WorldWideScience

Sample records for autoionizing resonances observed

  1. Observation of autoionization resonances in uranium by step-wise laser photoionization

    International Nuclear Information System (INIS)

    A large number of autoionization resonances have been observed in uranium in the energy range 50,590-51,560 cm-1 by two-step three-photon ionization technique, using two copper vapor laser pumped dye lasers. A Rydberg series converging to the ionization limit of UII at 1749 cm-1 (6L13/2) has been identified. Some of these resonances are very narrow with a fwhm of 0.1 cm-1. Possible origins of these are discussed. (orig.)

  2. Observation of autoionizing states of beryllium by resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    We have made the first observations of the Be 2p21S state, and of high-lying members of the Rydberg series 2pnd 1P0 (n less than or equal to 16), by resonance ionization mass spectrometry (RIMS). The energy of the 1S state agrees well with theoretical predictions, if corrections are made for intershell electron correlations. These results show that precision specroscopy can be performed by RIMS with samples of a few hundred atoms, and that direct multiphoton excitation of autoionizing states may be a useful new addition to the existing catalogue of resonance ionization schemes

  3. Laser optogalvanic observations and MQDT analysis of mp5nd J = 3 autoionizing resonances in Ar, Kr and Xe

    International Nuclear Information System (INIS)

    We report new measurements of the spectra of argon, krypton and xenon in the autoionization region using a two-step resonant laser excitation and optogalvanic detection technique. By selecting (m)p5(m + 1)p'[3/2]2 as an intermediate state (m = 4, 5 and 6 for Ar, Kr and Xe, respectively), we have been able to single out the (m)p5nd[5/2]3 autoionizing resonances in their spectra. The MQDT parameters have been derived from the analysis of the series perturbations among the (m)p5nd[5/2]3 (m)p5nd[7/2]3 and (m)p5nd'[5/2]3 series in the discrete region using the phase shifted formulation of the three-channel quantum defect theory and from the line profile analysis of the autoionizing resonances above the first ionization threshold. The predicted reduced widths for the autoionizing resonances based on the series perturbation analysis show good agreement with those of the experimentally observed profiles. Accurate values of the resonance energies, quantum defects and reduced widths are reported

  4. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p{sup 4} [{sup 3}P] 4p {sup 4}P, {sup 2}P, and {sup 2}D as well as the [{sup 1}D]4p {sup 2}F satellite states of Ar{sup +}. By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [{sup 3}P] 4p ({sup 2}S) ns,d autoionizing structure has been observed for the first time.

  5. [Observation of autoionization levels in uranium I].

    Science.gov (United States)

    Jin, C; Wang, X

    1999-02-01

    A number of Rydberg and autoionization levels of U I have been studied using three-step resonant ionization methods with three pulsed tunable dye lasers. Energy levels of uranium atom have been measured, which were located in the 49898-50880 cm(-1) energy interval. PMID:15818900

  6. Resonance-enhanced photon excitation spectroscopy of the even-parity autoionizing Rydberg states of Kr

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s’ [1/2]0 in a pulsed DC dis-charge in a beam,and subsequently excited to the even-parity autoionizing Rydberg states 4p5np’ [3/2]1,2,[1/2]1 and 4p5nf’ [5/2]3 using single photon excitation.The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm1.A wealth of autoionizing resonances were newly observed,from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.

  7. Resonance-enhanced photon excitation spectroscopy of the even-parity autoionizing Rydberg states of Kr

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; WANG TingTing; ZHEN JunFeng; ZHANG Qun; CHEN Yang

    2009-01-01

    Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s' [1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 4p5np' [3/2]1,2, [1/2]1 and 4p5nf' [5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.

  8. Resonance-Enhanced Photon Excitation Spectroscopy of the Even-Parity Autoionizing Rydberg States of Xe

    Institute of Scientific and Technical Information of China (English)

    Chun-yan Li; Ting-ting Wang; Jun-feng Zhen; Qun Zhang; Yang Chen

    2008-01-01

    Xenon atoms were produced in their metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 5p5np' [3/2] 1 ,[1/2]1, t, and 5p5 nf'[5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable 129Xe were obtained by recording the autoionized Xe+ with time-of-flight ion detection in the photon energy range of 28000-42000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects were derived.

  9. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  10. Identification of autoionizing states of atomic chromium for resonance photo-ionization at the ISOLDE-RILIS

    OpenAIRE

    Goodacre, T Day; Chrysalidis, K; Fedorovc, D; Fedosseev, V. N.; Marsh, B A; Molkanov, P; Rossel, R.E.; Rothe, S.; Seiffert, C.

    2015-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscop...

  11. Observation of autoionization in O 2 by an electron-electron coincidence method

    Science.gov (United States)

    Doering, J. P.; Yang, J.; Cooper, J. W.

    1995-01-01

    A strong transition to an autoionizing stata has been observed in O 2 at 16.83 ± 0.11 eV by means of a new electron-electron conincidence method. The method uses the fact that electrons arising from autoionizing states appear at a constant energy loss corresponding to the excitation energy of the autoionizing state rather than at a constant ionization potential as do electrons produced by direct ionization. Comparison of the present data with previous photoionization studies suggests that the autoionizing O 2 state is the same state deduced to be responsible for abnormal vibrational intensities in the O 2+X 2Πg ground state when 16.85 eV Ne(I) photons are used. These electron-electron coincidence experiments provide a direct new method for the study of autoionization produced by electron impact.

  12. Identification of autoionizing states of atomic chromium for resonance photo-ionization at the ISOLDE-RILIS

    CERN Document Server

    Goodacre, T Day; Fedorovc, D; Fedosseev, V N; Marsh, B A; Molkanov, P; Rossel, R E; Rothe, S; Seiffert, C

    2015-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  13. [Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom].

    Science.gov (United States)

    Li, Zhi-ming; Zhu, Feng-rong; Zhang, Zi-bin; Ren, Xiang-jun; Deng, Hu; Zhai, Li-hua; Zhang, Li-xing

    2004-12-01

    This paper describes the investigation of even-parity autoionization states of cerium atoms by three-step three-color resonance ionization spectroscopy (RIS). Twenty-seven odd-parity highly excited levels, whose transition probability is high, were used in this research. One hundred and forty-one autoionization states were found by these channels with the third-step laser scanning in the wavelength range of 634-670 nm. The ionization probabilities of different channels, which had higher cross sections, were compared. On the basis of this, eight optimal photoionization schemes of cerium atom have been given. PMID:15828309

  14. Resonance enhanced multiphoton ionization photoelectron spectra of CO2. III. Autoionization dominates direct ionization

    International Nuclear Information System (INIS)

    In (3+1) resonance enhanced multiphoton ionization photoelectron spectra (REMPI-PES) of CO2, photoionization competes with dissociation. In addition to direct photoionization, autoionization is possible through accidental resonances embedded in the continuum at the four-photon level. Photoabsorption from these long-lived autoionizing states leads to resonance enhanced above threshold absorption (REATA). REATA produces photoelectron terminations on the C state of CO2+. Previous experiments did not indicate whether the dissociation occurred at the three-photon level or four-photon level. REMPI-PES of CO2 via several Rydberg states have been collected at a number of laser intensities, and it was found that the photoelectron spectra terminating on each individual ionic state do not change over the range of experimentally available laser intensities. This indicates that the dissociation of CO2 occurs at the four-photon level. The long vibrational progressions in the PES indicate that the dominant ionization process is autoionization rather than direct ionization. Relative intensities of the X and C state components of the PES do change with intensity, confirming the C state assignment and its five-photon mechanism

  15. Two-step two-photon-resonant three-photon autoionization of a divalent atomic system

    International Nuclear Information System (INIS)

    We theoretically examine the situation in which a divalent atom or atomic ion, resonantly excited via absorption of two photons of a laser with intensity I1 and ω1, is ionized with subsequent absorption of another photon of either the same laser or a second laser with intensity I2 and frequency ω2 through autoionizing resonances. The relevant atomic parameters are calculated from wave functions obtained with finite B-spline bases for two-electron configurations, and the density matrix equations are numerically solved for the two-step ionization scheme.

  16. Extracting partial decay rates of helium from complex rotation: autoionizing resonances of the one-dimensional configurations

    CERN Document Server

    Zimmermann, Klaus; Jörder, Felix; Heitz, Nicolai; Schmidt, Maximilian; Bouri, Celsus; Rodriguez, Alberto; Buchleitner, Andreas

    2014-01-01

    Partial autoionization rates of doubly excited one-dimensional helium in the collinear Zee and eZe configuration are obtained by means of the complex rotation method. The approach presented here relies on a projection of back-rotated resonance wave functions onto singly ionized $\\textrm{He}^{+}$ channel wave functions and the computation of the corresponding particle fluxes. In spite of the long-range nature of the Coulomb potential between the electrons and the nucleus, an asymptotic region where the fluxes are stationary is clearly observed. Low-lying doubly excited states are found to decay predomintantly into the nearest single-ionization continuum. This approach paves the way for a systematic analysis of the decay rates observed in higher-dimensional models, and of the role of electronic correlations and atomic structure in recent photoionization experiments.

  17. Observation of even-parity autoionization states of uranium by three-colour photoionization optogalvanic spectroscopy in U–Ne hollow cathode discharges

    International Nuclear Information System (INIS)

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U–Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U–Ne hollow cathode discharge tube has been used as a source of uranium atomic vapours and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52,150–52,590 cm−1, through three different excitation pathways, originating from its ground state, 0 cm−1(5Lo6). By analysing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. The J-value of five autoionization resonances, which have been observed either through all three excitation pathways or through two different excitation pathways where J-value of the second excited levels differs by two, has been assigned uniquely. -- Highlights: ► Three-colour photoionization optogalvanic spectroscopy of uranium was performed in a U–Ne hollow cathode discharge tube. ► Hollow cathode discharge tube was used as a source of atomic vapour and laser ionisation detector. ► Uranium photoionization spectra were investigated through three different three-colour photoionization schemes. ► Sixty new even-parity autoionization levels of uranium were identified. ► J-value of five autoionization levels was assigned uniquely

  18. Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    CERN Document Server

    LaForge, A C; Brauer, N; Coreno, M; Devetta, M; Di Fraia, M; Finetti, P; Grazioli, C; Katzy, R; Lyamayev, V; Mazza, T; Mudrich, M; OKeeffe, P; Ovcharenko, Y; Piseri, P; Plekan, O; Prince, K C; Richter, R; Stranges, S; Callegari, C; Moeller, T; Stienkemeier, F

    2013-01-01

    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.

  19. Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets

    Science.gov (United States)

    Reduzzi, M.; Chu, W.-C.; Feng, C.; Dubrouil, A.; Hummert, J.; Calegari, F.; Frassetto, F.; Poletto, L.; Kornilov, O.; Nisoli, M.; Lin, C.-D.; Sansone, G.

    2016-03-01

    The coherent interaction with ultrashort light pulses is a powerful strategy for monitoring and controlling the dynamics of wave packets in all states of matter. As light presents an oscillation period of a few femtoseconds (T = 2.6 fs in the near infrared spectral range), an external optical field can induce changes in a medium on the sub-cycle timescale, i.e. in a few hundred attoseconds. In this work, we resolve the dynamics of autoionizing states on the femtosecond timescale and observe the sub-cycle evolution of a coherent electronic wave packet in a diatomic molecule, exploiting a tunable ultrashort extreme ultraviolet pulse and a synchronized infrared field. The experimental observations are based on measuring the variations of the extreme ultraviolet radiation transmitted through the molecular gas. The different mechanisms contributing to the wave packet dynamics are investigated through theoretical simulations and a simple three level model. The method is general and can be extended to the investigation of more complex systems.

  20. Autoionization in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lemoigne, J.P.; Grandin, J.P.; Husson, X.; Kucal, H. (Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR) Caen Univ., 14 (FR)); Zakrzewski, J.; Dohnalik, T. (Uniwersytet Jagiellonski, Krakow, (PL). Inst. Fizyki); Marcinek, R. (Wyzsza Szkola Pedagogiczna, Cracow (PL))

    1991-04-15

    The autoionization in the presence of a strong magnetic field is studied experimentally for 11s'(1/2) 1 argon level. It is shown that autoionizing resonance properties are strongly affected by the magnetic-field-induced modification of the continuum in which the resonance is embedded. A simple theoretical model explains essential features of the phenomenon.

  1. First observation of a Fano profile following one step autoionization into a double photoionization continuum

    International Nuclear Information System (INIS)

    We have measured the double photoionization cross section of sodium atoms between the first 2s22p52P double photoionization (52.4 eV) and 2s-single 1.3S photoionization thresholds (71.0 eV). We have also observed a Fano profile into the double ionization continuum resulting from the interference between the one-step direct double photoionization process and the resonant double Auger decay of core-excited neutral sodium in the 2s → 3p resonance region. Profiles of absolute partial and total cross sections have been obtained in all important channels. The Fano and Starace parameters, in particular a width of 0.23 eV, have been determined, allowing full characterization of the resonance. (orig.)

  2. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    Science.gov (United States)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  3. Measurements of oscillator strengths of the 2p{sup 5}({sup 2}P{sub 1/2})nd J = 2, 3 autoionizing resonances in neon

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Shaukat; Amin, Nasir; Sami-ul-Haq; Shaikh, Nek M; Hussain, Shahid; Baig, M A [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2006-05-14

    Oscillator strengths of the 2p{sup 5}({sup 2}P{sub 1/2})nd J = 2, 3 autoionizing resonances in neon have been determined using a dc discharge plasma in conjunction with an Nd:YAG pumped dye laser system. The excited states are approached using two-step laser excitation via 2p{sup 5}3p'[1/2]{sub 1}, 2p{sup 5}3p'[3/2]{sub 1} and 2p{sup 5}3p'[3/2]{sub 2} intermediate states which are accessed from the 2p{sup 5}3s [1/2]{sub 2} metastable state, populated by the discharge in the hollow cathode lamp. The f-values have been determined for the nd'[3/2]{sub 2}, nd'[5/2]{sub 2} and nd'[5/2]{sub 3} series following the {delta}K = {delta}J = +{delta}l selection rule. Employing the saturation technique the photoionization cross section at the 2p{sup 5} {sup 2}P{sub 1/2} ionization threshold is determined as 5.5(6) Mb and consequently the f-values of the nd' J = 2, 3 autoionizing resonances have been extracted.

  4. Efficient three-step, two-color ionization of plutonium using a resonance enhanced 2-photon transition into an autoionizing state

    Science.gov (United States)

    Kunz, P.; Huber, G.; Passler, G.; Trautmann, N.

    2004-05-01

    Resonance ionization mass spectrometry (RIMS) has proven to be a powerful method for isotope selective ultra-trace analysis of long-lived radioisotopes. For plutonium detection limits of 106 to 107 atoms have been achieved for various types of samples. So far a three-step, three-color laser excitation scheme was applied for efficient ionization. In this work, a two-photon transition from an excited state into a high-lying autoionizing state, will be presented, yielding a similar overall efficiency as the three-step, three-color ionization scheme. In this way, only two tunable lasers are needed, while the advantages of a three-step, three-color excitation (high selectivity, good efficiency and low non-resonant background) are preserved. The two-photon transition has been characterized with respect to saturation behavior and line width. The three-step, two-color ionization is a possibility for an improved RIMS procedure.

  5. Efficient three-step, two-color ionization of plutonium using a resonance enhanced 2-photon transition into an autoionizing state

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry (RIMS) has proven to be a powerful method for isotope selective ultra-trace analysis of long-lived radioisotopes. For plutonium detection limits of to atoms have been achieved for various types of samples. So far a three-step, three-color laser excitation scheme was applied for efficient ionization. In this work, a two-photon transition from an excited state into a high-lying autoionizing state, will be presented, yielding a similar overall efficiency as the three-step, three-color ionization scheme. In this way, only two tunable lasers are needed, while the advantages of a three-step, three-color excitation (high selectivity, good efficiency and low non-resonant background) are preserved. The two-photon transition has been characterized with respect to saturation behavior and line width. The three-step, two-color ionization is a possibility for an improved RIMS procedure. (authors)

  6. Laser two-photon ionization and autoionization spectroscopy of molecules in the liquid phase

    International Nuclear Information System (INIS)

    The observation of autoionizing states of molecules in the liquid phase together with one- and two-photon ionization threshold measurements obtained using a laser conductivity technique are reported. Coherent versus resonant (stepwise) two-photon excitation in the photoionization process in solutions is discussed

  7. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    OpenAIRE

    Woutersen, S.; Milan,, M; Lange; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the 1D excited state, prepared by in situ photodissociation of H2S. The observed states derive from the (2Do)5p and (2Po)4p configurations. For the (2Do)5p 3F and (2Po)4p 3D triplets, extensive photoele...

  8. Polarization of fluorescence: a probe of molecular autoionization

    Energy Technology Data Exchange (ETDEWEB)

    Leroi, G. E. [Michigan State Univ., East Lansing, MI (United States); Dehmer, Joseph L. [Argonne National Laboratory (ANL), Argonne, IL (United States); Parr, Albert C. [National Bureau of Standards, Washington, DC (United States); Poliakoff, E. D. [Boston Univ., MA (United States)

    1983-01-01

    The polarization of fluorescence from excited-state molecular photoions provides a direct probe of the photoionization dynamics and the symmetry signatures of autoionizing resonances. Measurements on CO₂ and CS₂ are presented as examples.

  9. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory

  10. Photoionization of cold gas phase coronene and its clusters: autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation.

    Science.gov (United States)

    Bréchignac, Philippe; Garcia, Gustavo A; Falvo, Cyril; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Mulas, Giacomo; Nahon, Laurent

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory. PMID:25362317

  11. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    Energy Technology Data Exchange (ETDEWEB)

    Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier [Institut des Sciences Moléculaires d’Orsay, CNRS UMR8214, Univ Paris-Sud, F-91405 Orsay (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony [IRAP, Université de Toulouse 3 - CNRS, 9 Av. Colonel Roche, B.P. 44346, F-31028 Toulouse Cedex 4 (France); Mulas, Giacomo [INAF - Osservatorio Astronomico di Cagliari, via della scienza 5, I-09047 Selargius (Italy)

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  12. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s14p6np1(n=7,8) and doubly excited 4s24p45s16p1 resonances in atomic krypton

    International Nuclear Information System (INIS)

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s14p6np1 (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be β2 = 1.61 ± 0.06 and β4 = 1.54 ± 0.16 while the 8p configuration gives β2 = 1.23 ± 0.19 and β4 = 0.60 ± 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s24p45s16p1 configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.

  13. Theory and computation of the profile of the free-free transition probability between autoionizing (resonant) states

    International Nuclear Information System (INIS)

    We have derived the general expression for the energy-dependent cross section of the transition between two resonant states in the continuous spectrum of atoms and molecules, under the physically meaningful conditions of broadband excitation. The profile is expressed in terms of a symmetric, an asymmetric and a background component, and is cast in a form containing as limiting cases the discrete-discrete Lorentzian profile and the discrete-resonance Beutler-Fano profile. The theory has been implemented numerically by ab initio methods on the transition He** '2s2p' 1po → '2p3p' 1D, for tunable radiation hv around 3.4 eV. (Author)

  14. Angular momenta and energies of high-lying even-parity autoionizing states of the gadolinium atom investigated by using three-step photoionization

    International Nuclear Information System (INIS)

    Sixteen even-parity autoionizing states of the Gd atom in the range of 50600 - 51000 cm-1 were newly investigated using resonance ionization mass spectroscopy (RIMS). The observed autoionizing states nearly had symmetrical line porfiles. The angular momenta of the J=0 states were determined by using the polarization selection rules in the J=2 → J=2 → J=1 → J=0 transition excited by linearly polarized laser beams. The J=1 and the J=2 states were identified by observing the variations of the ion spectra with changing total angular momenta of the intermediate states

  15. Multiphoton ionization of magnesium via an autoionizing state

    NARCIS (Netherlands)

    N.J. van Druten; R. Trainham; H.G. Muller

    1994-01-01

    Multiphoton single and double ionization of magnesium was studied by measuring electron energy spectra and ion mass spectra using 1-ps laser pulses in the 580-595-nm wavelength and 1012-1013-W/cm2 intensity range. In single ionization the (3p)2 1S doubly excited autoionizing state, resonant at the f

  16. Experimental study of bound and autoionizing Rydberg states of the europium atom

    Science.gov (United States)

    Xiao, Ying; Dai, Chang-Jian; Qin, Wen-Jie

    2010-06-01

    An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400-43500 cm-1 is measured, from which spectral information on 38 transitions, such as level position and relative intensity, can be deduced. Combined with information about excitation calibration and the error estimation process, the selection rules enable us to determine the possible values of total angular momentum J for the observed states. The autoionization spectra of atomic europium, belonging to the 4f76pnl (l = 0, 2) configurations, are systematically investigated by using the three-step laser resonance ionization spectroscopy (RIS) approach. With the ICE scheme, all the experimental spectra of the autoionizing states have nearly symmetric profiles whose peak positions and widths can be easily obtained. A comparison between our results and those from the relevant literature shows that our work not only confirms many reported states, but also discovers 14 bound states and 16 autoionizing states.

  17. 5. International workshop on autoionization phenomena in atoms. Abstracts

    International Nuclear Information System (INIS)

    Summaries of the reports presented at the 5 International Workshop on Autoionization Phenomena in Atoms (Dubna, 12-14 December 1995). The main topics of these 53 reports are the following ones: photoexcitation of autoionizing states in atoms and ions, autoionization in electron-atom collisions, autoionization in heavy particle collisions, coincidence experiments in autoionization studies, investigations of autoionizing states with lasers and wave functions and decay characteristics of autoionizing states

  18. Dual Fano and Lorentzian line profile properties of autoionizing states

    Science.gov (United States)

    Tu, B.; Xiao, J.; Yao, K.; Shen, Y.; Yang, Y.; Lu, D.; Li, W. X.; Qiu, M. L.; Wang, X.; Chen, C. Y.; Fu, Y.; Wei, B.; Zheng, C.; Huang, L. Y.; Zhang, B. H.; Tang, Y. J.; Hutton, R.; Zou, Y.

    2015-06-01

    Photon absorption spectroscopy is a powerful tool for uncovering the structure of atoms, molecules, and solids. Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures related to the structural and dynamical properties. Recently, Ott et al. [Science 340, 716 (2013), 10.1126/science.1234407] successfully transferred Fano profile into Lorentzian line shape using an intense infrared laser, after excitation of autoionizing states in helium by attosecond XUV pulse. This is a very important step forward in quantum phase control. However, here we show experimentally that an autoionizing state can have both Fano and Lorentzian behavior naturally, depending on the process involved. This study utilized the inverse process of photon absorption ionization, i.e., electron ion recombination with photon emission, making sure the resonant autoionizing state is not modified or decorated by the laser fields. Our result implies that excitation of the state through different paths—for example, one photon versus multiphoton excitation, or even one step versus multistep excitation—can lead to different Fano profiles for the same resonant state. We also report an experimental determination of the energy shifts in the recombination photon-intensity peaks due to the interference between the resonant and nonresonant processes.

  19. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  20. Multiphoton ionization of magnesium via an autoionizing state

    OpenAIRE

    Druten, van, N.J.; Trainham, R.; Muller, H.G.

    1994-01-01

    Multiphoton single and double ionization of magnesium was studied by measuring electron energy spectra and ion mass spectra using 1-ps laser pulses in the 580-595-nm wavelength and 1012-1013-W/cm2 intensity range. In single ionization the (3p)2 1S doubly excited autoionizing state, resonant at the four-photon level, is found to play an important role. Single ionization leaving the Mg+ ion in the 3p excited state is strongly enhanced when resonant with the (3p)2 1S state. The amount of above t...

  1. Saturation effects on Ba 6pnl (l= 0, 2) and 6pnk (|M| = 0, 1) autoionization spectra

    Institute of Scientific and Technical Information of China (English)

    Li Shi-Ben; Dai Chang-Jian

    2007-01-01

    Using a three-step laser saturation excitation technique, the saturation effects on the Ba 6pns (J = 1) and 6pnd (J = 1, 3) autoionization spectra are observed systemically in zero field. These saturation spectra are introduced to determine the high n members of 6pnl (l = 0, 2) autoionizing series and are used to analyse the channel interactions among the autoionizing series in zero field. Furthermore, the saturation excitation technique is applied to the electric field case, in which the saturation spectra of Ba 6pnk (|M|= 0, 1) autoionizing Stark states are measured. Most of these saturation spectra are observed for the first time so far as we know, which indicate the mixing of the autoionizing states in the electric fields.

  2. Observation of a hybrid spin resonance

    Science.gov (United States)

    Bai; Allgower; Ahrens; Alessi; Brown; Bunce; Cameron; Chu; Courant; Glenn; Huang; Jeon; Kponou; Krueger; Luccio; Makdisi; Lee; Ratner; Reece; Roser; Spinka; Syphers; Tsoupas; Underwood; van Asselt W; Williams

    2000-02-01

    A new type of spin depolarization resonance has been observed at the Brookhaven Alternating Gradient Synchrotron (AGS). This spin resonance is identified as a strong closed-orbit sideband around the dominant intrinsic spin resonance. The strength of the resonance was proportional to the 9th harmonic component of the horizontal closed orbit and proportional to the vertical betatron oscillation amplitude. This "hybrid" spin resonance cannot be overcome by the partial snake at the AGS, but it can be corrected by the harmonic orbit correctors. PMID:11017474

  3. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Institute of Scientific and Technical Information of China (English)

    Qin Wen-Jie; Dai Chang-Jian; Xiao Ying; Zhao Hong-Ying

    2009-01-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pn/ and 4f55d6snl (l=0, 2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Srn atom from its initial state to the differcnt 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  4. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Science.gov (United States)

    Qin, Wen-Jie; Dai, Chang-Jian; Xiao, Ying; Zhao, Hong-Ying

    2009-05-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pnl and 4f55d6snl (l = 0,2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Sm atom from its initial state to the different 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  5. Calculation of the resonant ionization of helium

    International Nuclear Information System (INIS)

    Autoionizing resonances in the compound system of an electron and a helium ion are observed in kinematically-complete ionization experiments for electrons on helium atoms. The differential cross section is calculated for comparison with these experiments in an equivalent-local form of the distorted-wave impulse approximation. Resonant scattering amplitudes are calculated by a six-state momentum-space coupled-channels method. 10 refs., 1 tab., 2 figs

  6. Proceedings of the workshop on some aspects of autoionization in atoms and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.; Berry, H.G.; Berry, R.S. (eds.)

    1985-11-01

    Do we really understand the phenomenon of autoionization in atoms sufficiently well to consider it a ''mature'' topic. Can we generalize our understanding to predict behavior in systems not yet studied. Can we extract physical understanding from the encouraging results of the ''many-body calculations''. Or must we still try to understand one atom at a time. Molecular autoionization is clearly more difficult. Not only must we content with ''vibrational autoionization'' as well as ''electronic autoionization'', but the competing process of predissociation must also be taken into account. In this molecular domain, we have many experiments and many phenomena. The extant theories only deal with some cases, and are not yet able to explain some prominent observations. A group consisting of theorists and experimentalists active in the field of autoionization assembled at Argonne National Laboratory for a two-day Workshop on May 2-3, 1985, to try to provide some consensus of our present understanding and to point out the most promising direction for progress in the near future. Abstracts of individual items from the workshop were prepared separately for the data base.

  7. Proceedings of the workshop on some aspects of autoionization in atoms and small molecules

    International Nuclear Information System (INIS)

    Do we really understand the phenomenon of autoionization in atoms sufficiently well to consider it a ''mature'' topic. Can we generalize our understanding to predict behavior in systems not yet studied. Can we extract physical understanding from the encouraging results of the ''many-body calculations''. Or must we still try to understand one atom at a time. Molecular autoionization is clearly more difficult. Not only must we content with ''vibrational autoionization'' as well as ''electronic autoionization'', but the competing process of predissociation must also be taken into account. In this molecular domain, we have many experiments and many phenomena. The extant theories only deal with some cases, and are not yet able to explain some prominent observations. A group consisting of theorists and experimentalists active in the field of autoionization assembled at Argonne National Laboratory for a two-day Workshop on May 2-3, 1985, to try to provide some consensus of our present understanding and to point out the most promising direction for progress in the near future. Abstracts of individual items from the workshop were prepared separately for the data base

  8. Autoionization and ultrafast relaxation dynamics of highly excited states in N2

    Science.gov (United States)

    Lucchini, M.; Kim, K.; Calegari, F.; Kelkensberg, F.; Siu, W.; Sansone, G.; Vrakking, M. J. J.; Hochlaf, M.; Nisoli, M.

    2012-10-01

    We have used the velocity-map imaging (VMI) technique to measure autoionization dynamics in molecular nitrogen initiated by a train of attosecond pulses. The pump-probe measurements show clear evidence of a crossing between potential energy curves of the highly excited N2+ ion and of the N22+ ion. It is found that the autoionization becomes energetically allowed when the two nuclei are still very close (˜3 Å), in contrast with observations in other diatomic molecules, and that it can be coherently manipulated by a strong femtosecond infrared pulse.

  9. A New Observable for Identifying Dijet Resonances

    CERN Document Server

    Izaguirre, Eder; Yavin, Itay

    2014-01-01

    The development of techniques for identifying hadronic signals from the overwhelming multi-jet backgrounds is an important part of the Large Hadron Collider (LHC) program. Of prime importance are resonances decaying into a pair of partons, such as the Higgs and $\\rm W$/$\\rm Z$ bosons, as well as hypothetical new particles. We present a simple observable to help discriminate a dijet resonance from background that is effective even when the decaying resonance is not strongly boosted. We find consistent performance of the observable over a variety of processes and degree of boosts, and show that it leads to a reduction of the background by a factor of $3-5$ relative to signal at the price of $10-20\\%$ signal efficiency. This approach represents a significant increase in sensitivity for Standard Model (SM) measurements and searches for new physics that are dominated by systematic uncertainties, which is true of many analyses involving jets - particularly in the high-luminosity running of the LHC.

  10. Auto-ionizing states in MgI

    International Nuclear Information System (INIS)

    Hartree-Fock calculations have been performed for the auto-ionizing levels of the 3pns, 3pnp, 4snp (n=4 to 7) and 3pnd (n=3 to 7) series in MgI. The calculated energies of the auto-ionizing states are compared with the available results from photo-absorption measurements and ejected-electron experiments. (author)

  11. Autoionization of helium following excitation by fast, multiply charged ions

    International Nuclear Information System (INIS)

    Using two parallel plate electrostatic spectrometers, the authors have measured the autoionization spectra of doubly-excited helium, following excitation by charged, 700 to 3500 KeV lithium ions produced by the Dynamitron. In particular, they studied the effect of projectile nuclear charge on the helium autoionization profiles and the continuum in which they are embedded

  12. Observation of resonant lattice modes by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Mackintosh, A.R.

    1965-01-01

    Observation by inelastic neutron scattering of resonant lattice modes due to small concentration of W atoms in Cr host crystal; frequencies and lifetimes of phonons with frequencies near that of resonant mode are considerably affected by presence of defects.......Observation by inelastic neutron scattering of resonant lattice modes due to small concentration of W atoms in Cr host crystal; frequencies and lifetimes of phonons with frequencies near that of resonant mode are considerably affected by presence of defects....

  13. Competition among autoionization, predissociation, and ion-pair formation in molecular hydrogen

    International Nuclear Information System (INIS)

    We have investigated autoionization, predissociation, and ion-pair formation highly excited states of molecular hydrogen by using double-resonance excitation via the E,F 1Σg+, v=6 level. The energetic threshold for ion-pair formation occurs just below the H2+ x 2Σg+, v+=9 ionization threshold. The spectrum in this region was studied by using conventional and constant-ionic-state photoelectron spectroscopy, by monitoring the H- production, and by detecting dissociation products by ionization with a third laser. The decay dynamics in this region are extremely rich, because the excited levels may decay by rotational and vibrational autoionization, by predissociation to neutral H + H* (n=2,3,4), by predissociation to the ion pair H+ + H-, and by fluorescence. In addition, the dissociative potential curve of the 2pσu3sσg1Σu+ doubly excited electronic state crosses the H2+ x 2Σg+ potential curve in the same energy ion, and the electronic autoionization of this state is found to significantly influence these decay processes

  14. Autoionizing states of atoms calculated using generalized sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2005-01-01

    The generalized Sturmian method is applied to autoionizing states of atoms and ions. If the Goscinskian basis sets allow for a sufficient amount of angular correletion, the calculated energies of doubly-excited (autoionizing) states are found to agree well with the few available experimental...... energies. A large-Z approximation is discussed, and simple formulas are derived which are valid not only for autoionizing states, but for all states of an isoelectronic atomic series. Diagonalization of a small block of the interelectron repulsion matrix yields roots that can be used for a wide range of Z...

  15. Autoionizing States of Atoms Calculated Using Generalized Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2005-01-01

    The generalized Sturmian method is applied to autoionizing states of atoms and ions. If the Goscinskian basis sets allow for a sufficient amount of angular correletion, the calculated energies of doubly-excited (autoionizing) states are found to agree well with the few available experimental...... energies. A large-Z approximation is discussed, and simple formulas are derived which are valid not only for autoionizing states, but for all states of an isoelectronic atomic series. Diagonalization of a small block of the interelectron repulsion matrix yields roots that can be used for a wide range of Z...

  16. The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states

    Science.gov (United States)

    Zhang, Kai; Shen, Li; Dong, Cheng; Dai, Chang-Jian

    2015-10-01

    The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8 DJ (J = 5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+ → 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).

  17. The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states

    Institute of Scientific and Technical Information of China (English)

    张开; 沈礼; 董程; 戴长建

    2015-01-01

    The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8DJ (J=5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+→ 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series.

  18. Relativistic Multichannel Theory: Theoretical Study of C+ Autoionization States

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; ZHANG Shi-Zhong; PENG Yong-Lun; LI Jia-Ming

    2003-01-01

    Based on relativistic multichannel theory, the autoionization states of C+ are studied. We calculate all the autoionization states in the energy region of 193900 ~ 231700cm"1, and the results are in good agreement with the experimental data. The energy structure we obtain will be important in the dielectronic recombination processes, which plays a key role in determining the abundance of carbon in a nebula.

  19. Autoionizing doubly-excited states of 3Σg− symmetry of H2

    Directory of Open Access Journals (Sweden)

    Argoubi F.

    2015-01-01

    Full Text Available We report R-matrix calculations of doubly-excited 3Σg− states of molecular hydrogen corresponding to 3d̃πnℓ̃π configurations. These states form Rydberg series converging to the 3d̃π series limit. They lie in the continuum of the doubly-excited states of 3Σg− symmetry built on the 2p̃π ion core, and therefore they are autoionized. Calculations of resonance positions and widths are presented.

  20. Atomic-number dependence of the magnetic-sublevel population in the autoionization state formed in dielectronic recombination

    OpenAIRE

    Hu, Zhimin; Li, Yueming; Han, Xiaoying; Kato, Daiji; Tong, Xiaomin; Watanabe, Hirofumi; Nakamura, Nobuyuki

    2014-01-01

    The magnetic-sublevel population of the autoionization state formed in dielectronic recombination (DR) of highly charged heavy ions has been experimentally investigated by combining two types of measurements with an electron beam ion trap. The two different measurements are the differential x-ray measurement at 90∘ with respect to the electron beam and the integral resonance-strength measurement. The alignment parameter, which denotes the magnetic-sublevel population distribution, has been ob...

  1. Observation of whispering-gallery mode splitting in spherical resonator

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-ping; ZHANG Lei; MA Le; SUN Ming-hao; XU Hui-ying; CAI Zhi-ping

    2007-01-01

    We report the observation of the splitting of whispering-gallery mode in the silica spherical resonator. To characterize the fused-silica spherical resonator, an evanescent fiber taper coupling technique is employed. The coupling system consists of a fiber taper with a diameter of about 2.8 microns and a fused-silica spherical resonator with a diameter of about 143 microns. By injecting the laser power into the fiber taper, a number of narrow absorption peaks with equal peak spacing of 3.7 nm are observed in a wide spectral range. After replacing the resonator by the other one with the shape being slightly modified, whispering-gallery mode splitting in the spherical resonator is observed. The wavelength spacing between adjacent peaks is 0.32 nm, much smaller than that of the previous one.

  2. Observation of Fano resonances in all-dielectric nanoparticle oligomers.

    Science.gov (United States)

    Chong, Katie E; Hopkins, Ben; Staude, Isabelle; Miroshnichenko, Andrey E; Dominguez, Jason; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2014-05-28

    It is well-known that oligomers made of metallic nanoparticles are able to support sharp Fano resonances originating from the interference of two plasmonic resonant modes with different spectral width. While such plasmonic oligomers suffer from high dissipative losses, a new route for achieving Fano resonances in nanoparticle oligomers has opened up after the recent experimental observations of electric and magnetic resonances in low-loss dielectric nanoparticles. Here, light scattering by all-dielectric oligomers composed of silicon nanoparticles is studied experimentally for the first time. Pronounced Fano resonances are observed for a variety of lithographically-fabricated heptamer nanostructures consisting of a central particle of varying size, encircled by six nanoparticles of constant size. Based on a full collective mode analysis, the origin of the observed Fano resonances is revealed as a result of interference of the optically-induced magnetic dipole mode of the central particle with the collective mode of the nanoparticle structure. This allows for effective tuning of the Fano resonance to a desired spectral position by a controlled size variation of the central particle. Such optically-induced magnetic Fano resonances in all-dielectric oligomers offer new opportunities for sensing and nonlinear applications. PMID:24616191

  3. Observation of global electromagnetic resonances by low- orbiting satellites

    Science.gov (United States)

    Surkov, V. V.

    2016-02-01

    Penetration of Schumann resonances energy from the Earth-ionosphere resonance cavity into the circumterrestrial space is examined. This study focuses on estimates of Alfvén wave amplitude and spectra in the frequency range of 7-50 Hz which can be observed by low-orbiting satellites. Differences in Schumann resonances observation conditions between the nighttime and sunlit sides of the ionosphere are analyzed. Particular emphasis has been placed on the ionospheric Alfvén resonator (IAR) excited by both global thunderstorm activity and individual lightning discharges. IAR spectra in the frequency range of 0.5-10 Hz are calculated for ionospheric altitudes. The calculated spectral amplitudes of IAR and Schumann resonances are compatible with C/NOFS satellite observations. To explain a shift of IAR resonant frequencies observed during C/NOFS satellite passage through terminator region, the IAR model is developed in which an interference of Alfvén waves reflected from the ionospheric E-layer and the IAR upper boundary is taken into account.

  4. Observation of optomechanical coupling in a microbottle resonator

    CERN Document Server

    Asano, Motoki; Chen, Weijian; Özdemir, Şahin Kaya; Ikuta, Rikizo; Imoto, Nobuyuki; Yang, Lan; Yamamoto, Takashi

    2016-01-01

    In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid-core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Q_m) as high as 1.57*10^4 and 1.45*10^4 were observed, respectively, at the mechanical frequencies f_m=33.7 MHz and f_m=58.9 MHz. The maximum f_m*Q_m~0.85*10^12 Hz is close to the theoretical lower bound of 6*10^12 Hz needed to overcome thermal decoherence for resolved-sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter-induced mode splitting and ringing phenomena, which are typical for high-quality optical resonances, were also observed in a microbottle resonator.

  5. Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J. J.; Kornilov, Oleg

    2016-04-01

    Autoionizing Rydberg states of molecular N2 are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14 ±1 fs , while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  6. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance. PMID:27152799

  7. Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres

    Science.gov (United States)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  8. High-resolution, three-step resonance ionization mass spectrometry of gadolinium

    Science.gov (United States)

    Blaum, K.; Bushaw, B. A.; Nörtershäuser, W.; Wendt, K.

    2001-08-01

    High-resolution resonance ionization mass spectrometry has been used to measure triple-resonance autoionization (AI) spectra of gadolinium. Al resonances as narrow as 10 MHz have been observed and isotope shifts and hyperfine structure have been measured in selected AI states. The strongest AI state observed at 49663.576 cm-1 with a photoionization cross section of >3.6×10-15 cm2 was found to have an overall detection efficiency of >3×10-5, allowing application to a number of ultratrace determination problems. Analytical measurements with a diode-laser-based system have been successfully performed on bio-medical tissue samples.

  9. High-resolution, three-step resonance ionization mass spectrometry of gadolinium

    International Nuclear Information System (INIS)

    High-resolution resonance ionization mass spectrometry has been used to measure triple-resonance autoionization (AI) spectra of gadolinium. Al resonances as narrow as 10 MHz have been observed and isotope shifts and hyperfine structure have been measured in selected AI states. The strongest AI state observed at 49663.576 cm-1 with a photoionization cross section of >3.6x10-15 cm2 was found to have an overall detection efficiency of >3x10-5, allowing application to a number of ultratrace determination problems. Analytical measurements with a diode-laser-based system have been successfully performed on bio-medical tissue samples

  10. Observation of high-lying resonances in the H- ion

    International Nuclear Information System (INIS)

    This dissertation reports the observation of several series of resonances, for which both electrons are in excited states, in the photodetachment cross section of H-. These 1P doubly-excited states interfere with the continuum in which they are embedded, and appear as dips in the production cross section of excited neutral hydrogen. The experiment was performed by intersecting an 800 MeV H- beam with a (266 nm) laser beam at varying angles; the relativistic Doppler shift then ''tuned'' the photon energy in the barycentric frame. The process was observed by using a magnet strong enough the strip the electrons from the excited hydrogen atoms in selected states n and detecting the resulting protons, which allowed the isolation of the individual n channels. Three resonances are clearly visible in each channel. The data support recent theoretical calculations for the positions of doubly-excited 1P resonances, and verify a new Rydberg-like formula for the modified Coulomb potential

  11. Motor resonance evoked by observation of subtle nonverbal behavior.

    Science.gov (United States)

    van Ulzen, Niek R; Fiorio, Mirta; Cesari, Paola

    2013-01-01

    This study was designed to combine two, otherwise separated, fields of research regarding motor resonance and mimicry by adopting a naturalistic mimicry paradigm while probing motor resonance with transcranial magnetic stimulation (TMS). At stake was whether the motor system resonates instantaneously with unobtrusive nonverbal behavior of another person. We measured excitability in the left and right hand while participants viewed sequences of video clips and static images. In the video clips an actor performed several clerical tasks, while either inconspicuously touching his face (face-touching (FT) condition) or not (no face-touching (NFT) condition). We found that excitability was higher in the FT condition than in the NFT and baseline conditions. Furthermore, our data showed a general heightened excitability in the left motor cortex relative to the right. Taken together, the results suggest that observed hand-face gestures--even though outside the primary focus of attention and occurring inconspicuously throughout an ongoing action setting--can cause instantaneous resonant activity in the observer's motor system. It thus supports the idea of motor resonance involvement in mimicry and demonstrates that this can be studied using a naturalistic mimicry paradigm. PMID:23758553

  12. Observation of the uranium 235 nuclear magnetic resonance signal

    OpenAIRE

    Le Bail, H.; Chachaty, C.; Rigny, P.; Bougon, R.

    1983-01-01

    The first observation of the nuclear magnetic resonance of the uranium 235 is reported. It has been performed on pure liquid uranium hexafluoride at 380 K. The measured magnetogyric ratio is | γ(235U) | = 492.6 ± 0.2 rad.s-1 G-1.

  13. Observation of Antiferromagnetic Resonance in an Organic Superconductor

    DEFF Research Database (Denmark)

    Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.

    1982-01-01

    Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...

  14. Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser

    International Nuclear Information System (INIS)

    A mechanism for three-photon double ionization of atoms by extreme-ultraviolet free-electron laser pulses is revealed, where in a sequential process the second ionization step, proceeding via resonant two-photon ionization of ions, is strongly enhanced by the excitation of ionic autoionizing states. In contrast to the conventional model, the mechanism explains the observed relative intensities of photoelectron peaks and their angular dependence in three-photon double ionization of argon.

  15. Observation of the resonant character of the Z(4430)(-) state.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jezabek, M; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Muresan, R; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-06-01

    Resonant structures in B^{0}→ψ^{'}π^{-}K^{+} decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3  fb^{-1} collected with the LHCb detector. The data cannot be described with K^{+}π^{-} resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)^{-}→ψ^{'}π^{-} component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)^{-} amplitude with the ψ^{'}π^{-} mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1^{+}. PMID:24949760

  16. Observation of decoherence in a carbon nanotube mechanical resonator

    Science.gov (United States)

    Schneider, Ben H.; Singh, Vibhor; Venstra, Warner J.; Meerwaldt, Harold B.; Steele, Gary A.

    2014-12-01

    In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, whereas time-domain techniques such as ringdown measurements can separate the two. Here we report the first observation of the mechanical ringdown of a carbon nanotube mechanical resonator. Comparing the mechanical quality factor obtained from frequency- and time-domain measurements, we find a spectral quality factor four times smaller than that measured in ringdown, demonstrating dephasing-induced decoherence of the nanomechanical motion. This decoherence is seen to arise at high driving amplitudes, pointing to a nonlinear dephasing mechanism. Our results highlight the importance of time-domain techniques for understanding dissipation in nanomechanical resonators, and the relevance of decoherence mechanisms in nanotube mechanics.

  17. Observation of the resonant character of the $Z(4430)^-$ state

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    Resonant structures in $B^0\\to\\psi'\\pi^-K^+$ decays are analyzed by performing a four-dimensional fit of the decay amplitude, using $pp$ collision data corresponding to $\\rm 3 fb^{-1}$ collected with the LHCb detector. The data cannot be described with $K^+\\pi^-$ resonances alone, which is confirmed with a model-independent approach. A highly significant $Z(4430)^-\\to\\psi'\\pi^-$ component is required, thus confirming the existence of this state. The observed evolution of the $Z(4430)^-$ amplitude with the $\\psi'\\pi^-$ mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin-parity is determined unambiguously to be $1^+$.

  18. Observation of decoherence in a carbon nanotube mechanical resonator.

    Science.gov (United States)

    Schneider, Ben H; Singh, Vibhor; Venstra, Warner J; Meerwaldt, Harold B; Steele, Gary A

    2014-12-19

    In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, whereas time-domain techniques such as ringdown measurements can separate the two. Here we report the first observation of the mechanical ringdown of a carbon nanotube mechanical resonator. Comparing the mechanical quality factor obtained from frequency- and time-domain measurements, we find a spectral quality factor four times smaller than that measured in ringdown, demonstrating dephasing-induced decoherence of the nanomechanical motion. This decoherence is seen to arise at high driving amplitudes, pointing to a nonlinear dephasing mechanism. Our results highlight the importance of time-domain techniques for understanding dissipation in nanomechanical resonators, and the relevance of decoherence mechanisms in nanotube mechanics.

  19. Observation of the resonant character of the Z(4430)(-) state.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jezabek, M; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D

    2014-06-01

    Resonant structures in B^{0}→ψ^{'}π^{-}K^{+} decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3  fb^{-1} collected with the LHCb detector. The data cannot be described with K^{+}π^{-} resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)^{-}→ψ^{'}π^{-} component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)^{-} amplitude with the ψ^{'}π^{-} mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1^{+}.

  20. Theoretical investigation of the hypothesized crossing between the Penning and atomic autoionizing states of He+K

    Energy Technology Data Exchange (ETDEWEB)

    Padial, N.T.; Martin, R.L.; Cohen, J.S.; Lane, N.F.

    1989-03-01

    The Penning ionization interaction He(12s/sup 3/S)+K(3p/sup 6/4s) and the atomic autoionizing state interaction He(1s/sup 2/)+K(3p/sup 5/4s/sup 2/) have been determined in a configuration-interaction calculation utilizing a basis set designed to treat these two states equitably. In contrast to an earlier calculation, the corresponding two potential curves are found not to cross. This finding puts in question the original speculation that the observed large He/sup */+K ionization cross section is due partially to collisional excitation of atomic states that subsequently autoionize. However, the calculated Penning ionization cross section is still in agreement with the experimental measurement.

  1. Influence of the plasma environment on auto-ionization

    Science.gov (United States)

    Belkhiri, Madeny; Fontes, Christopher J.

    2016-09-01

    In this work, we show the influence of the plasma environment on the auto-ionization rate using an ion-sphere model. We consider transitions from the He-like to the H-like ion stage of aluminum for illustrative purposes, but the approach is completely general and can be applied to arbitrary, highly charged ions. A detailed numerical investigation and comparison is made between two independent computational schemes, using the relativistic configuration-average, distorted-wave approach. We show that the decreasing behavior of the auto-ionization rates as a function of free-electron density is due to a change in the quantum interference between the bound and free electrons, and also provide a qualitative explanation of this trend.

  2. Observation of Wakefields and Resonances in Coherent Synchrotron Radiation

    CERN Document Server

    Billinghurst, B E; Baribeau, C; Batten, T; Dallin, L; May, T E; Vogt, J M; Wurtz, W A; Warnock, R; Bizzizero, D A; Kramer, S

    2015-01-01

    We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~\\textrm{cm}^{-1}$, and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by RF diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less ...

  3. Vibrational autoionization in PF3: Doing violence to the propensity rule

    International Nuclear Information System (INIS)

    The photoionization spectrum of PF+3 in its threshold region displays two prominent progressions of autoionization peaks. When these are analyzed, together with earlier photoabsorption studies and a photoelectron spectrum, they lead to the conclusion that vibrational autoionization is occurring, with Δν< or =-13. This conclusion stands in sharp contrast with the current theory of vibrational autoionization, which predicts a propensity rule Δν = -1. Other examples from the recent literature are summarized, to suggest that a more general theory of vibrational autoionization is required

  4. Observation of vibrational overtones by single molecule resonant photodissociation

    CERN Document Server

    Khanyile, Ncamiso B; Brown, Kenneth R

    2015-01-01

    Coulomb crystals composed of atomic ions and molecular ions are an ideal system for performing high-precision spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca$^{+}$ and CaH$^{+}$ to observe vibrational transitions via resonance enhanced multiphoton dissociation detected by Ca$^{+}$ fluorescence. Based on theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, $\

  5. Observation of vibrational overtones by single molecule resonant photodissociation

    Science.gov (United States)

    Shu, Gang; Khanyile, Ncamiso; Brown, Kenneth

    2016-05-01

    Molecular ions sympathetically cooled by a chain of laser-cooled atomic ions are ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. The same system can be coupled with a broadband laser to perform survey spectroscopy and discover new molecular transitions. Here we present our results using three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance enhanced multiphoton dissociation detected by Ca+ fluorescence. Based on theoretical calculations, the observed peaks are assigned to two vibrational overtones corresponding to transitions from the ground vibrational state, ν = 0, to the excited vibrational states, ν = 9 and ν = 10. Our method allows us to track single molecular events, and it can be extended to handle any molecule by monitoring normal mode frequency shifts to detect the dissociation.

  6. Observation of vibrational overtones by single-molecule resonant photodissociation

    Science.gov (United States)

    Khanyile, Ncamiso B.; Shu, Gang; Brown, Kenneth R.

    2015-07-01

    Molecular ions can be held in a chain of laser-cooled atomic ions by sympathetic cooling. This system is ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance-enhanced multiphoton dissociation detected by Ca+ fluorescence. On the basis of theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, ν=0 to ν=9 and 10. Our method allows us to track single-molecular events, and it can be extended to work with any molecule by using normal mode frequency shifts to detect the dissociation. This survey spectroscopy serves as a bridge to the precision spectroscopy required for molecular ion control.

  7. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 500. Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H2) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C6+, the H-like and He-like ions of C, N and O, He-like Ne8+ and Ne-like Ar8+. Excited metastable projectiles used are C5+(2s), He-like projectiles Aq+(1s2s3S) and Ar8+(...2p53s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  8. Observation of two new Ξ(b)(-) baryon resonances.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-02-13

    Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0  fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006  MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06  MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10  MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08  MeV at 95% confidence level. Relative production rates of these states are also reported. PMID:25723210

  9. Observation of two new $\\Xi_b^-$ baryon resonances

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew Christopher; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Domenico, Antonio; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    Two structures are observed close to the kinematic threshold in the $\\Xi_b^0\\pi^-$ mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content $bds$ are expected in this mass region: the spin-parity $J^P = \\frac{1}{2}^+$ and $J^P=\\frac{3}{2}^+$ states, denoted $\\Xi_b^{\\prime -}$ and $\\Xi_b^{*-}$. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be \\begin{eqnarray*} m(\\Xi_b^{\\prime -}) - m(\\Xi_b^0) - m(\\pi^{-}) &=& 3.653 \\pm 0.018 \\pm 0.006~{\\rm MeV}/c^2, \\\\ m(\\Xi_b^{*-}) - m(\\Xi_b^0) - m(\\pi^{-}) &=& 23.96 \\pm 0.12\\pm 0.06~{\\rm MeV}/c^2, \\\\ \\Gamma(\\Xi_b^{*-}) &=& 1.65 \\pm 0.31 \\pm 0.10~{\\rm MeV}, \\end{eqnarray*} where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place ...

  10. Observation of two new Ξ(b)(-) baryon resonances.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J

    2015-02-13

    Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0  fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006  MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06  MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10  MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08  MeV at 95% confidence level. Relative production rates of these states are also reported.

  11. COBE-DIRBE observations of the Earth's resonant ring.

    Science.gov (United States)

    Jayaraman, S.; Dermott, S. F.

    The marked trailing/leading asymmetry of the zodiacal cloud, first detected in the IRAS (Infrared Astronomical Satellite) data by Dermott et al. (1988), has since been confirmed by DIRBE (Reach et al., 1995). The authors' analysis of the DIRBE data shows that the asymmetry exists in a range of wavebands from 4.5 to 60 μm as well as at different solar elongations. The authors proposed (Dermott et al., 1994) that this asymmetry is caused by a trailing cloud of asteroidal dust particles that corotates with the Earth in a circumsolar ring of particles trapped in mean motion resonances. Here, the authors compare predictions derived from this model with the DIRBE observations and discuss the implications of the results for the sizes of the particles near the Earth, and their origin, and for the overall structure of the zodiacal cloud.

  12. Excitation of the (2p2)1D and (2s2p)1P autoionizing states of helium by 200 eV electron impact

    International Nuclear Information System (INIS)

    We report full second Born calculations with inclusion of post-collision interactions for excitation of the (2p2)1D and (2s2p)1P autoionizing states of helium by 200 eV electron impact. The calculations are compared to (e, 2e) measurements of McDonald and Crowe (McDonald D G and Crowe A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2887-97) and Lower and Weigold (Lower J and Weigold E 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2819-45). It is shown that post-collision interactions or Coulomb interactions in the final state between the scattered particle, the ejected electron and the recoil ion have a strong influence on both the direct ionization and resonance profiles around the binary lobe. The second-order terms in the amplitude of double electron excitation also play an observable role under these kinematic conditions. Reasonable agreement is found between the full-scale calculations and the experimental data. (author). Letter-to-the-editor

  13. Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    CERN Document Server

    Woosung, Kim; Zhu, Jiangang; Yang, Lan

    2011-01-01

    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in water. We determine the size range of particles that induces MS in a microsphere in water as a function of resonator mode volume and quality factor. The results are confirmed by the experimental observations.

  14. Direct observation of resonance effects in laser cluster interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zweiback, J

    1999-06-01

    Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 {angstrom}, 130 {angstrom}, and 170 {angstrom} radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

  15. New narrow N*(1685) resonance: review of observations

    CERN Document Server

    Kuznetsov, Viacheslav

    2014-01-01

    The recent Review of Particle Physics [1] includes a new narrow N*(1685) resonance. Its properties, the narrow width and the strong photoexcitation on the neutron, are unusual. The paper reviews experimental data which have led to the evidence for this resonance. Alternative explanations of the phenomenon at W ~ 1.685 GeV, namely the interference of well-known resonances and the sub-threshold meson-baryon production, are discussed as well.

  16. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  17. Criteria for Elves and Sprites on Schumann Resonance Observations

    OpenAIRE

    Huang, E. W.; Williams, E. R.; Boldi, R.; Heckman, S.; Lyons, W; Taylor, Michael J.; Wong, C.; Nelson, T.

    1999-01-01

    Ground flashes with positive polarity associated with both sprites and elves excite the Earth's Schumann resonances to amplitudes several times greater than the background resonances. Theoretical predictions for dielectric breakdown in the mesosphere are tested using ELF methods to evaluate vertical charge moments of positive ground flashes. Comparisons of the measured time constants for lightning charge transfer with the electrostatic relaxation time at altitudes of nighttime sprite initiati...

  18. Experimental observation of the shear Alfven resonance in a tokamak

    International Nuclear Information System (INIS)

    Experiments in Tokapole II have demonstrated the shear Alfven resonance in a tokamak by direct probe measurement of the wave magnetic field within the plasma. The resonance is driven by external antennas and is identified as radially localized enhancements of the poloidal wave magnetic field. The radial location agrees with calculations which include toroidicity and noncircularity of the plasma cross-section. Other properties such as polarization, radial width, risetime, and wave enhancement also agree with MHD theory

  19. Out-of-plane (e , 2 e) measurements on He autoionizing levels at 80, 150, and 488 eV

    Science.gov (United States)

    Martin, N. L. S.; Kim, B. N.; Weaver, C. M.; Deharak, B. A.; Bartschat, K.

    2016-05-01

    We report out-of-scattering-plane (e , 2 e) measurements on helium 2 l 2l' autoionizing levels for 80, 150, and 488 eV incident electron energies, and scattering angles 60°, 39. 2°, and 20. 5°, respectively. The kinematics are the same in all cases: ejected electrons are detected in a plane that contains the momentum transfer direction and is perpendicular to the scattering plane, and the momentum transfer is 2.1 a.u.. The 80 eV results complete our sets of measurements at low, intermediate, and high, incident energies. The results are presented as (e , 2 e) angular distributions energy-integrated over each level, and are compared with our theory calculated for 488 eV incident electron energy. The 150 eV and 488 eV experiments are characterized by recoil peaks appropriate to each autoionizing level. However, for the 80 eV angular distributions, these recoil peaks are largely absent for all levels, including the 3 P level observed at this energy. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM), PHY-1402899 (BAdH), and PHY-1212450 (KB).

  20. Observation of the Earth liquid core resonance by extensometers

    Science.gov (United States)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  1. Vertical profile of atmospheric conductivity that matches Schumann resonance observations.

    Science.gov (United States)

    Nickolaenko, Alexander P; Galuk, Yuri P; Hayakawa, Masashi

    2016-01-01

    We introduce the vertical profile of atmospheric conductivity in the range from 2 to 98 km. The propagation constant of extremely low frequency (ELF) radio waves was computed for this profile by using the full wave solution. A high correspondence is demonstrated of the data thus obtained to the conventional standard heuristic model of ELF propagation constant derived from the Schumann resonance records performed all over the world. We also suggest the conductivity profiles for the ambient day and ambient night conditions. The full wave solution technique was applied for obtaining the corresponding frequency dependence of propagation constant relevant to these profiles. By using these propagation constants, we computed the power spectra of Schumann resonance in the vertical electric field component for the uniform global distribution of thunderstorms and demonstrate their close similarity in all the models. We also demonstrate a strong correspondence between the wave attenuation rate obtained for these conductivity profiles and the measured ones by using the ELF radio transmissions. PMID:26877906

  2. Observation of generalized optomechanical coupling and cooling on cavity resonance

    CERN Document Server

    Sawadsky, Andreas; Nia, Ramon Moghadas; Tarabrin, Sergey P; Khalili, Farid Ya; Hammerer, Klemens; Schnabel, Roman

    2014-01-01

    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g. via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride (SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection.

  3. Experimental observation of left-handed behavior in an array of standard dielectric resonators.

    Science.gov (United States)

    Peng, Liang; Ran, Lixin; Chen, Hongsheng; Zhang, Haifei; Kong, Jin Au; Grzegorczyk, Tomasz M

    2007-04-13

    We demonstrate that by utilizing displacement currents in simple dielectric resonators instead of conduction currents in metallic split-ring resonators and by additionally exciting the proper modes, left-handed properties can be observed in an array of high dielectric resonators. Theoretical analysis and experimental measurements show that the modes, as well as the subwavelength resonance, play an important role in the origin of the left-handed properties. The proposed implementation of a left-handed metamaterial, based on a purely dielectric configuration, opens the possibility of realizing media at terahertz frequencies since scaling issues and losses, two major drawbacks of metal-based structures, are avoided. PMID:17501383

  4. The dynamics of high autoionizing Rydberg states of Ar

    Science.gov (United States)

    Bixon, M.; Jortner, Joshua

    1995-09-01

    In this paper we present a theoretical study of the autoionization dynamics of high 2P1/2np'[3/2]1 Rydbergs (with the principal quantum numbers n=100-280) of Ar in weak homogeneous electric fields (F=0.01-1.0 V/cm), which were experimentally interrogated by time-resolved zero-electron kinetic energy (ZEKE) spectroscopy [M. Mühlpfordt and U. Even, J. Chem. Phys. 103, 4427 (1995)], and which exhibit a marked dilution (i.e., ˜2 orders of magnitude lengthening) of the lifetimes relative to those inferred on the basis of the n3 scaling law for the spectral linewidths of the np' (n=12-24) Rydbergs. The multichannel effective Hamiltonian (Heff) with several doorway state(s) (for excitation and decay) and pure escape states (for decay) was advanced and utilized to treat the dynamics of the mixed Stark manifold of the ZEKE Rydbergs. Heff of dimension 2n-1 is then constructed for a n Rydberg manifold using independent experimental information on the (l dependent) quantum defects δ(l) and the (l, K, J dependent) decay widths, which are of the form Γ0(lKJ)/(n-δ(l))3, with Γ0(lKJ) being the decay widths constants. Here, l, K, and J are the azimuthal, the electronic and the total electronic angular momentum quantum numbers, respectively. Two coupling ranges are distinguished according to the strength of the reduced electric field F¯(n,p')=(F/V cm-1)n5/ 3.4×109[δ(p')(mod1)]. Range (A); The onset of the effective coupling of the doorway and escape states, i.e., 0.7≤F¯(n,p')≤2. Range (B); The strong mixing domain F¯(n,p')≥3. The lifetimes in range (B) can be well represented by a nearly democratic mixing of all the doorway and escape states (lKJ), with the average value ≂= 2n4ℏ/[J(lJK)Γ0(lJK)]. In range (B) increases with increasing n and is only weakly F dependent. Range (A) is characterized by a hierarchy of two time scales for the decay, with a short decay component, which manifests the residue of the doorway state, and a distribution of very long lifetimes

  5. Resonant photoemission from SmS(100)

    International Nuclear Information System (INIS)

    A strong, sharp resonance enhancement of 4f photoemission has been observed on SmS(100) surfaces for photon energies in the region of the 4d-4f transitions at about 126 eV. The discrete final state reached via the excitation hν + 4d104f6 → 4d94f7 autoionizes primarily via a super Coster-Kronig transition of the type 4d94f7 → 4d104f5 + unbound electron. Other decay channels, e.g. Sm 5p emission, as well as a surface induce binding energy shift in the Sm3+ final state are identified and discussed. (author)

  6. Observation of a surface lattice resonance in a fractal arrangement of gold nanoparticles

    CERN Document Server

    Chen, Ting Lee; Segerink, Frans B; Dikken, Dirk Jan; Herek, Jennifer L

    2015-01-01

    The collective response of closely spaced metal particles in non-periodic arrangements has the potential to provide a beneficial angular and frequency dependence in sensing applications. In this paper, we investigate the optical response of a Sierpinski fractal arrangement of gold nanoparticles and show that it supports a collective resonance similar to the surface lattice resonances that exist in periodic arrangements of plasmonic resonators. Using back focal plane microscopy, we observe the leakage of radiation out of a surface lattice resonance that is efficiently excited when the wavenumber of the incident light matches a strong Fourier component of the fractal structure. The efficient coupling between localized surface plasmons leads to a collective resonance and a Fano-like feature in the scattering spectrum. Our experimental observations are supported by numerical simulations based on the coupled-dipole approximation and finite-difference time-domain methods. This work presents a first step towards the...

  7. Appropriate observables for investigating narrow resonances in kaon photoproduction off a proton

    CERN Document Server

    Mart, T

    2011-01-01

    The existence of non-strange partner of pentaquark, the J^p = 1/2^+ narrow resonance, has been investigated by utilizing kaon photoproduction off a proton. It is found that the corresponding mass is 1650 MeV and the appropriate observables for investigating this resonance are the recoiled hyperon polarization, the beam-recoil double polarization C_x, and differential cross section at backward angles. Future kaon photoproduction experiments at low energies should focus on these observables.

  8. Two-step laser optogalvanic spectroscopy of high J momentum 4dnd and 4dng autoionizing states of strontium

    International Nuclear Information System (INIS)

    We have measured the energies of about two hundred even parity J=3-5 autoionizing 4 dnd and 4 dng Rydberg states of strontium (Sr) using an optogalvanic method. These states are reached by a two-step dye laser excitation from the 4d 5s metastables through the 4d 5p 3P2, 1F3, 3F4 intermediates. The 4d 5s are populated in a d.c. glow discharge through a Sr heated cell. The electronic configuration of the observed J=3, 4 states is deduced from the Lu-Fano plots of their quantum defect values and the spectral characteristics of the corresponding transitions. (orig.)

  9. New observation methods for the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Following a brief account of the properties of linear filters the problems and application of an NMR experiment with stochastic excitation are examined. A new method known as ''modulated-pulse excitation'', by which very broad spectra may be observed without increasing the peak power of the excitation pulse, is described. The various methods of obtaining a NMR spectrum are compared from both the theoretical and experimental viewpoints. Stochastic excitation appears to be the best excitation method, its main advantages being the low power needed for irradiation and the possibility of generating spectra at will (elimination or decoupling of a line) with the modulated pulse, an extension of the pure pulsed method, any power problems inherent to very high field spectrometers and to NMR of solids can be solved both for observation and for decoupling

  10. Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas.

    Science.gov (United States)

    Rosmej, F B; Griem, H R; Elton, R C; Jacobs, V L; Cobble, J A; Faenov, A Ya; Pikuz, T A; Geissel, M; Hoffmann, D H H; Süss, W; Uskov, D B; Shevelko, V P; Mancini, R C

    2002-11-01

    Order-of-magnitude anomalously high intensities for two-electron (dielectronic) satellite transitions, originating from the He-like 2s(2) 1S0 and Li-like 1s2s(2) (2)S(1/2) autoionizing states of silicon, have been observed in dense laser-produced plasmas at different laboratories. Spatially resolved, high-resolution spectra and plasma images show that these effects are correlated with an intense emission of the He-like 1s3p 1P-1s(2) 1S lines, as well as the K(alpha) lines. A time-dependent, collisional-radiative model, allowing for non-Maxwellian electron-energy distributions, has been developed for the determination of the relevant nonequilibrium level populations of the silicon ions, and a detailed analysis of the experimental data has been carried out. Taking into account electron density and temperature variations, plasma optical-depth effects, and hot-electron distributions, the spectral simulations are found to be not in agreement with the observations. We propose that highly stripped target ions (e.g., bare nuclei or H-like 1s ground-state ions) are transported into the dense, cold plasma (predominantly consisting of L- and M-shell ions) near the target surface and undergo single- and double-electron charge-transfer processes. The spectral simulations indicate that, in dense and optically thick plasmas, these charge-transfer processes may lead to an enhancement of the intensities of the two-electron transitions by up to a factor of 10 relative to those of the other emission lines, in agreement with the spectral observations. PMID:12513602

  11. Electron-impact excitation-autoionization of helium in the S-wave limit

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-10-01

    Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.

  12. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  13. Observation of double pygmy resonances in $^{195,196}$Pt and enhanced astrophysical reaction rates

    CERN Document Server

    Giacoppo, F; Eriksen, T K; Görgen, A; Guttormsen, M; Hagen, T W; Larsen, A C; Kheswa, B V; Klintefjord, M; Koehler, P E; Nyhus, H T; Renstr\\om, T; Sahin, E; Siem, S; Tornyi, T G

    2014-01-01

    Our measurements of $^{195,196}$Pt $\\gamma$-strength functions show a double-humped enhancement in the $E_{\\gamma}= 4-8$ MeV region. For the first time, the detailed shape of these resonances is revealed for excitation energies in the quasicontinuum. We demonstrate that the corresponding neutron-capture cross sections and astrophysical reaction rates are increased by up to a factor of 2 when these newly observed pygmy resonances are included. These results lend credence to theoretical predictions of enhanced reaction rates due to such pygmy resonances and hence are important for a better understanding of r-process nucleosynthesis.

  14. Observation of broad p-wave Feshbach resonances in ultracold $^{85}$Rb-$^{87}$Rb mixtures

    CERN Document Server

    Dong, Shen; Shen, Chuyang; Wu, Yewei; Tey, Meng Khoon; You, Li; Gao, Bo

    2016-01-01

    We observe new Feshbach resonances in ultracold mixtures of $^{85}$Rb and $^{87}$Rb atoms in the $^{85}$Rb$|2, +2\\rangle$+$^{87}$Rb$|1, +1\\rangle$ and $^{85}$Rb$|2, -2\\rangle$+$^{87}$Rb$|1, -1\\rangle$ scattering channels. The positions and properties of the resonances are predicted and characterized using the semi-analytic multichannel quantum-defect theory by Gao. Of particular interest, a number of broad entrance-channel dominated p-wave resonances are identified, implicating exciting opportunities for studying a variety of p-wave interaction dominated physics.

  15. Observation of soliton-induced resonant radiation due to three-wave mixing

    CERN Document Server

    Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M

    2016-01-01

    We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.

  16. Resonance ionization spectroscopy for AVLIS

    International Nuclear Information System (INIS)

    A spectroscopic study of three-step resonance photoionization was carried out for atomic gadolinium and uranium. Over 60 high-lying odd-parity states and about 30 autoionizing states were revealed for gadolinium. J-values and radiative lifetimes were determined by the method based on the electric-dipole transition selection rules and by the delayed coincidence method, respectively. Photo-absorption cross-sections were measured by three different methods, and efficient photoionization schemes for AVLIS were determined. (author)

  17. Resonance-enhanced multiphoton ionization-photoelectron spectra of CO2. I. Photoabsorption above the ionization potential

    International Nuclear Information System (INIS)

    Photoabsorption above the first ionization potential of CO2 was observed at relatively low laser intensity, detected via resonant-enhanced multiphoton ionization-photoelectron spectra through several Rydberg states. This phenomenon can be explained by the presence of accidental resonances with long-lived autoionizing states which make photon absorption within the ionization continuum possible. Laser powers are too low for this to be explained in terms of a ponderomotive potential and conventional above-threshold ionization. This resonance-enhanced above-threshold absorption phenomenon is potentially useful in the study of excited and superexcited states. Photoelectron energies can be assigned to terminations on CO+2 ionic states at both the four- and five-photon levels, allowing measurement of states up to 22 eV. Two unassigned bands may represent terminations on a new state of CO+2, with an ionization potential of 21.4 eV

  18. Isoelectronic behavior of resonant and intercombination lines in MgI-like ions

    International Nuclear Information System (INIS)

    Radiative transitions with very different characteristic rates can serve as important diagnostics of local conditions in a plasma. Here, the observed intensity ratio of the 3s21S0 - 3s3p 1P1 to the 3s21S0 - 3s3p 3P1 transitions in MgI-like ions has always presented those who model plasma spectra with a challenge; the observed intensity of the intercombination line is always several times greater than what simple models predict. The authors offer a model that takes into account the contribution to the MgI-like emission features from autoionizing levels of the adjacent AlI-like charge state. Models in the present work, which include the effects of configuration interaction on ionic wavefunctions, and the contribution of both direct, impact ionization and autoionization channels from the AlI-like ion to the MgI-like ion, give good agreement with the observed resonant/intercombination (R/I) emission ratio only when a departure from ionization equilibrium is assumed. The authors also identify, for the first time, intercombination lines of the form 3s3p 1P1 - 3p23P2 in several elements relevant to both astrophysical and magnetically-confined fusion plasmas

  19. Relativistic multichannel treatment of autoionization Rydberg series of 4s2nf(n = 4- 23)Jπ = (7/2)° for scandium

    Institute of Scientific and Technical Information of China (English)

    Jia Feng-Dong; Wang Jing-Yang; Zhong Zhi-Ping

    2008-01-01

    Based on relativistic multichannel theory, this paper calculates the energy levels of autoionization Rydberg series 4s2nf(n = 4 - 23)Jπ =(7/2)° of scandium at different levels of approximation within the framework of multichannel quantum defect theory. The present results show that the dipole polarizations play an important role. Considering the dynamical dipole polarization effects, this paper finds that the difference between calculated and experimental quantum defects for the 4s2nf(n = 4 - 23)Jπ = (7/2)° series is generally about 0.01-0.03. Furthermore, the reason that 4s216f is obscured in experimental spectra is suggested to be the interaction with the neighbouring resonance state converged to 3d2(1G4) of Sc+.

  20. Experimental observation of the linewidth narrowing of electromagnetically induced transparency resonance

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Shujing Li; Jingqin Yao; Jie Ma; Feng Peng; Gang Jiang; Hai Wang

    2005-01-01

    @@ We report an experimental observation of the variation in linewidth of the electromagnetically induced transparency (EIT) resonance in a three-level A-type system for several laser bandwidths in a Rb vapor cell, with and without a buffer gas. It is found, using narrow bandwidth (about 20 kHz) diode laser for both coupling and probe beams, that the linewidth of the EIT resonance can be significantly narrowed in the Rb vapor cell with the buffer gas. The results are in good qualitative agreement with a simple theoretical calculation.

  1. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    Directory of Open Access Journals (Sweden)

    G. Provan

    Full Text Available Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  2. Phase measurement of a Fano window resonance using tunable attosecond pulses

    CERN Document Server

    Kotur, M; Jimenez-Galan, A; Kroon, D; Larsen, E W; Louisy, M; Bengtsson, S; Miranda, M; Mauritsson, J; Arnold, C L; Canton, S E; Gisselbrecht, M; Carette, T; Dahlstrom, J M; Lindroth, E; Maquet, A; Argenti, L; Martin, F; L'Huillier, A

    2015-01-01

    We study the photoionization of argon atoms close to the 3s$^2$3p$^6$ $\\rightarrow$ 3s$^1$3p$^6$4p $\\leftrightarrow$ 3s$^2$3p$^5$ $\\varepsilon \\ell$, $\\ell$=s,d Fano window resonance. An interferometric technique using an attosecond pulse train, i.e. a frequency comb in the extreme ultraviolet range, and a weak infrared probe field allows us to study both amplitude and phase of the photoionization probability amplitude as a function of photon energy. A theoretical calculation of the ionization process accounting for several continuum channels and bandwidth effects reproduces well the experimental observations and shows that the phase variation of the resonant two-photon amplitude depends on the interaction between the channels involved in the autoionization process.

  3. An experimental study of the role of autoionizing states of H2 (D2) in the production of energetic protons (deuterons) by electron impact

    International Nuclear Information System (INIS)

    The autoionizing state study seemed interesting to be taken up again in energy ranges corresponding to formation thresholds, a device well adapted to this range was available concerning electron measurements. Among other things, the overlapping autoionizing states have been displayed; proton kinetic energy distribution appropriate to each state at its formation threshold have been got. The whole of these results represents a proton (and D+) production mechanism study contribution via autoionizing states. The theory used to describe autoionization cross-section calculations are recalled. Experimental results are presented, discussed, compared to experimental results and theoretical predictions

  4. Quantal Description of Atomic Diamagnetism: the Quasi-Landau Resonances

    Science.gov (United States)

    Wang, Qiaoling

    We describe atomic hydrogen diamagnetism within the framework of nonrelativistic quantum mechanics. Our theoretical studies have used three descriptions: an adiabatic description, a multichannel quantum defect theory (MQDT) description using an ab initio R-matrix approach, and a model description. The analysis has conclusively demonstrated that the diamagnetic spectrum can be viewed as a perturbed Rydberg spectrum. The adiabatic analysis provides a crude but useful picture to see the overall channel structure and the nature of the perturbing configurations, where the quasi-Landau resonances are the lowest states in each Landau channel which will perturb high Rydberg states in lower Landau channels once the nonadiabatic coupling is turned on. The ab initio calculation of the photoionization spectrum in the field range 10^3 -10^4 Tesla shows that the quasi -Landau resonances are broad interlopers which perturb high Rydberg states converging to the Landau thresholds, forming complex resonances. Also in these calculations, a new partial cross section analysis has been performed to predict the relative electron populations in different Landau channels. The population is found to depend on the azimuthal quantum number and the parity of final states. For photoionization from the hydrogen ground state of final states with m = 1, the electron is predicted to escape predominantly in the higher Landau channels. In contrast, for the final states with m = 0, it escapes in the lower channels. This property is reflected in the shape of autoionizing resonances, which are more like peaks for m = 1, but are more like dips (window resonances) for m = 0. In studying the features of the complex resonances, formed by the quasi-Landau resonances perturbing the high Rydberg states, we developed an analytical description using a model based on three interacting Rydberg channels, identifying the key dynamical quantities which control the appearance of a complex resonance and its evolution

  5. Coherence between radar observations of magnetospheric field line resonances and discrete oscillations in the solar wind

    OpenAIRE

    J. A. E. Stephenson; Walker, A. D. M.

    2010-01-01

    Field line resonances have been observed for decades by ground-based and in situ instruments. The driving mechanism(s) are still unclear, although previous work has provided strong grounds that coherent waves in the solar wind may be a source. Here we present further evidence, with the use of multitaper analysis, a sophisticated spectrum estimation technique. A set of windows (dpss tapers) is chosen with characteristics that best suit the width of the narrowband peaks to be identified. The or...

  6. Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Energy Technology Data Exchange (ETDEWEB)

    Knoop, S; Ferlaino, F; Berninger, M; Mark, M; Naegerl, H-C; Grimm, R, E-mail: knoop@kip.uni-heidelberg.d [Institut fuer Experimentalphysik and Zentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria)

    2009-11-15

    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs{sub 2} Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.

  7. Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard

    2012-01-01

    Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.

  8. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.;

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three-compon......-component mean-field model. Analytical mean-field calculations of the self-pulsing frequency as well as numerical simulations including the effects of a time-dependent pump pulse agree with the experimentally observed frequencies....

  9. New electronic states of NH and ND observed by resonance enhanced multiphoton ionization spectroscopy

    Science.gov (United States)

    Johnson, Russell D., III; Hudgens, Jeffrey W.

    1990-01-01

    Resonance Enhanced MultiPhoton Ionization (REMPI) spectra of NH and ND, which reveal four new electronic states are presented. Transitions from NH a 1 delta to 3s and 3p Rydberg states in both NH and ND have been observed and rotationally analyzed. The transitions were observed in the wavelength range of 258 to 288 nm. The state assignments are: e 1 pi (3s sigma) at 82857/cm, f 1 pi (3p sigma) at 86378/cm, g 1 delta (3p pi) at 88141/cm and h 1 sigma (3p pi) at 89151/cm.

  10. Observation of high-lying resonances in the H sup minus ion

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.G. (Los Alamos National Lab., NM (USA) New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)

    1990-05-01

    This dissertation reports the observation of several series of resonances, for which both electrons are in excited states, in the photodetachment cross section of H{sup {minus}}. These {sup 1}P doubly-excited states interfere with the continuum in which they are embedded, and appear as dips in the production cross section of excited neutral hydrogen. The experiment was performed by intersecting an 800 MeV H{sup {minus}} beam with a (266 nm) laser beam at varying angles; the relativistic Doppler shift then tuned'' the photon energy in the barycentric frame. The process was observed by using a magnet strong enough the strip the electrons from the excited hydrogen atoms in selected states n and detecting the resulting protons, which allowed the isolation of the individual n channels. Three resonances are clearly visible in each channel. The data support recent theoretical calculations for the positions of doubly-excited {sup 1}P resonances, and verify a new Rydberg-like formula for the modified Coulomb potential.

  11. Observation of a resonance in $B^+ \\to K^+ \\mu^+\\mu^-$ decays at low recoil

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A broad peaking structure is observed in the dimuon spectrum of $B^+ \\to K^+ \\mu^+\\mu^-$ decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the $B^+ \\to K^+ \\mu^+\\mu^-$ decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be $4191^{+9}_{-8}\\mathrm{\\,Me\\kern -0.1em V/}c^2$ and $65^{+22}_{-16}\\mathrm{\\,Me\\kern -0.1em V/}c^2$, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the $\\psi(4160)$ meson. First observations of both the decay $B^+ \\to \\psi(4160) K^+$ and the subsequent decay $\\psi(4160) \\to \\mu^+\\mu^-$ are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates.

  12. Spectral phase measurement of a Fano resonance using tunable attosecond pulses

    Science.gov (United States)

    Kotur, M.; Guénot, D.; Jiménez-Galán, Á.; Kroon, D.; Larsen, E. W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C. L.; Canton, S. E.; Gisselbrecht, M.; Carette, T.; Dahlström, J. M.; Lindroth, E.; Maquet, A.; Argenti, L.; Martín, F.; L'Huillier, A.

    2016-02-01

    Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.

  13. Variable-size Ni magnetic nanowires as observed by magnetization and ferromagnetic resonance

    International Nuclear Information System (INIS)

    We present magnetization and ferromagnetic resonance (FMR) measurements on arrays of Ni nanowires grown by electrodeposition on self-organized nanoporous alumina templates. The study focuses on the measurement by FMR of the anisotropy of these systems and its correlation with the magnetization loops as the wire diameter (d) is changed in a series of three samples. The magnetization data indicates an easy axis along the wire for the d=35 and 55 nm, changing into an easy plane for d=65 nm (all samples have an average inter-wire separation D∼110 nm). FMR resonance allows observing the anisotropy effects in detail and is consistent with magnetization measurements. Yet FMR shows a complex behavior in the large-d sample that can be interpreted as resulting from a prevailing easy-plane anisotropy with some portions of the sample with easy axis along the wires, thus unveiling an inhomogeneous character

  14. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds

    CERN Document Server

    Hoang, Thai M; Bang, Jaehoon; Li, Tongcang

    2015-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potenti...

  15. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Observation of Strong Resonant Behavior in the Inverse Photoelectron Spectroscopy of Ce Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Damian, E; Duda, L; Nordgren, J

    2009-12-15

    X-ray Emission Spectroscopy (XES) and Resonant Inverse Photoelectron Spectroscopy (RIPES) have been used to investigate the photon emission associated with the Ce3d5/2 and Ce3d3/2 thresholds. Strong resonant behavior has been observed in the RIPES of Ce Oxide near the 5/2 and 3/2 edges. Inverse Photoelectron Spectroscopy (IPES) and its high energy variant, Bremstrahlung Isochromat Spectroscopy (BIS), are powerful techniques that permit a direct interrogation of the low-lying unoccupied electronic structure of a variety of materials. Despite being handicapped by counting rates that are approximately four orders of magnitude less that the corresponding electron spectroscopies (Photoelectron Spectroscopy, PES, and X-ray Photoelectron Spectroscopy, XPS) both IPES and BIS have a long history of important contributions. Over time, an additional variant of this technique has appeared, where the kinetic energy (KE) of the incoming electron and photon energy (hv) of the emitted electron are roughly the same magnitude as the binding energy of a core level of the material in question. Under these circumstances and in analogy to Resonant Photoelectron Spectroscopy, a cross section resonance can occur, giving rise to Resonant Inverse Photoelectron Spectroscopy or RIPES. Here, we report the observation of RIPES in an f electron system, specifically the at the 3d{sub 5/2} and 3d{sub 3/2} thresholds of Ce Oxide. The resonant behavior of the Ce4f structure at the 3d thresholds has been addressed before, including studies of the utilization of the technique as a probe of electron correlation in a variety of Ce compounds. Interestingly, the first RIPES work on rare earths dates back to 1974, although under conditions which left the state of the surface and near surface regions undefined. Although they did not use the more modern terminology of 'RIPES,' it is clear that RIPES was actually first performed in 1974 by Liefeld, Burr and Chamberlain on both La and Ce based

  17. Calculation of autoionization positions and widths with applications to Penning ionization reactions. [Miller golden rule formula

    Energy Technology Data Exchange (ETDEWEB)

    Isaacson, A.D.

    1978-08-01

    Using an approximate evaluation of Miller's golden rule formula to calculate autoionization widths which allows for the consideration only of L/sup 2/ functions, the positions and lifetimes of the lowest /sup 1/,/sup 3/P autoionizing states of He have been obtained to reasonable accuracy. This method has been extended to molecular problems, and the ab initio configuration interaction potential energy and width surfaces for the He(2/sup 3/S) + H/sub 2/ system have been obtained. Quantum mechanical close-coupling calculations of ionization cross sections using the complex V* - (i/2) GAMMA-potential have yielded rate constants in good agreement with the experimental results of Lindinger, et al. The potential energy surface of the He(2/sup 1/S) + H/sub 2/ system has also been obtained and exhibits not only a high degree of anisotropy, but also contains a relative maximum for a perpendicular (C/sub 2//sub v/) approach which appears to arise from s-p hybridization of the outer He orbital. However, similar ab initio calculations on the He(2/sup 1/S) + Ar system do not show such anomalous structure. In addition, the complex poles of the S-matrix (Siegert eigenvalues) were calculated for several autoionizing states of He and H/sup -/, with encouraging results even for quite modest basis sets. This method was extended to molecular problems, and results obtained for the He(2/sup 3/S) + H and He(2/sup 1/S) + H systems. 75 references.

  18. Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    OpenAIRE

    Woosung, Kim; Ozdemir, Sahin Kaya; Zhu, Jiangang; Yang, Lan

    2011-01-01

    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in ...

  19. Spectroscopy of autoionizing states contributing to electron-impact ionization of ions

    International Nuclear Information System (INIS)

    In electron-ion crossed-beam experiments we have used a fast electron-energy scanning technique to detect fine details in ionization cross sections. We obtained data with a relative point to point uncertainty of less than 0.1%. The electron energy spread at 100 eV (15 mA beam current) is 0.4 eV. Thus we were able to measure state-resolved excitation-autoionization contributions and to demonstrate new ionization mechanisms involving dielectric capture of the projectile electron with subsequent emission of several electrons. (orig.)

  20. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    The Doppler-shifted cyclotron resonance (ω-kzvz=Ωf) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; kz, axial wavenumber; vz, fast-ion axial speed; Ωf, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li+ source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ωci. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  1. Precision spectroscopy with COMPASS and the observation of a new iso-vector resonance

    Directory of Open Access Journals (Sweden)

    Paul Stephan

    2014-06-01

    Full Text Available We report on the results of a novel partial-wave analysis based on 50 ⋅ 106 events from the reaction π− + p → π−π−π+ + precoil at 190 GeV/c incoming beam momentum using the COMPASS spectrometer. A separated analysis in bins of m3π and four-momentum transfer t′ reveals the interference of resonant and non-resonant particle production and allows their spectral separation. Besides well known resonances we observe a new iso-vector meson a1(1420 at a mass of 1420 MeV/c2 in the f0(980π final state only, the origin of which is unclear. We have also examined the structure of the 0++ππ-isobar in the JPC = 0−+, 1++, 2−+ three pion waves. This clearly reveals the various 0++ππ-isobar components and its correlation to the decay of light mesons.

  2. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    Science.gov (United States)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  3. Experimental observations of a new information channal in nature with aim of quartz resonators system

    CERN Document Server

    Baurov, Y A; Komissarov, A V; Verzhikovski, V G; Baurov, A Y; Konradov, A A; Zenchenko, T A; Baurov, Yu.A.

    2005-01-01

    The results of long-term (two-year) experimental observations of frequencies of two quartz resonators, one of which is placed in special magnetic system that creates vector potential field, another (calibration one) is placed outside this system, have been presented. Changes with different periodicity: 24 h, high-definite 7 days complex-form period, 27 days and year periods were detected during the observation of differences of these quartz resonators frequencies. The tangents which have been drawn to a terrestrial parallel at the moment of near-daily observation of measured quantity minima form the basic, most powerful subset of directions of tangents having a sharp corner with dipole component of vector potential of the Sun' magnetic field in a range from $50^\\circ$ up to $80^\\circ$ at annual rotation of laboratory around the Sun together with the Earth. Also there are three subsets of directions similarly drawn tangents fixed in physical space that coincide with similar subsets of tangents directions drawn...

  4. Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling

    Science.gov (United States)

    Wang, C.; Rankin, R.; Sydorenko, D.; Zong, Q.

    2015-12-01

    Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.

  5. Resonant Absorption of Transverse Oscillations and Associated Heating in a Solar Prominence. I- Observational aspects

    CERN Document Server

    Okamoto, Takenori J; De Pontieu, Bart; Uitenbroek, Han; Van Doorsselaere, Tom; Yokoyama, Takaaki

    2015-01-01

    Transverse magnetohydrodynamic (MHD) waves have been shown to be ubiquitous in the solar atmosphere and can in principle carry sufficient energy to generate and maintain the Sun's million-degree outer atmosphere or corona. However, direct evidence of the dissipation process of these waves and subsequent heating has not yet been directly observed. Here we report on high spatial, temporal, and spectral resolution observations of a solar prominence that show a compelling signature of so-called resonant absorption, a long hypothesized mechanism to efficiently convert and dissipate transverse wave energy into heat. Aside from coherence in the transverse direction, our observations show telltale phase differences around 180 degrees between transverse motions in the plane-of-sky and line-of-sight velocities of the oscillating fine structures or threads, and also suggest significant heating from chromospheric to higher temperatures. Comparison with advanced numerical simulations support a scenario in which transverse...

  6. Antisymmetric Couplings Enable Direct Observation of Chirality in Nuclear Magnetic Resonance Spectroscopy

    CERN Document Server

    King, Jonathan P; Blanchard, John W

    2016-01-01

    Here we demonstrate that a term in the nuclear spin Hamiltonian, the antisymmetric \\textit{J}-coupling, is fundamentally connected to molecular chirality. We propose and simulate a nuclear magnetic resonance (NMR) experiment to observe this interaction and differentiate between enantiomers without adding any additional chiral agent to the sample. The antisymmetric \\textit{J}-coupling may be observed in the presence of molecular orientation by an external electric field. The opposite parity of the antisymmetric coupling tensor and the molecular electric dipole moment yields a sign change of the observed coupling between enantiomers. We show how this sign change influences the phase of the NMR spectrum and may be used to discriminate between enantiomers.

  7. The Autler-Townes splitting in uranium observed with pulsed lasers

    International Nuclear Information System (INIS)

    We describe measurements of the Autler-Townes splitting in optical transitions in uranium using pulsed lasers in a double optical resonance experiment. These measurements give absolute values for transition strengths. Although the resolution of the experiments is insufficient to show explicitly either the magnetic degeneracy of the levels, or the quantum mechanical oscillations which arise from the pulse shape, theoretical analysis shows that both these effects contribute significantly to the observed lineshapes. Separate experiments in which a third laser was used to ionize the uranium through an autoionizing level were also performed and a fit to the ion yield as a function of laser intensities provides confirmation of the coupling strengths derived from the double optical resonance experiments. (author)

  8. Detection of the even parity, J=0-3, autoionizing 4 dnl Rydberg states of strontium by two-step laser optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    We have measured the energies of a few hundreds of even parity, J=0-3 autoionizing 4 dnl Ry states of strontium using an optogalvanic spectroscopy technique. These states are reached by a two-step pulsed dye laser excitation from the 4d 5s metastables through the 4d 5p 3P0,1,2 intermediate states. Electronic collisions populate the 4d 5s states in a d.c. glow discharge through a Sr plus He vapour in a heated quartz cell. The electronic configuration for the majority of the observed Sr states is deduced from their quantum defect values and other characteristics of the corresponding transitions. (orig.)

  9. Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

    Energy Technology Data Exchange (ETDEWEB)

    Collin, David; Dunker, Dennis; Goethlin, Jan H (Dept. of Radiology, Sahlgrenska Univ. Hospital, Moelndal (Sweden)), email: david.collin@vgregion.se; Geijer, Mats (Center for Medical Imaging and Physiology, Skaane Univ. Hospital, Lund Univ., Lund (Sweden))

    2011-10-15

    Background Conventional radiography is insufficient for diagnosis in a small but not unimportant number of hip fractures, and secondary imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is warranted. There are no convincing observer variation studies performed for conventional radiography or CT in occult fractures, and no large materials for MRI. Purpose To assess observer variation in radiography, CT and MRI of suspected occult, non-displaced hip fractures, and to evaluate to what extent observer experience or patient age may influence observer performance. Material and Methods A total of 375 patients after hip trauma where radiography was followed by CT or MRI to evaluate a suspected occult hip fracture were collected retrospectively from two imaging centers. After scoring by three observers with varying degrees of radiologic experience, observer variation was assessed by using linear weighted kappa statistics. Results For radiography, agreements between the three observers were moderate to substantial for intra capsular fractures, with kappa values in the ranges of 0.56-0.66. Kappa values were substantial for extracapsular fractures, in the ranges of 0.69-0.72. With increasing professional experience, fewer fractures were classified as equivocal at radiography. For CT and MRI, observer agreements were similar and almost perfect, with kappa values in the ranges of 0.85-0.97 and 0.93-0.97. Conclusion There were almost perfect observer agreements for CT and MRI in diagnosing non-displaced, occult hip fractures. Observer agreements for radiography were moderate to substantial, and observer experience influenced agreement only at radiography

  10. Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

    International Nuclear Information System (INIS)

    Background Conventional radiography is insufficient for diagnosis in a small but not unimportant number of hip fractures, and secondary imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is warranted. There are no convincing observer variation studies performed for conventional radiography or CT in occult fractures, and no large materials for MRI. Purpose To assess observer variation in radiography, CT and MRI of suspected occult, non-displaced hip fractures, and to evaluate to what extent observer experience or patient age may influence observer performance. Material and Methods A total of 375 patients after hip trauma where radiography was followed by CT or MRI to evaluate a suspected occult hip fracture were collected retrospectively from two imaging centers. After scoring by three observers with varying degrees of radiologic experience, observer variation was assessed by using linear weighted kappa statistics. Results For radiography, agreements between the three observers were moderate to substantial for intra capsular fractures, with kappa values in the ranges of 0.56-0.66. Kappa values were substantial for extracapsular fractures, in the ranges of 0.69-0.72. With increasing professional experience, fewer fractures were classified as equivocal at radiography. For CT and MRI, observer agreements were similar and almost perfect, with kappa values in the ranges of 0.85-0.97 and 0.93-0.97. Conclusion There were almost perfect observer agreements for CT and MRI in diagnosing non-displaced, occult hip fractures. Observer agreements for radiography were moderate to substantial, and observer experience influenced agreement only at radiography

  11. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    Energy Technology Data Exchange (ETDEWEB)

    Tamaru, S., E-mail: shingo.tamaru@aist.go.jp; Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S. [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Suzuki, Y. [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  12. Coherence between radar observations of magnetospheric field line resonances and discrete oscillations in the solar wind

    Directory of Open Access Journals (Sweden)

    J. A. E. Stephenson

    2010-01-01

    Full Text Available Field line resonances have been observed for decades by ground-based and in situ instruments. The driving mechanism(s are still unclear, although previous work has provided strong grounds that coherent waves in the solar wind may be a source. Here we present further evidence, with the use of multitaper analysis, a sophisticated spectrum estimation technique. A set of windows (dpss tapers is chosen with characteristics that best suit the width of the narrowband peaks to be identified. The orthogonality of the windows allows for a confidence level (of say 95% against a null hypothesis of a noisy spectrum, so that significant peaks can be identified. Employing multitaper analysis we can determine the phase and amplitude coherence at the sampling rate of the data sets and, over their entire duration. These characteristics make this technique superior to single windowing or wavelet analysis. A high degree of phase and amplitude (greater then 95% coherence is demonstrated between a 2.1 mHz field line resonance observed by the SHARE radar at Sanae, Antarctica and the solar wind oscillation detected by WIND and ACE satellites.

  13. Investigation of odd-parity Rydberg states of Eu I with autoionization detection

    Institute of Scientific and Technical Information of China (English)

    Xiao Ying; Dai Chang-Jian; Qin Wen-Jie

    2009-01-01

    Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f~76s6p[~8P_(5/2)], 4f~76s6p[~8P_(7/2)]and 4f~76s6p[~8P_(9/2)]intermediate states, s respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm~(-1) to 38250 cm~(-1) and from 38900 cm~(-1) to 39500 cm~(-1). The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n~* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.

  14. Observation of resonant energy transfer between identical-frequency laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Afeyan, B. B.; Cohen, B. I.; Estabrook, K. G.; Glenzer, S. H.; Joshi, C.; Kirkwood, R. K.; Moody, J. D.; Wharton, K. B.

    1998-12-09

    Enhanced transmission of a low intensity laser beam is observed when crossed with an identical-frequency beam in a plasma with a flow velocity near the ion sound speed. The time history of the enhancement and the dependence on the flow velocity strongly suggest that this is due to energy transfer between the beams via a resonant ion wave with zero frequency in the laboratory frame. The maximum energy transfer has been observed when the beams cross in a region with Mach 1 flow. The addition of frequency modulation on the crossing beams is seen to reduce the energy transfer by a factor of two. Implications for indirect-drive fusion schemes are discussed.

  15. Contextual modulation of motor resonance during the observation of everyday actions.

    Science.gov (United States)

    Amoruso, Lucia; Urgesi, Cosimo

    2016-07-01

    Neuroimaging studies on action observation suggest that context plays a key role in coding high-level components of motor behavior, including the short-term and the end-goal of an action. However, little is known about the possible role of context in shaping lower-levels of action processing such as reading action kinematics and simulating muscular activity. Here, we combined single-pulse TMS and motor-evoked potentials (MEPs) recording to explore whether top-down contextual information is capable of modulating low-level motor representations. We recorded MEPs from FDI and FCR muscles while participants watched videos about everyday actions embedded in congruent, incongruent or ambiguous contexts. Videos were interrupted before action ending, and participants were requested to predict the course of the observed action. A contextual modulation of corticospinal excitability was observed only for the FDI muscle, which is specifically involved in the execution of reaching-to-grasping movements, and whose corticospinal pathway is influenced by the observation of the very same movements. This modulation was reflected in a selective decrease of corticospinal excitability during the observation of actions embedded in incongruent as compared to congruent and ambiguous contexts. These findings indicate that motor resonance is not an entirely automatic process, but it can be modulated by high-level contextual representations.

  16. Prostate tumor delineation using multiparametric magnetic resonance imaging: Inter-observer variability and pathology validation

    International Nuclear Information System (INIS)

    Background and purpose: Boosting the dose to the largest (dominant) lesion in radiotherapy of prostate cancer may improve treatment outcome. The success of this approach relies on the detection and delineation of tumors. The agreement among teams of radiation oncologists and radiologists delineating lesions on multiparametric magnetic resonance imaging (mp-MRI) was assessed by measuring the distances between observer contours. The accuracy of detection and delineation was determined using whole-mount histopathology specimens as reference. Material and methods: Six observer teams delineated tumors on mp-MRI of 20 prostate cancer patients who underwent a prostatectomy. To assess the inter-observer agreement, the inter-observer standard deviation (SD) of the contours was calculated for tumor sites which were identified by all teams. Results: Eighteen of 89 lesions were identified by all teams, all were dominant lesions. The median histological volume of these was 2.4 cm3. The median inter-observer SD of the delineations was 0.23 cm. Sixty-six of 69 satellites were missed by all teams. Conclusion: Since all teams identify most dominant lesions, dose escalation to the dominant lesion is feasible. Sufficient dose to the whole prostate may need to be maintained to prevent under treatment of smaller lesions and undetected parts of larger lesions

  17. Nonlinear magneto-optical resonances for systems with J~100 observed in K2 molecules

    CERN Document Server

    Auzinsh, M; Fescenko, I; Kalvans, L; Tamanis, M

    2012-01-01

    We present the results of an experimental as well as theoretical study of nonlinear magneto-optical resonances in diatomic potassium molecules in the electronic ground state with large values of the angular momentum quantum number J~100. At zero magnetic field, the absorption transitions are suppressed because of population trapping in the ground state due to Zeeman coherences between magnetic sublevels of this state along with depopulation pumping. The destruction of such coherences in an external magnetic field was used to study the resonances in this work. K2 molecules were formed in a glass cell filled with potassium metal at a temperature above 150^{\\circ}C. The cell was placed in an oven and was located in a homogeneous magnetic field B, which was scanned from zero to 0.7 T. Q-type and R-type transitions were excited with a tunable, single-mode diode laser at a wavelength of 661 nm. Well pronounced nonlinear Hanle effect signals were observed in the intensities of the linearly polarized components of th...

  18. Coordinated observation of field line resonance in the mid-tail

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2006-03-01

    Full Text Available Standing Alfvén waves of 1.1 mHz (~15 min in period were observed by the Cluster satellites in the mid-tail during 06:00-07:00 UT on 8 August 2003. Pulsations with the same frequency were also observed at several ground stations near Cluster's footpoint. The standing wave properties were determined from the electric and magnetic field measurements of Cluster. Data from the ground magnetometers indicated a latitudinal amplitude and phase structure consistent with the driven field line resonance (FLR at 1.1 mHz. Simultaneously, quasi-periodic oscillations at different frequencies were observed in the post-midnight/early morning sector by GOES 12 (l0≈8.7, Polar (l0≈11-14 and Geotail (l0≈9.8. The 8 August 2003 event yields rare and interesting datasets. It provides, for the first time, coordinated in situ and ground-based observations of a very low frequency FLR in the mid-tail on stretched field lines.

  19. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography

    Science.gov (United States)

    Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.

    2007-02-01

    A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.

  20. Observing random walks of atoms in buffer gas through resonant light absorption

    Science.gov (United States)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  1. Observation of repulsive Fermi polarons in a resonant mixture of ultracold ${}^6$Li atoms

    CERN Document Server

    Scazza, F; Massignan, P; Recati, A; Amico, A; Burchianti, A; Fort, C; Inguscio, M; Zaccanti, M; Roati, G

    2016-01-01

    We employ radio-frequency spectroscopy to investigate a polarized spin-mixture of ultracold ${}^6$Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy $E_+$, the effective mass $m^*$, the residue $Z$ and the decay rate $\\Gamma$. Above a critical interaction, $E_+$ is found to exceed the Fermi energy of the bath while $m^*$ diverges and even turns negative. Such findings reveal that the paramagnetic Fermi liquid state becomes thermodynamically unstable towards an energetically favored ferromagnetic phase.

  2. Direct Observation of the E_ Resonant State in GaAs1-xBix

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Beaton, Daniel A.; Mascarenhas, Angelo

    2015-12-15

    Bismuth-derived resonant states with T2 symmetry are detected in the valence band of GaAs1-xBix using electromodulated reflectance. A doublet is located 42 meV below the valence band edge of GaAs that is split by local strain around isolated Bi impurity atoms. A transition associated with a singlet is also observed just above the GaAs spin orbit split-off band. These states move deeper into the valence band with increasing Bi concentration but at a much slower rate than the well-known giant upward movement of the valence band edge in GaAs1-xBix. Our results provide key new insights for clarifying the mechanisms by which isovalent impurities alter the bandstructure of the host semiconductor.

  3. Observing random walks of atoms in buffer gas through resonant light absorption

    CERN Document Server

    Aoki, Kenichiro

    2016-01-01

    Using resonant light absorption, random walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured and its spectrum is obtained, down to orders of magnitude below the shot noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a gaussian light beam is computed and its analytical form is obtained. The spectrum has $1/f^2$ ($f$: frequency) behavior at higher frequencies, crossing over to a different, but well defined behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas and the atomic number density, from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  4. In vivo observation of quadrupolar splitting in (39)K magnetic resonance spectroscopy of human muscle tissue.

    Science.gov (United States)

    Rösler, M B; Nagel, A M; Umathum, R; Bachert, P; Benkhedah, N

    2016-04-01

    The purpose of this work was to explore the origin of oscillations of the T(*)2 decay curve of (39)K observed in studies of (39)K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin-3/2 nuclei possess an electric quadrupole moment. Its interaction with non-vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole-body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer-built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian-shaped peaks is appropriate for (39)K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank-2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double-quantum filtration with magic-angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm(3) was acquired with this filtering technique in 1:17 h. From the line width of the resonances, (39)K transverse relaxation time constants T(*)2, fast  = (0.51 ± 0.01) ms and T(*)2, slow  = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T(*)2, fast  = (1.56 ± 0.03) ms and T(*)2, fast  = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T(*)2, slow  = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non-vanishing electrical field gradient interacting with (39)K nuclei in the intracellular space of

  5. Observation of Robust Quantum Resonance Peaks in an Atom Optics Kicked Rotor with Amplitude Noise

    CERN Document Server

    Sadgrove, M; Mullins, T; Parkins, S; Leonhardt, R; Sadgrove, Mark; Hilliard, Andrew; Mullins, Terry; Parkins, Scott; Leonhardt, Rainer

    2004-01-01

    The effect of pulse train noise on the energy peaks at quantum resonance seen in the Atom Optics Kicked Rotor is investigated experimentally. Quantum resonance peaks in the late time energy of the atoms were found to be completely robust against noise applied to the kicking amplitude but even small levels of noise on the kicking period lead to destruction of the quantum resonance peak. The robustness of low energy levels to either side of the resonance peak to amplitude noise and their comparative susceptibility to period noise is explained in terms of a recurrence of classically stable dynamics which occurs near quantum resonance.

  6. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    Directory of Open Access Journals (Sweden)

    Carla Aramo

    2015-03-01

    Full Text Available A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  7. Calculation of dissociating autoionizing states using the block diagonalization method: Application to N2H

    International Nuclear Information System (INIS)

    We report the calculation of preliminary potential surfaces necessary to treat dissociative recombination (DR) of electrons with N2H+. We performed multi-reference, configuration interaction calculations with a large active space for N2H+ and N2H, using the GAMESS electronic structure code. Rydberg-valence coupling is strong in N2H, and a systematic procedure is desirable to isolate the appropriate dissociating, autoionizing states. We used the block diagonalization method, which requires only modest additional effort beyond the standard methodology. We treated both linear and bent geometries of the molecules, with N2 fixed at its equilibrium separation. The results indicate that the crossing between the dissociating neutral curve and the initial ion potential is not favorably located, suggesting that the direct mechanism for DR will be small. Dynamics calculations using the multi-configuration, time-dependent Hartree (MCTDH) method confirm this conclusion.

  8. Electromagnetically induced transparency in systems with degenerate autoionizing levels in \\Lambda-configuration

    CERN Document Server

    Dinh, T Bui; Long, V Cao; Peřina, J

    2013-01-01

    We discuss a \\Lambda-like model of atomic levels involving two autoionizing (AI) states of the same energy. The system is irradiated by two external electromagnetic fields (strong -- driving and weak -- probing ones). For such a system containing degenerate AI levels we derive the analytical formula describing the medium susceptibility. We show that the presence of the second AI level lead to the additional electromagnetically induced transparency (EIT) window appearance. We show that the characteristic of this window can be manipulated by changes of the parameters describing the interactions of AI levels with other ones. This is a new mechanism which leads to additional transparency windows in EIT model, that differs from the mechanism, where a bigger number of Zeeman sublevels is taken into account.

  9. Recent (e,2e) studies: laser excited atoms, autoionization, Auger processes, and thin films

    International Nuclear Information System (INIS)

    The (e,2e) process, in which the kinematics of the electrons involved in an ionizing collision are completely determined, is capable of revealing a rich variety of information. Depending on the kinematics employed, it is possible to investigate in detail either the ionization mechanism itself or to use the reaction to elucidate the structure of the target system and the ion. When used to investigate structure, the technique is now generally known as electron momentum spectroscopy (EMS). The results of various recent (e,2e) measurements carried out at Flinders University are reported. These include the first measurements of the electron momentum distributions of excited target state, the first measurements of the momentum distributions from an oriented target atom, the detailed measurements of correlations in the autoionizing region of helium, correlations in the inner shell ionization of argon, and finally the measurement of spectral momentum densities for amorphous carbon. 21 refs., 11 figs

  10. Autoionization of spin-polarized metastable helium in tight anisotropic harmonic traps

    CERN Document Server

    Beams, Timothy J; Peach, Gillian

    2007-01-01

    Spin-dipole mediated interactions between tightly confined metastable helium atoms couple the spin-polarized quintet ${}^{5}\\Sigma^{+}_{g}$ state to the singlet ${}^{1}\\Sigma^{+}_{g}$ state from which autoionization is highly probable, resulting in finite lifetimes for the trap eigenstates. We extend our earlier study on spherically symmetric harmonic traps to the interesting cases of axially symmetric anisotropic harmonic traps and report results for the lowest 10 states in "cigar-like" and "pancake-like" traps with average frequencies of 100 kHz and 1 MHz. We find that there is a significant suppression of ionization, and subsequent increase in lifetimes, at trap aspect ratios $A=p/q$, where $p$ and $q$ are integers, for those states that are degenerate in the absence of collisions or spin-dipole interactions.

  11. The reporting of observational clinical functional magnetic resonance imaging studies: a systematic review.

    Directory of Open Access Journals (Sweden)

    Qing Guo

    Full Text Available INTRODUCTION: Complete reporting assists readers in confirming the methodological rigor and validity of findings and allows replication. The reporting quality of observational functional magnetic resonance imaging (fMRI studies involving clinical participants is unclear. OBJECTIVES: We sought to determine the quality of reporting in observational fMRI studies involving clinical participants. METHODS: We searched OVID MEDLINE for fMRI studies in six leading journals between January 2010 and December 2011.Three independent reviewers abstracted data from articles using an 83-item checklist adapted from the guidelines proposed by Poldrack et al. (Neuroimage 2008; 40: 409-14. We calculated the percentage of articles reporting each item of the checklist and the percentage of reported items per article. RESULTS: A random sample of 100 eligible articles was included in the study. Thirty-one items were reported by fewer than 50% of the articles and 13 items were reported by fewer than 20% of the articles. The median percentage of reported items per article was 51% (ranging from 30% to 78%. Although most articles reported statistical methods for within-subject modeling (92% and for between-subject group modeling (97%, none of the articles reported observed effect sizes for any negative finding (0%. Few articles reported justifications for fixed-effect inferences used for group modeling (3% and temporal autocorrelations used to account for within-subject variances and correlations (18%. Other under-reported areas included whether and how the task design was optimized for efficiency (22% and distributions of inter-trial intervals (23%. CONCLUSIONS: This study indicates that substantial improvement in the reporting of observational clinical fMRI studies is required. Poldrack et al.'s guidelines provide a means of improving overall reporting quality. Nonetheless, these guidelines are lengthy and may be at odds with strict word limits for publication; creation

  12. Observation of pseudoscalar and tensor resonances in $J/\\psi\\rightarrow \\gamma \\phi \\phi$

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Nayestanaki, N Kalantar; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    Based on a sample of $(1310.6 \\pm 10.5) \\times 10^{6}$ $J/\\psi$ events collected with the BESIII detector operating at the BEPCII storage ring, a partial wave analysis of the decay $J/\\psi\\rightarrow \\gamma \\phi \\phi$ is performed in order to study the intermediate states. Results of the partial wave analysis show that the structures are predominantly $0^{-+}$ states. The existence of the $\\eta(2225)$ is confirmed, and its resonance parameters are measured. Two additional pseudoscalar states, the $\\eta(2100)$ with a mass of $2050_{-24}^{+30}{}_{-26}^{+75}$ MeV/$c^{2}$ and a width of $250_{-30}^{+36}{}_{-164}^{+181}$ MeV/$c^{2}$ and the $X(2500)$ with a mass of $2470_{-19}^{+15}{}_{-23}^{+101}$ MeV/$c^{2}$ and a width of $230_{-35}^{+64}{}_{-33}^{+56}$ MeV/$c^{2}$, are observed. In addition to these three pseudoscalar states, the scalar state $f_0(2100)$, and three tensor states, the $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$, are observed in the process $J/\\psi\\rightarrow \\gamma \\phi\\phi$. The product branching...

  13. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    Science.gov (United States)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  14. Possible seismogenic origin of changes in the ULF EM resonant structure observed at Teoloyucan geomagnetic station, Mexico, 1999-2001

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2005-01-01

    Full Text Available The evolution of the ULF resonant structure observed at Teoloyucan geomagnetic station has been provisionally studied in a possible relation with seismic activity in Mexico in the period 1999-2001. Two resonant lines were observed in the H-component (linear polarization in the frequency bands fR2=10.2–11.1 mHz and fR2=13.6–14.5 mHz, sometimes accompanied by other harmonics. The source of the observed resonances is possibly related with the geomagnetic location of the station (geomagnetic latitude λ=29.1° and its proximity to the equatorial electrojet (λ~30°. An enhancement of the carrier frequency of both resonances in the period 1 month–2 weeks was found before the strongest EQs. Also, a depression of the resonant structure just a few days before and a few days after some EQs seems to be correlated with seismic activity.

  15. Constraining nova observables: direct measurements of resonance strengths in 33S(p,\\gamma)34Cl

    CERN Document Server

    Fallis, J; Bertone, P F; Bishop, S; Buchmann, L; Chen, A A; Christian, G; Clark, J A; D'Auria, J M; Davids, B; Deibel, C M; Fulton, B R; Greife, U; Guo, B; Hager, U; Herlitzius, C; Hutcheon, D A; José, J; Laird, A M; Li, E T; Li, Z H; Lian, G; Liu, W P; Martin, L; Nelson, K; Ottewell, D; Parker, P D; Reeve, S; Rojas, A; Ruiz, C; Setoodehnia, K; Sjue, S; Vockenhuber, C; Wang, Y B; Wrede, C

    2013-01-01

    The 33S(p,\\gamma)34Cl reaction is important for constraining predictions of certain isotopic abundances in oxygen-neon novae. Models currently predict as much as 150 times the solar abundance of 33S in oxygen-neon nova ejecta. This overproduction factor may, however, vary by orders of magnitude due to uncertainties in the 33S(p,\\gamma)34Cl reaction rate at nova peak temperatures. Depending on this rate, 33S could potentially be used as a diagnostic tool for classifying certain types of presolar grains. Better knowledge of the 33S(p,\\gamma)34Cl rate would also aid in interpreting nova observations over the S-Ca mass region and contribute to the firm establishment of the maximum endpoint of nova nucleosynthesis. Additionally, the total S elemental abundance which is affected by this reaction has been proposed as a thermometer to study the peak temperatures of novae. Previously, the 33S(p,\\gamma)34Cl reaction rate had only been studied directly down to resonance energies of 432 keV. However, for nova peak temper...

  16. Observation of microarray DNA hybridization using surface plasmon resonance phase-shift interferometry

    Science.gov (United States)

    Chen, Shean-Jen; Tsou, C.-Y.; Chen, Y.-K.; Su, Y.-T.

    2004-06-01

    Surface plasmon resonance phase-shift interferometry (SPR-PSI) is a novel technique which combines SPR and modified Mach-Zehnder phase-shifting interferometry to measure the spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR-PSI imaging system offers high resolution and high-throughout screening capabilities for microarray DNA hybridization without the need for additional labeling, and provides valuable real-time quantitative information. Current SPR-PSI imaging systems measure the spatial phase variation caused by tiny biomolecular changes on the sensing interface by means of a five-step phase reconstruction algorithm and a novel multichannel least mean squares (MLMS) phase unwrapping algorithm. The SPR-PSI imaging system has an enhanced detection limit of 2.5 × 10-7 refraction index change, a long-term phase stability of π/100 in 30 minutes, and a spatial phase resolution of π/500 with a lateral resolution of 10μm. This study successfully demonstrates the kinetic and label-free observation of 5-mer DNA microarray hybridization.

  17. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3.

    Science.gov (United States)

    Burger, Jessica L; Jeerage, Kavita M; Bruno, Thomas J

    2016-06-01

    Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.

  18. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  19. Multi-resonance orbital model applied to high-frequency quasi-periodic oscillations observed in Sgr A*

    CERN Document Server

    Kotrlova, Andrea; Torok, Gabriel

    2013-01-01

    The multi-resonance orbital model of high-frequency quasi-periodic oscillations (HF QPOs) enables precise determination of the black hole dimensionless spin a if observed set of oscillations demonstrates three (or more) commensurable frequencies. The black hole spin is related to the frequency ratio only, while its mass M is related to the frequency magnitude. The model is applied to the triple frequency set of HF QPOs observed in Sgr A* source with frequency ratio 3:2:1. Acceptable versions of the multi-resonance model are determined by the restrictions on the Sgr A* supermassive black hole mass. Among the best candidates the version of strong resonances related to the black hole "magic" spin a=0.983 belongs. However, the version demonstrating the best agreement with the mass restrictions predicts spin a=0.980.

  20. Three-step resonant photoionization spectroscopy of Ni and Ge: ionization potential and odd-parity Rydberg levels

    Science.gov (United States)

    Kessler, T.; Brück, K.; Baktash, C.; Beene, J. R.; Geppert, Ch; Havener, C. C.; Krause, H. F.; Liu, Y.; Schultz, D. R.; Stracener, D. W.; Vane, C. R.; Wendt, K.

    2007-12-01

    In preparation of a laser ion source, we have investigated multi-step laser ionization via Rydberg and autoionizing states for atomic Ni and Ge using a mass separator with an ion beam energy of 20 keV. For both elements resonant three-step excitation schemes suitable for modern Ti:sapphire laser systems were developed. Rydberg series in the range of principal quantum numbers 20 Ionization potentials (IP) were extracted from fits of the individual series and quantum defects of individual levels were analysed for confirmation of series assignment. For Ni the ionization potential could be extracted with significantly increased precision compared to literature with a value of EIP (Ni) = 61 619.77(14) cm-1. Also, at least one notable autoionizing state above the first IP was discovered for both elements, and the different ionization schemes via Rydberg or autoionizing states were compared with respect to line shape, ionization efficiency and selectivity.

  1. Coherent Resonances Observed in the Dissociative Electron Attachments to Carbon Monoxide

    CERN Document Server

    Wang, Xu-Dong; Luo, Yi; Tian, Shan Xi

    2015-01-01

    Succeeding our previous finding about coherent interference of the resonant states of CO^- formed by the low-energy electron attachment [Phys. Rev. A 88, 012708 (2013)], here we provide more evidences of the coherent interference, in particular, we find the state configuration change in the interference with the increase of electron attachment energy by measuring the completely backward distributions of the O^- fragment ion of the temporary CO^- in an energy range 11.3-12.6 eV. Therefore, different pure states, namely, coherent resonances, can be formed when the close-lying resonant states are coherently superposed by a broad-band electron pulse.

  2. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    Science.gov (United States)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  3. Low-energy resonances in the 22Ne(p,γ23Na reaction directly observed at LUNA

    Directory of Open Access Journals (Sweden)

    Cavanna Francesca

    2015-01-01

    A study of this reaction has been carried out at the Laboratory for Underground Nuclear Astrophysics (LUNA, in the Gran Sasso National Laboratory, using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.

  4. Thermal Transition of Ribonuclease A Observed Using Proton Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    闫永彬; 罗雪春; 周海梦; 张日清

    2001-01-01

    The thermal transition of bovine pancreatic ribonuclease A (RNase A) was investigated using proton nuclear magnetic resonance (NMR). Significant resonance overlap in the large native protein limits accurate assignments in the 1H NMR spectrum. This study proposes extending the investigation of large proteins by dynamic analysis. Comparison of the traditional method and the correlation coefficient method suggests successful application of spectrum image analysis in dynamic protein studies by NMR.

  5. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite

    Science.gov (United States)

    Surkov, V. V.; Pilipenko, V. A.

    2016-03-01

    Interference of an incident and reflected Alfvén pulses propagating inside the ionospheric Alfvén resonator (IAR) is studied on the basis of a simple one-dimensional model. Particular emphasis has been placed on the analysis of spectral features of ultralow frequency (˜1-15 Hz) electric perturbations recently observed by Communications/Navigation Outage Forecasting System satellite. This "fingerprint" multiband spectral structure was observed when satellite descended in the terminator vicinity. Among factors affecting spectral structure the satellite position and distance from the IAR boundaries are most significant. It is concluded that the observed spectrograms exhibit modulation with "period" depending on propagation delay time of reflected Alfvén pulses in such a way that this effect can mask a spectral resonance structure resulted from excitation of IAR eigenmodes. The proposed interference effect is capable to produce a spectral pattern resembling a fingerprint which is compatible with the satellite observations.

  6. Three-step laser excitation of the 6p3/2ns, nd, ng autoionizing Rydberg levels via the 6p5f 1/2[5/2]2 level of lead

    Science.gov (United States)

    Ahad, A.; Nadeem, A.; Bhatti, S. A.; Baig, M. A.

    2005-03-01

    Odd parity autoionizing Rydberg levels of atomic lead in the energy region above the 6p1/2 ionization threshold have been investigated using three-step laser excitation in conjunction with an atomic beam apparatus. The 6p3/2ns (J = 1, 2), 6p3/2nd (J = 1, 2, 3) and 6p3/2ng (J = 2, 3) levels have been observed from the 6p5f 1/2[5/2]2 intermediate level. Energy values and FWHM of forty levels belonging to the 6p3/2ns, 6p3/2nd and 6p3/2ng configurations are presented. Six levels based on the 6p3/2ng (5, 13 ≤n ≤15) configurations and three levels attached to the 6p3/28d configuration are reported for the first time. The present study of the low-lying autoionizing levels attached to the 6p3/25g (J = 2, 3) configuration completes the series adjacent to the 6p1/2 limit.

  7. Muonated cyclohexadienyl radicals observed by level crossing resonance in dilute solutions of benzene in hexane subjected to muon-irradiation

    International Nuclear Information System (INIS)

    Benzene is used here as a scavenger of muonium to produce the muonated cyclohexadienyl radical in dilute solutions in n-hexane. The radical was identified by level crossing resonance spectroscopy (LFR) by observing the proton resonance of the -CHMu group occurring at 2.059T. Its yield is found to equal the sum of the muonium atom yield and the ''missing'' muon yield in hexane (total 35% of the incident muons). Consequently, the complete dispersement of muons in different chemical associations is now accounted for in a saturated hydrocarbon liquid, and is seen to be similar to that in water. (author)

  8. Muonated cyclohexadienyl radicals observed by level crossing resonance in dilute solutions of benzene in hexane subjected to muon-irradiation

    International Nuclear Information System (INIS)

    Benzene is used here as a scavenger of muonium to produce the muonated cyclohexadienyl radical in dilute solutions in n-hexane. The radical was identified by level crossing resonance spectroscopy (LCR) by observing the proton resonance of the -CHMu group occurring at 2.059T. Its yield is found to equal the sum of the muonium atom yield and the 'missing' muon yield in hexane (total 35% of the incident muons). Consequently, the complete dispersement of muons in different chemical associations is now accounted for in a saturated hydrocarbon liquid, and is seen to be similar to that in water

  9. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    OpenAIRE

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. ...

  10. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    OpenAIRE

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-01-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a s...

  11. High-order harmonic generation and Fano resonances

    OpenAIRE

    Strelkov, V. V.; Khokhlova, M. A.; Shubin, N. Yu.

    2013-01-01

    We present a high harmonic generation theory which generalizes the strong-field approximation to the resonant case, when the harmonic frequency is close to that of the transition from the ground to an autoionizing state of the generating system. We show that the line shape of the resonant harmonic is a product of the Fano-like factor and the harmonic line which would be emitted in the absence of the resonance. The theory predicts rapid variation of the harmonic phase in the vicinity of the re...

  12. Coherent and incoherent processes in resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  13. Reflecting on mirror mechanisms: motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michela Loporto

    Full Text Available Transcranial magnetic stimulation (TMS studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1 via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold or stimulating position (FDI-OSP vs. ADM-OSP influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the

  14. Reflecting on mirror mechanisms: motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation.

    Science.gov (United States)

    Loporto, Michela; Holmes, Paul S; Wright, David J; McAllister, Craig J

    2013-01-01

    Transcranial magnetic stimulation (TMS) studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP) amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1) via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP) to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold) or stimulating position (FDI-OSP vs. ADM-OSP) influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the neural

  15. Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Pitanti, Alessandro [NEST, Istituto Nanoscienze–CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Lange, Christoph; Maag, Thomas; Huber, Rupert [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Miseikis, Vaidotas; Coletti, Camilla [CNI@NEST, Istituto Italiano di Tecnologia, P.za S. Silvestro 12, 56127 Pisa (Italy); Degl' Innocenti, Riccardo [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Baldacci, Lorenzo [Scuola Superiore Sant' Anna, Institute of Life Sciences, P.za Martiri della Libertà 33, 56127 Pisa (Italy); Tredicucci, Alessandro [NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica “E. Fermi,” Università di Pisa, L.go Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-21

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantum regime.

  16. Optical-shell approach to the description of the observable consequences of E1-giant resonance damping

    International Nuclear Information System (INIS)

    Test of applicability of optical-shell model of nuclear reactions (OSMNR) to experimental data describing the observed damping of E1-giant resonance in intermediate and heavy nuclei is conducted. The basic analytical OSMNR formulae for calculation of medium cross section of E1-photoabsorption are given. Numerical calculations of absolute values and energy dependence of cross sections for 90Zr, 140Ce, 208Pb nuclei are carried out, the results of calculations are presentedgraphically. A method for calcUlation of partial E1-radiation strength functions of compound resonances and valent mechanism of E1-photoabsorption as well as total radiation width of neutron resonances and E1-transitions between compound states of nuclei are described. It is revealed that accountancy of temperature effects of the nucleus improves agreement of the calculated values for total radiation width and the given strength functions with experimental data. The conducted analysis displays that OSMNR is a structural method for theoretical investigation into different observed consequences of dipole electric giant resonance relaxation. Unity of the theoretical description of different phenomena is a peculiar feature of OSMNR. It is point out that not all the possibilities of OSMNR are disclosed

  17. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2005-06-01

    Full Text Available The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake with a magnitude again greater than 6.0. Conspicuous effects are observed for the larger Chi-chi earthquake, so that we summarize the characteristics for this event. The anomaly is characterized mainly by the unusual increase in amplitude of the fourth Schumann resonance mode and a significant frequency shift of its peak frequency (~1.0Hz from the conventional value on the By magnetic field component which is sensitive to the waves propagating in the NS meridian plane. Anomalous Schumann resonance signals appeared from about one week to a few days before the main shock. Secondly, the goniometric estimation of the arrival angle of the anomalous signal is found to coincide with the Taiwan azimuth (the unresolved dual direction indicates toward South America. Also, the pulsed signals, such as the Q-bursts, were simultaneously observed with the "carrier" frequency around the peak frequency of the fourth Schumann resonance mode. The anomaly for the second event for the Chia-yi earthquake on 2 November had much in common. But, most likely due to a small magnitude, the anomaly appears one day before and lasts until one day after the main shock, with the enhancement at the fourth Schumann resonance mode being smaller in amplitude than the case of the Chi-chi earthquake. Yet, the other characteristics, including the goniometric direction finding result, frequency shift, etc., are nearly the same. Although the emphasis of

  18. Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins

    NARCIS (Netherlands)

    Visser, NV; Borst, JW; Hink, MA; van Hoek, A; Visser, AJWG

    2005-01-01

    Visible fluorescent proteins from Aequorea victoria contain next to the fluorophoric group a single tryptophan residue. Both molecules form a single donor-acceptor pair for resonance energy transfer (RET) within the protein. Time-resolved fluorescence experiments using tryptophan excitation have sho

  19. Resonant Enhancement of Coherent Phonons in Carbon Nanotubes Observed with Sub-10fs Time Resolution

    Directory of Open Access Journals (Sweden)

    Yanagi K.

    2013-03-01

    Full Text Available Using wavelength-resolved pump-probe spectroscopy with a sub-10-fs laser, we investigated resonant enhancement of radial breathing mode and G-mode coherent phonons in carbon nanotubes (CNTs, and successfully distinguished the electronic states of CNTs with different chiralities.

  20. Resonances in photoabsorption: Predissociation line shapes in the 3pπD{sup 1}Π{sup +}{sub u} ← Χ{sup 1}Σ{sub g}{sup +} system in H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, J. Zs. [Laboratoire Aimé-Cotton du CNRS Université Paris Sud, Bât. 505, F-91405 Orsay (France); Laboratoire Ondes et Milieux Complexes, UMR-6294 CNRS and Université du Havre, 25, rue Philippe Lebon, BP 540, 76058, Le Havre France (France); Schneider, I. F. [Laboratoire Ondes et Milieux Complexes, UMR-6294 CNRS and Université du Havre, 25, rue Philippe Lebon, BP 540, 76058, Le Havre France (France); Glass-Maujean, M. [Sorbonne Universités, UPMC Univ. Paris 06, UMR 8112, Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, F-75005 Paris (France); Jungen, Ch., E-mail: christian.jungen@lac.u-psud.fr [Laboratoire Aimé-Cotton du CNRS Université Paris Sud, Bât. 505, F-91405 Orsay (France); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-08-14

    The predissociation of the 3pπD{sup 1}Π{sub u}{sup +},v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.

  1. Resonance Excitation Rate Coefficient of Ni-Like Tantalum

    Institute of Scientific and Technical Information of China (English)

    SHEN Tian-Ming; CHEN Chong-Yang; WANG Yan-Sen; GU Ming-Feng

    2007-01-01

    The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d941(l=s,p,d,f)configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation.The configuration-interaction effects are taken into account.The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation.The contributions from doubly-excited intermediate states of Cu-like 3l17n'l'n"l"(n'=4,5;n"=5-15)arecalculated explicitly,and the contributions from high Rydberg states(n">15)are taken into account by using n-3 scaling law.The present results should be more accurate than the existent calculations.

  2. Resonant three-photon ionization spectroscopy of atomic Fe

    Science.gov (United States)

    Liu, Y.; Gottwald, T.; Havener, C. C.; Mattolat, C.; Vane, C. R.; Wendt, K.

    2013-12-01

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm-1 for the ionization potential of iron.

  3. Resonant three-photon ionization spectroscopy of atomic Fe

    International Nuclear Information System (INIS)

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm−1 for the ionization potential of iron. (paper)

  4. Resonant three-Photon Ionization Spectroscopy of Atomic Fe

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Gottwald, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Havener, Charles C [ORNL; Mattolat, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Vane, C Randy [ORNL; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2013-01-01

    Laser spectroscopic investigations on high-lying states around the ionization potential in the atomic spectrum of Fe have been carried out for development of a practical three-step resonance ionization scheme accessible by Ti:Sapphire lasers. A hot cavity laser ion source typically used at on-line radioactive ion beam production facilities was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63737.686 0.068 cm-1 for the ionization potential of iron.

  5. Observation of Kondo resonance in rare-earth hexaborides using high resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2011-01-01

    We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.

  6. Resonance ionization mass spectroscopy of uranium

    International Nuclear Information System (INIS)

    Resonance ionization mass spectroscopy (RIMS) has been used for the sensitive detection of uranium. The apparatus consists of a laser system with three dye lasers and two pulsed copper vapour lasers and a time-of-flight (TOF) mass spectrometer. The uranium atoms are ionized in a three step excitation with the third step leading to an autoionizing state. Several excitation schemes were investigated and for two schemes all three transitions could be saturated with the available laser power. The hyperfine structure splitting (HFS) of 235U, the isotopic shift (IS) between 235U and 238U as well as isotopic ratios in uranium samples were determined. (Author)

  7. Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits

    Science.gov (United States)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.

    1987-01-01

    Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.

  8. Rydberg and autoionization Tm states investigation by the three-step laser excitation and electric field ionization method

    International Nuclear Information System (INIS)

    The energies of 190 Rydberg and autoionization 4f136 snp-states of the Tm atom (ground electron configuration 4f136s2, nuclear charge Z=69) have been measured by the laser multistep excitation with subsequent electric field ionization method. The investigation range of these states has been extended towards states with higher and lower values of the principal quantum number. As a result the energies of 160 states have been obtained for the first time. The experiment has been carried out on an automated laser photoionization spectrometer. The measurement accuracy has been ±0.5 cm-1. (orig.)

  9. Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities

    CERN Document Server

    Yang, X; Kwong, D L; Wong, C W; Yu, M; Husko, Chad; Kwong, Dim-Lee; Wong, Chee Wei; Yang, Xiaodong; Yu, Mingbin

    2007-01-01

    We observe experimentally optical bistability enhanced through Fano interferences in high-Q localized silicon photonic crystal resonances (Q ~ 30,000 and modal volume ~ 0.98 cubic wavelengths). This phenomenon is analyzed through nonlinear coupled-mode formalism, including the interplay of chi(3) effects such as two-photon absorption and related free-carrier dynamics, and optical Kerr as well as thermal effects and linear losses. Our experimental and theoretical results demonstrate for the first time Fano-resonance based bistable states with switching thresholds of 185 micro-Watt and 4.5 fJ internally stored cavity energy (~ 540 fJ consumed energy) in silicon for scalable optical buffering and logic.

  10. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Qi; Zhou Bo; Tian Fangfang; Ge Yushu; Liu Xiaorong; Liu Yi [State Key Laboratory of Virology, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Huang Shan; Guan Hongliang; He Zhike, E-mail: prof.liuyi@263.ne [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2009-08-12

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  11. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    Science.gov (United States)

    Xiao, Qi; Zhou, Bo; Huang, Shan; Tian, Fangfang; Guan, Hongliang; Ge, Yushu; Liu, Xiaorong; He, Zhike; Liu, Yi

    2009-08-01

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  12. Observation of the nu(6) + nu(9) Band of Ketene via Resonant Coriolis Interaction with nu(8).

    Science.gov (United States)

    Gruebele; Johns; Nemes

    1999-12-01

    We observed and analyzed a b-axis Coriolis resonance between higher J states of the nu(6) + nu(9) combination band and the nu(8) fundamental of ketene in the spectral region 940-970 cm(-1). The interaction resonantly couples K(a) = 1 states of the combination band to K(a) = 0 states of the fundamental and also affects K(a) = 1, 2 states in the fundamental. Due to the involvement of strongly asymmetry-split low K levels, the rotational constants and band origin of nu(6) + nu(9) could be accurately determined and are discussed in the light of high-quality anharmonic force fields. The Coriolis coupling parameter, zeta(b)(8,6+9), is very precisely determined. A smaller perturbation, which could not be fully analyzed, is tentatively attributed to K(a) = 2 upper states in the nu(5) + nu(9) band. Copyright 1999 Academic Press.

  13. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    International Nuclear Information System (INIS)

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  14. Observation of resonance recombination lines in electron excited Auger spectra of Gd

    International Nuclear Information System (INIS)

    Combined measurements of electron excited Nsub(4,5) Auger spectra and photoelectron emission on clean and oxidized Gd lead to a distinction between Auger lines originating from 4d → continuum and 4d → 4f resonance excitations. Several Auger structures are identified as due to the direct recombination of 4d94f8 states with the 4f and valence electrons. The shape of the most prominent Auger line for oxidized Gd agrees perfectly with the Fano profile of the 4f photoemission intensity. (orig.)

  15. Quasi-Resonance Effects Observed in The 1994 Northridge Earthquake, and Others

    Directory of Open Access Journals (Sweden)

    Edward G. Fischer

    1998-01-01

    Full Text Available Sine-beat phenomena have been found in the 1994 Northridge earthquake records, and they are capable of producing time-history responses and damaging quasi-resonance effects in structures. Linear, single DOF (degree of freedom oscillators, in lieu of nonlinear, multiple DOF systems, have been found adequate to discuss the failures of tall circuit breakers during the 1971 San Fernando and the 1989 Loma Prieta quakes in California. The use of sine-beat excitation for seismic-shaking-table tests of equipment continues to be a conservative simulation of earthquakes.

  16. Observing interferences between past and future quantum states in resonance fluorescence.

    Science.gov (United States)

    Campagne-Ibarcq, P; Bretheau, L; Flurin, E; Auffèves, A; Mallet, F; Huard, B

    2014-05-01

    The fluorescence of a resonantly driven superconducting qubit is measured in the time domain, providing a weak probe of the qubit dynamics. Prior preparation and final, single-shot measurement of the qubit allows us to average fluorescence records conditionally on past and future knowledge. The resulting interferences reveal purely quantum features characteristic of weak values. We demonstrate conditional averages that go beyond classical boundaries and probe directly the jump operator associated with relaxation. The experimental results are remarkably captured by a recent theory, which generalizes quantum mechanics to open quantum systems whose past and future are known. PMID:24856677

  17. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    OpenAIRE

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labeled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F (DvMF) [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy (NRVS) and density fu...

  18. Absorption and emission of single attosecond light pulses in an autoionizing gaseous medium dressed by a time-delayed control field

    OpenAIRE

    Chu, Wei-Chun; C. D. Lin

    2012-01-01

    An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 10^{12} W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for ...

  19. Resonant Auger-intercoulombic hybridized decay in the photoionization of endohedral fullerenes

    CERN Document Server

    Javani, Mohammad H; De, Ruma; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2013-01-01

    Considering the photoionization of Ar@C60, we predict resonant femtosecond decays of both Ar and C60 vacancies through the continua of atom-fullerene hybrid final states. The resulting resonances emerge from the interference between simultaneous autoionizing and intercoulombic decay (ICD) processes. For Ar 3s-->np excitations, these resonances are far stronger than the Ar-to-C60 resonant ICDs, while for C60 excitations they are strikingly larger than the corresponding Auger features. The results indicate the power of hybridization to enhance decay rates, and modify lifetimes and line profiles.

  20. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  1. Asymmetric Orbital Distribution near Mean Motion Resonance: Application to Planets Observed by Kepler and Radial Velocities

    CERN Document Server

    Xie, Ji-Wei

    2016-01-01

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that their orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consis...

  2. Resonance Ionization Spectroscopy of Europium: The First Application of the PISA at ISOLDE-RILIS

    CERN Document Server

    AUTHOR|(CDS)2099873; Marsh, Bruce Alan

    The following work has been carried out at the radioactive ion beam facility ISOLDE at CERN. A compact atomic beam unit named PISA (Photo Ionization Spectroscopy Apparatus) has been implemented as a recent addition to the laboratory of the Resonance Ionization Laser Ion Source (RILIS). The scope of this thesis work was to demonstrate different applications of the PISA, using the existing and highly developed laser setup of the RILIS installation. In a demonstration of the suitability of PISA for ionization scheme development, a new ionization scheme for Europium has been developed. This resulted in the observation of several new autoionizing states and Rydberg series. Through the analysis of the observed Rydberg resonances a refined value of $45734.33(3)(3)$ cm$^{-1}$ for the ionization potential of the europium atom has been determined. In addition this thesis reports on the feasibility of the use of the PISA as a RILIS performance monitoring device during laser ion source operations. Finally the present wor...

  3. Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara;

    2015-01-01

    Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithographically positioned, site-controlled semicond......Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithographically positioned, site......-controlled semiconductor quantum dot to an external resonant laser field. For strong continuous-wave driving we observe the characteristic Mollow triplet and analyze the Rabi splitting and sideband widths as a function of driving strength and temperature. The sideband widths increase linearly with temperature...... and the square of the driving strength, which we explain via coupling of the exciton to longitudinal acoustic phonons. We also find an increase of the Rabi splitting with temperature, which indicates a temperature induced delocalization of the excitonic wave function resulting in an increase of the oscillator...

  4. Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Shen Gui-Ping; Cai Cong-Bo; Cai Shu-Hui; Chen Zhong

    2011-01-01

    The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems.It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry,field inhomogeneity and dipolar correlation distance.If the field inhomogeneity is refocused,the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension.However,the position is shifted when the field inhomogeneity exists.Experiments and simulations are performed to validate our theoretic analysis.These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.

  5. Strong Alignment Observed in Resonant Transfer and Excitation for U91+ on H2

    Institute of Scientific and Technical Information of China (English)

    MaXinwen; P.H.Mokler; F.Bosch; A.Gumberidze; C.Kozhuharov; D.Liesen; D.Sierpowski; Z.Stachura; Th.Stohlker; A.Warczak

    2003-01-01

    For the heaviest and simplest atomic system resonant transfer and excitation involving the innermost shell shave been investigated . We measured for H-like U91.+ projectiles the KLjLj-RTE Using a H(2) gas target providing the narrowest possible Compton profile for atomically confined quasi-free target electrons. We studied the emission patterns of the cascade decay of doubly excited He-like U90+ ions where the first hypersatellite (Kαi-H) and the second satellite (Kαi′-S) transitions are energetically separated . Although the REC cascadecontributions to the satellite lines (Kαi′-S) dominate, the RTE contributions could be isolated. In particular,the hypersatellite (Kαi-H) transitions are free of REC contributions - neglecting possible small interference effects.

  6. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  7. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    Directory of Open Access Journals (Sweden)

    Giacoppo F.

    2015-01-01

    Full Text Available An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  8. Observation of the current-voltage plateau-like structure of resonant tunnelling diode with prewells under different magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Xin; Zeng Yi-Ping; Qiu Zhi-Jun; Wang Bao-Qiang; Zhu Zhan-Ping

    2004-01-01

    We have grown resonant tunnelling diodes (RTDs) with different sized emitter prewells and without a prewell. The current-voltage (Ⅰ-Ⅴ) characteristics of them in different magnetic fields were investigated. Two important phenomena were observed. First, a high magnetic field can destroy the plateau-like structure in the Ⅰ-Ⅴ curves of the RTD. This phenomenon is ascribed to the fact that the high magnetic field will demolish the coupling between the energy level in the main quantum well and that in the emitter quantum well or in the prewell. Secondly, the existence and size of the prewell are also important factors influencing the plateau-like structure.

  9. Analysis and modeling of Fano resonances using equivalent circuit elements.

    Science.gov (United States)

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-22

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  10. Analysis and modeling of Fano resonances using equivalent circuit elements

    Science.gov (United States)

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  11. Direct observation of nonlinear coupling in wave turbulence at the surface of water and relevance of approximate resonances

    Science.gov (United States)

    Aubourg, Quentin; Mordant, Nicolas

    2016-04-01

    energy cascade is clearly observed consistently with previous measurements. A large amount of data permits us to use higher order statistical tools to investigate directly the resonant interactions. We observe a strong presence of triadic interactions in our system, confirming the foundations of the weak wave turbulence theory. A significant part of these interactions are non-local and enable coupling between capillary and gravity waves. We also emphasize the role of approximate resonances that are made possible by the nonlinear spectral widening. The quasi-resonances increase significantly the number of wave interactions and in particular open the possibility of observing 3-wave coupling among gravity waves although 3-wave exact resonances are prohibited. These effects are being currently investigated in a larger size experiment using a 13m in diameter wave flume. Our observation raise the question of the importance of these approximate resonances of gravity waves in energy transfers both in the theory and in the ocean.

  12. Double-hump resonance structure of the cross sections for electron impact ionization of Ar5+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Configuration-average distorted-wave calculations are carried out for electron-impact ionization of Ar5+. Both direct ionization and the indirect excitation autoionization processes are included in our calculations. Our theoretical values are in quite reasonable agreement with the experimental data. The indirect processes contribute up to 50% to the total ionization cross sections. The possible origin of double-hump resonance structure of the cross sections is demonstrated and the contributions of metastable states are also taken into account.

  13. Magnetic resonance imaging of the fetus in congenital intrathoracic disorders: preliminary observations

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiang; Ashtari, M.; Leonidas, J.C. [Dept. of Radiology, Schneider Children' s Hospital, Long Island Jewish Medical Center, NY (United States); Chan Ying [Fetal-Maternal Medicine, Schneider Children' s Hospital, Long Island Jewish Medical Center, and the Albert Einstein College of Medicine, NY (United States)

    2001-06-01

    Background and objective. Advances in magnetic resonance imaging (MRI) provide high-quality images of the intrathoracic organs. We studied the ability of MRI to define spatial relationships of the fetal lungs and measured lung volume in two cases of congenital diaphragmatic hernia (CDH), one of severe oligohydramnios secondary to bilateral cystic renal dysplasia and one case of prenatal chylothorax. Patients and methods. We performed pelvic MRI using single-shot fast spin echo (SSFSE) pulse sequence in four pregnant women referred because of abnormal prenatal ultrasound (US) findings associated with pulmonary hypoplasia. Results. The exact anatomic position of the contents of the hernia in CDH, including the position of the liver, was better defined with MRI. Pleural effusions were identified as well as the renal abnormality in the case of oligohydramnios. Lung volume was measured and the degree of pulmonary hypoplasia was quantified in every case. Lung-to-thorax ratio was calculated in the case of fetal chylothorax. Conclusion. Ongoing work suggests that MRI can provide additional detailed quantitative information in prenatal disorders associated with fetal lung compression and resulting hypoplasia. Correlation of fetal lung volume with postnatal management and outcome may affect prognosis in these cases. (orig.)

  14. Clinical observation of metal artifacts on magnetic resonance images of oral and maxillofacial regions

    Energy Technology Data Exchange (ETDEWEB)

    Ariyoshi, Yasunori; Shimahara, Masashi; Takeishi, Hiroshi; Uesugi, Yasuo; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    2002-12-01

    We assessed the effect of metal materials used in prosthodontics on the clarity of clinical magnetic resonance (MR) images of the oral and maxillofacial regions in 37 patients. Excluded were patients who had undergone surgery in either region, patients with deciduous teeth, patients with a space-occupying lesion, i.e., an inflammatory change or a malignant process, and patients for whom images were affected by motion artifacts. The patients had all undergone orthopantomography, though none received dental treatment in the period between the MR imaging and orthopantomography study. T1- and T2- weighted axial images were used. There were no apparent differences between T1- and T2- weighted images in artifacts caused by metal prosthodontics, whereas artifacts caused by metal crowns were severe in comparison to those caused by metal inlays. In the lateral and apex portions of the tongue, when more than four crowns were present, artifacts had a marked influence on the image, and diagnosis could not be made. Moreover, in the upper and lower alveolus, the presence of two crowns had a similar effect, precluding diagnosis. However, in the antrum, mandibular body, and mental regions, metal artifacts had less of an effect on the images compared to that of metal artifacts in the alveolus region. (author)

  15. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    Science.gov (United States)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  16. Trace determination of gadolinium in biomedical samples by diode laser-based multi-step resonance ionization mass spectrometry.

    Science.gov (United States)

    Blaum, K; Geppert, C; Schreiber, W G; Hengstler, J G; Müller, P; Nörtershäuser, W; Wendt, K; Bushaw, B A

    2002-04-01

    The application of high-resolution multi-step resonance ionization mass spectrometry (RIMS) to the trace determination of the rare earth element gadolinium is described. Utilizing three-step resonant excitation into an autoionizing level, both isobaric and isotopic selectivity of >10(7) were attained. An overall detection efficiency of approximately 10(-7) and an isotope specific detection limit of 1.5 x 10(9) atoms have been demonstrated. When targeting the major isotope (158)Gd, this corresponds to a total Gd detection limit of 1.6 pg. Additionally, linear response has been demonstrated over a dynamic range of six orders of magnitude. The method has been used to determine the Gd content in various normal and tumor tissue samples, taken from a laboratory mouse shortly after injection of gadolinium diethylenetriaminepentaacetic acid dimeglumine (Gd-DTPA), which is used as a contrast agent for magnetic resonance imaging (MRI). The RIMS results show Gd concentrations that vary by more than two orders of magnitude (0.07-11.5 microg mL(-1)) depending on the tissue type. This variability is similar to that observed in MRI scans that depict Gd-DTPA content in the mouse prior to dissection, and illustrates the potential for quantitative trace analysis in microsamples of biomedical materials. PMID:12012186

  17. Metal atom and ion layers observed by a frequency-tunable resonance scattering lidar in the midlatitude

    Science.gov (United States)

    Ejiri, Mitsumu K.; Nakamura, Takuji; Kawahara, Takuya D.; Tsuno, Katsuhiko; Abo, Makoto; Nishiyama, Takanori; Tsuda, Takuo; Wada, Satoshi; Ogawa, Takayo

    2016-07-01

    The National Institute of Polar Research (NIPR) is leading a six year prioritized project of the Antarctic research observations since 2010. One of the sub-project is entitled the global environmental change revealed through the Antarctic middle and upper atmosphere. Profiling dynamical parameters such as temperature and wind, as well as minor constituents is the key component of observations in this project, together with a long term observations using existent various instruments in Syowa, the Antarctica (69S). As a part of the sub-project, we are developing a new resonance lidar system with multiple wavelengths and plan to install and operate it at Syowa, Antarctica. The lidar will observe temperature profiles and variations of minor constituents such as Fe, K, Ca+, and aurorally excited N2+. The lidar system is being developed with trial and error in test observations of the metal atom and ion density and the MLT temperature profiles. The lidar will be installed at Syowa in Antarctica by the 58th Japan Antarctic Research Expedition (JARE 58). In this presentation, we will report current status of the system developments and discuss results of the test observations.

  18. Real-time magnetic resonance imaging (MRI during active wrist motion--initial observations.

    Directory of Open Access Journals (Sweden)

    Robert D Boutin

    Full Text Available BACKGROUND: Non-invasive imaging techniques such as magnetic resonance imaging (MRI provide the ability to evaluate the complex anatomy of bone and soft tissues of the wrist without the use of ionizing radiation. Dynamic instability of wrist--occurring during joint motion--is a complex condition that has assumed increased importance in musculoskeletal medicine. The objective of this study was to develop an MRI protocol for evaluating the wrist during continuous active motion, to show that dynamic imaging of the wrist is realizable, and to demonstrate that the resulting anatomical images enable the measurement of metrics commonly evaluated for dynamic wrist instability. METHODS: A 3-Tesla "active-MRI" protocol was developed using a bSSFP sequence with 475 ms temporal resolution for continuous imaging of the moving wrist. Fifteen wrists of 10 asymptomatic volunteers were scanned during active supination/pronation, radial/ulnar deviation, "clenched-fist", and volarflexion/dorsiflexion maneuvers. Two physicians evaluated distal radioulnar joint (DRUJ congruity, extensor carpi ulnaris (ECU tendon translation, the scapholunate (SL interval, and the SL, radiolunate (RL and capitolunate (CL angles from the resulting images. RESULTS: The mean DRUJ subluxation ratio was 0.04 in supination, 0.10 in neutral, and 0.14 in pronation. The ECU tendon was subluxated or translated out of its groove in 3 wrists in pronation, 9 wrists in neutral, and 11 wrists in supination. The mean SL interval was 1.43 mm for neutral, ulnar deviation, radial deviation positions, and increased to 1.64 mm during the clenched-fist maneuver. Measurement of SL, RL and CL angles in neutral and dorsiflexion was also accomplished. CONCLUSION: This study demonstrates the initial performance of active-MRI, which may be useful in the investigation of dynamic wrist instability in vivo.

  19. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR.

    Science.gov (United States)

    Smith, Albert A; Corzilius, Björn; Haze, Olesya; Swager, Timothy M; Griffin, Robert G

    2013-12-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization--suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  20. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  1. Response evaluation criteria of chemotherapy for bladder cancer. Intra-observer and inter-observer variability in measurement of local response with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Various evaluation criteria have been used in clinical trials and clinical practice in chemotherapy for bladder cancer. Although tumor, nodes and metastasis (TNM) staging system is used for bladder cancer with muscular invasion, the standardized criteria are Response Evaluation Criteria In Solid Tumors (RECIST). To date, the use of RECIST for bladder cancer has not been well assessed. We elucidated the intra- and inter-observer reproducibility of the evaluation criteria with magnetic resonance imaging (MRI) in the present retrospective study. Eligible 41 patients had two courses of the chemotherapy. Three investigators evaluated the MRI twice. Four criteria, RECIST, World Health Organization criteria (WHO), modified RECIST (the shortest diameter perpendicular to RECIST), and T-factor were compared using the kappa statistics. Mean intra-observer agreements of these four criteria were 0.81, 0.67, 0.80, and 0.44, respectively. Median inter-observer agreements were 0.82, 0.78, 0.69, and 0.57, respectively. The proportion of agreement of the response between RECIST and modified RECIST was 78% (Spearman's rho=.800) with higher response in modified RECIST. From our findings, modified RECIST is recommended as the preferred criteria for bladder cancer. However, validation should be performed in the future studies comparing the efficacy and clinical outcomes such as survival and pathological findings. (author)

  2. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    Science.gov (United States)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  3. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa-Dye ISOLDE RILIS

    Science.gov (United States)

    Day Goodacre, T.; Fedorov, D.; Fedosseev, V. N.; Forster, L.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Veinhard, M.

    2016-09-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  4. Myocardial feature tracking reduces observer-dependence in low-dose dobutamine stress cardiovascular magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Andreas Schuster

    Full Text Available To determine whether quantitative wall motion assessment by CMR myocardial feature tracking (CMR-FT would reduce the impact of observer experience as compared to visual analysis in patients with ischemic cardiomyopathy (ICM.15 consecutive patients with ICM referred for assessment of hibernating myocardium were studied at 3 Tesla using SSFP cine images at rest and during low dose dobutamine stress (5 and 10 μg/kg/min of dobutamine. Conventional visual, qualitative analysis was performed independently and blinded by an experienced and an inexperienced reader, followed by post-processing of the same images by CMR-FT to quantify subendocardial and subepicardial circumferential (Eccendo and Eccepi and radial (Err strain. Receiver operator characteristics (ROC were assessed for each strain parameter and operator to detect the presence of inotropic reserve as visually defined by the experienced observer.141 segments with wall motion abnormalities at rest were eligible for the analysis. Visual scoring of wall motion at rest and during dobutamine was significantly different between the experienced and the inexperienced observer (p0.05. Eccendo was the most accurate (AUC of 0.76, 10 μg/kg/min of dobutamine parameter. Diagnostic accuracy was worse for resting strain with differences between operators for Eccendo and Eccepi (p0.05.Whilst visual analysis remains highly dependent on operator experience, quantitative CMR-FT analysis of myocardial wall mechanics during DS-CMR provides diagnostic accuracy for the detection of inotropic reserve regardless of operator experience and hence may improve diagnostic robustness of low-dose DS-CMR in clinical practice.

  5. Observation of KsKs resonances in deep inelastic scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2004-01-01

    Inclusive KsKs production in deep inelastic ep scattering at HERA has been studied with the ZEUS detector using an integrated luminosity of 120 pb-1. Two states are observed at masses of 1537 (+9)(-8) MeV and 1726 +- 7 MeV, as well as an enhancement around 1300 MeV. The state at 1537 MeV is consistent with the well established f2'(1525). The state at 1726 MeV may be the glueball candidate f0(1710).

  6. Observation of two resonant structures in $e^+ e^- \\to \\pi^+ \\pi^- h_c$

    CERN Document Server

    ,

    2016-01-01

    The cross sections of $e^{+}e^{-}\\to\\pi^{+}\\pi^{-}h_c$ at center-of-mass energies from 3.896 to 4.600 GeV are measured using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The cross sections are found to be of the same order of magnitude as those of $e^{+}e^{-}\\to\\pi^{+}\\pi^{-}J/\\psi$ and $e^{+}e^{-}\\to\\pi^{+}\\pi^{-}\\psi(2S)$, but the line shape is inconsistent with the $Y$ states observed in the latter two modes. Two structures are observed in the $e^{+}e^{-}\\to\\pi^{+}\\pi^{-}h_c$ cross sections around 4.22 and 4.39 GeV/$c^{2}$, which we call $Y(4220)$ and $Y(4390)$, respectively. A fit with a coherent sum of two Breit-Wigner functions results in a mass of $(4218.4\\pm4.0\\pm0.9)$ MeV/$c^{2}$ and a width of $(66.0\\pm9.0\\pm0.4)$ MeV for the $Y(4220)$, and a mass of $(4391.6\\pm6.3\\pm1.0)$ MeV/$c^{2}$ and a width of $(139.5\\pm16.1\\pm0.6)$ MeV for the $Y(4390)$, where the first uncertainties are statistical and the second ones systematic.

  7. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    Science.gov (United States)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  8. Differentiating the production mechanisms of the Higgs-like resonance using inclusive observables at hadron colliders

    International Nuclear Information System (INIS)

    We present a study on differentiating direct production mechanisms of the newly discovered Higgs-like boson at the LHC based on several inclusive observables. The ratios introduced reveal the parton constituents or initial state radiations involved in the production mechanisms, and are directly sensitive to fractions of contributions from different channels. We select three benchmark models, including the SM Higgs boson, to illustrate how the theoretical predictions of the above ratios are different for the gg, bb-bar(cc-bar), and qq-bar (flavor universal) initial states in the direct production. We study implications of current Tevatron and LHC measurements. We also show expectations from further LHC measurements with high luminosities

  9. The stereo-dynamics of collisional autoionization of ammonia by helium and neon metastable excited atoms through molecular beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Falcinelli, Stefano, E-mail: stefano.falcinelli@unipg.it; Vecchiocattivi, Franco [Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Bartocci, Alessio; Cavalli, Simonetta; Pirani, Fernando [Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia (Italy)

    2015-10-28

    A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas –NH{sub 3} collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginary component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne{sup *}({sup 3}P), He{sup *}({sup 3}S), He{sup *}({sup 1}S)–NH{sub 3}. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.

  10. Resonances at excitation of the 61S0 - 63P1 intercombination transition of thallium ion in electron-ion collisions

    International Nuclear Information System (INIS)

    Excitation of resonance intercombination Tl2 line lambda=190.8 nm is studied for the first time in intercrossing electron and ion beams. Resonance structure conditioned by the contribution of autoionization states of thallium atom into the population of the 63P1 level of thallium ion. A complicated energy behaviour of excitation cross section of thallium ion intercombination transition reflects mechanisms conditioned by the influence of relativistic and resonance effects in external shells under the conditions of concurrence of several processes: direct transition of electron from the ground state into excited one with spin change , population of levels through autoionized states of atom, and at the expence of cascade transitions as well

  11. Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Ziqian Chen; Hui Xiao; Ping Ni; Gennian Qian; Shangwen Xu; Xizhang Yang; Youqiang Ye; Jinhua Chen; Biyun Zhang

    2006-01-01

    BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable visible evidence for studying central mechanism of motor dysfunction after stroke, and has guiding and applicable value for clinical therapy.OBJECTIVE: To observe the activation of motor-related cortex of patients with acute ischemic stroke with functional magnetic resonance imaging, and analyze the relationship between brain function reconstruction and motor restoration after stroke.DESIGN: A contrast observation.SETTING: Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine patients with acute ischemic stroke who suffered from motor dysfunction and received the treatment in the Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December 2005 were recruited, serving as experimental group. The involved patients including 5 male and 4 female, aged 16 to 87 years, all met the diagnostic criteria of cerebrovascular disease revised by The Fourth National Conference on Cerebrovascular Disease, mainly presenting paralysis in clinic, and underwent fMRI. Another 9 right handed persons matched in age and gender who simultaneously received healthy body examination were recruited, serving as control group. All the subjects were informed of the detected items.METHODS: ①Muscular strength of patients of the experimental group was evaluated according to Brunnstrom grading muscular strength (Grade Ⅰ -Ⅵ). ② Passive finger to finger motion was used as the mission (alternate style of quiescence, left hand motion and quiescence, right hand motion was repeated 3 times, serving as 1 sequence, 20 s per block and 20 s time interval. The whole process of scanning was 260 s), and subjects of 2 groups were given Bold-fMRI examination with GE1.5T double gradient 16-channel

  12. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--Hβ proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  13. Observation of the predissociated, quasilinear B~(1A') state of CHF by optical-optical double resonance

    Science.gov (United States)

    Tao, Chong; Reid, Scott A.; Schmidt, Timothy W.; Kable, Scott H.

    2007-02-01

    We report the first observation of the predissociative B˜ state of a halocarbene molecule. Rovibronic energy levels were measured in the B˜(A'1) state of CHF by fluorescence dip detected optical-optical double resonance spectroscopy via the à state. The origin was found to lie 30817.4cm-1 above the zero point level of the X˜ state. Rotational transitions within six purely bending states, and states involving one or two quanta of CF-stretch were observed, including the vibrational angular momentum components. Interpretation of the spectrum, with support of ab initio calculations, shows that CHF is quasilinear in the B˜ state with a small (-200cm-1) barrier to linearity which lies below the zero-point level. The rotational constant, B =1.04 to 1.09cm-1, depending on vibrational state, again in good agreement with theory. All observed B˜ state levels were predissociative, as evidenced by Lorentzian line broadening. Linewidths varied with initial state from 0.7-10.8cm-1, corresponding to excited state lifetimes of 0.5-8ps.

  14. Observation of the predissociated, quasilinear B(1A') state of CHF by optical-optical double resonance.

    Science.gov (United States)

    Tao, Chong; Reid, Scott A; Schmidt, Timothy W; Kable, Scott H

    2007-02-01

    We report the first observation of the predissociative B state of a halocarbene molecule. Rovibronic energy levels were measured in the B(1A') state of CHF by fluorescence dip detected optical-optical double resonance spectroscopy via the A state. The origin was found to lie 30 817.4 cm-1 above the zero point level of the X state. Rotational transitions within six purely bending states, and states involving one or two quanta of CF-stretch were observed, including the vibrational angular momentum components. Interpretation of the spectrum, with support of ab initio calculations, shows that CHF is quasilinear in the B state with a small (-200 cm-1) barrier to linearity which lies below the zero-point level. The rotational constant, B=1.04 to 1.09 cm-1, depending on vibrational state, again in good agreement with theory. All observed B state levels were predissociative, as evidenced by Lorentzian line broadening. Linewidths varied with initial state from 0.7-10.8 cm-1, corresponding to excited state lifetimes of 0.5-8 ps. PMID:17302466

  15. Rocket observation of atomic oxygen and night airglow: Measurement of concentration with an improved resonance fluorescence technique

    Directory of Open Access Journals (Sweden)

    K. Kita

    Full Text Available An improved resonant fluorescence instrument for measuring atomic oxygen concentration was developed to avoid the Doppler effect and the aerodynamic shock effect due to the supersonic motion of a rocket. The shock effect is reduced by adopting a sharp wedge-shaped housing and by scanning of the detector field of view to change the distance between the scattering volume and the surface of the housing. The scanning enables us to determine absolute values of atomic oxygen concentration from relative variation of the scattered light signal due to the self-absorption. The instrument was calibrated in the laboratory, and the numerical simulation reproduced the calibration result. Using the instrument, the altitude profile of atomic oxygen concentration was observed by a rocket experiment at Uchinoura (31°N on 28 January 1992. The data obtained from the rocket experiment were not perfectly free from the shock effect, but errors due to the effect were reduced by the data analysis procedure. The observed maximum concentration was 3.8× 1011 cm–3 at altitudes around 94 km. The systematic error is estimated to be less than ±0.7×1011 cm–3 and the relative random error is less than±0.07× 1011 cm–3at the same altitudes. The altitude profile of the OI 557.7-nm airglow was also observed in the same rocket experiment. The maximum volume emission rate was found to be 150 photons cm–3 s–1 at 94 km. The observed altitude profiles are compared with the MSIS model and other in situ observations.

  16. Suppression and Enhancement in Parametric Two-Photon Resonant Nondegenerate Four-Wave Mixing via Quantum Interference

    Institute of Scientific and Technical Information of China (English)

    SUN Jiang; MI Xin; YU Zu-He; JIANG Qian; ZUO Zhan-Chun; WANG Yan-Bang; WU Ling-An; FU Pan-Ming

    2004-01-01

    @@ Quantum interference may lead to suppression and enhancement of the two-photon resonant nondegenerate fourwave mixing signal in a cascade four-level system. Such phenomena are demonstrated in Ba through inducing atomic coherence between the ground state 6s2 and the doubly excited autoionizing Rydberg state 6pnd. This method can be used as a new spectroscopic tool for measuring the transition dipole moment between two highly excited atomic states.

  17. Electron spin resonance observation of dehydration-induced spin excitations in quasi-one-dimensional iodo-bridged diplatinum complexes

    Science.gov (United States)

    Tanaka, Hisaaki; Kuroda, Shin-Ichi; Iguchi, Hiroaki; Takaishi, Shinya; Yamashita, Masahiro

    2012-02-01

    Electron spin resonance (ESR) measurements have been performed on a series of quasi-one-dimensional iodo-bridged diplatinum complexes K2[C3H5R(NH3)2][Pt2(pop)4I]·4H2O (pop = P2H2O52-; R = H, CH3, or Cl), where dehydration/rehydration of the crystalline water switches the electronic state reversibly with retention of single crystallinity. We have observed a nonmagnetic nature in as-grown samples, whereas in the dehydrated samples, a clear enhancement of the spin susceptibility has been observed above ˜80 K with the activation energy ranging 50-60 meV. The activated spins originate from isolated Pt3+ state on the chain, as confirmed from the principal g values. Concomitantly, the ESR linewidth exhibits a prominent motional narrowing, suggesting that the activated Pt3+ spins are mobile solitons generated in the doubly degenerate charge-density-wave states of the dehydrated salts.

  18. Influence of the gender on cerebral vascular diameters observed during the magnetic resonance angiographic examination of willis circle

    Directory of Open Access Journals (Sweden)

    Marco Antonio Stefani

    2013-02-01

    Full Text Available The present study evaluated the calibers and anatomic configurations based on the Magnetic Resonance analysis (MRA, assaying the cerebral vascular territories and sex-linked variations. A randomized sample of 30 angiographic examinations in adult patients of both sexes was obtained and components of the circle of Willis were identified. Branch diameters were measured on a transversal cut 5mm from the vessel origin in a typical angiographic frontal incidence. For the comparative statistical analysis, tests were divided in the groups considering the patients' sex and age. The classical Circle of Willis configuration was oberved in only 15 samples (50%. Greater calibers were observed in the arteries of the posterior circulation and multiple linear regression analysis established that the caliber of the posterior circulation was influenced by an independent variable related to the gender. Additional variations included unilateral and bilateral fetal and hypoplasic Posterior communicating arteries. In the anterior cerebral artery (ACA, the presence of an accessory developed ACA, an ACA giving branches to the distal portion of the two hemispheres and a third median ACA the variants were observed. Gender influenced the variations on internal diameters of posterior circulation vessels, with larger measurements in men.

  19. Quadrupole moments in chiral material DyFe3(BO3)4 observed by resonant x-ray diffraction

    Science.gov (United States)

    Nakajima, Hiroshi; Usui, Tomoyasu; Joly, Yves; Suzuki, Motohiro; Wakabayashi, Yusuke; Kimura, Tsuyoshi; Tanaka, Yoshikazu

    2016-04-01

    By means of circularly polarized x rays at the Dy L3 and Fe K absorption edges, the chiral structure of the electric quadrupole was investigated for a single crystal of DyFe3(BO3)4, in which both Dy and Fe ions exhibit a spiral arrangement. The integrated intensity of the resonant x-ray diffraction of space-group forbidden reflections 004 and 005 is interpreted within the electric dipole transitions from Dy 2 p3/2 to 5 d and Fe 1 s to 4 p , respectively. We have confirmed that the handedness of the crystal observed at Dy L3 and Fe K edges is consistent with that observed at Dy M5 edge reported in a previous study. The electric quadrupole moments of Dy 5 d and Fe 4 p are derived by analyzing the azimuth scans of the diffracted intensity. The temperature profiles of the integrated intensity of 004 at the Dy L3 and the Fe K edges are similar to those of Dy-O and Fe-O bond lengths, while the temperature dependence at the Dy M5 edge does not match the bond-length behavior. The results indicate that the helix chiral orientations of quadrupole moments due to Dy 5 d and Fe 4 p electrons are more strongly coupled to the ligands states than Dy 4 f electrons.

  20. Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m -45 waves, predominantly in the morning sector, thought to be brought about by the drift-bounce resonance processes. Conjugate observations from the Polar CAM-MICE instrument indicate the presence of a non-Maxwellian ion distribution function. Further statistical analysis has been undertaken, using the Polar TIMAS instrument, to reveal the prevalence and magnitude of the non-Maxwellian energetic particle populations thought to be responsible for generating these wave types.

    Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities

  1. Resonance ionization mass spectroscopy for trace analysis of plutonium

    International Nuclear Information System (INIS)

    Trace amounts of plutonium are determined by means of resonance ionization mass spectroscopy (RIMS). Plutonium atoms evaporated from a heated filament are ionized via a three-step excitation leading to an autoionizing state. The ions are mass-selectively detected with a time-of-flight (TOF) mass spectrometer. Several types of filaments have been tested with respect to atomic yield after evaporation and reproducibility. The best results have been obtained using tantalum as backing and titanium as covering. An overall detection efficiency of 1·10-5 could be determined with such filaments yielding a detection limit of 2·106 atoms of 239Pu

  2. Resonance ionization mass spectroscopy for trace analysis of plutonium

    Science.gov (United States)

    Erdmann, N.; Albus, F.; Deiβenberger, R.; Eberhardt, K.; Funk, H.; Hasse, H.-U.; Herrmann, G.; Huber, G.; Kluge, H.-J.; Köhler, S.; Nunnemann, M.; Passler, G.; Trautmann, N.; Urban, F.-J.

    1995-04-01

    Trace amounts of plutonium are determined by means of resonance ionization mass spectroscopy (RIMS). Plutonium atoms evaporated from a heated filament are ionized via a three-step exciation leading to an autoionizing state. The ions are mass-selectively detected with a time-of-flight (TOF) mass spectrometer. Several types of filaments have been tested with respect to atomic yield after evaporation and reproducibility. The best results have been obtained using tantalum as backing and titanium as covering. An overall detection efficiency of 1ṡ10-5 could be determined with such filaments yielding a detection limit of 2ṡ106 atoms of 239Pu.

  3. Dramatic enhancement of fullerene anion formation in polymer solar cells by thermal annealing: Direct observation by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Nagamori, Tatsuya; Yabusaki, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Yasuda, Takeshi; Han, Liyuan [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Marumoto, Kazuhiro, E-mail: marumoto@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama 322-0012 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2014-06-16

    Using electron spin resonance (ESR), we clarified the origin of the efficiency degradation of polymer solar cells containing a lithium-fluoride (LiF) buffer layer created by a thermal annealing process after the deposition of an Al electrode (post-annealing). The device structure was indium-tin-oxide/ poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly (3-hexylthiophene):phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM)/LiF/Al. Three samples consisting of quartz/P3HT:PCBM/LiF/Al, quartz/P3HT:PCBM/Al, and quartz/PCBM/LiF/Al were investigated and compared. A clear ESR signal from radical anions on the PCBM was observed after LiF/Al was deposited onto a P3HT:PCBM layer because of charge transfer at the interface between the PCBM and the LiF/Al, which indicated the formation of PCBM{sup −}Li{sup +} complexes. The number of radical anions on the PCBM was enhanced remarkably by the post-annealing process; this enhancement was caused by the surface segregation of PCBM and by the dissociation of LiF at the Al interface by the post-annealing process. The formation of a greater number of anions enhanced the electron scattering, decreased the electron-transport properties of the PCBM molecules, and caused an energy-level shift at the interface. These effects led to degradation in the device performance.

  4. Observation of high-order quasi-one-dimensional periodic orbit resonance in (DMET){sub 2}I{sub 3} and its fermi surface

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Y.; Kimata, M.; Kishigi, K.; Ohta, H.; Koyama, K.; Motokawa, M.; Nishikawa, H.; Kikuchi, K.; Ikemoto, I

    2004-04-30

    Magneto-optical measurements of a quasi-one-dimensional (q1D) organic superconductor (DMET){sub 2}I{sub 3} has been performed by using a cavity perturbation technique. Several resonant absorption lines, which can be attributed to the q1D periodic orbit resonance (q1D POR), as well as the quite unusual high-order q1D POR coming from the corrugated Fermi surface (FS) in the interlayer direction were observed. Moreover, other harmonic resonances are also observed when the AC electric field is applied along the c*-axis. We will also show its estimated q1D FS from the data analysis where the estimated FS clearly shows why there is no spin-density-wave or charge-density-wave transition in (DMET){sub 2}I{sub 3} despite having a q1D FS.

  5. Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Ziqian Chen; Hui Xiao; Ping Ni; Gennian Qian; Shangwen Xu; Xizhang Yang; Youqiang Ye; Jinhua Chen; Biyun Zhang

    2006-01-01

    BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable visible evidence for studying central mechanism of motor dysfunction after stroke, and has guiding and applicable value for clinical therapy.OBJECTIVE: To observe the activation of motor-related cortex of patients with acute ischemic stroke with functional magnetic resonance imaging, and analyze the relationship between brain function reconstruction and motor restoration after stroke.DESIGN: A contrast observation.SETTING: Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine patients with acute ischemic stroke who suffered from motor dysfunction and received the treatment in the Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December 2005 were recruited, serving as experimental group. The involved patients including 5 male and 4 female, aged 16 to 87 years, all met the diagnostic criteria of cerebrovascular disease revised by The Fourth National Conference on Cerebrovascular Disease, mainly presenting paralysis in clinic, and underwent fMRI. Another 9 right handed persons matched in age and gender who simultaneously received healthy body examination were recruited, serving as control group. All the subjects were informed of the detected items.METHODS: ①Muscular strength of patients of the experimental group was evaluated according to Brunnstrom grading muscular strength (Grade Ⅰ -Ⅵ). ② Passive finger to finger motion was used as the mission (alternate style of quiescence, left hand motion and quiescence, right hand motion was repeated 3 times, serving as 1 sequence, 20 s per block and 20 s time interval. The whole process of scanning was 260 s), and subjects of 2 groups were given Bold-fMRI examination with GE1.5T double gradient 16-channel

  6. Measuring distances within unfolded biopolymers using fluorescence resonance energy transfer: The effect of polymer chain dynamics on the observed fluorescence resonance energy transfer efficiency

    Science.gov (United States)

    Makarov, Dmitrii E.; Plaxco, Kevin W.

    2009-01-01

    Recent years have seen a number of investigations in which distances within unfolded proteins, polypeptides, and other biopolymers are probed via fluorescence resonance energy transfer, a method that relies on the strong distance dependence of energy transfer between a pair of dyes attached to the molecule of interest. In order to interpret the results of such experiments it is commonly assumed that intramolecular diffusion is negligible during the excited state lifetime. Here we explore the conditions under which this “frozen chain” approximation fails, leading to significantly underestimated donor-acceptor distances, and describe a means of correcting for polymer dynamics in order to estimate these distances more accurately. PMID:19725638

  7. Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations.

    Science.gov (United States)

    Landau, Arie; Haritan, Idan; Kaprálová-Žd'ánská, Petra Ruth; Moiseyev, Nimrod

    2016-05-19

    Complex eigenvalues, resonances, play an important role in a large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and predissociative metastable resonances are generated. However, the computation of complex resonance requires modifications of standard electronic structure codes and methods, which are not always straightforward, in addition, application of complex codes requires more computational efforts. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Padé). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit, these passages to the complex plane are closed. As illustrative numerical examples we calculated the autoionization Feshbach resonances of helium, hydrogen anion, and hydrogen molecule. We show that our results are in an excellent agreement with the results obtained by other theoretical methods and with available experimental results. PMID:26677725

  8. The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Andreas, E-mail: andreas_schuster@gmx.net [Division of Imaging Sciences and Biomedical Engineering, King' s College London British Heart Foundation BHF Centre of Excellence, National Institute of Health Research NIHR Biomedical Research Centre at Guy' s and St. Thomas' NHS Foundation Trust, Wellcome Trust and Engineering and Physical Sciences Research Council EPSRC Medical Engineering Centre, The Rayne Institute, St. Thomas' Hospital, London (United Kingdom); Department of Cardiology and Pulmonology and Heart Research Centre, Georg-August-University, Göttingen (Germany); Morton, Geraint, E-mail: geraint.morton@kcl.ac.uk [Division of Imaging Sciences and Biomedical Engineering, King' s College London British Heart Foundation BHF Centre of Excellence, National Institute of Health Research NIHR Biomedical Research Centre at Guy' s and St. Thomas' NHS Foundation Trust, Wellcome Trust and Engineering and Physical Sciences Research Council EPSRC Medical Engineering Centre, The Rayne Institute, St. Thomas' Hospital, London (United Kingdom); Hussain, Shazia T., E-mail: shazia.1.hussain@kcl.ac.uk [Division of Imaging Sciences and Biomedical Engineering, King' s College London British Heart Foundation BHF Centre of Excellence, National Institute of Health Research NIHR Biomedical Research Centre at Guy' s and St. Thomas' NHS Foundation Trust, Wellcome Trust and Engineering and Physical Sciences Research Council EPSRC Medical Engineering Centre, The Rayne Institute, St. Thomas' Hospital, London (United Kingdom); and others

    2013-02-15

    Background: Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising novel method for quantification of myocardial wall mechanics from standard steady-state free precession (SSFP) images. We sought to determine whether magnetic field strength affects the intra-observer reproducibility of CMR-FT strain analysis. Methods: We studied 2 groups, each consisting of 10 healthy subjects, at 1.5 T or 3 T Analysis was performed at baseline and after 4 weeks using dedicated CMR-FT prototype software (Tomtec, Germany) to analyze standard SSFP cine images. Right ventricular (RV) and left ventricular (LV) longitudinal strain (Ell{sub RV} and Ell{sub LV}) and LV long-axis radial strain (Err{sub LAX}) were derived from the 4-chamber cine, and LV short-axis circumferential and radial strains (Ecc{sub SAX}, Err{sub SAX}) from the short-axis orientation. Strain parameters were assessed together with LV ejection fraction (EF) and volumes. Intra-observer reproducibility was determined by comparing the first and the second analysis in both groups. Results: In all volunteers resting strain parameters were successfully derived from the SSFP images. There was no difference in strain parameters, volumes and EF between field strengths (p > 0.05). In general Ecc{sub SAX} was the most reproducible strain parameter as determined by the coefficient of variation (CV) at 1.5 T (CV 13.3% and 46% global and segmental respectively) and 3 T (CV 17.2% and 31.1% global and segmental respectively). The least reproducible parameter was Ell{sub RV} (CV 1.5 T 28.7% and 53.2%; 3 T 43.5% and 63.3% global and segmental respectively). Conclusions: CMR-FT results are similar with reasonable intra-observer reproducibility in different groups of volunteers at 1.5 T and 3 T. CMR-FT is a promising novel technique and our data indicate that results might be transferable between field strengths. However there is a considerable amount of segmental variability indicating that further

  9. The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength

    International Nuclear Information System (INIS)

    Background: Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising novel method for quantification of myocardial wall mechanics from standard steady-state free precession (SSFP) images. We sought to determine whether magnetic field strength affects the intra-observer reproducibility of CMR-FT strain analysis. Methods: We studied 2 groups, each consisting of 10 healthy subjects, at 1.5 T or 3 T Analysis was performed at baseline and after 4 weeks using dedicated CMR-FT prototype software (Tomtec, Germany) to analyze standard SSFP cine images. Right ventricular (RV) and left ventricular (LV) longitudinal strain (EllRV and EllLV) and LV long-axis radial strain (ErrLAX) were derived from the 4-chamber cine, and LV short-axis circumferential and radial strains (EccSAX, ErrSAX) from the short-axis orientation. Strain parameters were assessed together with LV ejection fraction (EF) and volumes. Intra-observer reproducibility was determined by comparing the first and the second analysis in both groups. Results: In all volunteers resting strain parameters were successfully derived from the SSFP images. There was no difference in strain parameters, volumes and EF between field strengths (p > 0.05). In general EccSAX was the most reproducible strain parameter as determined by the coefficient of variation (CV) at 1.5 T (CV 13.3% and 46% global and segmental respectively) and 3 T (CV 17.2% and 31.1% global and segmental respectively). The least reproducible parameter was EllRV (CV 1.5 T 28.7% and 53.2%; 3 T 43.5% and 63.3% global and segmental respectively). Conclusions: CMR-FT results are similar with reasonable intra-observer reproducibility in different groups of volunteers at 1.5 T and 3 T. CMR-FT is a promising novel technique and our data indicate that results might be transferable between field strengths. However there is a considerable amount of segmental variability indicating that further refinements are needed before CMR-FT can be fully

  10. Observation of Rydberg Series in Sodium Vapour by Two-Photon Resonant Nondegenerate Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    王延帮; 姜谦; 李隆; 米辛; 俞祖和; 傅盘铭

    2001-01-01

    We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state for the obser- vation of Rydberg states in sodium vapour. The broadening and shift of the sodium 3S- 11D transition perturbed by argon are investigated. This technique can achieve Doppler-free resolution of narrow spectral structures of Rydberg levels if lasers with narrow bandwidths are employed.

  11. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Glans, P.; Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.

  12. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    Science.gov (United States)

    Favrel, A.; Landry, C.; Müller, A.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro

  13. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    International Nuclear Information System (INIS)

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro

  14. Three-step resonant photoionization spectroscopy of Ni and Ge: ionization potential and odd-parity Rydberg levels

    International Nuclear Information System (INIS)

    In preparation of a laser ion source, we have investigated multi-step laser ionization via Rydberg and autoionizing states for atomic Ni and Ge using a mass separator with an ion beam energy of 20 keV. For both elements resonant three-step excitation schemes suitable for modern Ti:sapphire laser systems were developed. Rydberg series in the range of principal quantum numbers 20 ≤ n ≤ 80 were localized, assigned and quantum numbers were allocated to the individual resonances. Ionization potentials (IP) were extracted from fits of the individual series and quantum defects of individual levels were analysed for confirmation of series assignment. For Ni the ionization potential could be extracted with significantly increased precision compared to literature with a value of EIP (Ni) = 61 619.77(14) cm-1. Also, at least one notable autoionizing state above the first IP was discovered for both elements, and the different ionization schemes via Rydberg or autoionizing states were compared with respect to line shape, ionization efficiency and selectivity

  15. Modulation of attosecond beating in resonant two-photon ionization

    CERN Document Server

    Galán, Álvaro J; Martín, Fernando

    2014-01-01

    We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  16. Resonance ionization mass spectroscopy with neptunium and plutonium

    International Nuclear Information System (INIS)

    The resonance ionization mass spectroscopy was one of the methods used for detection of the actinides. The principles of the method are: atoms of the elements to be measured are excited step by step through resonant irradiation with laser light, and are thus ionized. The ions are accelerated by electrical fields and can then be detected. The equipment for this process comprised a pulsed laser system consisting of two copper vapor lasers and three dye lasers, and a linear time-of-flight mass spectrometer with a mass resolution M/ΔM of approx. 1500. Due to a two-step resonant excitation of atomic energy levels and subsequent population of an autoionized state, the three-step ionization method is particularly element-selective. Use of powerful lasers with a high pulse repetition rate yield a high sensitivity and thus allow low detection limits. (orig./BBR)

  17. Modelling observed decay-less oscillations as resonantly enhanced Kelvin-Helmholtz vortices from transverse MHD waves and their seismological application

    CERN Document Server

    Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki

    2016-01-01

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...

  18. Observation of a resonance-like structure in the pi^+- psi' mass distribution in exclusive B-->K pi^+- psi' decays

    CERN Document Server

    Abe, K; Aihara, H; Arinstein, K; Aso, T; Aulchenko, V; Aushev, T; Aziz, T; Bahinipati, S; Bakich, A M; Balagura, V; Ban, Y; Banerjee, S; Barberio, E; Bay, A; Bedny, I; Belous, K S; Bhardwaj, V; Bitenc, U; Blyth, S; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, M C; Chang, P; Chao, Y; Chen, A; Chen, K F; Chen, W T; Cheon, B G; Chiang, C C; Chistov, R; Cho, I S; Choi, S K; Choi, Y; Choi, Y K; Cole, S; Dalseno, J; Danilov, M; Das, A; Dash, M; Dragic, J; Drutskoy, A; Eidelman, S; Epifanov, D; Fratina, S; Fujii, H; Fujikawa, M; Gabyshev, N; Garmash, A; Go, A; Gokhroo, G; Goldenzweig, P; Golob, B; Grosse-Perdekamp, M; Guler, H; Ha, H; Haba, J; Hara, K; Hara, T; Hasegawa, Y; Hastings, N C; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Higuchi, T; Hinz, L; Hoedlmoser, H; Hokuue, T; Horii, Y; Hoshi, Y; Hoshina, K; Hou, S; Hou, W S; Hsiung, Y B; Hyun, H J; Igarashi, Y; Iijima, T; Ikado, K; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwabuchi, M; Iwasaki, M; Iwasaki, Y; Jacoby, C; Joshi, N J; Kaga, M; Kah, D H; Kaji, H; Kajiwara, S; Kakuno, H; Kang, J H; Kapusta, P; Kataoka, S U; Katayama, N; Kawai, H; Kawasaki, T; Kibayashi, A; Kichimi, H; Kim, H J; Kim, H O; Kim, J H; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Kozakai, Y; Krizan, P; Krokovny, P; Kumar, R; Kurihara, E; Kusaka, A; Kuzmin, A; Kwon, Y J; Lange, J S; Leder, G; Lee, J; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Li, J; Limosani, A; Lin, S W; Liu, Y; Liventsev, D; MacNaughton, J; Majumder, G; Mandl, F; Marlow, D; Matsumura, T; Matyja, A; McOnie, S; Medvedeva, T; Mikami, Y; Mitaroff, W A; Miyabayashi, K; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Moloney, G R; Mori, T; Müller, J; Murakami, A; Nagamine, T; Nagasaka, Y; Nakahama, Y; Nakamura, I; Nakano, E; Nakao, M; Nakayama, H; Nakazawa, H; Natkaniec, Z; Neichi, K; Nishida, S; Nishimura, K; Nishio, Y; Nishizawa, I; Nitoh, O; Noguchi, S; Nozaki, T; Ogawa, A; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ono, S; Ostrowicz, W; Ozaki, H; Pakhlov, P; Pakhlova, G; Palka, H; Park, C W; Park, H; Park, K S; Parslow, N; Peak, L S; Pernicka, M; Pestotnik, R; Peters, M; Piilonen, L E; Poluektov, A; Rorie, J; Rózanska, M; Sahoo, H; Sakai, Y; Sakamoto, H; Sakaue, H; Sarangi, T R; Satoyama, N; Sayeed, K; Schietinger, T; Schneider, O; Schonmeier, P; Schümann, J; Schwanda, C; Schwartz, A J; Seidl, R; Sekiya, A; Senyo, K; Sevior, M E; Shang, L; Shapkin, M; Shen, C P; Shibuya, H; Shinomiya, S; Shiu, J G; Shwartz, B; Singh, J B; Sokolov, A; Solovieva, E; Somov, A; Stanic, S; Staric, M; Stypula, J; Sugiyama, A; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tamura, N; Tanaka, M; Taniguchi, N; Taylor, G N; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tse, Y F; Tsuboyama, T; Uchida, K; Uchida, Y; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Yu; Varner, G; Varvell, K E; Vervink, K; Villa, S; Vinokurova, A; Wang, C C; Wang, C H; Wang, J; Wang, M Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wedd, R; Wicht, J; Widhalm, L; Wiechczynski, J; Won, E; Yabsley, B D; Yamaguchi, A; Yamamoto, H; Yamaoka, M; Yamashita, Y; Yamauchi, M; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, L M; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A; Zwahlen, N

    2007-01-01

    A distinct peak is observed in the pi^+/- psi' invariant mass distribution near 4.43 GeV in B->K pi^+/- psi' decays. A fit using a Breit Wigner resonance shape yields a peak mass and width of 4433+-4(stat)+-1(syst) MeV and Gamma = 44^+17_-13(stat) ^+30_-11 MeV. The product branching fraction is determined to be Bf(B-->KZ(4430))xBf(Z(4430)-->pi^+psi') = (4.1+-1.0(stat)+-1.3(syst))x10^{-5), where Z(4430) is used to designate the observed structure. The statistical significance of the observed peak is greater than 7sigma. These results are obtained from a 605 fb-1 data sample that contains 657 million BBbar pairs collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+e- collider.

  19. Grating Ti:Sa laser: Rydberg & auto-ionizing state spectroscopy

    Science.gov (United States)

    Teigelhoefer, Andrea; Bricault, Pierre; Lassen, Jens; Neu, Walter; Wendt, Klaus

    2009-05-01

    TRIUMF's Isotope Separator and Accelerator facility (ISAC) provides intense radioactive isotope beams (RIB) for nuclear and particle physics experiments. Resonant laser ionization is well suited as an on-line ion source for RIB production due to its efficiency and element selectivity. TRIUMF's Laser Ion Source (TRI LIS) uses BRF tuned Ti:Sa lasers with GHz linewidth and 10kHz rep. rate. Continuous wavelength scanning of these lasers is involved. A grating tuned Ti:Sa laser was built to allow for high resolution continuous wavelength scans (10nm/h) thus allowing for systematic studies of high lying atomic energy levels and the development of efficient RIS schemes. This grating tuned Ti:Sa laser system will be presented.

  20. Scheme for multistep resonance photoionization of atoms

    Science.gov (United States)

    Liu, Bo; Ning, Xi-Jing

    2001-07-01

    Traditional schemes for multistep resonance photoionization of atoms let every employed laser beam interact with the atoms simultaneously. In such a situation, analyses via time-dependent Schrödinger equation show that high ionization probability requires all the laser beams must be intense enough. In order to decrease laser intensity, we proposed a scheme that the laser beam used to pump the excited atoms (in a higher bound state) into an autoionization state does not interact with the atoms until all the population is transferred by the other lasers from a ground state to the bound state. As an interesting example, we examined three-step photoionization of 235U with our scheme, showing that the intensity of two laser beams can be lowered by two orders of magnitude without losing high ionization probability.

  1. Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara;

    2015-01-01

    Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithographically positioned, site-controlled semicond...

  2. Atomic and molecular complex resonances from real eigenvalues using standard (hermitian) electronic structure calculations

    CERN Document Server

    Landau, Arie; Kaprálová-Žďánská, Petra Ruth; Moiseyev, Nimrod

    2015-01-01

    Complex eigenvalues, resonances, play an important role in large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and pre-dissociative metastable resonances are generated. However, the computation of complex resonance eigenvalues is difficult, since it requires severe modifications of standard electronic structure codes and methods. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Pad\\'{e}). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit,...

  3. Effects of angular momentum projection on the nuclear partition function and the observation of the giant dipole resonance in hot nuclei

    OpenAIRE

    Ormand, W. E.; Bortignon, P. F.; Broglia, R A

    1997-01-01

    Procedures for projecting angular momentum in a model describing a hot nucleus that takes into account large-amplitude quadrupole fluctuations are discussed. Particular attention is paid to the effect angular-momentum projection has on the observables associated with the $\\gamma$-decay of the giant-dipole resonance (GDR). We also elaborate on which of the different projection methods provides the best overall description of the GDR, including angular distributions. The main consequence of ang...

  4. Coupling of ultrathin tapered fibers with high-Q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling

    CERN Document Server

    Fujiwara, Masazumi; Tanaka, Akira; Toubaru, Kiyota; Zhao, Hong-Quan; Takeuchi, Shigeki; 10.1364/OE.20.019545

    2012-01-01

    We cooled ultrathin tapered fibers to cryogenic temperatures and controllably coupled them with high-Q microsphere resonators at a wavelength close to the optical transition of diamond nitrogen vacancy centers. The 310-nm-diameter tapered fibers were stably nanopositioned close to the microspheres with a positioning stability of approximately 10 nm over a temperature range of 7-28 K. A cavity-induced phase shift was observed in this temperature range, demonstrating a discrete transition from undercoupling to overcoupling.

  5. Initial Design Calculations for a Detection System that will Observe Resonant Excitation of the 680 keV state in 238U

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Hagmann, C

    2007-01-26

    We present calculations and design considerations for a detection system that could be used to observe nuclear resonance fluorescence in {sup 238}U. This is intended as part of an experiment in which a nearly monochromatic beam of light incident on a thin foil of natural uranium resonantly populates the state at 680 keV in {sup 238}U. The beam of light is generated via Compton upscattering of laser light incident on a beam of relativistic electrons. This light source has excellent energy and angular resolution. In the current design study we suppose photons emitted following de-excitation of excited nuclei to be observed by a segmented array of BGO crystals. Monte Carlo calculations are used to inform estimates for the design and performance of this detector system. We find that each detector in this array should be shielded by about 2 cm of lead. The signal to background ratio for each of the BGO crystals is larger than ten. The probability that a single detector observes a resonant photon during a single pulse of the light source is near unity.

  6. Two-step excitation of an auto-ionized state of the Ba atom associated with two-photon excitation of an intermediate state

    International Nuclear Information System (INIS)

    An experimental and theoretical study is performed of the angular photoelectron distribution for three-photon ionization of Ba atoms through the 2ω-excited intermediate state 6p2(1S0) and the auto-ionized state 6p8s(3P1). Rotation of the polarization plane of dye-laser radiation allowed us to investigate the photoelectron angular distribution. Electrons were counted with the help of a time-of-flight electron spectrometer. The density-matrix formalism is used to obtain expressions for the angular dependence of the differential ionization probability. Possible experiments are discussed

  7. Autoionization of Be-like ions following double electron capture in C sup 4+ , O sup 6+ and Ne sup 8+ ions

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.W.

    1990-09-11

    This paper describes electron emission following the autoionization of doubly excited states in Be-like ions. The Be-like Auger states are produced by two electron capture in slow C{sup 4+}, O{sup 6+} and Ne{sup 8+} ions. These measurements were performed by means of high resolution Auger electron spectroscopy on different target gases and at different projectile energies. Line assignments and relative cross sections are given for the investigated doubly excited states and the excitation mechanism is discussed. 15 refs., 16 figs., 4 tabs.

  8. Near 3:2 and 2:1 mean motion resonance formation in the systems observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Su; Ji, Jianghui, E-mail: wangsu@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-11-01

    The Kepler mission has released ∼4229 transiting planet candidates. There are approximately 222 candidate systems with three planets. Among them, the period ratios of planet pairs near 1.5 and 2.0 reveal that two peaks exist for which the proportions of the candidate systems are ∼7.0% and 18.0%, respectively. In this work, we study the formation of mean motion resonance (MMR) systems, particularly for the planetary configurations near 3:2 and 2:1 MMRs, and we concentrate on the interplay between the resonant configuration and the combination of stellar accretion rate, stellar magnetic field, speed of migration, and additional planets. We perform more than 1000 runs by assuming a system with a solar-like star and three surrounding planets. From the statistical results, we find that under the formation scenario, the proportions near 1.5 and 2.0 can reach 14.5% and 26.0%, respectively. In addition, M-dot =0.1×10{sup −8} M{sub ⊙} yr{sup −1} is propitious toward the formation of 3:2 resonance, whereas M-dot =2×10{sup −8} M{sub ⊙} yr{sup −1} contributes to the formation of 2:1 resonance. The speed-reduction factor of type I migration f {sub 1} ≥ 0.3 facilitates 3:2 MMRs, whereas f {sub 1} ≥ 0.1 facilitates 2:1 MMRs. If additional planets are present in orbits within the innermost or beyond the outermost planet in a three-planet system, 3:2:1 MMRs can be formed, but the original systems trapped in 4:2:1 MMRs are not affected by the supposed planets. In summary, we conclude that this formation scenario will provide a likely explanation for Kepler candidates involved in 2:1 and 3:2 MMRs.

  9. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy.

    OpenAIRE

    Sinnwell, T M; Sivakumar, K.; Soueidan, S; Jay, C; Frank, J.A.; McLaughlin, A C; Dalakas, M C

    1995-01-01

    Patients on long-term zidovudine (AZT) therapy experience muscle fatigue and weakness attributed to AZT-induced mitochondrial toxicity in skeletal muscle. To determine if the clinico-pathological abnormalities in these patients correspond to abnormal muscle energy metabolism, we used 31P in vivo magnetic resonance spectroscopy to follow phosphorylated metabolites during exercise. We studied 19 normal volunteers, 6 HIV-positive patients never treated with AZT, and 9 HIV-positive patients who h...

  10. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan in possible association with an earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2008-12-01

    Full Text Available The ELF observation at Moshiri (geographic coordinates: 44.29° N, 142.21° E in Hokkaido, Japan, was used to find anomalous phenomena in the Schumann resonance band, possibly associated with a large earthquake (magnitude of 7.8 in Taiwan on 26 December 2006. The Schumann resonance signal (fundamental (n=1, 8 Hz; 2nd harmonic, 14 Hz, 3rd harmonic, 20 Hz, 4th, 26 Hz etc. is known to be supported by electromagnetic radiation from the global thunderstorms, and the anomaly in this paper is characterized by an increase in intensity at frequencies from the third to fourth Schumann resonance modes mainly in the BEW component with a minor corresponding increase in the BNS component also. Spectral modification takes place only in the interval of 21:00 UT±1 h, which corresponds to the global lightning activity concentrated in America. While distortions were absent in other lightning-active UT intervals, in particular, around 08:00 UT±1 h (Asian thunderstorms and around 15±1 h (African lightning activity. The anomaly occurred on 23 December three days prior to the main shock. The results observed were explained in terms of ELF radio wave perturbation caused by the lower ionospheric depression around the earthquake epicenter. The difference in the path lengths between the direct radio wave from an active global thunderstorm center and the wave scattered from the non-uniformity above Taiwan causes interference at higher resonance modes, which is successful in explaining the observational data.

  11. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    Science.gov (United States)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  12. State interactions and illumination of hidden states through perturbations and observations of new states: High energy resonance enhanced multiphoton ionization of HI.

    Science.gov (United States)

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst

    2015-06-28

    Hydrogen iodide, a Hund's case (c) molecule, serves as a benchmark compound for studying rich molecular state interactions between Rydberg and valence states as well as between Rydberg states at high energies (72,300-74,600 cm(-1)) by mass resolved resonance enhanced multiphoton ionization (REMPI). Perturbations in the spectra appearing as deformations in line-positions, line-intensities, and linewidths are found to be either due to near-degenerate or non-degenerate interactions, both homogeneous and heterogeneous in nature. Perturbation analyses allow indirect observation as well as characterization of "hidden states" to some extent. Furthermore, new observable spectral features are assigned and characterized. PMID:26133433

  13. High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromsø heater

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available The CUTLASS Finland HF radar has been operated in conjunction with the EISCAT Tromsø RF ionospheric heater facility to examine a ULF wave characteristic of the development of a field line resonance (FLR driven by a cavity mode caused by a magnetospheric impulse. When the heater is on, striating the ionosphere with field-aligned ionospheric electron density irregularities, a large enough radar target is generated to allow post-integration over only 1 second. When combined with 15 km range gates, this gives radar measurements of a naturally occurring ULF wave at a far better temporal and spatial resolution than has been achieved previously. The time-dependent signature of the ULF wave has been examined as it evolves from a large-scale cavity resonance, through a transient where the wave period was latitude-dependent and the oscillation had the characteristics of freely ringing field lines, and finally to a very narrow, small-scale local field line resonance. The resonance width of the FLR is only 60 km and this is compared with previous observations and theory. The FLR wave signature is strongly attenuated in the ground magnetometer data. The characterisation of the impulse driven FLR was only achieved very crudely with the ground magnetometer data and, in fact, an accurate determination of the properties of the cavity and field line resonant systems challenges the currently available limitations of ionospheric radar techniques. The combination of the latest ionospheric radars and facilities such as the Tromsø ionospheric heater can result in a powerful new tool for geophysical research.

  14. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date. PMID:25361252

  15. Observation of overlapping spin-1 and spin-3 $\\overline{D}^0 K^-$ resonances at mass $2.86 {\\rm GeV}/c^2$

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The resonant substructure of $B_s^0 \\rightarrow \\overline{D}^0 K^- \\pi^+$ decays is studied using a data sample corresponding to an integrated luminosity of $3.0\\,{\\rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb detector. An excess at $m(\\overline{D}^0 K^-) \\approx 2.86 {\\rm GeV}/c^2$ is found to be an admixture of spin-1 and spin-3 resonances. Therefore the $D^*_{sJ}(2860)^-$ state previously observed in inclusive $e^+e^- \\rightarrow \\overline{D}^0 K^- X$ and $pp \\rightarrow \\overline{D}^0 K^- X$ processes consists of at least two particles. This is the first observation of a heavy flavoured spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in $B$ decays. The masses and widths of the new states and of the $D^*_{s2}(2573)^-$ meson are measured, giving the most precise determinations to date.

  16. Preliminary observations and clinical value of N-acetyl resonances in ovarian tumours using in-vivo proton MR spectroscopy at 3T

    International Nuclear Information System (INIS)

    To retrospectively evaluate the clinical significance of N-acetyl resonances at 2 ppm in in-vivo proton magnetic resonance (MR) spectroscopy for distinguishing mucinous and non-mucinous tumours in patients with ovarian masses. MR spectroscopy was performed in patients with pathologically diagnosed ovarian tumours at 3T-MR imaging. Single-voxel MR spectroscopy data were collected from a single square volume of interest that encompassed the ovarian masses. The metabolite resonance peak areas at 2 ppm were quantified relative to unsuppressed water using a software package (LCModel). A total of 32 ovarian lesions in 32 patients were evaluated in this study. High metabolite peak at 2 ppm was observed in all nine mucinous tumours (9.71 +/- 7.46 mM), whereas low peak was observed in 14 of 23 non-mucinous tumours (3.12 +/- 1.42 mM) (p < 0.001). Using a cut off value of 4.45 mM for mucinous tumours had a sensitivity of 89%, specificity of 86%, PPV of 80%, and NPV of 92%. Proton MR spectroscopy with quantitative evaluation of the metabolite at 2 ppm concentration, which may suggest the presence of mucinous material containing N-acetyl mucinous compounds, can provide helpful information in distinguishing mucinous and non-mucinous ovarian tumours. (orig.)

  17. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date.

  18. Observation of Two Resonant Structures in e+e- to pi+ pi- psi(2S) via Initial State Radiation at Belle

    CERN Document Server

    Wang, X L; Shen, C P; Wang, P; Adachi, I; Aihara, H; Aushev, T; Bakich, A M; Barberio, E; Bedny, I; Bhardwaj, V; Bitenc, U; Blyth, S; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, P; Chen, A; Chen, K F; Cheon, B G; Chiang, C C; Chistov, R; Cho, I S; Choi, S K; Choi, Y; Dalseno, J; Danilov, M; Dash, M; Drutskoy, A; Eidelman, S; Gabyshev, N; Go, A; Gokhroo, G; Ha, H; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hoshi, Y; Hou, W S; Hyun, H J; Iijima, T; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwasaki, Y; Kah, D H; Kang, J H; Kawai, H; Kawasaki, T; Kichimi, H; Kim, H O; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Krizan, P; Krokovny, P; Kumar, R; Kuo, C C; Kuzmin, A; Lange, J S; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Limosani, A; Lin, S W; Liu, Y; Liventsev, D; Mandl, F; McOnie, S; Medvedeva, T; Miyabayashi, K; Miyake, H; Miyata, H; Mizuk, R; Mori, T; Nakano, E; Nakao, M; Nakazawa, H; Natkaniec, Z; Nishida, S; Nitoh, O; Noguchi, S; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ozaki, H; Pakhlov, P; Pakhlova, G; Palka, H; Park, C W; Park, H; Park, K S; Pestotnik, R; Piilonen, L E; Sahoo, H; Sakai, Y; Schneider, O; Sekiya, A; Sevior, M E; Shapkin, M; Shibuya, H; Shiu, J G; Singh, J B; Sokolov, A; Somov, A; Stanic, S; Staric, M; Sumiyoshi, T; Takasaki, F; Tamai, K; Tanaka, M; Taylor, G N; Teramoto, Y; Tikhomirov, I; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Villa, S; Vinokurova, A; Wang, C C; Wang, C H; Watanabe, Y; Won, E; Yabsley, B D; Yamaguchi, A; Yamashita, Y; Yamauchi, M; Zhang, C C; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2007-01-01

    The cross section for e+e- to pi+ pi- psi(2S) between threshold and \\sqrt{s}=5.5 GeV is measured using 673 fb^{-1} of data on and off the \\Upsilon(4S) resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the pi+ pi- psi(2S) invariant mass distribution, one at 4361\\pm 9\\pm 9 MeV/c^2 with a width of 74\\pm 15\\pm 10 MeV/c^2, and another at 4664\\pm 11\\pm 5 MeV/c^2 with a width of 48\\pm 15\\pm 3 MeV/c^2, if the mass spectrum is parameterized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.

  19. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    explains this as phase matching between a sideband in the broadband pump to its second harmonic. However, our experiment is conducted under high input intensities and instead shows excellent quantitative agreement with a nonlocal theory describing cascaded quadratic nonlinearities. This theory explains the...... detuned peak as a nonlocal resonance that arises due to phase matching between the pump and a detuned second-harmonic frequency, but where in contrast to the traditional theory the pump is assumed dispersion free. As a soliton is inherently dispersion free, the agreement between our experiment and the...

  20. Dramatic enhancement of fullerene anion formation in polymer solar cells by thermal annealing: Direct observation by electron spin resonance

    OpenAIRE

    Liu, Dong; Nagamori, Tatsuya; Yabusaki, Masaki; Yasuda, Takeshi; HAN, LIYUAN; Marumoto, Kazuhiro

    2014-01-01

    Using electron spin resonance (ESR), we clarified the origin of the efficiency degradation of polymer solar cells containing a lithium-fluoride (LiF) buffer layer created by a thermal annealing process after the deposition of an Al electrode (post-annealing). The device structure was indium-tin-oxide/ poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/LiF/Al. Three samples consisting of quartz/P3HT:PCBM/LiF/Al, qua...

  1. Effects of autoionization in electron loss from helium-like highly charged ions in collisions with photons and fast atomic particles

    CERN Document Server

    Lyashchenko, K N; Voitkiv, A B

    2016-01-01

    We study theoretically single electron loss from helium-like highly charged ions involving excitation and decay of autoionizing states of the ion. Electron loss is caused by either photo absorption or the interaction with a fast atomic particle (a bare nucleus, a neutral atom, an electron). The interactions with the photon field and the fast particles are taken into account in the first order of perturbation theory. Two initial states of the ion are considered: $1s^2$ and $(1s2s)_{J=0}$. We analyze in detail how the shape of the emission pattern depends on the atomic number $Z_{I}$ of the ion discussing, in particular, the inter-relation between electron loss via photo absorption and due to the impact of atomic particles in collisions at modest relativistic and extreme relativistic energies. According to our results, in electron loss from the $1s^2$ state autoionization may substantially influence the shape of the emission spectra only up to $Z_{I} \\approx 35-40$. A much more prominent role is played by autoi...

  2. Competition between benzene and styrene in forming radicals under different solvent conditions observed by muon level crossing resonance

    International Nuclear Information System (INIS)

    The muon level-crossing-resonance technique has been used to resolve major discrepancies that exist in muon-spin-resonance studies (both free-radical formation and muonium decay rates) in the competition between benzene and styrene. The results, obtained for ∼30 mM solutions in ethanol and for 2.5 mM aqueous micelles solutions, show that muonium atoms (Mu) react 8 (±2) times faster with styrene than with benzene. In the above cases thermalized Mu is unquestionably the reactive species, which is known to show nucleophilic intra-molecular selectivity in the case of styrene. But a similar value, 9 (±2), was also obtained for undiluted mixtures of liquid benzene and styrene (neat mixture) - where the precursor might have been 'hot Mu' (which should display weaker selectivity than Mu) or cations derived from μ+ (which should show higher selectivity). These results support the view that thermalized Mu is the predominant reactive species in liquid benzene and styrene. (orig.)

  3. The photoionization of Fe7+ and Fe8+ in the 2p-3d resonance energy region

    International Nuclear Information System (INIS)

    The photoionization cross sections of the levels belonging to the ground configuration [Ne]3s23p63d of Fe7+ and [Ne]3s23p6 of Fe8+ have been investigated using the fully relativistic R-matrix method in the 2p-3d excitation region. The detailed resonance structures are described and analysed in some detail with the resonance positions, widths and oscillator strengths being determined. To identify the resonances, the transition energies and oscillator strengths are calculated by the multi-configuration Dirac-Fock method implemented by the GRASP code as well. The cross sections have also been obtained using the non-relativistic R-matrix calculations. The resonances in the relativistic calculation span a much broader energy region than the non-relativistic result. For an iron plasma at a temperature of 20 eV and a density of 0.004 g cm-3, which is a typical experimental condition recently carried out by Chenais-Popovics et al (2000 Astrophys. J. Suppl. Ser. 127 275), the autoionization widths of the 2p-3d resonances are much larger than the widths caused by the radiative lifetime and electron impact broadening, while the Doppler widths are smaller than but rather close to the autoionization widths

  4. Observation of a resonance in the K$_s$p decay channel at a mass of 1765 MeV/c$^2$

    CERN Document Server

    Adamovich, M I; Barberis, D; Beck, M; Bérat, C; Beusch, W; Boss, M; Brons, S; Brückner, W; Buénerd, M; Busch, C; Büscher, C; Charignon, F; Chauvin, J; Chudakov, E A; Dersch, U; Dropmann, F; Engelfried, J; Faller, F; Fournier, A; Gerassimov, S G; Godbersen, M; Grafstr"om, P; Haller, T; Heidrich, M; Hubbard, E; Hurst, R B; Königsmann, K C; Konorov, I; Keller, N; Martens, K; Martin, P; Masciocchi, S; Michaels, R; Müller, U; Neeb, H; Newbold, D; Newsom, C; Paul, S; Pochodzalla, J; Potashnikova, I K; Povh, B; Ren, Z; Epherre-Rey-Campagnolle, Marcelle; Rosner, G; Rossi, L; Rudolph, H; Scheel, C; Schmitt, L; Siebert, H W; Simon, A; Smith, V; Thilmann, O; Trombini, A; Vesin, E; Volkemer, B; Vorwalter, K; Walcher, T; W"alder, G; Werding, R; Wittmann, E; Zavertyaev, M V; Alexandrov, Yu.A.; Haller, Th.; Martin, Ph.; Walcher, Th.

    2007-01-01

    We report on the observation of a K$_s$p resonance signal at a mass of 1765$\\pm$5 MeV/c$^2$, with intrinsic width $\\Gamma = 108\\pm 22$ MeV/c$^2$, produced inclusively in $\\Sigma^-$-nucleus interactions at 340 GeV/c in the hyperon beam experiment WA89 at CERN. The signal was observed in the kinematic region $x_F>0.7$, in this region its production cross section rises approximately linearly with $(1-x_F)$, reaching $BR(X\\to K_S p)\\cdot d\\sigma /dx_F = (5.2\\pm 2.3) \\mu b $ per nucleon at $x_F=0.8$. The hard \\xf spectrum suggests the presence of a strong leading particle effect in the production and hence the identification as a $\\Sigma^{*+}$ state. No corresponding peaks were observed in the $K^- p$ and $\\Lambda \\pi^{\\pm}$ mass spectra.

  5. C-axis Josephson Plasma Resonance Observed in Tl$_{2}$Ba$_{2}$CaCu$_{2}$O$_{8}$ Superconducting Thin Films using Terahertz Time-Domain Spectroscopy

    OpenAIRE

    Thorsmølle, V. K.; Averitt, R. D.; Maley, M. P.; Bulaevskii, L. N.; Helm, C.; Taylor, A. J.

    2001-01-01

    We have unambiguously observed the c-axis Josephson Plasma Resonance (JPR) in high-T$_{c}$ cuprate Tl$_{2}$Ba$_{2}$CaCu$_{2}$O$_{8}$ superconducting thin films employing terahertz time-domain spectroscopy in transmission as a function of temperature in zero magnetic field. These are the first measurements of the JPR temperature dependence of a high-$T_{c}$ material in transmission. With increasing temperature, the JPR shifts from 705 GHz at 10 K to $\\sim$170 GHz at 98 K corresponding to a c-a...

  6. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  7. Water entry for the black locust (Robinia pseudoacacia L.) seeds observed by dedicated micro-magnetic resonance imaging.

    Science.gov (United States)

    Koizumi, Mika; Kano, Hiromi

    2016-07-01

    Water entry at germination for black locust (Robinia pseudoacacia L.) seeds which are known as hard seeds with impermeable seed coat to water, was examined using micro-magnetic resonance imaging (MRI). The MRI apparatus equipped with a low-field (1 T; Tesla) permanent magnet was used, which is open access, easy maintenance, operable and transportable. The excellent point of the apparatus is that T 1-enhancement of water signals absorbed in dry seeds against steeping free water is stronger than the apparatuses with high-field superconducting magnets, which enabled clear detection of water entry. Water hardly penetrated into the seeds for more than 8 h but approximately 60 % of seeds germinated by incubating on wet filter papers for several days. Hot water treatments above 75 °C for 3 min effectively induced water gap; scarification was 70 % at 100 °C and 75 °C, declined to 15 % at 50 °C and decreased further at room temperature. Water entered into the scarified seeds exclusively through the lens, spread along the dorsal side of the seeds and reached the hypocotyl, whereas water migrated slowly through hilum side to radicle within 3 h. PMID:27059756

  8. Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Terraz, Sylvain; Cernicanu, Alexandru; Lepetit-Coiffe, Matthieu; Viallon, Magalie; Salomir, Rares; Becker, Christoph D. [University Hospitals of Geneva, Department of Radiology, Geneva 14 (Switzerland); Mentha, Gilles [University Hospitals of Geneva, Department of Visceral Surgery and Transplantation, Geneva (Switzerland)

    2010-04-15

    To evaluate the feasibility and effectiveness of magnetic resonance (MR)-guided radiofrequency (RF) ablation for small liver tumours with poor conspicuity on both contrast-enhanced ultrasonography (US) and computed tomography (CT), using fast navigation and temperature monitoring. Sixteen malignant liver nodules (long-axis diameter, 0.6-2.4 cm) were treated with multipolar RF ablation on a 1.5-T wide-bore MR system in ten patients. Targeting was performed interactively, using a fast steady-state free precession sequence. Real-time MR-based temperature mapping was performed, using gradient echo-echo planar imaging (GRE-EPI) and hardware filtering. MR-specific treatment data were recorded. The mean follow-up time was 19 {+-} 7 months. Correct placement of RF electrodes was obtained in all procedures (image update, <500 ms; mean targeting time, 21 {+-} 11 min). MR thermometry was available for 14 of 16 nodules (88%) with an accuracy of 1.6 C in a non-heated region. No correlation was found between the size of the lethal thermal dose and the ablation zone at follow-up imaging. The primary and secondary effectiveness rates were 100% and 91%, respectively. RF ablation of small liver tumours can be planned, targeted, monitored and controlled with MR imaging within acceptable procedure times. Temperature mapping is technically feasible, but the clinical benefit remains to be proven. (orig.)

  9. Observation of the 5p Rydberg states of sulfur difluoride radical by resonance-enhanced multiphoton ionization spectroscopy

    CERN Document Server

    Zhang, Qun; Li, Quanxin; Yu, Shuqin; Ma, Xingxiao

    2008-01-01

    Sulfur difluoride radicals in their ground state have been produced by a "laser-free" pulsed dc discharge of the SF$_{6}$/Ar gas mixtures in a supersonic molecular beam and detected by mass-selective resonance-enhanced multilphoton ionization (REMPI) spectroscopy in the wavelength range of 408 - 420 nm. Analyses of the (3 + 1) REMPI excitation spectrum have enabled identification of three hitherto unknown Rydberg states of this radical. Following the Rydberg state labeling in our previous work [see J. Phys. Chem. A 102, 7233 (1998)], these we label the K(5p$_{1}$) [$nu_{0-0}$ = 71 837 cm$^{-1}$, $omega_{1}^{'}$(a$_{1}$ sym str) = 915 cm$^{-1}$], L(5p$_{2}$) [$nu_{0-0}$ = 72 134 cm$^{-1}$, $omega_{1}^{'}$(a$_{1}$ sym str) = 912 cm$^{-1}$], and M(5p$_{3}$) [$nu_{0-0}$ = 72 336 cm$^{-1}$, $omega_{1}^{'}$(a$_{1}$ sym str) = 926 cm$^{-1}$] Rydberg states, respectively. [Origins, relative to the lowest vibrational level of the X$^{1}$A$_{1}$ ground state, and vibrational frequencies of the symmetric S-F stretching ...

  10. Resonance conditions

    CERN Document Server

    Rebusco, P

    2005-01-01

    Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we discuss which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

  11. Resonance conditions

    Science.gov (United States)

    Rebusco, P.

    2005-11-01

    Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we show which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

  12. Nuclear Magnetic Resonance Observation of α-Synuclein Membrane Interaction by Monitoring the Acetylation Reactivity of Its Lysine Side Chains.

    Science.gov (United States)

    Lee, Jung Ho; Ying, Jinfa; Bax, Ad

    2016-09-01

    The interaction between α-synuclein (αS) protein and lipid membranes is key to its role in synaptic vesicle homeostasis and plays a role in initiating fibril formation, which is implicated in Parkinson's disease. The natural state of αS inside the cell is generally believed to be intrinsically disordered, but chemical cross-linking experiments provided evidence of a tetrameric arrangement, which was reported to be rich in α-helical secondary structure based on circular dichroism (CD). Cross-linking relies on chemical modification of the protein's Lys C(ε) amino groups, commonly by glutaraldehyde, or by disuccinimidyl glutarate (DSG), with the latter agent preferred for cellular assays. We used ultra-high-resolution homonuclear decoupled nuclear magnetic resonance experiments to probe the reactivity of the 15 αS Lys residues toward N-succinimidyl acetate, effectively half the DSG cross-linker, which results in acetylation of Lys. The intensities of both side chain and backbone amide signals of acetylated Lys residues provide direct information about the reactivity, showing a difference of a factor of 2.5 between the most reactive (K6) and the least reactive (K102) residue. The presence of phospholipid vesicles decreases reactivity of most Lys residues by up to an order of magnitude at high lipid:protein stoichiometries (500:1), but only weakly at low ratios. The decrease in Lys reactivity is found to be impacted by lipid composition, even for vesicles that yield similar αS CD signatures. Our data provide new insight into the αS-bilayer interaction, including the pivotal state in which the available lipid surface is limited. Protection of Lys C(ε) amino groups by αS-bilayer interaction will strongly impact quantitative interpretation of DSG cross-linking experiments.

  13. Excitation energies, radiative and autoionization rates, dielectronic satellite lines and dielectronic recombination rates for excited states of Ag-like W from Pd-like W

    International Nuclear Information System (INIS)

    Energy levels, radiative transition probabilities and autoionization rates for [Kr]4d94fnl (n = 4-9), [Kr]4d95l'nl (n = 5-9) and [Kr]4d96l'nl (n = 6-7) states in Ag-like tungsten (W27+) are calculated using the relativistic many-body perturbation theory method, the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code and the Hartree-Fock-relativistic method. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the singly excited [Kr]4d10nl (n = 4-9) states. The total DR rate coefficient is derived as a function of electron temperature. These atomic data are important in the modelling of N-shell radiation spectra of heavy ions generated in various collision as well as plasma experiments. The tungsten data are particularly important for fusion application.

  14. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization

    CERN Document Server

    Brics, M

    2013-01-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOM) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNO) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a "worst case" testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimens...

  15. Observation of a Change in Bend of an RNA Kissing Complex Using the Angular Dependence of Fluorescence Resonance Energy Transfer

    CERN Document Server

    Rahmanseresht, Sheema; Gamari, Ben D; Goldner, Lori S

    2014-01-01

    We report on the observation of a change in the bend angle of an RNA kissing complex upon Rop binding using single-molecular-pair FRET. The angular relationship between the dyes, rather than the distance between them, is shown to be responsible for the observed change in energy transfer. It has long been thought that Rop increases the bend angle of the R1inv-R2inv complex upon binding, but this has never been directly observed. In contrast, we find an increase in FRET upon the addition of Rop that is shown via modeling to be consistent with a decrease in the bend angle of the complex of $-15^{\\circ}\\pm7^{\\circ}$. The model predicts FRET from dye trajectories generated using molecular dynamics simulations of Cy3 and Cy5 attached to $5'$ terminal cytosine or guanosine on RNA. While FRET is commonly used to observe global changes in molecular structure attributed to changes in the distance between dyes, it is rarely, if ever, used to elucidate angular changes. Subtle global changes in molecular structure upon bi...

  16. Observation of J/ψp Resonances Consistent with Pentaquark States in Λ_{b}^{0}→J/ψK^{-}p Decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A

    2015-08-14

    Observations of exotic structures in the J/ψp channel, which we refer to as charmonium-pentaquark states, in Λ_{b}^{0}→J/ψK^{-}p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV. The preferred J^{P} assignments are of opposite parity, with one state having spin 3/2 and the other 5/2. PMID:26317714

  17. A new study of the $^{22}$Ne(p,$\\gamma$)$^{23}$Na reaction deep underground: Feasibility, setup, and first observation of the 186 keV resonance

    CERN Document Server

    Cavanna, F; Menzel, M -L; Aliotta, M; Anders, M; Bemmerer, D; Broggini, C; Bruno, C G; Caciolli, A; Corvisiero, P; Davinson, T; di Leva, A; Elekes, Z; Ferraro, F; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Imbriani, G; Junker, M; Menegazzo, R; Prati, P; Alvarez, C Rossi; Scott, D A; Somorjai, E; Straniero, O; Strieder, F; Szücs, T; Trezzi, D

    2014-01-01

    The $^{22}$Ne(p,$\\gamma$)$^{23}$Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle is active in asymptotic giant branch stars as well as in novae and contributes to the nucleosythesis of neon and sodium isotopes. In order to reduce the uncertainties in the predicted nucleosynthesis yields, new experimental efforts to measure the $^{22}$Ne(p,$\\gamma$)$^{23}$Na cross section directly at the astrophysically relevant energies are needed. In the present work, a feasibility study for a $^{22}$Ne(p,$\\gamma$)$^{23}$Na experiment at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400\\,kV accelerator deep underground in the Gran Sasso laboratory, Italy, is reported. The ion beam induced $\\gamma$-ray background has been studied. The feasibility study led to the first observation of the $E_{\\rm p}$ = 186\\,keV resonance in a direct experiment. An experimental lower limit of 0.12\\,$\\times$\\,10$^{-6}$\\,eV has been obtained for the resonance strength. Informed by the feasibility study,...

  18. LHCb- Observation of $J/\\psi p$ resonances consitent with pentaquark staes in $\\Lambda^0_b \\to J/\\psi K^-p$ decays

    CERN Multimedia

    Adeva Andany, Bernardo

    2015-01-01

    The observation of exotic structures in the $J/\\psi p$ channel, refered to as pentaquark-charmonium states, in the decay $\\Lambda^0_b \\rightarrow J/\\psi K^- p$, are presented. An amplitude analysis is performed on the three-body final state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 $\\pm$ 8 $\\pm$ 29 MeV and a width of 205 $\\pm$ 18 $\\pm$ 86 MeV, while the second is narrower, with a mass of 4449.8 $\\pm$ 1.7 $\\pm$ 2.5 MeV and a width of 39 $\\pm$ 5 $\\pm$ 19. The preferred $J^P$ assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

  19. Observation of J/ψp Resonances Consistent with Pentaquark States in Λ_{b}^{0}→J/ψK^{-}p Decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A

    2015-08-14

    Observations of exotic structures in the J/ψp channel, which we refer to as charmonium-pentaquark states, in Λ_{b}^{0}→J/ψK^{-}p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV. The preferred J^{P} assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

  20. Observation of $J/\\psi$ p resonances consistent with pentaquark states in$\\wedge_ b^0$ → $J/\\psi K^−p$ decays

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00400750

    The observation of structures consistent with charmonium-pentaquark states decaying to $J/\\psi p$ in $\\wedge_b^0$ → $J/\\psi K^−p$ decays is presented. The data sample analyzed corresponds to an integrated luminosity of $3 fb^−1$ acquired with the LHCb detector from 7 and 8 TeV $pp$ collisions. An amplitude analysis was performed which utilized all six kinematic degrees of freedom in the decay. It was shown that adequate descriptions of the data are unattainable with only $K^−p$ resonances in the amplitude model. For satisfactory fits of the data, it was found to be necessary to include two $J/\\psi p$ resonances, with each having significances of over 9 standard deviations. One has a mass of $4449.8 \\pm1.7\\pm2.2 MeV$ and a width of $39\\pm5\\pm16 MeV$, while the second is broader, with a mass of $4380 \\pm8\\pm29 MeV$ and a width of $205\\pm18\\pm87 MeV$. The $J^P$ assignments could not be uniquely determined, though there is a preference for one to have spin 3/2 and the other spin 5/2 with an opposite parit...

  1. Observation of $J/\\psi p$ resonances consistent with pentaquark states in ${\\Lambda_b^0\\to J/\\psi K^-p}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2015-01-01

    Observations of exotic structures in the $J/\\psi p$ channel, that we refer to as pentaquark-charmonium states, in $\\Lambda_b^0\\to J/\\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3/fb acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380\\pm 8\\pm 29$ MeV and a width of $205\\pm 18\\pm 86$ MeV, while the second is narrower, with a mass of $4449.8\\pm 1.7\\pm 2.5$ MeV and a width of $39\\pm 5\\pm 19$ MeV. The preferred $J^P$ assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

  2. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.; Akinoglu, E. M.; Fumagalli, P., E-mail: paul.fumagalli@fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Caballero, B.; García-Martín, A. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain); Papaioannou, E. Th. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Cuevas, J. C. [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Giersig, M. [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Helmholtz Zentrum Berlin, Institute of Nanoarchitectures for Energy Conversion, 14195 Berlin (Germany)

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  3. Observation of M1 resonance in sup 2 sup 0 sup 6 Pb using a highly linear polarized photon beam

    CERN Document Server

    Ohgaki, H; Noguchi, T; Sugiyama, S; Mikado, T; Yamada, K; Suzuki, R; Ohdaira, T; Sei, N; Yamazaki, T

    1999-01-01

    More than twenty M1 states were discovered in sup 2 sup 0 sup 6 Pb from 6.5 to 8.1 MeV with a high-resolution NRF experiment that used a highly linear-polarized photon beam generated by laser-Compton backscattering. The total reduced transition probability of sigma B(M1 arrow up) = 17.4+-5.6 mu sup 2 sub N agreed well with QPM calculation (16.1 mu sup 2 sub N) and previous tagged photon experiment (19 +- 2 mu sup 2 sub N). A fine structure of two bumps at 7.2 and 7.9 MeV which was reproduced reasonably by the QPM calculation was clearly observed in the isovector M1 strength distribution.

  4. Clinical Observation of Electroacupuncture plus Magnetic Resonance for Postoperative Gastroparesis%电针联合磁振热治疗术后胃瘫临床观察

    Institute of Scientific and Technical Information of China (English)

    谈珉佳

    2015-01-01

    ObjectiveTo observe the clinical efficacy of electroacupuncture plus magnetic resonance in treatingpostoperative gastroparesis syndrome.MethodPatients with postoperative gastroparesis syndrome were recruited and coded according to the onset time, and then randomized into a treatment group of 10 cases and a control group of 10 cases. The treatment group was intervened by electroacupuncture plus magnetic resonance, while the control group was by electroacupuncture. The recovery time of gastrointestinal motility and drainage volume of gastric fluid were observed after treatment.ResultThe drainage volume of gastric fluid was significantly reduced (P<0.05) and it took less time to recover the gastrointestinal motility in the treatment group;compared to the control group, it took a significantly shorter time to recover the gastrointestinal motility in the treatmentgroup (P<0.05); after 20-day treatment, the drainage volume of gastric fluid was markedly reduced in the treatment group (P<0.05). ConclusionElectroacupuncture plus magnetic resonance can produce a more significant therapeutic efficacy in treating postoperative gastroparesis syndrome thanelectroacupuncture alone.%目的:观察电针联合磁振热治疗术后胃瘫综合征的临床疗效。方法收集术后胃瘫综合征患者,按发病时间顺序编号将其随机分为治疗组10例和对照组10例,治疗组采用电针联合磁振热治疗,对照组采用电针治疗,观察两组患者治疗后胃肠动力恢复时间和胃液引流量。结果治疗组能明显减少胃液引流量(P<0.05)及缩短胃肠动力恢复时间,与对照组比较,胃肠动力恢复时间显著缩短(P<0.05),治疗20 d后,胃液引流量显著减少(P<0.05)。结论采用电针联合磁振热方法治疗术后胃瘫综合征疗效明显优于单纯电针治疗。

  5. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals

    Science.gov (United States)

    Nakashima, Yuki; Heki, Kosuke; Takeo, Akiko; Cahyadi, Mokhamad N.; Aditiya, Arif; Yoshizawa, Kazunori

    2016-01-01

    Acoustic waves from volcanic eruptions are often observed as infrasound in near fields. Part of them propagate upward and disturb the ionosphere, and can be observed with Total Electron Content (TEC) data from Global Navigation Satellite System (GNSS) receivers. Here we report TEC variations after the 13 February 2014 Plinian eruption of the Kelud volcano, East Java, Indonesia, observed with regional GNSS networks. Significant disturbances in TEC were detected with six GNSS satellites, and wavelet analysis showed that harmonic oscillations started at ∼16:25 UT and continued for ∼2.5 h. The amplitude spectrum of the TEC time series showed peaks at 3.7 mHz, 4.8 mHz and 6.8 mHz. Long-wavelength standing waves with a wide range of wavelength trapped in the lower atmosphere are excited by the Plinian eruption. Amplitude spectra of the ground motion recorded by seismometers, however, had frequency components at discrete wave-periods. The condition for the resonant oscillations between the atmosphere and the solid Earth is satisfied only at these discrete wave-period and horizontal wavelength pairs, therefore efficient energy transfer from the atmospheric standing waves to the solid Earth Rayleigh waves occurred at discrete periods and resulted in the harmonic ground motion.

  6. Observation of momentum-resolved charge fluctuations proximate to the charge-order phase using resonant inelastic x-ray scattering

    Science.gov (United States)

    Yoshida, M.; Ishii, K.; Naka, M.; Ishihara, S.; Jarrige, I.; Ikeuchi, K.; Murakami, Y.; Kudo, K.; Koike, Y.; Nagata, T.; Fukada, Y.; Ikeda, N.; Mizuki, J.

    2016-01-01

    In strongly correlated electron systems, enhanced fluctuations in the proximity of the ordered states of electronic degrees of freedom often induce anomalous electronic properties such as unconventional superconductivity. While spin fluctuations in the energy-momentum space have been studied widely using inelastic neutron scattering, other degrees of freedom, i.e., charge and orbital, have hardly been explored thus far. Here, we use resonant inelastic x-ray scattering to observe charge fluctuations proximate to the charge-order phase in transition metal oxides. In the two-leg ladder of Sr14−xCaxCu24O41, charge fluctuations are enhanced at the propagation vector of the charge order (qCO) when the order is melted by raising temperature or by doping holes. In contrast, charge fluctuations are observed not only at qCO but also at other momenta in a geometrically frustrated triangular bilayer lattice of LuFe2O4. The observed charge fluctuations have a high energy (~1 eV), suggesting that the Coulomb repulsion between electrons plays an important role in the formation of the charge order. PMID:27021464

  7. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    Science.gov (United States)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2015-06-01

    Three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti:sapphire lasers has been demonstrated. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d54s5s f 6S5/2 level at 49 415.35 cm-1, while Rydberg transitions were reached from the 3d54s4d e 6D9/2,7/2,5/2 levels at around 47 210 cm-1. Analyses of the strong Rydberg transitions associated with the 3d54s4d e 6D7/2 lower level indicate that they belong to the dipole-allowed 4d → nf 6F°9/2,7/2,5/2 series converging to the 3d54s 7S3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm-1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.

  8. Observer agreement in the reporting of knee and lumbar spine magnetic resonance (MR) imaging examinations: Selectively trained MR radiographers and consultant radiologists compared with an index radiologist

    International Nuclear Information System (INIS)

    Purpose: To assess agreement between trained radiographers and consultant radiologists compared with an index radiologist when reporting on magnetic resonance imaging (MRI) examinations of the knee and lumbar spine and to examine the subsequent effect of discordant reports on patient management and outcome. Methods: At York Hospital two MR radiographers, two consultant radiologists and an index radiologist reported on a prospective, random sample of 326 MRI examinations. The radiographers reported in clinical practice conditions and the radiologists during clinical practice. An independent consultant radiologist compared these reports with the index radiologist report for agreement. Orthopaedic surgeons then assessed whether the discordance between reports was clinically important. Results: Overall observer agreement with the index radiologist was comparable between observers and ranged from 54% to 58%; for the knee it was 46–57% and for the lumbar spine was 56–66%. There was a very small observed difference of 0.6% (95% CI −11.9 to 13.0) in mean agreement between the radiographers and radiologists (P = 0.860). For the knee, lumbar spine and overall, radiographers’ discordant reports, when compared with the index radiologist, were less likely to have a clinically important effect on patient outcome than the radiologists’ discordant reports. Less than 10% of observer's reports were sufficiently discordant with the index radiologist's reports to be clinically important. Conclusion: Carefully selected MR radiographers with postgraduate education and training reported in clinical practice conditions on specific MRI examinations of the knee and lumbar spine to a level of agreement comparable with non-musculoskeletal consultant radiologists

  9. Observer agreement in the reporting of knee and lumbar spine magnetic resonance (MR) imaging examinations: Selectively trained MR radiographers and consultant radiologists compared with an index radiologist

    Energy Technology Data Exchange (ETDEWEB)

    Brealey, S., E-mail: stephen.brealey@york.ac.uk [Department of Health Sciences, University of York, York YO10 5DD (United Kingdom); Piper, K., E-mail: keith.piper@canterbury.ac.uk [Department of Allied Health Professions, Canterbury Christ Church University, Canterbury, Kent CT1 1QU (United Kingdom); King, D., E-mail: david.g.king@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Bland, M., E-mail: martin.bland@york.ac.uk [Department of Health Sciences, University of York, York YO10 5DD (United Kingdom); Caddick, J., E-mail: Julie.Caddick@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Campbell, P., E-mail: peter.campbell@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Gibbon, A., E-mail: anthony.j.gibbon@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Highland, A., E-mail: Adrian.Highland@sth.nhs.uk [Sheffield Teaching Hospitals, Herries Road, Sheffield S5 7AU (United Kingdom); Jenkins, N., E-mail: neil.jenkins@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Petty, D., E-mail: daniel.petty@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Warren, D., E-mail: david.warren@york.nhs.uk [York Hospital, Wigginton Road, York YO31 8HE (United Kingdom)

    2013-10-01

    Purpose: To assess agreement between trained radiographers and consultant radiologists compared with an index radiologist when reporting on magnetic resonance imaging (MRI) examinations of the knee and lumbar spine and to examine the subsequent effect of discordant reports on patient management and outcome. Methods: At York Hospital two MR radiographers, two consultant radiologists and an index radiologist reported on a prospective, random sample of 326 MRI examinations. The radiographers reported in clinical practice conditions and the radiologists during clinical practice. An independent consultant radiologist compared these reports with the index radiologist report for agreement. Orthopaedic surgeons then assessed whether the discordance between reports was clinically important. Results: Overall observer agreement with the index radiologist was comparable between observers and ranged from 54% to 58%; for the knee it was 46–57% and for the lumbar spine was 56–66%. There was a very small observed difference of 0.6% (95% CI −11.9 to 13.0) in mean agreement between the radiographers and radiologists (P = 0.860). For the knee, lumbar spine and overall, radiographers’ discordant reports, when compared with the index radiologist, were less likely to have a clinically important effect on patient outcome than the radiologists’ discordant reports. Less than 10% of observer's reports were sufficiently discordant with the index radiologist's reports to be clinically important. Conclusion: Carefully selected MR radiographers with postgraduate education and training reported in clinical practice conditions on specific MRI examinations of the knee and lumbar spine to a level of agreement comparable with non-musculoskeletal consultant radiologists.

  10. First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    Energy Technology Data Exchange (ETDEWEB)

    Azzurri, P.; Barria, P.; Ciocci, M.A.; Donati, S.; Vataga, E.

    2009-12-01

    The authors present the first observation of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay using data from an integrated luminosity of approximately 2.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. They also present the first observation of the resonant decays {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup 0} {pi}{sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and measure their relative branching ratios.

  11. BeppoSAX OBSERVATIONS OF THE X-RAY PULSAR MAXI J1409-619 IN LOW STATE: DISCOVERY OF CYCLOTRON RESONANCE FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Orlandini, Mauro; Frontera, Filippo; Masetti, Nicola; Sguera, Vito [INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) Bologna, via Gobetti 101, 40129 Bologna (Italy); Sidoli, Lara [INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) Milano, via Bassini 15, 20133 Milano (Italy)

    2012-04-01

    The transient 500 s X-ray pulsar MAXI J1409-619 was discovered by the slit cameras aboard Monitor of All-sky X-ray Image (MAXI) on 2010 October 17, and soon after accurately localized by Swift. We found that the source position was serendipitously observed in 2000 during BeppoSAX observations of the Galactic plane. Two sources are clearly detected in the Medium-Energy Concentrator Spectrometer (MECS): one is consistent with the position of IGR J14043-6148 and the other one with that of MAXI J1409-619. We report on the analysis of this archival BeppoSAX/MECS observation integrated with newly analyzed observation from ASCA and a set of high-energy observations obtained from the offset fields of the BeppoSAX/PDS instrument. For the ON-source observation, the 1.8-100 keV spectrum is fit by an absorbed power law with a photon index {Gamma} = 0.87{sup +0.29}{sub -0.19}, corresponding to 2-10 and 15-100 keV unabsorbed fluxes of 2.7 Multiplication-Sign 10{sup -12} and 4 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}, respectively, and a 2-10 keV luminosity of 7 Multiplication-Sign 10{sup 34} erg s{sup -1} for a 15 kpc distance. For a PDS offset field observation, performed about one year later and showing a 15-100 keV flux of 7 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}, we clearly pinpoint three spectral absorption features at 44, 73, and 128 keV, resolved both in the spectral fit and in the Crab ratio. We interpret these not harmonically spaced features as due to cyclotron resonances. The fundamental energy of 44 {+-} 3 keV corresponds to a magnetic field strength at the neutron star surface of 3.8 Multiplication-Sign 10{sup 12}(1 + z) G, where z is the gravitational redshift. We discuss the nature of the source in the light of its possible counterpart.

  12. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  13. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  14. Principle and analytical applications of resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry (RIMS) is a very sensitive analytical technique for the detection of trace elements. This method is based on the excitation and ionization of atoms with resonant laser light followed by mass analysis. It allows element and, in some cases, isotope selective ionization and is applicable to most of the elements of the periodic table. A high selectivity can be achieved by applying three step photoionization of the elements under investigation and an additional mass separation for an unambiguous isotope assignment. An effective facility for resonance ionization mass spectrometry consists of three dye lasers which are pumped by two copper vapor lasers and of a linear time-of-flight spectrometer with a resolution better than 2500. Each copper vapor laser has a pulse repetition rate of 6,5 kHz and an average output power of 30 W. With such an apparatus measurements with lanthanide-, actinide-, and technetium-samples have been performed. By saturating the excitation steps and by using autoionizing states for ionization step a detection efficiency of 4 x 10-6 and 2,5 x 10-6 has been reached for plutonium and technetium, respectively, leading to a detection limit of less than 107 atoms in the sample. Measurements of isotope ratios of plutonium samples were in good agreement with mass-spectrometric data. The high elemental selectivity of the resonance ionization spectrometry could be demonstrated. (Authors)

  15. Spin-mixed doubly excited resonances in Ca and Sr spectra

    International Nuclear Information System (INIS)

    We present a joint theoretical and experimental investigation to demonstrate explicitly how the combined spin-dependent interaction and the configuration interaction may affect the mixing of different spin states along various doubly excited autoionization series for Ca and Sr as energy increases across several ionization thresholds. In particular, our study has identified the inversion of energy levels between members of a number of multiplets, i.e., in contrast to the Hund's rules, due to the presence of perturber from other overlapping resonance series. We are also able to demonstrate the beginning of the breakdown of the LS coupling for resonance series corresponding to electron configurations with higher orbital angular momenta and those above the third ionization threshold.

  16. Doubly excited 2s2p 1,3p1 resonances in photoionization of helium

    Institute of Scientific and Technical Information of China (English)

    Wan Jian-Jie; Dong Chen-Zhong

    2009-01-01

    The multi-configuration Dirac-Fock (MCDF) method is implemented to study doubly excited 2s2p 1,3P1 resonances of the helium atom and the interference between photoionization and photoexcitation autoionization processes.In order to reproduce the total photoionization sprectra,the excited energies from the ground ls2 1 S0 state to the doubly excited 2s2p 1'3P1 states and the relevant Auger decay rates and widths are calculated in detail. Furthermore,the interference profile determined by the so-called Fano parameters q and p2 is also reproduced. Good agreement is found between the present results and other available theoretical and experimental results. This indeed shows a promising way to investigate the Fano resonances in photoionization of atoms within the MCDF scheme,although there are some discrepancies in the present calculations of the 2s2p 3P1 state.

  17. Diffusion-weighted magnetic resonance imaging of treatment-associated changes in recurrent and residual medulloblastoma: preliminary observations in three children

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.I.; Wilke, M.; Mueller-Weihrich, S.; Auer, D.P. [Max Planck Inst. of Psychiatry, Muenchen (Germany). NMR Research Group

    2006-12-15

    Purpose: To emphasize a possible role of magnetic resonance (MR) diffusion-weighted imaging (DWI) for lesion conspicuity and detection of treatment effects in children with medulloblastoma.Material and Methods: Three children with medulloblastoma (two residual and one recurrent) were examined repetitively by MR diffusion-weighted imaging. Regional assessment of the apparent diffusion coefficient (ADC) was done for tumorous lesions and periventricular white matter appearing normal on standard MR images.Results: All lesions were clearly visible on DWI. In the case of recurrent tumor, on one scan, DWI showed lesions that were not seen on contrast-enhanced MRI. Increase (41%) of ADC was seen in one lesion, which subsequently responded completely to treatment over 27 months' follow-up. Intermediate increases (23-26%) of ADC were found with partial therapy response in three lesions. In contrast, a decrease (-11%) of ADC in two lesions was seen with tumor progression.Conclusion: These observations may suggest a role for DWI in early detection of metastatic disease and treatment monitoring of medulloblastoma, warranting a formal study.

  18. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  19. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein. PMID:17446273

  20. Embedded optical microfiber coil resonator

    OpenAIRE

    Xu, Fei; Brambilla, Gilberto

    2007-01-01

    The embedding of an optical microfiber coil resonator in Teflon is demonstrated. Resonances in excess of 9dB and Q-factors greater than 6000 have been observed. The device is compact, robust and portable.

  1. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁ measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂ was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴ T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.

  2. Evidence for the Heavy Baryon Resonance State Lambda b*0 Observed with the CDF II Detector, and Studies of New Particle Tracking Technologies Using the LANSCE Proton Beam

    Science.gov (United States)

    Palni, Prabhakar

    To discover and probe the properties of new particles, we need to collide highly energetic particles. The Tevatron at Fermilab has collided protons and anti-protons at very high energies. These collisions produce short lived and stable particles, some known and some previously unknown. The CDF detector is used to study the products of such collisions and discover new elementary particles. To study the interaction between high energy charged particles and the detector materials often requires development of new instruments. Thus this dissertation involves a measurement at a contemporary experiment and development of technologies for related future experiments that will build on the contemporary one. Using data from proton-antiproton collisions at sqrt(s) = 1.96TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Lambda_b. *0 is presented in its Lambda_b. 0 pi. + pi. - decay,followed by the Lambda_b. 0 -> Lambda_c. + pi. - and Lambda_c. + -> p K. - pi. +decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6 fb. -1 collected by an online event selection process basedon charged particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5sigma The mass of the observed state is found to be 5919.22 +/- 0.76 MeV/c 2 in agreement with similar findings in proton-proton collision experiments. To predict the radiation damage to the components of new particle tracking detectors, prototype devices are irradiated at test beam facilities that reproduce the radiation conditions expected. The profile of the test beam and the fluence applied per unit time must be known. We have developed a technique to monitor in real time the beam profile and fluence using an array of pin semiconductor diodes whose forward voltage is linear with fluence over the fluence regime relevant to, for example, silicon tracking detectors in the LHC upgrade era

  3. Detection of occult endoleaks after endovascular treatment of abdominal aortic aneurysm using magnetic resonance imaging with a blood pool contrast agent: preliminary observations.

    NARCIS (Netherlands)

    Cornelissen, Sandra; Prokop, M.; Verhagen, H.J.; Adriaensen, M.E.; Moll, F.L.; Bartels, L.W.

    2010-01-01

    OBJECTIVE: To determine whether blood pool contrast agent-enhanced magnetic resonance imaging (MRI) can visualize endoleaks that are occult on computed tomography (CT) in patients with nonshrinking aneurysms after endovascular aneurysm repair. MATERIALS AND METHODS: Written informed consent was obta

  4. Observation of the two-hole satellite in Cr and Fe metal by resonant photoemission at the 2p absorption energy

    International Nuclear Information System (INIS)

    Valence-band spectra of Cr and Fe metal were measured with photon energies around their respective 2p energies. An Auger signal is found to be superimposed on the valence-band photoemission signal for photon energies at and above the 2p absorption energy, but also for excitation energies down to ∼4 eV below the 2p absorption energy. This is the radiationless resonance Raman (resonant Raman Auger) regime and gives rise to a signal that is equivalent, in terms of the final state, to the 6 eV satellite in Ni with energies at 3.5 eV below EF in Cr and 3.2 eV below EF in Fe. (c) 2000 The American Physical Society

  5. Laser resonance ionization mass spectrometry as a sensitive analytical method for actinides and technetium

    International Nuclear Information System (INIS)

    Laser resonance ionization mass spectrometry has been investigated as a method for the determination of trace amounts of actinides and technetium. A high sensitivity and selectivity have been achieved by three-step photoionization of the elements in the atomic state followed by time-of-flight measurement for mass analysis. The system for photoionization consists of three dye lasers which are pumped simultaneously by a copper vapour laser of 30 W average power at a pulse repetition rate of 6.5 KHz. The time-of-flight spectrometer has a mass resolution better than 2500. By ionization via autoionization states and by saturation in each excitation step a detection limit of less than 108 atoms of actinides or of technetium in the sample can be reached. (author)

  6. Ultrasensitive detection of actinides and technetium by laser resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    The application of laser resonance ionization mass spectrometry for the detection of extremely small numbers of atoms has been explored in the very recent years. High sensitivity and unambiguity in element and isotope identification can be achieved by three-step photoionization of the elements in the atomic state followed by time-of-flight mass analysis. The laser system for photoionization consists of three dye lasers which are pumped simultaneously by a copper vapor laser. For mass determination a time-of-flight spectrometer with a mass resolution better than 1500 is used. By ionization via autoionizing states and by saturation in each excitation step a detection limit of about 107 atoms of actinides or of technetium in the sample has been obtained

  7. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    Science.gov (United States)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  8. Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second order resonances and observed period ratios in Kepler's planetary systems

    CERN Document Server

    Xiang-Gruess, M

    2015-01-01

    In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range $(1-4)\\ \\rmn{M}_{\\oplus}.$ These evolve for up to $2\\times10^7 \\rmn{yr}$ under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few $\\%$ terminating in second order resonances. Both planetary eccentricities were small $< 0.1$ and all resonant angles liberated. This type of survey produced o...

  9. 云南地区观测的舒曼谐振背景变化特征%Background features of Schumann resonance observed in Yunnan, southwestern China

    Institute of Scientific and Technical Information of China (English)

    欧阳新艳; 张学民; 申旭辉; 苗园青

    2013-01-01

    本文利用云南地区永胜台观测的地磁南北和东西分量开展舒曼谐振的背景变化特征分析.通过提取舒曼谐振各阶频率和功率谱密度的小时均值,分析了前三阶舒曼谐振频率和功率谱密度在分点和至点前后的周日变化特征.舒曼谐振功率谱密度的周日变化与亚洲、非洲和美洲三大闪电活动中心的活跃时段以及观测站相对于三大闪电活动中心的方位密切相关.舒曼谐振频率的周日变化特征更复杂.各阶功率谱密度和频率在夏至和秋分前后的变化幅度比春分和冬至前后大.从2011年舒曼谐振频率和功率谱密度日中值的年变化图中发现,谐振频率随季节变化的特征不明显,而功率谱密度的年度变化曲线呈半周期正弦波形态,以7月份为轴对称分布.功率谱密度的季节变化特征与闪电活动的季节变化特征相一致.南北和东西分量得到的前三阶谐振频率,第一阶约稳定在7.5 Hz.而随着阶数增加,南北分量得到的谐振频率比东西分量约大0.5 Hz.高阶谐振频率发生偏移的原因目前还不清楚.%Abstract This paper presents.the background features of Schumann resonance (SR) observed at Yongsheng observatory in Yunnan,southwestern China.Through obtaining the hourly average of the frequency and power spectral density (PSD) of the lowest three SR modes,we analyzed diurnal variation of SR frequency and PSD both in BNs and BEw components around equinoxes and solstices.Diurnal variation of SR PSD is found to be related to the dominant intervals of Asian,African and American thunderstorm centers and the relative position of the observatory to three thunderstorm centers.Diurnal variation of SR frequency is more complicated.SR frequency and PSD at the lowest three modes around summer solstice and autumn equinox are more changeablethan that in spring equinox and winter solstice.The daily median of SR peak frequency in 2011shows that seasonal variation

  10. Efficacy Observation on Magnetic Resonance Thermal Combined with Massage Treating Back Muscular Fasciitis%磁振热联合推拿治疗腰背肌筋膜炎疗效观察

    Institute of Scientific and Technical Information of China (English)

    陈剑; 唐学章

    2014-01-01

    目的:观察磁振热联合推拿治疗腰背肌筋膜炎的疗效。方法:将72例患者随机分为治疗组(36例)和对照组(36例),对照组单纯采用磁振热治疗仪治疗,治疗组则采用磁振热联合推拿治疗,观察两组临床疗效及VAS评分的变化情况。结果:治疗组总有效率高于对照组(P<0.01);治疗后,两组患者的VAS评分均显著降低(P<0.01),但治疗组低于对照组(P<0.05)。结论:磁振热联合推拿治疗腰背肌筋膜炎疗效显著。%Objective:To observe the curative effect of magnetic resonance thermal combined with massage treating back muscular fasciitis. Meth-ods:72 patients were randomly divided into treatment group (36 cases) and control group (36 cases), control group only with magnetic resonance thermal therapy, treatment group was treated with magnetic resonance thermal combined with massage, clinical efficacy and changes of VAS scores between the two groups were observed. Results: The total effective rate of treatment group was higher than that of control group (P<0.01); VAS scores of two groups after treatment both decreased significantly (P<0.01), and treatment group was lower than control group (P<0.05). Conclusion:Magnetic resonance thermal combined with massage is obviously effective in back muscular fasciitis.

  11. One of the closest planet pairs to the 3:2 Mean Motion Resonance, confirmed with K2 observations and Transit Timing Variations: EPIC201505350

    CERN Document Server

    Armstrong, David J; Barros, Susana C C; Demangeon, Olivier; McCormac, James; Osborn, Hugh P; Lillo-Box, Jorge; Santerne, Alexandre; Tsantaki, Maria; Almenara, José-Manuel; Barrado, David; Boisse, Isabelle; Bonomo, Aldo S; Bouchy, François; Brown, David J A; Bruno, Giovanni; Cerda, Javiera Rey; Courcol, Bastien; Deleuil, Magali; Díaz, Rodrigo F; Doyle, Amanda P; Hébrard, Guillaume; Kirk, James; Lam, Kristine W F; Pollacco, Don L; Rajpurohit, Arvind; Spake, Jessica; Walker, Simon R

    2015-01-01

    The K2 mission has recently begun to discover new and diverse planetary systems. In December 2014 Campaign 1 data from the mission was released, providing high-precision photometry for ~22000 objects over an 80 day timespan. We searched these data with the aim of detecting further important new objects. Our search through two separate pipelines led to the independent discovery of EPIC201505350, a two-planet system of Neptune sized objects (4.2 and 7.2 $R_\\oplus$), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each show transits, sometimes simultaneously due to their proximity to resonance and alignment of conjunctions. We obtain further ground based photometry of the larger planet with the NITES telescope, demonstrating the presence of large transit timing variations (TTVs) of over an hour. These TTVs allows us to confirm the planetary nature of the system, and place a limit on the mass of the outer planet of $386M_\\oplus$.

  12. In vitro observation of the molecular interaction between NodD and its inducer naringenin as monitored by fluorescence resonance energy transfer

    Institute of Scientific and Technical Information of China (English)

    Fengqing Li; Bihe Hou; Lei Chen; Zhujun Yao; Guofan Hong

    2008-01-01

    At initial stages in the Rhizobium legume symbiosis, most nodulation genes are controlled by NodD protein and plant inducers. Some genetic studies and other reports have suggested that NodD may be activated by its direct interaction with plant inducers. However, there has been no molecular evidence of such an inducing interaction. In this paper, we used fluorescence resonance energy transfer technique to see whether such an interaction exists between NodD and its activator, naringenin, in vitro. The tetracysteine motif (Cys-Cys-Pro-Gly-Cys-Cys) was genetically inserted into NodD to label NodD with 4′,5′-bis(1,3,2-dithioarsolan-2-yl) fluorescein (FlAsH). Naringenin was labeled with fluorescein by chemical linking. In the fluorescence resonance energy transfer experiments in vitro, the fluorescence intensity of one acceptor, NodD(90R6)-FlAsH, increased by 13%. This suggests that NodD may directly interact with inducer naringenin in vitro and that the reaction centre is likely near hinge region 1 of NodD.

  13. Observation of narrow baryon resonance decaying into $pK^0_s$ in pA-interactions at $70 GeV/c$ with SVD-2 setup

    CERN Document Server

    Aleev, A; Ardashev, E; Balandin, V; Basiladze, Sergei G; Berezhnev, S; Bogdanova, G A; Boguslavsky, M; Egorov, N; Ejov, V; Ermakov, G; Ermolov, P; Furmanec, N; Golovnia, S; Golubkov, S; Gorkov, A; Gorokhov, S; Gramenitsky, I; Grishin, N; Grishkevich, Ya; Karmanov, D; Kholodenko, A; Kiriakov, A; Kosarev, I; Kouzmine, N; Kozlov, V; Kozlov, Yu; Kokoulina, E; Korotkov, N V; Kramarenko, V; Kubarovsky, A; Kurchaninov, L L; Kuzmin, V; Kuznetsov, E; Lanshikov, G; Larichev, A; Leflat, A; Levitsky, M; Lyutov, S; Maiorov, S; Merkin, M; Minaenko, A A; Mitrofanov, G Ya; Moiseev, A; Murzin, V; Nikitin, V; Nomokonov, V P; Oleinik, A; Orfanitsky, S V; Parakhin, V; Petrov, V; Pilavova, L; Pleskach, A; Popov, V; Riadovikov, V; Rudenko, R; Rufanov, I; Senko, V; Shafranov, M; Shalanda, N A; Sidorov, A; Soldatov, M; Tikhonova, L A; Topuria, T; Tsyupa, Yu; Vasilev, M; Vischnevskaya, A; Volkov, V; Vorobev, A; Voronin, A; Yakimchuk, V; Yukaev, A I; Zakamsky, L; Zapolskii, V N; Zhidkov, N; Zmushko, V V; Zotkin, S A; Zotkin, D S; Zverev, E

    2004-01-01

    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the $\\Theta^+$-baryon, in a $pK^0_s$ decay mode at $70 GeV/c$ on IHEP accelerator. The reaction $pA \\to pK^0_s+X$ with a limited multiplicity was used in the analysis. The $pK^0_s$ invariant mass spectrum shows a resonant structure with $M=1526\\pm3(stat.)\\pm 3(syst.) MeV/c^2$ and $\\Gamma < 24 MeV/c^2$. The statistical significance of this peak was estimated to be of $5.6 \\sigma$. The mass and width of the resonance is compatible with the recently reported $\\Theta^+$- baryon with positive strangeness which was predicted as an exotic pentaquark ($uudd\\bar{s}$) baryon state. The total cross section for $\\Theta^+$ production in pN-interactions for $X_F\\ge 0$ was estimated to be $(30\\div120) \\mu b$ and no essential deviation from A-dependence for inelastic events $(\\sim A^{0.7})$ was found.

  14. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  15. A new observational approach to investigate the heliospheric interstellar wind interface - The study of extreme and far ultraviolet resonantly scattered solar radiation from neon, oxygen, carbon and nitrogen

    Science.gov (United States)

    Bowyer, Stuart; Fahr, Hans J.

    1990-01-01

    One of the outstanding uncertainties in the understanding of the heliosphere concerns the character of the interaction between the outflowing solar wind and the interstellar medium. A new possibility for obtaining information on this topic is suggested. The cosmically abundant elements neon, oxygen, carbon, and nitrogen will be affected differently at their interface passage depending upon the character of this region. Consequently, the distribution of these atoms and their ions will vary within the inner heliosphere. The study of resonantly scattered solar radiation from these species will then provide information on the nature of the interface. A preliminary evaluation of this approach has been carried out, and the results are encouraging. The relevant lines to be studied are in the extreme and far ulraviolet. The existing data in these bands are reviewed; unfortunately, past instrumentation has had insufficient resolution and sensitivity to provide useful information. The capabilities of future approved missions with capabilities in this area are evaluated.

  16. Upcoming observations of whistler-mode waves in the outer Van Allen belt: multicomponent wave analyzer ELMAVAN for the Resonance mission

    Science.gov (United States)

    Santolik, Ondrej; Korepanov, Valery; Chugunin, Dmitriy; Kolmasova, Ivana; Uhlir, Ludek; Pronenko, Vira; Mogilevsky, Mikhail; Lan, Radek; Boychev, Boycho

    The instrument ELMAVAN is being prepared at the Institute of Atmospheric Physics, Prague in the frame of the Russian Resonance project with international participation. The aim of this four-spacecraft mission is to investigate properties of wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth with the focus on phenomena occurring within the same flux tube of the Earth's magnetic field. The wave emissions attract increasing attention because of their influence on the dynamics of the Earth’s radiation belts. The Resonance project therefore represents an excellent opportunity for the magnetospheric research, and together with the recently launched two-spacecraft US mission Van Allen Probes, it will contribute to our understanding of the Earth’s Van Allen radiation belts and the inner magnetosphere. ELMAVAN will measure intensity, polarization, coherence, and propagation properties of waves in magnetospheric plasmas. Three orthogonal magnetic search coil antennas and four electric monopoles will be used for the measurements. The instrument will measure fluctuations of the electric and magnetic field in the frequency range 10 Hz - 20 kHz. The scientific motivation is to investigate properties of whistler-mode chorus and hiss, and both equatorial and auroral emissions. Nonlinear wave-particle interactions will be the main target of these measurements. The input signals of ELMAVAN will consist of 3 analog signals from orthogonal magnetic search coil antennas and 4 analog signals from electric monopoles. The instrument ELMAVAN uses the state of the art electronics and mechanical design taking into account specific requirements for the orbit inside the radiation belts. From this point of view this instrument will also be important as a technological experiment. Engineering model of the analyzer was developed and tested in 2012-2013. Qualification model and the flight models are under preparation.

  17. Resonance poles and threshold energies for hadron physical problems by a model-independent universal algorithm

    CERN Document Server

    Tripolt, Ralf-Arno; Wambach, Jochen; Moiseyev, Nimrod

    2016-01-01

    We show how complex resonance poles and threshold energies for systems in hadron physics can be accurately obtained by using a method based on the Pad\\'{e}-approximant which was recently developed for the calculation of resonance poles for atomic and molecular auto-ionization systems. The main advantage of this method is the ability to calculate the resonance poles and threshold energies from \\emph{real} spectral data. In order to demonstrate the capabilities of this method we apply it here to an analytical model as well as to experimental data for the squared modulus of the vector pion form factor, the S0 partial wave amplitude for $\\pi\\pi$ scattering and the cross section ratio $R(s)$ for $e^+e^-$ collisions. The extracted values for the resonance poles of the $\\rho(770)$ and the $f_0(500)$ or $\\sigma$ meson are in very good agreement with the literature. When the data are noisy the prediction of decay thresholds proves to be less accurate but feasible.

  18. Resonant Ionization Laser Ion Source (RILIS) off-line developments on Ga, Al and Ca

    International Nuclear Information System (INIS)

    The Resonant Ionization Laser Ion Source (RILIS) is an element selective, highly efficient and versatile tool for generation of radioactive ion beams at on-line mass separator facilities. Parallel to TRIUMF’s on-line RILIS at the Isotope Separator and ACcelerator (ISAC) facility, an off-line Laser Ion Source test stand (LIS STAND) is operated for systematic laser resonance ionization spectroscopy, ionization scheme and ion source development. Three titanium sapphire (Ti:Sa) lasers optionally equipped with harmonic frequency generation units are used to resonantly step-wise excite and ionize elements of interest. A grating tuned Ti:Sa laser allows continuous laser wavelength scans of up to Δ≈200nm. With this laser inventory and the LIS STAND, atomic Rydberg series and auto-ionizing levels can systematically be studied. The LIS STAND has been in use since 2009 and so far the spectroscopy on Ga, Al and Ca has been performed. The development of efficient laser resonant ionization schemes, their investigation and comparison using the LIS STAND are discussed

  19. Resonance Ionization Mass Spectrometry (RIMS) with Pulsed and CW-Lasers on Plutonium

    Science.gov (United States)

    Kunz, P.; Huber, G.; Passler, G.; Trautmann, N.; Wendt, K.

    2005-04-01

    The detection of long-lived plutonium isotopes in ultra-trace amounts by resonance ionization mass spectrometry (RIMS) is a well-established routine method. Detection limits of 106 to 107 atoms and precise measurements of the isotopic composition have been achieved. In this work multi-step resonance ionization of plutonium atoms has been performed with tunable lasers having very different output intensities and spectral properties. In order to compare different ways for the resonance ionization of plutonium broadband pulsed dye and titanium:sapphire lasers as well as narrow-band cw-diode and titanium:sapphire lasers have been applied for a number of efficient excitation schemes. It has been shown, that for identical excitation schemes the optical isotope selectivity can be improved by using cw-lasers (bandwidths lasers (bandwidths > 2 GHz). Pulsed and cw-laser systems have been used simultaneously for resonance ionization enabling direct comparisons of pulsed and continuous ionization processes. So far, a three-step, three-color laser excitation scheme has been proven to be most practical in terms of efficiency, selectivity and laser wavelengths. Alternatively a newly discovered three-step, two-color excitation scheme which includes a strong two-photon transition from an excited state into a high-lying autoionizing state yields similar ionization efficiencies. This two-photon transition was characterized with respect to saturation behavior and line width.

  20. Resonance Ionization Mass Spectrometry (RIMS) with Pulsed and CW-Lasers on Plutonium

    International Nuclear Information System (INIS)

    The detection of long-lived plutonium isotopes in ultra-trace amounts by resonance ionization mass spectrometry (RIMS) is a well-established routine method. Detection limits of 106 to 107 atoms and precise measurements of the isotopic composition have been achieved. In this work multi-step resonance ionization of plutonium atoms has been performed with tunable lasers having very different output intensities and spectral properties. In order to compare different ways for the resonance ionization of plutonium broadband pulsed dye and titanium:sapphire lasers as well as narrow-band cw-diode and titanium:sapphire lasers have been applied for a number of efficient excitation schemes. It has been shown, that for identical excitation schemes the optical isotope selectivity can be improved by using cw-lasers (bandwidths 2 GHz). Pulsed and cw-laser systems have been used simultaneously for resonance ionization enabling direct comparisons of pulsed and continuous ionization processes. So far, a three-step, three-color laser excitation scheme has been proven to be most practical in terms of efficiency, selectivity and laser wavelengths. Alternatively a newly discovered three-step, two-color excitation scheme which includes a strong two-photon transition from an excited state into a high-lying autoionizing state yields similar ionization efficiencies. This two-photon transition was characterized with respect to saturation behavior and line width.

  1. Effect of laser beam non-uniformity and the AC stark shift on the two-photon resonant three-photon ionization process of the cesium atom

    International Nuclear Information System (INIS)

    The Ac Stark effect and the effect of laser beam non-uniformity on the two-photon resonant three-photon ionization spectrum of cesium is investigated. The non-uniformity due to the temporal and the spatial variations of the pumping laser makes the ionization spectrum non-symmetric and shifts the peak frequency of the excited-state population from the peak frequency of the ionization yield. The order of the non-linearity of the ionization process is also studied near resonances, and it is found that the minimum of the curve is close to the peak frequency of the excited-state spectrum. Ways of applying these results to studies of autoionizing states are suggested

  2. Preliminary observation of dynamic changes in alcohol concentration in the human brain with proton magnetic resonance spectroscopy on a 3T MR instrument

    International Nuclear Information System (INIS)

    Our purposes were to establish suitable conditions for proton magnetic resonance spectroscopy (MRS) to measure dynamic changes in alcohol concentration in the human brain, to evaluate these changes, and to compare the findings with data from analysis of breath vapor and blood samples. We evaluated 4 healthy volunteers (mean age 26.5 years; 3 males, one female) with no neurological findings. All studies were performed with 3-tesla clinical equipment using an 8-channel head coil. We applied our modified single-voxel point-resolved spectroscopy (PRESS) sequence. Continuous measurements of MRS, breath vapor, and blood samples were conducted before and after the subjects drank alcohol with a light meal. The obtained spectra were quantified by LCModel Ver. 6.1, and the accuracy of the MRS measurements was estimated using the estimated standard deviation expressed in percentage (% standard deviation (SD)) as a criterion. Alcohol peaks after drinking were clearly detected at 1.2 ppm for all durations of measurement. Good correlations between breath vapor or blood sample and MRS were found by sub-minute MRS measurement. The continuous measurement showed time-dependent changes in alcohol in the brain and various patterns that differed among subjects. The clinical 3 T equipment enables direct evaluation of sub-minute changes in alcohol metabolism in the human brain. (author)

  3. Growing Region Segmentation Software (GRES) for quantitative magnetic resonance imaging of multiple sclerosis: intra- and inter-observer agreement variability: a comparison with manual contouring method

    International Nuclear Information System (INIS)

    Lesion area measurement in multiple sclerosis (MS) is one of the key points in evaluating the natural history and in monitoring the efficacy of treatments. This study was performed to check the intra- and inter-observer agreement variability of a locally developed Growing Region Segmentation Software (GRES), comparing them to those obtained using manual contouring (MC). From routine 1.5-T MRI study of clinically definite multiple sclerosis patients, 36 lesions seen on proton-density-weighted images (PDWI) and 36 enhancing lesion on Gd-DTPA-BMA-enhanced T1-weighted images (Gd-T1WI) were randomly chosen and were evaluated by three observers. The mean range of lesion size was 9.9-536.0 mm2 on PDWI and 3.6-57.2 mm2 on Gd-T1WI. The median intra- and inter-observer agreement were, respectively, 97.1 and 90.0% using GRES on PDWI, 81.0 and 70.0% using MC on PDWI, 88.8 and 80.0% using GRES on Gd-T1WI, and 85.8 and 70.0% using MC on Gd-T1WI. The intra- and inter-observer agreements were significantly greater for GRES compared with MC (P<0.0001 and P=0.0023, respectively) for PDWI, while no difference was found between GRES an MC for Gd-T1WI. The intra-observer variability for GRES was significantly lower on both PDWI (P=0.0001) and Gd-T1WI (P=0.0067), whereas for MC the same result was found only for PDWI (P=0.0147). These data indicate that GRES reduces both the intra- and the inter-observer variability in assessing the area of MS lesions on PDWI and may prove useful in multicentre studies. (orig.)

  4. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  5. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  6. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  7. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons.

    Directory of Open Access Journals (Sweden)

    Krista Fischer

    2014-02-01

    Full Text Available BACKGROUND: Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention. To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood specimens in two large population-based cohorts. METHODS AND FINDINGS: 106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18-103 y; 508 deaths during a median of 5.4 y of follow-up. Biomarkers for all-cause mortality were examined using stepwise proportional hazards models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from Finland (n = 7,503; 176 deaths during 5 y of follow-up. Four circulating biomarkers predicted the risk of all-cause mortality among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein (hazard ratio [HR] 1.67 per 1-standard deviation increment, 95% CI 1.53-1.82, p = 5×10⁻³¹, albumin (HR 0.70, 95% CI 0.65-0.76, p = 2×10⁻¹⁸, very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62-0.77, p = 3×10⁻¹², and citrate (HR 1.33, 95% CI 1.21-1.45, p = 5×10⁻¹⁰. All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement 26.3%, p = 0.001. CONCLUSIONS

  8. A new study of the {sup 22}Ne(p, γ){sup 23}Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, F.; Corvisiero, P.; Ferraro, F.; Prati, P. [Universita di Genova, Dipartimento di Fisica, Genova (Italy); INFN, Sezione di Genova (Italy); Depalo, R. [INFN, Sezione di Padova, Padova (Italy); Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Menzel, M.L.; Anders, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Aliotta, M.; Bruno, C.G.; Davinson, T.; Scott, D.A. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Bemmerer, D.; Szuecs, T. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Broggini, C.; Menegazzo, R.; Rossi Alvarez, C. [INFN, Sezione di Padova, Padova (Italy); Caciolli, A. [INFN, Sezione di Padova, Padova (Italy); Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Di Leva, A.; Imbriani, G. [Universita degli Studi di Napoli Federico II, Dipartimento di Fisica, Napoli (Italy); INFN, Sezione di Napoli (Italy); Elekes, Z.; Fueloep, Z.; Gyuerky, G.; Somorjai, E. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA ATOMKI), Debrecen (Hungary); Formicola, A.; Junker, M. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gervino, G. [Universita di Torino, Dipartimento di Fisica Sperimentale, Torino (Italy); INFN, Sezione di Torino (Italy); Guglielmetti, A.; Trezzi, D. [Universita degli Studi di Milano, and INFN, Sezione di Milano, Milano (Italy); Gustavino, C. [INFN, Sezione di Roma ' ' La Sapienza' ' , Roma (Italy); Straniero, O. [Osservatorio Astronomico di Collurania, Teramo (Italy); Ruhr-Universitaet Bochum, Bochum (Germany); Strieder, F. [Ruhr-Universitaet Bochum, Bochum (Germany); Collaboration: LUNA Collaboration

    2014-11-15

    The {sup 22}Ne(p,γ){sup 23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle is active in asymptotic giant branch stars as well as in novae and contributes to the nucleosythesis of neon and sodium isotopes. In order to reduce the uncertainties in the predicted nucleosynthesis yields, new experimental efforts to measure the {sup 22}Ne(p,γ){sup 23}Na cross section directly at the astrophysically relevant energies are needed. In the present work, a feasibility study for a {sup 22}Ne(p,γ){sup 23}Na experiment at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator deep underground in the Gran Sasso laboratory, Italy, is reported. The ion-beam-induced γ-ray background has been studied. The feasibility study led to the first observation of the E{sub p}=186 keV resonance in a direct experiment. An experimental lower limit of 0.12 x 10{sup -6} eV has been obtained for the resonance strength. Informed by the feasibility study, a dedicated experimental setup for the {sup 22}Ne(p,γ){sup 23}Na experiment has been developed. The new setup has been characterized by a study of the temperature and pressure profiles. The beam heating effect that reduces the effective neon gas density due to the heating by the incident proton beam has been studied using the resonance scan technique, and the size of this effect has been determined for a neon gas target. (orig.)

  9. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu [Departement Cassiopee, Universite de Nice-Sophia Antipolis, Observatoire de la Cote d' Azur, F-06304 Nice (France)

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  10. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  11. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... of an IT project in a Danish local government spans a two-year time period and demonstrates a double-loop legitimization process. First, resonating statements are produced to localize a national IT initiative to support the specificity of a local government discourse. Second, the resonating statements are used...

  12. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  13. Baryon Resonances

    CERN Document Server

    Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K

    2009-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.

  14. Baryon Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)

    2010-04-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.

  15. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    tailored channeling of sensory stimulus aligned as ‘art-making’ and ‘game playing’ core experiences. Thus, affecting brain plasticity and human motoric-performance via the adaptability (plasticity) of digital medias result in closure of the human afferent-efferent neural feedback loop closure through...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  16. Damping of nanomechanical resonators.

    Science.gov (United States)

    Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

    2010-07-01

    We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

  17. Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance

    OpenAIRE

    Chi, Qijin; Farver, Ole; Ulstrup, Jens

    2005-01-01

    A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi-biological environment, suitable for detailed observations of long-range protein interfacial ET at the nanoscale and single-molecule levels. Because azurin is located at clearly identifiable fixed site...

  18. High efficiency resonance ionization of palladium with Ti:sapphire lasers

    Science.gov (United States)

    Kron, T.; Liu, Y.; Richter, S.; Schneider, F.; Wendt, K.

    2016-09-01

    This work presents the development and testing of highly efficient excitation schemes for resonance ionization of palladium. To achieve the highest ionization efficiencies, a high-power, high repetition rate Ti:sapphire laser system was used and 2-step, 3-step and 4-step schemes were investigated and compared. Starting from different excited steps, the frequencies of the final ionization steps were tuned across the full accessible spectral range of the laser system, revealing several autoionizing Rydberg series, which converge towards the energetically higher lying state 4{{{d}}}9{}2{{{D}}}3/2 of the Pd+ ion ground state configuration. Through proper choice of these excitation steps, we developed a highly efficient, fully resonant 3-step excitation scheme, which lead to overall efficiencies of 54.3(1.4) % and 59.7(2.1) %, measured at two independent mass separator setups. To our knowledge, these are presently the highest efficiency values ever achieved with a resonance ionization laser ion source.

  19. Study of isotopic selectivity in laser resonance ionization of lutetium atom

    International Nuclear Information System (INIS)

    Using numerical simulation method in terms of rate equation approximation, laser-induced isotopic selectivity of the scheme of resonance ionization: 5d6s22D3/2(573.655 nm)→5d6s6p 4F3/2 (642.518 nm)→6s6p24P1/2(643.548 nm)→Autoionization state was studied. The function of isotopic selectivity on laser wavelength was calculated for the parameters matching real experimental conditions by this method. The results calculated were well met with the experimental. The dependences of laser-induced isotopic selectivity on the laser parameters, such as wavelength, bandwidth and intensity, were discussed in view of the interaction of linearly polarized light with lutetium atom. The approaches that isotopic ratio were accurately determined by laser resonance ionization mass spectrometry in the case of certain laser parameters were presented. This theoretical method may be also used to study the isotopic selectivity of other elements and select the scheme of resonance ionization of laser isotope separation

  20. Controlling the $2p$ Hole Alignment in Neon via the $2s$-$3p$ Fano Resonance

    CERN Document Server

    Heinrich-Josties, Elisabeth; Santra, Robin

    2014-01-01

    We study the state-resolved production of neon ion after resonant photoionization of Ne via the $2s$-$3p$ Fano resonance. We find that by tuning the photon energy across the Fano resonance a surprisingly high control over the alignment of the final $2p$ hole along the polarization direction can be achieved. In this way hole alignments can be created that are otherwise very hard to achieve. The mechanism responsible for this hole alignment is the destructive interference of the direct and indirect (via the autoionizing $2s^{-1}3p$ state) ionization pathways of $2p$. By changing the photon energy the strength of the interference varies and $2p$-hole alignments with ratios up to 19:1 between $2p_0$ and $2p_{\\pm 1}$ holes can be created: an effect normally only encountered in tunnel ionization using strong-field IR pulses. Including spin-orbit interaction does not change the qualitative feature and leads only to a reduction in the alignment by $2/3$. Our study is based on a time-dependent configuration-interactio...

  1. Resonant phenomena in colloidal crystals

    OpenAIRE

    Palberg, Thomas; Würth, Mathias; König, Peter; Simnacher, Erwin; Leiderer, Paul

    1992-01-01

    Colloidal crystals of completely deionized suspensions of latex speres are subjected to oscillatory and steady shear, as well as to homogeneous and inhomogeneous electric fields. Various resonant phenomena observed in such experiments are reported.

  2. Split-ball resonator

    CERN Document Server

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

    2014-01-01

    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  3. A Broadband Dipolar Resonance in THz Metamaterials

    CERN Document Server

    Sangala, Bagvanth Reddy; Gopal, Achanta Venu; Prabhu, S S

    2014-01-01

    We demonstrate a THz metamaterial with broadband dipole resonance originating due to the hybridization of LC resonances. The structure optimized by finite element method simulations is fabricated by electron beam lithography and characterized by terahertz time-domain spectroscopy. Numerically, we found that when two LC metamaterial resonators are brought together, an electric dipole resonance arises in addition to the LC resonances. We observed a strong dependence of the width of these resonances on the separation between the resonators. This dependence can be explained based on series and parallel RLC circuit analogies. The broadband dipole resonance appears when both the resonators are fused together. The metamaterial has a stopband with FWHM of 0.47 THz centered at 1.12 THz. The experimentally measured band features are in reasonable agreement with the simulated ones. The experimental power extinction ratio of THz in the stopbands is found to be 15 dB.

  4. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  5. Gadolinium trace determination in biomedical samples by diode-laser-based multi-step resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Diode laser based multi-step resonance ionization mass spectrometry (RIMS), which has been developed primarily for ultra trace analysis of long lived radioactive isotopes has been adapted for the application to elements within the sequence of the rare earths. First investigations concern Gd isotopes. Here high suppression of isobars, as provided by RIMS, is mandatory. Using a three step resonant excitation scheme into an autoionizing state, which has been the subject of preparatory spectroscopic investigations, high efficiency of >1x10-6 and good isobaric selectivity >107 was realized. Additionally the linearity of the method has been demonstrated over six orders of magnitude. Avoiding contaminations from the Titanium-carrier foil resulted in a suppression of background of more than one order of magnitude and a correspondingly low detection limit of 4x109 atoms, equivalent to lpg of Gd. The technique has been applied for trace determination of the Gd-content in animal tissue. Bio-medical micro samples were analyzed shortly after Gd-chelat, which is used as the primary contrast medium for magnetic resonance imaging (MRI) in biomedical investigations, has been injected. Correlated in-vivo magnetic resonance images have been taken. The RIMS measurements show high reproducibility as a well as good precision, and contribute to new insight into the distribution and kinetics of Gd within different healthy and cancerous tissues

  6. Longitudial observation of dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging combined with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Functional magnetic resonance imaging (fMRI) is initially used for visual cortex location.However, the application of fMRI in investigating the development of visual pathway lesions needs to be further observed.OBJECTIVE: This study is to longitudially observe the dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) combined with diffusion tensor imaging (DTI), and to analyze the characteristics of brain function and structural recombination at convalescent period of lesions.DESIGN: Randomized controlled observation.SETTING: Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Eight patients with unilateral or bilateral visual disorder caused by visual pathway lesions,who admitted to Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA from January to September 2006 were involved, and served as experimental subjects. The patients, 6 males and 2 females, were aged 16 - 67 years. They had visual disorder confirmed by clinical examination, i.e. visual pathway lesion, which was further diagnosed by MR or CT. Another 12 subjects generally matching to those patients of experimental group in gender, age and sight, who received health examination in synchronization were involved and served as controls. The subjects had no history of eye diseases. Their binocular visual acuity (or corrected visual acuity) was over 1.0. Both routine examination of ophthalmology and examination of fundus were normal. Informed consents of detected items were obtained from all the subjects.METHODS: Signa Excite HD 1.5T magnetic resonance imaging system with 16 passages (GE Company,USA) and coil with 8 passages were used; brain functional stimulus apparatus (SAV-8800. Meide Company) was used for showing experimental mission. At the early stage

  7. Microwave, Millimeter-Wave, and Submillimeter-Wave Spectra of 1,1,1-Trifluoropropyne: Analysis of the Ground and υ 10 = 1 Vibrational States and Observation of Direct l-Type Resonance Transitions

    Science.gov (United States)

    Harder, H.; Gerke, C.; Mader, H.; Cosleaou, J.; Bocquet, R.; Demaison, J.; Papousek, D.; Sarka, K.

    1994-09-01

    The rotational spectrum of CF 3CCH was measured up to 650 GHz in the ground state (about 220 transitions up to J = 112). A centrifugal distortion analysis was performed and all the sextic constants were accurately determined. The failure to observe the splitting of the K = 3 lines indicates that the splitting constant h3 is smaller than 10 -5 Hz. In the lowest bending vibrational state υ 10 = 1, the rotational spectrum was measured up to 470 470 (289 transitions up to J = 78). Furthermore, 344 direct l-type resonance transitions were observed between 2 and 23 GHz up to J = 84 by microwave Fourier-transform spectroscopy. Two sets of parameters were used to fit the data. In addition to a strong "2, 2" l-type interaction, it was necessary to take into account a "2, -4" interaction, which explains the splitting of the kl = -2 levels. A third interaction also had to be included in the fit: either the "0, ±3" interaction or the "2, -1" l-type one. Both sets result in the same superb standard deviation of the fit. This is due to an ambiguity of the effective Hamiltonian which may be reduced in an infinite number of different manners. The unitary equivalence of both sets of parameters is verified experimentally. It must also be noted that the axial rotational constant A10 could be determined accurately.

  8. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  9. The role of autoionizing states in electron-impact excitation of the lambda 230.6 nm intercombination line of an indium ion

    International Nuclear Information System (INIS)

    The electronic excitation function of the intercombination line lambda 230.6 nm an In+ ion is first investigated by the spectroscopic method in the energy range from the threshold to 00 eV using ion and electron beams crossing at the right angle. It is determined that, in the energy region of the spin-orbit splitting of excited levels, the dominant contribution to the resonance excitation is made by the Coster-Kronig process. It is discovered that, at the electron energies higher than the fivefold threshold, a decrease of the excitation function does not correspond to the law E-3 characteristic of intercombination transitions

  10. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    CERN Document Server

    Galán, Álvaro Jiménez; Argenti, Luca

    2015-01-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate \\emph{ab initio} calculations, or be extracted from few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association to a weak IR probe, obtaining results in quantitative agreement with those from accurate \\emph{ab initio} simulations. In particular, we show that: i) Use of finite pulses results in a homogene...

  11. Objects orbiting the Earth in deep resonance

    OpenAIRE

    J. C. Sampaio; Wnuk, E.; de Moraes, R. Vilhena; S. S. Fernandes

    2012-01-01

    The increasing number of objects orbiting the Earth justifies the great attention and interest in the observation, spacecraft protection and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, the TLE (Two-Line Elements) of the NORAD are studied observing the resonant period of the objects orbiting the Earth and the main resonance in the LEO region. The time behavior of th...

  12. Electromagnetic properties of baryon resonances

    CERN Document Server

    Tiator, Lothar

    2012-01-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  13. Resonant Mode-hopping Micromixing

    OpenAIRE

    Jang, Ling-Sheng; Chao, Shih-hui; Holl, Mark R.; Meldrum, Deirdre R.

    2007-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are...

  14. Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances

    OpenAIRE

    Lee, Y.U.; Choi, E. Y.; Kim, E S; Woo, J.H.; KANG, B.; Kim, J.; Park, Byung Cheol; Hong, T. Y.; Kim, Jae Hoon; Wu, J W

    2013-01-01

    By embedding four-rod resonators inside double-split ring resonators superlattice, a planar composite metamaterial possessing tripod plasmonic resonances is fabricated. Double Fano resonances are observed where a common subradiant driven oscillator is coupled with two superradiant oscillators. As a classical analogue of four-level tripod atomic system, the transmission spectrum of the composite metamaterial exhibits a double Fano-based coherent effect. Transfer of absorbed power between two s...

  15. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3

    International Nuclear Information System (INIS)

    For certain conditions of layer thickness, the interface between GdTiO3 (GTO) and SrTiO3 (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO3)0.3(Sr2AlTaO6)0.7, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening

  16. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO{sub 3} embedded in GdTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nemšák, S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany); Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Cho, S.; Rault, J. E.; Avila, J.; Asensio, M.-C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette Cedex (France); Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Balents, L. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Schneider, C. M. [Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-07

    For certain conditions of layer thickness, the interface between GdTiO{sub 3} (GTO) and SrTiO{sub 3} (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7}, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening.

  17. Resonant Nucleation

    CERN Document Server

    Gleiser, M; Gleiser, Marcelo; Howell, Rafael

    2004-01-01

    We investigate the role played by fast quenching on the decay of metastable (or false vacuum) states. Instead of the exponentially-slow decay rate per unit volume, $\\Gamma_{\\rm HN} \\sim \\exp[-E_b/k_BT]$ ($E_b$ is the free energy of the critical bubble), predicted by Homogeneous Nucleation theory, we show that under fast enough quenching the decay rate is, in fact, a power law $\\Gamma_{\\rm RN} \\sim [E_b/k_BT]^{-B}$, where $B$ is weakly sensitive to the temperature. We argue that the fast quench generates large-amplitude fluctuations about the metastable state which promote its rapid decay via parametric resonance. Possible decay mechanisms and their dependence on $E_b$ are proposed and illustrated in a (2+1)-dimensional scalar field model with an asymmetric double-well potential.

  18. Resonant magnetic vortices

    International Nuclear Information System (INIS)

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices

  19. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.)

  20. SF自由基的REMPI光谱:观测到一个新的2∑电子态%Observation of a New 2∑ Excited Electronic State of SF by Resonance-Enhanced Multiphoton Ionization Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    郑贤峰; 王婷婷; 李春燕; 陈旸; 张劲松

    2007-01-01

    利用SF6/Ar混合气沿气束方向放电,产生SF自由基.在306~321 nm范围内扫描激光波长得到SF自由基(2+1)REMPI光谱.观测到2∑←X2∏双光子跃迁的5个振转谱带,通过对实验谱分析获得新观测到2∑里德堡态的转动常数近似值和振动频率约815 cm-1;同时对2∏3/2←X2∏3/2跃迁谱带进行了转动分析,转动常数Bv'≈0.42 cm-1,该谱带对应着(1+2)REMPI机理;对SF自由基电离解离机理也进行了讨论.%The (2+1) resonance-enhanced multiphoton ionization (REMPI) spectrum of SF has been obtained in the single-photon wavelength region of 307-321 nm. Five vibronic bands were observed and assigned to the twophoton transitions from the ground state to a 2∑ Rydberg state. The term value Te, vibrational frequency,and the rotational constant of the 2∑ Rydberg state were determined. Another 2P state was observed near 312 nm.

  1. From Autonomous Coherence Resonance to Periodically Driven Stochastic Resonance

    Institute of Scientific and Technical Information of China (English)

    CAO Zhou-Jian; LI Peng-Fei; HU Gang

    2007-01-01

    In periodically driven nonlinear stochastic systems,noise may play a role of enhancing the output periodic signal (termed as stochastic resonance or SR).While in autonomous excitable systems,noise may play a role of increasing coherent motion(termed as coherence resonance or CR).So far the topics of SR and CR have been investigated separately as two major fields of studying the active roles of noise in nonlinear systems.We find that these two topics are closely related to each other.Specifically,SR occurs in such periodically driven systems that the corresponding autonomous systems show CR.The SR with sensitive frequency dependence can be observed when the corresponding autonomous system shows CR with finite characteristic frequency.Moreover,'resonant noise' and 'resonant frequency' of SR coincide with those of CR.

  2. Magnetic resonance imaging of hemochromatosis arthropathy

    International Nuclear Information System (INIS)

    This study was undertaken to compare plain film radiography and magnetic resonance imaging in the assessment of hemochromatosis arthropathy of the knees of ten patients with a biopsy-proven diagnosis. Both modalities enabled visualisation of bony degenerative changes; magnetic resonance imaging enabled additional visualization of deformity of both cartilage and menisci. Magnetic resonance imaging failed reliably to confirm the presence of intra-articular iron in the patients studied. No correlation was observed between synovial fluid magnetic resonance signal values, corresponding serum ferritin levels, or the severity of the observed degenerative changes. (orig.)

  3. Magnetic resonance imaging of hemochromatosis arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Eustace, S. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); Buff, B. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); McCarthy, C. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); MacMathuana, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Gilligan, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Ennis, J.T. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland)

    1994-10-01

    This study was undertaken to compare plain film radiography and magnetic resonance imaging in the assessment of hemochromatosis arthropathy of the knees of ten patients with a biopsy-proven diagnosis. Both modalities enabled visualisation of bony degenerative changes; magnetic resonance imaging enabled additional visualization of deformity of both cartilage and menisci. Magnetic resonance imaging failed reliably to confirm the presence of intra-articular iron in the patients studied. No correlation was observed between synovial fluid magnetic resonance signal values, corresponding serum ferritin levels, or the severity of the observed degenerative changes. (orig.)

  4. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... 8 MB) Also available in Other Language versions . Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  5. Resonant Mode-hopping Micromixing.

    Science.gov (United States)

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R; Meldrum, Deirdre R

    2007-07-20

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  6. Nested Trampoline Resonators for Optomechanics

    CERN Document Server

    Weaver, Matthew J; Luna, Fernando; Buters, Frank M; Eerkens, Hedwig J; Welker, Gesa; Perock, Blaise; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    2015-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating novel trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We construct a nested double resonator structure that generates approximately 80 dB of mechanical isolation from the mounting surface, eliminating the strong mounting dependence of the quality factor observed with single resonators. With the consistency provided by this isolation scheme we reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  7. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  8. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  9. Magnetic resonance angiography

    Science.gov (United States)

    MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular Magnetic Resonance Imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . ...

  10. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Chan, Elisa K.; Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Wilson, Don [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Ma, Roy; Cheung, Arthur [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Zhang, Susan [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Benard, Francois [Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Nichol, Alan [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada)

    2013-12-01

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified by the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm

  11. Spectrally resolved resonant propulsion of dielectric microspheres

    CERN Document Server

    Li, Yangcheng; Limberopoulos, Nicholaos I; Urbas, Augustine M; Astratov, Vasily N

    2015-01-01

    Use of resonant light forces opens up a unique approach to high-volume sorting of microspherical resonators with much higher uniformity of resonances compared to that in coupled-cavity structures obtained by the best semiconductor technologies. In this work, the spectral response of the propulsion forces exerted on polystyrene microspheres near tapered microfibers is directly observed. The measurements are based on the control of the detuning between the tunable laser and internal resonances in each sphere with accuracy higher than the width of the resonances. The measured spectral shape of the propulsion forces correlates well with the whispering-gallery mode resonances in the microspheres. The existence of a stable radial trap for the microspheres propelled along the taper is demonstrated. The giant force peaks observed for 20-{\\mu}m spheres are found to be in a good agreement with a model calculation demonstrating an efficient use of the light momentum for propelling the microspheres.

  12. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  13. Stimulated Resonant Radiation

    CERN Document Server

    Clerici, M; Rubino, E; Moss, D; Couairon, A; Légaré, F; Morandotti, R; Faccio, D

    2014-01-01

    Resonant radiation (RR) is emitted by solitons propagating in a waveguide or by filamenting pulses in bulk media. Recent studies have highlighted the possibility to stimulate RR also in weaker pulses that co-propogate with a pump pulse. We numerically and experimentally demonstrate that RR radiation can be stimulated employing a THz seed co-propagating in diamond with an intense 800 nm pulse. This way we predict and observe the stimulated emission of RR at 425 nm, thus bridging a spectral gap of more than six octaves and allowing the detection of THz pulses by means of a silicon-based device.

  14. Strongly-coupled nanotube electromechanical resonators

    OpenAIRE

    Deng, Guang-Wei; ZHU Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-01-01

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel micro-transfer technique, we fabricate two strongly-coupled and electrically-tunable mechanical resonators on a single carbon nanotube for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and strong coupling is observed between the electron charge and phonon m...

  15. Polarization conversion loss in birefringent crystalline resonators

    CERN Document Server

    Grudinin, Ivan S; Yu, Nan

    2013-01-01

    Whispering gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate the XY--cut resonators made with LiNbO$_3$, LiTaO$_3$ and BBO and observe strong influence of the resonator's shape and birefringence on the quality factor of the extraordinary polarized modes. We show that extraordinary modes can have lower Q and even be suppressed due to polarization conversion loss. The ordinary ray modes retain the high Q due to inhibited reflection phenomenon.

  16. Germanium Microsphere High-Q Resonator

    OpenAIRE

    Wang, Pengfei; Lee, Timothy; Ding, Ming; Dhar, Anirban; Hawkins, Thomas; Foy, Paul; Semenova, Yuliya; Wu, Qiang; Sahu, Jayanta; Farrell, Gerald; Ballato, John; Brambilla, Gilberto

    2012-01-01

    In this Letter, the fabrication and characterization of a microsphere resonator from the semiconductor germanium is demonstrated. Whispering gallery modes are excited in a 46 μm diameter germanium microsphere resonator using evanescent coupling from a tapered silica optical fiber with a waist diameter of 2 μm. Resonances with Q factors as high as 3.8×104 at wavelengths near 2 μm are observed. Because of their ultrahigh optical nonlinearities and extremely broad transparency window, germanium ...

  17. Resonance frequency in respiratory distress syndrome

    OpenAIRE

    Lee, S.; Milner, A

    2000-01-01

    AIM—To observe how the resonance frequency changes with the course of respiratory distress syndrome (RDS), by examining the effect of changing static compliance on the resonance frequency in premature infants.
METHODS—In 12 ventilated premature infants with RDS (mean gestational age 26.6 weeks, mean birth weight 0.84 kg), resonance frequency and static compliance were determined serially using phase analysis and single breath mechanics technique respectively in the first ...

  18. Demonstration of sharp multiple Fano resonances in optical metamaterials.

    Science.gov (United States)

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2016-05-01

    We experimentally demonstrated multiple Fano resonances in optical metamaterials. By combination of two different sized asymmetric-double-bar (ADB) structures, triple Fano resonance was observed in the near-infrared region. In addition to Fano resonance due to anti-phase modes in isolated ADB structures, an anti-phase mode due to coupling among different sized ADBs was observed. Dependence of characteristics of resonances on size difference was also investigated. At specific conditions of size difference, quality factors of three Fano resonances were improved compared with ADB metamaterials consisting of one kind of ADBs. The results will help to realize applications using metamaterial resonators with multiple functionalities and high performance.

  19. Phase-controlled Fano resonance by the nanoscale optomechanics

    CERN Document Server

    Zhang, Jian-Qi; Xia, Keyu; Dai, Zhi-Ping; Yang, Wen; Gong, Shangqing; Feng, Mang

    2014-01-01

    Observation of the Fano line shapes is essential to understand properties of the Fano resonance in different physical systems. We explore a tunable Fano resonance by tuning the phase shift in a Mach-Zehnder interferometer (MZI) based on a single-mode nano-optomechanical cavity. The Fano resonance is resulted from the optomechanically induced transparency caused by a nano-mechanical resonator and can be tuned by applying an optomechanical MZI. By tuning the phase shift in one arm of the MZI, we can observe the periodically varying line shapes of the Fano resonance, which represents an elaborate manipulation of the Fano resonance in the nanoscale optomechanics.

  20. Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances

    International Nuclear Information System (INIS)

    By embedding four-rod resonators inside a double-split ring resonator superlattice, a planar composite metamaterial possessing tripod plasmonic resonances is fabricated. Double Fano resonances are observed where a common subradiant driven oscillator is coupled with two superradiant oscillators. As a classical analogue of a four-level tripod atomic system, the extinction spectrum of the composite metamaterial exhibits a coherent effect based on double Fano resonances. Transfer of the absorbed power between two orthogonal superradiant oscillators is shown to be mediated by the common subradiant oscillator. (paper)

  1. Empathy in schizophrenia: impaired resonance.

    Science.gov (United States)

    Haker, Helene; Rössler, Wulf

    2009-09-01

    Resonance is the phenomenon of one person unconsciously mirroring the motor actions as basis of emotional expressions of another person. This shared representation serves as a basis for sharing physiological and emotional states of others and is an important component of empathy. Contagious laughing and contagious yawning are examples of resonance. In the interpersonal contact with individuals with schizophrenia we can often experience impaired empathic resonance. The aim of this study is to determine differences in empathic resonance-in terms of contagion by yawning and laughing-in individuals with schizophrenia and healthy controls in the context of psychopathology and social functioning. We presented video sequences of yawning, laughing or neutral faces to 43 schizophrenia outpatients and 45 sex- and age-matched healthy controls. Participants were video-taped during the stimulation and rated regarding contagion by yawning and laughing. In addition, we assessed self-rated empathic abilities (Interpersonal Reactivity Index), psychopathology (Positive and Negative Syndrome Scale in the schizophrenia group resp. Schizotypal Personality Questionnaire in the control group), social dysfunction (Social Dysfunction Index) and executive functions (Stroop, Fluency). Individuals with schizophrenia showed lower contagion rates for yawning and laughing. Self-rated empathic concern showed no group difference and did not correlate with contagion. Low rate of contagion by laughing correlated with the schizophrenia negative syndrome and with social dysfunction. We conclude that impaired resonance is a handicap for individuals with schizophrenia in social life. Blunted observable resonance does not necessarily reflect reduced subjective empathic concern. PMID:19377866

  2. Searches for Heavy Resonances at the LHC

    CERN Document Server

    Harper, Sam

    2013-01-01

    These proceedings presents the results of several searches for heavy resonances using between 6 and 20 fb^{-1} of $\\sqrt{s}=8$~TeV proton-proton collision data collected by the ATLAS and CMS experiments at the LHC. No evidence of new heavy resonances is observed and limits are set at the 95\\pct confidence level on various benchmark models.

  3. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  4. Composite spin-1 resonances at the LHC

    CERN Document Server

    Low, Matthew; Wang, Lian-Tao

    2015-01-01

    In this paper, we discuss the signal of composite spin-1 resonances at the LHC. Motivated by the possible observation of a diboson resonance in the 8 TeV LHC data, we demonstrate that vector resonances from composite Higgs models are able to describe the data. We pay particular attention to the role played by fermion partial compositeness, which is a common feature in composite Higgs models. The parameter space that is both able to account for the diboson excess and passes electroweak precision and flavor tests is explored. Finally, we make projections for signals of such resonances at the 13 TeV run of the LHC.

  5. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2010-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming a partici......Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  6. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2011-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming a partici......Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  7. Visuomotor resonance in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Cristina eBecchio

    2012-11-01

    Full Text Available When we observe the actions performed by others, our motor system ‘resonates' along with that of the observed agent. Is a similar visuomotor resonant response observed in autism spectrum disorders (ASD? Studies investigating action observation in ASD have yielded inconsistent findings. In this perspective article we examine behavioral and neuroscientific evidence in favor of visuomotor resonance in ASD, and consider the possible role of action-perception coupling in social cognition. We distinguish between different aspects of visuomotor resonance and conclude that while some aspects may be preserved in ASD, abnormalities exist in the way individuals with ASD convert visual information from observed actions into a program for motor execution. Such abnormalities, we surmise, may contribute to but also depend on the difficulties that individuals with ASD encounter during social interaction.

  8. Magnetic resonance in neuroborreliosis

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) is commonly used in diagnosing infections of the central nervous system. The aim of the study is to evaluate central nervous system changes in neuroborreliosis patients. MR examinations were performed in 44 patients with clinical symptoms, epidemiology and laboratory tests results of neuroborreliosis. Abnormalities were detected in 22 patients. Most of them presented cortico-subcortical atrophy (86%). In 9 cases foci of increased signal in T2-weighted and FLAIR images were observed in white matter. They were single or multiple, located subcorticaly and paraventriculary. In 2 subjects areas of increased signal were found in the brain stem. Central nervous system abnormalities detected with MR are not specific for Lyme disease. They can suggest demyelinating lesions and/or gliosis observed in many nervous system disorders (SM, ADEM, lacunar infarcts). (author)

  9. 健康男性直肠周围筋膜的CT和MRI影像学观察%Observation on computed tomographic and magnetic resonance images of perirectal fasciae of healthy men

    Institute of Scientific and Technical Information of China (English)

    张策; 成官迅; 李国新; 钟世镇

    2012-01-01

    目的 阐明健康男性直肠周围筋膜和神经的CT和MRI影像特点.方法 观察健康成年男性的CT和MRI影像资料各10例、男性尸体骨盆标本MRI扫描影像5例.结果 直肠固有筋膜和骶前筋膜显示为环形直肠系膜后外侧的联合层;此联合层于S5椎体水平增厚为直肠骶骨筋膜.Denonvilliers筋膜是联合层在直肠系膜前面的延续.下腹下丛为联合层后外侧,联系直肠、膀胱和盆侧壁的网孔结构.直肠周围筋膜的MRI T2影像较T1和CT影像更清晰.结论 直肠固有筋膜和骶前筋膜在MRI T2影像中为连续、清晰的联合层,在指导直肠癌的影像学评估方面具有潜在的临床价值.%Objective To explore iconography of computed tomography( CT )and magnetic resonance imaging( MRI )of perirectal fasciae and autonomic nerves of healthy subjects. Methods CT and MRI images of 10 healthy male were collected. Five healthy male cadaveric pelvises underwent MRI examination. Images were reviewed. Results Rectal proper fascia and presacral fascia were combined single layer covering annular mesorectum from posterolateral aspect. The combined layer was bolded at the level of the fifth sacral vertebra that indicated rectosacral fascia. Denonvilliers fascia was continuation of the combined layer and covered the mesorectum from anterior aspect. Inferior hypogastric plexus was a mesh posterolateral to the combined layer and linked rectum and bladder to lateral wall of pelvis. Perirectal fasciae were observed more clearly on T2 weighed MRI images than on Tl images or CT images. Conclusion Rectal proper fascia and presacral fascia were continued and clear combined layer on T2 MRI images, which may play potential roles on iconographic evaluation of rectal caner. .

  10. Resonant Repulsion of Kepler Planet Pairs

    CERN Document Server

    Lithwick, Yoram

    2012-01-01

    Planetary systems discovered by the Kepler space telescope exhibit an intriguing feature. While the period ratios of adjacent low-mass planets appear largely random, there is a significant excess of pairs that lie just wide of resonances and a deficit on the near side. We demonstrate that this feature naturally arises when two near-resonant planets interact in the presence of weak dissipation that damps eccentricities. The two planets repel each other as orbital energy is lost to heat. This moves near-resonant pairs just beyond resonance, by a distance that reflects the integrated dissipation they experienced over their lifetimes. We find that the observed distances may be explained by tidal dissipation if tides are efficient (tidal quality factor ~10). Once the effect of resonant repulsion is accounted for, the initial orbits of these low mass planets show little preference for resonances. This is a strong constraint on their origin.

  11. Resonance and Neck Length for a Spherical Resonator

    Directory of Open Access Journals (Sweden)

    Emily Corning

    2011-06-01

    Full Text Available The relationship between the neck length of a spherical resonator and its period of fundamental resonance was investigated. This was done by measuring the frequency of fundamental resonance of the resonator at 6 different neck lengths. It was found that its resonance resembled Helmholtz resonance but was not that of ideal Helmholtz resonance.

  12. Dynamics of single and multiphoton ionization processes in molecules

    International Nuclear Information System (INIS)

    Single-photon and resonant multiphoton ionization studies, which can now be carried out using synchrotron radiation and lasers, respectively, are providing important dynamical information on molecular photoionization. The author studied the underlying dynamical features of these ionization processes using Hartree-Fock continuum orbitals generated using the iterative Schwinger variational method for solving the photoelecttron collisional equations. The single-photon studies examine the important role that shape and autoionizing resonances play in molecular photoionization, while the multiphoton studies investigate the ionization dynamics of exited electronic states. The subtle nature of shape resonances was demonstrated in polyatomic systems such as C2H2 and C2N2, where the possibility of multiple resonances in a single channel is observed. Molecular autoionizing resonances are known to dominate regions of the photoionization spectra. The author adapted and applied a generalization of the Fano treatment for autoionization to molecular systems. Results for H2 and C2H2 autoionizing resonances are presented and discussed

  13. CH自由基多光子电离新观测到3个ndRydberg态%Three New nd Rydberg States of CH Radical Observed by Resonant Multiphton Ionization

    Institute of Scientific and Technical Information of China (English)

    陈旸; 裴林森; 冉琴; 高义德; 陈从香

    1999-01-01

    (2+1) resonant multiphoton ionization of photolytically produced CH radical yields previously unobserved bands arising from two photon transition to Rydberg states.Analysing of the spectrum of CH+,three new states are identified.They are 8d,9d and 10d Rydberg states,respectively.

  14. Planar Resonators for Metamaterials

    Directory of Open Access Journals (Sweden)

    M. Blaha

    2012-09-01

    Full Text Available This paper presents the results of an investigation into a combination of electric and magnetic planar resonators in order to design the building element of a volumetric metamaterial showing simultaneously negative electric and magnetic polarizabilities under irradiation by an electromagnetic wave. Two combinations of particular planar resonators are taken into consideration. These planar resonators are an electric dipole, a split ring resonator and a double H-shaped resonator. The response of the single resonant particle composed of a resonator with an electric response and a resonator with a magnetic response is strongly anisotropic. Proper spatial arrangement of these particles can make the response isotropic. This is obtained by proper placement of six planar resonators on the surface of a cube that now represents a metamaterial unit cell. The cells are distributed in space with 3D periodicity.

  15. Atomic negative-ion resonances

    International Nuclear Information System (INIS)

    The authors attempt to give a comprehensive discussion of observations of atomic negative-ion resonances throughout the periodic table. A review of experimental and theoretical approaches to the study of negative-ion resonances is given together with a consideration of the various schemes that are used for their classification. In addition to providing, where possible, tabulated data for the energies, widths, and symmetries of these states, the authors also attempt to highlight regularities in their behavior both within groups of the periodic table and along isoionic sequences

  16. Mechanical Resonance of embedded cluster

    CERN Document Server

    Wen, Z; Wen, Zhenying; Zhao, Hong

    2004-01-01

    Embedded clusters, which are embedded in bulk materials and different from the surroundings in structures, should be common in materials. This paper studies resonance of such clusters. This work is stimulated by a recent experimental observation that some localized clusters behavior like fluid at the mesoscopic scale in many solid materials [Science in China(Series B). 46, 176 (2003)]. We argue that the phenomenon is just a vivid illustration of resonance of embedded clusters, driven by ubiquitous microwaves. Because the underlying mechanism is fundamental and embedded structures are usual, the phenomenon would have great significance in material physics.

  17. Integral resonator gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  18. Direct measurement of the intrinsic linewidth of a resonant state

    Science.gov (United States)

    Kobos, Zachary; Reed, Mark

    2015-03-01

    We have applied inelastic electron tunneling spectroscopy (IETS) techniques to a resonantly-coupled system to determine quantitative differences in resonant versus non-resonant IETS. We use as a model system a set of GaAs-AlGaAs resonant tunneling diodes (RTDs)(footnote: with different barrier widths to tune resonant state linewidths and transmission coefficients. Modulation-broadening studies confirm theoretical predictions; however, the thermal dependence is markedly different than expected from classical IETS theory. An analysis of resonance shut-off reveals that the thermal dependence reflects the thermal broadening of the injector and resonant state density of states. Using this analysis, we show that one can extract both the transmission coefficient and the intrinsic linewidth of the resonant state. This is compared for RTDs of different tunneling barrier widths, and we observe the expected increase in resonance width for thinner barriers. This work was supported by the National Science Foundation.

  19. Fano resonances in dielectric, metallic and metamaterial photonic structures

    CERN Document Server

    Markos, Peter

    2016-01-01

    We investigate numerically Fano resonances excited in periodic arrays of dielectric, metallic and left-handed cylinders. Of particular interest are Fano resonances excited in the linear array of cylin- ders. We analyze spatial distribution and symmetry of electromagnetic field and discuss the relation between observed Fano resonances and frequency spectra of two-dimensional arrays of cylinders.

  20. Modulation gamma resonance spectroscopy

    International Nuclear Information System (INIS)

    Possibility to control dynamic processes in a matter through gamma-resonance modulation by high-frequency external variable fields in excess of inverse lifetimes of the Moessbauer nuclei excited states, that is, within the megahertz frequency range lies in the heart of the modulation gamma-resonance spectroscopy. Through the use of the gamma-resonance process theoretical analysis methods and of the equation solution method for the density matrix with the secondary quantization of gamma-radiation field one attacks the problems dealing with the effect of both variable fields and relaxation on gamma-resonance. One has studied the gamma-radiation ultrasound modulation stages. One points out a peculiar role of the gamma-magnetic resonance effect in modulation gamma resonance spectroscopy formation. One forecasts development of the modulation gamma-resonance spectroscopy into the nonlinear gamma-resonance spectroscopy

  1. Neutron resonance averaging

    International Nuclear Information System (INIS)

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  2. Resonance, Multi-resonance, and Reverse-resonance Induced by Multiplicative Dichotomous Noise

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.

  3. Extensive spiral structure and corotation resonance

    CERN Document Server

    Canzian, B

    1998-01-01

    Spiral density wave theories demand that grand design spiral structure be bounded, at most, between the inner and outer Lindblad resonances of the spiral pattern. The corotation resonance lies between the outer and inner Lindblad resonances. The locations of the resonances are at radii whose ratios to each other are rather independent of the shape of the rotation curve. The measured ratio of outer to inner extent of spiral structure for a given spiral galaxy can be compared to the standard ratio of corotation to inner Lindblad resonance radius. In the case that the measured ratio far exceeds the standard ratio, it is likely that the corotation resonance is within the bright optical disk. Studying such galaxies can teach us how the action of resonances sculpts the appearance of spiral disks. This paper reports observations of 140 disk galaxies, leading to resonance ratio tests for 109 qualified spirals. It lists candidates that have a good chance of having the corotation resonance radius within the bright opti...

  4. Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  5. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage if t...

  6. Spin coupling and resonance

    NARCIS (Netherlands)

    Zielinski, M.L.; van Lenthe, J.H.

    2008-01-01

    The resonating block localize wave function (RBLW) method is introduced, a resonating modification of the block localized wave functions introduced by Mo et al. [Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687].This approach allows the evaluation of resonance energies following Pauling’s r

  7. REMPI Spectroscopy of HfF

    CERN Document Server

    Loh, Huanqian; Yahn, Tyler S; Looser, Herbert; Field, Robert W; Cornell, Eric A

    2012-01-01

    The spectrum of electronic states at 30000--33000 cm$^{-1}$ in hafnium fluoride has been studied using (1+1) resonance-enhanced multi-photon ionization (REMPI) and (1+1$'$) REMPI. Six $\\Omega' = 3/2$ and ten $\\Pi_{1/2}$ vibronic bands have been characterized. We report the molecular constants for these bands and estimate the electronic energies of the excited states using a correction derived from the observed isotope shifts. When either of two closely spaced $\\Pi_{1/2}$ electronic states is used as an intermediate state to access autoionizing Rydberg levels, qualitatively distinct autoionization spectra are observed. The intermediate state-specificity of the autoionization spectra bodes well for the possibility of using a selected $\\Pi_{1/2}$ state as an intermediate state to create ionic HfF$^+$ in various selected quantum states, an important requirement for our electron electric dipole moment (eEDM) search in HfF$^+$.

  8. Numerical investigation of Fano resonances in metamaterials with electric asymmetry

    OpenAIRE

    Rotaru, M.; Sykulski, J. K.

    2012-01-01

    The excitation of high quality factor asymmetric Fano-type resonances on a double layer metafilm structure is investigated through numerical simulation. The paper demonstrates that it is possible to design simple structures capable to sustain a very high quality factor resonance by reducing their radiation losses. An equivalent circuit formed by two linearly coupled resonant RLC circuits is extracted in an attempt to explain the observed Fano resonance through classical circuit theory.

  9. Interference scattering effects on intermediate resonance absorption at operating temperatures

    International Nuclear Information System (INIS)

    Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures

  10. Composite Resonator Surface Emitting Lasers

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  11. Objects orbiting the Earth in deep resonance

    CERN Document Server

    Sampaio, J C; de Moraes, R Vilhena; Fernandes, S S

    2012-01-01

    The increasing number of objects orbiting the Earth justifies the great attention and interest in the observation, spacecraft protection and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, the TLE (Two-Line Elements) of the NORAD are studied observing the resonant period of the objects orbiting the Earth and the main resonance in the LEO region. The time behavior of the semi-major axis, eccentricity and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  12. Ovenized microelectromechanical system (MEMS) resonator

    Science.gov (United States)

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  13. Magnetic resonance energy and topological resonance energy.

    Science.gov (United States)

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.

  14. Quantum interference between resonant and nonresonant photorecombination

    Science.gov (United States)

    Tu, B.; Xiao, J.; Yao, K.; Shen, Y.; Yang, Y.; Lu, D.; Li, W. X.; Qiu, M. L.; Wang, X.; Chen, C. Y.; Fu, Y.; Wei, B.; Zheng, C.; Huang, L. Y.; Zhang, B. H.; Tang, Y. J.; Hutton, R.; Zou, Y.

    2016-03-01

    In this paper, we present experimental and theoretical studies on the interference between resonant and nonresonant photorecombinations for the main resonances of ground-state He-, Be-, B-, C-, N-, and O-like W ions. Experiments were done using a fast electron energy scanning technique at the upgraded Shanghai electron-beam ion trap. Asymmetric resonances were observed, and their Fano factors, which measure the interference degree, were determined. The calculations were done under the framework of Fano's theory by using the flexible atomic code, in which the relativistic configuration interaction method was employed. Among the nine resonances studied in this work, eight experimental results agree with the calculation within experimental uncertainties. But the experimental result for the resonance of Be-like W ions, through the intermediate state of [(1s2s22p 1 /2) 12 p3 /2] 5 /2, deviates from its corresponding theoretical result by 1.3 times experimental uncertainty.

  15. Resonance and non-resonance microwave absorption in cobaltites

    International Nuclear Information System (INIS)

    Microwave studies in the temperature range 4-300 K have been made on the different kinds of cobaltites in an attempt to observe a magnetic resonance. In a La0.9Ca0.1CoO3 single crystal a broad resonance absorption line (with g ∼ 2) due to the presence of Co4+ ions was observed below 40 K. The measured broadening of the linewidth with decreasing temperature can be related to the process of clustering of cobalt ions. In La0.8Ca0.2CoO3 and TbBaCo2O5.5 single crystals non-resonance absorption was observed in the temperature ranges 20-90 and 240-260 K, respectively. In order to investigate the nature of this absorption its intensity was measured as a function of external magnetic field and temperature. The results could suggest that the absorption, although similar for both compounds, was caused by two different mechanisms: microwave power losses on metallic/ferromagnetic clusters in La0.8Ca0.2CoO3 and high-frequency fluctuations of the magnetic domain walls in TbBaCo2O5.5. (letter to the editor)

  16. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    Science.gov (United States)

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications. PMID:24664026

  17. Quantifying resonant and near-resonant interactions in rotating turbulence

    CERN Document Server

    di Leoni, P Clark

    2016-01-01

    Nonlinear triadic interactions are at the heart of our understanding of turbulence. In flows where waves are present modes must not only be in a triad to interact, but their frequencies must also satisfy an extra condition: the interactions that dominate the energy transfer are expected to be resonant. We derive equations that allow direct measurement of the actual degree of resonance of each triad in a turbulent flow. We then apply the method to the case of rotating turbulence, where eddies coexist with inertial waves. We show that for a range of wave numbers, resonant and near-resonant triads are dominant, the latter allowing a transfer of net energy towards two-dimensional modes that would be inaccessible otherwise. The results are in good agreement with approximations often done in theories of rotating turbulence, and with the mechanism of parametric instability proposed to explain the development of anisotropy in such flows. We also observe that, at least for the moderate Rossby numbers studied here, mar...

  18. Multifrequency spin resonance in diamond

    CERN Document Server

    Childress, Lilian

    2010-01-01

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  19. Autoionization of water: does it really occur?

    CERN Document Server

    Artemov, V G; Sysoev, N N; Volkov, A A

    2015-01-01

    The ionization constant of water Kw is currently determined on the proton conductivity sigma1 which is measured at frequencies lower than 10^7 Hz. Here, we develop the idea that the high frequency conductivity sigma2 (~10^11 Hz), rather than sigma1 represents a net proton dynamics in water, to evaluate the actual concentration c of H3O+ and OH- ions from sigma2. We find c to be not dependent on temperature to conclude that i) water electrodynamics is due to a proton exchange between H3O+ (or OH-) ions and neutral H2O molecules rather than spontaneous ionization of H2O molecules, ii) the common Kw (or pH) reflects the thermoactivation of the H3O+ and OH- ions from the potential of their interaction, iii) the lifetime of a target water molecule does not exceed parts of nanosecond.

  20. Observation of the 2p{sub 3/2}-2s{sub 1/2} radiative transition in Li-like uranium using the resonant coherent excitation in Si-crystal.

    Energy Technology Data Exchange (ETDEWEB)

    Ananyeva, Alena [Goethe Universitaet Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Azuma, Toshiyuki; Nakano, Yuji [Tokyo Metropolitan University (Japan); RIKEN, Tokyo (Japan); Braeuning, Harald; Braeuning-Demian, Angela; Dimopoulou, Christina; Kleffner, Carl; Steck, Markus [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Dauvergne, Denis [IPNL - Institut de Physique Nucleaire de' Lyon (France); Kanai, Yasuyuki [RIKEN, Tokyo (Japan); Pivovarov, Yuri [National ResearchTomsk Polytechnic University (Russian Federation); Suda, Shintaro [Tokyo Metropolitan University (Japan); Yamazaki, Yasunori [RIKEN, Tokyo (Japan); University of Tokyo (Japan)

    2012-07-01

    Taking advantage of the cooled, relativistic ion beams delivered by the Experimental Storage Ring (ESR) at GSI, Darmstadt the energy of the 1s{sup 2}2p{sub 3/2}- 1s{sup 2}2s{sub 1/2} transition in Li-like U ions was measured by using the resonant excitation of ions in a Si-crystal in channelling conditions. The excitation of the projectile traversing a solid target with an ordered structure is induced with great probability by the periodic potential defined by the atoms of the crystal lattice when the oscillation frequency of the crystal field fits the energy difference between two levels of the ion. The resonant character of the process enables the determination of transition energy with high precision. The present scheme is quite universal being applicable for various ions and for a wide range of transition energies in the field of atomic as well as nuclear physics.

  1. Observer's observables. Residual diffeomorphisms

    CERN Document Server

    Duch, Paweł; Świeżewski, Jedrzej

    2016-01-01

    We investigate the fate of diffeomorphisms when the radial gauge is imposed in canonical general relativity. As shown elsewhere, the radial gauge is closely related to the observer's observables. These observables are invariant under a large subgroup of diffeomorphisms which results in their usefulness for canonical general relativity. There are, however, some diffeomorphisms, called residual diffeomorphisms, which might be "observed" by the observer as they do not preserve her observables. The present paper is devoted to the analysis of these diffeomorphisms in the case of the spatial and spacetime radial gauges. Although the residual diffeomorphisms do not form a subgroup of all diffeomorphisms, we show that their induced action in the phase space does form a group. We find the generators of the induced transformations and compute the structure functions of the algebras they form. The obtained algebras are deformations of the algebra of the Euclidean group and the algebra of the Poincar\\'e group in the spat...

  2. Baryon Spectroscopy and Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Robert Edwards

    2011-12-01

    A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of

  3. On gravitational-electromagnetic resonance

    CERN Document Server

    Mensky, Michael B

    2007-01-01

    This is an English translation of the paper M.B.Mensky, in: K.P.Stanyukovich (ed.), "Problems of Theory of Gravity and Elementary Particles", issue 6, Moscow, Atomizdat, 1975, p.181-190 (in Russian). This paper elaborates further the idea (formulated in 1971 by Braginsky and Mensky) of detecting high-frequency gravitational waves by observing resonance action of a gravitational wave on the electromagnetic wave in a closed resonator (waveguide). The phenomenon underlying such a detector was called gravitational-electromagnetic resonance (GER). In the present paper both closed (for example circular) resonator or waveguide and long (for example in the shape of a spiral) waveguide are considered as possible gravitational-wave detectors. High-frequency gravitational-wave detectors are now again actual (see A.M.Cruise and R.M.J.Ingley, Class. Quant. Grav. 22, S479, 2005), but the current literature on this topic does not cover all the issues discussed in the present paper.

  4. Damping of multiphonon giant resonances

    CERN Document Server

    Dinh Dang, N; Arima, A

    2000-01-01

    The phonon damping model (PDM) is applied to derive the equations that describe the damping of three-, and n -phonon giant resonances. As examples of the application of this approach, the results of numerical calculations for the double giant resonance (DGDR) (n=2) and triple giant dipole resonance (TGDR) (n=3) in sup 9 sup 0 Zr, sup 1 sup 2 sup 0 Sn and sup 2 sup 0 sup 8 Pb are discussed and compared with those obtained by folding independent giant dipole resonances (GDRs) (the folding results). For the DGDR in the double magic nucleus sup 2 sup 0 sup 8 Pb, we found that these results are very close to the folding results. In the open-shell nuclei sup 9 sup 0 Zr and sup 1 sup 2 sup 0 Sn, a clear deviation from the folding results is observed in calculations in agreement with the experimental trend. The results for the integrated strength and energy of TGDR are found to be much closer to the folding results in all three nuclei. The TGDR widths in the open shell nuclei are found to be larger than the folding r...

  5. A transmission calibration method for superconducting resonators

    CERN Document Server

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop

    2014-01-01

    A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...

  6. Structure and compositeness of hadron resonances

    CERN Document Server

    Hyodo, Tetsuo

    2013-01-01

    The structure of the hadron resonances attracts much attention, in association with the recent observations of various exotic hadrons which do not fit well in the conventional picture. These findings urge us to consider various new configurations such as the multiquark states and the hadronic molecules. However, it is a subtle problem to define a proper classification scheme for the hadron structure, and the nonzero decay width of the hadron resonances makes the analysis complicated. In this article, we summarize the recent developments in the studies of the structure of the hadron resonances, focusing on the notion of the compositeness in terms of the hadronic degrees of freedom.

  7. Resonance in a Cone-Topped Tube

    Directory of Open Access Journals (Sweden)

    Angus Cheng-Huan Chia

    2011-06-01

    Full Text Available The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter,and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed.

  8. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences are...

  9. Cascades of Fano resonances in Mie scattering

    Science.gov (United States)

    Rybin, M. V.; Sinev, I. S.; Samusev, K. B.; Limonov, M. F.

    2014-03-01

    The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

  10. Excitonic surface lattice resonances

    Science.gov (United States)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  11. Resonance ionization spectroscopy 1986

    International Nuclear Information System (INIS)

    The paper presents the proceedings of the Third International Symposium on Resonance Ionization Spectroscopy and its Applications, held at the University College of Swansea, Wales, 1986. The Symposium is divided into eight main sections entitled: photophysics and spectroscopy, noble gas atom counting, resonance ionization mass spectrometry, materials and surface analysis, small molecules, medical and environmental applications, resonance ionization and materials separation, and elementary particles and nuclear physics. Thirty papers were chosen for INIS and indexed separately. (U.K.)

  12. Dynamically generated resonances

    CERN Document Server

    Oset, E; Sarkar, S; Sun, Bao Xi; Vacas, M J Vicente; González, P; Vijande, J; Jido, D; Sekihara, T; Torres, A Martinez; Khemchandani, K

    2009-01-01

    In this talk I report on recent work related to the dynamical generation of baryonic resonances, some made up from pseudoscalar meson-baryon, others from vector meson-baryon and a third type from two meson-one baryon systems. We can establish a correspondence with known baryonic resonances, reinforcing conclusions previously drawn and bringing new light on the nature of some baryonic resonances of higher mass.

  13. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  14. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  15. ELECTRON PARAMAGNETIC RESONANCE IN BIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Androes, G.M.; Calvin, Melvin.

    1961-08-15

    A review of the theories of electron paramagnetic resonance in biology is presented, including a discussion of the nature of the physical observation, followed by examples of materials of biological interest. Iq discussing these examples, information is presented in terms of the nature of the starting material under observation rather than the nature of the magnetic entities observed. The examples proceed from the simpler molecules of biological interest (metabolites, vitamins, cofactors) into the more complex materials (polymers, proteins, nucleic acids) toward cellular organelles (mitochondria, chloroplasts) and, finally, to whole cells, organisms and organs. The observation of photoinduced unpaired electrons in photosynthetic material is described and the various parameters controlling it are discussed. The basic observation is interpreted in terms of a primary photophysical act of quantum conversion.

  16. Black Holes Admitting Strong Resonant Phenomena

    CERN Document Server

    Stuchlik, Zdenek; Torok, Gabriel

    2008-01-01

    High-frequency twin peak quasiperiodic oscillations (QPOs) are observed in four microquasars, i.e., Galactic black hole binary systems, with frequency ratio very close to 3:2. In the microquasar GRS 1915+105, the structure of QPOs exhibits additional frequencies, and more than two frequencies are observed in the Galaxy nuclei Sgr A*, or in some extragalactic sources (NGC 4051, MCG-6-30-15 and NGC 5408 X-1). The observed QPOs can be explained by a variety of the orbital resonance model versions assuming resonance of oscillations with the Keplerian frequency or the vertical epicyclic frequency, and the radial epicyclic frequency, or some combinations of these frequencies. Generally, different resonances could arise at different radii of an accretion disc. However, we have shown that for special values of dimensionless black hole spin strong resonant phenomena could occur when different resonances can be excited at the same radius, as cooperative phenomena between the resonances may work in such situations. The ...

  17. Split ring resonator resonance assisted terahertz antennas

    CERN Document Server

    Galal, Hossam; Vitiello, Miriam S

    2016-01-01

    We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.

  18. Optical Fano resonance of an individual semiconductor nanostructure.

    Science.gov (United States)

    Fan, Pengyu; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L

    2014-05-01

    Fano resonances with a characteristic asymmetric line shape can be observed in light scattering, transmission and reflection spectra of resonant optical systems. They result from interference between direct and indirect, resonance-assisted pathways. In the nanophotonics field, Fano effects have been observed in a wide variety of systems, including metallic nanoparticle assemblies, metamaterials and photonic crystals. Their unique properties find extensive use in applications, including optical filtering, polarization selectors, sensing, lasers, modulators and nonlinear optics. We report on the observation of a Fano resonance in a single semiconductor nanostructure, opening up opportunities for their use in active photonic devices. We also show that Fano-resonant semiconductor nanostructures afford the intriguing opportunity to simultaneously measure the far-field scattering response and the near-field energy storage by extracting photogenerated charge. Together they can provide a complete experimental characterization of this type of resonance. PMID:24747781

  19. Progress Toward Understanding Baryon Resonances

    CERN Document Server

    Crede, Volker

    2013-01-01

    The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1-2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have be...

  20. Efficient isotropic magnetic resonators

    OpenAIRE

    Martin, O. J. F.; Gay-Balmaz, P.

    2002-01-01

    We study experimentally and numerically a novel three-dimensional magnetic resonator structure with high isotropy. It is formed by crossed split-ring resonators and has a response independent of the illumination direction in a specific plane. The utilization of such elements to build a finite left-handed medium is discussed. (C) 2002 American Institute of Physics.

  1. Resonances Do Not Equilibrate

    OpenAIRE

    Kuznetsova, I.; Letessier, J.; Rafelski, J.

    2009-01-01

    We discuss, in qualitative and quantitative fashion, the yields of hadron resonances. We show that these yields, in general, are not in chemical equilibrium. We evaluate the non-equilibrium abundances in a dynamic model implementing the $1+2\\leftrightarrow 3$ resonance formation reactions. Due to the strength of these reactions, we show the $\\Sigma(1385)$ enhancement, and the $\\Lambda(1520)$ suppression explicitly.

  2. Photonic Feshbach resonance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.

  3. Neutrino Production of Resonances

    CERN Document Server

    Paschos, E A; Yu, J Y; Paschos, Emmanuel A.; Sakuda, Makoto; Yu, Ji--Young

    2004-01-01

    We take a fresh look at the analysis of resonance production by neutrinos. We consider three resonances $P_{33}, P_{11}$ and $S_{11}$ with a detailed discussion of their form factors. The article presents results for free proton and neutron targets and discusses the corrections which appear on nuclear targets. The Pauli suppression factor is derived in the Fermi gas model and shown to apply to resonance production. The importance of the various resonances is demonstrated with numerical calculations. The $\\Delta$-resonance is described by two formfactors and its differential cross sections are compared with experimental data. The article is self-contained and could be helpful to readers who wish to reproduce and use these cross sections.

  4. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  5. Monolithic MACS micro resonators

    Science.gov (United States)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  6. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    K Abirami; S Rajasekar; M A F Sanjuan

    2013-07-01

    The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies and with $ \\gg $. In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover at resonance the response amplitude is 1/ where is the coefficient of linear damping. When the amplitude of the high-frequency force is varied after resonance the response amplitude does not decay to zero but approaches a nonzero limiting value. It is observed that vibrational resonance occurs when the sinusoidal force is replaced by a square-wave force. The occurrence of resonance and antiresonance of transition probability of quantum mechanical Morse oscillator is also reported in the presence of the biharmonic external field.

  7. Dynamics and Transit Variations of Resonant Exoplanets

    Science.gov (United States)

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)-2/3, where m and M * are the planetary and stellar masses. For m = 10-4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  8. Exploring the Outer Neptune Resonances: Constraints on Solar System Evolution

    Science.gov (United States)

    Pike, Rosemary E.; Kavelaars, JJ; Shankman, Cory J.; Petit, Jean-Marc; Brett, Gladman; Volk, Kat; Alexandersen, Mike

    2015-11-01

    The long-term evolution of objects in the outer n:1 resonances with Neptune provide clues to the evolutionary history of the Solar System. Based on 4 objects with semi-major axes near the 5:1 resonance, we estimate a substantial and previously unrecognized population of objects, perhaps more significant than the population in the 3:2 (Plutino) resonance. These external resonances are largely unexplored in both observations and dynamical simulations. However, understanding the characteristics and trapping history for objects in these populations is critical for constraining the dynamical history of the solar system. The 4 objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) were classified using dynamical integrations. Three are resonant, and the fourth appears to be a resonance diffusion object, part of a population which exited the resonance through chaotic diffusion. The 3 resonant objects are taken to be representative of the resonant population, so by using these detections and the CFEPS characterization (pointings and detection limits) we calculate a population estimate for this resonance at ~1900(+3300 -1400) objects with HgPike et al. 2015]. This is at least as large as the Plutinos (3:2 resonance) at 90% confidence. The small number of detected objects results in such a large population estimate due to the numerous biases against detecting objects with semimajor axes at ~88AU. The dynamical behavior of the known objects, suggests that the trapping mechanism for the 5:1 resonance is resonance sticking from the scattering objects. Based on our results from the 5:1 resonance, we have begun a project to examine the long term evolution of the other n:1 resonances to determine the importance of resonance diffusion and transfer between libration islands among the scattering-captured members of those populations.

  9. Resonator having a selection circuit for selecting a resonance mode

    OpenAIRE

    Verhoeven, C.J.

    1998-01-01

    Resonator provided with a resonating device and with a selection circuit for selecting a resonance mode. The selection circuit is formed by a first-order oscillator which is provided with a synchronization input and whose output is connected to the excitation input of the resonating device, the output of the resonating device being connected to the synchronization input of the first-order oscillator in order to synchronize said oscillator and the output signal of the resonator being derived f...

  10. Nucleon Resonance Physics

    CERN Document Server

    Burkert, Volker D

    2016-01-01

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degre...

  11. Nucleon Resonance Physics

    Science.gov (United States)

    Burkert, Volker D.

    2016-10-01

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  12. Resonance decay effect on conserved number fluctuations in a hadron resonance gas model

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Mohanty, A K

    2016-01-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  13. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    Science.gov (United States)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  14. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  15. Resonance Radiation and Excited Atoms

    Science.gov (United States)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  16. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu

    2013-05-05

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  17. Formation of the resonant system HD 60532

    CERN Document Server

    Sandor, Zsolt

    2010-01-01

    Among multi-planet planetary systems there are a large fraction of resonant systems. Studying the dynamics and formation of these systems can provide valuable informations on processes taking place in protoplanetary disks where the planets are thought have been formed. The recently discovered resonant system HD 60532 is the only confirmed case, in which the central star hosts a pair of giant planets in 3:1 mean motion resonance. We intend to provide a physical scenario for the formation of HD 60532, which is consistent with the orbital solutions derived from the radial velocity measurements. Observations indicate that the system is in an antisymmetric configuration, while previous theoretical investigations indicate an asymmetric equilibrium state. The paper aims at answering this discrepancy as well. We performed two-dimensional hydrodynamical simulations of thin disks with an embedded pair of massive planets. Additionally, migration and resonant capture are studied by gravitational N-body simulations that a...

  18. Resonant X-Ray Scattering and Absorption

    Science.gov (United States)

    Collins, S. P.; Bombardi, A.

    This chapter outlines some of the basic ideas behind nonresonant and resonant X-ray scattering, using classical or semiclassical pictures wherever possible; specifically, we highlight symmetry arguments governing the observation of X-ray optical effects, such as X-ray magnetic circular dichroism and resonant "forbidden" diffraction. Without dwelling on the microscopic physics that underlies resonant scattering, we outline some key steps required for calculating its rotation and polarization dependence, based on Cartesian and spherical tensor frameworks. Several examples of resonant scattering, involving electronic anisotropy and magnetism, are given as illustrations. Our goal is not to develop or defend theoretical concepts in X-ray scattering, but to bring together existing ideas in a pragmatic and utilitarian manner.

  19. Quantum Effect in Mesoscopic Open Electron Resonator

    Institute of Scientific and Technical Information of China (English)

    YAN Zhan-Yuan; ZHANG Xiao-Hong; HAN Ying-Hui

    2008-01-01

    The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the Schrodinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system are obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.

  20. Juicy lemons for measuring basic empathic resonance.

    Science.gov (United States)

    Hagenmuller, Florence; Rössler, Wulf; Wittwer, Amrei; Haker, Helene

    2014-10-30

    Watch or even think of someone biting into a juicy lemon and your saliva will flow. This is a phenomenon of resonance, best described by the Perception-Action Model, where a physiological state in a person is activated through observation of this state in another. Within a broad framework of empathy, including manifold abilities depending on the Perception-Action link, resonance has been proposed as one physiological substrate for empathy. Using 49 healthy subjects, we developed a standardized salivation paradigm to assess empathic resonance at the autonomic level. Our results showed that this physiological resonance correlated positively with self-reported empathic concern. The salivation test, delivered an objective and continuous measure, was simple to implement in terms of setup and instruction, and could not easily be unintentionally biased or intentionally manipulated by participants. Therefore, these advantages make such a test a useful tool for assessing empathy-related abilities in psychiatric populations. PMID:24953424