pro-collagens. Structural modeling localized this peptide to the tips of procollagen C-propeptide trimers. Our findings shed light on unexpected function and mechanism of action of these highly expressed proteins from vertebrates.

  10. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Han, Yohan; Kim, Song Ja

    2016-08-15

    Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis.

  11. Optimization of dual effects of Mg-1Ca alloys on the behavior of chondrocytes and osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    Yana Dou; Ayeesha Mujeeb; Yufeng Zheng; Zigang Ge

    2014-01-01

    Mg ions can enhance the proliferation and redifferentiation of chondrocytes and the osteogenic differentiation of osteoblasts at specific concentrations, respectively. However, degradation of Mg alloys at varying degradation rates could lead to complex changes in the surrounding tissue environment, such as changes in the dynamic concentration of Mg ions and subsequent pH value. Considering the above mentioned factors, the comprehensive effects of Mg alloys on chondrocytes and osteoblasts behaviors have not yet been optimized. In this study, we evaluated the effects of Mg–1Ca microspheres on cell behavior with an aim to optimize conditions favorable for both cell types. Cells were cultured with Mg–1Ca microspheres prepared using the following concentrations:250μg/ml, 500μg/ml and 1000μg/ml. At specific time points, cytotoxicity, expression of specific genes and extracellular matrix deposition by cells (Alizarin Red Staining of osteoblasts and Alcian blue staining for chondrocytes) were evaluated. The experimental results revealed that Mg–1Ca microspheres prepared at a concentration of 250μg/ml were optimum for both cell types, where chondrocytes were found to be in hypertrophy state while osteoblasts in close proximity to the microspheres showed osteogenetic differentiation. Interestingly, a slight change in osteoblasts behavior was observed nearer to and at a relative distance away from Mg–1Ca microspheres, an important observation for administering the application of microspheres as potential scaffolds.

  12. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat

    Directory of Open Access Journals (Sweden)

    John Garcia

    2016-01-01

    Full Text Available Autologous chondrocyte implantation (ACI is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs. In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM, infrapatellar fat pad (FP, and subcutaneous fat (SCF, compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies.

  13. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat

    Science.gov (United States)

    Garcia, John; McCarthy, Helen S.; Roberts, Sally; Richardson, James B.

    2016-01-01

    Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies. PMID:27781068

  14. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...... noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle...

  15. Autologous serum therapy in chronic urticaria

    Directory of Open Access Journals (Sweden)

    Sharmila Patil

    2013-01-01

    Full Text Available Autologous serum therapy is a promising therapy for treatment resistant urticaria. This is useful in developing countries as this is economical option. Minimum instruments like centrifuge, syringe and needles are required for the procedure.

  16. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-β in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans.

    Science.gov (United States)

    Cuellar, Araceli; Reddi, A Hari

    2015-07-01

    Superficial zone protein (SZP), also known as lubricin and proteoglycan 4 (PRG4), plays an important role in the boundary lubrication of articular cartilage and is regulated by transforming growth factor (TGF)-β. Here, we evaluate the role of cell surface glycosaminoglycans (GAGs) during TGF-β1 stimulation of SZP/lubricin/PRG4 in superficial zone articular chondrocytes. We utilized primary monolayer superficial zone articular chondrocyte cultures and treated them with various concentrations of TGF-β1, in the presence or absence of heparan sulfate (HS), heparin, and chondroitin sulfate (CS). The cell surface GAGs were removed by pretreatment with either heparinase I or chondroitinase-ABC before TGF-β1 stimulation. Accumulation of SZP/lubricin/PRG4 in the culture medium in response to stimulation with TGF-β1 and various exogenous GAGs was demonstrated by immunoblotting and quantitated by enzyme-linked immunosorbent assay. We show that TGF-β1 and exogenous HS enhanced SZP accumulation of superficial zone chondrocytes in the presence of surface GAGs. At the dose of 1 ng/mL of TGF-β1, the presence of exogenous heparin inhibited SZP accumulation whereas the presence of exogenous CS stimulated SZP accumulation in the culture medium. Enzymatic depletion of GAGs on the surface of superficial zone chondrocytes enhanced the ability of TGF-β1 to stimulate SZP accumulation in the presence of both exogenous heparin and CS. Collectively, these results suggest that GAGs at the surface of superficial zone articular chondrocytes influence the response to TGF-β1 and exogenous GAGs to stimulate SZP accumulation. Cell surface GAGs modulate superficial zone chondrocytes' response to TGF-β1 and exogenous HS.

  17. Immortalization of human articular chondrocytes and induction of their phenotype

    Institute of Scientific and Technical Information of China (English)

    何清义; 李起鸿; 杨柳; 许建中

    2003-01-01

    Objective To immortalize human articular chondrocytes (HACs) using gene transfection and to maintain stable phenotype of transformed HACs after induction.Methods HACs were transfected with the retroviral vector pLXSN encoding human papillomavirus 16E7 (HPV16E7), and the transformed clones were sorted and proliferated. Karyotype analysis, clone forming tests and nude mice tumor forming tests were applied to check the characteristics of the transformation. Type Ⅱ collagen of transformed chondrocytes was inducted with free serum medium (FSM) supplemented with nutridoma-sp and ascorbate. Results Immortalized HACs were isolated with fifty passages achieved. The HPV16E7 transformed cells were confirmed to be benign. Induction of FSM with nutridoma-sp and ascorbate promoted type Ⅱ collagen of transformed chondrocytes to the high levels of normal chondrocytes. Conclusion HACs transformed with HPV16E7 survive for long periods in vitro, and type Ⅱ collagen can maintain stability after induction.

  18. Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis.

    Science.gov (United States)

    Diao, Hua Jia; Fung, Hon Sing; Yeung, Pan; Lam, K L; Yan, Chun Hoi; Chan, Barbara Pui

    2017-02-16

    Human osteoarthritic chondrocytes (hOACs) are characterized by their "dedifferentiated" and catabolic phenotype and lack the ability for restoring their inherent functions by themselves. Here we investigated whether extrinsically supplemented mechanical signal via compression loading would affect the phenotype of hOACs. Specifically, we applied cyclic compression loading on cultured hOACs-collagen constructs and measured the expression of the major chondrogenic factors, cell-matrix interaction molecules and matrix degradation enzymes. Dynamic compression loading stimulates the expression and nuclear localization of sox9 in hOACs and reduces the catabolic events via downregulated expression of collagenases. These results contribute to better understanding towards mechanoregulation of hOACs.

  19. Low-Frequency High-Magnitude Mechanical Strain of Articular Chondrocytes Activates p38 MAPK and Induces Phenotypic Changes Associated with Osteoarthritis and Pain

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2014-08-01

    Full Text Available Osteoarthritis (OA is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF. Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.

  20. Identification of the calcitonin receptor in osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Christensen Tjorbjoern

    2011-10-01

    Full Text Available Abstract Background Preclinical and clinical studies have shown that salmon calcitonin has cartilage protective effects in joint degenerative diseases, such as osteoarthritis (OA. However, the presence of the calcitonin receptor (CTR in articular cartilage chondrocytes is yet to be identified. In this study, we sought to further investigate the expression of the CTR in naïve human OA articular chondrocytes to gain further confirmation of the existents of the CTR in articular cartilage. Methods Total RNA was purified from primary chondrocytes from articular cartilage biopsies from four OA patients undergoing total knee replacement. High quality cDNA was produced using a dedicated reverse transcription polymerase chain reaction (RT-PCR protocol. From this a nested PCR assay amplifying the full coding region of the CTR mRNA was completed. Western blotting and immunohistochemistry were used to characterize CTR protein on protein level in chondrocytes. Results The full coding transcript of the CTR isoform 2 was identified in all four individuals. DNA sequencing revealed a number of allelic variants of the gene including two potentially novel polymorphisms: a frame shift mutation, +473del, producing a shorter form of the receptor protein, and a single nucleotide polymorphism in the 3' non coding region of the transcript, +1443 C>T. A 53 kDa protein band, consistent with non-glycosylated CTR isoform 2, was detected in chondrocytes with a similar size to that expressed in osteoclasts. Moreover the CTR was identified in the plasma membrane and the chondrocyte lacuna of both primary chondrocytes and OA cartilage section. Conclusions Human OA articular cartilage chondrocytes do indeed express the CTR, which makes the articular a pharmacological target of salmon calcitonin. In addition, the results support previous findings suggesting that calcitonin has a direct anabolic effect on articular cartilage.

  1. Experimental study of tissue-engineered cartilage allograft with RNAi chondrocytes in vivo

    Directory of Open Access Journals (Sweden)

    Wang ZH

    2014-05-01

    Full Text Available Zhenghui Wang,1 Xiaoli Li,2 Xi-Jing He,3 Xianghong Zhang,1 Zhuangqun Yang,4 Min Xu,1 Baojun Wu,1 Junbo Tu,5 Huanan Luo,1 Jing Yan11Department of Otolaryngology – Head and Neck Surgery, 2Department of Dermatology, 3Department of Orthopedics, The Second Hospital, Xi’an Jiaotong University, 4Department of Plastic and Burns Surgery, The First Hospital, Xi’an Jiaotong University, 5Department of Oral and Maxillofacial Plastic Surgery, The Stomatological Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of ChinaPurpose: To determine the effects of RNA interference (RNAi on chondrocyte proliferation, function, and immunological rejection after allogenic tissue-engineered cartilage transplantation within bone matrix gelatin scaffolds.Methods: Seven million rat normal and RNAi chondrocytes were harvested and separately composited with fibrin glue to make the cell suspension, and then transplanted subcutaneously into the back of Sprague Dawley rats after being cultured for 10 days in vitro. Untransplanted animals served as the control group. The allograft and immunological response were examined at 1, 2, 4, 8, and 12 months postoperatively with hematoxylin and eosin histochemical staining, immunohistochemical staining (aggrecan, type II collagen, class I and II major histocompatibility complex, and flow cytometry for peripheral blood cluster of differentiation 4+ (CD4+ and CD8+ T-cells.Results: There was no infection or death in the rats except one, which died in the first week. Compared to the control group, the RNAi group had fewer eukomonocytes infiltrated, which were only distributed around the graft. The ratio of CD4+/CD8+ T-cells in the RNAi group was significantly lower than the normal one (P<0.05. There were many more positively stained chondrocytes and positively stained areas around the cells in the RNAi group, which were not found in the control group.Conclusion: The aggrecanase-1 and aggrecanase-2 RNAi for chondrocytes

  2. Niacinamide therapy for osteoarthritis--does it inhibit nitric oxide synthase induction by interleukin 1 in chondrocytes?

    Science.gov (United States)

    McCarty, M F; Russell, A L

    1999-10-01

    Fifty years ago, Kaufman reported that high-dose niacinamide was beneficial in osteoarthritis (OA) and rheumatoid arthritis. A recent double-blind study confirms the efficacy of niacinamide in OA. It may be feasible to interpret this finding in the context of evidence that synovium-generated interleukin-1 (IL-1), by inducing nitric oxide (NO) synthase and thereby inhibiting chondrocyte synthesis of aggrecan and type II collagen, is crucial to the pathogenesis of OA. Niacinamide and other inhibitors of ADP-ribosylation have been shown to suppress cytokine-mediated induction of NO synthase in a number of types of cells; it is therefore reasonable to speculate that niacinamide will have a comparable effect in IL-1-exposed chondrocytes, blunting the anti-anabolic impact of IL-1. The chondroprotective antibiotic doxycycline may have a similar mechanism of action. Other nutrients reported to be useful in OA may likewise intervene in the activity or synthesis of IL-1. Supplemental glucosamine can be expected to stimulate synovial synthesis of hyaluronic acid; hyaluronic acid suppresses the anti-catabolic effect of IL-1 in chondrocyte cell cultures, and has documented therapeutic efficacy when injected intra-articularly. S-adenosylmethionine (SAM), another proven therapy for OA, upregulates the proteoglycan synthesis of chondrocytes, perhaps because it functions physiologically as a signal of sulfur availability. IL-1 is likely to decrease SAM levels in chondrocytes; supplemental SAM may compensate for this deficit. Adequate selenium nutrition may down-regulate cytokine signaling, and ample intakes of fish oil can be expected to decrease synovial IL-1 production; these nutrients should receive further evaluation in OA. These considerations suggest that non-toxic nutritional regimens, by intervening at multiple points in the signal transduction pathways that promote the synthesis and mediate the activity of IL-1, may provide a substantially superior alternative to NSAIDs

  3. Effect of autophagy induced by dexamethasone on senescence in chondrocytes

    Science.gov (United States)

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-01-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague-Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein-red fluorescent protein-light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway-associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence-associated (SA)-β-galactosidase (β-gal) staining. A dose-dependent increase in the number of autophagic vacuoles was observed in the DXM-treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose-dependent increase in autophagosome formation was observed in the DXM-treated chondrocytes. Expression of LC3-II and beclin-1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA-β-gal staining indicated that DXM increased cell senescence. Notably, DXM-induced cell senescence was exacerbated by the autophagic inhibitor 3-MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM-induced autophagy. PMID:27572674

  4. Glucose concentration and medium volume influence cell viability and glycosaminoglycan synthesis in chondrocyte-seeded alginate constructs.

    Science.gov (United States)

    Heywood, Hannah K; Bader, Dan L; Lee, David A

    2006-12-01

    Increasing the thickness of tissue-engineered cartilage is associated with loss of chondrocyte viability and biosynthetic activity at the tissue center. Exceptionally high volumes of culture medium, however, can maintain cellularity and glycosaminoglycan synthesis throughout 4-mm-thick constructs. We hypothesized that glucose supplementation could replicate the augmentation of tissue formation achieved by medium volume. Chondrocyte-alginate constructs (40x10(6) cells/mL) were cultured for 14 days in 0.4-6.4 mL/10(-6) cells of either low- (5.1 mM) or high- (20.4 mM) glucose medium. Glucose was critical to chondrocyte viability, and glucose uptake increased significantly (P cells of low-glucose medium had a mass of 172 +/- 6.1 mg and glycosaminoglycan (GAG) content of 0.32 +/- 0.03 mg (mean +/- standard deviation). A 4-fold increase in medium volume increased the final construct mass by 44% and GAG content by 207%. An equivalent increase in glucose supply in the absence of volume change increased these parameters by just 10% and 73%, respectively. A similar trend was observed from 0.8 to 3.2 mL/10(-6) cells, when maximal values of construct GAG content and mass were obtained. Therefore, medium volume remains an important consideration for the optimal culture of tissue-engineered cartilage.

  5. The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes.

    Science.gov (United States)

    Caglič, Dejan; Repnik, Urška; Jedeszko, Christopher; Kosec, Gregor; Miniejew, Catherine; Kindermann, Maik; Vasiljeva, Olga; Turk, Vito; Wendt, K Ulrich; Sloane, Bonnie F; Goldring, Mary B; Turk, Boris

    2013-02-01

    Osteoarthritis and rheumatoid arthritis are destructive joint diseases that involve the loss of articular cartilage. Degradation of cartilage extracellular matrix is believed to occur due to imbalance between the catabolic and anabolic processes of resident chondrocytes. Previous work has suggested that various lysosomal cysteine cathepsins participate in cartilage degeneration; however, their exact roles in disease development and progression have not been elucidated. In order to study degradation processes under conditions resembling the in vivo milieu of the cartilage, we cultivated chondrocytes on a type II collagen-containing matrix. Stimulation of the cultivated chondrocytes with interleukin-1α and/or tumor necrosis factor α resulted in a time-dependent increase in cathepsin S expression and induced its secretion into the conditioned media. Using a novel bioluminescent activity-based probe, we were able to demonstrate a significant increase in proteolytic activity of cathepsin S in the conditioned media of proinflammatory cytokine-stimulated chondrocytes. For the first time, cathepsin S was demonstrated to be secreted from chondrocytes upon stimulation with the proinflammatory cytokines, and displayed proteolytic activity in culture supernatants. Its stability at neutral pH and potent proteolytic activity on extracellular matrix components mean that cathepsin S may contribute significantly to cartilage degradation and may thus be considered a potential drug target in joint diseases.

  6. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  7. Autologous stem cells in neurology: is there a future?

    Science.gov (United States)

    de Munter, Johannes P J M; Wolters, Erik C

    2013-01-01

    Stem cells seem very promising in the treatment of degenerative neurological diseases for which there are currently no or limited therapeutic strategies. However, their clinical application meets many regulatory hurdles. This article gives an overview of stem cells, their potential healing capacities as well as their identified and potential risks, such as tumor formation, unwanted immune responses and the transmission of adventitious agents. As there is no clinical experience with embryonic and induced pluripotent stem cells (as the result of their unacceptable risk on tumor formation), most attention will be paid to fresh autologous adult stem cells (ASCs). To evaluate eventual clinical benefits, preclinical studies are essential, though their value is limited as in these studies, various types of stem cells, with different histories of procurement and culturing, are applied in various concentrations by various routes of administration. On top of that, in most animal studies allogenic human, thus non-autologous, stem cells are applied, which might mask the real effects. More reliable, though small-sized, clinical trials with autologous ASCs did show satisfying clinical benefits in regenerative medicine, without major health concerns. One should wonder, though, why it is so hard to get compelling evidence for the healing and renewing capacities of these stem cells when these cells indeed are really essential for tissue repair during life. Why so many hurdles have to be taken before health authorities such as the European Medicine Agency (EMA) and/or the Food and Drug Administration (FDA) approve stem cells in the treatment of (especially no-option) patients.

  8. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  9. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes

    DEFF Research Database (Denmark)

    Sondergaard, B C; Wulf, H; Henriksen, K

    2006-01-01

    chain reaction (RT-PCR). In bovine articular cartilage explants, cartilage degradation was investigated by release of C-terminal telopeptides of collagen type II (CTX-II), induced by tumor necrosis factor-alpha (TNF-alpha) [20 ng/ml] and oncostatin M (OSM) [10 ng/ml], with salmon calcitonin [0.......0001-1 microM]. In vivo, cartilage degradation was investigated in ovariectomized (OVX) rats administered with oral calcitonin [2 mg/kg calcitonin] for 9 weeks. RESULTS: The calcitonin receptor was identified in articular chondrocytes by immunohistochemistry and RT-PCR. Calcitonin concentration......-dependently increased cAMP levels in isolated chondrocytes. Explants cultured with TNF-alpha and OSM showed a 100-fold increase in CTX-II release compared to vehicle-treated controls (Pprotection...

  10. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    Science.gov (United States)

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair.

  11. Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes.

    Science.gov (United States)

    Monfort, J; Nacher, M; Montell, E; Vila, J; Verges, J; Benito, P

    2005-01-01

    Chondroitin sulfate (CS) and 500-730 kDa hyaluronic acid (HA) are symptomatic slow-acting drugs for the treatment of osteoarthritis (OA). In addition, a growing body of evidence suggests a role for CS and this specific HA as modifiers of the course of OA. The therapeutic efficacy of CS and HA lies in their different mechanisms of action. Stromelysin-1 (metalloprotease-3 [MMP-3]) is a cartilage proteolytic enzyme, which induces cartilage destruction and acts as a mediator of the inflammatory response. However, there are few studies evaluating the in vitro effect of CS and HA on MMP-3 synthesis in human chondrocyte cultures from OA patients. Thus, the aim of the present study was to analyze the effect of CS and HA (500-730 kDa) on MMP-3 synthesis induced by interleukin-1beta (IL-1beta) in chondrocytes from patients with hip OA. Chondrocyte cultures were incubated for 48 h with IL-1beta (2.5 ng/ml) in the absence or presence of different HA 500-730 kDa (Hyalgan, Bioibérica Farma, Barcelona, Spain) concentrations, or alternatively, CS (Condro.san, Bioibérica Farma) at concentrations of 10, 50, 100, 150, 200 and 1,000 microg/ml. The results revealed that both CS and HA (500-730 kDa) inhibited MMP-3 synthesis induced by IL-1beta in human OA chondrocytes. Specifically, CS and HA (500-730 kDa) reduced MMP-3 expression levels at all tested concentrations. Therefore, our study provides new data on the mechanism of action of these drugs, which could help to explain their clinical efficacy in OA patients.

  12. Effect of Hyluronic Acid on the Expression of HAS2's mRNA in Chondrocytes of Kashin-beck Disease and Osteoarthri-tis Cultured in Vitro%透明质酸对体外培养的大骨节病和骨关节炎软骨细胞透明质酸合成酶2 mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    高宗强; 郭雄; 陈君长; 段琛; 马玮娟; 刘瑞宇; 顾其胜

    2014-01-01

    目的:对体外培养的人大骨节病和骨关节炎软骨细胞添加不同剂量透明质酸,观察干预前后软骨细胞透明质酸合成酶2(HAS2)mRNA的变化。方法选取2006年8月-2008年7月陕西地方病研究所明确诊断大骨节病,并实施膝关节游离体摘除术后取出游离体及关节软骨6例为大骨节病组;西安市红十字会医院明确诊断骨关节炎,并行全膝关节置换术后的膝关节软骨6例为骨关节炎组;另选择同时期由于意外车祸等原因截肢或身亡者的新鲜膝关节软骨6例为对照组。对3组软骨细胞采用不同剂量的透明质酸进行干预,分为0μg/ml(H0)、100μg/ml(H100)、500μg/ml(H500),通过RT-PCR法观察透明质酸对3组软骨细胞HAS2mRNA表达的影响。结果干预前3组HAS2mRNA表达比较,差异有统计学意义(P0.05)。结论退变的大骨节病和骨关节炎软骨细胞合成透明质酸能力下降;应用外源性透明质酸后,有增加软骨细胞自身透明质酸合成的趋势,为透明质酸关节腔注射治疗大骨节病及骨关节炎提供了理论基础。%Objective To investigate the effect of hyluronic acid(HA)on the expression of HAS2's mRNA in chon-drocytes of Kashin-beck disease( KBD)and osteoarthritis( OA)cultured in vitro. Methods A total of 6 patients who were di-agnosed with KBD in Shanxi Provincial Institute for Endemic Disease from August 2006 to July 2008 , were selected as KBD group,the loose bodies and articular cartilage of KBD patients were removed through surgery. A total of 6 patients who were diag-nosed with OA in Xi'an City Red Cross Hospital,were selected as OA group,the knee articular cartilage of OA patients were re-moved through total knee arthroplasty. At the same time,amputees and the dead(6 cases)due to accidents such as traffic acci-dent,were selected as control group. Cells from 3 groups were treated with different doses of HA(0 μg/ml,100 μg/ml and 500

  13. File list: His.Bon.10.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.10.AllAg.Chondrocytes mm9 Histone Bone Chondrocytes SRX1035110,SRX1035109,S...RX1035113,SRX1035112,SRX1035111,SRX963261 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.10.AllAg.Chondrocytes.bed ...

  14. File list: Oth.Bon.50.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bon.50.AllAg.Chondrocytes mm9 TFs and others Bone Chondrocytes SRX1035108,SRX10...35114 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bon.50.AllAg.Chondrocytes.bed ...

  15. File list: ALL.Bon.10.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bon.10.AllAg.Chondrocytes mm9 All antigens Bone Chondrocytes SRX1035110,SRX1035...3261,SRX963262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bon.10.AllAg.Chondrocytes.bed ...

  16. File list: ALL.Bon.05.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bon.05.AllAg.Chondrocytes mm9 All antigens Bone Chondrocytes SRX1035118,SRX1035...3261,SRX963262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bon.05.AllAg.Chondrocytes.bed ...

  17. File list: His.Bon.20.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.AllAg.Chondrocytes mm9 Histone Bone Chondrocytes SRX1035110,SRX1035109,S...RX1035113,SRX1035112,SRX1035111,SRX963261 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.20.AllAg.Chondrocytes.bed ...

  18. File list: Oth.Bon.05.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bon.05.AllAg.Chondrocytes mm9 TFs and others Bone Chondrocytes SRX1035114,SRX10...35108 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bon.05.AllAg.Chondrocytes.bed ...

  19. File list: Unc.Bon.20.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bon.20.AllAg.Chondrocytes mm9 Unclassified Bone Chondrocytes SRX1035118,SRX1035...116,SRX1035117 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bon.20.AllAg.Chondrocytes.bed ...

  20. File list: ALL.Bon.20.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bon.20.AllAg.Chondrocytes mm9 All antigens Bone Chondrocytes SRX1035110,SRX1035...3261,SRX963262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bon.20.AllAg.Chondrocytes.bed ...

  1. File list: Unc.Bon.10.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bon.10.AllAg.Chondrocytes mm9 Unclassified Bone Chondrocytes SRX1035118,SRX1035...117,SRX1035116 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bon.10.AllAg.Chondrocytes.bed ...

  2. File list: ALL.Bon.50.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bon.50.AllAg.Chondrocytes mm9 All antigens Bone Chondrocytes SRX1035109,SRX1035...3261,SRX963262 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bon.50.AllAg.Chondrocytes.bed ...

  3. File list: Unc.Bon.50.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bon.50.AllAg.Chondrocytes mm9 Unclassified Bone Chondrocytes SRX1035118,SRX1035...117,SRX1035116 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bon.50.AllAg.Chondrocytes.bed ...

  4. File list: Unc.Bon.05.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bon.05.AllAg.Chondrocytes mm9 Unclassified Bone Chondrocytes SRX1035118,SRX1035...117,SRX1035116 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bon.05.AllAg.Chondrocytes.bed ...

  5. File list: His.Bon.05.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.05.AllAg.Chondrocytes mm9 Histone Bone Chondrocytes SRX1035110,SRX1035111,S...RX1035109,SRX1035113,SRX1035112,SRX963261 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.05.AllAg.Chondrocytes.bed ...

  6. File list: His.Bon.50.AllAg.Chondrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.50.AllAg.Chondrocytes mm9 Histone Bone Chondrocytes SRX1035109,SRX1035110,S...RX1035113,SRX1035112,SRX1035111,SRX963261 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.50.AllAg.Chondrocytes.bed ...

  7. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes.

    Science.gov (United States)

    Taylor, Drew W; Ahmed, Nazish; Parreno, Justin; Lunstrum, Gregory P; Gross, Allan E; Diamandis, Eleftherios P; Kandel, Rita A

    2015-02-01

    Current approaches to cartilage tissue engineering require a large number of chondrocytes. Although chondrocyte numbers can be expanded in monolayer culture, the cells dedifferentiate and unless they can be redifferentiated are not optimal to use for cartilage repair. We took advantage of the differential effect of culture conditions on the ability of passaged and primary chondrocytes to form cartilage tissue to dissect out the extracellular matrix (ECM) molecules produced and accumulated in the early stages of passaged cell cartilage tissue formation as we hypothesized that passaged bovine cells that form cartilage accumulate a pericellular matrix that differs from cells that do not form cartilage. Twice passaged bovine chondrocytes (P2) (cartilage forming), or as a control primary chondrocytes (P0) (which do not generate cartilage), were cultured on three-dimensional membrane inserts in serum-free media. P2 redifferentiation was occurring during the first 8 days as indicated by increased expression of the chondrogenic genes Sox9, collagen type II, aggrecan, and COMP, suggesting that this is an appropriate time period to examine the ECM. Mass spectrometry showed that the P2 secretome (molecules released into the media) at 1 week had higher levels of collagen types I, III, and XII, and versican while type II collagen and COMP were found at higher levels in the P0 secretome. There was increased collagen synthesis and retention by P2 cells compared to P0 cells as early as 3 days of culture. Confocal microscopy showed that types XII, III, and II collagen, aggrecan, versican, and decorin were present in the ECM of P2 cells. In contrast, collagen types I, II, and III, aggrecan, and decorin were present in the ECM of P0 cells. As primary chondrocytes grown in serum-containing media, a condition that allows for the generation of cartilage tissue in vitro, also accumulate versican and collagen XII, this study suggests that these molecules may be necessary to provide a

  8. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression.

  9. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes.

    Science.gov (United States)

    Chen, Wei-Ping; Xiong, Yan; Shi, Yong-Xiang; Hu, Peng-Fei; Bao, Jia-Peng; Wu, Li-Dong

    2014-03-01

    Astaxanthin is a red carotenoid pigment which exerts multiple biological activities. However, little is known about the effects of astaxanthin on matrix metalloproteinases (MMPs) in OA. The present study investigated the effects of astaxanthin on MMPs in human chondrocytes. Human chondrocytes were pretreated with astaxanthin at 1, 10 or 50μM, then, cells were stimulated with IL-1β (10ng/ml) for 24h. MMP-1, MMP-3 and MMP-13 were observed. We found that astaxanthin reduced the expression of MMP-1, MMP-3 and MMP-13 as well as the phosphorylation of two mitogen-activated protein kinases (MAPK) (p38 and ERK1/2) in IL-1β-stimulated chondrocytes. Astaxanthin also blocked the IκB-α degradation. These results suggest that astaxanthin may be beneficial in the treatment of OA.

  10. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis.

    Science.gov (United States)

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-08-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.

  11. Chondrocyte outgrowth into a gelatin scaffold in a single impact load model of damage/repair – effect of BMP-2

    Directory of Open Access Journals (Sweden)

    Vincent Thea

    2007-12-01

    Full Text Available Abstract Background Articular cartilage has little capacity for repair in vivo, however, a small number of studies have shown that, in vitro, a damage/repair response can be induced. Recent work by our group has shown that cartilage can respond to single impact load and culture by producing repair cells on the articular surface. The purpose of this study was to identify whether chondrocyte outgrowth into a 3D scaffold could be observed following single impact load and culture. The effect of bone morphogenic-2 (BMP-2 on this process was investigated. Methods Cartilage explants were single impact loaded, placed within a scaffold and cultured for up to 20 days +/- BMP-2. Cell numbers in the scaffold, on and extruding from the articular surface were quantified and the immunohistochemistry used to identify the cellular phenotype. Results Following single impact load and culture, chondrocytes were observed in a 3D gelatin scaffold under all culture conditions. Chondrocytes were also observed on the articular surface of the cartilage and extruding out of the parent cartilage and on to the cartilage surface. BMP-2 was demonstrated to quantitatively inhibit these events. Conclusion These studies demonstrate that articular chondrocytes can be stimulated to migrate out of parent cartilage following single impact load and culture. The addition of BMP-2 to the culture medium quantitatively reduced the repair response. It may be that the inhibitory effect of BMP-2 in this experimental model provides a clue to the apparent inability of articular cartilage to heal itself following damage in vivo.

  12. Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal.

    Science.gov (United States)

    Lee, Eunsong; Song, Kilyoung

    2007-12-01

    The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.

  13. Autopoiesis: Autology, Autotranscendence and Autonomy

    DEFF Research Database (Denmark)

    ¿ning) problem of modernity. Castoriadis suggests a mutual and complementary relation between subjective and collective autonomy. Bouchet’s interpretation of this is very  radical and in certain respects quite startling. He considers how in modernity emerge spontaneous social orders (like markets or publics...... and 1990s – particularly in a French context. While his work has remained (to date) at distance from the rising number of suggestions, especi- ally regarding social and cultural theory, that have come out of these debates on self-organization, Castoriadis made a speci¿c and original contribution to them...... ‘reality-modeling’ (John Casti) – whether via cognitive frameworks or models of society and culture. Secondly, attempts to adapt debates within the humanities, e.g. in philosophy, social theory and cultural studies, have tended to end in anti-humanism, ranging from Deleuze and Guattari’s ‘abstract machine...

  14. Autologous Fat Grafting for Whole Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Benjamin H. L. Howes, MBBS

    2014-03-01

    Full Text Available Summary: This is the first reported case of a patient who had a single-stage large-volume breast reconstruction with autologous fat grafting, following rotation flap approach (RoFA mastectomy. The purpose of this case study was to evaluate the viability of reconstruction of the breast by autologous fat grafting alone, in the context of RoFA mastectomy. The hypothesis was that there would be minimal interval loss of autologous fat on the whole breast reconstruction side. Right RoFA mastectomy was used for resection of an invasive primary breast cancer and resulted in the right breast skin envelope. Eleven months later, the patient underwent grafting of 400 ml of autologous fat into the skin envelope and underlying pectoralis major muscle. Outcome was assessed by using a validated 3D laser scan technique for quantitative breast volume measurement. Other outcome measures included the BREAST-Q questionnaire and 2D clinical photography. At 12-month follow-up, the patient was observed to have maintenance of volume of the reconstructed breast. Her BREAST-Q scores were markedly improved compared with before fat grafting, and there was observable improvement in shape, contour, and symmetry on 2D clinical photography. The 2 new techniques, RoFA mastectomy and large-volume single-stage autologous fat grafting, were used in combination to achieve a satisfactory postmastectomy breast reconstruction. Novel tools for measurement of outcome were the 3D whole-body laser scanner and BREAST-Q questionnaire. This case demonstrates the potential for the use of fat grafting for reconstruction. Outcomes in a larger patient populations are needed to confirm these findings.

  15. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  16. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    Science.gov (United States)

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  17. Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes.

    Science.gov (United States)

    Wang, Wei; Li, Wenkai; Song, Mingyu; Wei, Sheng; Liu, Chaoxu; Yang, Yong; Wu, Hua

    2016-01-01

    Electromagnetic fields (EMFs) can improve pain, stiffness and physical function in osteoarthritis (OA) patients and have been proposed for the treatment of OA. However, the precise mechanisms involved in this process are still not fully understood. In the present study, we investigated the effects of exposure for different durations with 75 Hz, 2.3 mT sinusoidal EMFs (SEMFs) on the metabolism of lubricin of rat chondrocytes cultured in vitro. Our results showed that SEMFs exposure promoted lubricin synthesis in a time-dependent manner, and the expression of transforming growth factor (TGF)-β1 was also enhanced after SEMFs treatment. The up-regulation effect of the expression of lubricin under SEMF was partly reduced by SB431542, an inhibitor of TGF-RI kinase. The Smad pathway was also investigated in our study. Smad2 synthesis was higher in EMF-exposed condition than in controls, whereas no effects were observed on inhibitory Smads (Smad6 and Smad7) production. Altogether, these data suggest that SEMF exposure can promote lubricin synthesis of rat chondrocytes in a time-dependent manner and that the TGF-β/Smads signaling pathway plays a partial role.

  18. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Porichis, Stella; Steinwachs, Matthias

    2014-01-01

    decreased from 7.2 ± 1.9 preoperatively to 2.1 ± 2.1 postoperatively. The mean MOCART score was 44.9 ± 23.6. Defect-associated bone marrow edema was found in 78% of the cases. Nevertheless, no correlation between the MOCART score and clinical outcome (IKDC score) could be found (Pearson coefficient, r = 0...... score seems moderate, this could not be correlated with long-term clinical outcomes.......) score. Clinical function at follow-up was assessed by means of the Lysholm score, the International Knee Documentation Committee (IKDC) score, and the Knee injury and Osteoarthritis Outcome Score (KOOS). Patient activity was assessed by the Tegner score. In addition, pain on a visual analog scale (VAS...

  19. Correlation of synovial cytokine expression with quality of cells used for autologous chondrocyte implantation in human knees

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Dovi-Akue, David

    2014-01-01

    content (TPC) and by ELISA for levels of basic fibroblast growth factor (bFGF), insulin-like growth factor 1, bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7). Cell quality following amplification for ACI was determined by surface expression of CD44, aggrecan, collagen type II and evaluation of cell...... characteristics. Data of 17 patients were supplemented by epidemiological parameters and clinical scores (IKDC, Lysholm, pain strength, subjective knee function). CD44 expression was positively associated with TPC and bFGF, and negatively linked to BMP-2 levels (p collagen type...... knee function after 1 year was positively linked to intraarticular BMP-2 concentrations (p collagen type II indicated a favorable clinical result reaching statistical significance in case of pain strength (p

  20. The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules.

    Science.gov (United States)

    Schagemann, Jan C; Kurz, Haymo; Casper, Michelle E; Stone, James S; Dadsetan, Mahrokh; Yu-Long, Sun; Mrosek, Eike H; Fitzsimmons, James S; O'Driscoll, Shawn W; Reinholz, Gregory G

    2010-04-01

    Previously we demonstrated that chondrocyte ECM synthesis and mitotic activity was dependent on scaffold composition when cultured on uncoated PCL scaffolds (pPCL) or PCL composites containing hyaluronan (PCL/HA), chitosan (PCL/CS), fibrin (PCL/F), or collagen type I (PCL/COL1). We hypothesized that initial cell contact with these biomaterials results in ultrastructural changes and alters CD44 and integrin beta1 expression. The current study was designed to investigate the early ultrastructural responses of chondrocytes on these scaffolds and expression of CD44 and integrin beta1. A common observation 1 h after seeding was the abundance of cell processes. Different types of cell processes occurred in different areas of the same cell and on different cells within the same composite. Chondrocytes seeded onto PCL/CS had the greatest cell surface enhancement. PCL/HA promoted CD44 expression and almost spherical cells with a low degree of surface enhancement. PCL/COL1 enabled continuing expression of integrin beta1 and CD44. In contrast, cells in PCL/CS, PCL/F and pPCL promoted elliptic cells with a higher degree of surface enhancement and no prolonged CD44 and integrin beta1 expression. A strong variability of cell surface processes indicated either reparative or degenerative adaptation to the artificial environment. Interestingly, we found initial integrin beta1 expression in all composite scaffolds, but not in pPCL although this promoted strong adhesiveness as indicated by the formation of stress fibers. In conclusion, chondrocytes respond to biomaterials early after implantation by altering ultrastructural characteristics and expression of CD44 and integrin beta1.

  1. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways.

    Directory of Open Access Journals (Sweden)

    Anna Santoro

    Full Text Available Osteoarthritis (OA is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs in chondrocytes, contributing thus to the extracellular matrix (ECM degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2, under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.

  2. Chondrogenic potential of articular chondrocytes depends on their original location

    NARCIS (Netherlands)

    Bekkers, Joris E J; Saris, Daniel B F; Tsuchida, Anika Iris; van Rijen, Mattie H P; Dhert, Wouter J A; Creemers, Laura B

    2014-01-01

    OBJECTIVE: This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint to determine the best cell source for regenerative cartilage therapies. METHODS: Articular cartilage was obtained from

  3. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    Science.gov (United States)

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  4. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    Science.gov (United States)

    Zhao, G Q; Zhou, X; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-09-15

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T3 cells, and rat skin fibroblasts. It was also undetectable in mouse C2 myoblasts, S194 myeloma cells, and embryonic stem cells. Cart-1 RNA was present at a very low level in tested but was not detected in other soft tissues of 8-week-old rats. In situ hybridization of rat embryos between 14.5 and 16.5 days post coitum revealed relatively high levels of Cart-1 RNA in condensed prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. The levels of Cart-1 RNA were lower in mature chondrocytes. No hybridization was observed in brain, spinal cord, heart, spleen, gastrointestinal tract, liver, and muscle. We speculate that Cart-1 has a role in chondrocyte differentiation.

  5. Doxycycline inhibits collagen synthesis by differentiated articular chondrocytes.

    NARCIS (Netherlands)

    TeKoppele, J.M.; Beekman, B.; Verzijl, N.; Koopman, J.L.; Groot, J. de; Bank, R.A.

    1998-01-01

    Doxycycline (DOX) profoundly inhibited collagen synthesis by differentiated articular chondrocytes. At 25 microM, the rate of collagen synthesis was suppressed by more than 50% without affecting cell proliferation (DNA levels) and general protein synthesis (35S-Met and 35S-Cys incorporation). Steady

  6. IT-24DEVELOPMENT OF A NOVEL AUTOLOGOUS DENDRITIC CELL / ALLOGENEIC GLIOBLASTOMA LYSATE VACCINE PROTOCOL

    OpenAIRE

    Parney, Ian; Peterson, Timothy; Gustafson, Michael; Dietz, Allan

    2014-01-01

    BACKGROUND: Dendritic cell (DC) vaccines for glioblastoma (GBM) are promising but significant conceptual shortcomings may have limited their clinical efficacy. First, most trials have not employed optimal DC culture techniques resulting in large numbers of immature (immunosuppressive) DC's. Second, most have used autologous tumor lysate. While highly personalized, this limits vaccine availability and precludes antigen-specific response testing. Finally, GBM-mediated immunosuppression has been...

  7. Extra-anatomic transplantations in autologous adult cell therapies aiding anatomical regeneration and physiological recovery – An insight and categorization

    Directory of Open Access Journals (Sweden)

    Editorial

    2015-12-01

    Full Text Available Autologous mature adult cells as well as stem cells, which are not considered pluripotent, have been reported to be safe and efficacious in clinical applications for regenerating cartilage [1] and corneal epithelium [2]. Use of primary autologous cells and stem cells expanded in number from cartilage and corneal epithelial tissues have shown abilities to reconstruct and regenerate tissues, de novo. It is to be noted that in both these cases, the source of the cells that have been used for transplantation into the cornea and cartilage have been from the same organ and tissue. The replacement cells for regeneration have also been sourced from the same germ layer, as that of the cells of the target tissue; corneal epithelial tissue embryologically originating from the ectoderm has been replaced with corneal limbal stem cells that are also of ectodermal origin from the unaffected healthy eye of the same individual. Similarly, the cartilage which developmentally is from the mesoderm has been replaced with mature chondrocytes from the non-weight bearing area of the cartilage, again of the same individual. Figure 1: Autologous, in vitro cultured, adult cell based therapies; An overview and categorization. (Click here for High Resol. Image The proceedings of the IIDIAS session published in this issue have described two novel cell therapies, where cells taken from a tissue or organ, after normal in vitro expansion, have been clinically applied to aid the regeneration of a different tissue or organ, i.e skeletal myoblasts having been used for myocardial regeneration and buccal mucosal epithelium having been used for corneal epithelial regeneration heralding the birth of a new paradigm called ‘extra-anatomic cell therapy’. The myocardium is a specialized muscle in that it works as an electrical synctitium with an intrinsic capacity to generate and propagate action potentials (involuntary as opposed to the skeletal muscles that are dependent on neuronal

  8. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes.

    Science.gov (United States)

    Wu, Guang-Wen; Liu, Xian-Xiang; Wu, Ming-Xia; Zhao, Jin-Yan; Chen, Wen-Lie; Lin, Ru-Hui; Lin, Jiu-Mao

    2009-04-01

    Low power millimeter wave irradiation is widely used in clinical medicine. We describe the effects of this treatment on cultured mesenchymal stem cells (MSCs) and attempted to identify the underlying mechanism. Cells cultured using the whole marrow attachment culture method proliferated dispersedly or in clones. Flow cytometric analyses showed that the MSCs were CD90 positive, but negative for CD45. The negative control group (A) did not express detectable levels of Cbfa1 or Sox9 mRNA at any time point, while cells in the millimeter wave-induced groups (B and C) increasingly expressed both genes after the fourth day post-induction. Statistical analysis showed that starting on the fourth day post-induction, there were very significant differences in the expression of Cbfa1 and Sox9 mRNA between groups A and B as well as A and C at any given time point, between treated groups B and C after identical periods of induction, and within each treated group at different induction times. Transition electron microscopy analysis showed that the rough endoplasmic reticulum of cells in the induced groups was richer and more developed than in cells of the negative control group, and that the shape of cells shifted from long-spindle to near ellipse. Toluidine blue staining revealed heterochromia in the cytoplasm and extracellular matrix of cells in the induced groups, whereas no obvious heterochromia was observed in negative control cells. Induced cells also exhibited positive immunohistochemical staining of collagen II, in contrast to the negative controls. These results show that millimeter wave treatment successfully induced MSCs to differentiate as chondrocytes and the extent of differentiation increased with treatment duration. Our findings suggest that millimeter wave irradiation can be employed as a novel non-drug inducing method for the differentiation of MSCs into chondrocytes.

  9. [Perioperative salvage and use of autologous blood].

    Science.gov (United States)

    Larsen, B; Dich-Nielsen, J O

    1999-01-18

    Pre-operative blood donation gives ready availability of large volumes of patient compatible blood, up to four units and five when erythropoietin is used. It is recommended that autologous pre-donated blood is leucocyte depleted immediately after the donation. During normovolaemic haemodilution it is mandatory to monitor haemodynamics during the donation. Usually 1-2 units are removed pre-operatively and returned during or after the operation. Intra and postoperative salvage and recycling is performed either with washing and haemoconcentration of the blood or with salvage and immediate retransfusion. When salvaged blood is retransfused unwashed there are high levels of free haemoglobin, degradation products of fibrin/fibrinogen, interleukin-6 and activated complement. Clinically, this has not been shown to be of importance. Taking the patient's health status into account, we suggest that a level of B-haemoglobin should be determined pre-operatively to indicate use of transfusions both with autologous and allogeneic blood.

  10. Recovery of autologous erythrocytes in transfused patients.

    Science.gov (United States)

    Wallas, C H; Tanley, P C; Gorrell, L P

    1980-01-01

    A microcapillary method utilizing phthalate esters or an ultracentrifuge method are both capable of separating autologous from homologous erythrocytes in polytransfused patients. The microcapillary technique which is readily adaptable to blood bank laboratories provides a previously unavailable method for defining blood group antigen typings in transfused patients. Such typings are of vital importance in the laboratory evaluation of transfused patients with multiple or weak blood group antibodies.

  11. Facial wrinkles correction through autologous fat microinjection.

    Directory of Open Access Journals (Sweden)

    Heriberto Cháves Sánchez

    2008-12-01

    Full Text Available Background: autologous fat microinjection is a technique which allows the correction of different dispositions that appear in the face in a very fast, effective and simple way compared to other procedures implying more pain, incisions, and elevated doses of anesthesia. Objective: to show the effectiveness of the autologous fat microinjection in the correction of facial wrinkles. Methods: a series study was carried out from May 2005 to May 2006 at the University Hospital “Dr. Gustavo Aldereguía Lima” in Cienfuegos city, Cuba. 60 patients of both sexes constituted this series study. They had facial wrinkles and this procedure was performed on them. Age, sex, patient’s race, localization and the type of wrinkle as well as the satisfaction level of the patient with the surgical procedure were analyzed. Results: Female sex was predominant, as well as white race and the ages from 45-50. A good aesthetic result was obtained. The satisfaction level of the patients was more elevated in short and medium terms. Conclusions: the level of satisfaction reached in the studied series reassure the advantages of the autologous fat microinjection technique so that, it is recommended for the elimination of facial wrinkles.

  12. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  13. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise;

    2006-01-01

    -extracellular matrix interactions in the growth plate. INTRODUCTION: The disintegrin and metalloprotease ADAM12 is expressed in both osteoblasts and osteoclasts, suggesting a regulatory role of ADAM12 in bone. However, thus far, no in vivo function of ADAM12 in the skeleton has been reported. MATERIALS AND METHODS......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... in mice expressing higher levels of the transgene than in a lower-expressing line. Histological analysis revealed no alterations in the growth plate organization, but mean growth plate width was increased. Both the cellular incorporation of bromodeoxyuridine and the width of the collagen type X...

  14. The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGFβ

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Bernstein, Anke

    2016-01-01

    BACKGROUND: Synovial mesenchymal stem cells (SMSC) possess a high chondrogenic differentiation potential, which possibly supports natural and surgically induced healing of cartilage lesions. We hypothesized enhanced chondrogenesis of SMSC caused by the vicinity of chondrocytes (CHDR). METHODS....... RESULTS: After 7 days, phase-contrast microscopy revealed cell aggregation of SMSC in coculture with CHDR. Afterwards, cells formed spheres and lost adherence. However, this phenomenon was not observed when culturing SMSC alone. Fluorescence labeling showed concurrent collagen type II expression. Addition...

  15. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  16. Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1ß: a possible explanation for the changes in matrix synthesis during osteoarthritis

    Science.gov (United States)

    Pfander, D; Heinz, N; Rothe, P; Carl, H; Swoboda, B

    2004-01-01

    Objective: To analyse the distribution patterns of tenascin and proteoglycans in normal and osteoarthritic cartilage, and to determine the effect of interleukin 1ß (IL1ß) on aggrecan and tenascin expression by human articular chondrocytes in vitro. Methods: Normal and osteoarthritic cartilage and bone samples were obtained during total knee replacements or necropsies. After fixation and decalcification, paraffin embedded specimens were sectioned perpendicular to the surface. Specimens were graded according to Mankin and subdivided into those with normal, and mild, moderate, and severe osteoarthritic lesions. Serial sections were immunostained for tenascin. Tenascin expression by healthy and osteoarthritic chondrocytes was quantified by real time polymerase chain reaction (PCR). Furthermore, in cell culture experiments, human articular chondrocytes were treated with 0.1 or 10 ng/ml IL1ß. Real time PCR analyses of aggrecan and tenascin transcripts (normalised 18S rRNA) were conducted to determine the effect of IL1ß on later mRNA levels. Results: Tenascin was immunodetected in normal and osteoarthritic cartilage. In osteoarthritic cartilage increased tenascin staining was found. Tenascin was found specifically in upper OA cartilage showing a strong reduction of proteoglycans. Greatly increased tenascin transcript levels were detected in osteoarthritic cartilage compared with healthy articular cartilage. IL1ß treatment of articular chondrocytes in vitro significantly increased tenascin transcripts (~200% of control) and strongly reduced aggrecan mRNA levels (~42% of control). Conclusions: During progression of osteoarthritis the switch in matrix synthesis occurs mainly in upper osteoarthritic cartilage. Furthermore, changes in synthesis patterns of osteoarthritic chondrocytes may be significantly influenced by IL1ß, probably diffusing from the joint cavity within the upper osteoarthritic cartilage. PMID:14962956

  17. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model.

    Science.gov (United States)

    Ashwell, Melissa S; Gonda, Michael G; Gray, Kent; Maltecca, Christian; O'Nan, Audrey T; Cassady, Joseph P; Mente, Peter L

    2013-03-01

    Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype.

  18. An overview of sipuleucel-T: autologous cellular immunotherapy for prostate cancer.

    Science.gov (United States)

    Wesley, Johnna D; Whitmore, James; Trager, James; Sheikh, Nadeem

    2012-04-01

    Sipuleucel-T, the first autologous active cellular immunotherapy approved by the United States Food and Drug Administration, is designed to stimulate an immune response to prostate cancer. Sipuleucel-T is manufactured by culturing a patient's peripheral blood mononuclear cells (including antigen presenting cells) with a recombinant protein comprising a tumor-associated antigen (prostatic acid phosphatase) and granulocyte-macrophage colony stimulating factor. Treatment consists of 3 infusions at approximately 2-week intervals, resulting in a prime-boost pattern of immune activation, a robust antigen-specific cellular and humoral immune response, and, consequently, a survival benefit in subjects with asymptomatic or minimally symptomatic metastatic castrate resistant prostate cancer. Adverse events are generally mild to moderate and resolve within 2 d. Serious adverse events occur at a low rate. As the first autologous cellular immunotherapy to demonstrate a survival benefit, sipuleucel-T is a novel oncologic therapeutic that warrants the reassessment of the current prostate cancer treatment paradigm.

  19. Metabolic Effects of Avocado/Soy Unsaponifiables on Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Louis Lippiello

    2008-01-01

    Full Text Available Avocado/soy unsaponifiable (ASU components are reported to have a chondroprotective effect by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity of the active component(s remains unknown. In general, sterols, the major component of unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and in animal models. These studies were designed to clarify whether the sterol content of ASU preparations were the primary contributors to biological activity in articular chondrocytes. ASU samples were analyzed by high pressure liquid chromatography (HPLC and GC mass spectrometry. The sterol content was normalized between diverse samples prior to in vitro testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of interleukin-1 (IL-1-induced synthesis of PGE2 and metalloproteases and release of label from tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at sterol doses of 1–10 μg/ml. Non-collagenous protein (NCP and collagen synthesis were similarly up-regulated. All ASU were equally effective in dose dependently inhibiting IL-1-induced MMP-3 activity (23–37%, labeled sulfate release (15–23% and PGE2 synthesis (45–58%. Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1 effects in cartilage are consistent with chondroprotective activity. The similarity of activity of ASU from diverse sources when tested at equal sterol levels suggests sterols are important for biologic effects in articular chondrocytes.

  20. Metabolic Effects of Avocado/Soy Unsaponifiables on Articular Chondrocytes

    Science.gov (United States)

    Nardo, Joseph V.; Harlan, Robert; Chiou, Tiffany

    2008-01-01

    Avocado/soy unsaponifiable (ASU) components are reported to have a chondroprotective effect by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity of the active component(s) remains unknown. In general, sterols, the major component of unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and in animal models. These studies were designed to clarify whether the sterol content of ASU preparations were the primary contributors to biological activity in articular chondrocytes. ASU samples were analyzed by high pressure liquid chromatography (HPLC) and GC mass spectrometry. The sterol content was normalized between diverse samples prior to in vitro testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of interleukin-1 (IL-1)-induced synthesis of PGE2 and metalloproteases and release of label from tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at sterol doses of 1–10 μg/ml. Non-collagenous protein (NCP) and collagen synthesis were similarly up-regulated. All ASU were equally effective in dose dependently inhibiting IL-1-induced MMP-3 activity (23–37%), labeled sulfate release (15–23%) and PGE2 synthesis (45–58%). Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1 effects in cartilage are consistent with chondroprotective activity. The similarity of activity of ASU from diverse sources when tested at equal sterol levels suggests sterols are important for biologic effects in articular chondrocytes. PMID:18604259

  1. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis

    OpenAIRE

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-01-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenet...

  2. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  3. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; ZHANG WenJie; CHEN FanFan; ZHOU GuangDong; CUI Lei; LIU Wei; CAO YiLin

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. FIk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type Ⅱ collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class Ⅰ molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  4. Characterization of primary chondrocytes harvested from hips with femoroacetabular impingement

    DEFF Research Database (Denmark)

    Bretschneider, H; Stiehler, M; Hartmann, A;

    2016-01-01

    differentiation during three-dimensional (3D) cultivation as a prerequisite for autologous matrix-assisted cartilage regeneration of the hip joint. METHODS: hC were isolated from cartilage samples obtained from N = 6 patients during offset reconstruction. Proteoglycan content was assessed by Safranin-O staining...

  5. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Chao Pin-Zhir

    2011-11-01

    Full Text Available Abstract Background Osteoarthritis (OA is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. Methods We investigated the effects of the CC chemokine eotaxin-1 (CCL11 on the matrix metalloproteinase (MMP expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Results Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs, a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC-protein kinase C (PKC cascade and c-Jun N-terminal kinase (JNK/mitogen-activated protein (MAP kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Conclusions Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.

  6. Study on the shape, phenotype and intercellular communication of chondrocyte%软骨细胞形态、表型与胞间通讯的研究

    Institute of Scientific and Technical Information of China (English)

    张文涛; 卢世璧

    2004-01-01

    BACKGROUND: The chondrocytes cultured in vitro will grow in a thin layer and lose their pheootype, assuming fibroblast. There is no report about the relationship between the phenotype and intercellular communication of chondrocytes.OBJECTIVE: To study the proliferation, matrix synthesis, relationship between fluorescence stain intake and gap junction of various form chondrocytes cultured in vitro.DESIGN: An experimental study based on diagnosis was conducted.SETTING and PARTICIPANTS: The experiment was conducted in the Institute of Orthopaedics, and Institute of Basic Sciences, General Hospital of PLA. The subjects were rabbit joint cartilages and human femoral head cartilages.INTERVENTIONS: Rabbit chondrocytes cultured in vitro were stained with hematoxylin-eosin(HE) and light green-safranin O respectively. The chondrocyte' s size was measured with microscope and the intracellular fluorescence intensity was measured with confocal laser microscope. The fluorescence stain in chondrocyte was quenched with laser.MAIN OUTCOME MEASURES: Appearance, size and intracellular fluorescence intensity of chondrocytes.RESULTS: The chondrocytes became larger and lost their spherical form.Then their proliferation was accelerated. The average projection area was 1755.1 μm2 with the difference of 50 times. The matrix synthesis and gap junction disappeared. The intake of CFDA-AM increased in spherical chondrocytes(average 2057/30 cells) compared with the decreased intake in flat chondrocytes(average 80/30 cells) . There was intercellular communication in spherical rabbit chondrocytes in vitro and human chondrocytes in lacuna of cartilage germinal layer.CONCLUSION: There are certain relationships among the density, form,phenotype and gap junction in chondrocytes. The phenotype may be determined by chondrocytes form.%背景:在体外培养时软骨细胞会像成纤维细胞样成片生长并失去表型,软骨细胞胞间通讯与细胞表型的关系尚无报告.目的:了解体外

  7. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  8. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification.

    Science.gov (United States)

    Xu, Hong-guang; Yu, Yun-fei; Zheng, Quan; Zhang, Wei; Wang, Chuang-dong; Zhao, Xiao-yn; Tong, Wen-xue; Wang, Hong; Liu, Ping; Zhang, Xiao-ling

    2014-09-01

    Calcification of end plate chondrocytes is a major cause of intervertebral disc (IVD) degeneration. However, the underlying molecular mechanism of end plate chondrocyte calcification is still unclear. The aim of this study was to clarify whether autophagy in end plate chondrocytes could protect the calcification of end plate chondrocytes. Previous studies showed that intermittent cyclic mechanical tension (ICMT) contributes to the calcification of end plate chondrocytes in vitro. While autophagy serves as a cell survival mechanism, the relationship of autophagy and induced end plate chondrocyte calcification by mechanical tension in vitro is unknown. Thus, we investigated autophagy, the expression of the autophagy genes, Beclin-1 and LC3, and rat end plate chondrocyte calcification by ICMT. The viability of end plate chondrocytes was examined using the LIVE/DEAD viability/cytotoxicity kit. The reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of Beclin-1; LC3; type I, II and X collagen; aggrecan; and Sox-9 genes. Immunofluorescent and fluorescent microscopy showed decreased autophagy in the 10- and 20-day groups loaded with ICMT. Additionally, Alizarin red and alkaline phosphatase staining detected the palpable calcification of end plate chondrocytes after ICMT treatment. We found that increased autophagy induced by short-term ICMT treatment was accompanied by an insignificant calcification of end plate chondrocytes. To the contrary, the suppressive autophagy inhibited by long-term ICMT was accompanied by a more significant calcification. The process of calcification induced by ICMT was partially resisted by increased autophagy activity induced by rapamycin, implicating that autophagy may prevent end plate chondrocyte calcification.

  9. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Yang; Lin, Feng-Huei [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Sadhasivam, S., E-mail: rahulsbio@yahoo.co.in [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-10

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  10. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  11. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  12. Comparison of the effects of human mesenchymal stem cells cultured by autologous serum into osteoblasts by extracorporeal shock waves versus dexamethasone%冲击波与地塞米松对自体血清培养的骨髓间充质干细胞成骨分化的比较研究

    Institute of Scientific and Technical Information of China (English)

    安佰京; 邢更彦

    2011-01-01

    [目的]观察冲击波(shock waves)与地塞米松对自体血清培养的人骨髓间充质干细胞(human mesenchyreal stem cells,hMSCs)体外成骨分化的影响比较.[方法]选择10名健康志愿者,每名健康志愿者抽取骨髓60 ml,抽取外周静脉血100 ml,然后分离出自体血清.把每名志愿者的骨髓分别用10%AS和10%FBS对hMSCs进行体外培养,通过相差倒置显微镜观察细胞形态、检测24 h细胞贴壁率、细胞倍增时间、检测细胞表面标记物、细胞周期及免疫细胞化学染色检测比较两组hMSCs的增殖状况.然后把AS培养的hMSCs两组分别用体外冲击波疗法(extracorporeal shock waves therapy,ESWT)[0.36 mj/(mm·100次)]和传统的诱导成骨培养基(10 nmol/L地寒米松、50umol/L抗坏血酸、10 mmol/L β-甘油磷酸钠)分别对hMSCs进行成骨诱导,对诱导好的细胞进行ALP定量检测、ALP染色、茜素红染色及RT-PCR测成骨基因(碱性磷酸酶、骨钙素、骨桥蛋白、骨结合素、Ⅰ型胶原)表达比较两组成骨分化情况.[结果]在细胞增殖上,两组细胞各代在细胞形态、细胞贴壁率、细胞周期以及免疫细胞化学染色检测上无明显差异,但在细胞倍增时间、细胞增殖速率上,自体血清明显优于胎牛血清.在细胞分化方面,两组在ALP定量检测、ALP染色、茜素红染色及RT-PCR测成骨基因上,冲击波作用于人骨髓间充质干细胞的成骨效应明显优于地塞米松.[结论]冲击波与地塞米松相比较,具有更良好促hMSCs成骨分化作用.%[Objective]To compare effects on the osteoblasts of human mesenchymal stem cells (hMSCs) in autologous serum by extracorporeal shock waves versus dexamethasone.[Methods]60 ml iliac crest bone marrow and 100 ml peripheral blood from 10 healthy volunteers were collected and the autologous serum were from peripheral blood.The iliac crest bone marrow from each volunteer were cultured for hMSCs with 10% AS (the experiment group

  13. Application of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold on tissue engineering cartilage in vitro%自体骨髓间质干细胞外基质支架在体外软骨组织工程中的应用

    Institute of Scientific and Technical Information of China (English)

    唐成; 徐燕; 王黎明; 苗登顺; 裴璇; 魏波; 杜小涛; 金成哲

    2013-01-01

    Objective To evaluate the feasibility of the formation of tissue engineering cartilage in vitro by using autologous bone marrow mesenchymal stem cell-derived extracellular matrix (aBMSC-dECM)scaffold.Methods The autologous bone marrow mesenchymal stem cells were harvested from 5 New Zealand white rabbits which are two weeks old.The extracellular matrix was collected after 4 weeks culture and fabricated into aBMSC-dECM scaffold.The scaffold was investigated by a scanning electron microscope and HE staining.The autologous articular chondrocytes were isolated,cultured and seeded into the aBMSC-dECM scaffold.Live-Dead staining was analyzed 48 h after seeding.Gross morphological and volume measurement,HE staining,Safranin-O staining and type Ⅱ collagen immunohistochemistry staining,RT-PCRassay,and compression strength test were operated for the cell-scaffold composite at 1,2,4,and 6 weeks after the cultivation respectively.Atelocollagen scaffold was used as the control group.Results The aBMSC-dECM scaffold was three-dimensional and spongy.The engineered cartilage in aBMSC-dECM scaffold group appeared milk white in color with smooth and glossy surface.Compared with the atelocollagen scaffold group,the volume of engineered cartilage in aBMSC-dECM scaffold group significantly grew with time,the chondrocyte,proteoglycan and type Ⅱ collagen were gradually accumulated,the mRNA of type Ⅱ collage and Aggrecan were constantly expressed,and the compressive strength significantly increased with time.Conclusion The aBMSC-dECM scaffold could enhance the viability and biological function of chondrocytes,and promote engineered cartilage regeneration.It could be a novel candidate scaffold for cartilage tissue engineering.%目的 探讨利用自体骨髓间质干细胞外基质(autologous bone marrow mesenchymal stemcell-derived extracellular matrix,aBMSC-dECM)支架体外制备组织工程软骨的可行性.方法 取2周龄新西兰大白兔5只,分离、培养骨

  14. Preservation of the chondrocyte's pericellular matrix improves cell-induced cartilage formation

    NARCIS (Netherlands)

    Vonk, L.A.; Doulabi, B.Z.; Huang, C.L.; Helder, M.N.; Everts, V.; Bank, R.A.

    2010-01-01

    The extracellular matrix surrounding chondrocytes within a chondron is likely to affect the metabolic activity of these cells. In this study we investigated this by analyzing protein synthesis by intact chondrons obtained from different types of cartilage and compared this with chondrocytes. Chondro

  15. Preservation of the Chondrocyte's Pericellular Matrix Improves Cell-Induced Cartilage Formation

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Doulabi, Behrouz Zandieh; Huang, ChunLing; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.

    2010-01-01

    The extracellular matrix surrounding chondrocytes within a chondron is likely to affect the metabolic activity of these cells. In this study we investigated this by analyzing protein synthesis by intact chondrons obtained from different types of cartilage and compared this with chondrocytes. Chondro

  16. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?

    NARCIS (Netherlands)

    Kraan, P.M. van der; Berg, W.B. van den

    2012-01-01

    OBJECTIVE: To review the literature on the role and regulation of chondrocyte terminal differentiation (hypertrophy-like changes) in osteoarthritis (OA) and to integrate this in a conceptual model of primary OA development. METHODS: Papers investigating chondrocyte terminal differentiation in human

  17. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  18. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes

    Science.gov (United States)

    Rocio Servin-Vences, M; Moroni, Mirko; Lewin, Gary R; Poole, Kate

    2017-01-01

    The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes. DOI: http://dx.doi.org/10.7554/eLife.21074.001 PMID:28135189

  19. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    OpenAIRE

    Zhao, G. Q.; Zhou, X.; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-01-01

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T...

  20. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy.

    Science.gov (United States)

    Mak, Kinglun Kingston; Kronenberg, Henry M; Chuang, Pao-Tien; Mackem, Susan; Yang, Yingzi

    2008-06-01

    Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.

  1. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  2. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  3. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Huang, Wei [Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 1000191 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  4. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide

    Directory of Open Access Journals (Sweden)

    Hanaoka Teruyasu

    2011-08-01

    Full Text Available Abstract Background Molecular hydrogen (H2 functions as an extensive protector against oxidative stress, inflammation and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO- as well as hydroxyl radicals (•OH, but not with nitric oxide radical (NO•. We hypothesized that one of the H2 functions is caused by reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2-. To verify this hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO- derived from NO• in chondrocytes. Methods We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP in the presence or absence of H2. Chondrocyte viability was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method. Results SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins, and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type II collagen and matrix metalloproteinases (such as MMP3 and MMP13 are down- and up-regulated by ONOO-, respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2 acted to restore transcriptional alterations induced by ONOO-. Conclusions These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional alterations through reducing ONOO-. Moreover, novel pharmacological strategies

  5. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  6. Laminins and Nidogens in the Pericellular Matrix of Chondrocytes: Their Role in Osteoarthritis and Chondrogenic Differentiation.

    Science.gov (United States)

    Schminke, Boris; Frese, Jenny; Bode, Christa; Goldring, Mary B; Miosge, Nicolai

    2016-02-01

    The aim of this study was to investigate the role of laminins and nidogen-2 in osteoarthritis (OA) and their potential to support chondrogenic differentiation. We applied immunohistochemistry, electron microscopy, siRNA, quantitative RT-PCR, Western blot, and proteome analysis for the investigation of cartilage tissue and isolated chondrocytes in three-dimensional culture obtained from patients with late-stage knee OA and nidogen-2 knockout mice. We demonstrate that subunits of laminins appear in OA cartilage and that nidogen-2-null mice exhibit typical osteoarthritic features. Chondrogenic progenitor cells (CPCs) produced high levels of laminin-α1, laminin-α5, and nidogen-2 in their pericellular matrix, and laminin-α1 enhanced collagen type II and reduced collagen type I expression by cultured CPCs. Nidogen-2 increased SOX9 gene expression. Knockdown of nidogen-2 reduced SOX9 expression, whereas it up-regulated RUNX2 expression. This study reveals that the influence of the pericellular matrix on CPCs is important for the expression of the major regulator transcription factors, SOX9 and RUNX2. Our novel findings that laminins and nidogen-2 drive CPCs toward chondrogenesis may help in the elucidation of new treatment strategies for cartilage tissue regeneration.

  7. Expression of type I collagen and tenascin C is regulated by actin polymerization through MRTF in dedifferentiated chondrocytes.

    Science.gov (United States)

    Parreno, Justin; Raju, Sneha; Niaki, Mortah Nabavi; Andrejevic, Katarina; Jiang, Amy; Delve, Elizabeth; Kandel, Rita

    2014-10-16

    This study examined actin regulation of fibroblast matrix genes in dedifferentiated chondrocytes. We demonstrated that dedifferentiated chondrocytes exhibit increased actin polymerization, nuclear localization of myocardin related transcription factor (MRTF), increased type I collagen (col1) and tenascin C (Tnc) gene expression, and decreased Sox9 gene expression. Induction of actin depolymerization by latrunculin treatment or cell rounding, reduced MRTF nuclear localization, repressed col1 and Tnc expression, and increased Sox9 gene expression in dedifferentiated chondrocytes. Treatment of passaged chondrocytes with MRTF inhibitor repressed col1 and Tnc expression, but did not affect Sox9 expression. Our results show that actin polymerization regulates fibroblast matrix gene expression through MRTF in passaged chondrocytes.

  8. The Study on Biocompatibility of Porous nHA/PLGA Composite Scaffolds for Tissue Engineering with Rabbit Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Objective. To examine the biocompatibility of a novel nanohydroxyapatite/poly[lactic-co-glycolic acid] (nHA/PLGA composite and evaluate its feasibility as a scaffold for cartilage tissue engineering. Methods. Chondrocytes of fetal rabbit were cultured with nHA/PLGA scaffold in vitro and the cell viability was assessed by MTT assay first. Cells adhering to nHA/PLGA scaffold were then observed by inverted microscope and scanning electron microscope (SEM. The cell cycle profile was analyzed by flow cytometry. Results. The viability of the chondrocytes on the scaffold was not affected by nHA/PLGA comparing with the control group as it was shown by MTT assay. Cells on the surface and in the pores of the scaffold increased in a time-dependent manner. Results obtained from flow cytometry showed that there was no significant difference in cell cycle profiles between the coculture group and control (P>0.05. Conclusion. The porous nHA/PLGA composite scaffold is a biocompatible and good kind of scaffold for cartilage tissue engineering.

  9. PTHrP regulates chondrocyte maturation in condylar cartilage.

    Science.gov (United States)

    Rabie, A B M; Tang, G H; Xiong, H; Hägg, U

    2003-08-01

    PTHrP is a key factor regulating the pace of endochondral ossification during skeletal development. Mandibular advancement solicits a cascade of molecular responses in condylar cartilage. However, the pace of cellular maturation and its effects on condylar growth are still unknown. The purpose of this study was to evaluate the pattern of expression of PTHrP and correlate it to cellular dynamics of chondrocytes in condylar cartilage during natural growth and mandibular advancement. We fitted 35-day-old Sprague-Dawley rats with functional appliances. Experimental animals with matched controls were labeled with bromodeoxyuridine 3 days before their death, so that mesenchymal cell differentiation could be traced. Mandibular advancement increased the number of differentiated chondroblasts and subsequently increased the cartilage volume. Higher levels of PTHrP expression in experimental animals coincided with the slowing of chondrocyte hypertrophy. Thus, mandibular advancement promoted mesenchymal cell differentiation and triggered PTHrP expression, which retarded their further maturation to allow for more growth.

  10. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Li, Zubing, E-mail: lizubing0827@163.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  11. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  12. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  13. Use of autologous tissue engineered skin to treat porcine full-thickness skin defects

    Institute of Scientific and Technical Information of China (English)

    CAI Xia; CAO Yi-lin; CUI Lei; LIU Wei; GUAN Wen-xiang

    2005-01-01

    Objective: To explore a feasible method to repair full-thickness skin defects utilizing tissue engineered techniques. Methods: The Changfeng hybrid swines were used and the skin specimens were cut from the posterior limb girdle region, from which the keratinocytes and fibroblasts were isolated and harvested by trypsin, EDTA, and type II collagenase. The cells were seeded in Petri dishes for primary culture. When the cells were in logarithmic growth phase, they were treated with trypsin to separate them from the floor of the tissue culture dishes. A biodegradable material, Pluronic F-127, was prefabricated and mixed with these cells, and then the cell-Pluronic compounds were seeded evenly into a polyglycolic acid (PGA). Then the constructs were replanted to the autologous animals to repair the full-thickness skin defects. Histology and immunohistochemistry of the neotissue were observed in 1, 2, 4, and 8 postoperative weeks. Results: The cell-Pluronic F-127-PGA compounds repaired autologous full-thickness skin defects 1 week after implantation. Histologically, the tissue engineered skin was similar to the normal skin with stratified epidermis overlying a moderately thick collageneous dermis. Three of the structural proteins in the epidermal basement membrane zone, type IV collagen, laminin, and type VII collagen were detected using immunohistochemical methods. Conclusions: By studying the histology and immunohistochemistry of the neotissue, the bioengineered skin graft holds great promise for improving healing of the skin defects.

  14. Mechanical Compression of Articular Cartilage Induces Chondrocyte Proliferation and Inhibits Proteoglycan Synthesis by Activation of the Erk Pathway: Implications for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Ryan, James A.; Eisner, Eric A.; DuRaine, Grayson; You, Zongbing; Reddi, A. Hari

    2013-01-01

    Articular cartilage is recalcitrant to endogenous repair and regeneration and thus a focus of tissue engineering and regenerative medicine strategies. A pre-requisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1−sec for 5 seconds. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: 1) no load without inhibitor 2) no load with the inhibitor PD98059, 3) loaded without the inhibitor, and 4) loaded with the inhibitor PD98059. Explants were cultured for varying durations, from 5 minutes to 5 days. Explants were then analyzed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose-dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression. PMID:19177463

  15. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum.

    Science.gov (United States)

    Whitney, G Adam; Mera, Hisashi; Weidenbecher, Mark; Awadallah, Amad; Mansour, Joseph M; Dennis, James E

    2012-08-01

    Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell sources are described in detail, and the resulting constructs are compared for use in a joint resurfacing model. Attachment of cartilage sheets to porous tantalum is also investigated as a potential vehicle for future attachment to subchondral bone. Large scaffold-free cartilage constructs were produced from culture-expanded chondrocytes from skeletally mature rabbits, and redifferentiated in a chemically-defined culture medium. Auricular constructs contained more glycosaminoglycan (39.6±12.7 vs. 9.7±1.9 μg/mg wet weight, mean and standard deviation) and collagen (2.7±0.45 vs. 1.1±0.2 μg/mg wet weight, mean and standard deviation) than articular constructs. Aggregate modulus was also higher for auricular constructs vs. articular constructs (0.23±0.07 vs. 0.12±0.03 MPa, mean and standard deviation). Attachment of constructs to porous tantalum was achieved by neocartilage ingrowth into tantalum pores. These results demonstrate that large scaffold-free neocartilage constructs can be produced from mature culture-expanded chondrocytes in a chemically-defined medium, and that these constructs can be attached to porous tantalum.

  16. Effects of Cryoprotective Agents on the Bovine Articular Chondrocyte Viability

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cryopreservation is the process of choice for long term preservation of cells and tissues. In this study, the effects of cryoprotective agents, dimethyl sulfoxide(DMSO), glycerol and 1,2-propanediol on the bovine articular chondrocyte viability were examined experimentally. The CPA was added at the concentrations of 0. 6. 0.9, 1.2 and 1.5 mol/I and at 4℃ and 37℃ and removed at 37℃ in one-step. CPA stepwise addition and removal at 0. 6 and 1. 2 mol/L and at 37℃ was also tested as an alternative protocol. Cell volume excursion during DMSO addition and removal was estimated and correlated well with cell survival rates. Solution makeup affects cell survival rate and a stepwise protocol can improve the cell survival rates significantly.

  17. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.

    Science.gov (United States)

    Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul

    2015-05-11

    The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.

  18. Composite articular cartilage engineered on a chondrocyte-seeded aliphatic polyurethane sponge.

    Science.gov (United States)

    Liu, Yanchun; Webb, Ken; Kirker, Kelly R; Bernshaw, Nicole J; Tresco, Patrick A; Gray, Steven D; Prestwich, Glenn D

    2004-01-01

    To circumvent the reconstructive disadvantages inherent in resorbable polyglycolic acid (PGA)/polylactic acid (PLA) used in cartilage engineering, a nonresorbable, and nonreactive polyurethane sponge (Tecoflex sponge, TS) was studied as both a cell delivery device and as an internal support scaffolding. The in vitro viability and proliferation of porcine articular chondrocytes (PACs) in TS, and the in vivo generation of new articular cartilage and long-term resorption, were examined. The initial cell attachment rate was 40%, and cell density increased more than 5-fold after 12 days of culture in vitro. PAC-loaded TS blocks were implanted into nude mice, became opalescent, and resembled native cartilage at weeks 12 and 24 postimplantation. The mass and volume of newly formed cartilage were not significantly different at week 24 from samples harvested at week 6 or week 12. Safranin O-fast green staining revealed that the specimens from cell-loaded TS groups at week 12 and week 24 consisted of mature cartilage. Collagen typing revealed that type II collagen was present in all groups of tissue-engineered cartilage. In conclusion, the implantation of PAC-TS resulted in composite tissue-engineered articular cartilage with TS as an internal support. Long-term observation (24 weeks) of mass and volume showed no evidence of resorption.

  19. Autologous Serum Skin Test versus Autologous Plasma Skin Test in Patients with Chronic Spontaneous Urticaria

    Directory of Open Access Journals (Sweden)

    Aysegul Alpay

    2013-01-01

    Full Text Available Previous studies indicate that 25–45% of chronic urticaria patients have an autoimmune etiology. Autologous serum skin test (ASST and autologous plasma skin test (APST are simple tests for diagnosing chronic autoimmune urticaria (CAU. However, there are still some questions about the specificity of these tests. This study consisted of 50 patients with chronic spontaneous urticaria (CSU and 50 sex- and age-matched healthy individuals aged 18 years, and older. A total of 31 (62% patients and 5 (10% control patients had positive ASST; 21 (42% patients and 3 (6% control patients had positive APST. Statistically significant differences were noted in ASST and APST positivity between the patient and control groups (ASST P<0.001; APST P<0.001. Thirteen (26% patients and 5 (10% control patients had antithyroglobulin antibodies or antithyroid peroxidase antibody positivity. No statistically significant differences were noted in thyroid autoantibodies between the patient and control groups (anti-TG P=0.317; anti-TPO P=0.269. We consider that the ASST and APST can both be used as in vivo tests for the assessment of autoimmunity in the etiology of CSU and that thyroid autoantibodies should be checked even when thyroid function tests reveal normal results in patients with CSU.

  20. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen.

    Science.gov (United States)

    Yen, Hung-Jen; Tseng, Ching-Shiow; Hsu, Shan-Hui; Tsai, Ching-Lin

    2009-06-01

    Highly porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds for cartilage tissue engineering were fabricated in this study using the fused deposition manufacturing (FDM) process and were further modified by type II collagen. The average molecular weight of PLGA decreased to about 60% of the original value after the melt-extrusion process. Type II collagen exhibited sponge-like structure and filled the macroporous FDM scaffolds. An increase of the fiber spacing resulted in an increase of the porosity. The storage modulus of FDM scaffolds with a large fiber spacing was comparable to that of the native porcine articular cartilage. Although the FDM hybrid scaffolds were swollen in various extents after 28 days of in vitro culture, the seeded chondrocytes were well distributed in the interior of the scaffolds with a large fiber spacing and neocartilage was formed around the scaffolds. The study also suggested that a low processing temperature may be required to produce PLGA precision scaffolds using FDM.

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  2. The cytoskeleton of chondrocytes of Sepia officinalis (Mollusca, Cephalopoda: an immunocytochemical study

    Directory of Open Access Journals (Sweden)

    F Leone

    2009-06-01

    Full Text Available Our previous electron microscope study showed that chondrocytes from cephalopod cartilage possess a highly developed cytoskeleton and numerous cytoplasmic processes that ramify extensively through the tissue. We have now carried out a light microscope immunocytochemical study of chondrocytes from the orbital cartilage of Sepia officinalis to obtain indications as to the nature of the cytoskeletal components. We found clear positivity to antibodies against mammalian tubulin, vimentin, GFAP, and actin, but not keratin. The simultaneous presence of several cytoskeletal components is consistent with the hypothesis that cephalopod chondrocytes have the characteristics of both chondrocytes and osteocytes of vertebrates, which endow the tissue as a whole with some of the properties of vertebrate bone. We confirm, therefore, the presence in molluscs of the ubiquitous cytoskeletal proteins of metazoan cells that have remained highly conserved throughout phylogenetic evolution.

  3. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    Science.gov (United States)

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  4. 胶原/羟基磷灰石复合支架负载软骨细胞构建组织工程软骨%Construction of tissue engineering cartilage with collagen/hydroxyapatite composite scaffolds loaded chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    卢华定; 蔡道章; 吴刚; 曾春

    2006-01-01

    BACKGROUND: A new composite scaffold for cartilage tissue engineer ing has been employed to culture chondrocytes and overcome many limits related to traditional scaffolds, such as poor biocompatibility, inferior mechanical property, inappropriate biodegradability, and simplex structure which can not match layered structure of articular cartilage, etc. The new composite scaffolds provided a new approach for the research of cartilage tissue engineering.OBJECTIVE: To evaluate the feasibility and value of layered cylindrical collagen/hydroxyapatite (HA) composite for cartilage tissue engineering by observing how it absorbs chondrocytes and affects its cellular characteristics.DESIGN: Completely randomized design and controlled experimental study.SETTING: Department of Orthopaedics, Third Hospital Affiliated to Sun Yat-sen University, and College of Material Science, South China University of Technology.MATERIALS: The experiment was conducted at the central experimental laboratory of the Third Hospital Affiliated to Sun Yat-sen University from June to November 2004. One two-week-old male healthy New Zealand rabbit,which was bred in 20 ℃ and 40% humidity, was used in this experiment.METHODS: ①Right amount of deionized water was added into HA, collagen I solution was added to disperse HA, then carbodiimide was added in the mixture at a proportion for getting the collagen/HA composite at different ratios. Pour to the certain mould in successive layers. The upper layer was pure collagen and the bottom was pure HA. The prepared layered cylindrical collagen/HA composite was put into the ultra low temperature freezer, lyophilized, and sterilized by ethylene oxide for the following procedures. ② Chondrocytes of juvenal rabbit were isolated and multiplied in vitro, then chondrocytes were seeded onto porous collagen/HA composite scaffold and cultured. The effects of composite scaffold on chondrocytes'morphological changes, proliferation, and function were evaluated through

  5. Autologous preconditioned mesenchymal stem cell sheets improve left ventricular function in a rabbit old myocardial infarction model

    Science.gov (United States)

    Tanaka, Yuya; Shirasawa, Bungo; Takeuchi, Yuriko; Kawamura, Daichi; Nakamura, Tamami; Samura, Makoto; Nishimoto, Arata; Ueno, Koji; Morikage, Noriyasu; Hosoyama, Tohru; Hamano, Kimikazu

    2016-01-01

    Mesenchymal stem cells (MSCs) constitute one of the most powerful tools for therapeutic angiogenesis in infarcted hearts. However, conventional MSC transplantation approaches result in insufficient therapeutic effects due to poor retention of graft cells in severe ischemic diseases. Cell sheet technology has been developed as a new method to prolong graft cell retention even in ischemic tissue. Recently, we demonstrated that hypoxic pretreatment enhances the therapeutic efficacy of cell sheet implantation in infarcted mouse hearts. In this study, we investigated whether hypoxic pretreatment activates the therapeutic functions of bone marrow-derived MSC (BM-MSC) sheets and improves cardiac function in rabbit infarcted hearts following autologous transplantation. Production of vascular endothelial growth factor (VEGF) was increased in BM-MSC monolayer sheets and it peaked at 48 h under hypoxic culture conditions (2% O2). To examine in vivo effects, preconditioned autologous BM-MSC sheets were implanted into a rabbit old myocardial infarction model. Implantation of preconditioned BM-MSC sheets accelerated angiogenesis in the peri-infarcted area and decreased the infarcted area, leading to improvement of the left ventricular function of the infarcted heart. Importantly, the therapeutic efficacy of the preconditioned BM-MSC sheets was higher than that of standardly cultured sheets. Thus, implantation of autologous preconditioned BM-MSC sheets is a feasible approach for enhancing therapeutic angiogenesis in chronically infarcted hearts. PMID:27347329

  6. Effects of Autolog Saliva on Biofilm Formation of Streptococcus mutans Isolated from Caries and Caries-free Subjects

    Directory of Open Access Journals (Sweden)

    Felicia Paramita

    2012-12-01

    Full Text Available Saliva and Streptococcus mutans play role in biofilm formation. Saliva and S.mutans virulence are different between subjects with and without caries. Objective: The aim of this study was to evaluate the effects of autolog saliva on biofilm formation of S. mutans isolated from caries and caries-free subjects. Materials and Methods: Saliva and plaque samples are obtained from caries and caries-free subjects. Plaque samples were cultured on TYS20B for 3 days. Selected colonies were picked and cultured on TSB for 3 days. After colony counting, biofilm assay was conducted and inoculated for one day. The biofilm was tested using crystal violet binding assay and quantified by measuring the optical density at 655 nm wavelength. Result: The optical density of S. muttans biofilm isolated from subjects with caries were different from taste with no caries. Biofilm formation of S. muttans isolated from caries and caries-free subjects with and without the presence of autolog saliva were different. Conclusion: Autolog saliva influences S. mutans biofilm formation and there is a tendency that is higher than those from subjects with no caries.DOI: 10.14693/jdi.v17i2.48

  7. In vitro chondrocyte toxicity following long-term, high-dose exposure to Gd-DTPA and a novel cartilage-targeted MR contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Midura, Sharon; Midura, Ronald J. [Cleveland Clinic, Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States); Schneider, Erika [Cleveland Clinic, Imaging Institute, A21, Cleveland, OH (United States); NitroSci Pharmaceuticals, New Berlin, WI (United States); Rosen, Gerald M. [University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD (United States); NitroSci Pharmaceuticals, New Berlin, WI (United States); Winalski, Carl S. [Cleveland Clinic, Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States); Cleveland Clinic, Imaging Institute, A21, Cleveland, OH (United States)

    2017-01-15

    To determine the concentrations exhibiting toxicity of a cartilage-targeted magnetic resonance imaging contrast agent compared with gadopentetate dimeglumine (Gd-DT-PA) in chondrocyte cultures. A long-term Swarm rat chondrosarcoma chondrocyte-like cell line was exposed for 48 h to 1.0-20 mM concentrations of diaminobutyl-linked nitroxide (DAB4-DLN) citrate, 1.0-20 mM Gd-DTPA, 1.0 μM staurosporine (positive control), or left untreated. Cell appearance, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays of metabolic activity, quantitative PicoGreen assays of DNA content, and calcein-AM viability assays were compared. At 1.0-7.5 mM, minimal decrease in cell proliferation was found for both agents. At all doses of both agents, cell culture appearances were similar after 24 h of treatment. At the higher doses, differences in cell culture appearance were found after 48 h of treatment, with dose-dependent declines in chondrocyte populations for both agents. Concentration-dependent declines in DNA content and calcein fluorescence were found after 48 h of treatment, but beginning at a lower dose of DAB4-DLN citrate than Gd-DTPA. Dose-dependent decreases in MTT staining (cell metabolism) were apparent for both agents, but larger effects were evident at a lower dose for DAB-DLN citrate. Poor MTT staining of cells exposed for 48 h to 20 mM DAB4-DLN citrate probably indicates dead or dying cells. The minimal effect of the long-term exposure of model chondrocyte cell cultures to DAB4-DLN citrate and Gd-DTPA concentrations up to 7.5 mM (3x typical arthrographic administration) is supporting evidence that these doses are acceptable for MR arthrography. The findings are reassuring given that the experimental exposure to the contrast agents at sustained concentrations was much longer than when used clinically. (orig.)

  8. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  9. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-07-01

    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound.

  10. Effectiveness of autologous transfusion system in primary total hip and knee arthroplasty.

    LENUS (Irish Health Repository)

    Schneider, Marco M

    2014-01-01

    Autologous transfusion has become a cost-efficient and useful option in the treatment of patients with high blood loss following major orthopaedic surgery. However, the effectiveness of autologous transfusion in total joint replacement remains controversial.

  11. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  12. Improving diagnosis of appendicitis. Early autologous leukocyte scanning.

    Science.gov (United States)

    DeLaney, A R; Raviola, C A; Weber, P N; McDonald, P T; Navarro, D A; Jasko, I

    1989-10-01

    A prospective nonrandomized study investigating the accuracy and utility of autologous leukocyte scanning in the diagnosis of apendicitis was performed. One hundred patients in whom the clinical diagnosis of appendicitis was uncertain underwent indium 111 oxyquinoline labelling of autologous leukocytes and underwent scanning 2 hours following reinjection. Of 32 patients with proved appendicitis, three scans revealed normal results (false-negative rate, 0.09). Of 68 patients without appendicitis, three scans had positive results (false-positive rate, 0.03; sensitivity, 0.91; specificity, 0.97; predictive value of positive scan, 0.94; predictive value of negative scan, 0.96; and overall accuracy, 0.95). Scan results altered clinical decisions in 19 patients. In 13 cases, the scan produced images consistent with diagnoses other than appendicitis, expediting appropriate management. Early-imaging111 In oxyquinoline autologous leukocyte scanning is a practical and highly accurate adjunct for diagnosing appendicitis.

  13. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  14. Inhibitory effects of pentosan polysulfate sodium on MAP-kinase pathway and NF-κB nuclear translocation in canine chondrocytes in vitro.

    Science.gov (United States)

    Sunaga, Takafumi; Oh, Namgil; Hosoya, Kenji; Takagi, Satoshi; Okumura, Masahiro

    2012-06-01

    Pentosan polysulfate sodium (PPS) has a heparin-like structure and is purificated from the plant of European beech wood. PPS has been used for the treatment of interstitial cystitis for human patients. Recent years, it was newly recognised that PPS reduce pain and inflammation of OA. The molecular biological mechanism of PPS to express its clinical effects is not fully understood. The purpose of the present study is to investigate a mechanism of action of PPS on inflammatory reaction of chondrocytes in vitro. It was evaluated that effects of PPS on interleukin (IL)-1β-induced phosphorylation of mitogen-actiated protein kinases (MAPKs), such as p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), nuclear translocation of nuclear factor-kappa B (NF-κB), and matrix metalloproteinase (MMP)-3 production in cultured articular chondrocytes. As a result, in the presence of PPS existence, IL-1β-induced phosphorylation of p38 and ERK were certainly inhibited, while JNK phosphorylation was not affected. Nuclear translocation of NF-κB and MMP-3 production were suppressed by PPS pretreatment prior to IL-1β stimulation. In conclusion, it is strongly suggested that PPS treatment prevents inflammatory intracellular responses induced by IL-1 β through inhibition of phosphorylation of certain MAPKs, p38 and ERK and then nuclear translocation of NF-κB in cultured chondrocytes. These PPS properties may contribute to suppressive consequence of catabolic MMP-3 synthesis. These data might translate the clinical efficacy as PPS treatment could inhibit the cartilage catabolism and related clinical symptoms of OA in dogs.

  15. Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee

    Institute of Scientific and Technical Information of China (English)

    DUAN Wang-ping; SUN Zhen-wei; LI Qi; LI Chun-jiang; WANG Li; CHEN Wei-yi; Jennifer Tickner; ZHENG Ming-hao; WEI Xiao-chun

    2012-01-01

    Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint.The pericellular matrix,cellular membrane of the chondrocytes,and their cytoskeletal structures are key elements in the mechanical environment.The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties.Methods Three age groups of rabbit knees were evaluated:(1) young (2 months,n=10);(2) adult (8 months,n=10);and (3) old (31 months,n=10).Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods.Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation.The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining.Results In response to an applied constant 0.3-0.4 kPa of negative pressure,all chondrocytes exhibited standard linear viscoelastic solid properties.Model predictions of the creep data showed that the average equilibrium modulus (E∞),instantaneous modulus (E0).and apparent viscosity (μ) of old chondrocytes was significantly lower than the young and adult chondrocytes (P<0.001);however,no difference was found between young and adult chondrocytes (P>0.05).The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells.The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1kPa) without the deformation seen in the old chondrons.The viscoelastic properties (E∞,E0,and u) of young and adult chondrons were significantly greater than that observed

  16. Expression of caspase-3 and -9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage.

    Directory of Open Access Journals (Sweden)

    Matsuo M

    2001-12-01

    Full Text Available To clarify the involvement of the caspase family in the pathway of NO-induced chondrocyte apoptosis, osteoarthritis (OA cartilage obtained from 8 patients undergoing total hip arthroplasty were used for histopathological study. Cartilage samples taken from non-fibrillated areas of femoral head resected during surgery for femoral neck fracture were used for comparison. DNA fragmentation of chondrocytes was detected by the nick end-labeling (TUNEL method. Apoptosis was further confirmed by transmission electron microscopy. The distributions of nitrotyrosine (NT, caspase-3, and -9 were examined immunohistochemically. The populations of apoptotic as well as NT-, caspase-3-, and -9-positive cells were quantified by counting the number of cells in the superficial, middle, and deep layers, respectively. The TUNEL-positive cells were observed primarily in superficial proliferating chondrocytes, clustering chondrocytes, and deep-layer chondrocytes of OA cartilage. Few positive cells were seen in the proliferating chondrocytes in the middle layer. Positive reactions for caspase-3 and -9 were observed in chondrocytes in similar areas. Histological OA grade showed significant correlations with the mean populations of apoptotic chondrocytes (% apoptosis over the 3 areas. The populations of NT-positive cells (% NT over the same areas also showed significant correlation with OA grade. Positivity for caspase-3 closely correlated with the OA grade, % apoptosis and %NT. It was concluded that caspase-3 and -9 could play a role in NO-induced chondrocyte apoptosis in OA cartilage.

  17. Autologous adventitial overlay method reinforces anastomoses in aortic surgery.

    Science.gov (United States)

    Minato, Naoki; Okada, Takayuki; Sumida, Tomohiko; Watanabe, Kenichi; Maruyama, Takahiro; Kusunose, Takashi

    2014-05-01

    In this study, we present an inexpensive and effective method for providing a secure and hemostatic anastomosis using autologous adventitia obtained from a dissected or aneurysmal wall. The resected aortic wall is separated between the adventitia and media, and a soft, 2 × 10-cm adventitial strip is overlaid to cover the anastomotic margin. A graft is sutured to the aortic stump. This autologous adventitial overlay method can inexpensively and strongly reinforce the anastomosis during aortic surgery for dissection or aneurysm and will contribute to anastomotic hemostasis and long-term stability.

  18. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  19. Preoperative autologous plateletpheresis in patients undergoing open heart surgery.

    Directory of Open Access Journals (Sweden)

    Tomar Akhlesh

    2003-01-01

    Full Text Available Blood conservation is an important aspect of care provided to the patients undergoing cardiac operations with cardiopulmonary bypass (CPB. It is even more important in patients with anticipated prolonged CPB, redo cardiac surgery, patients having negative blood group and in patients undergoing emergency cardiac surgery. In prolonged CPB the blood is subjected to more destruction of important coagulation factors, in redo surgery the separation of adhesions leads to increased bleeding and difficulty in achieving the haemostasis and in patients with negative blood group and emergency operations, the availability of sufficient blood can be a problem. Harvesting the autologous platelet rich plasma (PRP can be a useful method of blood conservation in these patients. The above four categories of patients were prospectively studied, using either autologous whole blood donation or autologous platelet rich plasma (PRP harvest in the immediate pre-bypass period. Forty two patients were included in the study and randomly divided into two equal groups of 21 each, control group (Group I in which one unit of whole blood was withdrawn, and PRP group (Group II where autologous plateletpheresis was utilised. After reversal of heparin, autologous whole blood was transfused in the control group and autologous PRP was transfused in the PRP group. The chest tube drainage and the requirement of homologous blood and blood products were recorded. Average PRP harvest was 643.33 +/- 133.51 mL in PRP group and the mean whole blood donation was 333.75 +/- 79.58 mL in the control group. Demographic, preoperative and intra operative data showed no statistically significant differences between the two groups. The PRP group patients drained 26.44% less (p<0.001 and required 38.5% less homologous blood and blood products (p<0.05, in the postoperative period. Haemoglobin levels on day zero (day of operation and day three were statistically not different between the two groups. We

  20. T-2毒素致胎儿软骨细胞凋亡的观察%Effect of T-2 toxin on apoptosis of fetus chondrocytes

    Institute of Scientific and Technical Information of China (English)

    杨天府; 贾志强; 沈彬

    2001-01-01

    目的 探讨T-2毒素与软骨细 胞凋亡的关系。方法 水囊引产胎儿的软骨细胞体外单层培养。T-2 毒素浓度分为0,5,10,20和40 μg/L 5组,第1代软骨细胞接种后培养4 d,加入不同浓 度的T-2毒素,作用16 h。应用TUNEL法和流式细胞技术定性和定量检测软骨细胞凋 亡。同时观察T-2毒素对软骨细胞增殖的影响。结果 各组细胞在加入T-2毒素后,胞体明显皱缩,T-2 毒素浓度越大,皱缩越严重。流式细胞仪检测与TdT中介脱氧尿苷三磷酸末端标记(TU NEL)法检测均发现,当T-2毒素在0~10 μg/L之间时,T-2毒素浓度越大,凋亡细胞越多。结论 T-2毒素对软骨细胞的增殖有明显的抑制作用,并与T-2毒素浓度呈剂量—效应关系。T-2毒素可以引起体外培养的软骨细胞凋亡,且与T-2 毒素浓度有一定关系。%Objective To investigate the effect of T-2 toxin on apoptosis of chondrocytes.Methods Chondrocytes which were obtained from aborted fetal were cultured in vitro.Four days later,these chondrocytes were exposed to T-2 toxin in different concetrations for 16 hours.According to the concentratio ns,five experimental groups were divided:0,5,10,20,40 μg/L.Then TUNEL staining and Flowcytometry were used to detect the apoptosis of chondrocytes qualitativel y and quantitatively,the effect of T-2 toxin on proliferation of chondrocytes were also observed.Results After being exposed to T-2 toxin,the body of chondrocytes shrinked obviously and there was a dose-dependent relationship bet ween the toxin concentration and the degree of shrink.The concentration of T-2 toxin changed from 0 μg/L to 10 ng/ml,the number of apoptosis increased.Conclusions  T-2 toxin can inhibit the proliferation of chondroyte significantly in a dose-depenent manner. T-2 toxin can induce the apoptosis of chondrocyte and the numbers of apoptosis is proportionate to the concentration of T-2 toxin in particular

  1. Short-term Effect of Chemotherapy Concomitant with Multiple Autologous Immunocytes on Patients with Colorectal Carcinoma

    Directory of Open Access Journals (Sweden)

    Junquan Liu

    2013-12-01

    Full Text Available Objective: To compare the differences of cellular immunological functional changes and survival time of chemotherapy concomitant with multiple autologous immunocytes with single chemotherapy on patients with colorectal carcinoma (CRC. Methods: Of the 83 CRC patients, 43 were treated with single chemotherapy (single chemotherapy group while the other 40 were given chemotherapy concomitant with multiple autologous immunocytes (combined chemotherapy group. Blood cell separator was applied to collect autologous peripheral blood mononuclear (PBMC which was used to induce the cultures of peripheral blood CD3AK cell, CIK cell, dendritic cell (DC, γδT cell and NK cell based on routine approaches. Peripheral blood CD3+, CD4+, CD8+, CD19+, CD16+, CD56+, CD4/CD8 and γδT cell ratio as well as the positive expression rates of perforin, granular enzyme B and CD107a in PBMC were determined by flow cytometer. Same chemotherapy (oxaliplatin + CF + 5-FU was intravenously given to both groups, while in combination group, 4, 6, 9, 11 and 10 patients received 3, 6, 7, 10 and > 16 courses of treatment, respectively. Results: Subgroup of immunocytes and absolute value in combined chemotherapy group were evidently higher than in single chemotherapy group, but there was no significant difference in Karnofsky score. In addition, combined chemotherapy group was apparently higher after treatment than treatment before and single chemotherapy group in the results of perforin, granular enzyme B (GranB and CD107a in PBMC. Additionally, 1-, 2- and 5-year survival rates in combined chemotherapy group (in phases Ⅱ , Ⅲ and Ⅳ were 70.0% (28/40, 20.0% (8/40 and 10.0% (4/40, higher than those in single chemotherapy group [23.2% (10/43, 7.0% (3/43 and 4.6% (2/43], respectively, in which the differences in phases Ⅱ and Ⅲ were more significant (P <0.05, but no difference was observed between two groups in 5-year survival rate in patients in phase Ⅳ . Conclusion

  2. The effect of erythropoietin on autologous stem cell-mediated bone regeneration.

    Science.gov (United States)

    Nair, Ashwin M; Tsai, Yi-Ting; Shah, Krishna M; Shen, Jinhui; Weng, Hong; Zhou, Jun; Sun, Xiankai; Saxena, Ramesh; Borrelli, Joseph; Tang, Liping

    2013-10-01

    Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.

  3. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  4. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    Science.gov (United States)

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  5. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    Science.gov (United States)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  6. Functional Characterization of TRPV4 As an Osmotically Sensitive Ion Channel in Articular Chondrocytes

    Science.gov (United States)

    Phan, Mimi N.; Leddy, Holly A.; Votta, Bartholomew J.; Kumar, Sanjay; Levy, Dana S.; Lipshutz, David B.; Lee, Sukhee; Liedtke, Wolfgang; Guilak, Farshid

    2010-01-01

    Objective Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+ permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. The objective of this study was to demonstrate the presence and functionality of TRPV4 in chondrocytes. Methods TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca2+ signaling, cell volume, and prostaglandin E2 (PGE2) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. Results TRPV4 was expressed abundantly at the RNA and protein level. Exposure to 4αPDD, a TRPV4 activator, caused Ca2+ signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca2+ responsive cells, regulatory volume decrease (RVD), and PGE2 production. Ca2+ signaling was inhibited by removal of extracellular Ca2+ or depletion of intracellular stores. Specific activation of TRPV4 restored defective RVD caused by IL-1. Chemical disruption of the primary cilium eliminated Ca2+ signaling in response to either 4αPDD or hypo-osmotic stress. Conclusion TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca2+ and intracellular Ca2+ release. TRPV4 may also be involved in modulating the production or influence of pro-inflammatory molecules in response to osmotic stress. PMID:19790068

  7. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Tasken, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-02-24

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole bone marrow aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.Leukemia accepted article preview online, 24 February 2017. doi:10.1038/leu.2017.69.

  8. Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer.

    Science.gov (United States)

    Sims, Robert B

    2012-06-19

    Sipuleucel-T, the first autologous cellular immunotherapy approved by the United States Food and Drug Administration, is designed to stimulate an immune response to prostate cancer. Sipuleucel-T is manufactured by culturing a patient's peripheral blood mononuclear cells, including autologous antigen presenting cells (APCs), with a recombinant protein comprising a tumor-associated antigen (prostatic acid phosphatase [PAP]) and granulocyte colony-macrophage stimulating factor (GM-CSF). A full course of treatment comprises 3 infusions of sipuleucel-T, given at approximately 2-week intervals. The pattern of APC activation is consistent with priming by the first infusion, and boosting by the second and third infusions. Preclinical and clinical studies have demonstrated evidence of a robust antigen-specific immune response that includes a progressive and persistent increase in antigen-specific cellular and humoral immune responses. Treatment with sipuleucel-T has demonstrated a survival benefit in Phase 3 studies of subjects with metastatic castrate resistant (hormone refractory) prostate cancer (mCRPC). Adverse events with sipuleucel-T were generally mild to moderate and resolved within 2 days. Serious adverse events, autoimmune events, and cerebrovascular events occurred at a similar rate to control subjects. As the first autologous cellular immunotherapy to demonstrate an improvement in overall survival in asymptomatic or minimally symptomatic mCRPC patients, sipuleucel-T represents a new treatment paradigm in oncology.

  9. Short waves-induced enhancement of proliferation of human chondrocytes: involvement of extracellular signal-regulated map-kinase (erk).

    Science.gov (United States)

    Wang, Jue-Long; Chan, Rai-Chi; Cheng, He-Hsiung; Huang, Chun-Jen; Lu, Yih-Chau; Chen, I-Shu; Liu, Shiuh-Inn; Hsu, Shu-Shong; Chang, Hong-Tai; Huang, Jong-Khing; Chen, Jin-Shyr; Ho, Chin-Man; Jan, Chung-Ren

    2007-07-01

    1. Short-wave diathermy (SWD) is a form of radiofrequency radiation that is used therapeutically by physiotherapists. The cellular mechanisms of SWD are unclear. The present study was performed to explore the effect of different conditions of short-wave exposure on the proliferation of cultured human chondrocytes. 2. Cells exposed to short waves once per day for seven consecutive days exhibited a significant increase in proliferation by 42% compared with the control cells. In cells that were treated with short waves twice per day for seven consecutive days, or only once on Day 1 and then examined for proliferation on Day 7, cell proliferation was greater than the control cells by 40% and 30%, respectively. 3. Given the importance of mitogen-activated protein kinases (MAPK) in the proliferation of different cell types, efforts were extended to explore the role of three major types of MAPK; that is, extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK) and p38. 4. It was found that the level of phosphorylated ERK (phospho-ERK 1 and ERK 2) increased significantly within 5-120 min following consecutive exposure to short waves for 7 days. Exposure to short waves failed to alter the intensity of phosphorylated JNK and p38 within 0-240 min. 5. Cells were exposed to short waves once for seven consecutive days in the presence of 0, 10 micromol/L, 20 micromol/L or 50 micromol/L PD98059 (an ERK inhibitor). PD98059 totally inhibited short waves-induced enhancement of proliferation without altering normal control viability. In the presence of short waves and PD98059, the cell viability was lower than the normal control. Together, the data suggest that short waves could increase proliferation in human chondrocytes through activation of the ERK pathway, which is also involved in maintaining normal cell proliferation under physiological conditions.

  10. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model.

    Science.gov (United States)

    Zhong, Ying; Huang, Yi; Santoso, Marcel B; Wu, Li-Dong

    2015-01-01

    Sclareol is a natural product initially isolated form Salvia sclarea which possesses immune-regulation and anti-inflammatory activities. However, the anti-osteoarthritic properties of sclareol have not been investigated. The present study is aimed at evaluating the potential effects of sclareol in interleukin-1β (IL-1β)-induced rabbit chondrocytes as well as an experimental rabbit knee osteoarthritis model induced by anterior cruciate ligament transection (ACLT). Cultured rabbit chondrocytes were pretreated with 1, 5 and 10 μg/mL sclareol for 1 h and followed by stimulation of IL-1β (10 ng/mL) for 24 h. Gene expression of matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, tissue inhibitors of metalloproteinase-1 (TIMP-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). MMP-3, TIMP-1, iNOS and COX-2 proteins were measured by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was applied for nitric oxide (NO) and prostaglandin E2 (PGE2) assessment. For the in vivo study, rabbits received six weekly 0.3 mL sclareol (10 μg/mL) intra-articular injections in the knees four weeks after ACLT surgery. Cartilage was harvested for measurement of MMP-1, MMP-3, MMP-13, TIMP-1, iNOS and COX-2 by qRT-PCR, while femoral condyles were used for histological evaluation. The in vitro results we obtained showed that sclareol inhibited the MMPs, iNOS and COX-2 expression on mRNA and protein levels, while increased the TIMP-1 expression. And over-production of NO and PGE2 was also suppressed. For the in vivo study, both qRT-PCR results and histological evaluation confirmed that sclareol ameliorated cartilage degradation. Hence, we speculated that sclareol may be an ideal approach for treating osteoarthritis.

  11. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA

    Science.gov (United States)

    Crowe, N.; Swingler, T.E.; Le, L.T.T.; Barter, M.J.; Wheeler, G.; Pais, H.; Donell, S.T.; Young, D.A.; Dalmay, T.; Clark, I.M.

    2016-01-01

    Summary Objective To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3′-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. Results We identified 990 known miRNAs and 1621 potential novel miRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate miRNAs were analysed further, of which six remained after northern blot analysis. Three novel miRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). Conclusion Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis (OA). Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man. PMID:26497608

  12. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  13. Lack of autologous tissue transmission of eosinophilic plaques in cats.

    Science.gov (United States)

    Moriello, K A; Kunkle, G; Miller, L M; Crowley, A

    1990-07-01

    Autologous tissue transmission of spontaneously developing feline eosinophilic plaques was attempted in 5 cats. Macerated tissue from the plaque was vigorously rubbed onto 2 scarified skin sites in each cat. The inoculated areas were observed daily for 30 days. During that time, no clinical or histologic evidence of transmission was found.

  14. Experimental autologous substitute vascular graft for transplantation surgery

    NARCIS (Netherlands)

    Kobori, L; Dallos, G; Gouw, ASH; Nemeth, T; Nemes, B; Fehervari, I; Tegzess, Adam; Slooff, MJH; Perner, F; De Jong, KP

    2000-01-01

    Vascular complications in fiver transplantation are a major cause of graft failure and mortality. The aim of the study was to create autologous vascular graft without risk of rejection. Posterior rectus fascia sheath lined with peritoneum was used for iliac artery replacement in seven mongrel dogs.

  15. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Stenholm, A C; Kronborg, O

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression...

  16. Do autologous blood and PRP injections effectively treat tennis elbow?

    Science.gov (United States)

    Widstrom, Luke; Slattengren, Andrew

    2016-09-01

    Both approaches reduce pain, but the improvement with platelet-rich plasma (PRP) is not clinically meaningful. Autologous blood injections (ABIs) are more effective than corticosteroid injections for reducing pain and disability in patients with tennis elbow in both the short and long term.

  17. A Role For Photodynamic Therapy In Autologous Bone Marrow Transplantation

    Science.gov (United States)

    Sieber, Fritz

    1988-02-01

    Simultaneous exposure to the amphipathic fluorescent dye merocyanine 540 (MC 540) and light of a suitable wavelength rapidly kills leukemia, lymphoma, and neuroblastoma cells but spares normal pluripotent hematopoietic stem cells. Tests in several preclinical models and early results of a phase I clinical trial suggest that MC 540-mediated photosensitization may be useful for the extracorporeal purging of autologous remission bone marrow grafts.

  18. Autologous serum for anterior tissue necrosis after porous orbital implant

    Directory of Open Access Journals (Sweden)

    Saurabh Kamal

    2014-01-01

    Full Text Available Orbital implants are now routinely used after enucleation and evisceration. However exposure of the implant can lead to infection and extrusion. Hence, early repair of larger exposure with graft material is required. We describe three cases where early postoperative mucosal dehiscence was successfully managed with autologous serum.

  19. Hematopoietic progenitor cell mobilization for autologous transplantation - a literature review

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Salvino

    2016-02-01

    Full Text Available ABSTRACT The use of high-dose chemotherapy with autologous support of hematopoietic progenitor cells is an effective strategy to treat various hematologic neoplasms, such as non-Hodgkin lymphomas and multiple myeloma. Mobilized peripheral blood progenitor cells are the main source of support for autologous transplants, and collection of an adequate number of hematopoietic progenitor cells is a critical step in the autologous transplant procedure. Traditional strategies, based on the use of growth factors with or without chemotherapy, have limitations even when remobilizations are performed. Granulocyte colony-stimulating factor is the most widely used agent for progenitor cell mobilization. The association of plerixafor, a C-X-C Chemokine receptor type 4 (CXCR4 inhibitor, to granulocyte colony stimulating factor generates rapid mobilization of hematopoietic progenitor cells. A literature review was performed of randomized studies comparing different mobilization schemes in the treatment of multiple myeloma and lymphomas to analyze their limitations and effectiveness in hematopoietic progenitor cell mobilization for autologous transplant. This analysis showed that the addition of plerixafor to granulocyte colony stimulating factor is well tolerated and results in a greater proportion of patients with non-Hodgkin lymphomas or multiple myeloma reaching optimal CD34+ cell collections with a smaller number of apheresis compared the use of granulocyte colony stimulating factor alone.

  20. How effective is autologous serum therapy in chronic autoimmune urticaria

    Directory of Open Access Journals (Sweden)

    Imran Majid

    2015-01-01

    Full Text Available Background: Chronic autoimmune urticaria (CAU is one of the most challenging therapeutic problems faced by a dermatologist. Recently, weekly autologous serum injections have been shown to induce a prolonged remission in this disease. Aim: To evaluate the efficacy of repeated autologous serum injections in patients with CAU. Materials and Methods: Seventy patients of CAU were prospectively analyzed for the efficacy of nine consecutive weekly autologous serum injections with a post-intervention follow-up of 12 weeks. Total urticaria severity score (TSS was monitored at the baseline, at the end of treatment and lastly at the end of 12 weeks of follow up. Response to treatment was judged by the percentage reduction in baseline TSS at the end of treatment and again at the end of 12 weeks-follow-up. Results: Out of the 70 patients enrolled, 11 dropped out of the injection treatment after one or the first few doses only. Among the rest of 59 patients, only 7 patients (12% went into a partial or complete remission and remained so over the follow-up period of 12 weeks. Forty patients (68% did not demonstrate any significant reduction in TSS at the end of the treatment period. Rest of the 12 patients showed either a good or excellent response while on weekly injection treatment, but all of them relapsed over the follow-up period of 12 weeks. Conclusion: Autologous serum therapy does not seem to lead to any prolonged remission in patients of CAU.

  1. Osteoarthritis treatment using autologous conditioned serum after placebo

    NARCIS (Netherlands)

    Rutgers, Marijn; Creemers, Laura B; Auw Yang, Kiem Gie; Raijmakers, Natasja J H; Dhert, Wouter J A; Saris, Daniel B F

    2015-01-01

    BACKGROUND AND PURPOSE: Autologous conditioned serum (ACS) is a disease-modifying drug for treatment of knee osteoarthritis, and modest superiority over placebo was reported in an earlier randomized controlled trial (RCT). We hypothesized that when given the opportunity, placebo-treated patients fro

  2. AUTOLOGOUS VEIN SUPPORTED WITH A BIODEGRADABLE PROSTHESIS FOR ARTERIAL GRAFTING

    NARCIS (Netherlands)

    ZWEEP, HP; SATOH, S; VANDERLEI, B; HINRICHS, WLJ; DIJK, F; FEIJEN, J; WILDEVUUR, CRH

    1993-01-01

    To evaluate the potential of a supporting, compliant, biodegradable prosthesis to function as a temporary protective scaffold for autologous vein grafts in the arterial circulation, we implanted vein grafts into the carotid arteries of rabbits, either with (composite grafts) or without (control graf

  3. Autologous tissue repair of large abdominal wall defects.

    NARCIS (Netherlands)

    Vries Reilingh, T.S. de; Bodegom, M.E.; Goor, H. van; Hartman, E.H.M.; Wilt, G.J. van der; Bleichrodt, R.P.

    2007-01-01

    BACKGROUND AND METHOD: Techniques for autologous repair of abdominal wall defects that could not be closed primarily are reviewed. Medline and PubMed were searched for English or German publications using the following keywords: components separation technique (CST), Ramirez, da Silva, fascia lata,

  4. Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds.

    Science.gov (United States)

    Nuutila, Kristo; Peura, Matti; Suomela, Sari; Hukkanen, Mika; Siltanen, Antti; Harjula, Ari; Vuola, Jyrki; Kankuri, Esko

    2015-12-01

    Complex skin wounds, such as chronic ulcers and deep burns, require lengthy treatments and cause extensive burdens on healthcare and the economy. Use of biomaterials and cell transplantation may improve traditional treatments and promote the healing of difficult-to-treat wounds. In this study, we investigated the use of recombinant human collagen III (rhCol-III) gel as a delivery vehicle for cultured autologous skin cells (keratinocytes only or keratinocyte-fibroblast mixtures). We examined its effect on the healing of full-thickness wounds in a porcine wound-healing model. Two Landrace pigs were used for the study. Fourteen deep dermal wounds were created on the back of each pig with an 8 mm biopsy punch. Syringes containing acellular rhCol-III gel (n = 8) or rhCol-III gel with autologous keratinocytes (n = 8) or rhCol-III gel with autologous keratinocytes and fibroblasts (n = 8) were applied into wounds. Untreated wounds were used as controls for the treatment groups (n = 4). We used rhCol-III gel to manufacture a cell-delivery syringe containing autologous skin cells. In a full-thickness wound-healing model, we observed that rhCol-III gel enhances early granulation tissue formation. Interestingly, we found cell type-dependent differences in the stability of rhCol-III in vivo. Fibroblast-containing gel was effectively removed from the wound, whereas gels without cells or with keratinocytes only remained intact. Our results demonstrate that the properties of rhCol-III gel for skin cell transplantation can be significantly altered in a cell type-dependent manner.

  5. 17 beta-estradiol-BSA conjugates and 17 beta-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduction.

    Science.gov (United States)

    Sylvia, V L; Walton, J; Lopez, D; Dean, D D; Boyan, B D; Schwartz, Z

    2001-01-01

    Nuclear receptors for 17 beta-estradiol (E(2)) are present in growth plate chondrocytes from both male and female rats and regulation of chondrocytes through these receptors has been studied for many years; however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the cell response. E(2) was found to directly affect the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E(2) activates protein kinase C (PKC) in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E(2)-dependent alkaline phosphatase activity and proteoglycan sulfation in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of the present study were: (1) to examine the effect of a cell membrane-impermeable 17 beta-estradiol-bovine serum albumin conjugate (E(2)-BSA) on chondrocyte proliferation, differentiation, and matrix synthesis; (2) to determine the pathway that mediates the membrane effect of E(2)-BSA on PKC; and (3) to compare the action of E(2)-BSA to that of E(2). Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10(-9) to 10(-7) M E(2) or E(2)-BSA and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [(3)H]-thymidine incorporation measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E(2)-BSA in the presence or absence of GDP beta S (inhibitor of G-proteins), GTP gamma S (activator of G-proteins), U73122 or D609 (inhibitors of phospholipase C [PLC]), wortmannin (inhibitor of phospholipase D [PLD]) or LY294002 (inhibitor of phosphatidylinositol 3-kinase). E(2)-BSA mimicked the effects of E(2) on alkaline phosphatase specific activity and proteoglycan sulfation, causing dose-dependent increases in both RC and GC cell cultures. Both forms of estradiol inhibited [(3)H

  6. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  7. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    Science.gov (United States)

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  8. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  9. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction

    Science.gov (United States)

    Salinas, Daniel; Carlson, Ross P.; McCutchen, Carley N.

    2017-01-01

    Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization. PMID:28056047

  10. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.

    Science.gov (United States)

    Zignego, Donald L; Hilmer, Jonathan K; June, Ronald K

    2015-12-16

    Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.

  11. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.

    Science.gov (United States)

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2015-08-14

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  12. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-01

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  13. EFFECTIVENESS OF AUTOLOGOUS SERUM THERAPY IN CHRONIC URTICARIA: A PROSPECTIVE OBSERVATIONAL STUDY IN TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2016-02-01

    Full Text Available BACKGROUND Chronic urticaria is a challenging condition, both for patient and physician in a day-to-day practice. There is constant search for newer modality of treatment, which can provide prolong remission with less side effect. Autologous serum therapy have shown promising result in initial studies. AIM To evaluate effectiveness of Autologous Serum Therapy in chronic urticaria patients. MATERIALS AND METHODS A prospective observational study. Total 220 patients enrolled for study. Autologous serum skin test performed in all patients; 113 patients were given Autologous Serum Therapy along with oral levocetirizine on SOS basis weekly and 107 patients were given only oral levocetirizine on demand basis. Response to treatment assessed by urticaria activity score, urticaria total severity score, antihistamine score, dermatological quality of life index and Likert scale on 2 weekly interval for 10 weeks. RESULTS Autologous Serum Therapy shown significant improvement in both Autologous Serum Skin Test positive and Autologous Serum Skin Test negative patients as compared to non-Autologous Serum Therapy groups. Autologous Serum Therapy is more effective in Autologous Serum Skin Test positive patients. CONCLUSION Autologous Serum Therapy is effective in chronic urticaria patients.

  14. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    Science.gov (United States)

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process.

  15. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  16. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  17. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  18. Characteristics of an autologous leukocyte and platelet-rich fibrin patch intended for the treatment of recalcitrant wounds

    DEFF Research Database (Denmark)

    Lundquist, Rasmus; Holmstrøm, Kim; Clausen, Christian

    2012-01-01

    of chronic wound fluid. By comparison with traditional platelet-rich plasma, differences in immune components were found. The relevance of these findings was assessed by showing a mitogenic and migratory effect on cultured human dermal fibroblasts. Further, we showed that fibrocytes, a cell type important......We have investigated the physical, biochemical, and cellular properties of an autologous leukocyte and platelet-rich fibrin patch. This was generated in an automated device from a sample of a patient's blood at the point of care. Using microscopy, cell counting, enzyme-linked immunosorbent assay...

  19. Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation.

    Science.gov (United States)

    Arufe, M C; De la Fuente, A; Fuentes-Boquete, I; De Toro, Francisco J; Blanco, Francisco J

    2009-09-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into several cell lineages, some of which can generate bone, cartilage, or adipose tissue. The presence of MSCs in the synovial membrane was recently reported. Data from comparative studies of MSCs derived from various mesenchymal tissues suggest that MSCs from synovial membranes have a superior chondrogenesis capacity. Previous chondrogenic differentiation studies have used the total population of MSCs, including cells with several MSC markers, such as CD44, CD90, CD105, or CD73. However the chondrogenic capacity of an individual population of MSCs has not been examined. Our aim was to study the chondrogenic capacity of the cellular MSC subset, CD105(+), derived from synovial membrane tissues of patients with osteoarthritis (OA) and normal donors. The tissues were digested with a cocktail of collagenase/dispase and the isolated MSCs were seeded into plates. The subpopulation of CD105(+)-MSCs was separated using a magnetic separator. The MSCs were then differentiated towards chondrocyte-like cells using a specific medium to promote spheroid formation. Spheroids were collected after 14, 28, and 46 days in chondrogenic medium and stained with hematoxylin, eosin, Safranin O or Alcian blue to evaluate the extracellular matrix. Immunohistochemistry was performed to study collagen types I (COLI) and II (COLII) and aggrecan expression. Phenotypic characterization of the isolated CD105(+)-MSCs shows that these cells are also positive for CD90 and CD44, but negatives for CD34 and CD45. In addition, this cellular subset expressed Sox-9. Spheroids appeared after 7 days in culture in the presence of chondrogenic medium. Our studies show no differences between MSCs obtained from OA and normal synovial membranes during chondrogenesis. The morphological analysis of spheroids revealed characteristics typical of chondrocyte cells. The intensity of Safranin O, Alcian blue and aggrecan staining was positive and constant

  20. Ski inhibits TGF-β/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes.

    Science.gov (United States)

    Kim, Kyung-Ok; Sampson, Erik R; Maynard, Robert D; O'Keefe, Regis J; Chen, Di; Drissi, Hicham; Rosier, Randy N; Hilton, Matthew J; Zuscik, Michael J

    2012-06-01

    Since transforming growing factor-β (TGF-β)/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads. We tested this hypothesis in chick upper sternal chondrocytes (USCs), where gain and loss of Ski expression experiments were performed. Over-expression of Ski not only reversed the inhibitory effect of TGF-β on the expression of hypertrophic marker genes such as type X collagen (colX) and osteocalcin, it induced these genes basally as well. Conversely, knockdown of Ski by RNA interference led to a reduction of colX and osteocalcin expression under basal conditions. Furthermore, Ski blocked TGF-β induction of cyclinD1 and caused a basal up-regulation of Runx2, consistent with the observed acceleration of hypertrophy. Regarding mechanism, not only does Ski associate with phospho-Smad2 and 3, but its association with phospho-Smad3 is required for recruitment of HDAC4 and 5. Implicating this recruitment of HDACs in the phenotypic effects of Ski in chondrocytes, the HDAC inhibitor SAHA reversed the up-regulation of colX and osteocalcin in Ski over-expressing cells. These results suggest that inhibition of TGF-β signaling by Ski, which involves its association with phospho-Smad3 and recruitment of HDAC4 and 5, leads to accelerated chondrocyte differentiation.

  1. Lidocaine induces ROCK-dependent membrane blebbing and subsequent cell death in rabbit articular chondrocytes.

    Science.gov (United States)

    Maeda, Tsutomu; Toyoda, Futoshi; Imai, Shinji; Tanigawa, Hitoshi; Kumagai, Kousuke; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2016-05-01

    Local anesthetics are administered intraarticularly for pain control in orthopedic clinics and surgeries. Although previous studies have shown that local anesthetics can be toxic to chondrocytes, the underlying cellular mechanisms remain unclear. The present study investigates acute cellular responses associated with lidocaine-induced toxicity to articular chondrocytes. Rabbit articular chondrocytes were exposed to lidocaine and their morphological changes were monitored with live cell microscopy. The viability of chondrocytes was evaluated using a fluorescence based LIVE/DEAD assay. Acute treatment of chondrocytes with lidocaine (3-30 mM) induced spherical protrusions on the cell surface (so called "membrane blebbing") in a time- and concentration-dependent manner. The concentration-response relationship for the lidocaine effect was shifted leftward by elevating extracellular pH, as expected for the non-ionized lidocaine being involved in the bleb formation. ROCK (Rho-kinase) inhibitors Y-27632 and fasudil completely prevented the lidocaine-induced membrane blebbing, suggesting that ROCK activation is required for bleb formation. Caspase-3 levels were unchanged by 10 mM lidocaine (p = 0.325) and a caspase inhibitor z-VAD-fmk did not affect the lidocaine-induced blebbing (p = 0.964). GTP-RhoA levels were significantly increased (p ROCK inhibitors or a myosin-II inhibitor blebbistatin (p ROCK-dependent membrane blebbing and thereby produces a cytotoxic effect on chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:754-762, 2016.

  2. Human breast adipose‑derived stem cells: characterization and differentiation into mammary gland‑like epithelial cells promoted by autologous activated platelet‑rich plasma.

    Science.gov (United States)

    Cui, Shi-En; Li, Hong-Mian; Liu, Da-Lie; Nan, Hua; Xu, Kun-Ming; Zhao, Pei-Ran; Liang, Shuang-Wu

    2014-08-01

    Human adipose‑derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell‑based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland‑like epithelial cells (MGECs) was developed using activated autologous platelet‑rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.

  3. The Results of Fetal Chondrocytes Transplantation in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Natalya Krivoruchko

    2014-12-01

    Full Text Available Introduction. Nowadays anti-inflammatory and immunosuppressive therapy has significantly improved the quality of life and prognosis of rheumatoid arthritis (RA. Nevertheless, there are still many patients with progressive rheumatoid inflammation, resulting in the destruction of joints. Cell therapy seems like a promising direction in rheumatology. The aim of our research was to evaluate the efficacy of fetal chondrocyte transplantation in patients with RA.Methods. We examined 60 patients with rheumatoid arthritis (I - III stages between 20 and 63 years of age. They were divided into 2 groups: the first group underwent the fetal chondrocytes transplantation (n = 40, and the second was a control group who got conservative therapy (n = 20. Donor cells were taken from the chondrogenic layer of the humerus or femur heads and hip condyles of human embryos in gestation for 17-20 weeks. A suspension of fetal chondrocytes injected into affected areas of the articular surfaces under X-ray control. Cell viability was determined before the injection. Efficacy of the therapy was assessed by clinical, instrumental, and laboratory tests. This clinical trial was allowed by The Ministry of Public Health and Ethics Committee. All of our patients gave informed consent for the fetal chondrocytes transplantation.Results. Evaluation of the clinical manifestations of RA in the first group of patients showed 3.7 times decrease in pain and 1.6 times relief of synovitis. Complete reduction of contracture was observed in 82% of patients in the first group. Morphometric changes in X-ray demonstrated inhibition of the destruction in articular cartilage and surfaces of bones after transplantation of fetal chondrocytes. The dynamics of morphological changes in synovium showed 2.5 times reduction of the inflammatory reaction. Transplantation of fetal chondrocytes led to a significant reduction in ESR, CRP, fibrinogen , γ-globulin after a period of 12 months (p < 0

  4. Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Calogera M Simonaro

    Full Text Available Acid ceramidase is required to maintain the metabolic balance of several important bioactive lipids, including ceramide, sphingosine and sphingosine-1-phosphate. Here we show that addition of recombinant acid ceramidase (rAC to primary chondrocyte culture media maintained low levels of ceramide and led to elevated sphingosine by 48 hours. Surprisingly, after three weeks of expansion the chondrogenic phenotype of these cells also was markedly improved, as assessed by a combination of histochemical staining (Alcian Blue and Safranin-O, western blotting (e.g., Sox9, aggrecan, collagen 2A1, and/or qPCR. The same effects were evident in rat, equine and human cells, and were observed in monolayer and 3-D cultures. rAC also reduced the number of apoptotic cells in some culture conditions, contributing to overall improved cell quality. In addition to these effects on primary chondrocytes, when rAC was added to freshly harvested rat, equine or feline bone marrow cultures an ~2-fold enrichment of mesenchymal stem cells (MSCs was observed by one week. rAC also improved the chondrogenic differentiation of MSCs, as revealed by histochemical and immunostaining. These latter effects were synergistic with TGF-beta1. Based on these results we propose that rAC could be used to improve the outcome of cell-based cartilage repair by maintaining the quality of the expanded cells, and also might be useful in vivo to induce endogenous cartilage repair in combination with other techniques. The results also suggest that short-term changes in sphingolipid metabolism may lead to longer-term effects on the chondrogenic phenotype.

  5. Botanical Extracts from Rosehip (Rosa canina, Willow Bark (Salix alba, and Nettle Leaf (Urtica dioica Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    2012-01-01

    Full Text Available The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina, willow bark (Salix alba, and nettle leaf (Urtica dioica in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG, β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  6. High-mobility group protein HMGA2-derived fragments stimulate the proliferation of chondrocytes and adipose tissue-derived stem cells.

    Science.gov (United States)

    Richter, A; Lübbing, M; Frank, H G; Nolte, I; Bullerdiek, J C; von Ahsen, I

    2011-04-11

    In previous research, it was shown that recombinant HMGA2 protein enhances the proliferation of porcine chondrocytes grown in vitro, opening up promising applications of this embryonic architectural transcription factor for tissue engineering, such as in cartilage repair. In this paper, we describe the development and analyses of two synthetic fragments comprising the functional AT-hook motifs of the HMGA2 protein, as well as the nuclear transport domain. They can be synthesised up to large scales, while eliminating some of the problems of recombinant protein production, including unwanted modification or contamination by the expression hosts, or of gene therapy approaches such as uncontrolled viral integration and transgene expression even after therapy. Application of one of these peptides onto porcine hyaline cartilage chondrocytes, grown in in vitro monolayer cell culture, showed a growth-promoting effect similar to that of the wild type HMGA2 protein. Furthermore, it also promoted cell growth of adult adipose tissue derived stem cells. Due to its proliferation inducing function and vast availability, this peptide is thus suitable for further application and investigation in various fields such as tissue engineering and stem cell research.

  7. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor

    2012-01-01

    Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...... the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications...... limitation is unpredictable graft resorption, which ranges from 25%-80%, probably as a result of ischaemia and lack of neoangiogenesis. To obviate these disadvantages, several studies have searched for new ways of increasing the viability of the transplanted tissue. One promising approach has been to enrich...

  8. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    Energy Technology Data Exchange (ETDEWEB)

    Parney, I.F.; Farr-Jones, M.A. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada); Kane, K.; Chang, L.-J. [Univ. of Alberta, Dept. of Surgery and Dept. of Medical Microbiology and Immunology, Edmonton, Alberta (Canada); Petruk, K.C. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada)

    2002-08-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ({sup 51}Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  9. AUTOLOGOUS SERUM SKIN TESTING (ASST) IN CHRONIC IDIOPATHIC URTICARIA

    OpenAIRE

    Arun; Suresh; Raghavendra; Vijay; Ramesh,; Asha; Manali; Jitendra

    2014-01-01

    Chronic idiopathic urticaria (CIU) is a form of urticaria , in which there appears to be persistent activation of mast cells , but the mechanism of mast cell triggering is unknown. The Autologous serum skin test (ASST) is an in vivo test which assesses auto reactivity. ASST could be good screening test for Autoreactive urticaria a subset of chronic idiopathic urticaria. AIMS : To study the clinical profile of chronic idiopathic urticaria and pattern of A...

  10. [4 years experience with the Ulm autologous transfusion concept].

    Science.gov (United States)

    Mehrkens, H H; Geiger, P; Schleinzer, W; Weindler, M; Wollinsky, K H; Pohland, H

    1990-04-01

    After a 4-year period in clinical practice the autologous transfusion concept Ulm (ATU) has proved its value. The effort and expense involved are entirely justified by obvious medical advantages. The patients' active involvement in the therapeutic procedure is a remarkable aspect of positive motivation. Furthermore, the medical staff is positively motivated, too, in spite of the obvious additional load to their daily routine work.

  11. Autologous Fat Transfer in a Patient with Lupus Erythematosus Profundus

    Directory of Open Access Journals (Sweden)

    Jimi Yoon

    2012-10-01

    Full Text Available Lupus erythematosus profundus, a form of chronic cutaneous lupus erythematosus, is a rare inflammatory disease involving in the lower dermis and subcutaneous tissues. It primarily affects the head, proximal upper arms, trunk, thighs, and presents as firm nodules, 1 to 3 cm in diameter. The overlying skin often becomes attached to the subcutaneous nodules and is drawn inward to produce deep, saucerized depressions. We present a rare case of lupus erythematosus profundus treated with autologous fat transfer.

  12. Local Therapy of Gonarthrosis Using Autologous Platelet-Enriched Plasma

    OpenAIRE

    2012-01-01

    The aim of the investigation is to assess clinical effect of local (intra-articular) application of autologous platelet-enriched plasma (PEP) in treating gonarthrosis. Materials and Methods. Clinical observation of 83 women with gonarthrosis was performed within 3 months. Within 3 weeks the patients were receiving PEP intra-articular injections of 5 ml twice a week. Results. In intra-articular PEP administration in patients with gonarthrosis, the change of knee joint functional state ...

  13. The effects of autologous platelet gel on wound healing.

    Science.gov (United States)

    Henderson, Jenifer L; Cupp, Craig L; Ross, E Victor; Shick, Paul C; Keefe, Michael A; Wester, Derin C; Hannon, Timothy; McConnell, Devin

    2003-08-01

    Laser resurfacing techniques have become a popular means of achieving rejuvenation of damaged skin. Interest is great in attempting to speed re-epithelialization and healing so that patients can return to their normal activities as quickly as possible. Previous studies have demonstrated that wounds heal more quickly when they are covered and kept moist than when they are left open to the air. Until now, no study has been conducted to investigate whether the healing process of a superficial skin burn might be accelerated by the use of an autologous platelet gel as a biologic dressing. Our study of five pigs showed that autologous platelet gel can influence wound healing by stimulating an intense inflammatory process that leads to highly significant increases in the production of extracellular matrices and granulation tissue. The platelet gel accelerated vascular ingrowth, increased fibroblastic proliferation, and accelerated collagen production. However, the gel did not appear to accelerate re-epithelialization. The aggressive production of granulation tissue and the acceleration of collagen production might mean that autologous platelet gel will have a future role in the treatment of burns because the highly vascularized bed it helps create should promote the success of skin grafting in patients with deep partial-thickness and full-thickness burns.

  14. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    Science.gov (United States)

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  15. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes.

    Science.gov (United States)

    Correa, Diego; Hesse, Eric; Seriwatanachai, Dutmanee; Kiviranta, Riku; Saito, Hiroaki; Yamana, Kei; Neff, Lynn; Atfi, Azeddine; Coillard, Lucie; Sitara, Despina; Maeda, Yukiko; Warming, Soren; Jenkins, Nancy A; Copeland, Neal G; Horne, William C; Lanske, Beate; Baron, Roland

    2010-10-19

    In the growth plate, the interplay between parathyroid hormone-related peptide (PTHrP) and Indian hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional coregulator, in prehypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP(-/-) and chondrocyte-specific PTHR1(-/-) mice, with decreased chondrocyte proliferation, early hypertrophic transition, and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased Cyclin D1 and Bcl-2 expression while increasing Caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to upregulate Cyclin D1 and to antagonize Runx2, Ihh, and collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation.

  16. Membranous nephropathy in autologous hematopoietic stem cell transplant: autologous graft-versus-host disease or autoimmunity induction?

    Science.gov (United States)

    Abudayyeh, Ala; Truong, Luan D.; Beck, Laurence H.; Weber, Donna M.; Rezvani, Katy; Abdelrahim, Maen

    2015-01-01

    With the increasing utility of hematopoietic stem cell transplantation (SCT) as a treatment for cancer and noncancerous disorders, more challenges and complications associated with SCT have emerged. Renal injury immediately after transplant is common and well understood, but long-term renal injury is becoming more evident. Chronic graft-versus-host disease (GVHD) is a known long-term complication of SCT, and membranous nephropathy (MN) is emerging as the most common cause of SCT-associated glomerular pathology. In this case report, we present a patient who developed features of anti-PLA2R antibody-negative MN following autologous SCT. The renal injury responded well to steroids and further response to rituximab therapy was noted, suggesting antibody-mediated autoimmune glomerular disease. We also present a review of the literature on autologous GVHD and the role of T and B cells in induction of autoimmunity by SCT. PMID:26251713

  17. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds

    DEFF Research Database (Denmark)

    Zwingmann, Joern; Mehlhorn, Alexander T; Südkamp, Norbert

    2007-01-01

    Cartilage tissue engineering is applied clinically to cover and regenerate articular cartilage defects. Two bioresorbable nonwoven scaffolds, polyglycolic acid (PGA) and poly(lactic-co-glycolic acid) (PLGA) (90/10 copolymer of L-lactide and glycolide), were seeded with human chondrocytes after in...

  18. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  19. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis

    DEFF Research Database (Denmark)

    Aszodi, Attila; Hunziker, Ernst B; Brakebusch, Cord;

    2003-01-01

    -actin organization. In addition, mutant chondrocytes show decreased proliferation caused by a defect in G1/S transition and cytokinesis. The G1/S defect is, at least partially, caused by overexpression of Fgfr3, nuclear translocation of Stat1/Stat5a, and up-regulation of the cell cycle inhibitors p16 and p21...

  20. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes.

    Science.gov (United States)

    Sacchetti, Cristiano; Liu-Bryan, Ru; Magrini, Andrea; Rosato, Nicola; Bottini, Nunzio; Bottini, Massimo

    2014-12-23

    Osteoarthritis (OA) is a common and debilitating degenerative disease of articular joints for which no disease-modifying medical therapy is currently available. Inefficient delivery of pharmacologic agents into cartilage-resident chondrocytes after systemic administration has been a limitation to the development of anti-OA medications. Direct intra-articular injection enables delivery of high concentrations of agents in close proximity to chondrocytes; however, the efficacy of this approach is limited by the fast clearance of small molecules and biomacromolecules after injection into the synovial cavity. Coupling of pharmacologic agents with drug delivery systems able to enhance their residence time and cartilage penetration can enhance the effectiveness of intra-articularly injected anti-OA medications. Herein we describe an efficient intra-articular delivery nanosystem based on single-walled carbon nanotubes (SWCNTs) modified with polyethylene glycol (PEG) chains (PEG-SWCNTs). We show that PEG-SWCNTs are capable to persist in the joint cavity for a prolonged time, enter the cartilage matrix, and deliver gene inhibitors into chondrocytes of both healthy and OA mice. PEG-SWCNT nanoparticles did not elicit systemic or local side effects. Our data suggest that PEG-SWCNTs represent a biocompatible and effective nanocarrier for intra-articular delivery of agents to chondrocytes.

  1. A new test method for the standardized evaluation of changes in the ultrastructure of chondrocytes.

    Science.gov (United States)

    Annefeld, M

    1985-01-01

    By means of a new ultrastructural test system, which is based on standardized morphometry and statistical evaluation, we are able for the first time to quantify changes in the cell metabolism of chondrocytes in the articular cartilage. To compare anti-inflammatory substances of different structure, different absorption characteristics and pharmacokinetics as regards their effect on rat cartilage, we used an equieffective dosage of the different anti-inflammatory drugs. Dexamethasone as steroidal and indomethacin and phenylbutazone as classical non-steroidal anti-inflammatory drugs (NSAIDs) were administered in an ED50 dosage referred to provoked arthritis over 12 weeks, using the same mode of administration. The standardized results of untreated rats weighing 300 and 450 g were used as the controls. Dexamethasone brings about massive degenerative changes in the ultrastructure of the vital chondrocyte. Under indomethacin and phenylbutazone the metabolic activity of the chondrocyte is inhibited to a much lesser extent. The damage to the chondrocyte after treatment with dexamethasone, indomethacin and phenylbutazone cannot be regarded as minimal but in some cases is tolerable as regards the benefit/risk ratio in the treatment of rheumatoid diseases.

  2. Chondrogenic potential of articular chondrocytes depends on their original location in the knee

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Saris, D.B.F.; Tsuchida, A.I.; Rijen, van M.H.P.; Dhert, W.J.A.; Creemers, L.

    2014-01-01

    Objective: This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint in order to determine the best cell source for regenerative cartilage therapies. Methods: Articular cartilage was obta

  3. Profilin 1 is required for abscission during late cytokinesis of chondrocytes

    Science.gov (United States)

    Böttcher, Ralph T; Wiesner, Sebastian; Braun, Attila; Wimmer, Reiner; Berna, Alejandro; Elad, Nadav; Medalia, Ohad; Pfeifer, Alexander; Aszódi, Attila; Costell, Mercedes; Fässler, Reinhard

    2009-01-01

    Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis. PMID:19262563

  4. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis.

    Science.gov (United States)

    Waller, Kimberly A; Zhang, Ling X; Elsaid, Khaled A; Fleming, Braden C; Warman, Matthew L; Jay, Gregory D

    2013-04-01

    Osteoarthritis is a complex disease involving the mechanical breakdown of articular cartilage in the presence of altered joint mechanics and chondrocyte death, but the connection between these factors is not well established. Lubricin, a mucinous glycoprotein encoded by the PRG4 gene, provides boundary lubrication in articular joints. Joint friction is elevated and accompanied by accelerated cartilage damage in humans and mice that have genetic deficiency of lubricin. Here, we investigated the relationship between coefficient of friction and chondrocyte death using ex vivo and in vitro measurements of friction and apoptosis. We observed increases in whole-joint friction and cellular apoptosis in lubricin knockout mice compared with wild-type mice. When we used an in vitro bovine explant cartilage-on-cartilage bearing system, we observed a direct correlation between coefficient of friction and chondrocyte apoptosis in the superficial layers of cartilage. In the bovine explant system, the addition of lubricin as a test lubricant significantly lowered the static coefficient of friction and number of apoptotic chondrocytes. These results demonstrate a direct connection between lubricin, boundary lubrication, and cell survival and suggest that supplementation of synovial fluid with lubricin may be an effective treatment to prevent cartilage deterioration in patients with genetic or acquired deficiency of lubricin.

  5. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    Science.gov (United States)

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  6. Chondrocyte BMP2 signaling plays an essential role in bone fracture healing.

    Science.gov (United States)

    Mi, Meng; Jin, Hongting; Wang, Baoli; Yukata, Kiminori; Sheu, Tzong-Jen; Ke, Qiao Han; Tong, Peijian; Im, Hee-Jeong; Xiao, Guozhi; Chen, Di

    2013-01-10

    The specific role of endogenous Bmp2 gene in chondrocytes and in osteoblasts in fracture healing was investigated by generation and analysis of chondrocyte- and osteoblast-specific Bmp2 conditional knockout (cKO) mice. The unilateral open transverse tibial fractures were created in these Bmp2 cKO mice. Bone fracture callus samples were collected and analyzed by X-ray, micro-CT, histology analyses, biomechanical testing and gene expression assays. The results demonstrated that the lack of Bmp2 expression in chondrocytes leads to a prolonged cartilage callus formation and a delayed osteogenesis initiation and progression into mineralization phase with lower biomechanical properties. In contrast, when the Bmp2 gene was deleted in osteoblasts, the mice showed no significant difference in the fracture healing process compared to control mice. These findings suggest that endogenous BMP2 expression in chondrocytes may play an essential role in cartilage callus maturation at an early stage of fracture healing. Our studies may provide important information for clinical application of BMP2.

  7. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling.

    Science.gov (United States)

    Madden, Ryan M J; Han, Sang-Kuy; Herzog, Walter

    2015-01-01

    Chondrocyte metabolism is stimulated by deformation and is associated with structural changes in the cartilage extracellular matrix (ECM), suggesting that these cells are involved in maintaining tissue health and integrity. Calcium signaling is an initial step in chondrocyte mechanotransduction that has been linked to many cellular processes. Previous studies using isolated chondrocytes proposed loading magnitude as an important factor regulating this response. However, calcium signaling in the intact cartilage differs compared to isolated cells. The purpose of this study was to investigate the effect of loading magnitude on chondrocyte calcium signaling in intact cartilage. We hypothesized that the percentage of cells exhibiting at least one calcium signal increases with increasing load. Fully intact rabbit femoral condyle and patellar bone/cartilage samples were incubated in calcium-sensitive dyes and imaged continuously under compressive loads of 10-40 % strain. Calcium signaling was primarily associated with the dynamic loading phase and greatly increased beyond a threshold deformation of about 10 % nominal tissue strain. There was a trend toward more cells exhibiting calcium signaling as loading magnitude increased (p = 0.133). These results provide novel information toward identifying mechanisms underlying calcium-dependent signaling pathways related to cartilage homeostasis and possibly the onset and progression of osteoarthritis.

  8. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress.