WorldWideScience

Sample records for autoimmune diseases of the nervous system

  1. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J;

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...

  2. Current immune therapies of autoimmune disease of the nervous system with special emphasis to multiple sclerosis.

    Science.gov (United States)

    Vass, Karl

    2012-01-01

    Autoimmune diseases of the nervous system such as myasthenia gravis, inflammatory demyelinating polyneuropathies, multiple sclerosis and others are still not curable. Yet the introduction of modern immune therapies could significantly improve the prospects of many patients affected by these disorders. In addition to steroids and immunosuppression i.v. immunoglobulins are used for treatment of myasthenia gravis and chronic inflammatory demyelinating polyneuropathy. Interferons, glatiramer acetate, natalizumab and fingolimod are applied in multiple sclerosis. The ever-improving efficacy of the drugs has to be balanced against the increasing risk of possible severe adverse effects.

  3. Management of disease-modifying treatments in neurological autoimmune diseases of the central nervous system

    Science.gov (United States)

    Salmen, A; Gold, R; Chan, A

    2014-01-01

    The therapeutic armamentarium for autoimmune diseases of the central nervous system, specifically multiple sclerosis and neuromyelitis optica, is steadily increasing, with a large spectrum of immunomodulatory and immunosuppressive agents targeting different mechanisms of the immune system. However, increasingly efficacious treatment options also entail higher potential for severe adverse drug reactions. Especially in cases failing first-line treatment, thorough evaluation of the risk–benefit profile of treatment alternatives is necessary. This argues for the need of algorithms to identify patients more likely to benefit from a specific treatment. Moreover, paradigms to stratify the risk for severe adverse drug reactions need to be established. In addition to clinical/paraclinical measures, biomarkers may aid in individualized risk–benefit assessment. A recent example is the routine testing for anti-John Cunningham virus antibodies in natalizumab-treated multiple sclerosis patients to assess the risk for the development of progressive multi-focal leucoencephalopathy. Refined algorithms for individualized risk assessment may also facilitate early initiation of induction treatment schemes in patient groups with high disease activity rather than classical escalation concepts. In this review, we will discuss approaches for individiualized risk–benefit assessment both for newly introduced agents as well as medications with established side-effect profiles. In addition to clinical parameters, we will also focus on biomarkers that may assist in patient selection. Other Articles published in this series Paraneoplastic neurological syndromes. Clinical and Experimental Immunology 2014, 175: 336–48. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clinical and Experimental Immunology 2014, 175: 359–72. Monoclonal antibodies in treatment of multiple

  4. The role of T cell apoptosis in nervous system autoimmunity.

    Science.gov (United States)

    Comi, C; Fleetwood, T; Dianzani, U

    2012-12-01

    Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.

  5. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  6. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis.

    NARCIS (Netherlands)

    Raijmakers, R.; Vogelzangs, J.H.P.; Croxford, J.L.; Wesseling, P.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2005-01-01

    Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin sheat

  7. Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Martin S Weber

    Full Text Available Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS. Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE can be enhanced by concomitant administration of pertussis toxin (PTx, the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS. In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+CD25(+FoxP3(+ regulatory T cells (Treg. Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+CD25(+FoxP3(+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.

  8. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2016-11-10

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  9. Immunoadsorption in patients with autoimmune ion channel disorders of the peripheral nervous system.

    Science.gov (United States)

    Antozzi, Carlo

    2013-01-01

    Autoimmune ion channel disorders of the peripheral nervous system include myasthenia gravis, the Lambert-Eaton myasthenic syndrome, acquired neuromyotonia and autoimmune autonomic ganglionopathies. These disorders are characterized by the common feature of being mediated by IgG autoantibodies against identified target antigens, i.e. the acetylcholine receptor, the voltage-gated calcium and potassium channels, and the neuronal acetylcholine receptor. Moreover, experimental animal models have been identified for these diseases that respond to immunotherapy and are improved by plasmapheresis. On this basis, autoimmune ion channel disorders represent the ideal candidate for therapeutic apheresis. Immunoadsorption can be the treatment of choice when intensive apheretic protocols or long-term treatments must be performed, in patients needing frequent apheresis to keep a stable clinical condition, in case of unresponsiveness to corticosteroids and immunosuppressive treatments, or failure with TPE or intravenous immunoglobulins, and in patients with severe contraindications to long-term corticosteroids.

  10. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  11. REGULATION OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY BY THE ARYL HYDROCARBON RECEPTOR

    OpenAIRE

    Quintana, Francisco J.

    2013-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  12. Parasitic diseases of the central nervous system.

    Science.gov (United States)

    Chacko, Geeta

    2010-08-01

    Parasitic infections, though endemic to certain regions, have over time appeared in places far removed from their original sites of occurrence facilitated probably by the increase in world travel and the increasing migration of people from their native lands to other, often distant, countries. The frequency of occurrence of some of these diseases has also changed based on a variety of factors, including the presence of intermediate hosts, geographic locations, and climate. One factor that has significantly altered the epidemiology of parasitic diseases within the central nervous system (CNS) is the HIV pandemic. In this review of the pathology of parasitic infections that affect the CNS, each parasite is discussed in the sequence of epidemiology, life cycle, pathogenesis, and pathology.

  13. Increased numbers of IL-7 receptor molecules on CD4+CD25-CD107a+ T-cells in patients with autoimmune diseases affecting the central nervous system.

    Directory of Open Access Journals (Sweden)

    Nalini Kumar Vudattu

    Full Text Available BACKGROUND: High content immune profiling in peripheral blood may reflect immune aberrations associated with inflammation in multiple sclerosis (MS and other autoimmune diseases affecting the central nervous system. METHODS AND FINDINGS: Peripheral blood mononuclear cells from 46 patients with multiple sclerosis (MS, 9 patients diagnosed with relapsing remitting MS (RRMS, 13 with secondary progressive multiple sclerosis (SPMS, 9 with other neurological diseases (OND and well as 15 healthy donors (HD were analyzed by 12 color flow cytometry (TCRalphabeta, TCRgammadelta, CD4, CD8alpha, CD8beta, CD45RA, CCR7, CD27, CD28, CD107a, CD127, CD14 in a cross-sectional study to identify variables significantly different between controls (HD and patients (OND, RRMS, SPMS. We analyzed 187 individual immune cell subsets (percentages and the density of the IL-7 receptor alpha chain (CD127 on 59 individual immune phenotypes using a monoclonal anti-IL-7R antibody (clone R34.34 coupled to a single APC molecule in combination with an APC-bead array. A non-parametric analysis of variance (Kruskal-Wallis test was conducted in order to test for differences among the groups in each of the variables. To correct for the multiplicity problem, the FDR correction was applied on the p-values. We identified 19 variables for immune cell subsets (percentages which allowed to segregate healthy individuals and individuals with CNS disorders. We did not observe differences in the relative percentage of IL-7R-positive immune cells in PBMCs. In contrast, we identified significant differences in IL-7 density, measured on a single cell level, in 2/59 variables: increased numbers of CD127 molecules on TCRalphabeta+CD4+CD25 (intermed T-cells and on TCRalphabeta+CD4+CD25-CD107a+ T-cells (mean: 28376 Il-7R binding sites on cells from HD, 48515 in patients with RRMS, 38195 in patients with SPMS and 33692 IL-7 receptor binding sites on cells from patients with OND. CONCLUSION: These data

  14. CLINICAL SIGNIFICANCE OF IMMUNE IMBALANCE AND AUTOIMMUNITY IN NERVOUS SYSTEM DISORDERS (NSDs

    Directory of Open Access Journals (Sweden)

    Vijendra K. SINGH

    2015-11-01

    Full Text Available In recent years, the role of immune imbalance and autoimmunity has been experimentally demonstrated in nervous system disorders (NSDs that include Alzheimer’s disease, autism, obsessive-compulsive disorder (OCD, tics and Tourette’s syndrome, schizophrenia, and some other NSDs. And yet, these NSDs are never counted as autoimmune diseases. Deriving from the rapidly expanding knowledge of neuro-immunology and auto-immune diseases, for example multiple scle-rosis (MS, the author of this mini-review strongly recommends that these NSDs should be included while tallying the number of autoimmune diseases. This effort will help create an updated global database of all autoimmune diseases as well as it should help treat millions of patients who are suffering from debilitating NSDs for which there is no known cure or treatment currently.

  15. In vivo imaging in autoimmune diseases in the central nervous system.

    Science.gov (United States)

    Kawakami, Naoto

    2016-07-01

    Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments.

  16. [Immunology in medical practice. XIV. Central nervous system complications in systemic autoimmune diseases].

    Science.gov (United States)

    Markusse, H M; van den Bent, M J; Vecht, C J

    1998-03-07

    Complications of the central nervous system (CNS) are common in systemic autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and primary Sjögren's syndrome. Specific diagnostic tests are lacking and early intervention with immunosuppressive therapy is frequently necessary. Therefore knowledge of these CNS complications is essential for early diagnosis and treatment. Residual cognitive effects were observed in some but not in all tests after prolonged heavy cannabis use. The effects were mostly mild. The relationship of cannabis use, psychotic effects and schizophrenia was unclear; the cannabis conceivably gave relief, but it also appeared that cannabis caused schizophrenia in young people and (or) enhanced the symptoms, especially in young people poorly able to cope with stress or in whom the antipsychotic therapy was unsuccessful.

  17. [Autoimmune Diseases of Digestive System].

    Science.gov (United States)

    Ivashkinl, V T; Sheptulina, A F; Raĭkhelson, K L; Losik, E A; Ivashkin, K V; Okhlobystin, A V; Baranskaia, E K; Polouvektova, E A; Shifrin, O S

    2015-01-01

    Autoimmune diseases of digestive system refer to pathological conditions, caused by autoimmune mechanisms, and their etiology remains unknown. This is a group of relatively rare diseases, however, during the last years a marked tendency towards the raise in incidence andprevalence is observed, which led to an increase in number of clinical investigations on etiology, pathogenesis, and, accordingly, development of new diagnostic methods and therapies. Results of such trials shown, for example, that the pathogenesis of chronic cholestatic liver diseases is associated with nuclear receptors function, while the main etiological and pathogenic factor of inflammatory bowel diseases represents gut microbiota. Despite new achievements in autoinmune diseases of digestive system research, therapies are low effective and are accompanied by a huge number of adverse events. The fact that these diseases may lead to malignant tumors is also worth noting. For example, patients with primary sclerosing cholangitis have a 160 times higher risk of cholangiocellular carcinoma, while 10-14% ofpatients with celiac disease may develop malignancies of esophagus, small and large intestine. Thus, these diseases require further investigation with a purpose of more accurate diagnostic methods for the detection of disease at early stages and new effective and safe therapies development.

  18. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  19. The complement system in systemic autoimmune disease

    NARCIS (Netherlands)

    Chen, Min; Daha, Mohamed R.; Kallenberg, Cees G. M.

    2010-01-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via

  20. Immunological reaction of the demyelinating Semliki Forest virus with immune serum to glycolipids and its possible importance to central nervous system viral auto-immune disease.

    Science.gov (United States)

    Webb, H E; Mehta, S; Gregson, N A; Leibowitz, S

    1984-01-01

    The avirulent demyelinating strain A7(74) of Semliki Forest virus after passage through mouse brain in vivo and mouse brain cell cultures has been shown to react immunologically with immune sera against galactocerebroside, glucocerebroside, total ganglioside and GT1b ganglioside but not against myelin or sulphatide . Semliki Forest virus is known to take host membrane glycolipid into its coat. The importance of the findings is discussed in relation to the production of a possible anti-brain cell auto-immune phenomenon and its implication in a disease such as multiple sclerosis.

  1. Models of autoimmune demyelination in the central nervous system: on the way to translational medicine

    Directory of Open Access Journals (Sweden)

    Linker Ralf A

    2009-10-01

    Full Text Available Abstract Multiple sclerosis (MS is the most common neurologic disease of young adults. In the recent years, our understanding on disease pathomechanisms has considerably improved and new therapies have emerged. Yet a cure for this devastating disorder is still a far cry away and human resources on ex vivo specimens are limited. More than 70 years after its first description, experimental autoimmune encephalomyelitis (EAE remains an important tool to understand concepts of T cell mediated autoimmunity as well as the roles of the innate and the humoral immune systems. Some EAE models also well reflect mechanisms of tissue damage including demyelination, axonal injury and also cortical changes. A limitation of the classical EAE model is a neglect of CD8 T cell mediated immune mechanisms. Moreover, well characterized models for primary progressive MS or demyelination patterns involving primary oligodendrocyte dystrophy are still not available. Yet many current therapeutic concepts including glatiramer acetate or natalizumab stem from their successful first application in EAE models. New strategies include the widespread use of conditional knockout mice to understand the cell-type specific function of single genes, innovative approaches to establish models on the roles of B cells and CD8 T cells as well as on the relation of inflammation to primary degeneration. In summary, EAE models continue to play an important role in neuroimmunology thereby also stimulating research in other fields of the neurosciences and immunobiology.

  2. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    Science.gov (United States)

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

  3. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Sosa, Rebecca A.; Forsthuber, Thomas G.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several ...

  4. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  5. A rare association of localized scleroderma type morphea, vitiligo, autoimmune hypothyroidism, pneumonitis, autoimmune thrombocytopenic purpura and central nervous system vasculitis. Case report

    Directory of Open Access Journals (Sweden)

    Bonilla-Abadía Fabio

    2012-12-01

    Full Text Available Abstract Background The localized scleroderma (LS known as morphea, presents a variety of clinical manifestations that can include systemic involvement. Current classification schemes divide morphea into categories based solely on cutaneous morphology, without reference to systemic disease or autoimmune phenomena. This classification is likely incomplete. Autoimmune phenomena such as vitiligo and Hashimoto thyroiditis associated with LS have been reported in some cases suggesting an autoimmune basis. To our knowledge this is the first case of a morphea forming part of a multiple autoimmune syndrome (MAS and presenting simultaneously with autoimmune thrombocytopenic purpura and central nervous system vasculitis. Case presentation We report an uncommon case of a white 53 year old female patient with LS as part of a multiple autoimmune syndrome associated with pneumonitis, autoimmune thrombocytopenic purpura and central nervous system vasculitis presenting a favorable response with thrombopoietin receptor agonists, pulses of methylprednisolone and cyclophosphamide. Conclusion Is likely that LS have an autoimmune origin and in this case becomes part of MAS, which consist on the presence of three or more well-defined autoimmune diseases in a single patient.

  6. The complement system in systemic autoimmune disease.

    Science.gov (United States)

    Chen, Min; Daha, Mohamed R; Kallenberg, Cees G M

    2010-05-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via the classical pathway has long been recognized in immune complex-mediated diseases such as cryoglobulinemic vasculitis and systemic lupus erythematosus (SLE). In SLE, the role of complement is somewhat paradoxical. It is involved in autoantibody-initiated tissue damage on the one hand, but, on the other hand, it appears to have protective features as hereditary deficiencies of classical pathway components are associated with an increased risk for SLE. There is increasing evidence that the alternative pathway of complement, even more than the classical pathway, is involved in many systemic autoimmune diseases. This is true for IgA-dominant Henoch Schönlein Purpura, in which additional activation of the lectin pathway contributes to more severe disease. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis the complement system was considered not to be involved since immunoglobulin deposition is generally absent in the lesions. However, recent studies, both in human and animal models, demonstrated complement activation via the alternative pathway as a major pathogenic mechanism. Insight into the role of the various pathways of complement in the systemic autoimmune diseases including the vasculitides opens up new ways of treatment by blocking effector pathways of complement. This has been demonstrated for monoclonal antibodies to C5 or C5a in experimental anti-phospholipid antibody syndrome and ANCA-associated vasculitis.

  7. Involvement of the autonomic nervous system in Chagas heart disease

    Directory of Open Access Journals (Sweden)

    Edison Reis Lopes

    1983-12-01

    Full Text Available The autonomic nervous system and especially the intracardiac autonomic nervous system is involved in Chagas' disease. Ganglionitis and periganglionitis were noted in three groups ofpatients dying with Chagas'disease: 1 Those in heart failure; 2 Those dying a sudden, non violent death and; 3 Those dying as a consequence ofaccidents or homicide. Hearts in the threegroups also revealed myocarditis and scattered involvement of intramyocardial ganglion cells as well as lesions of myelinic and unmyelinic fibers ascribable to Chagas'disease. In mice with experimentally induced Chagas' disease weobserved more intensive neuronal lesions of the cardiac ganglia in the acute phase of infection. Perhaps neuronal loss has a role in the pathogenesis of Chagas cardiomyopathy. However based on our own experience and on other data from the literature we conclude that the loss of neurones is not the main factor responsible for the manifestations exhibited by chronic chagasic patients. On the other hand the neuronal lesions may have played a role in the sudden death ofone group of patients with Chagas'disease but is difficult to explain the group of patients who did not die sudderly but instead progressed to cardiac failure.

  8. Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity

    Science.gov (United States)

    Maurer, Michael A.; Rakocevic, Goran; Leung, Carol S.; Quast, Isaak; Lukačišin, Martin; Goebels, Norbert; Münz, Christian; Wardemann, Hedda; Dalakas, Marinos; Lünemann, Jan D.

    2012-01-01

    The B cell–depleting IgG1 monoclonal antibody rituximab can persistently suppress disease progression in some patients with autoimmune diseases. However, the mechanism underlying these long-term beneficial effects has remained unclear. Here, we evaluated Ig gene usage in patients with anti–myelin-associated glycoprotein (anti-MAG) neuropathy, an autoimmune disease of the peripheral nervous system that is mediated by IgM autoantibodies binding to MAG antigen. Patients with anti-MAG neuropathy showed substantial clonal expansions of blood IgM memory B cells that recognized MAG antigen. The group of patients showing no clinical improvement after rituximab therapy were distinguished from clinical responders by a higher load of clonal IgM memory B cell expansions before and after therapy, by persistence of clonal expansions despite efficient peripheral B cell depletion, and by a lack of substantial changes in somatic hypermutation frequencies of IgM memory B cells. We infer from these data that the effectiveness of rituximab therapy depends on efficient depletion of noncirculating B cells and is associated with qualitative immunological changes that indicate reconfiguration of B cell memory through sustained reduction of autoreactive clonal expansions. These findings support the continued development of B cell–depleting therapies for autoimmune diseases. PMID:22426210

  9. Mucormycosis in systemic autoimmune diseases.

    Science.gov (United States)

    Royer, Mathieu; Puéchal, Xavier

    2014-07-01

    Mucormycosis is an emerging infection in systemic autoimmune diseases. All published cases of systemic autoimmune diseases complicated by mucormycosis were reviewed. The clinical features, diagnostic procedures and the main principles of treatment were analyzed. Twenty-four cases of mucormycosis have been reported in systemic auto-immune diseases, of which 83% in systemic lupus erythematosus, all occurring during immunosuppressants. In most cases, the infection was disseminated or rhinocerebral and it had mimicked a flare of the underlying connective tissue disease. A fatal outcome was reported in 58.3% of these patients. In conclusion, mucormycosis often mimics a flare of the underlying systemic disease and is associated with a high mortality rate. Systemic lupus erythematosus is by far the most common associated systemic autoimmune disease. A high degree of awareness is warranted to rapidly rule out infection, of which mucormycosis, in immunocompromised patients with systemic autoimmune disease before a disease flare is conclusively diagnosed.

  10. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    Science.gov (United States)

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  11. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity.

    Science.gov (United States)

    Shaw, C A; Tomljenovic, L

    2013-07-01

    We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.

  12. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  13. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Yiyangzi Ma; Na Shi; Mengtao Li; Fei Chen; Haitao Niu

    2015-01-01

    Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogen-esis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body’s immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases.

  14. Involvement of Fas/FasL system in the pathogenesis of autoimmune diseases and Wilson's disease.

    Science.gov (United States)

    Stassi, G; Di Felice, V; Todaro, M; Cappello, F; Zummo, G; Farina, F; Trucco, M; De Maria, R

    1999-01-01

    The interaction of Fas with FasL has been demonstrated to be implicated in the pathogenesis of several autoimmune and liver diseases. Recently, attention has been focused on the hypothesis that thyrocytes and beta cells undergo massive Fas/FasL-mediated apoptosis during autoimmune response. Similarly, hepatocyte cell death occurring following copper accumulation points towards the same mechanism.

  15. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  16. Clinical characteristics of patients with lymphoproliferative neoplasms in the setting of systemic autoimmune diseases.

    Science.gov (United States)

    Suvajdzic, Nada; Djurdjevic, Predrag; Todorovic, Milena; Perunicic, Maja; Stojanović, Roksanda; Novkovic, Aleksandra; Mihaljevic, Biljana

    2012-09-01

    Clinical features of 40 lymphoproliferative neoplasm patients in the setting of systemic autoimmune diseases managed in the Clinic of Hematology during 1994-2006 were analyzed retrospectively. The classification of systemic autoimmune disease patients was as follows: 15 systemic lupus erythematosus--SLE, 11 rheumatoid arthritis--RA, 12 Sjögren's syndrome--SS, 1 scleroderma, and 1 dermatomyositis. Patients comprised 31 women and 9 men of mean age 55 years (range 33-76). Systemic autoimmune diseases preceeded the development of lymphoproliferative neoplasms in 37/40 (92.5%) patients. Mean latency period between the onset of systemic autoimmune diseases and lymphoproliferative neoplasms occurrence was significantly longer in RA (113 months) than in SLE (75 months) and SS patients (65 months)--P autoimmune diseases type or antirheumatic treatment P > 0.05. Our findings are in line with earlier reports showing a high proportion of patients with advanced disease, constitutional symptoms, extranodal manifestations, high grade histology, and low OS in the systemic autoimmune diseases setting.

  17. Atypical presentation of CLIPPERS syndrome: a new entity in the differential diagnosis of central nervous system rheumatologic diseases.

    Science.gov (United States)

    Gul, Maryam; Chaudhry, Ammar A; Chaudhry, Abbas A; Sheikh, Mubashir A; Carsons, Steven

    2015-04-01

    Numerous autoimmune diseases can affect the central nervous system (CNS), and variable clinical presentations confound the differential diagnosis. The challenging task of properly characterizing various CNS autoimmune diseases enables patients to be rapidly triaged and appropriately treated. In this review article, we aim to explore different CNS manifestations of rheumatologic diseases with emphasis on the utility of imaging and cerebrospinal fluid findings. We review the classic physical examination findings, characteristic imaging features, cerebrospinal fluid results, and serum biomarkers. In addition, we also present a unique case of newly described autoimmune entity CLIPPERS syndrome. Our case is unique in that this is the first case which demonstrates involvement of the supratentorial perivascular spaces in addition to the classic infratentorial involvement as initially described by Pittock et al (Brain. 2010;133:2626-2634).

  18. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens

    DEFF Research Database (Denmark)

    Massilamany, Chandirasegaran; Marciano-Cabral, Francine; Rocha-Azevedo, Bruno da

    2014-01-01

    We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS) possesses mimicry epitopes for proteolipid protein (PLP) 139-151 and myelin basic protein 89-101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE......, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self...

  19. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens.

    Science.gov (United States)

    Massilamany, Chandirasegaran; Marciano-Cabral, Francine; Rocha-Azevedo, Bruno da; Jamerson, Melissa; Gangaplara, Arunakumar; Steffen, David; Zabad, Rana; Illes, Zsolt; Sobel, Raymond A; Reddy, Jay

    2014-01-01

    We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS) possesses mimicry epitopes for proteolipid protein (PLP) 139-151 and myelin basic protein 89-101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE) in SJL mice reminiscent of the diseases induced with their corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-reactive T cells, predominantly for PLP 139-151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified that PLP 139-151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-producing cells, and they can transfer disease to naïve animals. Likewise, the animals first primed with suboptimal dose of PLP 139-151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens in the pathogenesis of CNS diseases such as multiple sclerosis.

  20. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens.

    Directory of Open Access Journals (Sweden)

    Chandirasegaran Massilamany

    Full Text Available We recently reported that Acanthamoeba castellanii (ACA, an opportunistic pathogen of the central nervous system (CNS possesses mimicry epitopes for proteolipid protein (PLP 139-151 and myelin basic protein 89-101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE in SJL mice reminiscent of the diseases induced with their corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-reactive T cells, predominantly for PLP 139-151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified that PLP 139-151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-producing cells, and they can transfer disease to naïve animals. Likewise, the animals first primed with suboptimal dose of PLP 139-151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens in the pathogenesis of CNS diseases such as multiple sclerosis.

  1. Peripheral nervous system lesion syndromes and the mechanisms of their formation in connective tissue diseases.

    Science.gov (United States)

    Spirin, N N; Bulanova, V A; Pizova, N V; Shilkina, N P

    2007-01-01

    Systemic rheumatological diseases are often accompanied by the development of central and peripheral nervous system pathology. Data providing evidence of the high incidence of peripheral nervous system lesions in systemic lupus erythematosus and systemic scleroderma are presented. These diseases in particular are characterized by polyneuropathies and tunnel syndromes. Our own observations, along with published data, revealed the following major pathogenetic mechanisms of peripheral nervous system lesions in diffuse connective tissue diseases - ischemic, immunological, and metabolic. Consideration of these mechanisms will lead to pathogenetically based treatment and improved therapeutic outcomes.

  2. Nervous system Lyme disease, chronic Lyme disease, and none of the above.

    Science.gov (United States)

    Halperin, John J

    2016-03-01

    Lyme borreliosis, infection with the tick-borne spirochete Borrelia burgdorferi sensu lato, causes nervous system involvement in 10-15 % of identified infected individuals. Not unlike the other well-known spirochetosis, syphilis, infection can be protracted, but is microbiologically curable in virtually all patients, regardless of disease duration. Diagnosis relies on 2-tier serologic testing, which after the first 4-6 weeks of infection is both highly sensitive and specific. After this early, acute phase, serologic testing should rely only on IgG reactivity. Nervous system involvement most commonly presents with meningitis, cranial neuritis and radiculoneuritis, but can also present with a broader array of peripheral nervous system manifestations. Central nervous system infection typically elicits a cerebrospinal fluid pleocytosis and, often, intrathecal production of specific antibody, findings that should not be expected in disease not affecting the CNS. Treatment with recommended courses of oral or, when necessary, parenteral antibiotics is highly effective. The attribution of chronic, non-specific symptoms to "chronic Lyme disease", in the absence of specific evidence of ongoing B. burgdorferi infection, is inappropriate and unfortunate, leading not only to unneeded treatment and its associated complications, but also to missed opportunities for more appropriate management of patients' often disabling symptoms.

  3. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc-null mice: evidence for a critical role of the central nervous system

    Directory of Open Access Journals (Sweden)

    Gourdain Pauline

    2012-01-01

    Full Text Available Abstract Background The cellular prion protein (PrPc is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. Method To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. Results First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. Conclusions In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not

  4. The immunogenetics of autoimmune diabetes and autoimmune thyroid disease.

    Science.gov (United States)

    Tomer, Y; Barbesino, G; Greenberg, D; Davies, T F

    1997-03-01

    Although medical genetics is a well-developed area of interest, relatively little is known about the diseases caused by the combination of many genes. These multiinfluenced diseases include the autoimmune endocrine diseases. Recent advances in the techniques for whole-genome screening have shown a variety of loci that are linked to the development of insulin-dependent diabetes mellitus, and similar data are likely to be soon generated in autoimmune thyroid disease. Here, the authors survey the current state of genetic knowledge in these two areas and describe the investigative and analytical techniques that are now available. (Trends Endocrinol Metab 1997;8:63-70). (c) 1997, Elsevier Science Inc.

  5. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  6. Common mechanisms of autoimmune diseases (the autoimmune tautology).

    Science.gov (United States)

    Anaya, Juan-Manuel

    2012-09-01

    The fact that autoimmune diseases share subphenotypes, physiopathological mechanisms and genetic factors has been called autoimmune tautology, and indicates that they have a common origin. The autoimmune phenotypes vary depending on the target cell and the affected organ, gender, ancestry, trigger factors and age at onset. Ten shared characteristics supporting this logical theory are herein reviewed.

  7. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  8. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias.

  9. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis.

    Science.gov (United States)

    Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Terranova Barberio, Manuela; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D; Nestle, Frank O

    2015-04-09

    Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases.

  10. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Wheeler, Rachel D; Zehntner, Simone P; Kelly, Lisa M;

    2006-01-01

    Inflammation in the central nervous system (CNS) can be studied in experimental autoimmune encephalomyelitis (EAE). The proinflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) are implicated in EAE pathogenesis. Signals through the type 1 TNF receptor (TNFR1) are r...

  11. Changing trends in nervous system diseases among hospitalized children in the Chongqing region

    Institute of Scientific and Technical Information of China (English)

    Xin Zou; Nong Xiao; Bei Xu

    2008-01-01

    OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 (X2= 27.832, P<0.01). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common, with the lowest fatality rate.

  12. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  13. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sosa, Rebecca A; Forsthuber, Thomas G

    2011-10-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.

  14. Evaluation of malnutrition in patients with nervous system disease.

    Science.gov (United States)

    Li, Feng; Liu, Yao-wen; Wang, Xue-feng; Liu, Guang-wei

    2014-10-01

    Nutritional deficiencies are independent risk factors for adverse outcomes in patients with nervous system disease. Patients with nervous system disease can often become malnourished due to swallowing difficulties or unconsciousness. This malnourishment increases hospitalization duration; average total hospital cost; occurrence of infection, pressure ulcers, and other complications. These problems need to be addressed in the clinic. In this paper, we review the relevant literature, including studies on influencing factors, evaluations, indexes, and methods: Our aim is to understand the current status of malnutrition in patients with nervous system disease and reasons associated with nutritional deficiencies by using malnutrition evaluation methods to assess the risk of nutritional deficiencies in the early stages.

  15. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System.

    Science.gov (United States)

    Zhong, Jia; Narsinh, Kazim; Morel, Penelope A; Xu, Hongyan; Ahrens, Eric T

    2015-01-01

    Progress in identifying new therapies for multiple sclerosis (MS) can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging "hot-spot" 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE) rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC) nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.

  16. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Progress in identifying new therapies for multiple sclerosis (MS can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging "hot-spot" 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.

  17. The role of the autonomic nervous system in diabetes and cardiovascular disease : an epidemiological approach

    NARCIS (Netherlands)

    Hillebrand, Stefanie

    2015-01-01

    The main objective of this thesis was to study the role of autonomic nervous system (ANS) function in the development of diabetes and cardiovascular disease using an epidemiological approach. Based on earlier studies it has remained unclear whether impaired ANS function is a risk factor for the deve

  18. Development of central nervous system autoimmunity is impaired in the absence of Wiskott-Aldrich syndrome protein.

    Directory of Open Access Journals (Sweden)

    Marita Bosticardo

    Full Text Available Wiskott-Aldrich Syndrome protein (WASP is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was(-/- mice. We describe here that Was(-/- mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was(-/- mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was(-/- mice. However, adoptive transfer of MOG-activated T cells from Was(-/- mice in WT mice failed to induce EAE. Was(-/- mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was(+/- heterozygous mice developed an intermediate clinical phenotype between WT and Was(-/- mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.

  19. Systemic Autoimmune, Rheumatic Diseases and Coinciding Psoriasis: Data from a Large Single-Centre Registry and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Anna Bazsó

    2015-01-01

    Full Text Available Psoriasis is a systemic immune-inflammatory disease characterized by chronic or recurrent skin symptoms, psoriatic arthritis, enthesopathy, and uveitis. Psoriasis has recently been published to appear with various autoimmune disorders, but the coexistence has been systematically reviewed by only few studies until now. In the present study, charts and electronic database of 4344 patients with various systemic autoimmune disorders, under regular medical control at our department, were reviewed retrospectively searching for association with psoriasis. Hereby, we demonstrate 25 psoriatic patients coinciding with various systemic autoimmune diseases. The coexistence of psoriasis and autoimmune diseases resulted in the worsening of the clinical outcome of the autoimmune diseases as indicated by higher frequency and dosages of glucocorticoid use, need for biologicals, and other comorbidities. These results suggest common environmental and genetic background as well as therapeutic possibilities in the future.

  20. The Etiopathogenesis of Autoimmune Bullous Diseases

    OpenAIRE

    2011-01-01

    Autoimmune bullous diseases are rare disorders affecting skin and mucous membranes which are mediated by pathogenic autoantibodies against target antigens whose function is adhesion within the epidermis or adhesion of epidermis to dermis. The pathogenesis of these disorders has been extensively investigated with advanced techniques in recent years. This review focuses on the etiopathogenesis of main autoimmune bullous disorders including pemphigus, bullous pemphigoid, anti-p200 pemphigoid, ci...

  1. Autonomous requirements of the Menkes disease protein in the nervous system.

    Science.gov (United States)

    Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-11-15

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients.

  2. Autonomous requirements of the Menkes disease protein in the nervous system

    Science.gov (United States)

    Hodgkinson, Victoria L.; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A.; Lee, Jaekwon; Gitlin, Jonathan D.

    2015-01-01

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7aNes mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7aNes mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7aNes mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. PMID:26269458

  3. Autonomous requirements of the Menkes disease protein in the nervous system

    OpenAIRE

    Hodgkinson, Victoria L.; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A.; Lee, Jaekwon; Gitlin, Jonathan D.; Petris, Michael J.

    2015-01-01

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A wi...

  4. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...

  5. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  6. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases.

    Science.gov (United States)

    Grayson, Peter C; Kaplan, Mariana J

    2016-02-01

    The putative role of neutrophils in host defense against pathogens is a well-recognized aspect of neutrophil function. The discovery of neutrophil extracellular traps has expanded the known range of neutrophil defense mechanisms and catalyzed a discipline of research focused upon ways in which neutrophils can shape the immunologic landscape of certain autoimmune diseases, including systemic lupus erythematosus. Enhanced neutrophil extracellular trap formation and impaired neutrophil extracellular trap clearance may contribute to immunogenicity in systemic lupus erythematosus and other autoimmune diseases by promoting the externalization of modified autoantigens, inducing synthesis of type I IFNs, stimulating the inflammasome, and activating both the classic and alternative pathways of the complement system. Vasculopathy is a central feature of many autoimmune diseases, and neutrophil extracellular traps may contribute directly to endothelial cell dysfunction, atherosclerotic plaque burden, and thrombosis. The elucidation of the subcellular events of neutrophil extracellular trap formation may generate novel, therapeutic strategies that target the innate immune system in autoimmune and vascular diseases.

  7. The application values of cerebrospinal fluid cytological examination by slide centrifugation for diagnosis of central nervous system infectious diseases

    Directory of Open Access Journals (Sweden)

    LIU Ting-ting

    2013-02-01

    Full Text Available According to the analysis of cerebrospnial fluid (CSF cytological examination (by slide centrifugation results of 15 940 central nervous system infectious cases, this cytologic examination method shows definite diagnostic values as follows: 1 better etiological diagnostic value for central nervous system infectious diseases, such as purulent, viral, tuberculous, fungus and parasitic encephalitis meningitis and meningoencephalitis; 2 better differential diagnostic value for acute infectious toxic encephalopathy, meningeal carcinomatosis and central nervous system non-infectious diseases such as tumorous, leukemic and hemorrhagic meningoencephalitis and encephalopathy; 3 better clinical value for severity monitoring and prognostic judgement of central nervous system infectious diseases.

  8. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Katherine eLintner

    2016-02-01

    Full Text Available The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP, has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE. Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy number variation, and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low gene copy numbers of total C4, heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein alterations for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.

  9. The impact of occurrence of exceptional solar events on mortality from diseases of the nervous system

    Science.gov (United States)

    Podolska, Katerina

    2015-04-01

    The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.

  10. Therapies in the Pipeline for Systemic Autoimmune Diseases

    OpenAIRE

    Juan Felipe Betancur; Jose Fernando Molina; Gabriel J. Tobón

    2016-01-01

    The current goals in the development of novel therapeutics of systemic autoimmune diseases are to develop agents more effective than conventional therapies as well as to reduce the risk of organ damage. To achieve this goal, large multicentre randomised controlled trials are needed to confirm the efficacy and safety of novel agents. Whether these novel modalities are synergistic to conventional drugs, the optimal dosages, and duration of treatment, need to be explored. As expected, the dev...

  11. Determination of autoantibodies to annexin XI in systemic autoimmune diseases

    DEFF Research Database (Denmark)

    Jorgensen, C S; Levantino, G; Houen, Gunnar

    2000-01-01

    Annexin XI, a calcyclin-associated protein, has been shown to be identical to a 56,000 Da antigen recognized by antibodies found in sera from patients suffering from systemic autoimmune diseases. In this work hexahistidine-tagged recombinant annexin XI (His6- rAnn XI) was used as antigen in ELISA...... experiments for determination of autoantibodies to annexin XI in sera of patients with systemic rheumatic autoimmune diseases. Immunoblotting with HeLa cell extract and with His6-rAnn XI as antigen was used for confirmation of positive ELISA results. We found eleven anti-annexin XI positive sera (3.9%) out...... of 282 sera from patients with systemic rheumatic diseases. The highest number of annexin XI positive sera were found in primary antiphospholipid syndrome (3/17), and in subacute lupus erythematosus (1/6), while lower frequencies of positive sera were found in patients with systemic sclerosis (5...

  12. Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs.

    Science.gov (United States)

    Bai, Yanyang; Xiang, Xiaoliang; Liang, Chunmei; Shi, Lei

    2015-01-01

    Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  13. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Mattner, F.; Katsifis, A.; Ballantyne, P. [ANSTO, Radiopharmaceuticals Division, Lucas Heights (Australia); Staykova, M.; Willenborg, D.O. [Australian National University Medical School, The Canberra Hospital, Neurosciences Research Unit, Woden, Canberra (Australia)

    2005-04-01

    Peripheral benzodiazepine receptors (PBRs) are upregulated on macrophages and activated microglia, and radioligands for the PBRs can be used to detect in vivo neuroinflammatory changes in a variety of neurological insults, including multiple sclerosis. Substituted 2-phenyl imidazopyridine-3-acetamides with high affinity and selectivity for PBRs have been prepared that are suitable for radiolabelling with a number of positron emission tomography and single-photon emission computed tomography (SPECT) isotopes. In this investigation, the newly developed high-affinity PBR ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-diethyl)imidazo[1,2-a]pyridine-3-acetamide, or CLINDE, was radiolabelled with{sup 123}I and its biodistribution in the central nervous system (CNS) of rats with experimental autoimmune encephalomyelitis (EAE) evaluated. EAE was induced in male Lewis rats by injection of an emulsion of myelin basic protein and incomplete Freund's adjuvant containing Mycobacterium butyricum. Biodistribution studies with{sup 123}I-CLINDE were undertaken on EAE rats exhibiting different clinical disease severity and compared with results in controls. Disease severity was confirmed by histopathology in the spinal cord of rats. The relationship between inflammatory lesions and PBR ligand binding was investigated using ex vivo autoradiography and immunohistochemistry on rats with various clinical scores. {sup 123}I-CLINDE uptake was enhanced in the CNS of all rats exhibiting EAE when compared to controls. Binding reflected the ascending nature of EAE inflammation, with lumbar/sacral cord > thoracic cord > cervical cord > medulla. The amount of ligand binding also reflected the clinical severity of disease. Ex vivo autoradiography and immunohistochemistry revealed a good spatial correspondence between radioligand signal and foci of inflammation and in particular ED-1{sup +} cells representing macrophages and microglia. These results demonstrate the ability of {sup 123}I

  14. Therapies in the Pipeline for Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Juan Felipe Betancur

    2016-07-01

    Full Text Available The current goals in the development of novel therapeutics of systemic autoimmune diseases are to develop agents more effective than conventional therapies as well as to reduce the risk of organ damage. To achieve this goal, large multicentre randomised controlled trials are needed to confirm the efficacy and safety of novel agents. Whether these novel modalities are synergistic to conventional drugs, the optimal dosages, and duration of treatment, need to be explored. As expected, the development of new molecules for the treatment of autoimmune diseases is constant, and there are different ongoing clinical trials. We review the different molecules in the pipeline, summarised in Tables 1, 2, and 3. We also show the successes, failures, and molecules that require more evidence.

  15. Central nervous system manifestations of neonatal lupus: a systematic review.

    Science.gov (United States)

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  16. Matrine downregulates IL-33/ST2 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Zhao, Xiaoyu; Zhang, Xiaojian; Lv, Ying; Xu, Yuming; Li, Menglong; Pan, Qingxia; Chu, Yaojuan; Liu, Nan; Zhang, Guang-Xian; Zhu, Lin

    2016-10-01

    Interleukin (IL)-33 is a recently described member of the IL-1 family and functions as a ligand for ST2, a member of the IL-1 receptor family. The role of IL-33/ST2 axis in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), remains controversial. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to suppress clinical EAE and CNS inflammation. However, the underlying immunoregulatory mechanisms have not been fully elucidated, and whether this effect of MAT is through inhibiting the function of the IL-33/ST2 axis is not known. In this study, we investigated the relationship between the therapeutic effects of MAT and IL-33/ST2 expression. MAT treatment successfully attenuated severe clinical deficit and histopathological changes, compared to untreated controls. While IL-33/ST2 mRNA expression was largely increased in spinal cord of EAE rats compared to naïve rats, this expression was significantly inhibited in rats treated with MAT. These results were further confirmed by their protein levels tested with immunohistochemistry. Together, our study demonstrates that MAT treatment regulates the inflammatory IL-33/ST2 axis, thus being a novel mechanism underlying the effect of MAT.

  17. [Involvement of Syk in pathology of systemic autoimmune disease].

    Science.gov (United States)

    Iwata, Shigeru; Yamaoka, Kunihiro; Niiro, Hiroaki; Nakano, Kazuhisa; Wang, Sheau-Pey; Saito, Kazuyoshi; Akashi, Koichi; Tanaka, Yoshiya

    2012-01-01

    Biological products have proven its high efficacy on autoimmune disease such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Meanwhile, small molecular drugs have attracted attention over the years because of its availability of oral administration and cost effectiveness. Spleen tyrosine kinase (Syk) is a 72 kDa protein tyrosine kinase widely expressed on cells that are involved in the immune system and inflammation such as B cells, T cells, macrophages and synovial fibroblast. Syk is involved in intracellular signaling of the multi-chain immune receptors, including B cell receptor (BCR), ζchain of T-cell receptor (TCR), FcR and integrins, which contains the immune-receptor tyrosine-based activation motif (ITAM). Recently, Syk inhibitor fostamatinib has exerted potent therapeutic efficacy against autoimmune and allergic diseases such as rheumatoid arthritis (RA), bronchial asthma and thrombocytopenic purpura (ITP). Moreover, Syk blockade prevented the development of skin and kidney lesions in lupus-prone mice, however the mechanism of action is unclear. We have revealed that Syk-mediated BCR-signaling is prerequisite for optimal induction of toll-like receptor (TLR)-9, thereby allowing efficient propagation of CD40- and TLR9- signaling in human B cells. These results indicate that inhibition of Syk have a potential to regulate B-cell mediated inflammatory diseases such as SLE. We here document the in vitro and in vivo effects of a Syk inhibitor for the treatment of autoimmune diseases, mainly in RA and SLE.

  18. The Etiopathogenesis of Autoimmune Bullous Diseases

    Directory of Open Access Journals (Sweden)

    Şebnem Aktan

    2011-06-01

    Full Text Available Autoimmune bullous diseases are rare disorders affecting skin and mucous membranes which are mediated by pathogenic autoantibodies against target antigens whose function is adhesion within the epidermis or adhesion of epidermis to dermis. The pathogenesis of these disorders has been extensively investigated with advanced techniques in recent years. This review focuses on the etiopathogenesis of main autoimmune bullous disorders including pemphigus, bullous pemphigoid, anti-p200 pemphigoid, cicatricial pemphigoid, pemphigoid gestationis, dermatitis herpetiformis, linear IgA bullous dermatosis and epidermolysis bullosa acquisita.

  19. Gut microbiome and the risk factors in central nervous system autoimmunity.

    Science.gov (United States)

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-11-17

    Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process.

  20. Hot topics in autoimmune diseases: perspectives from the 2013 Asian Congress of Autoimmunity.

    Science.gov (United States)

    Selmi, Carlo

    2014-08-01

    Our understanding of the pathogenic mechanisms and possible treatments of autoimmune diseases has significantly increased over the past decade. Nonetheless, numerous major issues remain open and such issues span from epidemiology to clinimetrics and from the role of infectious agents to the search for accurate biomarkers in paradigmatic conditions such as systemic lupus erythematosus, rheumatoid arthritis, and spondyloarthropathies. In the case of cardiovascular comorbidities of autoimmune diseases or, more generally, the pathogenesis of atherosclerosis, fascinating evidence points to a central role of autoimmunity and metabolic dysfunctions and a possible role of therapies targeting inflammation to ameliorate both conditions. Basic science and translational medicine contribute to identify common mechanisms that underlie different autoimmune diseases, as in the case of tumor necrosis factor alpha, and more recently vitamin D, autoantibodies, T and B regulatory cells, and microRNA. Finally, new therapies are expected to significantly change our approach to autoimmune diseases, as represented by the recent FDA approval of the first oral JAK inhibitor. The present article moves from the major topics that were discussed at the 2013 Asian Congress of Autoimmunity in Hong Kong to illustrate the most recent data from leading journals in autoimmunity and immunology.

  1. Diseases of the nervous system among miners of the Far North and questions of prophylaxis

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, A.G.

    1982-10-01

    In the Far North and arctic regions of the USSR mine workers experience effects on the organism of extreme meteorologic factors (low temperature, shortened daylight and permafrost) in addition to professional hazards of vibration and noise. Diets may be deficient in water-soluble vitamins necessary for normal functioning of the nervous system. For 4 years 3,575 miners of the Far North and Arctic were observed. At times, noise and vibration are more intense in areas of permafrost. Temperature of mine air in winter is -20 to -40/sup 0/C, in summer -4 to -15/sup 0/C. As miners adapt to work in cold climates, their resistance weakens. Data showed only 1% of miners developed vibrational disease. Major neuropathology was damage to the peripheral nervous system caused by osteochondrosis, particularly of the spine with or without inflammation of spinal nerve roots. Other neurological diseases (vascular pathology of brain, diffuse neuritis, cerebral arachnoiditis) were observed in miners of different professional groups. Preventive treatment is recommended: observation of hygienic norms of work; rational rearrangement of work regimens of sick miners; periodic work on related tasks; hospital rest; twice yearly study units on physical therapy, massage, conditioning; use of preventive measures. (5 refs.)

  2. Tocilizumab for the Treatment of Rheumatoid Arthritis and Other Systemic Autoimmune Diseases: Current Perspectives and Future Directions

    Directory of Open Access Journals (Sweden)

    Atsushi Ogata

    2012-01-01

    Full Text Available Interleukin (IL-6 is a cytokine featuring redundancy and pleiotropic activity. While IL-6, when transiently produced, contributes to host defense against acute environmental stress, continuous dysregulated IL-6 production plays a significant pathological role in several systemic autoimmune diseases. In response to the expectation that IL-6 blockade would constitute a novel therapeutic strategy for the treatment of these diseases, tocilizumab, a humanized anti-IL-6 receptor antibody, was developed. Clinical trials have verified the efficacy and the safety of tocilizumab for patients with rheumatoid arthritis, resulting in approval of this innovative biologic for the treatment of rheumatoid arthritis in more than 90 countries worldwide. Pathological analyses of the effect of IL-6 on the development of autoimmune diseases and a considerable number of case reports and pilot studies have also indicated the beneficial effects of this antibody on other systemic autoimmune diseases, including systemic lupus erythematosus, systemic sclerosis, polymyositis, and large-vessel vasculitis.

  3. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  4. Syringomyelia in demyelinating disease of the central nervous system: Report of two cases

    Directory of Open Access Journals (Sweden)

    Savić Dejan

    2011-01-01

    Full Text Available Introduction. Syringomyelia is a cavitary extension inside the spinal cord which can be either symptomatic or congenitally-idiopathic. Syringomyelia during the course of the disease in patients presenting with clinically definite multiple sclerosis was described earlier. Syringomyelia in patients presenting with a clinically isolated syndrome suggestive of multiple sclerosis is unusual. Case Outline. We present two patients presenting with demy-elinating disease of the central nervous system with syringomyelia in the cervical and thoracic spinal cord. We did not find classical clinical signs of syringomyelia in our patients, but we disclosed syringomyelia incidentally during magnetic resonance exploration. Magnetic resonance exploration using the gadolinium contrast revealed the signs of active demyelinating lesions in the spinal cord in one patient but not in the other. Conclusion. Syringomyelia in demyelinating disease of the central nervous system opens the question whether it is a coincidental finding or a part of clinical features of the disease. Differentiation of the significance of syringomyelia finding in these patients plays a role in the choice of treatment concept in such patients.

  5. Cerebrospinal fluid analysis in infectious diseases of the nervous system: when to ask, what to ask, what to expect

    Directory of Open Access Journals (Sweden)

    Luis dos Ramos Machado

    2013-09-01

    Full Text Available Cerebrospinal fluid (CSF analysis very frequently makes the difference to the diagnosis, not only in relation to infections but also in other diseases of the nervous system such as inflammatory, demyelinating, neoplastic and degenerative diseases. The authors review some practical and important features of CSF analysis in infectious diseases of the nervous system, with regard to acute bacterial meningitis, herpetic meningoencephalitis, neurotuberculosis, neurocryptococcosis, neurocysticercosis and neurosyphilis.

  6. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Teige, Anna; Teige, Ingrid; Lavasani, Shahram

    2004-01-01

    The existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EA...

  7. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool.

    Science.gov (United States)

    Baptista, Márcio S; Duarte, Carlos B; Maciel, Patrícia

    2012-08-01

    In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.

  8. Multiple Sclerosis and autoimmune diseases: clinical cases and review of the literature

    Directory of Open Access Journals (Sweden)

    A. Protti

    2011-09-01

    Full Text Available Multiple sclerosis (MS, the most frequent demyelinating disease in adults, is thought to be an autoimmune disease. Symptoms and signs observed in MS reflect lesions present mainly in the white matter of the central nervous system (CNS. The diagnosis remains difficult, at least concerning presenting symptoms, because of their low specificity. Diagnosis criteria are usually based on dissemination of signs in time and space, evoked potentials, findings of magnetic resonance imaging, results of cerebrospinal fluid examination, and the exclusion of other diagnosis possibly explaining the clinical signs. However, no clinical and paraclinical investigation can distinguish with certainity MS from other conditions such as autoimmune or inflammatory diseases predominantly affecting the central nervous system. These other disorders include systemic lupus erythematosus, antiphospholipid syndrome, Behcet disease, Sjogren syndrome, sarcoidosis and vasculitides. We present four clinical cases showing the difficulty in reaching a proper diagnosis...

  9. Review: the role of vitamin D in nervous system health and disease.

    Science.gov (United States)

    DeLuca, G C; Kimball, S M; Kolasinski, J; Ramagopalan, S V; Ebers, G C

    2013-08-01

    Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.

  10. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Science.gov (United States)

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  11. Epigenomics of autoimmune diseases.

    Science.gov (United States)

    Gupta, Bhawna; Hawkins, R David

    2015-03-01

    Autoimmune diseases are complex disorders of largely unknown etiology. Genetic studies have identified a limited number of causal genes from a marginal number of individuals, and demonstrated a high degree of discordance in monozygotic twins. Studies have begun to reveal epigenetic contributions to these diseases, primarily through the study of DNA methylation, but chromatin and non-coding RNA changes are also emerging. Moving forward an integrative analysis of genomic, transcriptomic and epigenomic data, with the latter two coming from specific cell types, will provide an understanding that has been missed from genetics alone. We provide an overview of the current state of the field and vision for deriving the epigenomics of autoimmunity.

  12. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers.

    Science.gov (United States)

    Carpio, Arturo; Romo, Matthew L; Parkhouse, R M E; Short, Brooke; Dua, Tarun

    2016-01-01

    Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control.

  13. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models

    Science.gov (United States)

    Mizuno, Miho; Noto, Daisuke; Kaga, Naoko; Chiba, Asako; Miyake, Sachiko

    2017-01-01

    Autoimmune diseases are influenced by both genetic and environmental factors. The gut environment has attracted much attention as an essential component that modulates immune responses, and therefore immune-mediated disorders, such as autoimmune diseases. Growing evidence suggests that microbiota and their metabolites are critical factors for immune modulation. Recently, we reported that the microbiome in patients with multiple sclerosis, an autoimmune disease targeting the myelin sheath of the central nervous system, is characterized by a reduction of bacteria belonging to Clostridia clusters IV and XIVa, which are potent producers of short-chain fatty acids (SCFAs) by fermentation of indigestible carbohydrates. In the present study, we investigated the role of SCFAs in the regulation of inflammation. We demonstrated that oral administration of SCFAs ameliorated the disease severity of systemic autoimmune inflammatory conditions mediated by lymphocytes such as experimental autoimmune encephalitis and collagen-induced arthritis. Amelioration of disease was associated with a reduction of Th1 cells and an increase in regulatory T cells. In contrast, SCFAs contributed to the exaggeration of K/BxN serum transfer arthritis, representing the effector phase of inflammation in rheumatoid arthritis. An increased understanding of the effect of microbiota metabolites will lead to the effective treatment and prevention of systemic inflammatory disorders. PMID:28235016

  14. The role of natural antisense transcripts in the pathogenesis of nervous system diseases

    Directory of Open Access Journals (Sweden)

    Lei XIANG

    2015-03-01

    Full Text Available Mammalian genomes encode numerous natural antisense transcripts (NATs. These antisense transcripts are now recognized as an important component of molecular mechanisms involved in the regulation of gene expression. NATs are particularly prevalent in the mammalian nervous system. The importance of NATs in the normal functioning of nervous system is becoming increasingly evident. They are not only involved in neuronal differentiation, myelination and ion channel regulation, but also in advanced cognitive processes, such as synapse plasticity and memory formation. This paper focuses on the potential involvement of NATs in various neurodegenerative disorders. DOI: 10.3969/j.issn.1672-6731.2015.03.014

  15. Comparative assessment of the prevalence of periodontal disease in subjects with and without systemic autoimmune diseases: A case–control study

    Directory of Open Access Journals (Sweden)

    S G Ramesh Kumar

    2016-01-01

    Full Text Available Background: Immune mechanism shares a common pathway both for systemic autoimmune diseases and periodontal diseases. Scientific exploration of literature revealed limited studies on the association between systemic autoimmune diseases and periodontal diseases in India. Aim: The aim of the study is to find whether the presence of systemic autoimmune diseases in an individual is a risk factor for the development of periodontal disease. Settings and Design: This was a hospital-based case–control study. Materials and Methods: A sample of 253 patients with systemic autoimmune diseases, attending the Rheumatology Department of Government General Hospital, Chennai-3, and 262 patients without systemic autoimmune diseases, attending the outpatient department of the Tamil Nadu Government Dental College and Hospital, Chennai-3, constituted the case and control groups, respectively. Age, gender, and oral hygiene status matching was done. Oral hygiene status was assessed using oral hygiene index (OHI and periodontal status was assessed using community periodontal index (CPI and loss of attachment (LOA index. Statistical Analysis: Statistical analysis was done using SPSS version 15 (SPSS Inc, 2006, Chicago. Results: Results showed 99.2% and 73.9% prevalence of gingivitis and periodontitis, respectively, in the case group as compared to 85.5% and 14.9%, respectively, in the control group. There is no linear relationship between OHI scores and prevalence of periodontitis (CPI and LOA scores in the case group. Patients suffering from systemic autoimmune diseases showed more prevalence of periodontal diseases irrespective of oral hygiene scores. Conclusion: It is postulated that the presence of systemic autoimmune diseases may pose a risk for the development of periodontal diseases.

  16. An unusual association of three autoimmune disorders: celiac disease, systemic lupus erythematosus and Hashimoto's thyroiditis.

    Science.gov (United States)

    Boccuti, Viera; Perrone, Antonio; D'Introno, Alessia; Campobasso, Anna; Sangineto, Moris; Sabbà, Carlo

    2016-12-01

    Autoimmune disorders are known to be more frequent in women and often associated each others, but it is rare to see multiple autoimmune diseases in a single patient. Recently, the concept of multiple autoimmune syndrome has been introduced to describe patients with at least three autoimmune diseases. We describe a case of a young man with a clinical history of psychiatric symptoms and celiac disease (CD) who was diagnosed to have other two autoimmune disorders: systemic lupus erythematosus (SLE) and Hashimoto's thyroiditis. This case is unusual upon different patterns: the rare combination of the three autoimmune diseases, their appearance in a man and the atypical onset of the diseases with psychiatric symptoms likely to be related either to CD or to SLE.

  17. The role of melatonin in autoimmune and atopic diseases

    Directory of Open Access Journals (Sweden)

    J.R. Calvo

    2016-04-01

    Full Text Available Melatonin is the main secretory product synthesized and secreted by the pineal gland during the night. Melatonin is a pleitropic molecule with a wide distribution within phylogenetically distant organisms and has a great functional versatility, including the regulation of circadian and seasonal rhythms and antioxidant and anti-inflammatory properties. It also possesses the capacity to modulate immune responses by regulation of the TH1/TH2 balance and cytokine production. Immune system eradicates infecting organisms without serious injury to host tissues, but sometimes these responses are inadequately controlled, giving rise to called hypersensitivity diseases, or inappropriately targeted to host tissues, causing the autoimmune diseases. In clinical medicine, the hypersensitivity diseases include the allergic or atopic diseases and the hallmarks of these diseases are the activation of TH2 cells and the production of IgE antibody. Regarding autoimmunity, at the present time we know that the key events in the development of autoimmunity are a failure or breakdown of the mechanisms normally responsible for maintaining self-tolerance in B lymphocytes, T lymphocytes, or both, the recognition of self-antigens by autoreactive lymphocytes, the activation of these cells to proliferate and differentiate into effector cells, and the tissue injury caused by the effector cells and their products. Melatonin treatment has been investigated in atopic diseases, in several animal models of autoimmune diseases, and has been also evaluated in clinical autoimmune diseases. This review summarizes the role of melatonin in atopic diseases (atopic dermatitis and asthma and in several autoimmune diseases, such as arthritis rheumatoid, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes mellitus, and inflammatory bowel diseases.

  18. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  19. Oral feeding with ethinyl estradiol suppresses and treats experimental autoimmune encephalomyelitis in SJL mice and inhibits the recruitment of inflammatory cells into the central nervous system.

    Science.gov (United States)

    Subramanian, Sandhya; Matejuk, Agata; Zamora, Alex; Vandenbark, Arthur A; Offner, Halina

    2003-02-01

    There is much interest in the possible ameliorating effects of estrogen on various autoimmune diseases. We previously established the protective effects of 17 beta-estradiol (E2) on experimental autoimmune encephalomyelitis (EAE). In the current study we investigated the effectiveness of oral treatment with ethinyl estradiol (EE) on EAE and the mechanisms involved. Ethinyl estradiol is a semisynthetic estrogen compound found in birth control pills, and its chemical structure allows this compound to retain activity when given orally. We found that oral EE, like E2, drastically suppressed EAE induced by proteolipid protein 139-151 peptide when given at initiation of EAE. However, unlike E2, EE reduced clinical severity when given after the onset of clinical signs. Treatment with EE significantly decreased the secretion of proinflammatory cytokines (IFN-gamma, TNF-alpha, and IL-6) by activated T cells as well as the expression of a key matrix metalloproteinase, disease-mediating chemokines/receptors, and IgG2a levels, but increased the expression of TGF-beta 3 in the CNS. The absence of infiltrating lymphocytes together with the suppression of cytokines, matrix metalloproteinase, and chemokines/receptors suggests that EE, like E2, protects mice from EAE by inhibiting the recruitment of T cells and macrophages into the CNS. These results suggest that oral ethinyl estradiol might be a successful candidate as therapy for multiple sclerosis.

  20. Naive CD8 T-Cells Initiate Spontaneous Autoimmunity to a Sequestered Model Antigen of the Central Nervous System

    Science.gov (United States)

    Na, Shin-Young; Cao, Yi; Toben, Catherine; Nitschke, Lars; Stadelmann, Christine; Gold, Ralf; Schimpl, Anneliese; Hunig, Thomas

    2008-01-01

    In multiple sclerosis, CD8 T-cells are thought play a key pathogenetic role, but mechanistic evidence from rodent models is limited. Here, we have tested the encephalitogenic potential of CD8 T-cells specific for the model antigen ovalbumin (OVA) sequestered in oligodendrocytes as a cytosolic molecule. We show that in these "ODC-OVA" mice, the…

  1. Headache in autoimmune diseases.

    Science.gov (United States)

    John, Seby; Hajj-Ali, Rula A

    2014-03-01

    Autoimmune diseases are a group of heterogeneous inflammatory disorders characterized by systemic or localized inflammation, leading to ischemia and tissue destruction. These include disorders like systemic lupus erythematosus and related diseases, systemic vasculitides, and central nervous system (CNS) vasculitis (primary or secondary). Headache is a very common manifestation of CNS involvement of these diseases. Although headache characteristics can be unspecific and often non-diagnostic, it is important to recognize because headache can be the first manifestation of CNS involvement. Prompt recognition and treatment is necessary not only to treat the headache, but also to help prevent serious neurological sequelae that frequently accompany autoimmune diseases. In this review, we discuss headache associated with autoimmune diseases along with important mimics.

  2. Sirolimus for Autoimmune Disease of Blood Cells

    Science.gov (United States)

    2017-03-16

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  3. Immunomodulation by the autonomic nervous system: therapeutic approach for cancer, collagen diseases, and inflammatory bowel diseases.

    Science.gov (United States)

    Abo, Toru; Kawamura, Toshihiko

    2002-10-01

    The distribution of leukocytes is regulated by the autonomic nervous system in humans and animals. The number and function of granulocytes are stimulated by sympathetic nerves whereas those of lymphocytes are stimulated by parasympathetic nerves. This is because granulocytes bear adrenergic receptors, but lymphocytes bear cholinergic receptors on the surface. These regulations may be beneficial to protect the body of living beings. However, when the autonomic nervous system deviates too much to one direction, we fall victim to certain diseases. For example, severe physical or mental stress --> sympathetic nerve activation --> granulocytosis --> tissue damage, including collagen diseases, inflammatory bowel diseases, and cancer. If we introduce the concept of immunomodulation by the autonomic nervous system, a new approach for collagen diseases, inflammatory bowel diseases, and even cancer is raised. With this approach, we believe that these diseases are no longer incurable.

  4. Palivizumab Exposure and the Risk of Autoimmune Disease

    DEFF Research Database (Denmark)

    Haerskjold, Ann; Linder, Marie; Stokholm, Lonny Merete;

    2016-01-01

    children known to be immunologically immature. The long-term effect of palivizumab in terms of autoimmune diseases has not yet been investigated. AIM: Our objective was to investigate whether exposure to palivizumab was associated with the development of autoimmune diseases in children. METHODS...... of autoimmune disease were diagnosed among palivizumab-exposed children during the period of observation. Among the children exposed to palivizumab, one child in Denmark developed inflammatory bowel disease; in Sweden, children developed juvenile arthritis (one child), diabetes mellitus (two children), celiac...... disease (four children), and inflammatory bowel disease (one child). The risk of autoimmune disease was not significantly increased after palivizumab exposure (hazard ratio adjusted for age and country: 1.54; 95 % confidence interval 0.80-2.95). CONCLUSION: The risk of autoimmune disease was not increased...

  5. The clinicopathology and pathology of selective toxicoses and storage diseases of the nervous system of ruminants in Southern Africa

    NARCIS (Netherlands)

    Lugt, Jacob Jan van der

    2002-01-01

    In this study the clinical signs and pathology of five plant poisonings and a mycotoxicosis affecting the nervous system of domestic ruminants in southern Africa are described. For comparative purposes, an inherited storage disease (bèta-mannosidosis) and a drug-induced neurotoxicosis (closantel ove

  6. Pregnancy and the risk of autoimmune disease.

    LENUS (Irish Health Repository)

    Khashan, Ali S

    2012-01-31

    Autoimmune diseases (AID) predominantly affect women of reproductive age. While basic molecular studies have implicated persisting fetal cells in the mother in some AID, supportive epidemiological evidence is limited. We investigated the effect of vaginal delivery, caesarean section (CS) and induced abortion on the risk of subsequent maternal AID. Using the Danish Civil Registration System (CRS) we identified women who were born between 1960 and 1992. We performed data linkage between the CRS other Danish national registers to identify women who had a pregnancy and those who developed AID. Women were categorised into 4 groups; nulligravida (control group), women who had 1st child by vaginal delivery, whose 1st delivery was by CS and who had abortions. Log-linear Poisson regression with person-years was used for data analysis adjusting for several potential confounders. There were 1,035,639 women aged >14 years and 25,570 developed AID: 43.4% nulligravida, 44.3% had their first pregnancy delivered vaginally, 7.6% CS and 4.1% abortions. The risk of AID was significantly higher in the 1st year after vaginal delivery (RR = 1.1[1.0, 1.2]) and CS (RR = 1.3[1.1, 1.5]) but significantly lower in the 1st year following abortion (RR = 0.7[0.6, 0.9]). These results suggest an association between pregnancy and the risk of subsequent maternal AID. Increased risks of AID after CS may be explained by amplified fetal cell traffic at delivery, while decreased risks after abortion may be due to the transfer of more primitive fetal stem cells. The increased risk of AID in the first year after delivery may also be related to greater testing during pregnancy.

  7. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  8. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise;

    2003-01-01

    It has been proposed that the activation status of antigen-presenting cells (APCs) plays a significant role in the development of autoimmune disease. Whether expression of costimulatory ligands on tissue-resident APCs controls organ-specific autoimmune responses has not been tested. We here repor...... sclerosis (MS) and Guillain-Barré syndrome (GBS)....

  9. Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Huey-Kang Sytwu

    2013-05-01

    Full Text Available Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease.

  10. Selected Aspects in the Pathogenesis of Autoimmune Diseases.

    Science.gov (United States)

    Nagy, György; Huszthy, Peter C; Fossum, Even; Konttinen, Yrjö; Nakken, Britt; Szodoray, Peter

    2015-01-01

    Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.

  11. Selected Aspects in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    György Nagy

    2015-01-01

    Full Text Available Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.

  12. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Liefeng; Du, Changsheng; Lv, Jie; Wei, Wei; Cui, Ye; Xie, Xin

    2011-09-01

    Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators and are considered to play a key role in inflammatory diseases such as asthma. Antagonists targeting the receptor of CysLTs (CysLT1) are currently used as antiasthmatic drugs. CysLTs have also been implicated in other inflammatory reactions. In this study, we report that in experimental autoimmune encephalomyelitis animals, CysLT1 is upregulated in immune tissue and the spinal cord, and CysLT levels in the blood and cerebrospinal fluid are also higher than in normal mice. Two clinically used antiasthma drugs, montelukast and zafirlukast, both targeting CysLT1, effectively block the CNS infiltration of inflammatory cells and thus reduce the incidence, peak severity, and cumulative clinical scores. Further study indicated that CysLT1 signaling does not affect the differentiation of pathogenic T helper cells. It might affect the pathogenesis of experimental autoimmune encephalomyelitis by increasing the secretion of IL-17 from myelin oligodendrocyte glycoprotein-specific T cells, increasing the permeability of the blood-brain barrier and inducing chemotaxis of T cells. These effects can be blocked by CysLT1 antagonists. Our findings indicate that the antiasthmatic drugs against CysLT1 can also be used to treat multiple sclerosis.

  13. Tuberculoma of the central nervous system.

    Science.gov (United States)

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  14. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    Science.gov (United States)

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Juvenile autoimmune hepatitis: Spectrum of the disease

    Institute of Scientific and Technical Information of China (English)

    Giuseppe; Maggiore; Silvia; Nastasio; Marco; Sciveres

    2014-01-01

    Juvenile autoimmune hepatitis(JAIH) is a progressive inflammatory liver disease, affecting mainly young girls, from infancy to late adolescence, characterized by active liver damage, as shown by high serum activity of aminotransferases, by elevated immunoglobulin G levels, high titers of serum non organ-specific andorgan-specific autoantibodies, and by interface hepatitis on liver biopsy. It is a multifactorial disease of unknown etiology in which environmental factors act as a trigger in genetically predisposed individuals. Two types of JAIH are identified according to the autoan-tibody panel detected at diagnosis: AIH-1, characterized by the presence of anti-smooth muscle antibody and/or antinuclear antibody and AIH-2, by anti-liver-kidney microsomal antibody type 1 and/or by the presence of anti-liver cytosol type 1 antibody. Epidemiological distribution, genetic markers, clinical presentation and pattern of serum cytokines differentiate the two types of AIH suggesting possible pathogenetic mechanisms. The most effective therapy for AIH is pharmacological suppression of the immune response. Treatment should be started as soon as the diagnosis is made to avoid severe liver damage and progression of fibrosis. The aim of this review is to outline the most significant and peculiar features of JAIH, based largely on our own personal database and on a review of current literature.

  16. Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Directory of Open Access Journals (Sweden)

    Börnke Christian

    2005-09-01

    Full Text Available Abstract Background Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. Case presentation A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. Conclusion Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately.

  17. [Functional anatomy of the central nervous system].

    Science.gov (United States)

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  18. A rare case of mixed connective tissue disease presenting with central nervous system glioma, vasculitis and polymyositis

    Directory of Open Access Journals (Sweden)

    Rushabh Parikh

    2015-12-01

    Full Text Available Mixed connective tissue disease (MCTD was first recognized by Sharp and Colleagues in 1972 among a group of patients with overlapping clinical features of systemic lupus erythematosis (SLE, scleroderma and myositis, with the presence of distinctive antibodies against, what now is known to be U1-ribonucleoprotein (RNP. We report an unusual case of a 23-year old female with MCTD characterized by the coexistence of signs, symptoms and immunological features of 3 defined autoimmune diseases SLE, systemic sclerosis (SSc, polymyositis (PM and an unusual presence of central nervous system (CNS Glioma. [Int J Res Med Sci 2015; 3(12.000: 3917-3920

  19. Rhabdoid tumors of the central nervous system.

    Science.gov (United States)

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  20. Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease.

    Science.gov (United States)

    Ludwig, Janne; Remien, Piet; Guballa, Christoph; Binder, Andreas; Binder, Sabine; Schattschneider, Jörn; Herzog, Jan; Volkmann, Jens; Deuschl, Günther; Wasner, Gunnar; Baron, Ralf

    2007-07-01

    Dysfunctions of the autonomic nervous system (ANS) are common in Parkinson's disease (PD). Regarding motor disability, deep brain stimulation of the subthalamic nucleus (STN) is an effective treatment option in long lasting PD. The aims of this study were to examine whether STN stimulation has an influence on functions of the ANS and to compare these effects to those induced by levodopa. Blood pressure (BP) and heart rate (HR) during rest and orthostatic conditions, HR variability (HRV) and breathing-induced cutaneous sympathetic vasoconstriction (CVC) were tested in 14 PD patients treated with STN stimulation during "ON" and "OFF" condition of the stimulator. The effects of a single dose of levodopa on ANS were tested in 15 PD patients without DBS. STN stimulation had no influence on cardiovascular ANS functions, whereas CVC was significantly increased. In contrast, levodopa significantly lowered BP and HR at rest and enhanced orthostatic hypotension. Further, HRV, skin perfusion and temperature increased after administration of levodopa. Our results suggest that in contrast to levodopa, STN stimulation has only minor effects on autonomic functions. Since less pharmacotherapy is needed after STN stimulation, reduced levodopa intake results in relative improvement of autonomic function in deep brain stimulated PD patients.

  1. Accounting for chance in the calculus of autoimmune disease.

    Science.gov (United States)

    Moore, Daniel J

    2010-02-01

    Discussions around the etiology of autoimmune disease routinely focus on the interplay between genes and the environment. In turn, efforts to ameliorate these diseases seek to modify genetic and environmental factors. However, there may be a third element that also accounts for the progression of autoimmunity. This article explores the role of chance, exemplified by the stochastic process of immune repertoire generation, in the evolution of autoimmunity. The presented modeling studies and concepts suggest that chance plays as significant a role as genes or environment. This hypothesis implies that a full understanding of the role of genes and environment will also require investigators to account for stochastic processes in building comprehensive disease models.

  2. Management Activities on the Reduction of Ecological-related Diseases of the Nervous System of Population in Ust-Kamenogorsk

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2014-09-01

    Full Text Available The article features the research results of psychological status and the nervous system. The study was conducted on the basis of multivariate analysis of morbidity rates of the nervous system with the aim of developing of administrative actions towards the population of Ust-Kamenogorsk. The correlation analysis has shown that the of coefficients of correlation coincide with the analysis data of morbidity rates of the nervous system showing that that morbidity rates are mostly influenced by high concentration of harmful pollutants. Besides, the correlation analysis has allowed identifying the levels of pollution in the atmosphere of the city above which the interrelation between fluctuations of morbidity rates is shown and below which correlation has been not observed. From the provided data we can see that the main sources of harmful substances entering our bodies are polluted atmospheric air and soils. The study revealed that with the growth of anthropogenesis loading by toxic metals, the morbidity rates of encephalopathies of unspecified genesis and the cerebrovascular diseases increase. Changes in psycho-emotional sphere have been revealed. The novelty of research is the development of administrative procedures aimed at reduction of the disease prevalence for people living in Ust-Kamenogorsk.

  3. [Systemic autoimmune rheumatic diseases in 2013: problems of laboratory diagnosis].

    Science.gov (United States)

    Nasonov, E L; Aleksandrova, E N; Novikov, A A

    2014-01-01

    Progress in the laboratory diagnosis of systemic autoimmune rheumatic diseases (SRAD) is caused by the ever increasing clinical introduction of new highly productive methods for immune analysis using computer-aided systems and multiplex proteomic technologies. The urgent problem in the laboratory diagnosis of SRAD is the standardization of current methods for the detection of autoantibodies (autoAb), including the preparation of international reference materials for the calibration and external quality assessment of immunological assay. New autoAb technologies have a higher analytical validity than the previously used classical techniques immunodiffusion, agglutination, and immunofluorescence; however, their diagnostic sensitivity and specificity for SRAD have been poorly studied. Particular emphasis is laid on the standardization of the methods for examining antinuclear antibodies (ANAb), the major serologic marker of SRAD. According to the EULAR/ACR guidelines, indirect immunofluorescence reaction (IIFR) using human HEp-2 cells as substrate is the gold standard and a primary screening ANAb method. New methods for solid-phase analysis (enzyme immunoassay, multiplex test systems, etc.) cannot substitute the primary screening of ANAb using IIFR-HEp-2 as they identify antibodies to the limited number of antigens, increasing the number of false- negative results. The computer-aided systems for interpreting cell fluorescence tests contribute to the standardization and enhancement of the efficiency of detection of ANAb and other autoAb by IIFR. The use of complex diagnostic indices based on the multiparametric analysis of laboratory biomarkers in the serum makes it possible to most fully and objectively assess complex molecular mechanisms for the pathogenesis of SRAD, thus radically improving the early diagnosis, the estimation of the activity and severity of disease, the prediction of the outcomes of a pathological process and the response to treatment.

  4. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases

    DEFF Research Database (Denmark)

    Christensen, Mette; Schratt, Gerhard M

    2009-01-01

    and early differentiation as well as in later stages of neuronal development, such as dendritogenesis and synaptic plasticity. A link between microRNAs and neurological diseases, such as neurodegeneration or synaptic dysfunction, is becoming increasingly clear. This review summarizes the current knowledge...... of the function of microRNAs in the developing and adult nervous system and their potential contribution to the etiology of neurological diseases....

  5. Updates on the management of autoimmune blistering diseases.

    Science.gov (United States)

    Hooten, Joanna N; Hall, Russell P; Cardones, Adela R

    2014-01-01

    Autoimmune blistering diseases are rare, but potentially debilitating cutaneous disorders characterized by varying degrees of mucosal and cutaneous bullae formation. Topical therapy is appropriate for mild and even some moderate disease activity, but systemic treatment can be considered for more extensive involvement. Corticosteroids remain the first-line systemic therapy for patients with moderate to severe bullous pemphigoid and pemphigus vulgaris. While the use of systemic steroids has dramatically reduced mortality from these two autoimmune blistering disorders, treatment is also associated with multiple side effects, especially when used long-term. Steroid sparing agents, therefore, are invaluable in inducing long-term remission while minimizing steroid associated side effects. Treatment must be tailored to the individual patient's condition, and several other factors must be carefully considered in choosing appropriate therapy: 1) diagnosis, 2) severity of the condition and body site affected, 3) presence of comorbidities, and 4) ability to tolerate systemic therapy.

  6. Nutritional stimulation of the autonomic nervous system

    Institute of Scientific and Technical Information of China (English)

    Misha DP Luyer; Quirine Habes; Richard van Hak; Wim Buurman

    2011-01-01

    Disturbance of the inflammatory response in the gut is important in several clinical diseases ranging from inflammatory bowel disease to postoperative ileus. Several feedback mechanisms exist that control the inflammatory cascade and avoid collateral damage. In the gastrointestinal tract, it is of particular importance to control the immune response to maintain the balance that allows dietary uptake and utilization of nutrients on one hand, while preventing invasion of bacteria and toxins on the other hand. The process of digestion and absorption of nutrients requires a relative hyporesponsiveness of the immune cells in the gut to luminal contents which is not yet fully understood. Recently, the autonomic nervous system has been identified as an important pathway to control local and systemic inflammation and gut barrier integrity. Activation of the pathway is possible via electrical or via pharmacological interventions, but is also achieved in a physiological manner by ingestion of dietary lipids. Administration of dietary lipids has been shown to be very effective in reducing the inflammatory cascade and maintaining intestinal barrier integrity in several experimental studies. This beneficial effect of nutrition on the inflammatory inflammatory response and intestinal barrier integrity opens new therapeutic opportunities for treatment of certain gastrointestinal disorders. Furthermore, this neural feedback mechanism provides more insight in the relative hyporesponsiveness of the immune cells in the gut. Here, we will discuss the regulatory function of the autonomic nervous system on the inflammatory response and gut barrier function and the potential benefit in a clinical setting.

  7. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system.

    Science.gov (United States)

    Freude, Susanna; Hausmann, Jürgen; Hofer, Markus; Pham-Mitchell, Ngan; Campbell, Iain L; Staeheli, Peter; Pagenstecher, Axel

    2002-12-01

    Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.

  8. Autoimmune Skin Diseases in the Dog

    OpenAIRE

    Parker, W. M.

    1981-01-01

    Diagnoses of autoimmune skin diseases require very careful observation of the skin lesions, and selection of an intact vesicle for histopathological examination. If available, immunofluorescent studies can be very useful in confirming the diagnosis of autoimmune skin disease. Seven autoimmune skin diseases are briefly reviewed. Therapy must be aggressive and owner warned of the guarded prognosis.

  9. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    Science.gov (United States)

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia.

  10. Successful treatment of pediatric IgG4 related systemic disease with mycophenolate mofetil: case report and a review of the pediatric autoimmune pancreatitis literature

    Directory of Open Access Journals (Sweden)

    Cron Randy Q

    2011-01-01

    Full Text Available Abstract Autoimmune pancreatitis is frequently associated with elevated serum and tissue IgG4 levels in the adult population, but there are few reports of pediatric autoimmune pancreatitis, and even fewer reports of IgG4 related systemic disease in a pediatric population. The standard of care treatment in adults is systemic corticosteroids with resolution of symptoms in most cases; however, multiple courses of corticosteroids are occasionally required and some patients require long term corticosteroids. In these instances, steroid sparing disease modify treatments are in demand. We describe a 13-year-old girl with IgG4 related systemic disease who presented with chronic recurrent autoimmune pancreatitis resulting in surgical intervention for obstructive hyperbilirubinemia and chronic corticosteroid treatment. In addition, she developed fibrosing medianstinitis as part of her IgG4 related systemic disease. She was eventually successfully treated with mycophenolate mofetil allowing for discontinuation of corticosteroids. This is the first reported use of mycophenolate mofetil for IgG4 related pancreatitis. Although autoimmune pancreatitis as part of IgG4 related systemic disease is rarely reported in pediatrics, autoimmune pancreatitis is also characterized as idiopathic fibrosing pancreatitis. All pediatric autoimmune pancreatitis cases reported in the world medical literature were identified via a PUBMED search and are reviewed herein. Twelve reports of pediatric autoimmune pancreatitis were identified, most of which were treated with corticosteroids or surgical approaches. Most case reports failed to report IgG4 levels, so it remains unclear how commonly IgG4 related autoimmune pancreatitis occurs during childhood. Increased evaluation of IgG4 levels in patients with autoimmune pancreatitis may shed further light on the association of IgG4 with pancreatitis and the underlying pathophysiology.

  11. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity.

    Science.gov (United States)

    Melis, Daniela; Della Casa, Roberto; Balivo, Francesca; Minopoli, Giorgia; Rossi, Alessandro; Salerno, Mariacarolina; Andria, Generoso; Parenti, Giancarlo

    2014-03-19

    Glycogen storage disease type 1b (GSD1b) is an inherited metabolic defect of glycogenolysis and gluconeogenesis due to mutations of the SLC37A4 gene and to defective transport of glucose-6-phosphate. The clinical presentation of GSD1b is characterized by hepatomegaly, failure to thrive, fasting hypoglycemia, and dyslipidemia. Patients affected by GSD1b also show neutropenia and/or neutrophil dysfunction that cause increased susceptibility to recurrent bacterial infections. GSD1b patients are also at risk for inflammatory bowel disease. Occasional reports suggesting an increased risk of autoimmune disorders in GSD1b patients, have been published. These complications affect the clinical outcome of the patients. Here we describe the occurrence of autoimmune endocrine disorders including thyroiditis and growth hormone deficiency, in a patient affected by GSD1b. This case further supports the association between GSD1b and autoimmune diseases.

  12. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  13. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  14. The Corrona US registry of rheumatic and autoimmune diseases.

    Science.gov (United States)

    Kremer, Joel M

    2016-01-01

    The Corrona US national registry collects data concerning patient status from both the rheumatologist and patient at routine clinical encounters. Corrona has functioning disease registries in rheumatoid arthritis, psoriatic arthritis, spondyloarthropathies, psoriasis and inflammatory bowel disease. Corrona merges data concerning long-term effectiveness and safety, as well as comparative and cost effectiveness of agents to treat these autoimmune diseases.

  15. Autonomic Nervous System Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Zesiewicz, Theresa A.; Baker, Matthew J.; Wahba, Mervat; Hauser, Robert A.

    2003-03-01

    Autonomic nervous system (ANS) dysfunction is common in Parkinson's disease (PD), affects 70% to 80% of patients, and causes significant morbidity and discomfort. Autonomic nervous system dysfunction symptoms in PD include sexual dysfunction, swallowing and gastrointestinal disorders, bowel and bladder abnormalities, sleep disturbances, and derangements of cardiovascular regulation, particularly, orthostatic hypotension. Autonomic nervous system dysfunction in PD may be caused by an underlying degenerative process that affects the autonomic ganglia, brainstem nuclei, and hypothalamic nuclei. Anti-parkinsonian medications can cause or worsen symptoms of ANS dysfunction. The care of a PD patient with ANS dysfunction relies on its recognition and directed treatment, including coordinated care between the neurologist and appropriate subspecialist. Pharmacotherapy may be useful to treat orthostasis, gastrointestinal, urinary, and sexual dysfunction.

  16. Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system

    DEFF Research Database (Denmark)

    Banati, M; Csecsei, P; Koszegi, E

    2013-01-01

    BACKGROUND: Antibodies against gastrointestinal antigens may indicate altered microbiota and immune responses in the gut. Recent experimental data suggest a connection between gastrointestinal immune responses and CNS autoimmunity. METHODS: Antibodies against gliadin, tissue transglutaminase (tTG...

  17. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  18. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider ...

  19. Primary Angiitis Of The Central Nervous System

    Directory of Open Access Journals (Sweden)

    Sundaram Meenakshi

    2001-01-01

    Full Text Available An unusual case of primary angiitis of central nervous system (PACNS presenting with headache, seizures and focal deficits is presented. Despite multiple lesions noted on brain MRI, definitive diagnosis required a brain biopsy. A high index of clinical suspicious and the utility of brain biopsy for diagnosis are emphasized.

  20. Familial occurrence of autoimmune diseases and autoantibodies in a Caucasian population of patients with systemic lupus erythematosus

    NARCIS (Netherlands)

    Corporaal, S.; Bijl, Marc; Kallenberg, Cees

    2002-01-01

    To determine the prevalence of autoimmune diseases and autoantibodies in relatives of Caucasian patients with systemic lupus erythematosus (SLE) we questioned 118 patients for the prevalence of autoimmune diseases in their relatives. Multicase SLE families were selected for further investigation: as

  1. Therapeutic Application of Electric Fields in the Injured Nervous System

    OpenAIRE

    2014-01-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required.

  2. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    Full Text Available Background/Aim. Dysautonomia appears in almost all patients with Parkinson’s disease (PD in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. Methods. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Results. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson’s disease rating score (UPDRS (p < 0.01, activities of daily living scores (p < 0.05, Schwab-England scale (p < 0.001 and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of

  3. Novel markers identify nervous system components of the holothurian nervous system.

    Science.gov (United States)

    Díaz-Balzac, Carlos A; Vázquez-Figueroa, Lionel D; García-Arrarás, José E

    2014-09-01

    Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system.

  4. The epigenetics of autoimmunity

    Science.gov (United States)

    Meda, Francesca; Folci, Marco; Baccarelli, Andrea; Selmi, Carlo

    2011-01-01

    The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases. PMID:21278766

  5. Ginger extract modulates the expression of IL-12 and TGF-β in the central nervous system and serum of mice with experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Jafarzadeh, Abdollah; Ahangar-Parvin, Reyhane; Nemat, Maryam; Taghipour, Zahra; Shamsizadeh, Ali; Ayoobi, Fatemeh; Hassan, Zuhair Mohammad

    2017-01-01

    Objective: The main function of IL-12 is differentiation of naive T cells intoTh1 cells and TGF-β is a powerful immunoregulatory cytokine. The immunomodulatory and anti-inflammatory properties of ginger have also been reported in some studies. The aim of this study was to evaluate the effects of ginger extract on the expression of IL-12 and TGF-β in a model of experimental autoimmune encephalomyelitis (EAE). Materials and Methods: EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein emulsified in complete Freund's adjuvant. The mice were administered intra-peritoneally with ginger extracts or PBS, from day +3 to +30. On day 31, mice were scarified and the expression of IL-12 and TGF-β mRNA in the spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. Results: In PBS-treated EAE mice, the expression of IL-12 P35 and IL-12 P40 mRNA in the CNS and the mean serum levels of IL-12 were significantly higher than those of healthy group (pginger-treated EAE mice, the expression of IL-12 mRNA and its serum levels were significantly lower as compared to PBS-treated EAE mice. No significant difference was observed between PBS-treated EAE mice and healthy group regarding the expression of TGF-β mRNA. In ginger (300 mg/kg)-treated EAE group, the expression of TGF-β mRNA and its serum levels were significantly higher in comparison to PBS-treated EAE mice (pginger extract modulates the expression of IL-12 and TGF-β in CNS and serum of EAE mice. PMID:28265547

  6. THE SPECTRUM OF INFLAMMATORY DEMYELINATING DISEASES OF THE CENTRAL NERVOUS SYSTEM

    OpenAIRE

    Rama Krishna; Naveen; Vengamma; Mohan; Sridhar

    2016-01-01

    INTRODUCTION Idiopathic inflammatory demyelinating diseases (IIDDs) are rare neurological diseases. Their features differ from region to region. We characterize features of these diseases in Chittor. METHODS We describe 100 patients of IDD from Sri Venkateswara Institute of Medical Sciences, Tirupathi from May 2012 – December 2013. RESULTS 10 patients with multiple sclerosis, 14 with ADEM, 6 NMO, 9 with ATM and 9 ON presented with the mean of 32 years wit...

  7. Epidemiology of autoimmune diseases in Denmark

    DEFF Research Database (Denmark)

    Eaton, William W.; Rose, N.R.; Kalaydijan, A.;

    2007-01-01

    An epidemiologic study of the autoimmune diseases taken together has not been done heretofore. The National Patient Register of Denmark is used to estimate the population prevalence of 31 possible or probable autoimmune diseases. Record linkage is used to estimate 465 pairwise co...... diseases and weak across diseases. These data confirm the importance of the autoimmune diseases as a group and suggest that common etiopathologies exist among them...

  8. The role of microbiome in central nervous system disorders.

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H

    2014-05-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.

  9. Is Alzheimer's Disease Autoimmune Inflammation of the Brain That Can be Treated With Nasal Nonsteroidal Anti-Inflammatory Drugs?

    Science.gov (United States)

    Lehrer, Steven; Rheinstein, Peter H

    2015-05-01

    The Alzheimer's Association recently reported that a woman's estimated lifetime risk of developing Alzheimer's at age 65 is 1 in 6, compared to nearly 1 in 11 for a man (ie, female to male ratio 1.8). Based on female to male ratio, Alzheimer's disease could well be an autoimmune disorder. Like Alzheimer's, multiple sclerosis, an autoimmune inflammation of the central nervous system, has a female to male ratio of 2.3. Also based on female to male ratio, Alzheimer's resembles the autoimmune inflammatory disease rheumatoid arthritis, which has a female to male ratio of 2.7. The reasons for the female preponderance in autoimmune disease are unclear, but nonsteroidal anti-inflammatory drugs (NSAIDs) are widely and successfully employed to treat autoimmune anti-inflammatory disease and dramatically relieve symptoms. Moreover, oral NSAIDs consistently reduce the risk of Alzheimer's disease, although they have been totally ineffective as a treatment in multiple failed clinical trials. A basis for this failure might well be that the brain dose after oral administration is too small and not sufficiently early in the pathogenesis of the disorder. But NSAID brain dose could be significantly increased by delivering the NSAIDs intranasally.

  10. Primary Angiitis of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Mojdeh Ghabaee

    2012-03-01

    Full Text Available Primary angiitis of the central nervous system (PACNS is an idiopathic disorder (vasculitis restricted to the central nervous system (CNS. It often presents with focal neurological deficits suggesting stroke or a combination of confusion and headache. We herein report three cases with various combinations of fever, partial seizure, encephalopathy, paresis, headache and ataxia. One of them was initially treated as herpes simplex meningoencephalitis, but further investigations revealed primary angiitis. Primary angiitis of the CNS has protean manifestations and should always be considered in patients suspicious to have CNS infection or stroke, particularly who does not respond to the routine treatments. Clinical data, exclusion of differential diagnoses and typical angiography seem to be enough to justify the diagnosis in the majority of cases.

  11. [Immunological Techniques that Support the Diagnosis of the Autoimmune Diseases].

    Science.gov (United States)

    Hernández Ramírez, Diego F; Cabiedes, Javier

    2010-01-01

    During the past few years technological advance have been allowed the developing of techniques that help to the diagnosis of multiple diseases. In the case of the autoimmune diseases, immunological techniques are helpful since they allow the detection of multiple autoantibodies at the same time with small volumes of sample. Together with the development of the new techniques, sensitivity and specificity in the detection of the antibodies specificities' also have been increased, in such a way that the clinicians can count with tests that allow them to make early diagnoses with greater certainty and also to follow the course of the disease based on the variation of the antibodies presents in the patient's samples. It is important to emphasize that the new techniques of laboratory that are used for the support of the diagnosis of autoimmune diseases, no longer are exclusive for research laboratories but by their facility of standardization, quality control and reproducibility they can be used in clinical laboratory of medium and small sizes. In the present paper we describe those techniques with greater application in the clinical laboratory of autoimmune diseases.

  12. [The role of gender in the pathogenesis and development of autoimmune diseases].

    Science.gov (United States)

    Tomczyńska, Małgorzata; Salata, Ireneusz; Saluk, Joanna

    2016-09-29

    Autoimmune diseases occur with greater frequency in women than in men, suggesting that the mechanism of pathogenesis is conditioned by gender. So far not defined clearly factors responsible for the development and course of these diseases depending on sex. However, it was found there is a clear sexual dimorphism of the immune system, which may determine the process of autoimmunity. The causes of the increased incidence of women in autoimmune diseases are attributed to the action of the hormones estrogen, which can promote the process of autoimmunity and enhance the clinical symptoms of the disease. As shown sex hormones have immunomodulatory activities on dendritic cells, macrophages, neutrophils, B and T cells. In the both situation the response to strange antigens and mechanism of autoimmunity sex hormones have been shown to play contributory roles in process of cytokine production, the expression of cytokine receptors and response of effector cells. According to recent research, the development of autoimmune diseases is determined by genetic factors. Changes in the autosomal genes X and Y chromosomes play an important role in the progression of autoimmune processes, especially that the X chromosome has genes responsible for the regulation of the immune system.

  13. The epidemiologic evidence linking autoimmune diseases and psychosis.

    Science.gov (United States)

    Benros, Michael E; Eaton, William W; Mortensen, Preben B

    2014-02-15

    This review summarizes the epidemiologic evidence linking autoimmune diseases and psychosis. The associations between autoimmune diseases and psychosis have been studied for more than a half century, but research has intensified within the last decades, since psychosis has been associated with genetic markers of the immune system and with excess autoreactivity and other immune alterations. A range of psychiatric disorders, including psychosis, have been observed to occur more frequently in some autoimmune diseases, such as systemic lupus erythematosus and multiple sclerosis. Many autoimmune diseases involve multiple organs and general dysfunction of the immune system, which could affect the brain and induce psychiatric symptoms. Most studies have been cross-sectional, observing an increased prevalence of a broad number of autoimmune diseases in people with psychotic disorders. Furthermore, there is some evidence of associations of psychosis with a family history of autoimmune disorders and vice versa. Additionally, several autoimmune diseases, individually and in aggregate, have been identified as raising the risk for psychotic disorders in longitudinal studies. The associations have been suspected to be caused by inflammation or brain-reactive antibodies associated with the autoimmune diseases. However, the associations could also be caused by shared genetic factors or common etiologic components such as infections. Infections can induce the development of autoimmune diseases and autoantibodies, possibly affecting the brain. Autoimmune diseases and brain-reactive antibodies should be considered by clinicians in the treatment of individuals with psychotic symptoms, and even if the association is not causal, treatment would probably still improve quality of life and survival.

  14. The use of stem cells for the treatment of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    S.B. Rosa

    2007-12-01

    Full Text Available Autoimmune diseases constitute a heterogeneous group of conditions commonly treated with anti-inflammatory, immunosuppressant and immunomodulating drugs, with satisfactory results in most cases. Nevertheless, some patients become resistant to conventional therapy. The use of high doses of drugs in such cases results in the need for bone marrow reconstitution, a situation which has stimulated research into the use of hematopoietic stem cells in autoimmune disease therapy. Stem cell transplantation in such diseases aims to destroy the self-reacting immune cells and produce a new functional immune system, as well as substitute cells for tissue damaged in the course of the disease. Significant results, such as the reestablishment of tolerance and a decrease in the recurrence of autoimmune disease, have been reported following stem cell transplantation in patients with autoimmune disease in Brazil and throughout the world. These results suggest that stem cell transplantation has the potential to become an important therapeutic approach to the treatment of various autoimmune diseases including rheumatoid arthritis, juvenile idiopathic arthritis, systemic lupus erythematosus, multiple sclerosis, systemic sclerosis, Crohn's disease, autoimmune blood cytopenias, and type I diabetes mellitus.

  15. Association between autoimmune pancreatitis and systemic autoimmune diseases

    Institute of Scientific and Technical Information of China (English)

    Viktória Terzin; Imre F(o)ldesi; László Kovács; Gyula Pokorny; Tibor Wittmann; László Czakó

    2012-01-01

    AIM:To investigate the association between autoimmune pancreatitis (AIP) and systemic autoimmune diseases (SAIDs) by measurement of serum immunoglobulin G4 (IgG4).METHODS:The serum level of IgG4 was measured in 61 patients with SAIDs of different types who had not yet participated in glucocorticosteroid treatment.Patients with an elevated IgG4 level were examined by abdominal ultrasonography (US) and,in some cases,by computer tomography (CT).RESULTS:Elevated serum IgG4 levels (919 ± 996 mg/L) were detected in 17 (28%) of the 61 SAID patients.10 patients had Sj(o)gren's syndrome (SS) (IgG4:590 ±232 mg/L),2 of them in association with Hashimoto's thyroiditis,and 7 patients (IgG4:1388 ± 985.5 mg/L)had systemic lupus erythematosus (SLE).The IgG4 level in the SLE patients and that in patients with SS were not significantly different from that in AIP patients (783 ± 522 mg/L).Abdominal US and CT did not reveal any characteristic features of AIP among the SAID patients with an elevated IgG4 level.CONCLUSION:The serum IgG4 level may be elevated in SAIDs without the presence of AIP.The determination of serum IgG4 does not seem to be suitable for the differentiation between IgG4-related diseases and SAIDs.

  16. The role of complement in autoimmune renal disease

    NARCIS (Netherlands)

    Seelen, M. A.; Daha, M. R.

    2006-01-01

    The predominance of renal involvement in autoimmune diseases can most likely be assigned to the specialised function of the kidneys filtrating over 120 ml plasma per minute. Complement activation by autoantibodies directed against planted antigens or antigens already present in renal tissue in the s

  17. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    Science.gov (United States)

    ... Sheets Vasculitis Syndromes of the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump ... flow of blood. How does vasculitis affect the nervous system? Vasculitis can cause problems in any organ system, ...

  18. Serum Resistin Level and Progression of Atherosclerosis during Glucocorticoid Therapy for Systemic Autoimmune Diseases.

    Science.gov (United States)

    Tanaka, Nahoko; Masuoka, Shotaro; Kusunoki, Natsuko; Nanki, Toshihiro; Kawai, Shinichi

    2016-09-16

    Adipokines are important regulators of several processes, including inflammation and atherosclerosis. In patients with systemic autoimmune diseases, atherosclerosis is accelerated with higher cardiovascular morbidity and mortality. We prospectively investigated the association of adipokines and glucocorticoid therapy with progression of premature atherosclerosis in 38 patients starting glucocorticoid therapy for systemic autoimmune diseases. To detect premature atherosclerosis, carotid ultrasonography was performed at initiation of glucocorticoid therapy and after a mean three-year follow-up period. The ankle-brachial pressure index and cardio-ankle vascular index (CAVI) were measured. Serum adipokine levels were determined with enzyme-linked immunosorbent assay kits. Twenty-three patients (60.5%) had carotid artery plaque at baseline. The carotid artery intima-media thickness (IMT) increased significantly during follow-up. Glucocorticoids reduced the serum resistin level, while increasing serum leptin and high molecular weight-adiponectin. There was slower progression of atherosclerosis (carotid IMT and CAVI) at follow-up in patients with greater reduction of serum resistin and with higher cumulative prednisolone dose. In conclusion, progression of premature atherosclerosis occurred at an early stage of systemic autoimmune diseases before initiation of glucocorticoid therapy. Since resistin, an inflammation and atherosclerosis related adipokine, is reduced by glucocorticoids, glucocortidoid therapy may not accelerate atherosclerosis in patients with systemic autoimmune diseases.

  19. Autoimmune thyroid disease and other non-endocrine autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Todorović-Đilas Ljiljana

    2011-01-01

    Full Text Available Introduction, Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. Autoimmune thyroid disease and other organ specific non-endocrine autoimmune diseases. This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. Autoimmune thyroid disease and other organ non-specific non-endocrine autoimmune diseases. Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Conclusions. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Other­wise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  20. Immunotherapies for Neurological Manifestations in the Context of Systemic Autoimmunity.

    Science.gov (United States)

    Kampylafka, Eleni I; Alexopoulos, Harry; Dalakas, Marinos C; Tzioufas, Athanasios G

    2016-01-01

    Neurological involvement is relatively common in the majority of systemic autoimmune diseases and may lead to severe morbidity and mortality, if not promptly treated. Treatment options vary greatly, depending on the underlying systemic pathophysiology and the associated neurological symptoms. Selecting the appropriate therapeutic scheme is further complicated by the lack of definite therapeutic guidelines, the necessity to differentiate primary neurological syndromes from those related to the underlying systemic disease, and to sort out adverse neurological manifestations caused by immunosuppressants or the biological agents used to treat the primary disease. Immunotherapy is a sine qua non for treating most, if not all, neurological conditions presenting in the context of systemic autoimmunity. Specific agents include classical immune modulators such as corticosteroids, cyclophosphamide, intravenous immunoglobulin, and plasma exchange, as well as numerous biological therapies, for example anti-tumor necrosis factor agents and monoclonal antibodies that target various immune pathways such as B cells, cytokines, and co-stimulatory molecules. However, experience regarding the use of these agents in neurological complications of systemic diseases is mainly empirical or based on small uncontrolled studies and case series. The aim of this review is to present the state-of-the-art therapies applied in various neurological manifestations encountered in the context of systemic autoimmune diseases; evaluate all treatment options on the basis of existing guidelines; and compliment these data with our personal experience derived from a large number of patients.

  1. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  2. High prevalence of systemic autoimmune diseases in patients with Meniere's disease.

    Directory of Open Access Journals (Sweden)

    Irene Gazquez

    Full Text Available BACKGROUND: Autoimmunity appears to be associated with the pathophysiology of Meniere's disease (MD, an inner ear disorder characterized by episodes of vertigo associated with hearing loss and tinnitus. However, the prevalence of autoimmune diseases (AD in patients with MD has not been studied in individuals with uni or bilateral sensorineural hearing loss (SNHL. METHODS AND FINDINGS: We estimated the prevalence of AD in 690 outpatients with MD with uni or bilateral SNHL from otoneurology clinics at six tertiary referral hospitals by using clinica criteria and an immune panel (lymphocyte populations, antinuclear antibodies, C3, C4 and proinflammatory cytokines TNFα, INFγ. The observed prevalence of rheumatoid arthritis (RA, systemic lupus erythematosus (SLE and ankylosing spondylitis (AS was higher than expected for the general population (1.39 for RA, 0.87 for SLE and 0.70 for AS, respectively. Systemic AD were more frequently observed in patients with MD and diagnostic criteria for migraine than cases with MD and tension-type headache (p = 0.007. There were clinical differences between patients with uni or bilateral SNHL, but no differences were found in the immune profile. Multiple linear regression showed that changes in lymphocytes subpopulations were associated with hearing loss and persistence of vertigo, suggesting a role for the immune response in MD. CONCLUSIONS: Despite some limitations, MD displays an elevated prevalence of systemic AD such as RA, SLE and AS. This finding, which suggests an autoimmune background in a subset of patients with MD, has important implications for the treatment of MD.

  3. Sex-specific environmental influences on the development of autoimmune diseases.

    Science.gov (United States)

    Tiniakou, Eleni; Costenbader, Karen H; Kriegel, Martin A

    2013-11-01

    Sex differences in autoimmune diseases are evolutionarily tied to the fact that the female immune system is confronted with intense alterations during menstrual cycles, pregnancy and childbirth. These events may be associated with breaches in the mucosal epithelial layers that are shielding us from environmental factors. Associations between environmental agents and autoimmune diseases have been described extensively in prior studies. Little evidence, however, exists for sex-specific environmental effects on autoimmune diseases. In this review, we summarize studies involving this often-neglected aspect. We give examples of environmental factors that may influence the sex bias in autoimmunity. We conclude that most studies do not give insight into sex-specific environmental effects due to the influence of gender-selective social, occupational or other exposures. Prospective studies are needed in order to determine true sex-biased environmental influences. Finally, humanized murine models might aid in better understanding the mechanisms involved in sex-specific environmental effects on autoimmune diseases.

  4. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  5. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    Science.gov (United States)

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  6. Vitamin D in systemic and organ-specific autoimmune diseases.

    Science.gov (United States)

    Agmon-Levin, Nancy; Theodor, Emanuel; Segal, Ramit Maoz; Shoenfeld, Yehuda

    2013-10-01

    Lately, vitamin D has been linked with metabolic and immunological processes, which established its role as an essential component of human health preservation. Vitamin D has been defined as natural immune modulators, and upon activation of its receptors (VDRs), it regulates calcium metabolism, cellular growth, proliferation and apoptosis, and other immunological functions. Epidemiological data underline a strong correlation between poor vitamin D status and higher risk for chronic inflammatory illnesses of various etiologies, including autoimmune diseases. Epidemiological, genetic, and basic studies indicated a potential role of vitamin D in the pathogenesis of certain systemic and organ-specific autoimmune diseases. These studies demonstrate correlation between low vitamin D and prevalence of diseases. In addition, VDRs' polymorphisms observed in some of these autoimmune diseases may further support a plausible pathogenic link. Notably, for some autoimmune disease, no correlation with vitamin D levels could be confirmed. Thus, in the current review we present the body of evidence regarding the plausible roles of vitamin D and VDR's polymorphism in the pathogenesis of autoimmunity. We summarize the data regarding systemic (i.e., systemic lupus erythematosus, rheumatoid arthritis, etc.) and organ-specific (i.e., multiple sclerosis, diabetes mellitus, primary biliary cirrhosis, etc.) autoimmune diseases, in which low level of vitamin D was found comparing to healthy subjects. In addition, we discuss the correlations between vitamin D levels and clinical manifestations and/or activity of diseases. In this context, we address the rational for vitamin D supplementation in patients suffering from autoimmune diseases. Further studies addressing the mechanisms by which vitamin D affects autoimmunity and the proper supplementation required are needed.

  7. The Adverse Effects of Air Pollution on the Nervous System

    OpenAIRE

    Sermin Genc; Zeynep Zadeoglulari; Fuss, Stefan H.; Kursad Genc

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer’s disease, Parkinson’s dise...

  8. [Various aspects of IL-1 biological activity. II. IL-1 beta in diseases and the Central Nervous System].

    Science.gov (United States)

    Wieczorek, Marek

    2009-01-01

    Precise understanding of the mechanisms of reciprocal relations between the nervous and the immune systems, has been the subject of numerous studies for the recent two decades. These mechanisms are significant, particularly at the stage of early response to bacterial, parasite, or viral infections. They are also essential from the medical point of view, as they may help in the development of the new methods of treatment of infectious diseases, and also may provide better methods to neutralize possible side effects of the therapy. As it is commonly understood, both forms of IL-1 (alpha and beta), play an important role as a signaling molecules in these mechanisms. Regardless of the route of administration, they cause to the activation of the brain neurotransmitters, and the hypothalamo-pituitary-adrenal-axis (HPA). The HPA response induced by activity of the immune system is a normal, physiological phenomenon with essential meaning. It gives the negative feedback where glucocorticoids, released from the adrenal cortex, inhibit activity of the immune system, and by this reduce the probability of the over-stimulation of this system and its self-aggression. Therefore, precise recognition of the mechanism which is the indicator of influence of cytokines on the brain and also leads to initiate that response has a significant scientific and practical meaning. Also, the two mechanisms are probably the most important, and under appropriate conditions could complement each other. These are enzymatic and neural ways by which immune system influences the brain. The former predicts, that Il-1 influences the tissue, stimulating them to the synthesis, via the cyclooxygenases (COX) activation, and release molecules such as prostaglandines (especially PGE2), which have the ability to penetrate the brain barrier. The latter assumes that IL-1, directly or indirectly, can influence the peripheral nerves (the most important is probably the vagus nerve), which afferent sensory endings

  9. Amplification of autoimmune disease by infection

    OpenAIRE

    Posnett, David N; Yarilin, Dmitry

    2005-01-01

    Reports of infection with certain chronic persistent microbes (herpesviruses or Chlamydiae) in human autoimmune diseases are consistent with the hypothesis that these microbes are reactivated in the setting of immunodeficiency and often target the site of autoimmune inflammation. New experimental animal models demonstrate the principle. A herpesvirus or Chlamydia species can be used to infect mice with induced transient autoimmune diseases. This results in increased disease severity and even ...

  10. Microglia: Architects of the Developing Nervous System.

    Science.gov (United States)

    Frost, Jeffrey L; Schafer, Dorothy P

    2016-08-01

    Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.

  11. Pathogenic role of platelets in rheumatoid arthritis and systemic autoimmune diseases

    Science.gov (United States)

    Harifi, Ghita; Sibilia, Jean

    2016-01-01

    Well-recognized for their role in vascular homoeostasis, platelets may play a major role in inflammation and immunomodulation. Substantial data are emerging on the pathogenic involvement of platelets in inflammatory arthritis and autoimmune diseases, indicating the existence of crosstalk between the coagulation and inflammation system. Upon activation, platelets release pro-inflammatory platelets microparticles, which interact with leucocytes leading to joint and systemic inflammation in rheumatoid arthritis. Platelets activation by immune complexes activate dendritic cells promoting the secretion of interferon alpha, which has a key role in the development of systemic lupus erythematous. In this review, we discuss the current data on the role of platelets in the pathophysiology of inflammatory arthritis and various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. PMID:27052277

  12. Insights into IL-37, the role in autoimmune diseases.

    Science.gov (United States)

    Xu, Wang-Dong; Zhao, Yi; Liu, Yi

    2015-12-01

    Autoimmune diseases are characterized by the impaired function and the destruction of tissues that are caused by an immune response in which aberrant antibodies are generated and attack the body's own cells and tissues. Interleukin (IL) -37, a new member of the IL-1 family, broadly reduces innate inflammation as well as acquired immune responses. Recently, studies have shown that expression of IL-37 was abnormal in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), ankylosing spondylitis (AS), psoriasis, Graves' disease (GD). In addition, functional analysis indicated that IL-37 is negatively involved in the development and pathogenesis of these autoimmune disorders. The strong association of this cytokine with autoimmune diseases promotes us to systematically review what had been published recently on the crucial nature of IL-37 in relation to autoimmune diseases gaining attention for its regulatory capability in these autoimmune disorders.

  13. Congenital tumors of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  14. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    Science.gov (United States)

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  15. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    /microglial reactivity was evident in demyelinating lesions in spinal cord, but T cells were not detected during chronic disease. The participation of TNF-alpha in the demyelinating process is thus more probably due to the perpetuation of macrophage/microglial activation than to direct cytotoxicity of myelin...

  16. Pathogenic role of platelets in rheumatoid arthritis and systemic autoimmune diseases

    OpenAIRE

    Harifi, Ghita; SIBILIA, JEAN

    2016-01-01

    Well-recognized for their role in vascular homoeostasis, platelets may play a major role in inflammation and immunomodulation. Substantial data are emerging on the pathogenic involvement of platelets in inflammatory arthritis and autoimmune diseases, indicating the existence of crosstalk between the coagulation and inflammation system. Upon activation, platelets release pro-inflammatory platelets microparticles, which interact with leucocytes leading to joint and systemic inflammation in rheu...

  17. The role of microRNAs in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Chen, Ji-Qing; Papp, Gábor; Szodoray, Péter; Zeher, Margit

    2016-12-01

    MicroRNAs (miRNAs) are single-stranded, endogenous non-coding small RNAs, ranging from 18 to 25 nucleotides in length. Growing evidence suggests that miRNAs are essential in regulating gene expression, cell development, differentiation and function. Autoimmune diseases are a family of chronic systemic inflammatory diseases. Recent findings on miRNA expression profiles have been suggesting their role as biomarkers in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. In this review, we summarize the characteristics of miRNAs and their functional role in the immune system and autoimmune diseases including systemic lupus erythematosus, primary Sjögren's syndrome, rheumatoid arthritis, systemic sclerosis, multiple sclerosis and psoriasis; moreover, we depict the advantages of miRNAs in modern diagnostics.

  18. The Epidemiologic Evidence Linking Autoimmune Diseases and Psychosis

    DEFF Research Database (Denmark)

    Benros, Michael E; Eaton, William W; Mortensen, Preben B

    2014-01-01

    This review summarizes the epidemiologic evidence linking autoimmune diseases and psychosis. The associations between autoimmune diseases and psychosis have been studied for more than a half century, but research has intensified within the last decades, since psychosis has been associated...... with genetic markers of the immune system and with excess autoreactivity and other immune alterations. A range of psychiatric disorders, including psychosis, have been observed to occur more frequently in some autoimmune diseases, such as systemic lupus erythematosus and multiple sclerosis. Many autoimmune......, there is some evidence of associations of psychosis with a family history of autoimmune disorders and vice versa. Additionally, several autoimmune diseases, individually and in aggregate, have been identified as raising the risk for psychotic disorders in longitudinal studies. The associations have been...

  19. Beta-endorphin and the immune system--possible role in autoimmune diseases

    DEFF Research Database (Denmark)

    Mørch, H; Pedersen, B K

    1995-01-01

    The immune system and the neuroendocrine system are closely interconnected having such means of bidirectional communication and regulation. In this review, a hypothesis is put forward regarding the possible role of beta-endorphins in the pathogenesis of autoimmune diseases: It is suggested...... that the increased cytokine production in immunoinflammatory disorders induces production of beta-endorphins from the pituitary and the lymphocytes; the enhanced level of beta-endorphin causes inhibition of human T helper cell function, which potentially down-regulate the antibody production. Also the beta-endorphin......-induced enhancement of the natural killer cell activity may suppress the B cell function. In addition, beta-endorphin also exerts a direct inhibitory effect on the antibody production. Thus, in autoimmune disorders the enhanced cytokine level may via stimulation of the production of beta-endorphins exert a negative...

  20. Adenocarcinoma of lung masquerading as systemic auto-immune disease.

    Science.gov (United States)

    Naha, Kushal; Thakare, Sayali; Vivek, G; Prabhu, Mukhyaprana

    2012-06-14

    A 40-year-old previously healthy male presented with acute onset painless dimness of vision in both eyes since the past week and low-grade fever, anorexia and weight loss for the past 1 month. He had been evaluated at a local hospital and diagnosed to have a posterior cerebral artery territory infarct on the left side on the strength of cranial CT. Shortly after receiving antiplatelets and warfarin he had developed severe coagulopathy as evidenced by haematemesis, epistaxis and haematuria. Preliminary investigation revealed prolonged clotting parameters, renal failure and anaemia. Cerebral MRI showed multiple areas of cortical haemorrhage. In the course of his hospital stay, he developed further stigmata of auto-immunity including Coomb's positive haemolytic anaemia, recurrent venous thromboses and a palpable purpuric truncal rash. He was eventually diagnosed to have an adenocarcinoma of the lung, and was subsequently referred to an oncologist for further therapy.

  1. [The marker of discogenic diseases of the nervous system in the cerebrospinal fluid].

    Science.gov (United States)

    Shatokhina, S N; Kuznetsova, V S; Shabalin, V N

    2011-01-01

    Using a novel diagnostic technology that allows to investigate the structure of a biological fluid formed during its phase transition into a dried film, we revealed a cause of mistaken results of protein concentrations in the cerebrospinal fluid of patients with discogenic radiculitis. The traditional laboratory study does not reveal the elevated content of protein in patients with discogenic radiculitis and hernia of invertebral discs due to its more active binding with salts with the following sedimentation during centrifugation. It can be explained by the involvement of salt crystals in the formation of the inert organic-mineral aggregate with protein molecules which structure was changed by dystrophy, ischemia, hypoxia, mechanic damage, tumor process. The aggregate is characterized by abnormally tight links. This phenomenon is known as biomineralization, the universal mechanism preventing the organism from toxic effects of products of degraded tissues.

  2. Immunogenicity and safety of the human papillomavirus vaccine in patients with autoimmune diseases: A systematic review.

    Science.gov (United States)

    Pellegrino, Paolo; Radice, Sonia; Clementi, Emilio

    2015-07-09

    Whereas safety and efficacy of HPV vaccines in healthy women have been shown in several randomised controlled clinical trials and in post marketing analyses, only few data exist in patients affected by autoimmune diseases. These issues are significant as autoimmune conditions are recognised as a risk factor for the persistence of HPV infection. Herein we review and systematise the existing literature to assess immunogenicity and safety of HPV vaccination in patients with autoimmune diseases, including systemic lupus erythematosus and juvenile idiopathic arthritis. The results of our literature revision suggest that the HPV vaccines are efficacious and safe in most of the patients affected by autoimmune diseases. Yet, some points of concern remain to be tackled, including the effects of concomitant therapies, the risk of disease exacerbation and the cost-effectiveness of such immunisation programmes in these populations.

  3. Bistability in autoimmune diseases

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Mosekilde, Erik; Lund, Ole

    2011-01-01

    Autoimmune diseases damage host tissue, which, in turn, may trigger a stronger immune response. Systems characterized by such positive feedback loops can display co-existing stable steady states. In a mathematical model of autoimmune disease, one steady state may correspond to the healthy state...

  4. Directional Spread of Alphaherpesviruses in the Nervous System

    Directory of Open Access Journals (Sweden)

    Lynn W. Enquist

    2013-02-01

    Full Text Available Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS, where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores commonly associated with herpes simplex virus (HSV and herpes zoster (shingles associated with varicella zoster virus (VZV. Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS. Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.

  5. Directional spread of alphaherpesviruses in the nervous system.

    Science.gov (United States)

    Kramer, Tal; Enquist, Lynn W

    2013-02-11

    Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.

  6. Cultured cells of the nervous system, including human neurones, in the study of the neuro-degenerative disorder, Alzheimer's disease: an overview.

    Science.gov (United States)

    De Boni, U

    1985-01-01

    Human nervous-system cells in culture are a suitable model for the study of the degenerative changes associated with Alzheimer's disease. Alzheimer-diseased brain contains a factor which induces the formation of paired helical filaments (PHF) in cultured cells, similar to that seen in Alzheimer's disease. The excitotoxic amino acids, glutamate and aspartate, induce similar PHE formation in cultured cells. The neurotoxic element aluminium is present in high concentrations in the brain in several human neurological disorders, including Alzheimer's disease. In cultured-cell systems, aluminium interacts with acidic nuclear proteins, decreases steroid binding, produces a form of neurofibrillary degeneration and alters nucleoside metabolism.

  7. [Medicinal cannabis for diseases of the nervous system: no convincing evidence of effectiveness].

    Science.gov (United States)

    Killestein, J; Bet, P M; van Loenen, A C; Polman, C H

    2004-11-27

    --In 1996, the Netherlands Health Council issued a negative recommendation regarding the use of medication on the basis of cannabis (marihuana). However, interest in medicinal cannabis has certainly not waned since. --The neurological diseases for which cannabis could presently be used therapeutically are: multiple sclerosis, chronic (neuropathic) pain and the syndrome of Gilles de la Tourette. --Since September 2003, the Dutch Ministry of Health, Welfare and Sport delivers medicinal cannabis to Dutch pharmacies, so that now for the first time, medicinal cannabis can be given to patients on a prescription basis within the framework of the Opium Law. The result of this is that doctors and patients now assume that this is a medication for which the efficacy and safety have been established. --The question arises whether new scientific data have become available since 1996 that provide scientific support for the current Governmental policy. --In a recent clinical trial that has aroused much discussion, patients with multiple sclerosis and problematic spasticity were treated with oral cannabis or a placebo. There was no significant effect of treatment on the primary outcome measure, i.e. objectively determined spasticity. Nevertheless, it was concluded that the mobility was improved and that the pain was subjectively decreased. --Until now, convincing scientific evidence that cannabinoids are effective in neurological conditions is still lacking. --However, it is also not possible to conclude definitely that cannabinoids are ineffective; still, this is no basis for official stimulation of their use.

  8. Congenital and acquired mitochondrial disorders of the central nervous system

    OpenAIRE

    V. V. Nikitina; A. N. Pravdina

    2014-01-01

    Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liqu...

  9. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology.

  10. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  11. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Science.gov (United States)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  12. Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases

    Science.gov (United States)

    Vieira, Anderson Rodrigues Araújo; de Campos, Tatiana Amabile

    2016-01-01

    It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases. PMID:27635405

  13. Ocular Involvement in Systemic Autoimmune Diseases.

    Science.gov (United States)

    Generali, Elena; Cantarini, Luca; Selmi, Carlo

    2015-12-01

    Eye involvement represents a common finding in patients with systemic autoimmune diseases, particularly rheumatoid arthritis, Sjogren syndrome, seronegative spondyloarthropathy, and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. The eye is a privileged immune site but commensal bacteria are found on the ocular surface. The eye injury may be inflammatory, vascular or infectious, as well as iatrogenic, as in the case of hydroxychloroquine, chloroquine, corticosteroids, and bisphosphonates. Manifestations may affect different components of the eye, with episcleritis involving the episclera, a thin layer of tissue covering the sclera; scleritis being an inflammation of the sclera potentially leading to blindness; keratitis, referring to corneal inflammation frequently associated with scleritis; and uveitis as the inflammation of the uvea, including the iris, ciliary body, and choroid, subdivided into anterior, posterior, or panuveitis. As blindness may result from the eye involvement, clinicians should be aware of the possible manifestations and their management also independent of the ophthalmologist opinion as the therapeutic approach generally points to the underlying diseases. In some cases, the eye involvement may have a diagnostic implication, as for episcleritis in rheumatoid arthritis, or acute anterior uveitis in seronegative spondyloarthritis. Nonetheless, some conditions lack specificity, as in the case of dry eye which affects nearly 30 % of the general population. The aim of this review is to elucidate to non-ophthalmologists the major ocular complications of rheumatic diseases and their specific management and treatment options.

  14. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  15. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  16. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hannah E. Rockwell

    2015-04-01

    Full Text Available Sandhoff disease (SD is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex, resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.

  17. Occupational therapy for patients with chronic diseases: CVA, rheumatoid arthritis and progressive diseases of the central nervous system.

    NARCIS (Netherlands)

    Driessen, M.J.; Dekker, J.; Lankhorst, G.; Zee, J. van der

    1997-01-01

    A substantial proportion of the patients treated by occupational therapists have a chronic disease. The aim of this study was to describe the outlines of occupational therapy treatment for three specific groups of chronic diseases: progressive neurological diseases, cerebrovascular accident and rh

  18. Recurrence of autoimmune liver diseases after livertransplantation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Liver transplantation (LT) is the most effective treatmentmodality for end stage liver disease caused by manyetiologies including autoimmune processes. That said,the need for transplantation for autoimmune hepatitis(AIH) and primary biliary cirrhosis (PBC), but not forprimary sclerosing cholangitis (PSC), has decreasedover the years due to the availability of effective medicaltreatment. Autoimmune liver diseases have superiortransplant outcomes than those of other etiologies. WhileAIH and PBC can recur after LT, recurrence is of limitedclinical significance in most, but not all cases. RecurrentPSC, however, often progresses over years to a stagerequiring re-transplantation. The exact incidence andthe predisposing factors of disease recurrence remaindebated. Better understanding of the pathogenesis andthe risk factors of recurrent autoimmune liver diseasesis required to develop preventive measures. In thisreview, we discuss the current knowledge of incidence,diagnosis, risk factors, clinical course, and treatmentof recurrent autoimmune liver disease (AIH, PBC, PSC)following LT.

  19. The Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases

    Directory of Open Access Journals (Sweden)

    Jennifer R. Kowalski

    2012-01-01

    Full Text Available Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs. The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.

  20. Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination

    OpenAIRE

    Lee, De-Hyung; Geyer, Eva; Flach, Anne-Christine; Jung, Klaus; Gold, Ralf; Flügel, Alexander; Linker, Ralf; Lühder, Fred

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in neuronal and glial development and survival. While neurons and astrocytes are its main cellular source in the central nervous system (CNS), bioactive BDNF is also expressed in immune cells and in lesions of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Previous data revealed that BDNF exerts neuroprotective effects in myelin oligodendrocyte glycoprotein-induced EAE. Using a conditional knock-out...

  1. Central Nervous System Involvement in Whipple Disease

    OpenAIRE

    Compain, Caroline; Sacre, Karim; Puéchal, Xavier; Klein, Isabelle; Vital-Durand, Denis; Houeto, Jean-Luc; De Broucker, Thomas; Raoult, Didier; Papo, Thomas

    2013-01-01

    Abstract Whipple disease (WD) is a rare multisystemic infection with a protean clinical presentation. The central nervous system (CNS) is involved in 3 situations: CNS involvement in classic WD, CNS relapse in previously treated WD, and isolated CNS infection. We retrospectively analyzed clinical features, diagnostic workup, brain imaging, cerebrospinal fluid (CSF) study, treatment, and follow-up data in 18 patients with WD and CNS infection. Ten men and 8 women were included with a median ag...

  2. Interactions between the microbiota, immune and nervous systems in health and disease.

    Science.gov (United States)

    Fung, Thomas C; Olson, Christine A; Hsiao, Elaine Y

    2017-02-01

    The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut-brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota-gut-brain communication during health and neurological disease.

  3. An Atlas of Infectious and Parasitic Diseases of the Central Nervous System. A Cooperative Study of SILAN (Sociedad Iberolatinoamericana de Neurorradiologia).

    Science.gov (United States)

    Gonzalez-Toledo, E; Santos Andrade, C; Da Costa Leite, C; Del Carpio-O'Donovan, R; Fayed, N; Morales, H; Peterson, R; Palacios, E; Previgliano, C H; Rocha, A J; Romero, J M; Rugilo, C; Staut, C C V; Tamer, I; Tavares Lucato, L; Nader, M

    2010-10-01

    Infectious diseases of the central nervous system vary in frequency in different locations in America and Europe. What is common in Brazil can be a sporadic presentation in Europe. Cooperative work gathering experiences from neuroradiologists working in various places can be achieved and will help to identify uncommon cases that can present in our daily practice.

  4. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases?

    Science.gov (United States)

    D'Aurizio, Federica; Villalta, Danilo; Metus, Paolo; Doretto, Paolo; Tozzoli, Renato

    2015-05-01

    1,25-Dihydroxyvitamin D is a steroid hormone derived from vitamin D, playing an important role in maintaining an adequate serum level of calcium and phosphorus. It is now clear that vitamin D exerts an endocrine action on the cells of the immune system, generating anti-inflammatory and immunoregulatory effects. The mechanisms underlying the role of vitamin D in autoimmunity are not completely understood. Lower vitamin D levels have been found in several autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, type 1 diabetes mellitus, multiple sclerosis, inflammatory bowel diseases, autoimmune thyroid diseases (i.e. Hashimoto's thyroiditis and Graves' disease) and autoimmune gastritis. Several genetic studies have demonstrated an association between thyroid autoimmunity susceptibility and gene polymorphisms of vitamin D receptor, vitamin D binding protein, 1-alpha-hydroxylase and 25-hydroxylase. Of note, some papers do not confirm this connection. With regard to the role of vitamin D in autoimmune thyroid diseases, available data remain controversial. Only few reports have analyzed the supposed association between autoimmune thyroid diseases and vitamin D concentration with inconclusive results. In our experience, low serum levels of vitamin D do not correlate either with Hashimoto's thyroiditis or with Graves' disease. The inability to achieve an unambiguous conclusion is in part due to the limitations in study design. In fact, most of the studies are cross-sectional surveys with a small number of subjects. In addition, the heterogeneity of the study population, seasonal variation of blood sampling, inter-method analytical variability of vitamin D assays and different definitions of vitamin D deficiency/insufficiency contribute to contradicting results. Therefore, further randomized, controlled, prospective trials are needed in order to demonstrate the causality of vitD in AITD and consequently the role of vitamin D

  5. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  6. Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease.

    Science.gov (United States)

    Zhang, Qiangye; Wang, Jian; Li, Aiwu; Liu, Hongzhen; Zhang, Wentong; Cui, Xinhai; Wang, Kelai

    2013-04-01

    To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.

  7. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  8. Assistive technology in occupational therapy practice with a child with degenerative disease of the central nervous system

    Directory of Open Access Journals (Sweden)

    Tácia Caroline de Lima Rodrigues

    2015-07-01

    Full Text Available This paper aims to report the effects of the interventions, using the resource of assistive technology, carried out with a child with degenerative disease of the central nervous system at his home. This is a study case, which was conducted in seven meetings, addressing the child and his caregivers during a process of evaluation, preparation of assistive devices, family orientation, and evaluation of the family environment repercussion. The results showed that the child presents significant motor, cognitive, and psychosocial impairments, resulting in difficulties in performing activities of daily living, communication, and play. Adjustments were proposed to facilitate the child’s involvement and alleviate family difficulties on equipment and environments, such as wheelchair, bedroom, bathroom, orthosis, toys and communication. Finally, it was possible to note that the assistive technology resources were used according to the child’s needs and his own reality, and that the domiciliary visits contributed positively to the family’s life because they facilitated the child’s care, despite the limitations faced.

  9. The potential for induction of autoimmune disease by a randomly-mutated self-antigen

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm

    2007-01-01

    The pathology of most autoimmune diseases is well described. However, the exact event that triggers the onset of the inflammatory cascade leading to disease is less certain and most autoimmune diseases are complex idiopathic diseases with no single gene known to be causative. In many cases...

  10. Roles of A20 in autoimmune diseases.

    Science.gov (United States)

    Zhang, Min; Peng, Ling-Long; Wang, Ying; Wang, Jian-Shu; Liu, Jiao; Liu, Meng-Meng; Hu, Jia; Song, Bin; Yang, Hai-Bing

    2016-04-01

    A20 (TNFAIP3), known to inhibit NF-κB function by deubiquitinating-specific NF-κB signaling molecules, has been found in many cell types of the immune system. Recent findings suggest that A20 is essential for the development and functional performance of dendritic cell, B cell, T cell and macrophage. A number of studies further demonstrate that these cells are crucial in the pathogenesis of autoimmune diseases, such as type 1 diabetes, systemic lupus erythematosus, inflammatory bowel disease, ankylosing arthritis, Sjögren's syndrome and rheumatoid arthritis. In this article, we focus on the recent advances on the roles of A20 in autoimmune diseases and discuss the therapeutic significance of these new findings.

  11. Cerebrolysin as a nerve growth factor for treatment of acquired peripheral nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Sherifa Ahmad Hamed

    2011-01-01

    Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.

  12. Porous silicon biosensor for the detection of autoimmune diseases

    Science.gov (United States)

    Jane, Andrew O.; Szili, Endre J.; Reed, Joanne H.; Gordon, Tom P.; Voelcker, Nicolas H.

    2007-12-01

    Advances in porous silicon (pSi) technology have led to the development of new sensitive biosensors. The unique optical properties of pSi renders the material a perfect candidate for optical transducers exploiting photoluminescence or white light interference effects. The ability of biosensors exploiting these transduction mechanisms to quickly and accurately detect biological target molecules affords an alternative to current bioassays such as enzyme-linked immunosorbent assays (ELISAs). Here, we present a pSi biosensor that was developed to detect antibodies against the autoimmune protein La. This protein is associated with autoimmune diseases including rheumatic disorders, systematic lupus erythematosus (SLE) and Sjogren's syndrome (SS). A fast and sensitive detection platform such as the one described here can be applied to the rapid diagnosis of these debilitating autoimmune diseases. The immobilisation of the La protein onto pSi films gave a protein receptor-decorated sensor matrix. A cascade of immunological reactions was then initiated to detect anti-La antibody on the functionalised pSi surface. In the presence of o-phenylenediamine (OPD), horseradish peroxidase (HRP)/H IIO II catalysed the formation of an oxidised radical species that accelerated pSi corrosion. pSi corrosion was detected as a blue-shift in the generated interference pattern, corresponding to a decrease in the effective optical thickness (EOT) of the pSi film. Compared to an ELISA, the pSi biosensor could detect the anti-La antibody at a similar concentration (500 - 125 ng/ml). Furthermore, we found that the experimental process can be significantly shortened resulting in detection of the anti-La antibody in 80 minutes compared to a minimum of 5 hours required for ELISA.

  13. The adverse effects of air pollution on the nervous system.

    Science.gov (United States)

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  14. The Adverse Effects of Air Pollution on the Nervous System

    Directory of Open Access Journals (Sweden)

    Sermin Genc

    2012-01-01

    Full Text Available Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS, including stroke, Alzheimer’s disease, Parkinson’s disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  15. Development of a disease registry for autoimmune bullous diseases: initial analysis of the pemphigus vulgaris subset.

    Science.gov (United States)

    Shah, Amit Aakash; Seiffert-Sinha, Kristina; Sirois, David; Werth, Victoria P; Rengarajan, Badri; Zrnchik, William; Attwood, Kristopher; Sinha, Animesh A

    2015-01-01

    Pemphigus vulgaris (PV) is a rare, potentially life threatening, autoimmune blistering skin disease. The International Pemphigus and Pemphigoid Foundation (IPPF) has recently developed a disease registry with the aim to enhance our understanding of autoimmune bullous diseases with the long-term goal of acquiring information to improve patient care. Patients were recruited to the IPPF disease registry through direct mail, e-mail, advertisements, and articles in the IPPF-quarterly, -website, -Facebook webpage, and IPPF Peer Health Coaches to complete a 38-question survey. We present here the initial analysis of detailed clinical information collected on 393 PV patients. We report previously unrecognized gender differences in terms of lesion location, autoimmune comorbidity, and delay in diagnosis. The IPPF disease registry serves as a useful resource and guide for future clinical investigation.

  16. Possible Implication of Fcγ Receptor-Mediated Trogocytosis in Susceptibility to Systemic Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Sakiko Masuda

    2013-01-01

    Full Text Available Leukocytes can “gnaw away” the plasma membrane of other cells. This phenomenon, called trogocytosis, occurs subsequent to cell-to-cell adhesion. Currently, two mechanisms of trogocytosis, adhesion molecule-mediated trogocytosis and Fcγ receptor-(FcγR- mediated trogocytosis, have been identified. In our earlier study, we established an in vitro model of FcγR-mediated trogocytosis, namely, CD8 translocation model from T cells to neutrophils. By using this model, we demonstrated that the molecules transferred to neutrophils via FcγR-mediated trogocytosis were taken into the cytoplasm immediately. This result suggests that the chance of molecules transferred via FcγR-mediated trogocytosis to play a role on the cell surface could be time-limited. Thus, we consider the physiological role of FcγR-mediated trogocytosis as a means to remove antibodies (Abs that bind with self-molecules rather than to extract molecules from other cells. This concept means that FcγR-mediated trogocytosis can be a defense mechanism to Ab-mediated autoimmune response. Moreover, the activity of FcγR-mediated trogocytosis was revealed to be parallel to the endocytotic activity of neutrophils, which was critically related to the susceptibility to systemic autoimmune diseases. The collective findings suggest that FcγR-mediated trogocytosis could physiologically play a role in removal of Abs bound to self-antigens and prevent autoimmune diseases.

  17. Association between Autoimmune Rheumatic Diseases and the Risk of Dementia

    Directory of Open Access Journals (Sweden)

    Kang Lu

    2014-01-01

    Full Text Available Aim. Autoimmune rheumatic diseases (ARD are characterized by systemic inflammation and may affect multiple organs and cause vascular events such as ischemic stroke and acute myocardial infarction. However, the association between ARD and increased risk of dementia is uncertain. This is a retrospective cohort study to investigate and compare the risk of dementia between patients clinically diagnosed with ARD and non-ARD patients during a 5-year follow-up period. Methods. Data were obtained from the Longitudinal Health Insurance Database 2000 (LHID2000. We included 1221 patients receiving ambulatory or hospitalization care and 6105 non-ARD patients; patients were matched by sex, age, and the year of index use of health care. Each patient was studied for 5 years to identify the subsequent manifestation of dementia. The data obtained were analyzed by Cox proportional hazard regression. Results. During the 5-year follow-up period, 30 ARD (2.48% and 141 non-ARD patients (2.31% developed dementia. During the 5-year follow-up period, there were no significant differences in the risks of any type of dementia (adjusted hazard ratio (HR, 1.18; 95% CI, 0.79–1.76 in the ARD group after adjusting for demographics and comorbidities. Conclusions. Within the 5-year period, patients with and without ARD were found to have similar risks of developing dementia.

  18. The many faces of Mac-1 in autoimmune disease.

    Science.gov (United States)

    Rosetti, Florencia; Mayadas, Tanya N

    2016-01-01

    Mac-1 (CD11b/CD18) is a β2 integrin classically regarded as a pro-inflammatory molecule because of its ability to promote phagocyte cytotoxic functions and enhance the function of several effector molecules such as FcγR, uPAR, and CD14. Nevertheless, recent reports have revealed that Mac-1 also plays significant immunoregulatory roles, and genetic variants in ITGAM, the gene that encodes CD11b, confer risk for the autoimmune disease systemic lupus erythematosus (SLE). This has renewed interest in the physiological roles of this integrin and raised new questions on how its seemingly opposing biological functions may be regulated. Here, we provide an overview of the CD18 integrins and how their activation may be regulated as this may shed light on how the opposing roles of Mac-1 may be elicited. We then discuss studies that exemplify Mac-1's pro-inflammatory versus regulatory roles particularly in the context of IgG immune complex-mediated inflammation. This includes a detailed examination of molecular mechanisms that could explain the risk-conferring effect of rs1143679, a single nucleotide non-synonymous Mac-1 polymorphism associated with SLE.

  19. Extraversion, Neuroticism and Strength of the Nervous System

    Science.gov (United States)

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  20. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity.

    Science.gov (United States)

    Long, Hai; Yin, Heng; Wang, Ling; Gershwin, M Eric; Lu, Qianjin

    2016-11-01

    One of the major disappointments in human autoimmunity has been the relative failure on genome-wide association studies to provide "smoking genetic guns" that would explain the critical role of genetic susceptibility to loss of tolerance. It is well known that autoimmunity refers to the abnormal state that the dysregulated immune system attacks the healthy cells and tissues due to the loss of immunological tolerance to self-antigens. Its clinical outcomes are generally characterized by the presence of autoreactive immune cells and (or) the development of autoantibodies, leading to various types of autoimmune disorders. The etiology and pathogenesis of autoimmune diseases are highly complex. Both genetic predisposition and environmental factors such as nutrition, infection, and chemicals are implicated in the pathogenic process of autoimmunity, however, how much and by what mechanisms each of these factors contribute to the development of autoimmunity remain unclear. Epigenetics, which refers to potentially heritable changes in gene expression and function that do not involve alterations of the DNA sequence, has provided us with a brand new key to answer these questions. In the recent decades, increasing evidence have demonstrated the roles of epigenetic dysregulation, including DNA methylation, histone modification, and noncoding RNA, in the pathogenesis of autoimmune diseases, especially systemic lupus erythematosus (SLE), which have shed light on a new era for autoimmunity research. Notably, DNA hypomethylation and reactivation of the inactive X chromosome are two epigenetic hallmarks of SLE. We will herein discuss briefly how genetic studies fail to completely elucidate the pathogenesis of autoimmune diseases and present a comprehensive review on landmark epigenetic findings in autoimmune diseases, taking SLE as an extensively studied example. The epigenetics of other autoimmune diseases such as rheumatic arthritis, systemic sclerosis and primary biliary

  1. Overstimulation of the inhibitory nervous system plays a role in the pathogenesis of neuromuscular and neurological diseases: a novel hypothesis.

    Science.gov (United States)

    Tuk, Bert

    2016-01-01

    Based upon a thorough review of published clinical observations regarding the inhibitory system, I hypothesize that this system may play a key role in the pathogenesis of a variety of neuromuscular and neurological diseases. Specifically, excitatory overstimulation, which is commonly reported in neuromuscular and neurological diseases, may be a homeostatic response to inhibitory overstimulation. Involvement of the inhibitory system in disease pathogenesis is highly relevant, given that most approaches currently being developed for treating neuromuscular and neurological diseases focus on reducing excitatory activity rather than reducing inhibitory activity.

  2. Pregnancy and the risk of autoimmune disease: An exploration.

    Science.gov (United States)

    O'Donoghue, Keelin

    2011-07-01

    Fetal microchimerism is the study of persisting fetal cells in the mother years after pregnancy and the purported implications for her health and longevity. Due to the association between pregnancy and autoimmune disease (AID), and the preponderance of these diseases in women, laboratory studies have for years attempted to link microchimeric fetal cells with the onset of AID after pregnancy. This new study gave us the opportunity to examine for the first time if this theory could be proven clinically in a large cohort of women. By examining whether different types of delivery affected the onset of AID, we also aimed to indirectly relate this finding to fetal microchimerism. The results did suggest an association between pregnancy and the risk of subsequent maternal AID, with increased risks noted after caesarean section (CS) and decreased risks after abortion. This is the first epidemiological study on the risk of AID following pregnancy.

  3. Pregnancy and the risk of autoimmune disease: An exploration.

    LENUS (Irish Health Repository)

    2012-01-31

    Fetal microchimerism is the study of persisting fetal cells in the mother years after pregnancy and the purported implications for her health and longevity. Due to the association between pregnancy and autoimmune disease (AID), and the preponderance of these diseases in women, laboratory studies have for years attempted to link microchimeric fetal cells with the onset of AID after pregnancy. This new study gave us the opportunity to examine for the first time if this theory could be proven clinically in a large cohort of women. By examining whether different types of delivery affected the onset of AID, we also aimed to indirectly relate this finding to fetal microchimerism. The results did suggest an association between pregnancy and the risk of subsequent maternal AID, with increased risks noted after caesarean section (CS) and decreased risks after abortion. This is the first epidemiological study on the risk of AID following pregnancy.

  4. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging.

    Science.gov (United States)

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    Decline in cognitive functions that accompany aging in dogs may have a biologic basis, and many of the disorders associated with aging in dogs may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs.

  5. Biological effects of lysophosphatidic acid in the nervous system.

    Science.gov (United States)

    Frisca, Frisca; Sabbadini, Roger A; Goldshmit, Yona; Pébay, Alice

    2012-01-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that regulates a broad range of cellular effects in various cell types, leading to a variety of responses in tissues, including in the nervous system. LPA and its receptors are found in the nervous system, with different cellular and temporal profiles. Through its ability to target most cells of the nervous system and its induction of pleiotropic effects, LPA mediates events during neural development and adulthood. In this review, we summarize the current knowledge on the effects of LPA in the nervous system, during development and adulthood, and in various pathologies of the nervous system. We also explore potential LPA intervention strategies for anti-LPA therapeutics.

  6. Towards a 'systems'-level understanding of the nervous system and its disorders.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-11-01

    It is becoming clear that nervous system development and adult functioning are highly coupled with other physiological systems. Accordingly, neurological and psychiatric disorders are increasingly being associated with a range of systemic comorbidities including, most prominently, impairments in immunological and bioenergetic parameters as well as in the gut microbiome. Here, we discuss various aspects of the dynamic crosstalk between these systems that underlies nervous system development, homeostasis, and plasticity. We believe a better definition of this underappreciated systems physiology will yield important insights into how nervous system diseases with systemic comorbidities arise and potentially identify novel diagnostic and therapeutic strategies.

  7. [Pregnancy in systemic autoimmune diseases: Myths, certainties and doubts].

    Science.gov (United States)

    Danza, Álvaro; Ruiz-Irastorza, Guillermo; Khamashta, Munther

    2016-10-07

    Systemic autoimmune diseases especially affect young women during childbearing age. The aim of this review is to update systemic lupus erythematosus, antiphospholipid syndrome and systemic sclerosis management during pregnancy. These diseases present variable maternal and fetal risks. Studies show that an appropriate disease control and a reasonable remission period prior to pregnancy are associated with satisfactory obstetric outcomes. Antiphospholipid autoantibodies profile, anti-Ro/anti-La antibodies, pulmonary pressure and activity evaluation are crucial to assess the pregnancy risk. Monitoring requires a multidisciplinary team, serial analytic controls and Doppler ultrasound of maternal and fetal circulation. Evaluation of the activity of the disease is essential.

  8. Experimental models of autoimmune inflammatory ocular diseases

    Directory of Open Access Journals (Sweden)

    Fabio Gasparin

    2012-04-01

    Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

  9. How Does Age at Onset Influence the Outcome of Autoimmune Diseases?

    Directory of Open Access Journals (Sweden)

    Manuel J. Amador-Patarroyo

    2012-01-01

    Full Text Available The age at onset refers to the time period at which an individual experiences the first symptoms of a disease. In autoimmune diseases (ADs, these symptoms can be subtle but are very relevant for diagnosis. They can appear during childhood, adulthood or late in life and may vary depending on the age at onset. Variables like mortality and morbidity and the role of genes will be reviewed with a focus on the major autoimmune disorders, namely, systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, multiple sclerosis (MS, type 1 diabetes mellitus (T1D, Sjögren's syndrome, and autoimmune thyroiditis (AITD. Early age at onset is a worst prognostic factor for some ADs (i.e., SLE and T1D, while for others it does not have a significant influence on the course of disease (i.e., SS or no unanimous consensus exists (i.e., RA and MS.

  10. Involvement of dendritic cells in autoimmune diseases in children

    Directory of Open Access Journals (Sweden)

    Reed Ann M

    2007-07-01

    Full Text Available Abstract Dendritic cells (DCs are professional antigen-presenting cells that are specialized in the uptake of antigens and their transport from peripheral tissues to the lymphoid organs. Over the last decades, the properties of DCs have been intensely studied and much knowledge has been gained about the role of DCs in various diseases and health conditions where the immune system is involved, particularly in cancer and autoimmune disorders. Emerging clues in autoimmune diseases, suggest that dendritic cell dysregulation might be involved in the development of various autoimmune disorders in both adults and children. However, studies investigating a possible contribution of DCs in autoimmune diseases in the pediatric population alone are scanty. The purpose of this review is to give a general overview of the current literature on the relevance of dendritic cells in the most common autoimmune conditions of childhood.

  11. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  12. Biomarkers of Alzheimer's Disease: From Central Nervous System to Periphery?

    Directory of Open Access Journals (Sweden)

    Enrico Mossello

    2011-01-01

    Full Text Available Alzheimer's Disease (AD is the most frequent form of dementia and represents one of the main causes of disability among older subjects. Up to now, the diagnosis of AD has been made according to clinical criteria. However, the use of such criteria does not allow an early diagnosis, as pathological alterations may be apparent many years before the clear-cut clinical picture. An early diagnosis is even more valuable to develop new treatments, potentially interfering with the pathogenetic process. During the last decade, several neuroimaging and cerebrospinal fluid (CSF parameters have been introduced to allow an early and accurate detection of AD patients, and, recently, they have been included among research criteria for AD diagnosis. However, their use in clinical practice suffers from limitations both in accuracy and availability. The increasing amount of knowledge about peripheral biomarkers will possibly allow the future identification of reliable and easily available diagnostic tests.

  13. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Picchianti-Diamanti

    2014-03-01

    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  14. The Emerging Functions of Long Noncoding RNA in Immune Cells: Autoimmune Diseases.

    Science.gov (United States)

    Sigdel, Keshav Raj; Cheng, Ao; Wang, Yin; Duan, Lihua; Zhang, YanLin

    2015-01-01

    The long noncoding RNAs (lncRNAs) are RNA transcripts more than 200 nucleotides in length, which do not encode proteins. The lncRNAs are emerging as an important regulator of biological process, such as chromatin remodeling, gene transcription, protein transport, and trafficking through diverse mechanisms. The lncRNAs play crucial role in various multigenetics human diseases including cancers and neurological diseases and currently its role in autoimmune diseases is attracting many researchers. Recent studies have reported that differentiation and activation of immune cells, T cells, B cells, macrophages, and NK cells have correlation with lncRNAs, which have also an essential role in autoimmune diseases such as rheumatoid arthritis and SLE. Therefore, elucidation of the roles of lncRNAs in autoimmunity could be beneficial to understand the pathogenesis of autoimmune diseases. In this review article we attempt to highlight the recent progress regarding lncRNAs studies and summarize its role in autoimmune diseases.

  15. The Emerging Functions of Long Noncoding RNA in Immune Cells: Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Keshav Raj Sigdel

    2015-01-01

    Full Text Available The long noncoding RNAs (lncRNAs are RNA transcripts more than 200 nucleotides in length, which do not encode proteins. The lncRNAs are emerging as an important regulator of biological process, such as chromatin remodeling, gene transcription, protein transport, and trafficking through diverse mechanisms. The lncRNAs play crucial role in various multigenetics human diseases including cancers and neurological diseases and currently its role in autoimmune diseases is attracting many researchers. Recent studies have reported that differentiation and activation of immune cells, T cells, B cells, macrophages, and NK cells have correlation with lncRNAs, which have also an essential role in autoimmune diseases such as rheumatoid arthritis and SLE. Therefore, elucidation of the roles of lncRNAs in autoimmunity could be beneficial to understand the pathogenesis of autoimmune diseases. In this review article we attempt to highlight the recent progress regarding lncRNAs studies and summarize its role in autoimmune diseases.

  16. Involvement of central nervous system in the schistosomiasis

    Directory of Open Access Journals (Sweden)

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  17. A Systematic Literature Review of the Association of Lipoprotein(a and Autoimmune Diseases and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    I. Missala

    2012-01-01

    Full Text Available Objective. To investigate the association of lipoprotein(a and atherosclerosis-related autoimmune diseases, to provide information on possible pathophysiologic mechanisms, and to give recommendations for Lp(a determination and therapeutic options. Methods. We performed a systematic review of English language citations referring to the keywords “Lp(a” AND “autoimmune disease” AND “atherosclerosis,” “Lp(a” AND “immune system” OR “antiphospholipid (Hughes syndrome (APS” OR “rheumatoid arthritis” OR “Sjögren’s syndrome” OR “systemic lupus erythematosus” OR “systemic sclerosis” OR “systemic vasculitis” published between 1991 and 2011 using Medline database. Results. 22 out of 65 found articles were identified as relevant. Lp(a association was highest in rheumatoid arthritis (RA, followed by systemic lupus erythematosus (SLE, moderate in APS and lowest in systemic sclerosis (SSc. There was no association found between Lp(a and systemic vasculitis or Sjögren’s syndrome. Conclusion. Immune reactions are highly relevant in the pathophysiology of atherosclerosis, and patients with specific autoimmune diseases are at high risk for CVD. Elevated Lp(a is an important risk factor for premature atherosclerosis and high Lp(a levels are also associated with autoimmune diseases. Anti-Lp(a-antibodies might be a possible explanation. Therapeutic approaches thus far include niacin, Lp(a-apheresis, farnesoid x-receptor-agonists, and CETP-inhibitors being currently under investigation.

  18. Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system.

    Directory of Open Access Journals (Sweden)

    Tomoko Hayashi

    Full Text Available The Toll-like receptors (TLR have been advocated as attractive therapeutic targets because TLR signaling plays dual roles in initiating adaptive immune responses and perpetuating inflammation. Paradoxically, repeated stimulation of bone marrow mononuclear cells with a synthetic TLR7 ligand 9-benzyl-8-hydroxy-2-(2-methoxyethoxy adenine (called 1V136 leads to subsequent TLR hyporesponsiveness. Further studies on the mechanism of action of this pharmacologic agent demonstrated that the TLR7 ligand treatment depressed dendritic cell activation, but did not directly affect T cell function. To verify this mechanism, we utilized experimental allergic encephalitis (EAE as an in vivo T cell dependent autoimmune model. Drug treated SJL/J mice immunized with proteolipid protein (PLP(139-151 peptide had attenuated disease severity, reduced accumulation of mononuclear cells in the central nervous system (CNS, and limited demyelination, without any apparent systemic toxicity. Splenic T cells from treated mice produced less cytokines upon antigenic rechallenge. In the spinal cords of 1V136-treated EAE mice, the expression of chemoattractants was also reduced, suggesting innate immune cell hyposensitization in the CNS. Indeed, systemic 1V136 did penetrate the CNS. These experiments indicated that repeated doses of a TLR7 ligand may desensitize dendritic cells in lymphoid organs, leading to diminished T cell responses. This treatment strategy might be a new modality to treat T cell mediated autoimmune diseases.

  19. Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Annelies Vanheel

    Full Text Available A more detailed insight into disease mechanisms of multiple sclerosis (MS is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE, a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA. The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4, a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1, involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and

  20. Bullous Skin Diseases: Classical Types of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Jan Damoiseaux

    2013-01-01

    Full Text Available The prototypic bullous skin diseases, pemphigus vulgaris, pemphigus foliaceus, and bullous pemphigoid, are characterized by the blister formation in the skin and/or oral mucosa in combination with circulating and deposited autoantibodies reactive with (hemidesmosomes. Koch’s postulates, adapted for autoimmune diseases, were applied on these skin diseases. It appears that all adapted Koch’s postulates are fulfilled, and, therefore, these bullous skin diseases are to be considered classical autoimmune diseases within the wide and expanding spectrum of autoimmune diseases.

  1. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  2. Application of linear discriminant analysis in performance evaluation of extractable nuclear antigen immunoassay systems in the screening and diagnosis of systemic autoimmune rheumatic diseases.

    Science.gov (United States)

    Pi, David; de Badyn, Monika Hudoba; Nimmo, Mike; White, Rick; Pal, Jason; Wong, Patrick; Phoon, Carmen; O'Connor, Deidre; Pi, Steven; Shojania, Kam

    2012-10-01

    This study applied a linear discriminant analysis model to evaluate the performance of 2 types of commercially available extractable nuclear antigen (ENA) immunoassays for the screening and diagnosis of systemic autoimmune rheumatic diseases (SARDs) in a large tertiary hospital reference laboratory: (1) an enzyme-linked immunosorbent assay (ELISA) and (2) a multiplex bead-based immunoassay (MPBI). The results of the study showed both ENA immunoassays had comparable sensitivity for the detection of SARDs compared with the antinuclear antigen immunofluorescence (ANA-IF) method (ANA-IF: 85.6%, ENA-ELISA: 91.5%, ENA-MPBI: 83.1%, pairwise comparisons with ANA-IF: P > .05). However, both ENA immunoassays offered improved specificity compared with the ANA-IF (ANA-IF: 24.2%; ENA-ELISA: 39.8%; ENA-MPBI: 53.1%; pairwise comparison with ANA-IF: P diseases. Diagnostic performance of the ENA/dsDNA components by the MPBI and ELISA methods did not differ significantly (area under the curve [AUC], 81.0% vs 83.0%, respectively, P > .05), but the key ENA/dsDNA variables contributing to the discriminating power of the assays for the diagnosis of specific SARDs were reagent/method dependent.

  3. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Grzywacz, Agata; Gdula-Argasińska, Joanna; Librowski, Tadeusz; Wiliński, Bogdan; Opoka, Włodzimierz

    2014-01-01

    Zinc, the essential trace element, is known to play multiple biological functions in human organism. This metal is a component of many structural as well as regulatory and catalytic proteins. The precise regulation of zinc homeostasis is essential for central nervous system and for the whole organism. Zinc plays a significant role in the brain development and in the proper brain function at every stage of life. This article is a review of knowledge about the role of zinc in central nervous system (CNS) function. The influence of this biometal on etiopathogenesis, prevention and treatment of selected brain diseases and disorders was discussed. Zinc imbalance can result not only from insufficient dietary intake, but also from impaired activity of zinc transport proteins and zinc dependent regulation of metabolic pathways. It is known that some neurodegenerative processes are connected with zinc dyshomeostasis and it may influence the state of Alzheimer's disease, depression and ageing-connected loss of cognitive function. The exact role of zinc and zinc-binding proteins in CNS pathogenesis processes is being under intensive investigation. The appropriate zinc supplementation in brain diseases may help in the prevention as well as in the proper treatment of several brain dysfunctions.

  4. The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases.

    Science.gov (United States)

    Mao-Draayer, Yang; Sarazin, Jeffrey; Fox, David; Schiopu, Elena

    2017-02-01

    Multiple sclerosis (MS) is a prototype autoimmune disease of the central nervous system (CNS). Currently, there is no drug that provides a cure for MS. To date, all immunotherapeutic drugs target relapsing remitting MS (RR-MS); it remains a daunting medical challenge in MS to develop therapy for secondary progressive MS (SP-MS). Since the approval of the non-selective sphingosine-1-phosphate (S1P) receptor modulator FTY720 (fingolimod [Gilenya®]) for RR-MS in 2010, there have been many emerging studies with various selective S1P receptor modulators in other autoimmune conditions. In this article, we will review how S1P receptor may be a promising therapeutic target for SP-MS and other autoimmune diseases such as psoriasis, polymyositis and lupus.

  5. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    Science.gov (United States)

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  6. The Ubiquitin-Proteasome System and Its Role in Inflammatory and Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Jingsong Wang; Michael A. Maldonado

    2006-01-01

    Protein degradation through the ubiquitin-proteasome system is the major pathway of non-lysosomal proteolysis of intracellular proteins. It plays important roles in a variety of fundamental cellular processes such as regulation of cell cycle progression, division, development and differentiation, apoptosis, cell trafficking, and modulation of the immune and inflammatory responses. The central element of this system is the covalent linkage of ubiquitin to targeted proteins, which are then recognized by the 26S proteasome, an adenosine triphosphate-dependent,multi-catalytic protease. Damaged, oxidized, or misfolded proteins as well as regulatory proteins that control many critical cellular functions are among the targets of this degradation process. Aberration of this system leads to the dysregulation of cellular homeostasis and the development of multiple diseases. In this review, we described the basic biochemistry and molecular biology of the ubiquitin-proteasome system, and its complex role in the development of inflammatory and autoimmune diseases. In addition, therapies and potential therapeutic targets related to the ubiquitin-proteasome system are discussed as well. Cellular & Molecular Immunology. 2006;3(4):255-261.

  7. Autoimmune disease: Conceptual history and contributions of ocular immunology.

    Science.gov (United States)

    Margo, Curtis E; Harman, Lynn E

    2016-01-01

    Medical historians identify the mid-20th century as the time when the scientific and medical communities acknowledged the existence of autoimmune disease. Several conditions including sympathetic ophthalmia and endophthalmitis phacoanaphylactica, however, were proposed as autoimmune disorders much earlier. During the first half of the century, autoimmune disease was viewed as biologically implausible. Paul Ehrlich coined the term horror autotoxicus to emphasize that autoimmunity would contradict nature's aversion to self-injury. The discoveries of allergy and anaphylaxis were the first clues that the immune system was capable of self-harm. A major obstacle to comprehending the pathogenesis of autoimmunity was how the immune system distinguishes foreign from self, a process eventually understood in the context of immune tolerance. Investigators of sympathetic ophthalmia and endophthalmitis phacoanaphylactica were positioned to invalidate horror autotoxicus but lacked sufficiently convincing experimental and clinical evidence to accomplish the task. Seminal studies of chronic thyroiditis and a series of clinical laboratory breakthroughs led to the general acceptance of autoimmune disease in the 1950s. The travails encountered by ophthalmic investigators offer insights into the how medical ideas take shape. We review the contributions of ocular immunology to the conceptual development of autoimmune disease and explore the reasons why the concept caught on slowly.

  8. Natural antisense RNAs are involved in the regulation of CD45 expression in autoimmune diseases.

    Science.gov (United States)

    Rong, J; Yin, J; Su, Z

    2015-03-01

    CD45 is a transmembrane protein tyrosine phosphatase that is specifically expressed in hematopoietic cells and can initiate signal transduction via the dephosphorylation of tyrosine. Alternatively spliced transcript variants of this gene encode distinct isoforms, which indicate different functional states of CD45. Among these variants, CD45RO, which contains neither exon 4, 5, or 6, is over-expressed in lymphocytes in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type I diabetes. The CD45 RO serves as a marker of the immune response activity and lymphocyte development. Previous studies have indicated that exon splicing is generally correlated with local hypermethylated DNA and acetylated histone modification, while autoimmune diseases are commonly associated with global hypomethylation and histone deacetylation in lymphocytes. Thus, the question arises of how exons 4, 5, and 6 of CD45RO are excluded under the status of global DNA hypomethylation and histone deacetylation in these autoimmune diseases. On the basis of the analyses of the context sequence of CD45 and its natural antisense RNA in GenBank, we proposed that the long noncoding RNA encoded by the natural antisense gene of CD45 contributes to the expressional regulation of the CD45RO splicing variant via recruitment of DNA methyltransferase and histone modification modulators specific to the sense gene CD45; thus, it is associated with the over-expression of CD45RO and the functional regulation of lymphocytes in the pathogenic development of autoimmune diseases.

  9. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases.

    Science.gov (United States)

    Deng, Yaxiong; Huang, Xin; Wu, Haijing; Zhao, Ming; Lu, Qianjin; Israeli, Eitan; Dahan, Shani; Blank, Miri; Shoenfeld, Yehuda

    2016-05-01

    Autoimmune diseases refer to a spectrum of diseases characterized by an active immune response against the host, which frequently involves increased autoantibody production. The pathogenesis of autoimmune diseases is multifactorial and the exploitation of novel effective treatment is urgent. Capsaicin is a nutritional factor, the active component of chili peppers, which is responsible for the pungent component of chili pepper. As a stimuli, capsaicin selectively activate transient receptor potential vanilloid subfamily 1(TRPV1) and exert various biological effects. This review discusses the effect of capsaicin through its receptor on the development and modulation of autoimmune diseases, which may shed light upon potential therapies in capsaicin-targeted approaches.

  10. Rapid infusion with rituximab: short term safety in systemic autoimmune diseases

    DEFF Research Database (Denmark)

    Larsen, Janni Lisander; Jacobsen, Soren

    2013-01-01

    To describe the incidence, types and severity of adverse events, related to an accelerated regime of rituximab infusion in patients with various autoimmune diseases. Fifty-four patients with systemic autoimmune disease, to be treated with 1,000 mg of rituximab twice 2 weeks apart, participated. Pre...

  11. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  12. The use of stem cells for the treatment of autoimmune diseases

    OpenAIRE

    Rosa,S.B.; Voltarelli,J.C.; J.A.B. Chies; P. Pranke

    2007-01-01

    Autoimmune diseases constitute a heterogeneous group of conditions commonly treated with anti-inflammatory, immunosuppressant and immunomodulating drugs, with satisfactory results in most cases. Nevertheless, some patients become resistant to conventional therapy. The use of high doses of drugs in such cases results in the need for bone marrow reconstitution, a situation which has stimulated research into the use of hematopoietic stem cells in autoimmune disease therapy. Stem cell transplanta...

  13. Effect of autoimmune diseases on risk and survival in histology-specific lung cancer.

    Science.gov (United States)

    Hemminki, Kari; Liu, Xiangdong; Ji, Jianguang; Sundquist, Jan; Sundquist, Kristina

    2012-12-01

    Patients with autoimmune diseases are at an increased risk of cancer due to underlying dysregulation of the immune system or treatment. Data on cancer incidence, mortality and survival after autoimmune diseases would provide further information on the clinical implications. We systematically analysed data on lung cancer in patients diagnosed with 33 different autoimmune diseases. Standardised incidence ratios (SIRs), standardised mortality ratios (SMRs) and hazard ratios (HRs) were calculated for subsequent incident lung cancers or lung cancer deaths up to 2008 in patients hospitalised for autoimmune disease after 1964. Increased risks of lung cancer were recorded for SIRs after 12 autoimmune diseases, SMRs after 11 autoimmune diseases and HRs after two autoimmune diseases. The highest SIRs and SMRs, respectively, were seen after discoid lupus erythematosus (4.71 and 4.80), polymyosistis/dermatomyositis (4.20 and 4.17), systemic lupus erythematosus (2.47 and 2.69), rheumatic fever (2.07 and 2.07) and systemic sclerosis (2.19 and 1.98). Autoimmune disease did not influence survival overall but some autoimmune diseases appeared to impair survival in small cell carcinoma. All autoimmune diseases that had an SIR >2.0 are known to present with lung manifestations, suggesting that the autoimmune process contributes to lung cancer susceptibility. The data on survival are reassuring that autoimmune diseases do not influence prognosis in lung cancer.

  14. Development-inspired reprogramming of the mammalian central nervous system.

    Science.gov (United States)

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  15. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A;

    1995-01-01

    The potential role of certain important immunoregulatory and effector cytokines in autoimmune neuroinflammation have been studied. We have examined the expression of mRNA, with in situ hybridization, of interferon gamma (IFN-gamma), interleukin 4 (IL-4) and transforming growth factor beta (TGF...

  16. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    Science.gov (United States)

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  17. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  18. Monophyletic Origin of the Metazoan Nervous System: Characterizing

    Science.gov (United States)

    Watkins, Russell; Beckenbach, Andrew

    In the absence of additional cases to be studied, our understanding of the likelihood of intelligent life evolving elsewhere in the universe must be framed within the context of the evolution of intelligence on this planet. Towards this end a valid model of the evolution of animal life, and in particular of the nervous system, is key. Models which describe the development of complexity within the nervous system can be positively misleading if they are not grounded in an accurate model of the true relationships of the animal phyla. If fact the evolution of animal life at its earliest stages, from protists to the sponges, Cnidaria, and Ctenophora and onward to the bilateral animal phyla is poorly characterized. Recently numerous phylogenies of the early animal radiation have been published based upon DNA sequence data, with conflicting and poorly supported results. A polyphyletic origin for the animal nervous system has been implied by the results of several studies, which would lead to the conclusion that some characteristics of the nervous systems of higher and lower animals could be convergent. We show that an equally parsimonious interpretation of the molecular sequence data published thus far is that it reflects rapid speciation events early in animal evolution among the classical ``diploblast'' phyla, as well as accelerated DNA sequence divergence among the higher animals. This could be interpreted as support for a classical phylogeny of the animal kingdom, and thus of a strictly monophyletic origin for the nervous system.

  19. Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii.

    Science.gov (United States)

    Cunningham, Doreen; Casey, Elena Silva

    2014-02-01

    Defining the organization and temporal onset of key steps in neurogenesis in invertebrate deuterostomes is critical to understand the evolution of the bilaterian and deuterostome nervous systems. Although recent studies have revealed the organization of the nervous system in adult hemichordates, little attention has been paid to neurogenesis during embryonic development in this third major phylum of deuterostomes. We examine the early events of neural development in the enteropneust hemichordate Saccoglossus kowalevskii by analyzing the expression of 11 orthologs of key genes associated with neurogenesis in an expansive range of bilaterians. Using in situ hybridization (ISH) and RT-PCR, we follow the course of neural development to track the transition of the early embryonic diffuse nervous system to the more regionalized midline nervous system of the adult. We show that in Saccoglossus, neural progenitor markers are expressed maternally and broadly encircle the developing embryo. An increase in their expression and the onset of pan neural markers, indicate that neural specification occurs in late blastulae - early gastrulae. By mid-gastrulation, punctate expression of markers of differentiating neurons encircling the embryo indicate the presence of immature neurons, and at the end of gastrulation when the embryo begins to elongate, markers of mature neurons are expressed. At this stage, expression of a subset of neuronal markers is concentrated along the trunk ventral and dorsal midlines. These data indicate that the diffuse embryonic nervous system of Saccoglossus is transient and quickly reorganizes before hatching to resemble the adult regionalized, centralized nervous system. This regionalization occurs at a much earlier developmental stage than anticipated indicating that centralization is not linked in S. kowalevskii to a lifestyle change of a swimming larva metamorphosing to a crawling worm-like adult.

  20. Types of neurons in the enteric nervous system.

    Science.gov (United States)

    Furness, J B

    2000-07-01

    This paper, written for the symposium in honour of more than 40 years' contribution to autonomic research by Professor Geoffrey Burnstock, highlights the progress made in understanding the organisation of the enteric nervous system over this time. Forty years ago, the prevailing view was that the neurons within the gut wall were post-ganglionic neurons of parasympathetic pathways. This view was replaced as evidence accrued that the neurons are part of the enteric nervous system and are involved in reflex and integrative activities that can occur even in the absence of neuronal influence from extrinsic sources. Work in Burnstock's laboratory led to the discovery of intrinsic inhibitory neurons with then novel pharmacology of transmission, and precipitated investigation of neuron types in the enteric nervous system. All the types of neurons in the enteric nervous system of the small intestine of the guinea-pig have now been identified in terms of their morphologies, projections, primary neurotransmitters and physiological identification. In this region there are 14 functionally defined neuron types, each with a characteristic combination of morphological, neurochemical and biophysical properties. The nerve circuits underlying effects on motility, blood flow and secretion that are mediated through the enteric nervous system are constructed from these neurons. The circuits for simple motility reflexes are now known, and progress has been made in analysing those involved in local control of blood flow and transmucosal fluid movement in the small intestine.

  1. [Treatment with immunosuppressive and biologic drugs of pregnant women with systemic rheumatic or autoimmune disease].

    Science.gov (United States)

    Alijotas-Reig, Jaume; Esteve-Valverde, Enrique; Ferrer-Oliveras, Raquel

    2016-10-21

    Rheumatic and systemic autoimmune diseases occur in women and, to a lesser degree, men of reproductive age. These disorders have to be clinically nonactive before conception, which is usually only possible after anti-inflammatory and immunosuppressive treatment. We must be alert since 50% of pregnancies are unplanned. Physicians should know the embryo-foetal toxicity of these drugs during pregnancy and lactation. This January 2016-updated review allows us to conclude that the majority of immunosuppressives available -anti-TNF inhibitors included- can be used before and during pregnancy, with the exception of cyclophosphamide, methotrexate, mycophenolate and leflunomide. Lactation is permitted with all drugs except methotrexate, leflunomide, mycophenolate and cyclophosphamide. Although data on abatacept, belimumab, rituximab, tocilizumab and anakinra are scant, preliminary reports agree on their safety during pregnancy and, probably, lactation. Cyclophosphamide and sulfasalazine apart, no negative effects on sperm quality, or embryo-foetal anomalies in men treated with immunosuppressives have been described.

  2. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system.

    Science.gov (United States)

    Verslegers, Mieke; Lemmens, Kim; Van Hove, Inge; Moons, Lieve

    2013-06-01

    It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.

  3. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  4. [Autonomic nervous system as a source of biomarkers in Parkinson's disease].

    Science.gov (United States)

    Pouclet, Hélène; Lebouvier, Thibaud; Flamant, Mathurin; Coron, Emmanuel; Neunlist, Michel; Derkinderen, Pascal; Rouaud, Tiphaine

    2012-07-01

    No validated biomarker is yet available for Parkinson's disease (PD). Clinical PD symptoms include dopa-responsive motor symptoms and dopa-resistant non motor symptoms. Some of the non motor symptoms begin during the premotor stage, like constipation, hyposmia or REM-sleep disorders. Dementia, gait disorders and dysarthria occur in later stages of the disease. PD pathology extends well beyond the substantia nigra. It affects autonomic and non autonomic nuclei in the brainstem and in the medulla, the olfactory bulb and the peripheral autonomic nervous system. Alpha-synuclein aggregates, called Lewy bodies and Lewy neurites, are detectable in these structures at early stages. The study of the enteric nervous system (ENS) displays the Lewy pathology in living patients through the digestive biopsies. Minor salivary glands analysis could be a good marker as well, but this needs confirmation. An anatomopathologic PD biomarker would be interesting at different stages of PD: for the positive diagnosis, to follow the progression and to develop neuroprotective treatments.

  5. Extracellular vesicles for clinical diagnostics of nervous system diseases

    NARCIS (Netherlands)

    Atai, N.

    2014-01-01

    In the last decade there has emerged a new dimension in molecular studies which can be applied to gliomas (brain tumors). Extracellular vesicles (EVs), small structures containing genetic materials, are now known to be produced by glioma cells. These EVs, often many hundreds in number, are released

  6. [Vesalius and the nervous system].

    Science.gov (United States)

    Van Laere, J

    1993-01-01

    Before we comment the subject of this lecture, we attract the reader's attention towards two remarks. We first want to point out that, although Vesalius is rightly considered as "the father of anatomy", in physiological matters--such as e.g. the physiology of the nervous system--he remained a faithful follower of Galen. A second preliminary remark explains why the books Vesalius devoted to the nervous system, namely the fourth and seventh books, as well as a part of the third book, don't belong to the best parts of the Fabrica, when we compare them with his Osteology and his Myology. We should not forget that some technical discoveries such as keeping brain-tissue in alcohol in order to harden it and colouring methods of Weigert, Marchi and Nissl, that made a refined macro- and microscopic examination of the nervous system possible, were only invented in the 19th century. The fourth book considers the peripheral nervous system. According to Vesalius, there are seven pairs of brain-nerves. His first pair corresponds to our Nervous opticus; his second pair concerns our Nervi oculomotorius, trochlearis and abducens; this third pair embraces a great part of our Nervus trigeminus; his fourth pair corresponds to our Nervus maxillaris; his fifth pair includes our Nervi facialis and acusticus; his sixth pair includes our Nervi vagus and accessorius; his seventh pair our Nervi hypoglossus and pharyngeus. Vesalius counts thirty pairs of spinal nerves. His description of the Plexus brachialis and the Plexus ischiadicus is closely related to the modern views in these matters. However, his teleologic views about them are remarkable, e.g. about the course of the Nervi recurrentes. The seventh book covers the brain. He successively and truly describes the cerebral membranes, the Ventriculi, the Cerebrum; his description relies on a series of horizontal slices. He also describes the brain-stem and the Cerebellum. Vesalius, who had doubts about the existence of the Plexus

  7. The Autoimmune Disease Database: a dynamically compiled literature-derived database

    Directory of Open Access Journals (Sweden)

    Mevissen Heinz-Theodor

    2006-06-01

    Full Text Available Abstract Background Autoimmune diseases are disorders caused by an immune response directed against the body's own organs, tissues and cells. In practice more than 80 clinically distinct diseases, among them systemic lupus erythematosus and rheumatoid arthritis, are classified as autoimmune diseases. Although their etiology is unclear these diseases share certain similarities at the molecular level i.e. susceptibility regions on the chromosomes or the involvement of common genes. To gain an overview of these related diseases it is not feasible to do a literary review but it requires methods of automated analyses of the more than 500,000 Medline documents related to autoimmune disorders. Results In this paper we present the first version of the Autoimmune Disease Database which to our knowledge is the first comprehensive literature-based database covering all known or suspected autoimmune diseases. This dynamically compiled database allows researchers to link autoimmune diseases to the candidate genes or proteins through the use of named entity recognition which identifies genes/proteins in the corresponding Medline abstracts. The Autoimmune Disease Database covers 103 autoimmune disease concepts. This list was expanded to include synonyms and spelling variants yielding a list of over 1,200 disease names. The current version of the database provides links to 541,690 abstracts and over 5,000 unique genes/proteins. Conclusion The Autoimmune Disease Database provides the researcher with a tool to navigate potential gene-disease relationships in Medline abstracts in the context of autoimmune diseases.

  8. CLINICAL DIAGNOSTIC VALUE OF AUTOANTIBODIES IN THE DIAGNOSIS OF AUTOIMMUNE LIVER DISEASES

    Directory of Open Access Journals (Sweden)

    V. V. Bazarnyi

    2015-01-01

    Full Text Available We are studied the 15 patients with autoimmune liver diseases and 36 patients without autoimmune pathology found the diagnostic value of antinuclear and antimitochondrial autoantibodies (AMA-M2 tests, and antibodies to asialoglycoprotein receptor (anti-ASGPR. Based on the ROC analysis showed that the diagnostic sensitivity and diagnostic specificity of AMA-M2 was 73% and 100% and for anti-ASGPR – 60% and 77%, respectively. Therefore, the test for anti-ASGPR in autoimmune diseases of the liver showed no advantages over standart tests, and its using in clinical practice requires clarification. 

  9. [The role of hereditary and environmental factors in autoimmune thyroid diseases].

    Science.gov (United States)

    Balázs, Csaba

    2012-07-01

    Autoimmune thyroid diseases are the most common organ-specific autoimmune disorders affecting 5% to 10% of the population in Western countries. The clinical presentation varies from hyperthyroidism in Graves' disease to hypothyroidism in Hashimoto's thyroiditis. While the exact etiology of thyroid autoimmunity is not known, the interaction between genetic susceptibility and environmental factors appears to be of fundamental importance to initiate the process of thyroid autoimmunity. The identified autoimmune thyroid disease susceptibility genes include immune-modulating genes, such as the major histocompatibility complex, and thyroid-specific genes, including TSH receptor, thyroglobulin and thyroid peroxidase. The majority of the anti-TSH-receptor antibodies have a stimulating capacity and are responsible for hyperthyroidism. The anti-thyroglobulin- and anti-thyroid peroxidase antibodies belonging to the catalytic type of antibodies destroy the thyrocytes resulting in hypothyroidism. The appearance of anti-thyroid peroxidase antibodies precedes the induction of thyroiditis and the manifestation of hypothyroidism. The molecular analysis of thyroglobulin gene polymorphism is important in the mechanism of autoimmune thyroiditis. The autoantigen presentation by major histocompatibility complex molecules is a key point of the autoimmune mechanism. It has been shown that a HLA-DR variant containing arginine at position 74 of the DRβ1 chain confers a strong genetic susceptibility to autoimmune thyroid diseases, Graves' disease and Hashimoto's thyroiditis, while glutamine at position DRβ1-74 is protective. Human thyroglobulin 2098 peptide represents a strong and specific DRβ1-Arg74 binder, while a non-binding control peptide, thyroglobulin 2766 fails to induce this response. Moreover, thyroglobulin 2098 stimulated T-cells from individuals who were positive for thyroglobulin antibodies, demonstrating that thyroglobulin 2098 is an immunogenic peptide capable of being

  10. The indirect costs of systemic autoimmune diseases, systemic lupus erythematosus, systemic sclerosis and sarcoidosis: a summary of 2012 real-life data from the Social Insurance Institution in Poland.

    Science.gov (United States)

    Kawalec, Paweł P; Malinowski, Krzysztof P

    2015-01-01

    Systemic lupus erythematosus, systemic sclerosis and sarcoidosis are three different autoimmune systemic diseases that generate a significant burden to society due to treatment costs and also those caused by a work disability or absenteeism among patients. Relevant 2012 data referring to the three components of absenteeism produced by autoimmune systemic diseases, sick leave, short-term and long-term work disability, were obtained from the Social Insurance Institution in Poland (PSII). By applying the Human Capital Approach using gross domestic product per capita, gross value added per worker and gross income per worker in 2012, total indirect costs for the diseases were calculated. All costs were presented in euros and were valid for 2012. The PSII recorded 1600 patients with systemic lupus erythematosus, 500 patients with systemic sclerosis and 2700 patients with sarcoidosis in the 2012 - total indirect costs were as high as 7,260,595, 2,268,571 and 4,027,575 EUR, respectively. Costs were estimated using gross domestic product per capita; 17,485,412, 5,463,312 and 9,699,455 EUR, accordingly, calculated using gross value added per worker and 5,346,933, 1,670,648 and 2,966,034 EUR estimated using gross income per worker, respectively. Considering only data on absenteeism gathered by the PSII we can conclude that the three autoimmune systemic diseases bore great indirect costs. Their social burden for Poland could be even greater when considering presenteeism as well as other components of absenteeism such as loss of unpaid work, a gray economy or loss of leisure time.

  11. Role of Endocannabinoid Activation of Peripheral CB1 Receptors in the Regulation of Autoimmune Disease

    Science.gov (United States)

    Sido, Jessica Margaret; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2014-01-01

    The impact of the endogenous cannabinoids (AEA, 2-AG, PEA, and virodamine) on the immune cell expressed cannabinoid receptors (CB1, CB2, TRPV-1, and GPR55) and consequent regulation of immune function is an exciting area of research with potential implications in the prevention and treatment of inflammatory and autoimmune diseases. Despite significant advances in understanding the mechanisms through which cannabinoids regulate immune functions, not much is known about the role of endocannabinoids in the pathogenesis or prevention of autoimmune diseases. Inasmuch as CB2 expression on immune cells and its role has been widely reported, the importance of CB1 in immunological disorders has often been overlooked especially because it is not highly expressed on naive immune cells. Therefore, the current review aims at delineating the effect of endocannabinoids on CB1 receptors in T cell driven autoimmune diseases. This review will also highlight some autoimmune diseases in which there is evidence indicating a role for endocannabinoids in the regulation of autoimmune pathogenesis. Overall, based on the evidence presented using the endocannabinoids, specifically AEA, we propose that the peripheral CB1 receptor is involved in the regulation and amelioration of inflammation associated with autoimmune diseases. PMID:24911431

  12. THE CLINICAL PRESENTATION OF AUTOIMMUNE THYROID DISEASE IN MEN IS ASSOCIATED WITH IL12B GENOTYPE

    DEFF Research Database (Denmark)

    Walsh, John P; Berry, Jemma; Liu, Shu;

    2011-01-01

    hypothesized that IL12B genotype may influence the clinical presentation of autoimmune thyroid disease. Objective.  We tested for differences in IL12B genotype between Graves' disease and Hashimoto's disease. Patients.  We studied a discovery cohort of 203 Australian women and 37 men with autoimmune thyroid......' disease (P=0.005) and Hashimoto's disease (P=0.029). Conclusion.  In men with autoimmune thyroid disease, a common variant located upstream of the IL12B coding region may influence whether patients present with Graves' disease or Hashimoto's disease.......Background.  Common variants in the interleukin 12B (IL12B) gene are associated with predominantly inflammatory (Th1) or antibody-mediated (Th2) immune responses. Since Hashimoto's disease and Graves' disease are thought to arise from mainly Th1 and Th2 immune responses respectively, we...

  13. LGI Proteins in the Nervous System

    Directory of Open Access Journals (Sweden)

    Linde Kegel

    2013-05-01

    Full Text Available The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat domain and a so-called epilepsy-associated or EPTP (epitempin domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe epilepsy also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features. LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  14. LGI proteins in the nervous system.

    Science.gov (United States)

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R

    2013-06-25

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  15. Applications of fluorescence spectroscopy to problems of food safety: detection of fecal contamination and of the presence of central nervous system tissue and diagnosis of neurological disease

    Science.gov (United States)

    Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.

    2010-02-01

    Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.

  16. The Influence and Role of Microbial Factors in Autoimmune Kidney Diseases: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Andreas Kronbichler

    2015-01-01

    Full Text Available A better understanding of the pathophysiology of autoimmune disorders is desired to allow tailored interventions. Despite increased scientific interest a direct pathogenic factor in autoimmune renal disease has been described only in a minority like membranous nephropathy or ANCA-associated vasculitis. Nonetheless the initial step leading to the formation of these antibodies is still obscure. In this review we will focus on the possible role of microbial factors in this context. Staphylococcus aureus may be a direct pathogenetic factor in granulomatosis with polyangiitis (GPA. Chronic bacterial colonization or chronic infections of the upper respiratory tract have been proposed as trigger of IgA vasculitis and IgA nephropathy. Interventions to remove major lymphoid organs, such as tonsillectomy, have shown conflicting results but may be an option in IgA vasculitis. Interestingly no clear clinical benefit despite similar local colonization with bacterial strains has been detected in patients with IgA nephropathy. In systemic lupus erythematosus injection of bacterial lipopolysaccharide induced progressive lupus nephritis in mouse models. The aim of this review is to discuss and summarize the knowledge of microbial antigens in autoimmune renal disease. Novel methods may provide insight into the involvement of microbial antigens in the onset, progression, and prognosis of autoimmune kidney disorders.

  17. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    Science.gov (United States)

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  18. Autoimmune thyroiditis perdating the presentation of systemic lupus erythematosus: Two cases and a review of literature

    Directory of Open Access Journals (Sweden)

    Dhir Rajeev

    2002-01-01

    Full Text Available Autoimmune diseases are commonly encountered in dermatology practice. While the association of two autoimmune diseases in the same individual is not unknown, it is relatively rare for the second disease to be suspected based on cutaneous manifestations. We present two such cases wherein cutaneous manifestations were the first clue to the development of lupus erythematosus in a setting of autoimmune thyroiditis. Further, we have reviewed literature on this uncommon occurrence and discuss various aspects of this association.

  19. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus.

    Science.gov (United States)

    Brooks, Wesley H; Renaudineau, Yves

    2015-01-01

    Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune

  20. Serological Diagnosis of Autoimmune Blistering Diseases

    Directory of Open Access Journals (Sweden)

    Birgül Özkesici

    2016-03-01

    Full Text Available Autoimmune blistering diseases are a rare diseases, characterized by development of autoantibodies against the structural proteins of the epidermis or dermoepidermal junction, and blisters and erosions on skin and/or mucous membranes clinically. Clinical features are important guiding findings for suspicious of this group of diseases. The diagnosis is achieved by the evaluation together of clinical features, histological and immunological findings. The gold standard in the diagnosis of this group diseases are demonstration of tissue bound and/or circulating autoantibodies. Methods for this purpose are; direct and indirect immunofluorescence, Enzyme Linked Immunosorbent Assay (ELISA, immunoprecipitation and immunoblotting. The aim of this paper is to review serological diagnostic methods in the diagnosis of autoimmune bullous diseases and to present developments in recent years.

  1. Epigenetic control of autoimmune diseases: from bench to bedside.

    Science.gov (United States)

    Picascia, Antonietta; Grimaldi, Vincenzo; Pignalosa, Orlando; De Pascale, Maria Rosaria; Schiano, Concetta; Napoli, Claudio

    2015-03-01

    Genome-wide association studies have revealed several genes predisposing to autoimmunity, however, concordance rates in monozygotic twins are significantly below 50% for several autoimmune diseases. The limited presence of a strong genetic association only in some patients supports that other non-genetic mechanisms are active in these pathologies. Epigenetic modifications such as DNA methylation, histone modification, and microRNA signaling regulate gene expression and are sensitive to external stimuli and they might be as bridging between genetic and environmental factors. Some evidence has highlighted the involvement of epigenetic alterations in the pathogenesis of various autoimmune diseases giving rise to great expectations among clinicians and researchers. The direct role of these alterations in the initiation/progression of autoimmune diseases is still unclear. The knowledge in depth of these pathogenic and epigenetic mechanisms will increase the possibility of the control and/or prevention of autoimmune diseases through the use of drugs that target epigenetic pathways. Moreover, we could use epigenetic-related biomarkers to follow this complicated framework (for example H3K4me3 and miRNA-155 are among those proposed biomarkers). This article reviews current understanding of the epigenetic involvement in the field of autoimmune diseases especially in systemic lupus erythematosus, rheumatoid arthritis, sclerosis multiple and type 1 diabetes.

  2. Microbiota at the crossroads of autoimmunity.

    Science.gov (United States)

    Shamriz, Oded; Mizrahi, Hila; Werbner, Michal; Shoenfeld, Yehuda; Avni, Orly; Koren, Omry

    2016-09-01

    Autoimmune diseases have a multifactorial etiology including genetic and environmental factors. Recently, there has been increased appreciation of the critical involvement of the microbiota in the pathogenesis of autoimmunity, although in many cases, the cause and the consequence are not easy to distinguish. Here, we suggest that many of the known cues affecting the function of the immune system, such as genetics, gender, pregnancy and diet, which are consequently involved in autoimmunity, exert their effects by influencing, at least in part, the microbiota composition and activity. This, in turn, modulates the immune response in a way that increases the risk for autoimmunity in predisposed individuals. We further discuss current microbiota-based therapies.

  3. Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease.

    Science.gov (United States)

    Machado, Marcus Paulo Ribeiro; Rocha, Aletheia Moraes; de Oliveira, Lucas Felipe; de Cuba, Marília Beatriz; de Oliveira Loss, Igor; Castellano, Lucio Roberto; Silva, Marcus Vinicius; Machado, Juliana Reis; Nascentes, Gabriel Antonio Nogueira; Paiva, Luciano Henrique; Savino, Wilson; Junior, Virmondes Rodrigues; Brum, Patricia Chakur; Prado, Vania Ferreira; Prado, Marco Antonio Maximo; Silva, Eliane Lages; Montano, Nicola; Ramirez, Luis Eduardo; Dias da Silva, Valdo Jose

    2012-11-01

    The aim of the present study was to evaluate the effects of changes to the autonomic nervous system in mice during the acute phase of Chagas disease, which is an infection caused by the parasite Trypanosoma cruzi. The following types of mice were inoculated with T. cruzi (CHG): wild-type (WT) and vesicular acetylcholine transporter knockdown (KDVAChT) C57BL/6j mice; wild-type non-treated (NT) FVB mice; FVB mice treated with pyridostigmine bromide (PYR) or salbutamol (SALB); and β(2)-adrenergic receptor knockout (KOβ2) FVB mice. During infection and at 18-21 days after infection (acute phase), the survival curves, parasitaemia, electrocardiograms, heart rate variability, autonomic tonus and histopathology of the animals were evaluated. Negative control groups were matched for age, genetic background and treatment. The KDVAChT-CHG mice exhibited a significant shift in the electrocardiographic, autonomic and histopathological profiles towards a greater inflammatory immune response that was associated with a reduction in blood and tissue parasitism. In contrast, the CHG-PYR mice manifested reduced myocardial inflammation and lower blood and tissue parasitism. Similar results were observed in CHG-SALB animals. Unexpectedly, the KOβ2-CHG mice exhibited less myocardial inflammation and higher blood and tissue parasitism, which were associated with reduced mortality. These findings could have been due to the increase in vagal tone observed in the KOβ2 mice, which rendered them more similar to the CHG-PYR animals. In conclusion, our results indicate a marked immunomodulatory role for the parasympathetic and sympathetic autonomic nervous systems, which inhibit both the inflammatory immune response and parasite clearance during the acute phase of experimental Chagas heart disease in mice.

  4. Heat Shock Proteins: Old and Novel Roles in Neurodegenerative Diseases in the Central Nervous System.

    Science.gov (United States)

    van Noort, Johannes M; Bugiani, Marianna; Amor, Sandra

    2016-10-31

    Heat shock proteins (HSPs) are families of molecular chaperones that play important homeostatic functions in the central nervous system (CNS) by preventing protein misfolding, promoting degradation of improperly folded proteins, and protecting against apoptosis and inflammatory damage especially during hyperthermia, hypoxia, or oxidative stress. Under stress conditions, HSPs are upregulated to protect cells from damage that accumulates during ageing as well as pathological conditions. An important, yet frequently overlooked function of some HSPs is their ability to function as extracellular messengers (also termed chaperokines) that modulate immune responses within the CNS. Given the strong association between protein aggregation, innate immune cell activation and neurodegeneration, the expression and roles of HSPs in the CNS is attracting attention in many neurodegenerative disorders including inflammatory diseases such as multiple sclerosis, protein folding diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, and genetic white matter diseases. This is especially so since several studies show that HSPs act therapeutically by modulating innate immune activation and may thus serve as neuroprotective agents. Here we review the evidence linking HSPs with neurodegenerative disorders in humans and the experimental animal models of these disorders. We discuss the mechanisms by which HSP protect cells, and how the knowledge of their endogenous functions can be exploited to treat disorders of the CNS.

  5. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    Science.gov (United States)

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent.

  6. Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    Be Nicholas A

    2012-01-01

    Full Text Available Abstract Background Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. Results We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system, but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Conclusions Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.

  7. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  8. Autoimmunity in X-linked agammaglobulinemia: Kawasaki disease and review of the literature.

    Science.gov (United States)

    Behniafard, Nasrin; Aghamohammadi, Asghar; Abolhassani, Hassan; Pourjabbar, Sarvenaz; Sabouni, Farah; Rezaei, Nima

    2012-02-01

    Although autoimmunity phenotype is surprisingly common in patients with different types of primary antibody deficiency, it is much less frequent in X-linked agammaglobulinemia (XLA). Herein, we report on a 15-month-old boy with XLA who also suffered from Kawasaki disease. The current case presentation is the first report of an association between Kawasaki disease and XLA. XLA could be considered as a special opportunity to understand autoimmunity in the near absence of immunoglobulins.

  9. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    2003-01-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  10. Role of neuroactive steroids in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Roberto Cosimo eMelcangi

    2011-12-01

    Full Text Available Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy.

  11. Epstein-Barr Virus in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Anette Holck Draborg

    2013-01-01

    Full Text Available Systemic autoimmune diseases (SADs are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, and Sjögren’s syndrome (SS and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.

  12. Epstein-Barr virus in systemic autoimmune diseases.

    Science.gov (United States)

    Draborg, Anette Holck; Duus, Karen; Houen, Gunnar

    2013-01-01

    Systemic autoimmune diseases (SADs) are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV) with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS) and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.

  13. FMRFamide-like immunoreactivity in the nervous system of Hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Schot, L P

    1982-01-01

    FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles...

  14. Fungal Infections of the Central Nervous System: A Pictorial Review

    Directory of Open Access Journals (Sweden)

    Jose Gavito-Higuera

    2016-01-01

    Full Text Available Fungal infections of the central nervous system (CNS pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  15. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  16. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  17. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases.

    Science.gov (United States)

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-05-28

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  18. IMMUNOHISTOCHEMISTRY VERSUS IMMUNOFLUORESENCE IN THE DIAGNOSIS OF AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-11-01

    Full Text Available Introduction: In patients with autoimmune skin blistering diseases (ABDs, the diagnostic gold standard has classically been direct and indirect immunofluorescence (DIF and IIF, despite inherent technical problems of autofluorescence. Aim: We sought to overcome autofluorescence issues and compare the reliability of immunofluorescence versus immunohistochemistry (IHC staining in the diagnoses of these diseases. Methods: We tested via IHC for anti-human IgG, IgM, IgA, IgD, IgE, Kappa light chains, Lambda light chains, Complement/C3c, Complement/C1q, Complement/C3d, albumin and fibrinogen in 30 patients affected by a new variant of endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF, and 30 control biopsies from the endemic area. We also tested archival biopsies from patients with ABDs whose diagnoses were made clinically, histopathologically and by DIF/IIF studies from 2 independent dermatopathology laboratories in the USA. Specifically, we tested 34 patients with bullous pemphigoid (BP, 18 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus (PF, 14 with dermatitis herpetiformis (DH and 30 control skin samples from plastic esthetic surgery reduction surgeries. Results: The diagnostic correlation between IHC and DIF-IIF was almost 98% in most cases. IHC revealed evidence of autofluorescence around dermal blood vessels, dermal eccrine glands and neurovascular packages feeding skin appendices in ABDs; this autofluorescence may represent a non-specific immune response. Strong patterns of positivity were seen also in endothelial-mesenchymal cell junction-like structures, as well as between dermal fibrohistiocytic cells. In PV, we noted strong reactivity to neurovascular packages supplying sebaceous glands, as well as apocrine glands with edematous changes. Conclusions: We suggest that IHC is as reliable as DIF or IIF for the diagnosis of ABDs; our findings further suggest that what has previously been considered DIF/IIF autofluorescence

  19. A case of Erdheim Chester disease with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Anil Kumar Patil

    2015-01-01

    Full Text Available Erdheim Chester disease (ECD is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT, 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement.

  20. [Recent progress of potential effects and mechanisms of chlorogenic acid and its intestinal metabolites on central nervous system diseases].

    Science.gov (United States)

    Xing, Li-na; Zhou, Ming-mei; Li, Yun; Shi, Xiao-wen; Jia, Wei

    2015-03-01

    Chlorogenic acid displays several important roles in the therapeutic properties of many herbs, such as antioxidant activity, antibacterial, antiviral, scavenging free radicals and exciting central nervous system. Only about one-third of chlorogenic acid was absorbed in its prototype, therefore, its gut metabolites play a more important role in the therapeutic properties of chlorogenic acid. It is necessary to consider not only the bioactivities of chlorogenic acid but also its gut metabolites. This review focuses on the potential activities and mechanisms of chlorogenic acid and its gut metabolites on central nervous system diseases.

  1. Interleukin-22: a likely target for treatment of autoimmune diseases

    Science.gov (United States)

    Yang, Xuyan; Zheng, Song Guo

    2014-01-01

    Interleukin -22 (IL-22) is a member of IL-10 family cytokines that is produced by many different types of lymphocytes including both those of the innate and adaptive immune system. This includes activated T cells, most notably Th17 and Th22 cells, and NK cells, γδ T cells, LTi cells and LTi-like cells. IL-22 mediates its effects via the IL-22-IL-22R complex and subsequent Janus Kinase-signal transduces and activators transcription (JAK-STAT) signaling pathway. Recently accumulated evidence has indicated that IL-22 also plays an important role in the pathogenesis of many autoimmune diseases. In this review, we discuss the recent findings and advancement of the role for IL-22 in several autoimmune diseases, such as psoriasis, rheumatoid arthritis (RA), hepatitis, graft versus host disease (GHVD) and allergic diseases, implicating that target IL-22 may have a therapeutic potential in those autoimmune diseases. PMID:24418299

  2. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  3. The Role of Central Nervous System Plasticity in Tinnitus

    Science.gov (United States)

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  4. [Eales' disease involving central nervous system white matter].

    Science.gov (United States)

    Antigüedad, A; Zarranz, J J

    1994-01-01

    Eales' disease (ED) is a rare condition characterized by repeated retinal and vitreous hemorrhages. The only extraocular involvement described occasionally in the literature is neurological. Histologically, vasculitis in ED is usually restricted to the eye, but occasionally involves the central nervous system, where demyelinizing lesions may also occur. We present a 34-year-old male with ED and subclinical central nervous system involvement. Craneal magnetic resonance images (MR) suggested demyelinization; brainstem auditory and somatosensory evoked potentials were abnormal. There was moderate pleocytosis in CSF and intratecal production of immunoglobulins with oligoclonal bands. Follow-up over a period of 2.5 years showed no clinical, MR or CSF changes in spite of continued opthamological impairment. Little is known about factors that affect the development or not of demyelinizing lesions in ED patients with neurological involvement demonstrated by intratecal production of immunoglobulins. Identification of such factors may contribute to our understanding of other diseases, such as multiple sclerosis.

  5. Different familial association patterns of autoimmune diseases between juvenile-onset systemic lupus erythematosus and juvenile rheumatoid arthritis.

    Science.gov (United States)

    Huang, Chun-Mei; Yang, Yao-Hsu; Chiang, Bor-Luen

    2004-04-01

    The aim of this study was to determine if the prevalence of autoimmune disorders in the relatives of patients with systemic lupus erythematosus (SLE) is greater than that of relatives of patients with juvenile rheumatoid arthritis (JRA). Interviews were used to obtain histories of the following autoimmune disorders among living or deceased first-, second-, and third-degree relatives of 91 SLE and 110 JRA families: ankylosing spondylitis, SLE, rheumatoid arthritis (RA), JRA, multiple sclerosis, juvenile dermatomyositis, Sjögren's syndrome, myasthenia gravis, psoriasis, and thyroid diseases. There were statistically significant differences between the SLE and JRA probands in mean age and gender ratio (19.1 +/- 4.8 vs 14.0 +/- 5.5 years; M (male)/F (female): 17/74 vs 62/48, pJRA families (11.8%), but not statistically significantly so. The mean age (18.0 +/- 5.3 vs 14.0 +/- 4.3 years), mean age at diagnosis (13.4 +/- 4.3 vs 7.9 +/- 3.9 years) and gender ratio (F/M, 16/3 vs 5/8) of the patients with affected relatives between these 2 groups all had statistically significant differences. A higher prevalence of SLE in relatives was found in SLE families than in JRA cases. Furthermore, this study revealed a higher incidence of autoimmune disorders among second- and third-degree relatives of SLE or JRA probands versus first-degree ones, especially sisters (including 1 pair of twins) and the maternal aunt in SLE families. These data demonstrate that the prevalence of autoimmune disorders in the relatives of patients with SLE is greater than those of relatives of patients with JRA. This suggests that clinically different autoimmune phenotypes may share common susceptibility genes, which may act as risk factors for autoimmunity.

  6. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence.

    Science.gov (United States)

    Choi, In Young; Lee, Changhan; Longo, Valter D

    2017-01-27

    Complex and coordinated signals are necessary to initiate and sustain the activation, proliferation, and differentiation of lymphocytes. These signals, which are known to determine T-cell fate and function, also depend on the metabolic state of the organism. Recent studies indicate that both the type and levels of nutrients can influence the generation, survival and function of lymphocytes and therefore can affect several autoimmune diseases. Here, we review the dysregulation of lymphocytes during autoimmunity and aging, the mechanisms associated with loss of immune function, and how fasting mimicking diets and other dietary interventions affect autoimmunity and immunosenescence.

  7. Nodal signalling and asymmetry of the nervous system.

    Science.gov (United States)

    Signore, Iskra A; Palma, Karina; Concha, Miguel L

    2016-12-19

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  8. Metabolite monitoring to guide thiopurine therapy in systemic autoimmune diseases.

    Science.gov (United States)

    Chapdelaine, Aurélie; Mansour, Anne-Marie; Troyanov, Yves; Williamson, David R; Doré, Maxime

    2017-01-27

    6-Thioguanine nucleotide (6-TGN) is the active metabolite of thiopurine drugs azathioprine and 6-mercaptopurine. 6-Methylmercaptopurine (6-MMP) is an inactive and potentially hepatotoxic metabolite. A subgroup of patients (shunters) preferentially produce 6-MMP instead of 6-TGN, therefore displaying thiopurine resistance and risk for hepatotoxicity. Outside inflammatory bowel disease literature, few data exist regarding individualized thiopurine therapy based on metabolite monitoring. This study sought to describe metabolite monitoring in patients receiving weight-based thiopurine for systemic autoimmune diseases. Patients were enrolled using a laboratory database, and data were retrospectively collected. The correlation between the highest thiopurine dose (mg/kg) and the 6-TGN concentration (pmol/8 × 10(8) erythrocytes) was estimated with Pearson's correlation coefficient. Seventy-one patients with various systemic autoimmune conditions were enrolled. The correlation between the thiopurine dose and the 6-TGN level was weak for the overall patient sample (r = 0.201, p = 0.092) and for the subgroup of non-shunters (r = 0.278, p = 0.053). Subjects with 6-MMP levels >5700 pmol/8 × 10(8) erythrocytes had more hepatic cytolysis compared to subjects with 6-MMP 5700. Eleven non-shunters had hepatotoxicity, one of which had 6-MMP >5700. Thiopurine metabolite monitoring shows wide variability in 6-TGN levels among patients treated with weight-based thiopurine for systemic autoimmune diseases. Thirty-one percent of the patients in our series fulfilled the shunter definition. Thiopurine metabolite monitoring and dose adjustment to improve maintenance of remission and avoid hepatotoxicity should be studied prospectively.

  9. Multiple autoimmune syndrome with celiac disease.

    Science.gov (United States)

    Harpreet, Singh; Deepak, Jain; Kiran, B

    2016-01-01

    Multiple autoimmune syndrome (MAS) is a condition characterised by three or more autoimmune disorders in a same individual. Familial, immunologic and infectious factors are implicated in the development of MAS. Here we report a case of a 32-year-old woman with co-existence of four auto-immune diseases, namely autoimmune hypothyroidism, Sjögren's syndrome, systemic lupus erythematosus (SLE) and celiac disease which leads to the final diagnosis of multiple autoimmune syndrome type 3 with celiac disease. Patients with single autoimmune disorder are at 25% risk of developing other autoimmune disorders. The present case emphasises to clinicians that there is a need for continued surveillance for the development of new autoimmune disease in predisposed patients.

  10. The nervous systems of basally branching nemertea (palaeonemertea.

    Directory of Open Access Journals (Sweden)

    Patrick Beckers

    Full Text Available In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  11. The nervous systems of basally branching nemertea (palaeonemertea).

    Science.gov (United States)

    Beckers, Patrick; Loesel, Rudi; Bartolomaeus, Thomas

    2013-01-01

    In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  12. Cytokines and Cytokine Profiles in Human Autoimmune Diseases and Animal Models of Autoimmunity

    Directory of Open Access Journals (Sweden)

    Manfred Kunz

    2009-01-01

    Full Text Available The precise pathomechanisms of human autoimmune diseases are still poorly understood. However, a deepened understanding of these is urgently needed to improve disease prevention and early detection and guide more specific treatment approaches. In recent years, many new genes and signalling pathways involved in autoimmunity with often overlapping patterns between different disease entities have been detected. Major contributions were made by experiments using DNA microarray technology, which has been used for the analysis of gene expression patterns in chronic inflammatory and autoimmune diseases, among which were rheumatoid arthritis, systemic lupus erythematosus, psoriasis, systemic sclerosis, multiple sclerosis, and type-1 diabetes. In systemic lupus erythematosus, a so-called interferon signature has been identified. In psoriasis, researchers found a particular immune signalling cluster. Moreover the identification of a new subset of inflammatory T cells, so-called Th17 T cells, secreting interleukin (IL-17 as one of their major cytokines and the identification of the IL-23/IL-17 axis of inflammation regulation, have significantly improved our understanding of autoimmune diseases. Since a plethora of new treatment approaches using antibodies or small molecule inhibitors specifically targeting cytokines, cellular receptors, or signalling mechanisms has emerged in recent years, more individualized treatment for affected patients may be within reach in the future.

  13. Elevated Adiponectin Serum Levels in Women with Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Éric Toussirot

    2010-01-01

    Full Text Available Adipose tissue produces a wide range of proteins that may influence the immune system. In this study, we assessed the serum levels of leptin, adiponectin, and ghrelin, in association with the measurements of body composition, in 15 female patients with various autoimmune diseases (systemic lupus erythematosus, primary Sjögren's syndrome, sarcoidosis, mixed connective tissue disease, vasculitis, CREST syndrome, and polymyositis and in 15 healthy female controls. There were no statistically significant differences between the patients and controls with regard to serum leptin, serum ghrelin, global fat mass, adiposity, and fat mass in the android or gynoid regions, whereas serum adiponectin levels were higher in patients than controls (16.3±1.6 μg/mL versus 9.7±0.6 μg/mL; =.01. As adiponectin is known to exhibit potent anti-inflammatory properties, a high adiponectinemia in patients with systemic autoimmune disease may mitigate the inflammatory response. However, the precise consequences of these elevated serum adiponectin levels on the metabolic syndrome development and atherosclerotic cardiovascular risk in this patient population still needs to be determined.

  14. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Sakuma, H.; Takeda, K. [Dept. of Radiology, Mie Univ. School of Medicine, Mie (Japan); Yagishita, A. [Dept. of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Yamamoto, T. [Dept. of Radiology, Obama Municipal Hospital, Fukui (Japan)

    2003-12-01

    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  15. Haemangiopericytoma of central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Borg, M.F.; Benjamin, C.S. [Auckland Hospital, Auckland (New Zealand). Dept. of Clinical Oncology

    1995-02-01

    The records of four patients presenting with a histological diagnosis of haemangiopericytoma of the central nervous system, in Auckland, New Zealand, between 1970 and 1990 were reviewed retrospectively, with the aim of determining the natural history of the disease and response to various treatment modalities. Three out of the four patients reviewed presented with primary cerebral disease and the fourth with a primary spinal cord tumour. All three cerebral primary patients were initially treated with local surgical excision. All three patients received radical radiotherapy following local recurrence. The first two patients remained disease-free locally although one patient developed a solitary liver metastasis 5 years after radiotherapy. The third patient was referred with multiple cerebral metastases and failed to respond to radiotherapy. The patient with the primary lesion in the spinal cord was treated with local excision followed by postoperative radiotherapy and remains disease-free 17 years after treatment. One patient failed to respond to chemotherapy, prescribed to treat a local recurrence adjacent to the previous radiotherapy field. This was successfully excised subsequently. The patient presenting with multiple cerebral metastases was the only patient to die of this disease. Results suggest that local recurrence is avoidable with adequate wide excision of the primary tumour followed by local radical radiotherapy. The role of chemotherapy remains controversial and no conclusion could be drawn regarding the role of palliative radiotherapy from this study. Active treatment and long-term follow-up are necessary because of the relative aggressiveness of this disease and the propensity for late relapses. 22 refs., 2 tabs., 6 figs.

  16. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2012-01-01

    Full Text Available Abstract Background To explore the relationship between enteroviruses and hospitalized children with hand, foot and mouth disease (HFMD complicated with nervous system disease. 234 hospitalized HFMD patients treated in Shengjing Hospital, Liaoning Province were analyzed retrospectively. Based on the presence and severity of nervous system disease, the patients were grouped as follows: general patients, severely ill patients, critically ill patients and fatal patients. Based on the detected pathogen, the patients were grouped as follows: Enterovirus 71 (EV71 infection, coxsackie A16 (CA16 infection and other enterovirus (OE infection. Results Of the 423 hospitalized patients, most were admitted in July 2010(129/423, 30.5%. Enteroviruses were detected in 177(41.8%. 272/423 patients were male (64.3%, and fatal patients had the greatest proportion of male patients (p p p p p p Conclusion The disease progresses faster in EV71-infected HFMD patients. These patients are more likely to suffer nervous system damage, neurogenic pulmonary edema, severe sequelae or death. CA16 and other enteroviruses can also cause HFMD with severe nervous system complications.

  17. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  18. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases.

    Science.gov (United States)

    Ahmadi, Majid; Gharibi, Tohid; Dolati, Sanam; Rostamzadeh, Davood; Aslani, Saeed; Baradaran, Behzad; Younesi, Vahid; Yousefi, Mehdi

    2017-03-01

    Recent genome-wide association studies have documented a number of genetic variants to explain mechanisms underlying autoimmune diseases. However, the precise etiology of autoimmune diseases remains largely unknown. Epigenetic mechanisms like alterations in the post-translational modification of histones and DNA methylation may potentially cause a breakdown of immune tolerance and the perpetuation of autoreactive responses. Recently, several studies both in experimental models and clinical settings proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in autoimmune diseases, in some cases based on mechanistical observations. Epigenetic therapy already being employed in hematopoietic malignancies may also be associated with beneficial effects in autoimmune diseases. In this review, we will discuss on what we know and expect about the treatment of autoimmune disease based on epigenetic aberrations.

  19. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  20. Activation of Helicobacter pylori causes either autoimmune thyroid diseases or carcinogenesis in the digestive tract.

    Science.gov (United States)

    Astl, J; Šterzl, I

    2015-01-01

    Helicobacter pylori has been implicated in stimulation of immune system, development of autoimmune endocrinopathies as autoimmune thyroiditis (AT) and on other hand induction of immunosupresion activates gastric and extra-gastric diseases such as gastric ulcer or cancer. It causes persistent lifelong infection despite local and systemic immune response. Our results indicate that Helicobacter pylori might cause inhibition of the specific cellular immune response in Helicobacter pylori-infected patients with or without autoimmune diseases such as AT. We cannot also declare the carcinogenic effect in oropharynx. However the association of any infection agents and cancerogenesis exists. The adherence of Helicobacter pylori expression and enlargement of benign lymphatic tissue and the high incidence of the DNA of Helicobacter pylori in laryngopharyngeal and oropharyngeal cancer is reality. LTT appears to be a good tool for detection of immune memory cellular response in patients with Helicobacter pylori infection and AT. All these complications of Helicobacter pylori infection can be abrogated by successful eradication of Helicobacter pylori.

  1. [Electroencephalography and the general physiology of the nervous system].

    Science.gov (United States)

    Wyss, O A

    1974-01-01

    The contributions of electro-encephalography to the general physiology of the nervous system - studies based on 50 years of experimental and clinical research on the EEG of animals and man - have established irrefutable facts underlying present-day concepts in neurophysiology. This conclusion holds true, even if allowance must be made with regard to the alpha-rhythm, reasons having been given to suppose that this phenomenon is in reality, partially or entirely, an ocular tremor phenomenon (Lippold). The fundamental principles of neuronal activity such as (1) the electrogenesis of gray matter, i.e., the electric current and membrane potential aspects of the existence and the functioning of nerve cells and neuronal aggregates, (2) the rhythmicity and periodicity of nervous activity in single cells or networks of neurones, (3) the synchronization of such nervous activity due, at the site of its source, to electric interaction between neurones belonging together and 'beating in unison', and (4) the autonomous automaticity of nerve cells and nerve centres as being the basic feature of neuronal activity, are among the prominent topics dealt with in this report. Particular attention is paid to the autonomy-concept of nervous activity, a concept ofter forgotten, neglected or discarded from physiological thinking, although life of any kind, in any type of living system, can only be understood if spontaneous existence and activity are accepted for living matter. In this respect the EEG has contributed in a large measure to save the physiology of our period from the materialism which prevailed at the beginning of the century and which threatens once more to emerge towards its end.

  2. Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease

    Science.gov (United States)

    Kendall, Debra A.; Yudowski, Guillermo A.

    2017-01-01

    The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors together with the discovery of their endogenous ligands in the late 80s and early 90s, resulted in a major effort aimed at understanding the mechanisms and physiological roles of the endocannabinoid system (ECS). Due to its expression and localization in the central nervous system (CNS), the CB1 receptor together with its endogenous ligands (endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation, has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others. In this review, we will provide a general overview of the ECS with emphasis on the CB1 receptor in health and disease. We will describe our current understanding of the complex aspects of receptor signaling and trafficking, including the non-canonical signaling pathways such as those mediated by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will highlight some of the disorders in which CB1 receptors have been implicated. Significant knowledge has been achieved over the last 30 years. However, much more research is still needed to fully understand the complex roles of the ECS, particularly in vivo and to unlock its true potential as a source of therapeutic targets. PMID:28101004

  3. Paraneoplastic Syndromes of the Central Nervous System

    NARCIS (Netherlands)

    J.W.B. Moll (Wibe)

    1996-01-01

    textabstractIn recent years a continuous stream of new information on clinical, pathological and immunological aspects of paraneoplastic neurological syndromes has been published. In this survey, we will discuss current opinions on the value of anti-neuronal antibody detection for establishing a dia

  4. The zebrafish as a gerontology model in nervous system aging, disease, and repair.

    Science.gov (United States)

    Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve

    2015-11-01

    Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.

  5. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  6. 76 FR 13111 - Compassionate Allowances for Autoimmune Disease, Office of the Commissioner; Hearing

    Science.gov (United States)

    2011-03-10

    ... Alzheimer's disease and related dementias, schizophrenia, and cardiovascular disease and multiple organ... methods of identifying and implementing compassionate allowances for both adults and children with... respect to adults and children with autoimmune diseases, as well as topics covered at the hearing by:...

  7. Clinical features of multiple myeloma invasion of the central nervous system in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    QU Xiao-yan; FU Wei-jun; XI Hao; ZHOU Fan; WEI Wei; HOU Jian

    2010-01-01

    Background Although neurologic manifestations often complicate the course of patients with multiple myeloma, direct central nervous system invasion is rare. This study explored the neurologic symptoms, signs, clinical features, therapy and prognosis of Chinese patients with central nervous system myeloma invasion.Methods The diagnosis, therapy and prognosis were analyzed retrospectively in 11 Chinese multiple myeloma patients with central nervous system infiltration from a total of 625 patients who have been treated at Changzheng Hospital (Shanghai, China) between January 1993 and May 2009. Survival curve was constructed with the use of Kaplan-Meier estimates.Results There were 11 patients with central nervous system involvement from 625 multiple myeloma patients. The occurrence rate was 1.8%. Ten of the 11 patients had other extramedullary diseases. Symptoms included cerebral symptoms, cranial nerve palsies, and spinal cord or spinal nerve roots symptoms.Cerebrospinal fluid was abnormal in 7 patients, usually exhibiting pleocytosis and elevated protein content, plus positive cytologic findings. Specific magnetic resonance imaging findings suggestive of central nervous system invasion were found in 9 patients. After a median follow-up of 19 months, 3 patients were alive. The median overall survival for all patients was 23 months, while the median overall survival for patients after central nervous system invasion was merely 6 months.Conclusions It is exceedingly rare for there to be central nervous system infiltration in multiple myeloma patients. When it occurs, the prognosis is extremely poor despite the use of aggressive local and systemic treatment including stem cell transplantation.

  8. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1995-02-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson`s disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson`s disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author).

  9. Measurement of disease severity in cutaneous autoimmune diseases

    OpenAIRE

    2013-01-01

    The development of disease-specific outcome instruments for several autoimmune skin diseases including cutaneous lupus erythematosus (CLE), dermatomyositis, vitiligo, pemphigus and alopecia areata has facilitated the objective assessment of disease in clinical trials. Validation of these instruments provides reliable tools to measure disease severity and therapeutic effect in clinical studies. However, the existence of multiple outcome measures for each disease and the lack of uniformity betw...

  10. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS.

  11. Autoimmune disease

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005164 Optimal cut-point of glutamic acid decar-boxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (LADA). LI Xia(李霞), et al. Dept Endocrinol, 2nd Xiangya Hosp, Central South Univ, Changsha, 410011. Chin J Diabetes, 2005;13(1) :34-38. Objective: To investigate the optimal cut-point of glutamate decarboxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (I. ADA). Methods: The frequency

  12. Venous thromboembolic disease in systemic autoimmune diseases: an association to keep in mind.

    Science.gov (United States)

    Silvariño, Ricardo; Danza, Álvaro; Mérola, Valentina; Bérez, Adriana; Méndez, Enrique; Espinosa, Gerard; Cervera, Ricard

    2012-12-01

    Systemic autoimmune diseases are conditions of unknown etiology, characterized by the simultaneous or successive involvement of most organs and systems, as well as the presence of autoantibodies as biological markers. Venous thromboembolic disease has a higher incidence in this population when compared to healthy individuals. This responds to the increase in congenital and acquired risk factors in this group. One of the main risk factors is linked to the presence of antiphospholipid antibodies, whose prevalence is increased among patients with such conditions.

  13. A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis

    DEFF Research Database (Denmark)

    Marrie, Ruth Ann; Reider, Nadia; Cohen, Jeffrey

    2015-01-01

    studied, methods of ascertaining comorbidity, and reporting of findings. Based solely on population-based studies, the most prevalent autoimmune comorbidities were psoriasis (7.74%) and thyroid disease (6.44%). Our findings also suggest an increased risk of inflammatory bowel disease, likely uveitis...

  14. Evaluation of autoimmune thyroid disease in melasma.

    Science.gov (United States)

    Rostami Mogaddam, Majid; Iranparvar Alamdari, Manouchehr; Maleki, Nasrollah; Safavi Ardabili, Nastaran; Abedkouhi, Selma

    2015-06-01

    Melasma is one of the most frequently acquired hyperpigmentation disorders clinically characterized by symmetrical brown patches on sun-exposed areas. To date, few studies have been conducted about the relationship between thyroid autoimmun-ity and melasma. To evaluate the thyroid dysfunction and autoimmunity in nonpregnant women with melasma. A total of 70 women with melasma and 70 age-matched healthy women with no history of melasma were enrolled in the study. We studied the thyroid hormone profile in both groups. The statistical analysis was performed using SPSS software. Patients with melasma had 18.5% frequency of thyroid disorders, and 15.7% had positive anti-TPO, while subjects from the control group had a 4.3% frequency of thyroid abnormalities, and only 5.7% had positive anti-TPO. There was a significantly higher prevalence of thyroid dysfunction in women with melasma compared with control group (P = 0.008). This study suggests that there is a relationship between thyroid autoimmunity and melasma. However, to make recommendations on screening for thyroid disease in patients with melasma, future research of good methodological quality is needed.

  15. The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases.

    Science.gov (United States)

    Tabarkiewicz, Jacek; Pogoda, Katarzyna; Karczmarczyk, Agnieszka; Pozarowski, Piotr; Giannopoulos, Krzysztof

    2015-12-01

    The end of twentieth century has introduced some changes into T helper (Th) cells division. The identification of the new subpopulation of T helper cells producing IL-17 modified model of Th1-Th2 paradigm and it was named Th17. High abilities to stimulate acute and chronic inflammation made these cells ideal candidate for crucial player in development of autoimmune disorders. Numerous publications based on animal and human models confirmed their pivotal role in pathogenesis of human systemic and organ-specific autoimmune diseases. These findings made Th17 cells and pathways regulating their development and function a good target for therapy. Therapies based on inhibition of Th17-dependent pathways are associated with clinical benefits, but on the other hand are frequently inducing adverse effects. In this review, we attempt to summarize researches focused on the importance of Th17 cells in development of human autoimmune diseases as well as effectiveness of targeting IL-17 and its pathways in pre-clinical and clinical studies.

  16. Interspecies study of the enteric nervous system and related pathologies

    OpenAIRE

    Giancola, Fiorella

    2016-01-01

    The enteric nervous system (ENS) modulates a number of digestive functions including well known ones, i.e. motility, secretion, absorption and blood flow, along with other critically relevant processes, i.e. immune responses of the gastrointestinal (GI) tract, gut microbiota and epithelial barrier . The characterization of the anatomical aspects of the ENS in large mammals and the identification of differences and similarities existing between species may represent a fundamental basis to deci...

  17. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  18. Effects of erythropoietin and its receptor on nervous system

    Institute of Scientific and Technical Information of China (English)

    Ping Wang; Wei Zhou

    2006-01-01

    OBJECTIVE: To investigate the effects of erythropoietin (EPO) and its receptor (EPOR) on nervous system, and its possible mechanism.DATA SOURCES: By inputting the key words "erythropoietin ,nervous system", we performed a search of Medline for English articles, which were published during September 1996 to August 2006, about EPO and EPOR in nervous system.STUDY SELECTION: The materials were selected firstly, literatures were chosen for treatment group and control group and those obviously non-randomized studies were excluded. The full texts of the left literatures were searched. Inclusive criteria: ① Randomized controlled study. ②Experimental or clinical studies (parallel control group included). ③Treatment group was recombinant human erythropoietin(rHuEPO)-treated group. Exclusive criteria: repetitive study.DATA EXTRACTION: A number of 380 randomized or non-randomized articles about the effect of EPO on nervous system were collected, and 49 experiments or clinical trials met the inclusive criteria. Among 331 exclusive articles, 237 were non-randomized or repetitive studies and 94 were review articles. DATA SYNTHESIS: Forty-nine experiments or clinical trials confirmed that EPO and EPOR were expressed in the central nervous system (CNS) and peripheral nervous system(PNS) of gnawer, primate and human being; rHuEPO had obvious neuroprotective effects on brain hypoxia, brain ischemia, experimental intracranial hemorrhage, brain trauma, experimental autoimmune encephalomyelitis, human immunodeficiency virus (HIV)-related sensory neuropathy, distal axonopathy, experimental diabetic neuropathy and acute spinal injury models. Its mechanism maybe involve anti-excitatory toxicity, preventing the production of nitric oxide (NO), lessening inflammatory reaction, resisting apoptosis, maintaining vascular integrity, promoting angiogenesis, promoting the proliferation and differentiation of neural stem cells and progenitor cells and so on. Exogenous EPO could be

  19. CD20+ B Cell Depletion in Systemic Autoimmune Diseases: Common Mechanism of Inhibition or Disease-Specific Effect on Humoral Immunity?

    Directory of Open Access Journals (Sweden)

    Panagiotis Pateinakis

    2014-01-01

    Full Text Available Autoimmunity remains a complex physiologic deviation, enabled and perpetuated by a variety of interplayers and pathways. Simplistic approaches, targeting either isolated end-effectors of more centrally placed interactors of these mechanisms, are continuously tried in an effort to comprehend and halt cascades with potential disabling and deleterious effects in the affected individuals. This review focuses on theoretical and clinically proved effects of rituximab-induced CD20+ B cell depletion on different systemic autoimmune diseases and extrapolates on pathogenetic mechanisms that may account for different interindividual or interdisease responses.

  20. Autonomic nervous system and risk factors for vascular disease. Effects of autonomic unbalance in schizophrenia and Parkinson's disease.

    Science.gov (United States)

    Scigliano, Giulio; Ronchetti, Gabriele; Girotti, Floriano

    2008-02-01

    Alterations of the cardiovascular system and of the glucose and lipid metabolism can represent important factors of vascular risk. The autonomic nervous system, through its two efferent branches, the parasympatheticcholinergic and the sympathetic-adrenergic, plays an important role in the control of the cardiovascular activity and of the glucose and lipid metabolism, and its impaired working can interfere with these functions. An increased sympathetic activity and an increased frequency of diabetes, dyslipidemia, hypertension and obesity have been reported in untreated schizophrenic patients, and a further worsening of these vascular risk factors has been signalled as a side effect of treatment with neuroleptic drugs. The opposite is observed in Parkinson's disease, where the reduced autonomic activity induced by the illness is associated with a decreased frequency of vascular risk factors, and their occurrence is further reduced by the treatment with dopaminergic drugs.

  1. Clinical and electrodiagnostic findings in a cohort of 61 dogs with peripheral nervous system diseases - a retrospective study

    Directory of Open Access Journals (Sweden)

    EG Giza, JE Nicpon and MA Wrzosek

    2014-04-01

    Full Text Available The electrodiagnostic examination provides the basis for a diagnostic workup in diseases involving nerve roots, peripheral nerves, neuromuscular junctions and muscles in humans and animals. It is a functional test that enables identification, localization and characterization of the disease within the peripheral nervous system. The study was carried out retrospectively on a group of 61 dogs of different breeds referred for an electrodiagnostic examination because of local or generalized peripheral nervous system impairment. The electrodiagnostic examination consisted of electromyography, electroneurography, F-wave and repetitive nerve stimulation testing. The results of electrodiagnostic studies and their impact on the diagnosis of neuromuscular diseases of different etiology is presented in the study. The lesion was localized to peripheral nerves in 38%, nerve roots in 34%, skeletal muscles in 18% and the neuromuscular junction in 10% of cases. Electrodiagnostics enabled an objective assessment of the extent, distribution and nature of the disease in the study group. However, only when it is used in conjunction with a complete physical and neurological examination and appropriate laboratory or imaging studies, it may be helpful in determining the etiological diagnosis in patients with peripheral nervous system disease.

  2. Functional roles of neuropeptides in the insect central nervous system

    Science.gov (United States)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  3. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  4. INSULIN AND INSULIN RESISTANCE: NEW MOLECULE MARKERS AND TARGET MOLECULE FOR THE DIAGNOSIS AND THERAPY OF DISEASES OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    A. B. Salmina

    2013-01-01

    Full Text Available The review summarizes current data on the role of insulin in the regulation of t glucose metabolism in the central nervous system at physiologic and pathologic conditions. For many years, the brain has been considered as an insulin-independent organ which utilizes glucose without insulin activity. However, it is become clear now that insulin not only regulates glucose transport and metabolism, but also has modulatory efftects in impact on excitability, proliferation and differentiation of brain progenitor cells, synaptic plasticity and memory formation, secretion of neurotransmitters, apoptosis. We have critically reviewed literature information and our own data on the role of insulin and insulin resistance in neuron-glia metabolic coupling, regulation of NAD+ metabolism and action of NAdependent enzymes, neurogenesis, brain development in (pathophysiological conditions. The paper clarifies interrelations between alterations in glucose homeostasis, development of insulin resistance and development of neurodegeneration (Alzheimer's disease and Parkinson's disease, autism, stroke, and depression. We discuss the application of novel molecular markers of insulin resistance (adipokines, α-hydroxybutyrate, BDNF, insulin-regulated aminopeptidase, provasopressin and molecular targets for diagnostics and treatment of brain disorders associated with insulin resistance.

  5. The microbiome and autoimmune disease: Report from a Noel R. Rose Colloquium.

    Science.gov (United States)

    Barin, Jobert G; Tobias, Lawrence D; Peterson, Daniel A

    2015-08-01

    Although the mechanisms by which the human microbiome influences the onset and progression of autoimmune diseases remain to be determined, established animal models of autoimmune diseases indicate that local and systemic bidirectional interactions with the microbiome play a signaling or promoting role through the immune system. Whether alterations in the microbiome are a pathogenic cause or simply an effect of inflammation and autoimmune disease remains an essential question to be addressed in disease-specific research, as well as whether particular conditions of the microbiome promote health or promote disease. Future research in this area needs to account for sex differences in microbiome composition because autoimmune diseases disproportionately affect women. Probiotic and other treatments that manipulate assemblage of the microbiome may offer methods of preventing or mitigating the effects of autoimmune disease.

  6. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  7. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  8. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases.

    Science.gov (United States)

    Egwuagu, Charles E; Yu, Cheng-Rong

    2015-01-01

    Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases.

  9. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  10. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    Science.gov (United States)

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use.

  11. Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases.

    Science.gov (United States)

    Schäfer, Nicole; Grosche, Antje; Reinders, Joerg; Hauck, Stefanie M; Pouw, Richard B; Kuijpers, Taco W; Wouters, Diana; Ehrenstein, Boris; Enzmann, Volker; Zipfel, Peter F; Skerka, Christine; Pauly, Diana

    2016-01-01

    The human complement factor H-related protein-3 (FHR-3) is a soluble regulator of the complement system. Homozygous cfhr3/1 deletion is a genetic risk factor for the autoimmune form of atypical hemolytic-uremic syndrome (aHUS), while also found to be protective in age-related macular degeneration (AMD). The precise function of FHR-3 remains to be fully characterized. We generated four mouse monoclonal antibodies (mAbs) for FHR-3 (RETC) without cross-reactivity to the complement factor H (FH)-family. These antibodies detected FHR-3 from human serum with a mean concentration of 1 μg/mL. FHR-3 levels in patients were significantly increased in sera from systemic lupus erythematosus, rheumatoid arthritis, and polymyalgia rheumatica but remained almost unchanged in samples from AMD or aHUS patients. Moreover, by immunostaining of an aged human donor retina, we discovered a local FHR-3 production by microglia/macrophages. The mAb RETC-2 modulated FHR-3 binding to C3b but not the binding of FHR-3 to heparin. Interestingly, FHR-3 competed with FH for binding C3b and the mAb RETC-2 reduced the interaction of FHR-3 and C3b, resulting in increased FH binding. Our results unveil a previously unknown systemic involvement of FHR-3 in rheumatoid diseases and a putative local role of FHR-3 mediated by microglia/macrophages in the damaged retina. We conclude that the local FHR-3/FH equilibrium in AMD is a potential therapeutic target, which can be modulated by our specific mAb RETC-2.

  12. COMPLEMENT REGULATOR FHR-3 IS ELEVATED EITHER LOCALLY OR SYSTEMICALLY IN A SELECTION OF AUTOIMMUNE DISEASES

    Directory of Open Access Journals (Sweden)

    Nicole Schäfer

    2016-11-01

    Full Text Available The human complement factor H-related protein-3 (FHR-3 is a soluble regulator of the complement system. Homozygous cfhr3/1 deletion is a genetic risk factor for the autoimmune form of hemolytic uremic syndrome (aHUS, whilst also found to be protective in age-related macular degeneration (AMD. The precise function of FHR-3 remains to be fully characterized.We generated four mouse monoclonal antibodies (mAbs for FHR-3 (RETC without cross-reactivity to the complement factor H (FH-family. These antibodies detected FHR-3 from human serum with a mean concentration of 1 µg/mL. FHR-3 levels in patients were significantly increased in sera from systemic lupus erythematosus, rheumatoid arthritis, and polymyalgia rheumatica but remained almost unchanged in samples from AMD or aHUS patients. Moreover, by immunostaining of an aged human donor retina we discovered a local FHR-3 production by microglia/macrophages. The mAb RETC-2 modulated FHR-3 binding to C3b, but not the binding of FHR-3 to heparin. Interestingly, FHR-3 competed with FH for binding C3b and the mAb RETC-2 reduced the interaction of FHR-3 and C3b, resulting in increased FH binding. Our results unveil a previously unknown systemic involvement of FHR-3 in rheumatoid diseases and a putative local role of FHR-3 mediated by microglia/macrophages in the damaged retina. We conclude that the local FHR-3/FH equilibrium in AMD is a potential therapeutic target, which can be modulated by our specific mAb RETC-2.

  13. COMPLEMENT REGULATOR FHR-3 IS ELEVATED EITHER LOCALLY OR SYSTEMICALLY IN A SELECTION OF AUTOIMMUNE DISEASES

    OpenAIRE

    Nicole Schäfer; Antje Grosche; Joerg Reinders; Stefanie Hauck; Pouw, Richard B.; Taco W Kuijpers; Diana Wouters; Boris Ehrenstein; Volker Enzmann; Peter Zipfel; Christine Skerka; Diana Pauly

    2016-01-01

    The human complement factor H-related protein-3 (FHR-3) is a soluble regulator of the complement system. Homozygous cfhr3/1 deletion is a genetic risk factor for the autoimmune form of atypical hemolytic-uremic syndrome (aHUS), while also found to be protective in age-related macular degeneration (AMD). The precise function of FHR-3 remains to be fully characterized. We generated four mouse monoclonal antibodies (mAbs) for FHR-3 (RETC) without cross-reactivity to the complement factor H (FH)-...

  14. Sex differences in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Voskuhl Rhonda

    2011-01-01

    Full Text Available Abstract Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE, multiple sclerosis (MS, primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZWF1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways.

  15. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  16. The effect of octopamine on the locust stomatogastric nervous system

    Directory of Open Access Journals (Sweden)

    David eRand

    2012-07-01

    Full Text Available Octopamine (OA is a prominent neuromodulator of invertebrate nervous systems, 33 influencing multiple physiological processes. Among its many roles in insects are the 34 initiation and maintenance of various rhythmic behaviors. Here, the neuromodulatory 35 effects of OA on the components of the locust stomatogastric nervous system (STNS 36 were studied, and one putative source of OA modulation of the system was identified. 37 Bath application of OA was found to abolish the endogenous rhythmic output of the 38 fully isolated frontal ganglion (FG, while stimulating motor activity of the fully 39 isolated hypocerebral ganglion (HG. OA also induced rhythmic movements in a 40 foregut preparation with intact HG innervation. Complex dose-dependent effects of 41 OA on interconnected FG-HG preparations were seen: 10-5M OA accelerated the 42 rhythmic activity of both the HG and FG in a synchronized manner, while 10-4M OA 43 decreased both rhythms. Intracellular stimulation of an identified octopaminergic 44 dorsal unpaired median (DUM neuron in the subesophageal ganglion (SEG was 45 found to exert a similar effect on the FG motor output as that of OA application. Our 46 findings suggest a mechanism of regulation of insect gut patterns and feeding-related 47 behavior during stress and times of high energy demand.

  17. Cocaine and the nervous system.

    Science.gov (United States)

    Prakash, A; Das, G

    1993-12-01

    Cocaine abuse today has reached greater heights than it did during the first cocaine epidemic in the late nineteenth century. It is estimated that one out of every four Americans has used cocaine and some six million people in the US use it regularly. Although cocaine affects all systems in the body, the central nervous system (CNS) is the primary target. Cocaine blocks the reuptake of neurotransmitters in the neuronal synapses. Almost all CNS effects of cocaine can be attributed to this mechanism. Euphoria, pharmacological pleasure and intense cocaine craving share basis in this system. The effects of cocaine on other organ systems, in addition to its effects on the CNS, account for the majority of the complications associated with cocaine abuse. In this paper, the CNS effects following cocaine administration and their treatment are discussed.

  18. Autoimmune diseases in the TH17 era

    Directory of Open Access Journals (Sweden)

    D. Mesquita Jr.

    2009-06-01

    Full Text Available A new subtype of CD4+ T lymphocytes characterized by the production of interleukin 17, i.e., TH17 cells, has been recently described. This novel T cell subset is distinct from type 1 and type 2 T helper cells. The major feature of this subpopulation is to generate significant amounts of pro-inflammatory cytokines, therefore appearing to be critically involved in protection against infection caused by extracellular microorganisms, and in the pathogenesis of autoimmune diseases and allergy. The dynamic balance among subsets of T cells is important for the modulation of several steps of the immune response. Disturbances in this balance may cause a shift from normal immunologic physiology to the development of immune-mediated disorders. In autoimmune diseases, the fine balance between the proportion and degree of activation of the various T lymphocyte subsets can contribute to persistent undesirable inflammatory responses and tissue replacement by fibrosis. This review highlights the importance of TH17 cells in this process by providing an update on the biology of these cells and focusing on their biology and differentiation processes in the context of immune-mediated chronic inflammatory diseases.

  19. Association of autoimmune hepatitis and systemic lupus erythematodes: a case series and review of the literature.

    Science.gov (United States)

    Beisel, Claudia; Weiler-Normann, Christina; Teufel, Andreas; Lohse, Ansgar W

    2014-09-21

    Liver test abnormalities have been described in up to 60% of patients with systemic lupus erythematodes (SLE) at some point during the course of their disease. Prior treatment with potentially hepatotoxic drugs or viral hepatitis is commonly considered to be the main cause of liver disease in SLE patients. However, in rare cases elevated liver enzymes may be due to concurrent autoimmune hepatitis (AIH). To distinguish whether the patient has primary liver disease with associated autoimmune clinical and laboratory features resembling SLE - such as AIH - or the elevation of liver enzymes is a manifestation of SLE remains a difficult challenge for the treating physician. Here, we present six female patients with complex autoimmune disorders and hepatitis. Patient charts were reviewed in order to investigate the complex relationship between SLE and AIH. All patients had coexisting autoimmune disease in their medical history. At the time of diagnosis of AIH, patients presented with arthralgia, abdominal complaints, cutaneous involvement and fatigue as common symptoms. All patients fulfilled the current diagnostic criteria of both, AIH and SLE. Remission of acute hepatitis was achieved in all cases after the initiation of immunosuppressive therapy. In addition to this case study a literature review was conducted.

  20. Autoimmune liver diseases

    Institute of Scientific and Technical Information of China (English)

    Pietro Invernizzi; Ian R Mackay

    2008-01-01

    The liver was one of the earliest recognized sites among autoimmune diseases yet autoimmune hepatitis,primary biliary cirrhosis,primary sclerosing cholangitis,and their overlap forms,are still problematic in diagnosis and causation.The contributions herein comprise 'pairs of articles' on clinical characteristics,and concepts of etiopathogenesis,for each of the above diseases,together with childhood autoimmune liver disease,overlaps,interpretations of diagnostic serology,and liver transplantation.This issue is timely,since we are witnessing an ever increasing applicability of immunology to a wide variety of chronic diseases,hepatic and non-hepatic,in both developed and developing countries.The 11 invited expert review articles capture the changing features over recent years of the autoimmune liver diseases,the underlying immunomolecular mechanisms of development,the potent albeit still unexplained genetic influences,the expanding repertoire of immunoserological diagnostic markers,and the increasingly effective therapeutic possibilities.

  1. The Clinical Diagnosis of Autoimmune Bullous Diseases Sürekli Eğitim

    Directory of Open Access Journals (Sweden)

    Rıfkiye Küçükoğlu

    2011-06-01

    Full Text Available The autoimmune bullous diseases were diagnosed on the clinical and histopathological basis, before the introduction of the immunological assays. However, not the clinical features, but the classification of the diseases has recently changed during the immunological development. According to this new classification, pemphigus group diseases include, pemphigus vulgaris, pemphigus vegetans, pemphigus foliaceus, pemphigus erythematosus, endemic pemphigus, IgA pemphigus, pemphigus herpetiformis, paraneoplastic pemphigus, and drug-induced pemphigus. The subepidermal bullous diseases are classified as pemphigoid group diseases, epidermolysis bullosa acquisita, dermatitis herpetiformis, and linear IgA bullous dermatosis. The pemphigoid-group diseases consist of bullous pemphigoid, childhood bullous pemphigoid, localised bullous pemphigoid, drug-induced pemphigoid, anti p200 pemphigoid, pemphigoid gestationes, pemphigoid nodularis, and cicatricial pemphigoid. In this review, the clinical features of the autoimmune bullous diseases are discussed according to the above mentioned classification. (Turkderm 2010; 45 Suppl 1: 16-25

  2. Stress, acute hyperglycemia, and hyperlipidemia role of the autonomic nervous system and cytokines.

    Science.gov (United States)

    Nonogaki, K; Iguchi, A

    1997-07-01

    Stress is accompanied by metabolic alterations that could contribute to the etiology of diabetes mellitus, arteriosclerosis, and cardiovascular diseases; however, the mechanisms by which stress affects glucose and lipid metabolism remain to be resolved. Stress-induced effects on neurotransmission and interleukin-1 (IL-1) signaling rapidly produce hyperglycemia by increasing sympathetic outflow. Activation of the sympathetic nervous system can also rapidly stimulate lipolysis and hepatic triglyceride secretion. Furthermore, stress increases serum interleukin-6 (IL-6) and nerve growth factor (NGF) levels by activating neuroendocrine systems. IL-6 and NGF can rapidly increase lipolysis and hepatic triglyceride secretion without inducing hyperglycemia. The sympathetic nervous system does not mediate cytokine-induced hypertriglyceridemia. Thus, the central nervous system plays an important role in regulation of hepatic glucose and lipid metabolism via the sympathetic nervous system and cytokines. (Trends Endocrinol Metab 1997;8:192-197). (c) 1997, Elsevier Science Inc.

  3. The role of the sympathetic nervous system in obesity-related hypertension.

    Science.gov (United States)

    da Silva, Alexandre A; do Carmo, Jussara; Dubinion, John; Hall, John E

    2009-06-01

    Obesity is recognized as a major health problem throughout the world. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension and greatly increases the risk for diabetes, cardiovascular diseases, and end-stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, as well as physical compression of the kidneys, especially when visceral obesity is present. Activation of the sympathetic nervous system in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous system melanocortin pathway, and baroreceptor dysfunction.

  4. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    Directory of Open Access Journals (Sweden)

    Monique E Maubert

    2016-01-01

    Full Text Available In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS. Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART, CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND. A number of HIV-1 proteins (Tat, gp120, Nef, Vpr have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.

  5. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  6. Chemokines and their receptors in central nervous system disease.

    Science.gov (United States)

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  7. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  8. Doenças do sistema nervoso de bovinos no semiárido nordestino Diseases of the nervous system of cattle in the semiarid of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Glauco J.N. Galiza

    2010-03-01

    Full Text Available Para determinar as doenças que ocorrem no sistema nervoso de bovinos no semiárido nordestino, foi realizado um estudo retrospectivo em 411 necropsias de bovinos realizadas no Hospital Veterinário da Universidade Federal de Campina Grande, Patos, Paraíba, entre janeiro de 2000 a dezembro de 2008. Dos 411 casos analisados 139 (33,81% apresentaram alterações clínicas do sistema nervoso e as fichas foram revisadas para determinar os principais achados referentes à epidemiologia, aos sinais clínicos e às alterações macroscópicas e microscópicas. Em 28 (20,14% casos o diagnóstico foi inconclusivo. As principais enfermidades foram raiva (48,7% dos casos com sinais nervosos, abscessos cerebrais (7,2% incluindo três casos de abscesso da pituitária, febre catarral maligna (6,3%, botulismo (6,3%, alterações congênitas (4,5%, traumatismo (4,5%, tuberculose (2,7%, tétano (2,7%, infecção por herpesvírus bovino-5 (2,7%, encefalomielite não supurativa (2,7%, intoxicação por Prosopis juliflora (2,7%, status spongiosus congênito de causa desconhecida (1,8% e polioencefalomalacia (1,8%. Outras doenças diagnosticadas numa única oportunidade (0,9% foram criptococose, listeriose, encefalite tromboembólica, linfossarcoma, tripanossomíase e babesiose por Babesia bovis.Diseases of the nervous system of cattle in the semiarid region of northeastern Brazil were evaluated by a retrospective study of 411 cattle necropsies performed in the Veterinary Hospital of the Federal University of Campina Grande, Patos, Paraíba, from January 2000 to December 2008. Of the 411 cases analyzed, 139 (33.81% were from cattle that presented nervous signs and the records were reviewed to determine the epidemiological, clinical, and macroscopic and histologic main features. Diagnosis was inconclusive in 28 cases (20.14%. In cases with diagnosis the main diseases were rabies (48.7% of the cases with nervous signs, brain abscesses (7.2% including three cases of

  9. An overview of travel-associated central nervous system infectious diseases:risk assessment, general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza Izadi; Arman Ishaqi; Mohammad Ali Ishaqi; Nematollah Jonaidi Jafari; Fatemeh Rahamaty; Abdolali Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  10. An overview of travel-associated central nervous system infectious diseases:risk assessment,general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza; Izadi; Annan; Is’haqi; Mohammad; Ali; Is’haqi; Nematollah; Jonaidi; Jafari; Fatemeh; Rahamaty; Abdolali; Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers.Healthy travellers might be exposed to infectious agents of central nervous system,which may require in-patient care.Progressive course is not uncommon in this family of disorders and requires swift diagnosis.An overview of the available evidence in the field is.therefore,Urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research.In November 2013,data were collected from PubMed,Scopus,and Web of knowledge(1980 to2013) including books,reviews,and peer-reviewed literature,Works pertained to pre-travel care,interventions,vaccinations related neurological infections were retrieved.Here we provide information on pre-travel care,vaccination,chronic nervous system disorders,and post-travel complications.Recommendations with regard to knowledge gaps,and state-of-the-art research are made.Given an increasing number of international travellers,novel dynamic ways are available for physicians to monitor spread of central nervous system infections.Newer research has made great progresses in developing newer medications,detecting the spread of infections and the public awareness.Despite an ongoing scientific discussion in the field of travel medicine,further research is required for vaccine development,state-of-the-art laboratory tests,and genetic engineering of vectors.

  11. Management of autoimmune blistering diseases in pregnancy.

    Science.gov (United States)

    McPherson, Tess; Venning, Vanessa V

    2011-10-01

    Autoimmune blistering disease (AIBD) in pregnancy raises several complex management issues associated with underlying pathogenesis and treatment options. This article considers the effects of the disease as well as its treatment for both mother and fetus. All AIBDs can occur in pregnancy but are relatively rare. Pemphigoid gestationis is a rare AIBD that is specific to pregnancy. The article considers each AIBD in turn and then looks at treatment options for the group as a whole, as there are many issues common to all.

  12. Neurogenesis in the adult peripheral nervous system

    Institute of Scientific and Technical Information of China (English)

    Krzysztof Czaja; Michele Fornaro; Stefano Geuna

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  13. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... the nervous system is a cell called a neuron . The human brain contains about 100 billion neurons. A neuron consists ... signal when it gets to neighboring neurons. Motor neurons transmit messages from the brain to control voluntary movement. Sensory neurons detect incoming ...

  14. Restoring the balance: immunotherapeutic combinations for autoimmune disease

    Directory of Open Access Journals (Sweden)

    Dawn E. Smilek

    2014-05-01

    Full Text Available Autoimmunity occurs when T cells, B cells or both are inappropriately activated, resulting in damage to one or more organ systems. Normally, high-affinity self-reactive T and B cells are eliminated in the thymus and bone marrow through a process known as central immune tolerance. However, low-affinity self-reactive T and B cells escape central tolerance and enter the blood and tissues, where they are kept in check by complex and non-redundant peripheral tolerance mechanisms. Dysfunction or imbalance of the immune system can lead to autoimmunity, and thus elucidation of normal tolerance mechanisms has led to identification of therapeutic targets for treating autoimmune disease. In the past 15 years, a number of disease-modifying monoclonal antibodies and genetically engineered biologic agents targeting the immune system have been approved, notably for the treatment of rheumatoid arthritis, inflammatory bowel disease and psoriasis. Although these agents represent a major advance, effective therapy for other autoimmune conditions, such as type 1 diabetes, remain elusive and will likely require intervention aimed at multiple components of the immune system. To this end, approaches that manipulate cells ex vivo and harness their complex behaviors are being tested in preclinical and clinical settings. In addition, approved biologic agents are being examined in combination with one another and with cell-based therapies. Substantial development and regulatory hurdles must be overcome in order to successfully combine immunotherapeutic biologic agents. Nevertheless, such combinations might ultimately be necessary to control autoimmune disease manifestations and restore the tolerant state.

  15. Central nervous system frontiers for the use of erythropoietin

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...... system (CNS). Preclinical studies have demonstrated the presence of EPO receptors in the brain that are up-regulated under hypoxic or ischemic conditions. Intracerebral and systemic administration of epoetin alfa have been demonstrated to elicit marked neuroprotective effects in multiple preclinical...

  16. Low prevalence of hepatitis B virus infection in patients with autoimmune diseases in a Chinese patient population.

    Science.gov (United States)

    Sui, M; Wu, R; Hu, X; Zhang, H; Jiang, J; Yang, Y; Niu, J

    2014-12-01

    Hepatitis B is a very common communicable disease in China but the prevalence of hepatitis B virus (HBV) infection in patients with autoimmune diseases is unknown. We retrospectively investigated the prevalence of autoimmune diseases in patients with HBV infection. The medical records of 4060 patients with autoimmune or nonautoimmune diseases were reviewed. A positive test result for hepatitis B surface antigen (HBsAg) was used to indicate the presence of HBV infection. Autoimmune diseases included autoimmune hepatitis, primary biliary cirrhosis, systemic lupus erythematosus and ulcerative colitis. Nonautoimmune conditions included inguinal hernia, appendicitis and pregnant or postpartum women. The proportion of autoimmune disease patients who were HBsAg positive (2.24%) was significantly lower than that of nonautoimmune disease patients who were HBsAg positive (4.58%; P = 0.0014). Regarding hepatic autoimmune diseases, the positivity rates for HBsAg in autoimmune hepatitis patients (0.83%) and primary biliary cirrhosis patients (1.02%) were both significantly lower than in nonautoimmune patients (4.58%; P = 0.006 and 0.004, respectively). Patients with hepatic autoimmune disease were significantly less likely to be HBsAg positive (0.93%) than patients with non-hepatic autoimmune disease (3.99%; P = 0.002). Patients with autoimmune diseases, especially those with hepatic autoimmune disease, may more efficiently clear HBV than patients with nonautoimmune diseases.

  17. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review.

    Science.gov (United States)

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L Renee; Lebrilla, Carlito B

    2015-02-01

    Herein we will review the role of glycans in the immune system. Specific topics covered include: the glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode "self" identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and extracellular proteins, especially the site-specific glycosylation patterns of the different immunoglobulin(Ig) classes and subclasses.

  18. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System

    Science.gov (United States)

    ... Malformations and Other Vascular Lesions of the Central Nervous System Fact Sheet Table of Contents (click to jump ... other types of vascular lesions affect the central nervous system? What causes vascular lesions? How are AVMs and ...

  19. Liver biopsy interpretation in the differential diagnosis of autoimmune liver disease in children

    Directory of Open Access Journals (Sweden)

    Clara Gerosa

    2013-06-01

    Full Text Available Autoimmune liver disease  (AILD represents a group of complex inflammatory liver diseases, all characterized by an aberrant autoreactivity against hepatocytes and/or biliary structures. AILD may be subclassified into four major diseases: autoimmune hepatitis (AIH, primary biliary cirrhosis (PBC, primary sclerosing cholangitis (PSC, and autoimmune cholangitis (AIC. Recently a new entity frequently associated with autoimmune pancreatitis and defined IgG4-related cholangitis (IgG4-RC,  has been added to the spectrum of AILD. The most frequent autoimmune liver diseases  of the AILD spectrum occurring in children and in young adults are  AIH  and PSC, overlap syndrome between AIH and PSC, also defined as autoimmune sclerosing cholangitis (ASC, representing a frequent finding in pediatric patients. Here,  the morphological findings that may help liver pathologists in the differential diagnosis of AILD in pediatric patients are reviewed, underlying the frequency in liver biopsy interpretation of complex cases in which a precise diagnosis may remain controversial, due to overlap of hepatocytic and bile duct cell lesions. Among the multiple morphological changes typical of AILD,  the detection of an high number of plasma cell clusters in the portal and periportal regions is generally considered one of the main clue for the diagnosis of AIH. The recent report in a 13-year old  boy of IgG4-associated cholangitis, induces  pathologists when detecting a huge number of plasmacells, to consider the differential diagnosis between AIH and IgG4-RC.Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  20. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    Science.gov (United States)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  1. Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Brent J. Ryan

    2014-01-01

    Full Text Available Tissue inflammation results in the production of numerous reactive oxygen, nitrogen and chlorine species, in addition to the products of lipid and sugar oxidation. Some of these products are capable of chemically modifying amino acids. This in turn results in changes to the structure and function of proteins. Increasing evidence demonstrates that such oxidative post-translational modifications result in the generation of neo-epitopes capable of eliciting both innate and adaptive immune responses. In this paper, we focus on how free radicals and related chemical species generated in inflammatory environments modulate the antigenicity of self-proteins, resulting in immune responses which involve the generation of autoantibodies against key autoantigens in autoimmune diseases. As examples, we will focus on Ro-60 and C1q in systemic lupus erythematosus, along with type-II collagen in rheumatoid arthritis. This review also covers some of the emerging literature which demonstrates that neo-epitopes generated by oxidation are conserved, as exemplified by the evolutionarily conserved pathogen-associated molecular patterns (PAMPs. We discuss how these observations relate to the pathogenesis of both human autoimmune diseases and inflammatory disease, such as atherosclerosis. The potential for these neo-epitopes and the immune responses against them to act as biomarkers or therapeutic targets is also discussed.

  2. Non-infectious environmental antigens as a trigger for the initiation of an autoimmune skin disease.

    Science.gov (United States)

    Qian, Ye; Culton, Donna A; Jeong, Joseph S; Trupiano, Nicole; Valenzuela, Jesus G; Diaz, Luis A

    2016-09-01

    Pemphigus represents a group of organ specific autoimmune blistering disorders of the skin mediated by pathogenic autoantibodies with well-defined antigenic targets. While most of these diseases are sporadic, endemic forms of disease do exist. The endemic form of pemphigus foliaceus (also known as fogo selvagem, FS) exhibits epidemiological features that suggest exposure to hematophagous insect bites are a possible precipitating factor of this autoimmune disease, and provides a unique opportunity to study how environmental factors contribute to autoimmune disease development. FS patients and healthy individuals from endemic regions show an autoreactive IgM response that starts in early childhood and becomes restricted to IgG4 autoantibodies in FS patients. In searching for triggering environmental antigens, we have found that IgG4 and IgE autoantibodies from FS patients cross-react with a salivary antigen from sand flies. The presence of these cross-reactive antibodies and antibody genetic analysis confirming that these antibodies evolve from the same naïve B cells provides compelling evidence that this non-infectious environmental antigen could be the initial target of the autoantibody response in FS. Consequently, FS serves as an ideal model to study the impact of environmental antigens in the development of autoimmune disease.

  3. Histamine H(3 receptor integrates peripheral inflammatory signals in the neurogenic control of immune responses and autoimmune disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Dimitry N Krementsov

    Full Text Available Histamine H(3 receptor (Hrh3/H(3R is primarily expressed by neurons in the central nervous system (CNS where it functions as a presynaptic inhibitory autoreceptor and heteroreceptor. Previously, we identified an H(3R-mediated central component in susceptibility to experimental allergic encephalomyelitis (EAE, the principal autoimmune model of multiple sclerosis (MS, related to neurogenic control of blood brain barrier permeability and peripheral T cell effector responses. Furthermore, we identified Hrh3 as a positional candidate for the EAE susceptibility locus Eae8. Here, we characterize Hrh3 polymorphisms between EAE-susceptible and resistant SJL and B10.S mice, respectively, and show that Hrh3 isoform expression in the CNS is differentially regulated by acute peripheral inflammatory stimuli in an allele-specific fashion. Next, we show that Hrh3 is not expressed in any subpopulations of the immune compartment, and that secondary lymphoid tissue is anatomically poised to be regulated by central H(3R signaling. Accordingly, using transcriptome analysis, we show that, inflammatory stimuli elicit unique transcriptional profiles in the lymph nodes of H(3RKO mice compared to WT mice, which is indicative of negative regulation of peripheral immune responses by central H(3R signaling. These results further support a functional link between the neurogenic control of T cell responses and susceptibility to CNS autoimmune disease coincident with acute and/or chronic peripheral inflammation. Pharmacological targeting of H(3R may therefore be useful in preventing the development and formation of new lesions in MS, thereby limiting disease progression.

  4. Applications of Nanotechnology to the Central Nervous System

    Science.gov (United States)

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  5. Therapeutic apheresis in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Bambauer R

    2013-11-01

    Full Text Available Rolf Bambauer,1 Reinhard Latza,2 Carolin Bambauer,3 Daniel Burgard,4 Ralf Schiel5 1Institute for Blood Purification, Homburg, 2Laboratorium of Medicine, St Ingbert, 3Main Hospital Darmstadt, Darmstadt, 4Herz Zentrum, Cardiology, Völklingen, 5Inselklinik Heringsdorf GmbH, Seeheilbad Heringsdorf, Germany Abstract: Systemic autoimmune diseases based on an immune pathogenesis produce autoantibodies and circulating immune complexes, which cause inflammation in the tissues of various organs. In most cases, these diseases have a bad prognosis without treatment. Therapeutic apheresis in combination with immunosuppressive therapies has led to a steady increase in survival rates over the last 35 years. Here we provide an overview of the most important pathogenic aspects indicating that therapeutic apheresis can be a supportive therapy in some systemic autoimmune diseases, such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, and inflammatory eye disease. With the introduction of novel and effective biologic agents, therapeutic apheresis is indicated only in severe cases, such as in rapid progression despite immunosuppressive therapy and/or biologic agents, and in patients with renal involvement, acute generalized vasculitis, thrombocytopenia, leucopenia, pulmonary, cardiac, or cerebral involvement. In mild forms of autoimmune disease, treatment with immunosuppressive therapies and/or biologic agents seems to be sufficient. The prognosis of autoimmune diseases with varying organ manifestations has improved considerably in recent years, due in part to very aggressive therapy schemes. Keywords: therapeutic apheresis, autoimmune diseases, systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, inflammatory eye disease

  6. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system.

    Science.gov (United States)

    Rash, J E

    2010-07-28

    The panglial syncytium maintains ionic conditions required for normal neuronal electrical activity in the central nervous system (CNS). Vital among these homeostatic functions is "potassium siphoning," a process originally proposed to explain astrocytic sequestration and long-distance disposal of K(+) released from unmyelinated axons during each action potential. Fundamentally different, more efficient processes are required in myelinated axons, where axonal K(+) efflux occurs exclusively beneath and enclosed within the myelin sheath, precluding direct sequestration of K(+) by nearby astrocytes. Molecular mechanisms for entry of excess K(+) and obligatorily-associated osmotic water from axons into innermost myelin are not well characterized, whereas at the output end, axonally-derived K(+) and associated osmotic water are known to be expelled by Kir4.1 and aquaporin-4 channels concentrated in astrocyte endfeet that surround capillaries and that form the glia limitans. Between myelin (input end) and astrocyte endfeet (output end) is a vast network of astrocyte "intermediaries" that are strongly inter-linked, including with myelin, by abundant gap junctions that disperse excess K(+) and water throughout the panglial syncytium, thereby greatly reducing K(+)-induced osmotic swelling of myelin. Here, I review original reports that established the concept of potassium siphoning in unmyelinated CNS axons, summarize recent revolutions in our understanding of K(+) efflux during axonal saltatory conduction, then describe additional components required by myelinated axons for a newly-described process of voltage-augmented "dynamic" potassium siphoning. If any of several molecular components of the panglial syncytium are compromised, K(+) siphoning is blocked, myelin is destroyed, and axonal saltatory conduction ceases. Thus, a common thread linking several CNS demyelinating diseases is the disruption of potassium siphoning/water transport within the panglial syncytium

  7. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson's disease.

    Science.gov (United States)

    Niwa, Fumitoshi; Kuriyama, Nagato; Nakagawa, Masanori; Imanishi, Jiro

    2011-12-01

    Patients with Parkinson's disease (PD) often suffer from non-motor symptoms, including sleep and autonomic dysfunctions, controlled by circadian regulation. To evaluate the alteration of circadian rhythm in PD patients, we investigated both rest activities and autonomic functions. Twenty-seven patients with idiopathic PD and 30 age-matched control subjects were recruited. Group comparisons of controls (mean age: 68.93 years), early-PD patients classified as Hoehn-Yahr (HY) stage 1&2 (mean age: 70.78 years), and advanced-PD as HY 3&4 (mean age: 68.61 years) were conducted. Measurement of rest activities was performed using Actigraph for 7 continuous days, and included measuring rhythm patterns (activity patterns recorded in or out of bed) and circadian rhythm amplitudes (power of the cycle being closest to 24h). A power spectral analysis of heart rate variability (HRV) using 24-hour ambulatory ECG was also performed. The actigraphic measurements indicated that statistically PD patients have lower activity levels when out of bed and higher activity levels when in bed, and that, the circadian rest-activity rhythm in PD decreases with disease severity. The HRV analysis showed that the total frequency component and low frequency/high frequency ratio were low in PD patients, suggesting that autonomic activities and the circadian rhythm of the sympathetic nervous system are attenuated in PD. This study elucidated the disorganization in the rest activities and HRV of PD patients as well as the gradual alterations in the circadian rhythm. The circadian rhythm disturbances are important to consider the mechanism of non-motor symptoms that occur from early stage of PD.

  8. Are human endogenous retroviruses triggers of autoimmune diseases?

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Villesen, Palle; Nissen, Kari K

    2016-01-01

    Autoimmune diseases encompass a plethora of conditions in which the immune system attacks its own tissue, identifying them as foreign. Multiple factors are thought to contribute to the development of immune response to self, including differences in genotypes, hormonal milieu, and environmental...... manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus...... was associated with each of the three diseases. Although there was a significant overlap, most loci only occurred in one of the studied disease. Remarkably, within each disease, there was a statistical interaction (synergy) between two loci. Additional synergy between retroviral loci and human lymphocyte...

  9. Clinical characteristics and the incidence of extrahepatic autoimmune disease and malignant tumor in primary biliary cirrhosis-autoimmune hepatitis overlap syndrome

    Institute of Scientific and Technical Information of China (English)

    杨蜜蜜

    2013-01-01

    Objective To analyze clinical pathologic characteristics of patients with primary biliary cirrhosis-autoimmune hepatitis overlap syndrome (PBC-AIH OS) ,the incidence of extrahepatic autoimmune disease,malignant tumor and the abdominal lymph node enlargement.Methods From January 2000 to January 2012,the clinical data of 49 patients with PBC-AIH OS were retrospectively analyzed,which included general information,clinical manifestations,biochemical parameters,immu-

  10. Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation

    Directory of Open Access Journals (Sweden)

    Carmen Infante‑Duarte

    2013-03-01

    Full Text Available Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier. Both processes can be visualized by MRI (magnetic resonance imaging, in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis. We previously showed that VSOPs (very small superparamagnetic iron oxide particles reveal CNS (central nervous system lesions in EAE which are not detectable by conventional contrast agents in MRI. We hypothesized that VSOP may help detect early, subtle inflammatory events that would otherwise remain imperceptible. To investigate the capacity of VSOP to reveal early events in CNS inflammation, we induced EAE in SJL mice using encephalitogenic T-cells, and administered VSOP prior to onset of clinical symptoms. In parallel, we administered VSOP to mice at peak disease, and to unmanipulated controls. We examined the distribution of VSOP in the CNS by MRI and histology. Prior to disease onset, in asymptomatic mice, VSOP accumulated in the choroid plexus and in spinal cord meninges in the absence of overt inflammation. However, VSOP was undetectable in the CNS of non-immunized control mice. At peak disease, VSOP was broadly distributed; we observed particles in perivascular inflammatory lesions with apparently preserved glia limitans. Moreover, at peak disease, VSOP was prominent in the choroid plexus and was seen in elongated endothelial structures, co-localized with phagocytes, and diffusely disseminated in the parenchyma, suggesting multiple entry mechanisms of VSOP into the CNS. Thus, using VSOP we were able to discriminate between inflammatory events occurring in established EAE and, importantly, we identified CNS alterations that appear to precede immune cell infiltration and clinical onset.

  11. Iron Oxide Magnetic Nanoparticles Highlight Early Involvement of the Choroid Plexus in Central Nervous System Inflammation

    Directory of Open Access Journals (Sweden)

    Jason M. Millward

    2013-03-01

    Full Text Available Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier. Both processes can be visualized by MRI (magnetic resonance imaging, in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis. We previously showed that VSOPs (very small superparamagnetic iron oxide particles reveal CNS (central nervous system lesions in EAE which are not detectable by conventional contrast agents in MRI. We hypothesized that VSOP may help detect early, subtle inflammatory events that would otherwise remain imperceptible. To investigate the capacity of VSOP to reveal early events in CNS inflammation, we induced EAE in SJL mice using encephalitogenic T-cells, and administered VSOP prior to onset of clinical symptoms. In parallel, we administered VSOP to mice at peak disease, and to unmanipulated controls. We examined the distribution of VSOP in the CNS by MRI and histology. Prior to disease onset, in asymptomatic mice, VSOP accumulated in the choroid plexus and in spinal cord meninges in the absence of overt inflammation. However, VSOP was undetectable in the CNS of non-immunized control mice. At peak disease, VSOP was broadly distributed; we observed particles in perivascular inflammatory lesions with apparently preserved glia limitans. Moreover, at peak disease, VSOP was prominent in the choroid plexus and was seen in elongated endothelial structures, co-localized with phagocytes, and diffusely disseminated in the parenchyma, suggesting multiple entry mechanisms of VSOP into the CNS. Thus, using VSOP we were able to discriminate between inflammatory events occurring in established EAE and, importantly, we identified CNS alterations that appear to precede immune cell infiltration and clinical onset.

  12. Nonviral Gene Therapy of the Nervous System: Electroporation.

    Science.gov (United States)

    Ding, Xue-Feng; Fan, Ming

    2016-01-01

    Electroporation has been widely used to efficiently transfer foreign genes into the mammalian central nervous system (CNS), and thus plays an important role in gene therapeutic studies on some brain disorders. A lot of work concerning electroporation is focused on gene transfer into rodent brains. This technique involves an injection of nucleic acids into the brain ventricle or specific area and then applying appropriate electrical field to the injected area. Here, we briefly introduced the advantages and the basic procedures of gene transfer into the rodent brain using electroporation. Better understanding of electroporation in rodent brain may further facilitate gene therapeutic studies on brain disorders.

  13. A Systematic Literature Review of the Association of Lipoprotein(a) and Autoimmune Diseases and Atherosclerosis

    OpenAIRE

    Missala, I.; Kassner, U.; Steinhagen-Thiessen, E.

    2012-01-01

    Objective. To investigate the association of lipoprotein(a) and atherosclerosis-related autoimmune diseases, to provide information on possible pathophysiologic mechanisms, and to give recommendations for Lp(a) determination and therapeutic options. Methods. We performed a systematic review of English language citations referring to the keywords “Lp(a)” AND “autoimmune disease” AND “atherosclerosis,” “Lp(a)” AND “immune system” OR “antiphospholipid (Hughes) syndrome (APS)” OR “rheumatoid arth...

  14. The expression of SEIPIN in the mouse central nervous system.

    Science.gov (United States)

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  15. ELR chemokine signaling in host defense and disease in a viral model of central nervous system disease

    Directory of Open Access Journals (Sweden)

    Martin P Hosking

    2014-06-01

    Full Text Available Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV into the central nervous system (CNS of susceptible strains of mice results in an acute encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration of virus-specific T cells that contribute to host defense through cytokine secretion and cytolytic activity. Mice that survive the acute stage of disease develop an immune-mediated demyelinating diseases characterized by viral persistence in white matter tracts and a chronic neuroinflammatory response dominated by T cells and macrophages. Early following JHMV infection, there is a dynamic expression of chemokines and chemokine receptors that contribute to neuroinflammation by regulating innate and adaptive immune responses as well influencing glial biology. In response to JHMV infection, we have shown that signaling through the chemokine receptor CXCR2 contributes to host defense through recruitment of polymorphonuclear cells (PMNs to the CNS that enhance permeability of the blood-brain-barrier (BBB and facilitating entry of virus-specific T cells into the parenchyma. Further, CXCR2 promotes the protection of oligodendroglia from cytokine-induced apoptosis and restricts the severity of demyelination. This review covers aspects related to the role of CXCR2 in host defense and disease in response to JHMV infection.

  16. Occurrence of Autoimmune Diseases Related to the Vaccine against Yellow Fever.

    Science.gov (United States)

    Oliveira, Ana Cristina Vanderley; Maria Henrique da Mota, Licia; Dos Santos-Neto, Leopoldo Luiz; De Carvalho, Jozélio Freire; Caldas, Iramaya Rodrigues; Martins Filho, Olindo Assis; Tauil, Pedro Luis

    2014-01-01

    Yellow fever is an infectious disease, endemic in South America and Africa. This is a potentially serious illness, with lethality between 5 and 40% of cases. The most effective preventive vaccine is constituted by the attenuated virus strain 17D, developed in 1937. It is considered safe and effective, conferring protection in more than 90% in 10 years. Adverse effects are known as mild reactions (allergies, transaminases transient elevation, fever, headache) and severe (visceral and neurotropic disease related to vaccine). However, little is known about its potential to induce autoimmune responses. This systematic review aims to identify the occurrence of autoinflammatory diseases related to 17D vaccine administration. Six studies were identified describing 13 possible cases. The diseases were Guillain-Barré syndrome, multiple sclerosis, multiple points evanescent syndrome, acute disseminated encephalomyelitis, autoimmune hepatitis, and Kawasaki disease. The data suggest that 17D vaccination may play a role in the mechanism of loss of self-tolerance.

  17. Occurrence of Autoimmune Diseases Related to the Vaccine against Yellow Fever

    Directory of Open Access Journals (Sweden)

    Ana Cristina Vanderley Oliveira

    2014-01-01

    Full Text Available Yellow fever is an infectious disease, endemic in South America and Africa. This is a potentially serious illness, with lethality between 5 and 40% of cases. The most effective preventive vaccine is constituted by the attenuated virus strain 17D, developed in 1937. It is considered safe and effective, conferring protection in more than 90% in 10 years. Adverse effects are known as mild reactions (allergies, transaminases transient elevation, fever, headache and severe (visceral and neurotropic disease related to vaccine. However, little is known about its potential to induce autoimmune responses. This systematic review aims to identify the occurrence of autoinflammatory diseases related to 17D vaccine administration. Six studies were identified describing 13 possible cases. The diseases were Guillain-Barré syndrome, multiple sclerosis, multiple points evanescent syndrome, acute disseminated encephalomyelitis, autoimmune hepatitis, and Kawasaki disease. The data suggest that 17D vaccination may play a role in the mechanism of loss of self-tolerance.

  18. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

    Science.gov (United States)

    Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  19. 内皮微粒与中枢神经系统疾病%Endothelial microparticles and the diseases of central nervous system

    Institute of Scientific and Technical Information of China (English)

    杨凤华

    2012-01-01

    Endothelial microparticles(EMPs) are microvesicles released from the membrane of activated,injured or apoptotic endothelial cells.It is important to discriminate EMPs from apoptotic bodies and exosomes.Endothelial microparticles contain protein,lipid,mRNA,microRNA and adhesion molecule.By now,the mechanisms that lead to the formation of EMPs are not completely elucidated,probably including loss of membrane phospholipid asymmetry and cytoskeleton reorganization.The connection between EMPs and central nervous system disease are getting more attracted.At different stages of diseases,such as ischemic stroke,hemorrhage stroke,macrovascular complications in type 2 diabetes mellitus,cerebral malaria,multiple sclerosis and traumatic brain injury,the level of EMPs in circulation or cerebral spinal fluid would change differently.It might be a biomarker to understand the mechanism,determine the severity and prognosis,and also the focus to diagnose and treat the central nervous system diseases.%内皮细胞在受到活化、损伤或凋亡时脱落的微粒即为内皮微粒.微粒与外染色体及凋亡小体在亚细胞起源、大小、内容及产生机制方面是不同的.内皮微粒具有蛋白质、脂质、核酸、黏附分子等成分,可通过细胞骨架破坏、膜磷脂不对称分布消失等机制形成.在缺血性脑卒中、出血性脑卒中、糖尿病脑血管病变、脑型疟疾、多发性硬化、脑外伤等,不同疾病时期的循环血和(或)脑脊液中内皮微粒的水平有不同程度的变化.内皮微粒成为理解中枢神经系统疾病发病机制、判断病情及预后指标,并可能成为中枢神经系统疾病诊治的靶点.

  20. History and milestones of mouse models of autoimmune diseases.

    Science.gov (United States)

    Yu, Xinhua; Huang, Qiaoniang; Petersen, Frank

    2015-01-01

    Autoimmune diseases are a group of disorders mediated by self-reactive T cells and/or autoantibodies. Mice, as the most widely used animal for modeling autoimmune disorders, have been extensively used in the investigation of disease pathogenesis as well as in the search for novel therapeutics. Since the first mouse model of multiple sclerosis was established more than 60 years ago, hundreds of mouse models have been established for tens of autoimmune diseases. These mouse models can be divided into three categories based on the approaches used for disease induction. The first one represents the induced models in which autoimmunity is initiated in mice by immunization, adoptive transfer or environmental factors. The second group is formed by the spontaneous models where mice develop autoimmune disorders without further induction. The third group refers to the humanized models in which mice bearing humanized cells, tissues, or genes, develop autoimmune diseases either spontaneously or by induction. This article reviews the history and highlights the milestones of the mouse models of autoimmune diseases.

  1. Fungal infections of the central nervous system: The clinical syndromes

    Directory of Open Access Journals (Sweden)

    Murthy J.M.K

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS are being increasingly diagnosed both in immunocompromised and immunocompetent individuals. Sinocranial aspergillosis is more frequently described from countries with temperate climates, more often in otherwise immunocompetent individuals. The clinical syndromes with which fungal infections of the CNS can present are protean and can involve most part of the neuroaxis. Certain clinical syndromes are specific for certain fungal infections. The rhinocerebral form is the most common presenting syndrome with zygomycosis and skull-base syndromes are often the presenting clinical syndromes in patients with sinocranial aspergillosis. Subacute and chronic meningitis in patients with HIV infection is more likely to be due to cryptococcal infection. Early recognition of the clinical syndromes in an appropriate clinical setting is the first step towards achieving total cure in some of these infections.

  2. Cardiovascular and autoimmune diseases in females: The role of microvasculature and dysfunctional endothelium.

    Science.gov (United States)

    Gianturco, L; Bodini, B D; Atzeni, F; Colombo, C; Stella, D; Sarzi-Puttini, P; Drago, L; Galaverna, S; Turiel, M

    2015-07-01

    Cardiovascular (CV) diseases are becoming increasingly frequent and associated with a high incidence of CV events, disability and death. It is known that there is a relationship between CV burden and systemic autoimmune diseases (SADs) that is mainly due to inflammation and autoimmunity, but the other mechanisms underlying the high CV risk of SAD patients have not yet been fully clarified. The aim of this review article is to discuss some of the specific factors associated with the accelerated atherosclerosis (ATS) characterising SADs (fema