WorldWideScience

Sample records for autoimmune diabetic nod

  1. Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent.

    Science.gov (United States)

    Serreze, D V; Chapman, H D; Varnum, D S; Gerling, I; Leiter, E H; Shultz, L D

    1997-04-15

    MHC class II alleles clearly contribute a primary genetic component of susceptibility to autoimmune insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. However, IDDM does not occur in NOD mice made MHC class I-deficient by a functionally inactivated beta2-microglobulin allele (beta2m(null)). In the present study the beta2m(null) mutation was used to examine the relative contributions of MHC class I and class II-dependent T cell responses for initiating autoimmune pancreatic beta cell destruction in NOD mice. Splenocytes from diabetic NOD donors transferred IDDM to both lymphocyte-deficient NOD-scid (class I+) and NOD-scid.beta2m(null) mice (class I-). In contrast, splenocytes from young prediabetic NOD donors only transferred IDDM to class I+, but not class I- NOD-scid recipients. However, splenocytes from prediabetic NOD donors did transfer IDDM to NOD-scid.beta2m(null) recipients previously engrafted with class I+, but not class I-, pancreatic islets. CD4+ T cell lines reactive against some syngeneic class I+ targets could be isolated from NOD.beta2m(null) mice. However, NOD.beta2m(null) T cells underwent activation-driven deletion when transferred into class I+ NOD-scid recipients. Hence, the class I autoreactive T cells present in NOD.beta2m(null) donors did not elicit IDDM when transferred into class I+ NOD-scid recipients. Collectively, these results show that autoimmune IDDM in NOD mice is initiated by MHC class I-dependent T cell responses, but this leads to the subsequent activation of additional T cell populations that can mediate pancreatic beta cell destruction in a MHC class I-independent manner.

  2. The dual role of scavenger receptor class A in development of diabetes in autoimmune NOD mice.

    Directory of Open Access Journals (Sweden)

    Mami Shimizu

    Full Text Available Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A-/- nonobese diabetic (NOD mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A-/- NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I:C was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I:C. In addition, injection of high-dose poly(I: C to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A-/- NOD mice compared with untreated SR-A-/- NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A-/- NOD mice treated with poly(I:C than in untreated SR-A-/- NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A-/- NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I:C treatment even in SR-A-/- NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes.

  3. Human LT-alpha-mediated resistance to autoimmune diabetes is induced in NOD, but not NOD-scid, mice and abrogated by IL-12.

    Science.gov (United States)

    Miyaguchi, S; Satoh, J; Takahashi, K; Sakata, Y; Nakazawa, T; Miyazaki, J; Toyota, T

    2001-01-01

    Systemic administration of human lymphotoxin-alpha (hLT-alpha) made NOD mice resistant not only to spontaneous autoimmune type 1 diabetes mellitus but also to cyclophosphamide (CY)-induced diabetes and diabetes transfer by diabetic NOD spleen cells (triple resistance). In this study we analyzed the mechanisms of hLT-alpha-induced resistance, focusing on (1) hLT-alpha-induced resistance in the pancreatic beta cell, (2) CY-resistant suppressor cells, (3) suppression of induction or function of effector cells for beta cell destruction, or (4) others. To examine the first possibility in vitro, a NOD-derived beta cell line (MIN6N) was pretreated with hLT-alpha and then mixed with diabetic NOD spleen cells and MIN6N cell viability was measured. Treatment with hLT-alpha did not protect MIN6N cells but rather enhanced cytotoxicity. Next NOD-scid mice were pretreated with hLT-alpha and then transferred with diabetic NOD spleen. All the recipients developed diabetes. These results excluded the first possibility. The second possibility was also excluded by a cotransfer experiment, in which diabetic NOD spleen cells were cotransferred to NOD-scid mice with nontreated or hLT-alpha-treated nondiabetic NOD spleens. There was no significant difference in diabetes incidence between the two groups. To observe the third possibility, spleen cells of hLT-alpha-treated triple-resistant NOD mice were transferred to NOD-scid mice. Diabetes developed in the recipients, although the onset of diabetes was slightly delayed. Finally, hLT-alpha-treated triple-resistant NOD mice developed diabetes 1 week after daily IL-12 treatment. In summary, hLT-alpha administration made NOD mice resistant to effector cells for beta cell destruction. This resistance was induced in NOD, but not in NOD-scid, mice, indicating that lymphocytes were obligatory for the resistance. However, it was not mediated by transferable suppressor cells. Because effector cells were present in hLT-alpha-treated NOD spleen and

  4. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  5. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    International Nuclear Information System (INIS)

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-01-01

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  6. Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance.

    Science.gov (United States)

    Zhang, Chengliang; Gui, Ling; Xu, Yanjiao; Wu, Tao; Liu, Dong

    2013-08-01

    Andrographolide, an active component in traditional anti-diabetic herbal plants, is a diterpenoid lactone isolated from Andrographis paniculata because of its potent anti-inflammatory and hypoglycemic effects. However, the effect of andrographolide on the development of diabetes in autoimmune non-obese diabetic (NOD) mice remains unknown. This study aimed to investigate the protective effects of andrographolide on the development of autoimmune diabetes and clarify the underlying mechanism. NOD mice were randomly divided into four groups and administered with water and andrographolide at 50, 100, and 150mg/kg body weight for four weeks. ICR mice were also selected as the control group. Oral glucose tolerance and histopathological insulitis were examined. Th1/Th2/Th17 cytokine secretion was determined by ELISA. The transcriptional profiles of T-bet, GATA3, and RORγt in the pancreatic lymphatic node samples derived from the NOD mice were detected by RT-PCR. After four weeks of oral supplementation, andrographolide significantly inhibited insulitis, delayed the onset, and suppressed the development of diabetes in 30-week-old NOD mice in a dose dependent manner. This protective status was correlated with a substantially decreased production of interferon (IFN)-γ and interleukin (IL)-2, increased IL-10 and transforming growth factor (TGF)-β, and a reduced IL-17. Andrographolide also increased GATA3 mRNA expression but decreased T-bet and RORγt mRNA expressions. Our results suggested that andrographolide prevented type 1 diabetes by maintaining Th1/Th2/Th17 homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice.

    Science.gov (United States)

    Chen, Yulin; Wu, Jie; Wang, Jiajia; Zhang, Wenjing; Xu, Bohui; Xu, Xiaojun; Zong, Li

    2018-03-15

    The intestinal immune system is an ideal target to induce immune tolerance physiologically. However, the efficiency of oral protein antigen delivery is limited by degradation of the antigen in the gastrointestinal tract and poor uptake by antigen-presenting cells. Gut dendritic cells (DCs) are professional antigen-presenting cells that are prone to inducing antigen-specific immune tolerance. In this study, we delivered the antigen heat shock protein 65-6×P277 (H6P) directly to the gut DCs of NOD mice through oral vaccination with H6P-loaded targeting nanoparticles (NPs), and investigated the ability of this antigen to induce immune tolerance to prevent autoimmune diabetes in NOD mice. A targeting NP delivery system was developed to encapsulate H6P, and the ability of this system to protect and facilitate H6P delivery to gut DCs was assessed. NOD mice were immunised with H6P-loaded targeting NPs orally once a week for 7 weeks and the onset of diabetes was assessed by monitoring blood glucose levels. H6P-loaded targeting NPs protected the encapsulated H6P from degradation in the gastrointestinal tract environment and significantly increased the uptake of H6P by DCs in the gut Peyer's patches (4.1 times higher uptake compared with the control H6P solution group). Oral vaccination with H6P-loaded targeting NPs induced antigen-specific T cell tolerance and prevented diabetes in 100% of NOD mice. Immune deviation (T helper [Th]1 to Th2) and CD4 + CD25 + FOXP3 + regulatory T cells were found to participate in the induction of immune tolerance. In this study, we successfully induced antigen-specific T cell tolerance and prevented the onset of diabetes in NOD mice. To our knowledge, this is the first attempt at delivering antigen to gut DCs using targeting NPs to induce T cell tolerance.

  8. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice

    Directory of Open Access Journals (Sweden)

    Sytwu Huey-Kang

    2009-08-01

    Full Text Available Abstract Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD mice. Methods Islets were isolated from NOD mice and transduced with lentivirus carrying TRX (Lt-TRX or enhanced green fluorescence protein (Lt-eGFP, respectively. Transduced islets were transplanted under the left kidney capsule of female diabetic NOD mice, and blood glucose concentration was monitored daily after transplantation. The histology of the islet graft was assessed at the end of the study. The protective effect of TRX on islets was investigated. Results The lentiviral vector effectively transduced islets without altering the glucose-stimulating insulin-secretory function of islets. Overexpression of TRX in islets reduced hydrogen peroxide-induced cytotoxicity in vitro. After transplantation into diabetic NOD mice, euglycemia was maintained for significantly longer in Lt-TRX-transduced islets than in Lt-eGFP-transduced islets; the mean graft survival was 18 vs. 6.5 days (n = 9 and 10, respectively, p Conclusion We successfully transduced the TRX gene into islets and demonstrated that these genetically modified grafts are resistant to inflammatory insult and survived longer in diabetic recipients. Our results further support the concept that the reactive oxygen species (ROS scavenger and antiapoptotic functions of TRX are critical to islet survival after

  9. Prevention of spontaneous autoimmune diabetes in NOD mice by transferring in vitro antigen-pulsed syngeneic dendritic cells

    DEFF Research Database (Denmark)

    Papaccio, G; Nicoletti, F; Pisanti, F A

    2000-01-01

    To evaluate the effect of antigen-pulsed dendritic cell (DC) transfer on the development of diabetes, 5-week-old female NOD mice received a single iv injection of splenic syngeneic DC from euglycemic NOD mice pulsed in vitro with human y globulin (HGG). Eleven of 12 mice were protected from the d...... exogenous IL-4 and IL-10 exert antidiabetogenic effect in NOD mice and early blockade of endogenous tumor necrosis factor-alpha prevents NOD mouse diabetes, these phenomena may be causally related to the antidiabetogenic effect of HGG-pulsed DC treatment....... the development of diabetes up to the age of 25 weeks, and the insulitis score was significantly reduced. In contrast, NOD mice receiving unpulsed splenic DCs showed histological signs of insulitis and course of type 1 diabetes similar to untreated NOD mice. Treatment with HGG-pulsed DC was associated...

  10. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset.

    Directory of Open Access Journals (Sweden)

    Hannelie Korf

    Full Text Available Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D. However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.

  11. Development of Spontaneous Autoimmune Peripheral Polyneuropathy in B7-2–Deficient Nod Mice

    Science.gov (United States)

    Salomon, Benoît; Rhee, Lesley; Bour-Jordan, Helene; Hsin, Honor; Montag, Anthony; Soliven, Betty; Arcella, Jennifer; Girvin, Ann M.; Miller, Stephen D.; Bluestone, Jeffrey A.

    2001-01-01

    An increasing number of studies have documented the central role of T cell costimulation in autoimmunity. Here we show that the autoimmune diabetes-prone nonobese diabetic (NOD) mouse strain, deficient in B7-2 costimulation, is protected from diabetes but develops a spontaneous autoimmune peripheral polyneuropathy. All the female and one third of the male mice exhibited limb paralysis with histologic and electrophysiologic evidence of severe demyelination in the peripheral nerves beginning at 20 wk of age. No central nervous system lesions were apparent. The peripheral nerve tissue was infiltrated with dendritic cells, CD4+, and CD8+ T cells. Finally, CD4+ T cells isolated from affected animals induced the disease in NOD.SCID mice. Thus, the B7-2–deficient NOD mouse constitutes the first model of a spontaneous autoimmune disease of the peripheral nervous system, which has many similarities to the human disease, chronic inflammatory demyelinating polyneuropathy (CIDP). This model demonstrates that NOD mice have “cryptic” autoimmune defects that can polarize toward the nervous tissue after the selective disruption of CD28/B7-2 costimulatory pathway. PMID:11535635

  12. Imaging dynamics of CD11c+ cells and Foxp3+ cells in progressive autoimmune insulitis in the NOD mouse model of type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt-Christensen, Anja; Hansen, Lisbeth; Ilegems, Erwin

    2013-01-01

    Aims/hypothesis The aim of this study was to visualise the dynamics and interactions of the cells involved in autoimmune-driven inflammation in type 1 diabetes. Methods We adopted the anterior chamber of the eye (ACE) transplantation model to perform non-invasive imaging of leucocytes infiltrating......, in spite of the immune privileged status of the eye, the ACE-transplanted islets develop infiltration and beta cell destruction, recapitulating the autoimmune insulitis of the pancreas, and exemplify this by analysing reporter cell populations expressing green fluorescent protein under the Cd11c or Foxp3...

  13. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    Science.gov (United States)

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  14. Gangliosides and autoimmune diabetes.

    Science.gov (United States)

    Misasi, R; Dionisi, S; Farilla, L; Carabba, B; Lenti, L; Di Mario, U; Dotta, F

    1997-09-01

    -dependent (type 1) diabetes mellitus. This last disease is caused by the autoimmune destruction of insulin-producing pancreatic islet cells in genetically predisposed individuals. Autoantibodies and T lymphocytes directed towards multiple islet autoantigens have been detected in the circulation, well before the clinical onset of the disease, in a prodromal phase during which pancreatic islet beta-cells are presumably destroyed. Among the target autoantigens, some are of protein nature but others are acidic glycolipids such as sulphatides158 and the gangliosides GT3, GD3 and especially GM2-1. This last component is specifically expressed in pancreatic islets and has been shown to represent a target of IgG autoantibodies highly associated with diabetes development in first-degree relatives of type 1 diabetic individuals. In addition, the GM2-1 ganglioside appears to be one of the antigens recognized by cytoplasmic ICA, a heterogeneous group of antibodies which specifically react with islets on pancreatic frozen sections. In conclusion, studies performed in the last decade have clearly indicated that gangliosides represent a heterogeneous class of molecules that are involved in several cellular processes that are of crucial importance in physiological as well as in pathological conditions. Interestingly, these molecules, despite their small size, have been shown to represent not only important antigens in tumour immunology but are also able to elicit a specific autoimmune response, thus representing important autoantigens in some autoimmune disorders. It is of interest that, in addition to neurological autoimmune disorders where autoimmunity to gangliosides is frequent and usually of considerable magnitude, an autoimmune response to this class of molecules has been observed in autoimmune diabetes. (ABSTRACT TRUNCATED)

  15. Mechanisms of Mycobacterium avium-induced resistance against insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice: role of Fas and Th1 cells.

    Science.gov (United States)

    Martins, T C; Aguas, A P

    1999-02-01

    NOD mice spontaneously develop autoimmune diabetes. One of the manipulations that prevent diabetes in NOD mice is infection with mycobacteria or immunization of mice with mycobacteria-containing adjuvant. Infection of NOD mice with Mycobacterium avium, done before the mice show overt diabetes, results in permanent protection of the animals from diabetes and this protective effect is associated with increased numbers of CD4+ T cells and B220+ B cells. Here, we investigate whether the M. avium-induced protection of NOD mice from diabetes was associated with changes in the expression of Fas (CD95) and FasL by immune cells, as well as alterations in cytotoxic activity, interferon-gamma (IFN-gamma) and IL-4 production and activation of T cells of infected animals. Our data indicate that protection of NOD mice from diabetes is a Th1-type response that is mediated by up-regulation of the Fas-FasL pathway and involves an increase in the cytotoxicity of T cells. These changes are consistent with induction by the infection of regulatory T cells with the ability of triggering deletion or anergy of peripheral self-reactive lymphocytes that cause the autoimmune disease of NOD mice.

  16. Flow cytometric gating for spleen monocyte and DC subsets: differences in autoimmune NOD mice and with acute inflammation.

    Science.gov (United States)

    Dong, Matthew B; Rahman, M Jubayer; Tarbell, Kristin V

    2016-05-01

    The role of antigen presenting cells (APCs) in the pathogenesis of autoimmune and other inflammatory diseases is now better understood due to advances in multicolor flow cytometry, gene expression analysis of APC populations, and functional correlation of mouse to human APC populations. A simple but informative nomenclature of conventional and plasmacytoid dendritic cell subsets (cDC1, cDC2, pDC) and monocyte-derived populations incorporates these advances, but accurate subset identification is critical. Ambiguous gating schemes and alterations of cell surface markers in inflammatory condition can make comparing results between studies difficult. Both acute inflammation, such as TLR-ligand stimulation, and chronic inflammation as found in mouse models of autoimmunity can alter DC subset gating. Here, we address these issues using in vivo CpG stimulation as an example of acute inflammation and the non-obese diabetic (NOD) mouse as a model of chronic inflammation.We provide a flow cytometric antibody panel and gating scheme that differentiate 2 monocytic and 3DC subsets in the spleen both at steady state and after CpG stimulation. Using this method, we observed differences in the composition of NOD DCs that have been previously reported, and newly identified increases in the number of NOD monocyte-derived DCs. Finally, we established a protocol for DC phosphoflow to measure the phosphorylation state of intracellular proteins, and use it to confirm functional differences in the identified subsets. Therefore, we present optimized methods for distinguishing monocytic and DC populations with and without inflammation and/or autoimmunity associated with NOD mice. Published by Elsevier B.V.

  17. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice.

    Science.gov (United States)

    Pearson, Todd; Markees, Thomas G; Serreze, David V; Pierce, Melissa A; Marron, Michele P; Wicker, Linda S; Peterson, Laurence B; Shultz, Leonard D; Mordes, John P; Rossini, Aldo A; Greiner, Dale L

    2003-07-01

    Curing type 1 diabetes by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. Most islet allotransplant tolerance induction protocols have been tested in nonobese diabetic (NOD) mice, and most have failed. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Out of concern that NOD biology could be misleading in this regard, we tested the hypothesis that autoimmunity and resistance to transplantation tolerance in NOD mice are distinct phenotypes. Unexpectedly, we observed that (NOD x C57BL/6)F(1) mice, which have no diabetes, nonetheless resist prolongation of skin allografts by costimulation blockade. Further analyses revealed that the F(1) mice shared the dendritic cell maturation defects and abnormal CD4(+) T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice can be dissociated genetically. The outcomes of tolerance induction protocols tested in NOD mice may not accurately predict outcomes in human subjects.

  18. Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update.

    Science.gov (United States)

    Wan, Xiaoxiao; Unanue, Emil R

    2017-06-01

    Although an autoimmune disease involves diverse self-antigens, the initiation stage may require recognition of a limited number. This concept is verified in the non-obese diabetic (NOD) mouse model of autoimmune diabetes, in which strong evidence points to insulin as the prime antigen. The NOD mouse bears the I-A g7 class II-MHC molecules (MHCII) that share common biochemical features and peptidome selection with the human diabetes-susceptible HLA-DQ8. Furthermore, both NOD mice and patients with type 1 diabetes (T1D) display an early appearance of insulin autoantibodies (IAAs) and subsequent insulin-reactive T cell infiltration into the islets. Therefore, a better understanding of insulin presentation is crucial for assessing disease pathogenesis and therapeutic intervention. Here, we summarize recent advances in insulin presentation events that underlie the essential role of this autoantigen in driving autoimmune diabetes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA accelerates the spontaneous development of diabetes in non-obese diabetic (NOD mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l, a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4 from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  20. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes

    International Nuclear Information System (INIS)

    Yang Zandong; Chen Meng; Carter, Jeffrey D.; Nunemaker, Craig S.; Garmey, James C.; Kimble, Sarah D.; Nadler, Jerry L.

    2006-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease leading to near complete pancreatic β-cell destruction. New evidence suggests that β-cell regeneration is possible, but ongoing autoimmune damage prevents restoration of β-cell mass. We tested the hypothesis that simultaneously blocking autoimmune cytokine damage and supplying a growth-promoting stimulus for β-cells would provide a novel approach to reverse T1DM. Therefore, in this study we combined lisofylline to suppress autoimmunity and exendin-4 to enhance β-cell proliferation for treating autoimmune-mediated diabetes in the non-obese diabetic (NOD) mouse model. We found that this combined therapy effectively reversed new-onset diabetes within a week of therapy, and even maintained euglycemia up to 145 days after treatment withdrawal. The therapeutic effect of this regimen was associated with improved β-cell metabolism and insulin secretion, while reducing β-cell apoptosis. It is possible that such combined therapy could become a new strategy to defeat T1DM in humans

  1. Altered metabolic signature in pre-diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Rasmus Madsen

    Full Text Available Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions.

  2. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  3. [Latent autoimmune diabetes in adults].

    Science.gov (United States)

    Pollak, Felipe; Vásquez, Tatiana

    2012-11-01

    Latent Autoimmune Diabetes in Adults (LADA) is the term used to describe adults who have a slowly progressive form of diabetes mellitus (DM) of autoimmune etiology, but that may be treated initially without insulin. Although it shares some immunological and genetic aspects with type 1 DM, it affects an age group that is typically affected by type 2 DM. Therefore, it could be considered an intermediate type. Diagnosis is based on clinical and laboratory criteria: age of onset, initial response to oral hypoglycemic agents and the presence of specific antibodies for diabetes. Although the definitive treatment is insulin, glitazones may be useful in early stages of the disease. Currently, its management represents a challenge for the physician, including specialists, and it is a form of DM to keep in mind.

  4. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice

    Science.gov (United States)

    Goudy, Kevin; Song, Sihong; Wasserfall, Clive; Zhang, Y. Clare; Kapturczak, Matthias; Muir, Andrew; Powers, Matthew; Scott-Jorgensen, Marda; Campbell-Thompson, Martha; Crawford, James M.; Ellis, Tamir M.; Flotte, Terence R.; Atkinson, Mark A.

    2001-01-01

    The development of spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice provides for their use as a model of human type 1 diabetes. To test the feasibility of muscle-directed gene therapy to prevent type 1 diabetes, we developed recombinant adeno-associated virus (rAAV) vectors containing murine cDNAs for immunomodulatory cytokines IL-4 or IL-10. Skeletal muscle transduction of female NOD mice with IL-10, but not IL-4, completely abrogated diabetes. rAAV-IL-10 transduction attenuated the production of insulin autoantibodies, quantitatively reduced pancreatic insulitis, maintained islet insulin content, and altered splenocyte cytokine responses to mitogenic stimulation. The beneficial effects were host specific, as adoptive transfer of splenocytes from rAAV IL-10-treated animals rapidly imparted diabetes in naive hosts, and the cells contained no protective immunomodulatory capacity, as defined through adoptive cotransfer analyses. These results indicate the utility for rAAV, a vector with advantages for therapeutic gene delivery, to transfer immunoregulatory cytokines capable of preventing type 1 diabetes. In addition, these studies provide foundational support for the concept of using immunoregulatory agents delivered by rAAV to modulate a variety of disorders associated with deleterious immune responses, including allergic reactions, transplantation rejection, immunodeficiencies, and autoimmune disorders. PMID:11717448

  5. The Effects of Alpha Interferon on the Development of Autoimmune Thyroiditis in the NOD H2h4 Mouse

    Directory of Open Access Journals (Sweden)

    Yael Oppenheim

    2003-01-01

    Full Text Available Alpha interferon (αIFN therapy is known to induce thyroid autoimmunity in up to 40% of patients. The mechanism is unknown, but Th1 switching has been hypothesized. The aim of our study was to examine whether αIFN accelerated the development of thyroiditis in genetically susceptible mice. We took advantage of NOD-H2h4, a genetically susceptible animal model, which develops thyroiditis when fed a high iodine diet. Six to eight week old male NOD H2h4 mice were injected with mouse αIFN (200 units or with saline three times a week for 8 weeks. All mice drank iodinated water (0.15%. Mice were sacrificed after 8 weeks of injection. Their thyroids were examined for histology and blood was tested for antithyroglobulin antibody levels. T4 and glucose levels were also assessed. In the IFN-injected group, 6/13 (46.2% developed thyroiditis and/or thyroid antibodies while in the saline-injected group, only 4/13 (30.8% developed thyroiditis and/or thyroid antibodies (p=0.4. The grade of thyroiditis was not different amongst the two groups. None of the mice developed clinical thyroiditis or diabetes mellitus. Our results showed that αIFN treatment did not accelerate thyroiditis in this mouse model. This may imply that αIFN induces thyroiditis in a non-genetically dependent manner, and this would not be detected in a genetically susceptible mouse model if the effect were small. Alternatively, it is possible that αIFN did not induce thyroiditis in mice because, unlike in humans, in mice αIFN does not induce Th1 switching.

  6. Combining antigen-based therapy with GABA treatment synergistically prolongs survival of transplanted ß-cells in diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Antigen-based therapies (ABTs very effectively prevent the development of type 1 diabetes (T1D when given to young nonobese diabetic (NOD mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ß-cells in individuals newly diagnosed with type 1 diabetes (T1D. Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ß-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA receptors (GABA-Rs on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE and rheumatoid arthritis in mouse models. Based on GABA's ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ß-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 µg and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml. Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 µg+GABA (2 mg/ml, GAD (20 µg+GABA (6 mg/ml and GAD (100 µg+GABA (6 mg/ml about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases.

  7. Double Negative (CD3+4-8-) TCRalphaBeta Splenic Cells from Young NOD Mice Provide Long-Lasting Protection against Type 1 Diabetes

    Science.gov (United States)

    2010-07-02

    delineate a new T regulatory component in autoimmune diabetes apart from that of NKT and CD4+CD25high Foxp3+T-regulatory cells . DNCD3 splenic cells ...DNCD3 splenic cells from young NOD mice. These cells displayed a TCR Vb13-biased usage apart from that of canonical NKT cells , and lacked expression of...body of evidence demonstrating that the number and function of NK and NKT cells in the NOD mice are deficient. Adoptive transfer of NK cells in some

  8. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    Science.gov (United States)

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  9. Toll-like receptor 3 is critical for coxsackievirus B4-induced type 1 diabetes in female NOD mice.

    Science.gov (United States)

    McCall, Kelly D; Thuma, Jean R; Courreges, Maria C; Benencia, Fabian; James, Calvin B L; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L

    2015-02-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3(+/+)) and TLR3 knockout (TLR3(-/-)) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice.

  10. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  11. Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15(null mice, leading to protection against type 1 diabetes development.

    Directory of Open Access Journals (Sweden)

    Shamina M Green-Mitchell

    Full Text Available AIMS: Type 1 diabetes (T1D is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. METHODS: 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. RESULTS: 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. CONCLUSIONS: These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.

  12. Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade

    DEFF Research Database (Denmark)

    Ablamunits, Vitaly; Henegariu, Octavian; Hansen, Jakob Bondo

    2012-01-01

    (ab')(2) fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti-IL-1ß mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than......Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1ß. We postulated that blockade of IL-1ß would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F...... arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-¿, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies...

  13. Identification of Candidate Tolerogenic CD8+ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model

    Directory of Open Access Journals (Sweden)

    Cailin Yu

    2016-01-01

    Full Text Available Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet β cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8+ T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8+ T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158–166 and 282–290 and one in a non-β cell protein, dopamine β-hydroxylase (aa 233–241. Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.

  14. A glutamic acid decarboxylase 65-specific Th2 cell clone immunoregulates autoimmune diabetes in nonobese diabetic mice.

    Science.gov (United States)

    Tisch, R; Wang, B; Atkinson, M A; Serreze, D V; Friedline, R

    2001-06-01

    Several studies have provided indirect evidence in support of a role for beta cell-specific Th2 cells in regulating insulin-dependent diabetes (IDDM). Whether a homogeneous population of Th2 cells having a defined beta cell Ag specificity can prevent or suppress autoimmune diabetes is still unclear. In fact, recent studies have demonstrated that beta cell-specific Th2 cell clones can induce IDDM. In this study we have established Th cell clones specific for glutamic acid decarboxylase 65 (GAD65), a known beta cell autoantigen, from young unimmunized nonobese diabetic (NOD) mice. Adoptive transfer of a GAD65-specific Th2 cell clone (characterized by the secretion of IL-4, IL-5, and IL-10, but not IFN-gamma or TGF-beta) into 2- or 12-wk-old NOD female recipients prevented the progression of insulitis and subsequent development of overt IDDM. This prevention was marked by the establishment of a Th2-like cytokine profile in response to a panel of beta cell autoantigens in cultures established from the spleen and pancreatic lymph nodes of recipient mice. The immunoregulatory function of a given Th cell clone was dependent on the relative levels of IFN-gamma vs IL-4 and IL-10 secreted. These results provide direct evidence that beta cell-specific Th2 cells can indeed prevent and suppress autoimmune diabetes in NOD mice.

  15. Costimulation and autoimmune diabetes in BB rats

    NARCIS (Netherlands)

    Beaudette-Zlatanova, BC; Whalen, B; Zipris, D; Yagita, H; Rozing, J; Groen, H; Benjamin, CD; Hunig, T; Drexhage, HA; Ansari, MJ; Leif, J; Mordes, JP; Greiner, DL; Sayegh, MH; Rossini, AA

    Costimulatory signals regulate T-cell activation. To investigate the role of costimulation in autoimmunity and transplantation, we studied the BB rat model of type 1 diabetes. Diabetes-prone BB (BBDP) rats spontaneously develop disease when 55-120 days of age. We observed that two anti-CD28

  16. Prevention of early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice

    Czech Academy of Sciences Publication Activity Database

    Funda, David P.; Fundová, Petra; Hansen, A. K.; Buschard, K.

    2014-01-01

    Roč. 9, č. 4 (2014) E-ISSN 1932-6203 R&D Projects: GA ČR GA310/09/1640; GA MZd(CZ) NS10340 Institutional support: RVO:61388971 Keywords : gliadin * diabetes * diabetes 1 type * NOD mice Subject RIV: EC - Immunology Impact factor: 3.234, year: 2014

  17. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2012-01-01

    , a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. Methods: Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group...

  18. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes.

    Science.gov (United States)

    Zhang, Xiao-Xi; Qiao, Yong-Chao; Li, Wan; Zou, Xia; Chen, Yin-Ling; Shen, Jian; Liao, Qin-Yuan; Zhang, Qiu-Jin; He, Lan; Zhao, Hai-Lu

    2018-02-01

    Autoimmune diabetes is a disorder of immune homeostasis that leads to targeted insulin-secreting islet β cell destruction characterized by insulitis. Human amylin (hA) is an important neuroendocrine hormone co-secreted with insulin by pancreatic β cells. Here, we report hA immune-modulatory action through inducing regulatory T cells. We ex vivo-treated human peripheral blood mononuclear cells (hPBMCs) with hA for 24 h and counted CD4+Foxp3+ regulatory T cells (Treg) using flow cytometry. Diabetic status was monitored and splenic Treg were measured in non-obese diabetic (NOD) male mice. NOD mice were intraperitoneally injected once daily with hA (n = 25) or solvent for control (n = 25) for 7 months continuously. Spleen tissues were collected at the end of intervention and processed for flow cytometry and Western blot. We found a 2.9-fold (p < 0.05) increase of CD4+Foxp3+ Treg in hPBMCs treated with 10 nmol/L hA compared with negative control. Incidence of diabetes in hA-treated NOD mice decreased 44% (p = 0.045) in the 6th month and 57% (p = 0.0002) in the 7th month. Meanwhile, the hA treatment induced a 1.5-fold increase of CD4+Foxp3+ Treg from mouse splenocytes (p = 0.0013). Expression of transforming growth factor-β (TGF-β) and toll-like receptor-4 (TLR-4) were upregulated in hA-treated mice. Human amylin might protect against autoimmune diabetes via the induction of CD4+Foxp3+ Treg, which suggests a novel approach to improve autoimmune conditions.

  19. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Irma Pujol-Autonell

    Full Text Available The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes.A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides.We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion.We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for

  20. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice

    DEFF Research Database (Denmark)

    Funda, David; Fundova, Petra; Hansen, Axel Kornerup

    2014-01-01

    gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis...... was lowered. Intranasal gliadin also rescued a fraction of prediabetic 13-week-old NOD mice from progressing to clinical onset of diabetes compared to OVA-treated controls. Vaccination with i.n. gliadin led to an induction of CD4+Foxp3+ T cells and even more significant induction of γδ T cells in mucosal...

  1. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  2. Antigen-Experienced CD4lo T Cells Are Linked to Deficient Contraction of the Immune Response in Autoimmune Diabetes

    Directory of Open Access Journals (Sweden)

    Sean Linkes

    2010-01-01

    Full Text Available Following proper activation, naïve “CD4lo” T cells differentiate into effector T cells with enhanced expression of CD4 -“CD4hi” effectors. Autoimmune diabetes-prone NOD mice display a unique set of antigen-experienced “CD4lo” T cells that persist after primary stimulation. Here, we report that a population of such cells remained after secondary and tertiary TCR stimulation and produced cytokines upon antigenic challenge. However, when NOD blasts were induced in the presence of rIL-15, the number of antigen-experienced “CD4lo” T cells was significantly reduced. Clonal contraction, mediated in part by CD95-dependent activation-induced cell death (AICD, normally regulates the accumulation of “CD4hi” effectors. Interestingly, CD95 expression was dramatically reduced on the AICD-resistant NOD “CD4lo” T cells. Thus, while autoimmune disease has often been attributed to the engagement of robust autoimmunity, we suggest that the inability to effectively contract the immune response distinguishes benign autoimmunity from progressive autoimmune diseases that are characterized by chronic T cell-mediated inflammation.

  3. Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice.

    Science.gov (United States)

    Posgai, Amanda L; Wasserfall, Clive H; Kwon, Kwang-Chul; Daniell, Henry; Schatz, Desmond A; Atkinson, Mark A

    2017-02-13

    Autoantigen-specific immunological tolerance represents a central objective for prevention of type 1 diabetes (T1D). Previous studies demonstrated mucosal antigen administration results in expansion of Foxp3 + and LAP + regulatory T cells (Tregs), suggesting oral delivery of self-antigens might represent an effective means for modulating autoimmune disease. Early preclinical experiments using the non-obese diabetic (NOD) mouse model reported mucosal administration of T1D-related autoantigens [proinsulin or glutamic acid decarboxylase 65 (GAD)] delayed T1D onset, but published data are conflicting regarding dose, treatment duration, requirement for combinatorial agents, and extent of efficacy. Recently, dogma was challenged in a report demonstrating oral insulin does not prevent T1D in NOD mice, possibly due to antigen digestion prior to mucosal immune exposure. We used transplastomic plants expressing proinsulin and GAD to protect the autoantigens from degradation in an oral vaccine and tested the optimal combination, dose, and treatment duration for the prevention of T1D in NOD mice. Our data suggest oral autoantigen therapy alone does not effectively influence disease incidence or result in antigen-specific tolerance assessed by IL-10 measurement and Treg frequency. A more aggressive approach involving tolerogenic cytokine administration and/or lymphocyte depletion prior to oral antigen-specific immunotherapy will likely be required to impart durable therapeutic efficacy.

  4. [Coexistence of autoimmune polyglandular syndrome type 3 with diabetes insipidus].

    Science.gov (United States)

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Autoimmune polyglandular syndromes are conditions characterized by the combination of two or more organ-specific disorders. The underestimation oftheir real frequency probable results from physicians' inadequate knowledge of these clinical entities and sometimes their atypical clinical presentation. Because they comprise a wide spectrum of autoimmune disorders, autoimmune polyglandular syndromes are divided into four types, among which type-3 is the most common one. In this article, we report the case of a young female, initially diagnosed with diabetes mellitus who several years later developed full-blown autoimmune polyglandular syndrome type 3 consisting of autoimmune thyroid disorder and latent autoimmune diabetes in adults.The discussed case suggests that in selected patients diabetes insipidus may coexist with autoimmune endocrinopathies and nonendocrine autoimmunopathies, as well as that in some patients idiopathic diabetes insipidus may be secondary to lymphocytic infiltration and destruction of the hypothalamic supraoptic and paraventricular nuclei and/or the supraoptic-hypophyseal tract

  5. Inhibition of diabetes in NOD mice by human pregnancy factor

    NARCIS (Netherlands)

    Khan, N.A.; Khan, A.; Savelkoul, H.F.J.; Benner, R.

    2001-01-01

    Clinical symptoms of Th1 mediated autoimmune diseases regress in many patients during pregnancy. A prominent feature of pregnancy is the presence of human chorionic gonadotrophin hormone (hCG) in blood and urine. In this report we tested the effect of clinical grade hCG (c-hCG) on the development of

  6. Combination of an Antigen-Specific Therapy and an Immunomodulatory Treatment to Simultaneous Block Recurrent Autoimmunity and Alloreactivity in Non-Obese Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Georgia Fousteri

    Full Text Available Restoration of endogenous insulin production by islet transplantation is considered a curative option for patients with type 1 diabetes. However, recurrent autoimmunity and alloreactivity cause graft rejection hindering successful transplantation. Here we tested whether transplant tolerance to allogeneic islets could be achieved in non-obese diabetic (NOD mice by simultaneously tackling autoimmunity via antigen-specific immunization, and alloreactivity via granulocyte colony stimulating factor (G-CSF and rapamycin (RAPA treatment. Immunization with insB9-23 peptide alone or in combination with two islet peptides (IGRP206-214 and GAD524-543 in incomplete Freund's adjuvant (IFA were tested for promoting syngeneic pancreatic islet engraftment in spontaneously diabetic NOD mice. Treatment with G-CSF/RAPA alone or in combination with insB9-23/IFA was examined for promoting allogeneic islet engraftment in the same mouse model. InsB9-23/IFA immunization significantly prolonged syngeneic pancreatic islet survival in NOD mice by a mechanism that necessitated the presence of CD4+CD25+ T regulatory (Treg cells, while combination of three islet epitopes was less efficacious in controlling recurrent autoimmunity. G-CSF/RAPA treatment was unable to reverse T1D or control recurrent autoimmunity but significantly prolonged islet allograft survival in NOD mice. Blockade of interleukin-10 (IL-10 during G-CSF/RAPA treatment resulted in allograft rejection suggesting that IL-10-producing cells were fundamental to achieve transplant tolerance. G-CSF/RAPA treatment combined with insB9-23/IFA did not further increase the survival of allogeneic islets. Thus, insB9-23/IFA immunization controls recurrent autoimmunity and G-CSF/RAPA treatment limits alloreactivity, however their combination does not further promote allogeneic pancreatic islet engraftment in NOD mice.

  7. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65 of Tolerogenic DCs (tolDCs Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice

    Directory of Open Access Journals (Sweden)

    David P. Funda

    2018-02-01

    Full Text Available Tolerogenic DCs (tolDCs are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D. T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65, that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD-severe combined immunodeficiency (NOD-SCID recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA. The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tol

  8. Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes.

    Science.gov (United States)

    Johnson, E A; Silveira, P; Chapman, H D; Leiter, E H; Serreze, D V

    2001-08-15

    Transgenic restoration of normally absent H2-E MHC class II molecules on APC dominantly inhibits T cell-mediated autoimmune diabetes (IDDM) in nonobese diabetic (NOD) mice. We analyzed the minimal requirements for transgenic H2-E expression on APC subtypes (B lymphocytes vs macrophages/dendritic cells (DC)) to inhibit IDDM. This issue was addressed through the use of NOD stocks transgenically expressing high levels of H2-E and/or made genetically deficient in B lymphocytes in a series of genetic intercross and bone marrow/lymphocyte chimera experiments. Standard (H2-E(null)) NOD B lymphocytes exert a pathogenic function(s) necessary for IDDM. However, IDDM was inhibited in mixed chimeras where H2-E was solely expressed on all B lymphocytes. Interestingly, this resistance was abrogated when even a minority of standard NOD H2-E(null) B lymphocytes were also present. In contrast, in NOD chimeras where H2-E expression was solely limited to approximately half the macrophages/DC, an active immunoregulatory process was induced that inhibited IDDM. Introduction of a disrupted IL-4 gene into the NOD-H2-E transgenic stock demonstrated that induction of this Th2 cytokine does not represent the IDDM protective immunoregulatory process mediated by H2-E expression. In conclusion, high numbers of multiple subtypes of APC must express H2-E MHC class II molecules to additively inhibit IDDM in NOD mice. This raises a high threshold for success in future intervention protocols designed to inhibit IDDM by introduction of putatively protective MHC molecules into hemopoietic precursors of APC.

  9. A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    Full Text Available Crosslinking ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4 to the T cell receptor (TCR with a bispecific fusion protein (BsB comprised of a mutant mouse CD80 and lymphocyte activation antigen-3 (LAG-3 has been shown to attenuate TCR signaling and to direct T-cell differentiation toward Foxp3(+ regulatory T cells (Tregs in an allogenic mixed lymphocyte reaction (MLR. Here, we show that antigen-specific Tregs can also be induced in an antigen-specific setting in vitro. Treatment of non-obese diabetic (NOD female mice between 9-12 weeks of age with a short course of BsB elicited a transient increase of Tregs in the blood and moderately delayed the onset of autoimmune type 1 diabetes (T1D. However, a longer course of treatment (10 weeks of 4-13 weeks-old female NOD animals with BsB significantly delayed the onset of disease or protected animals from developing diabetes, with only 13% of treated animals developing diabetes by 35 weeks of age compared to 80% of the animals in the control group. Histopathological analysis of the pancreata of the BsB-treated mice that remained non-diabetic revealed the preservation of insulin-producing β-cells despite the presence of different degrees of insulitis. Thus, a bifunctional protein capable of engaging CTLA-4 and MHCII and indirectly co-ligating CTLA-4 to the TCR protected NOD mice from developing T1D.

  10. Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice.

    Science.gov (United States)

    Liu, Kun-Feng; Liu, Xiao-Rui; Li, Guo-Liang; Lu, Shi-Ping; Jin, Liang; Wu, Jie

    2016-06-01

    Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the destruction of insulin-secreting β cells upon autoreactive T cell attack. Oral administration of autoantigens is an attractive approach to treating T1DM, but an effective carrier should be used in order to protect antigens. Lactococcus lactis, a safe engineering strain, was used for this task in the present study. Two recombinant L. lactis expressing protein HSP65-6IA2P2 were used and be investigated the effects and mechanisms against T1DM in NOD mice. Our findings demonstrate that recombinant L. lactis strains can successfully both deliver antigens to intestinal mucosa and maintain the epitopes for a long time in NOD mice. Oral administration of recombinant L. lactis could prevent hyperglycemia, improve glucose tolerance, and reduce insulitis by inhibiting antigen-specific proliferation of T cells, augmenting regulatory immune reactions, and balancing ratios of Th17/Tregs and Th1/Th2. These results prove that orally administrated L. lactis expressing HSP65-6IA2P2 is an effective approach for the prevention of T1DM in NOD mice. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

    NARCIS (Netherlands)

    Bodin, J.; Kocbach Bølling, A.; Wendt, A.; Eliasson, L.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C.

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese

  12. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  13. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens.

    Science.gov (United States)

    Durinovic-Belló, I

    1998-01-01

    Type 1 diabetes (IDDM) is a T cell mediated autoimmune disease which in part is determined genetically by its association with major histocompatibility complex (MHC) class II alleles. The major role of MHC molecules is the regulation of immune responses through the presentation of peptide epitopes of processed protein antigens to the immune system. Recently it has been demonstrated that MHC molecules associated with autoimmune diseases preferentially present peptides of other endogenous MHC proteins, that often mimic autoantigen-derived peptides. Hence, these MHC-derived peptides might represent potential targets for autoreactive T cells. It has consistently been shown that humoral autoimmunity to insulin predominantly occurs in early childhood. The cellular immune response to insulin is relatively low in the peripheral blood of patients with IDDM. Studies in NOD mice however have shown, that lymphocytes isolated from pancreatic islet infiltrates display a high reactivity to insulin and in particular to an insulin peptide B 9-23. Furthermore we have evidence that cellular autoimmunity to insulin is higher in young pre-diabetic individuals, whereas cellular reactivity to other autoantigens is equally distributed in younger and older subjects. This implicates that insulin, in human childhood IDDM and animal autoimmune diabetes, acts as an important early antigen which may target the autoimmune response to pancreatic beta cells. Moreover, we observed that in the vast majority of newly diagnosed diabetic patients or individuals at risk for IDDM, T cell reactivity to various autoantigens occurs simultaneously. In contrast, cellular reactivity to a single autoantigen is found with equal frequency in (pre)-type 1 diabetic individuals as well as in control subjects. Therefore the autoimmune response in the inductive phase of IDDM may be targeted to pancreatic islets by the cellular and humoral reactivity to one beta-cell specific autoantigen, but spreading to a set of

  14. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate...... from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1-4 in NOD mice. Furthermore......, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface...

  15. Early life treatment with vancomycin reduces diabetes incidence in NOD mice

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis

    Type 1 diabetes (T1D) results from an uncontrolled T cell mediated destruction of the insulin-producing beta-cells in the pancreas. Causal factors include a combination of genetics, early life incidents and the food we eat. The involved adaptive immune response can be down regulated by a regulatory...... treated with the antibiotic vancomycin in four weeks from birth. Diabetes incidence and onset time were compared with a control group and we found that neonate vancomycin treatment attenuates T1D. By changing the gut flora composition in the beginning of life we also demonstrated a disruption....... An interplay that is likely to represent a critical environmental component to diabetes induction. In a period after birth alterations of the early microbial colonization of the gut therefore can be expected to have an immense impact on diabetes progression later in life. In this study neonate NOD mice were...

  16. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes

    DEFF Research Database (Denmark)

    Funda, D.P.; Kaas, A.; Tlaskalova-Hogenova, H.

    2008-01-01

    BACKGROUND: Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested...... hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. METHODS: Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis...... score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. RESULTS: A significantly lower diabetes incidence (p diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n...

  17. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes

    DEFF Research Database (Denmark)

    Funda, D.P.; Kaas, A.; Tlaskalova-Hogenova, H.

    2008-01-01

    BACKGROUND: Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested...... hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. METHODS: Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis...... score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. RESULTS: A significantly lower diabetes incidence (p gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n...

  18. Type 1 Diabetes Prevention in NOD Mice by Targeting DPPIV/CD26 Is Associated with Changes in CD8⁺T Effector Memory Subset.

    Directory of Open Access Journals (Sweden)

    Núria Alonso

    Full Text Available CD26 is a T cell activation marker consisting in a type II transmembrane glycoprotein with dipeptidyl peptidase IV (DPPIV activity in its extracellular domain. It has been described that DPPIV inhibition delays the onset of type 1 diabetes and reverses the disease in non-obese diabetic (NOD mice. The aim of the present study was to assess the effect of MK626, a DPPIV inhibitor, in type 1 diabetes incidence and in T lymphocyte subsets at central and peripheral compartments. Pre-diabetic NOD mice were treated with MK626. Diabetes incidence, insulitis score, and phenotyping of T lymphocytes in the thymus, spleen and pancreatic lymph nodes were determined after 4 and 6 weeks of treatment, as well as alterations in the expression of genes encoding β-cell autoantigens in the islets. The effect of MK626 was also assessed in two in vitro assays to determine proliferative and immunosuppressive effects. Results show that MK626 treatment reduces type 1 diabetes incidence and after 6 weeks of treatment reduces insulitis. No differences were observed in the percentage of T lymphocyte subsets from central and peripheral compartments between treated and control mice. MK626 increased the expression of CD26 in CD8+ T effector memory (TEM from spleen and pancreatic lymph nodes and in CD8+ T cells from islet infiltration. CD8+TEM cells showed an increased proliferation rate and cytokine secretion in the presence of MK626. Moreover, the combination of CD8+ TEM cells and MK626 induces an immunosuppressive response. In conclusion, treatment with the DPPIV inhibitor MK626 prevents experimental type 1 diabetes in association to increase expression of CD26 in the CD8+ TEM lymphocyte subset. In vitro assays suggest an immunoregulatory role of CD8+ TEM cells that may be involved in the protection against autoimmunity to β pancreatic islets associated to DPPIV inhibitor treatment.

  19. Prevention of diabetes in NOD mice by repeated exposures to a contact allergen inducing a sub-clinical dermatitis

    DEFF Research Database (Denmark)

    Engkilde, Kaare; Buschard, Karsten; Hansen, Axel Jacob Kornerup

    2010-01-01

    of contact allergens on the development of diabetes in NOD mice. As the link between contact allergy and diabetes is yet unexplained we also examined the effect of provocation with allergens on Natural Killer T (NKT) cells, since involvement of NKT cells could suggest an innate connection between the two...

  20. T-cell education in autoimmune diabetes : teachers and students

    NARCIS (Netherlands)

    Rosmalen, JGM; van Ewijk, [No Value; Leenen, PJM

    Type 1 diabetes mellitus is a classical example of a T-cell-mediated autoimmune disease. Several aberrations in immune regulation have been described in both human diabetes patients and animal models of type 1 diabetes. In this review, we summarize how proposed immune defects might be implicated in

  1. The neurosurvival factor Humanin inhibits beta cell apoptosis via Stat3 activation and delays and ameliorates diabetes in NOD mice

    Science.gov (United States)

    Hoang, P. T.; Park, P.; Cobb, L. J.; Paharkova-Vatchkova, V.; Hakimi, M.; Cohen, P.; Lee, K.-W.

    2010-01-01

    Pancreatic beta cell apoptosis is important in the pathogenesis and potential treatment of Type 1 diabetes. We investigated whether Humanin, a recently described survival factor for neurons, could improve the survival of beta cells and delay or treat diabetes in the NOD model. Humanin reduced apoptosis induced by serum starvation in NIT-1 cells and decreased apoptosis induced by cytokine treatment. Humanin induced Stat3 and ERK phosphorylation over a 24 hour time course. Specific inhibition of Stat3 resulted in nullifying the protective effect of Humanin. Humanin normalized glucose tolerance in diabetic NOD mice treated for 6-weeks and their pancreata revealed decreased lymphocyte infiltration and severity. In addition, Humanin delayed/prevented the onset of diabetes in NOD mice treated for 20 weeks. In summary, Humanin treatment decreases cytokine-induced apoptosis in beta cells in vitro and improved glucose tolerance and onset of diabetes in NOD mice in vivo. This indicates that Humanin may be useful for islet protection and survival in a spectrum of diabetes-related therapeutics. PMID:19800083

  2. The Impact of Diet Wheat Source on the Onset of Type 1 Diabetes Mellitus-Lessons Learned from the Non-Obese Diabetic (NOD) Mouse Model.

    Science.gov (United States)

    Gorelick, Jonathan; Yarmolinsky, Ludmila; Budovsky, Arie; Khalfin, Boris; Klein, Joshua D; Pinchasov, Yosi; Bushuev, Maxim A; Rudchenko, Tatiana; Ben-Shabat, Shimon

    2017-05-10

    Nutrition, especially wheat consumption, is a major factor involved in the onset of type 1 diabetes (T1D) and other autoimmune diseases such as celiac. While modern wheat cultivars possess similar gliadin proteins associated with the onset of celiac disease and T1D, alternative dietary wheat sources from Israeli landraces and native ancestral species may be lacking the epitopes linked with T1D, potentially reducing the incidence of T1D. The Non-Obese Diabetic (NOD) mouse model was used to monitor the effects of dietary wheat sources on the onset and development of T1D. The effects of modern wheat flour were compared with those from either T. aestivum , T. turgidum spp. dicoccoides , or T. turgidum spp. dicoccum landraces or a non-wheat diet. Animals which received wheat from local landraces or ancestral species such as emmer displayed a lower incidence of T1D and related complications compared to animals fed a modern wheat variety. This study is the first report of the diabetogenic properties of various dietary wheat sources and suggests that alternative dietary wheat sources may lack T1D linked epitopes, thus reducing the incidence of T1D.

  3. Diabetes-Resistant NOR Mice Are More Severely Affected by Streptozotocin Compared to the Diabetes-Prone NOD Mice: Correlations with Liver and Kidney GLUT2 Expressions

    Directory of Open Access Journals (Sweden)

    S. Kahraman

    2015-01-01

    Full Text Available Nonobese Diabetic (NOD mice are susceptible strains for Type 1 diabetes development, and Nonobese Diabetes-Resistant (NOR mice are defined as suitable controls for NOD mice in non-MHC-related research. Diabetes is often accelerated in NOD mice via Streptozotocin (STZ. STZ is taken inside cells via GLUT2 transmembrane carrier proteins, the major glucose transporter isoforms in pancreatic beta cells, liver, kidneys, and the small intestine. We observed severe adverse effects in NOR mice treated with STZ compared to NOD mice that were made diabetic with a similar dose. We suggested that the underlying mechanism could be differential GLUT2 expressions in pancreatic beta cells, yet immunofluorescent and immunohistochemical studies revealed similar GLUT2 expression levels. We also detected GLUT2 expression profiles in NOD and NOR hepatic and renal tissues by western blot analysis and observed considerably higher GLUT2 expression levels in liver and kidney tissues of NOR mice. Although beta cell GLUT2 expression levels are frequently evaluated as a marker predicting STZ sensitivity in animal models, we report here very different diabetic responses to STZ in two different animal strains, in spite of similar initial GLUT2 expressions in beta cells. Furthermore, use of NOR mice in STZ-mediated experimental diabetes settings should be considered accordingly.

  4. Transmaternal bisphenol a exposure accelerates diabetes type 1 development in NOD mice

    NARCIS (Netherlands)

    Bodin, J.; Bølling, A.B.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C.

    2014-01-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this

  5. Apoptosis of purified CD4+ T cell subsets is dominated by cytokine deprivation and absence of other cells in new onset diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Regulatory T cells (Treg play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS: Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+ T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(- T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+ T cells from apoptosis, and in parallel sensitize naïve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS: The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naïve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression.

  6. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gu-Jiun [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Sytwu, Huey-Kang [Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC (China); Yu, Jyh-Cherng [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chen, Yuan-Wu [School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Kuo, Yu-Liang [Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC (China); School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Yu, Chiao-Chi [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chang, Hao-Ming; Chan, De-Chuan [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Huang, Shing-Hwa, E-mail: h610129@gmail.com [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China)

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  7. Immune Depletion in Combination with Allogeneic Islets Permanently Restores Tolerance to Self-Antigens in Diabetic NOD Mice.

    Directory of Open Access Journals (Sweden)

    Nicola Gagliani

    Full Text Available The destruction of beta cells in type 1 diabetes (T1D results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D.

  8. Gluten-Free Diet Only during Pregnancy Efficiently Prevents Diabetes in NOD Mouse Offspring

    DEFF Research Database (Denmark)

    Antvorskov, Julie C; Josefsen, Knud; Haupt-Jorgensen, Martin

    2016-01-01

    groups to receive combinations of gluten-free and standard diet before, during, or after pregnancy. Diabetes incidence in offspring was followed in each group (n = 16 - 27) for 310 days. Insulitis score and intestinal expression of T-cell transcription factors (RT-QPCR) were evaluated in animals from...... the different diet groups. Results. If mothers were fed a gluten-free diet only during pregnancy, the development of autoimmune diabetes in offspring was almost completely prevented with an incidence reduction from 62.5% in gluten-consuming mice to 8.3% (p ... of Langerhans were less infiltrated (p diet exclusively during pregnancy efficiently prevents autoimmune diabetes development in offspring and reduces...

  9. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes

    Directory of Open Access Journals (Sweden)

    Shih-Chang Chien

    2015-01-01

    Full Text Available Anthraquinones are a class of aromatic compounds with a 9,10-dioxoanthracene core. So far, 79 naturally occurring anthraquinones have been identified which include emodin, physcion, cascarin, catenarin, and rhein. A large body of literature has demonstrated that the naturally occurring anthraquinones possess a broad spectrum of bioactivities, such as cathartic, anticancer, anti-inflammatory, antimicrobial, diuretic, vasorelaxing, and phytoestrogen activities, suggesting their possible clinical application in many diseases. Despite the advances that have been made in understanding the chemistry and biology of the anthraquinones in recent years, research into their mechanisms of action and therapeutic potential in autoimmune disorders is still at an early stage. In this paper, we briefly introduce the etiology of autoimmune diabetes, an autoimmune disorder that affects as many as 10 million worldwide, and the role of chemotaxis in autoimmune diabetes. We then outline the chemical structure and biological properties of the naturally occurring anthraquinones and their derivatives with an emphasis on recent findings about their immune regulation. We discuss the structure and activity relationship, mode of action, and therapeutic potential of the anthraquinones in autoimmune diabetes, including a new strategy for the use of the anthraquinones in autoimmune diabetes.

  10. Type 1 diabetes and polyglandular autoimmune syndrome: A review

    Science.gov (United States)

    Hansen, Martin P; Matheis, Nina; Kahaly, George J

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome. PMID:25685279

  11. The neurosurvival factor Humanin inhibits beta cell apoptosis via Stat3 activation and delays and ameliorates diabetes in NOD mice

    OpenAIRE

    Hoang, P. T.; Park, P.; Cobb, L. J.; Paharkova-Vatchkova, V.; Hakimi, M.; Cohen, P.; Lee, K.-W.

    2009-01-01

    Pancreatic beta cell apoptosis is important in the pathogenesis and potential treatment of Type 1 diabetes. We investigated whether Humanin, a recently described survival factor for neurons, could improve the survival of beta cells and delay or treat diabetes in the NOD model. Humanin reduced apoptosis induced by serum starvation in NIT-1 cells and decreased apoptosis induced by cytokine treatment. Humanin induced Stat3 and ERK phosphorylation over a 24 hour time course. Specific inhibition o...

  12. Height Growth Velocity, Islet Autoimmunity and Type 1 Diabetes Development: the Diabetes Autoimmunity Study in the Young

    Science.gov (United States)

    Lamb, MM; Yin, X; Zerbe, GO; Klingensmith, GJ; Dabelea, D; Fingerlin, TE; Rewers, M; Norris, JM

    2010-01-01

    Aims/hypothesis Larger childhood body size and rapid growth have been associated with increased type 1 diabetes risk. We analyzed height, weight, body mass index (BMI), and velocities of growth in height, weight, and BMI, for association with development of islet autoimmunity (IA) and type 1 diabetes. Methods Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed children at increased type 1 diabetes risk, based on HLA DR,DQ genotype or family history, for development of IA and type 1 diabetes. IA was defined as presence of autoantibodies to insulin, GAD or IA2 twice in succession, or autoantibody positive on one visit and diabetic at the next consecutive visit within one year. Type 1 diabetes was diagnosed by a physician. Height and weight were collected starting at age 2 years. Of 1,714 DAISY children children developed IA, and 21 progressed to type 1 diabetes. We conducted Cox proportional hazards analysis to explore growth velocities and size measures for association with IA and type 1 diabetes development. Results Higher height growth velocity was associated with IA development (HR: 1.63, CI: 1.31-2.05) and type 1 diabetes development (HR: 3.34, CI: 1.73-6.42) for a 1 standard deviation difference in velocity. Conclusions/interpretation Our study suggests that greater height growth velocity may be involved in the progression from genetic susceptibility to autoimmunity and then to type 1 diabetes in pre-pubertal children. PMID:19547949

  13. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.

    Science.gov (United States)

    Funda, David P; Kaas, Anne; Tlaskalová-Hogenová, Helena; Buschard, Karsten

    2008-01-01

    Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. A significantly lower diabetes incidence (p gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n = 33). Surprisingly, gluten+ diet also prevented diabetes incidence, even at the level found with the gluten-free diet (p gluten+, gluten-free, Pregestimil) diets, did that slightly later compared to those on the standard diet. Lower insulitis score compared to control mice was found in non-diabetic NOD mice on the gluten-free, and to a lesser extent also gluten+ and Pregestimil diets. No substantial differences in the number of CD3(+), TCR-gammadelta(+), and IgA(+) cells in the small intestine were documented. Gluten+ diet prevents diabetes in NOD mice at the level found with the non-purified gluten-free diet. Possible mechanisms of the enigmatic, dual effect of dietary gluten on the development of T1D are discussed. 2007 John Wiley & Sons, Ltd

  14. Humanized in vivo Model for Autoimmune Diabetes

    Science.gov (United States)

    2010-05-07

    guinea - pig polyclonal anti-insulin (1:100 dilution, Abcam Ab7842-500, Cambridge, MA) and a secondary goat anti- guinea - pig Alexa-fluor 568 (1:100 dilu...which is reported to accelerate experimental autoimmune encephalomyelitis (a mouse model of multiple sclerosis). Our reasoning was that, as T cells...HL, Sobel RA, Kuchroo VK. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4

  15. Celiac Disease Autoimmunity in Patients with Autoimmune Diabetes and Thyroid Disease among Chinese Population.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhao

    Full Text Available The prevalence of celiac disease autoimmunity or tissue transglutaminase autoantibodies (TGA amongst patients with type 1 diabetes (T1D and autoimmune thyroid disease (AITD in the Chinese population remains unknown. This study examined the rate of celiac disease autoimmunity amongst patients with T1D and AITD in the Chinese population. The study included 178 patients with type 1 diabetes and 119 with AITD where 36 had both T1D and AITD, classified as autoimmune polyglandular syndrome type 3 variant (APS3v. The study also included 145 patients with type 2 diabetes (T2D, 97 patients with non-autoimmune thyroid disease (NAITD, and 102 healthy controls. Serum islet autoantibodies, thyroid autoantibodies and TGA were measured by radioimmunoassay. TGA positivity was found in 22% of patients with either type 1 diabetes or AITD, much higher than that in patients with T2D (3.4%; p< 0.0001 or NAITD (3.1%; P < 0.0001 or healthy controls (1%; p<0.0001. The patients with APS3v having both T1D and AITD were 36% positive for TGA, significantly higher than patients with T1D alone (p = 0.040 or with AITD alone (p = 0.017. T1D and AITD were found to have a 20% and 30% frequency of overlap respectively at diagnosis. In conclusion, TGA positivity was high in the Chinese population having existing T1D and/or AITD, and even higher when both diseases were present. Routine TGA screening in patients with T1D or AITD will be important to early identify celiac disease autoimmunity for better clinical care of patients.

  16. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    Science.gov (United States)

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man.

  17. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD mice

    DEFF Research Database (Denmark)

    Krych, Lukasz; Nielsen, Dennis Sandris; Hansen, Axel Kornerup

    2015-01-01

    Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link...... between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations...

  18. Adult-Onset Autoimmune Diabetes in Europe Is Prevalent With a Broad Clinical Phenotype

    DEFF Research Database (Denmark)

    Hawa, Mohammed I; Kolb, Hubert; Schloot, Nanette

    2013-01-01

    type 1 autoimmune diabetes (odds ratio 3.3).CONCLUSIONSAdult-onset autoimmune diabetes emerges as a prevalent form of autoimmune diabetes. Our results indicate that adult-onset autoimmune diabetes in Europe encompasses type 1 diabetes and LADA in the same broad clinical and autoantibody......OBJECTIVESSpecific autoantibodies characterize type 1 diabetes in childhood but are also found in adult-onset diabetes, even when initially non-insulin requiring, e.g., with latent autoimmune diabetes (LADA). We aimed to characterize adult-onset autoimmune diabetes.RESEARCH DESIGN AND METHODSWe...... consecutively studied 6,156 European diabetic patients attending clinics within 5 years of diagnosis (age range, 30-70 years) examined cross-sectionally clinically and for GAD antibodies (GADA) and antibodies to insulinoma-associated antigen-2 (IA-2A) and zinc-transporter 8 (ZnT8A).RESULTSOf 6,156 patients, 541...

  19. L-selectin is not required for T cell-mediated autoimmune diabetes.

    Science.gov (United States)

    Friedline, Randall H; Wong, Carmen P; Steeber, Douglas A; Tedder, Thomas F; Tisch, Roland

    2002-03-15

    Administration of anti-L-selectin (CD62L) mAb to neonatal nonobese diabetic (NOD) mice mediates long term protection against the development of insulitis and overt diabetes. These results suggested that CD62L has a key role in the general function of beta cell-specific T cells. To further examine the role of CD62L in the development of type 1 diabetes, NOD mice lacking CD62L were established. The onset and frequency of overt diabetes were equivalent among CD62L(+/+), CD62L(+/-), and CD62L(-/-) NOD littermates. Furthermore, patterns of T cell activation, migration, and beta cell-specific reactivity were similar in NOD mice of all three genotypes. Adoptive transfer experiments with CD62L(-/-) CD4(+) T cells prepared from BDC2.5 TCR transgenic mice revealed no apparent defects in migration to pancreatic lymph nodes, proliferation in response to beta cell Ag, or induction of diabetes in NOD.scid recipients. In conclusion, CD62L expression is not essential for the development of type 1 diabetes in NOD mice.

  20. Reversible lacrimal gland-protective regulatory T-cell dysfunction underlies male-specific autoimmune dacryoadenitis in the non-obese diabetic mouse model of Sjögren syndrome

    Science.gov (United States)

    Lieberman, Scott M; Kreiger, Portia A; Koretzky, Gary A

    2015-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are required to maintain immunological tolerance; however, defects in specific organ-protective Treg cell functions have not been demonstrated in organ-specific autoimmunity. Non-obese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity and are a well-characterized model of Sjögren syndrome. Lacrimal gland disease in NOD mice is male-specific, but the role of Treg cells in this sex-specificity is not known. This study aimed to determine if male-specific autoimmune dacryoadenitis in the NOD mouse model of Sjögren syndrome is the result of lacrimal gland-protective Treg cell dysfunction. An adoptive transfer model of Sjögren syndrome was developed by transferring cells from the lacrimal gland-draining cervical lymph nodes of NOD mice to lymphocyte-deficient NOD-SCID mice. Transfer of bulk cervical lymph node cells modelled the male-specific dacryoadenitis that spontaneously develops in NOD mice. Female to female transfers resulted in dacryoadenitis if the CD4+ CD25+ Treg-enriched population was depleted before transfer; however, male to male transfers resulted in comparable dacryoadenitis regardless of the presence or absence of Treg cells within the donor cell population. Hormone manipulation studies suggested that this Treg cell dysfunction was mediated at least in part by androgens. Surprisingly, male Treg cells were capable of preventing the transfer of dacryoadenitis to female recipients. These data suggest that male-specific factors promote reversible dysfunction of lacrimal gland-protective Treg cells and, to our knowledge, form the first evidence for reversible organ-protective Treg cell dysfunction in organ-specific autoimmunity. PMID:25581706

  1. A Maternal Gluten-Free Diet Reduces Inflammation and Diabetes Incidence in the Offspring of NOD Mice

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Krych, Lukasz; Buschard, Karsten

    2014-01-01

    Early-life interventions in the intestinal environment have previously been shown to influence diabetes incidence. We therefore hypothesized that a gluten-free (GF) diet, known to decrease the incidence of type 1 diabetes, would protect against the development of diabetes when fed only during...... the pregnancy and lactation period. Pregnant nonobese diabetic (NOD) mice were fed a GF or standard diet until all pups were weaned to a standard diet. The early-life GF environment dramatically decreased the incidence of diabetes and insulitis. Gut microbiota analysis by 16S rRNA gene sequencing revealed...... to the pancreas. In conclusion, a GF diet during fetal and early postnatal life reduces the incidence of diabetes. The mechanism may involve changes in gut microbiota and shifts to a less proinflammatory immunological milieu in the gut and pancreas....

  2. Non-Obese Diabetic Mice Rapidly Develop Dramatic Sympathetic Neuritic Dystrophy

    Science.gov (United States)

    Schmidt, Robert E.; Dorsey, Denise A.; Beaudet, Lucie N.; Frederick, Kathy E.; Parvin, Curtis A.; Plurad, Santiago B.; Levisetti, Matteo G.

    2003-01-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites (“neuritic dystrophy”) in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  3. Strategies for the prevention of autoimmune type 1 diabetes.

    Science.gov (United States)

    Todd, J A; Knip, M; Mathieu, C

    2011-10-01

    European experts on autoimmune Type 1 diabetes met for 2 days in October 2010 in Cambridge, to review the state-of-the-art and to discuss strategies for prevention of Type 1 diabetes (http://www-gene.cimr.cam.ac.uk/todd/sub_pages/T1D_prevention_Cambridge_workshop_20_21Oct2010.pdf). Meeting sessions examined the epidemiology of Type 1 diabetes; possible underlying causes of the continuing and rapid increase in Type 1 diabetes incidence at younger ages; and lessons learned from previous prevention trials. Consensus recommendations from the meeting were: 1. Resources such as national diabetes registries and natural history studies play an essential role in developing and refining assays to be used in screening for risk factors for Type 1 diabetes. 2. It is crucial to dissect out the earliest physiological events after birth, which are controlled by the susceptibility genes now identified in Type 1 diabetes, and the environmental factors that might affect these phenotypes, in order to bring forward a mechanistic approach to designing future prevention trials. 3. Current interventions at later stages of disease, such as in newly diagnosed Type 1 diabetes, have relied mainly on non-antigen-specific mechanisms. For primary prevention-preventing the onset of autoimmunity-interventions must be based on knowledge of the actual disease process such that: participants in a trial would be stratified according the disease-associated molecular phenotypes; the autoantigen(s) and immune responses to them; and the manipulation of the environment, as early as possible in life. Combinations of interventions should be considered as they may allow targeting different components of disease, thus lowering side effects while increasing efficacy. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  4. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available BACKGROUND: Ethanol ('alcohol' is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. METHODS: The study included cellular in vitro tests using α-galactosylceramide (αGalCer, and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. RESULTS: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05. CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05, whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. CONCLUSION: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.

  5. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young

    Science.gov (United States)

    Lamb, Molly M.; Frederiksen, Brittni; Seifert, Jennifer A.; Kroehl, Miranda; Rewers, Marian; Norris, Jill M.

    2015-01-01

    Aims/hypothesis Dietary sugar intake may increase insulin production, stress the beta cells and increase the risk for islet autoimmunity (IA) and subsequent type 1 diabetes. Methods Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed children at increased genetic risk for type 1 diabetes for the development of IA (autoantibodies to insulin, GAD or protein tyrosine phosphatase-like protein [IA2] twice or more in succession) and progression to type 1 diabetes. Information on intake of fructose, sucrose, total sugars, sugar-sweetened beverages, beverages with non-nutritive sweetener and juice was collected prospectively throughout childhood via food frequency questionnaires (FFQs). We examined diet records for 1,893 children (mean age at last follow-up 10.2 years); 142 developed IA and 42 progressed to type 1 diabetes. HLA genotype was dichotomised as high risk (HLA-DR3/4,DQB1*0302) or not. All Cox regression models were adjusted for total energy, FFQ type, type 1 diabetes family history, HLA genotype and ethnicity. Results In children with IA, progression to type 1 diabetes was significantly associated with intake of total sugars (HR 1.75, 95% CI 1.07–2.85). Progression to type 1 diabetes was also associated with increased intake of sugar-sweetened beverages in those with the high-risk HLA genotype (HR 1.84, 95% CI 1.25–2.71), but not in children without it (interaction p value = 0.02). No sugar variables were associated with IA risk. Conclusions/interpretation Sugar intake may exacerbate the later stage of type 1 diabetes development; sugar-sweetened beverages may be especially detrimental to children with the highest genetic risk of developing type 1 diabetes. PMID:26048237

  6. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young.

    Science.gov (United States)

    Lamb, Molly M; Frederiksen, Brittni; Seifert, Jennifer A; Kroehl, Miranda; Rewers, Marian; Norris, Jill M

    2015-09-01

    Dietary sugar intake may increase insulin production, stress the beta cells and increase the risk for islet autoimmunity (IA) and subsequent type 1 diabetes. Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed children at increased genetic risk for type 1 diabetes for the development of IA (autoantibodies to insulin, GAD or protein tyrosine phosphatase-like protein [IA2] twice or more in succession) and progression to type 1 diabetes. Information on intake of fructose, sucrose, total sugars, sugar-sweetened beverages, beverages with non-nutritive sweetener and juice was collected prospectively throughout childhood via food frequency questionnaires (FFQs). We examined diet records for 1,893 children (mean age at last follow-up 10.2 years); 142 developed IA and 42 progressed to type 1 diabetes. HLA genotype was dichotomised as high risk (HLA-DR3/4,DQB1*0302) or not. All Cox regression models were adjusted for total energy, FFQ type, type 1 diabetes family history, HLA genotype and ethnicity. In children with IA, progression to type 1 diabetes was significantly associated with intake of total sugars (HR 1.75, 95% CI 1.07-2.85). Progression to type 1 diabetes was also associated with increased intake of sugar-sweetened beverages in those with the high-risk HLA genotype (HR 1.84, 95% CI 1.25-2.71), but not in children without it (interaction p value = 0.02). No sugar variables were associated with IA risk. Sugar intake may exacerbate the later stage of type 1 diabetes development; sugar-sweetened beverages may be especially detrimental to children with the highest genetic risk of developing type 1 diabetes.

  7. Diabetic autoimmune markers in children and adolescents with type 2 diabetes.

    Science.gov (United States)

    Hathout, E H; Thomas, W; El-Shahawy, M; Nahab, F; Mace, J W

    2001-06-01

    There is an increase in the incidence of type 2 diabetes in children and adolescents. Absence of known diabetes autoimmune markers is sometimes required to confirm the diagnosis. To identify clinical and autoimmune characteristics of type 2 diabetes in a pediatric population. We report an analysis of 48 children and adolescents with type 2 diabetes, compared with 39 randomly selected children with type 1 diabetes, diagnosed and followed at the Loma Linda University Pediatric Diabetes Center. Ethnic, familial, seasonal, and autoimmune marker characteristics are outlined. To determine the reliability of antibody testing in confirming the type of diabetes at diagnosis, we studied the incidence of positive islet cell antibodies (ICAs), glutamic acid decarboxylase antibodies (GADs), and insulin autoantibodies (IAAs) at diagnosis in both groups. ICA512, GADs, and IAAs were measured by radioimmunoassay. The cohort with type 2 diabetes had a similar gender distribution as the group with type 1 diabetes but a significantly higher age at diagnosis. Ethnic background was significantly different between the 2 groups, predominantly Hispanic in type 2 and white in type 1. Body mass index was significantly higher in type 2 diabetes (mean = 31.24 kg/m(2)). Among the patients with type 2 diabetes, 33% presented in diabetic ketoacidosis, random blood glucose at diagnosis ranged from 11.4 to 22.25 mmol/L (228-445 mg/dL), fasting C-peptide levels ranged from 0.89 to 2.7 nmol/L (2.7-8.2 ng/mL; normal: <1.36 nmol/L), and hemoglobin A(1C) was 10.8 +/- 3.5% (normal: <6.6%). None of these parameters was significantly different from the type 1 diabetes group. Although the incidence of diabetes antibody markers was significantly lower in type 2 versus type 1 diabetes, 8.1% of patients with type 2 diabetes had positive ICAs, 30.3% had positive GADs, and 34.8% had positive IAAs without ever being treated with insulin. In the type 2 diabetes group, none of the Hispanic patients had ICAs

  8. Substantiation for Approaches to Treatment of Latent Autoimmune Diabetes in Adults

    Directory of Open Access Journals (Sweden)

    T.M. Tykhonova

    2014-10-01

    Conclusions. Analysis of carbohydrate metabolism on the manifestation stage and over time development of latent autoimmune diabetes in adults as well as reduction of β-cells insulin-producing function associated with autoimmune insulitis and progressing while the development of this form of disease, substantiate the rational for insulin administration as this form of diabetes has been diagnosed. If patients with latent autoimmune diabetes in adults have metabolic syndrome clusters it is quite reasonable to add metformin to insulin.

  9. Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes.

    Directory of Open Access Journals (Sweden)

    Karine Haurogné

    Full Text Available In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.

  10. Is autoimmune thyroid dysfunction a risk factor for gestational diabetes?

    Science.gov (United States)

    Pascual Corrales, Eider; Andrada, Patricia; Aubá, María; Ruiz Zambrana, Alvaro; Guillén Grima, Francisco; Salvador, Javier; Escalada, Javier; Galofré, Juan C

    2014-01-01

    Some recent studies have related autoimmune thyroid dysfunction and gestational diabetes (GD). The common factor for both conditions could be the existence of pro-inflammatory homeostasis. The study objective was therefore to assess whether the presence of antithyroid antibodies is related to the occurrence of GD. Fifty-six pregnant women with serum TSH levels ≥ 2.5 mU/mL during the first trimester were retrospectively studied. Antithyroid antibodies were measured, and an O'Sullivan test was performed. GD was diagnosed based on the criteria of the Spanish Group on Diabetes and Pregnancy. Positive antithyroid antibodies were found in 21 (37.50%) women. GD was diagnosed in 15 patients, 6 of whom (10.71%) had positive antibodies, while 9 (16.07%) had negative antibodies. Data were analyzed using exact logistic regression by LogXact-8 Cytel; no statistically significant differences were found between GD patients with positive and negative autoimmunity (OR = 1.15 [95%CI = 0.28-4.51]; P=1.00). The presence of thyroid autoimmunity in women with TSH above the recommended values at the beginning of pregnancy is not associated to development of GD. However, GD prevalence was higher in these patients as compared to the Spanish general population, suggesting the need for closer monitoring in pregnant women with TSH levels ≥ 2.5 mU/mL. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    Science.gov (United States)

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.

  12. Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms

    NARCIS (Netherlands)

    Visser, Jeroen; Rozing, Jan; Sapone, Anna; Lammers, Karen; Fasano, Alessio; Fromm, M; Schulzke, JD

    2009-01-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type I diabetes (TID), a hyperglycosaemia caused by a destructive autoimmune

  13. Structure modeling and antidiabetic activity of a seed protein of Momordica charantia in non-obese diabetic (NOD) mice.

    Science.gov (United States)

    Chhabra, Gagan; Dixit, Aparna

    2013-01-01

    Momordica charantia is a well known medicinal plant used in the traditional medicinal system for the treatment of various diseases including diabetes mellitus. Recently, a novel protein termed as ADMc1 from the seed extract of M. charantia has been identified and isolated showing significant antihyperglycemic activity in type 1 diabetic rats in which diabetes was induced. However, the structure of this protein has not yet been analyzed. Homology modeling approach was used to generate a high quality protein 3D structure for the amino acid sequence of the ADMc1 protein in this study. The comparative assessment of secondary structures revealed ADMc1 as an all-alpha helix protein with random coils. Tertiary structure predicted on the template structure of Napin of B. Napus (PDB ID: 1SM7) with which the ADMc1 showed significant sequence similarity, was validated using protein structure validation tools like PROCHECK, WHAT_CHECK, VERIFY3D and ProSA. Arrangement of disulfide bridges formed by cysteine residues were predicted by the Dianna 1.1 server. The presence of multiple disulfide bond confers the stable nature of the ADMc1 protein. Further, the biological activity of the ADMc1 was assessed in non-obese diabetic (NOD) mice which are spontaneous model of type 1 diabetes. Significant reduction in the blood glucose levels of NOD mice was observed up to 8 h post administration of the rADMc1 protein. Overall, the structural characterizations with antihyperglycemic activity of this seed protein of Momordica charantia demonstrate its potential as an antidiabetic agent.

  14. Aqueous leaf extract of Passiflora alata Curtis promotes antioxidant and anti-inflammatory effects and consequently preservation of NOD mice beta cells (non-obese diabetic).

    Science.gov (United States)

    Figueiredo, D; Colomeu, Talita Cristina; Schumacher, Nayara Simon Gonzalez; Stivanin-Silva, L G; Cazarin, Cinthia Baú Betim; Meletti, Laura Maria Molina; Fernandes, Luís Gustavo Romani; Prado, Marcelo Alexandre; Zollner, R L

    2016-06-01

    Passiflora alata Curtis (P. alata) leaves have anti-inflammatory properties; the present study aimed to investigate the anti-diabetogenic properties of P. alata aqueous leaf extract. HPLC analysis identified the phenolic compounds catechin, epicatechin and rutin. The aqueous extract was administered for 30weeks to non-obese diabetic (NOD) mice presenting a decrease of 28.6% in diabetes incidence and the number of inflammatory cells in pancreatic islets, when compared with the control group (water). The P. alata group presented an antioxidant effect and decreased lipid peroxidation in the serum of NOD mice. Increased numbers of insulin-positive cells were also observed in the pancreatic islets of the treated group. The diabetic group exhibited higher levels in the glucose tolerance test and glycemic index, in comparison to the P. alata-treated group and non-diabetic control BALB/c mice. In addition, the P. alata extract reduced the percentage and the proliferation index of NOD mice lymphocytes submitted to in vitro dose/response mitogenic stimulation assays. These results suggest that the aqueous extract of P. alata has anti-inflammatory properties, contributing to the protection of beta cells in pancreatic islets in NOD mice, and presents potential for use a supporting approach to treat type 1 diabetes. Copyright © 2016. Published by Elsevier B.V.

  15. Celiac disease associated antibodies in persons with latent autoimmune diabetes of adult and type 2 diabetes.

    Science.gov (United States)

    Sánchez, J C; Cruz, Julio Cesar Sánchez; Cabrera-Rode, E; Rode, Eduardo Cabrera; Sorell, L; Gómez, Luis Sorell; Galvan, J A; Cabrera, José A Galvan; Hernandez, A; Ortega, Ania Hernandez; Molina, G; Mato, Gisela Molina; Perich, P A; Amador, Pedro A Perich; Licea, M E; Puig, Manuel E Licea; Domínguez, E; Alonso, Emma Domínguez; Díaz-Horta, O; Díaz-Horta, Oscar

    2007-03-01

    Celiac Disease (CD) is present in 1-16.4% of patients with type 1 diabetes mellitus. The most important serological markers of CD are anti-endomysial (EMA), anti-tissue transglutaminase (tTGA) and antigliadin antibodies (AGA). The objective of this work is to determine the frequency of tTGA and/or AGA in latent autoimmune diabetes of adult (LADA) and subjects with type 2 diabetes (T2DM), as well as to evaluate their relation with several clinical and biochemical characteristics. Forty three subjects with LADA and 99 with T2DM were studied. The presence of AGA, tTGA was determined in the sera of these patients. The variables: sex, age, duration of diabetes, treatment, body mass index (BMI) and fasting blood glucose concentration were also recorded. No differences were found in the frequency of celiac disease associated antibodies between LADA and T2DM subjects. The presence of celiac disease related antibodies was more frequent in patients with a normal or low BMI. Celiac disease does not seem to be related with pancreatic autoimmunity in type 2 diabetes. Celiac disease causes a decrease of body mass index in type 2 diabetes while pancreatic islet autoimmunity in this entity masks this effect.

  16. Autoimmune destruction of pericytes as the cause of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Duncan D Adams

    2008-06-01

    Full Text Available Duncan D AdamsFaculty of Medicine, University of Otago, Dunedin, New ZealandAbstract: In diabetic retinopathy, collapse of the retinal vasculature is associated with loss of the pericytes. These are contractile cells that together with endothelial cells form the terminal arterioles of the retina. The cause of the loss of pericytes is not known. Recently, it has been discovered that type 1 diabetes is caused by forbidden clones of cytotoxic T lymphocytes, which destroy the insulin-making cells with exquisite specificity. In the light of this, I postulate that an antigenically-related forbidden clone of cytotoxic T lymphocytes selectively destroys the pericytes and that this is the cause of the vascular collapse of diabetic retinopathy. If this is so, the therapeutic implications are immense, involving a switch from ineffectual tight glycemic control to immunotherapy. This is already used as immunosuppression to prevent organ transplant rejection, and as the immune ablation and autologous bone marrow cell reconstitution that has saved the lives of patients with lethally-severe scleroderma. Once the pericyte surface auto-antigen for the T lymphocytes has been isolated, selective destruction of the pathogenic T lymphocytes would be possible by manufacture and use of cytotoxic auto-antigen complexes, which arrests progression of the retinopathy.Keywords: pericytes, diabetic retinopathy, autoimmunity, T cell forbidden clones, immunotherapy

  17. Gut mucosa as a gateway for autoimmunity in non-obose diabetic (NOD) mice

    Czech Academy of Sciences Publication Activity Database

    Funda, David P.; Jirsa Jr., M.; Kozáková, Hana; Kaas, A.; Kofroňová, Olga; Buschard, K.; Tlaskalová, Helena

    2000-01-01

    Roč. 2, č. 3 (2000), s. 99 ISSN 1562-3629. [International Congress Advances in Immunology and Allergology at the Threshold of the 21th Century. 00.00.2000, Moscow] Institutional research plan: CEZ:AV0Z5020903 Subject RIV: EC - Immunology

  18. NSC23766, a Known Inhibitor of Tiam1-Rac1 Signaling Module, Prevents the Onset of Type 1 Diabetes in the NOD Mouse Model

    Directory of Open Access Journals (Sweden)

    Rajakrishnan Veluthakal

    2016-07-01

    Full Text Available Background/Aims: Type 1 diabetes (T1D is characterized by absolute insulin deficiency due to destruction of pancreatic β-cells by cytokines (e.g., interleukin-1β; IL-1β released by invading immune cells. The mechanisms by which these cytokines induce β-cell dysfunction remain poorly understood. Recent evidence suggests that excessive generation of reactive oxygen species (ROS by the phagocyte-like NADPH oxidase2 (Nox2, along with significantly low levels of antioxidants in β-cells, drive them toward oxidative damage. Rac1, a small G-protein, is one of the members of Nox2 holoenzyme. We recently reported that NSC23766, a known inhibitor of Rac1, significantly attenuated cytokine-induced Nox2 activation and ROS generation in pancreatic islet β-cells in vitro. Herein, we determined the effects of NSC23766 (2.5 mg/kg/day, i.p/daily on the development of diabetes in the NOD mouse, a model for T1D. Methods: Two groups of experimental animals (Balb/c and NOD mice received NSC23766, while the two control groups received equal volume of saline. Body weights and blood glucose were measured every week for 34 weeks. Rac1 activation in pancreatic islets was measured by GLISA activation assay. Rac1 and CHOP expression was determined by Western Blotting. Results: Our findings indicate that administration of NSC23766 significantly prevented the development of spontaneous diabetes in the NOD mice. Furthermore, NSC23766 markedly suppressed Rac1 expression and activity and the endoplasmic reticulum stress (CHOP expression in NOD islets. Conclusions: Our findings provide the first evidence implicating the role of Tiam1-Rac1-Nox2 signaling pathway in the onset of spontaneous diabetes in the NOD mouse model.

  19. Primary prevention of beta-cell autoimmunity and type 1 diabetes – The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD perspectives

    Directory of Open Access Journals (Sweden)

    A.G. Ziegler

    2016-04-01

    Conclusion: It is timely and feasible to establish a platform for primary prevention trials for type 1 diabetes in Europe. This multi-site European infrastructure would perform RCTs, supply data coordination and biorepository, provide cohorts for mechanistic and observational studies, and increase awareness for autoimmune diabetes.

  20. Transgenic expression of TGF-β on thyrocytes inhibits development of spontaneous autoimmune thyroiditis and increases regulatory T cells in thyroids of NOD.H-2h4 mice

    OpenAIRE

    Yu, Shiguang; Fang, Yujiang; Sharp, Gordon C.; Braley-Mullen, Helen

    2010-01-01

    Transgenic NOD.H-2h4 mice expressing TGF-β under control of the thyroglobulin promoter were generated to address the role of TGF-β in development of thyrocyte hyperplasia. In contrast to non-transgenic (Tg−) littermates which develop lymphocytic spontaneous autoimmune thyroiditis (L-SAT), all TGF-β transgenic (Tg+) mice given NaI water for 2–7 mo develop thyroid lesions characterized by severe thyroid epithelial cell hyperplasia and proliferation (TEC H/P) with fibrosis and less lymphocyte in...

  1. BAFF regulates activation of self-reactive T cells through B-cell dependent mechanisms and mediates protection in NOD mice.

    Science.gov (United States)

    Mariño, Eliana; Walters, Stacey N; Villanueva, Jeanette E; Richards, James L; Mackay, Charles R; Grey, Shane T

    2014-04-01

    Targeting the BAFF/APRIL system has shown to be effective in preventing T-cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF-deficient NOD mice to examine how BAFF availability would influence T-cell responses in vivo and the development of spontaneous diabetes. BAFF-deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft. Diabetes protection correlated with a failure to expand pathogenic IGRP-reactive CD8(+) T cells, which were maintained in the periphery at correspondingly low levels. Adoptive transfer of IGRP-reactive CD8(+) T cells with B cells into BAFF-deficient NOD mice enhanced IGRP-reactive CD8(+) T-cell expansion. Furthermore, when provoked with cyclophosphamide, or transferred to a secondary lymphopenic host, the latent pool of self-reactive T cells resident in BAFF-deficient NOD mice could elicit beta cell destruction. We conclude that lack of BAFF prevents the procurement of B-cell-dependent help necessary for the emergence of destructive diabetes. Indeed, treatment of NOD mice with the BAFF-blocking compound, BR3-Fc, resulted in a delayed onset and reduced incidence of diabetes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Immunological Basis for Rapid Progression of Diabetes in Older NOD Mouse Recipients Post BM-HSC Transplantation.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available Type I diabetes (T1D, mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC transplantation. Older non-obese diabetic (NOD mice recipients (3m, at disease-onset stage receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage. FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg and lower proportion of proliferating T conventional cells (Tcon in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN, blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.

  3. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  4. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  5. Risk of autoimmune diabetes in APECED: association with short alleles of the 5'insulin VNTR.

    Science.gov (United States)

    Paquette, J; Varin, D S E; Hamelin, C E; Hallgren, A; Kämpe, O; Carel, J-C; Perheentupa, J; Deal, C L

    2010-10-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autoimmune disease causing a wide spectrum of autoimmune dysfunction potentially including diabetes of an autoimmune etiology. We have previously described a pair of discordant APECED siblings and pointed to a possible role of 5'insulin variable number of tandem repeats (VNTR) locus IDDM2 in the appearance of diabetes within this disease. In vitro studies have previously suggested that class I VNTR alleles were associated with decreased fetal thymic insulin expression. We genotyped the 5'INS VNTR locus and several flanking 11p15.5 markers in 50 Finnish APECED subjects and explored the possible contribution of IDDM2 in the development of diabetes. The shorter 5'INS VNTR class I alleles (APECED subjects than in non-diabetic APECED subjects. Logistic regression analysis revealed that having 1 short (APECED.

  6. Obesity, islet cell autoimmunity, and cardiovascular risk factors in youth at onset of type 1 autoimmune diabetes.

    Science.gov (United States)

    Cedillo, Maribel; Libman, Ingrid M; Arena, Vincent C; Zhou, Lei; Trucco, Massimo; Ize-Ludlow, Diego; Pietropaolo, Massimo; Becker, Dorothy J

    2015-01-01

    The current increase in childhood type 1 diabetes (T1D) and obesity has led to two conflicting hypotheses and conflicting reports regarding the effects of overweight on initiation and spreading of islet cell autoimmunity vs earlier clinical manifestation of preexisting autoimmune β-cell damage driven by excess weight. The objective of the study was to address the question of whether the degree of β-cell autoimmunity and age are related to overweight at diabetes onset in a large cohort of T1D youth. This was a prospective cross-sectional study of youth with autoimmune T1D consecutively recruited at diabetes onset. The study was conducted at a regional academic pediatric diabetes center. Two hundred sixty-three consecutive children younger than 19 years at onset of T1D participated in the study. Relationships between body mass index and central obesity (waist circumference and waist to height ratio) and antigen spreading (islet cell autoantibody number), age, and cardiovascular (CVD) risk factors examined at onset and/or 3 months after the diagnosis were measured. There were no significant associations between number of autoantibodies with measures of adiposity. Age relationships revealed that a greater proportion of those with central obesity (21%) were in the youngest age group (0-4 y) compared with those without central obesity (6%) (P = .001). PATIENTS with central obesity had increased CVD risk factors and higher onset C-peptide levels (P obesity accelerates progression of autoantibody spreading once autoimmunity, marked by standard islet cell autoantibody assays, is present. Central obesity was present in almost one-third of the subjects and was associated with early CVD risk markers already at onset.

  7. Gluten-Free Diet Only during Pregnancy Efficiently Prevents Diabetes in NOD Mouse Offspring

    Czech Academy of Sciences Publication Activity Database

    Antvorskov, J.C.; Josefsen, K.; Haupt-Jorgensen, M.; Fundová, Petra; Funda, David P.; Buschard, K.

    2016-01-01

    Roč. 2016, July (2016), s. 3047574 ISSN 2314-6745 R&D Projects: GA ČR GA15-24487S Institutional support: RVO:61388971 Keywords : ISLET AUTOIMMUNITY * RISK * MICE Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.717, year: 2016

  8. Low prevalence of autoimmune diabetes markers in a mixed ethnic population of Singaporean diabetics.

    Science.gov (United States)

    Todd, A L; Ng, W Y; Lui, K F; Thai, A C

    2004-01-01

    Circulating antibodies to glutamic acid decarboxylase (GADab) and tyrosine phosphatase-like molecule IA-2 (IA-2ab) are major indicators for auto-immune destruction of pancreatic islet cells. They identify a majority of Caucasians with type 1 diabetes and approximately 50% of Asians, providing evidence of an idiopathic aetiology in the latter. The present study investigated these autoantibodies in a mixed ethnic group. Hospital clinic patients with clinically defined type 1 (n = 93) and type 2 (n = 300) diabetes and representing Singapore's major ethnic groups--Chinese, Indians and Malays--were studied. GADab and IA-2ab frequencies, and association of autoimmunity status with clinical and biochemical profiles were analysed. Radio-immunoprecipitation assays detected either or both antibodies (seropositivity) in 41.9% of subjects with type 1 diabetes. GADab was detected in 36.6% and IA-2ab in 23.7% of type 1 diabetics. Prevalence of IA-2ab showed a reduction in frequency with disease duration (P = 0.026). In clinical type 2 diabetics, seropositivity was 10.0% with higher frequency in Malays (17.5%) than Chinese (9.7%) and Indians (4.5%). Multivariate analysis revealed that low fasting C-peptide was associated with seropositivity (odds ratio (OR) = 0.15; 95% confidence interval (CI) = 0.04-0.58). A significant relationship (OR = 13.5; 95% CI = 5.0-36.7) between insulin requirement and duration (>5 years) was also revealed. In patients with type 2 diabetes there was a trend of gradual progression to insulin dependency. However, there was considerable variation in body mass index between ethnic subgroups of type 2 diabetics, particularly for Chinese (mean (SD) = 26.0 (4.7)) and Malays (mean (SD) = 29.2 (5.9); P ethnic group of type 1 diabetes patients was much lower than in Caucasians. Significant numbers of patients were seronegative for antibodies. Influences due to ethnicity and adiposity would require further investigations.

  9. Spectratyping analysis of the islet-reactive T cell repertoire in diabetic NOD Igμnull mice after polyclonal B cell reconstitution

    Directory of Open Access Journals (Sweden)

    Sercarz Eli E

    2011-07-01

    Full Text Available Abstract Background Non Obese Diabetic mice lacking B cells (NOD.Igμnull mice do not develop diabetes despite their susceptible background. Upon reconstitution of B cells using a chimera approach, animals start developing diabetes at 20 weeks of age. Methods We have used the spectratyping technique to follow the T cell receptor (TCR V beta repertoire of NOD.Igμnull mice following B cell reconstitution. This technique provides an unbiased approach to understand the kinetics of TCR expansion. We have also analyzed the TCR repertoire of reconstituted animals receiving cyclophosphamide treatment and following tissue transplants to identify common aggressive clonotypes. Results We found that B cell reconstitution of NOD.Igμnull mice induces a polyclonal TCR repertoire in the pancreas 10 weeks later, gradually diversifying to encompass most BV families. Interestingly, these clonotypic BV expansions are mainly confined to the pancreas and are absent from pancreatic lymph nodes or spleens. Cyclophosphamide-induced diabetes at 10 weeks post-B cell reconstitution reorganized the predominant TCR repertoires by removing potential regulatory clonotypes (BV1, BV8 and BV11 and increasing the frequency of others (BV4, BV5S2, BV9, BV16-20. These same clonotypes are more frequently present in neonatal pancreatic transplants under the kidney capsule of B-cell reconstituted diabetic NOD.Igμnull mice, suggesting their higher invasiveness. Phenotypic analysis of the pancreas-infiltrating lymphocytes during diabetes onset in B cell reconstituted animals show a predominance of CD19+ B cells with a B:T lymphocyte ratio of 4:1. In contrast, in other lymphoid organs (pancreatic lymph nodes and spleens analyzed by FACS, the B:T ratio was 1:1. Lymphocytes infiltrating the pancreas secrete large amounts of IL-6 and are of Th1 phenotype after CD3-CD28 stimulation in vitro. Conclusions Diabetes in NOD.Igμnull mice appears to be caused by a polyclonal repertoire of T cell

  10. Abnormal islet sphingolipid metabolism in type 1 diabetes

    DEFF Research Database (Denmark)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P

    2018-01-01

    treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS: We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1...... diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise...... of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy...

  11. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  12. Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice).

    Science.gov (United States)

    Colomeu, T C; Figueiredo, D; Cazarin, C B B; Schumacher, N S G; Maróstica, M R; Meletti, L M M; Zollner, R L

    2014-01-01

    Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (palata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Nodding Syndrome

    Centers for Disease Control (CDC) Podcasts

    2013-12-19

    Dr. Scott Dowell, a CDC director, discusses the rare illness, nodding syndrome, in children in Africa.  Created: 12/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/27/2014.

  14. Infections that induce autoimmune diabetes in BBDR rats modulate CD4(+)CD25(+) T cell populations

    NARCIS (Netherlands)

    Zipris, D; Hillebrands, JL; Welsh, RM; Rozing, J; Xie, JX; Mordes, JP; Greiner, DL; Rossini, AA

    2003-01-01

    Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not

  15. Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes.

    Science.gov (United States)

    Ostrov, David A; Alkanani, Aimon; McDaniel, Kristen A; Case, Stephanie; Baschal, Erin E; Pyle, Laura; Ellis, Samuel; Pöllinger, Bernadette; Seidl, Katherine J; Shah, Viral N; Garg, Satish K; Atkinson, Mark A; Gottlieb, Peter A; Michels, Aaron W

    2018-02-13

    Major histocompatibility (MHC) class II molecules are strongly associated with many autoimmune disorders. In type 1 diabetes, the DQ8 molecule is common, confers significant disease risk and is involved in disease pathogenesis. We hypothesized blocking DQ8 antigen presentation would provide therapeutic benefit by preventing recognition of self-peptides by pathogenic T cells. We used the crystal structure of DQ8 to select drug-like small molecules predicted to bind structural pockets in the MHC antigen-binding cleft. A limited number of the predicted compounds inhibited DQ8 antigen presentation in vitro with one compound preventing insulin autoantibody production and delaying diabetes onset in an animal model of spontaneous autoimmune diabetes. An existing drug of similar structure, methyldopa, specifically blocked DQ8 in recent-onset patients with type 1 diabetes along with reducing inflammatory T cell responses toward insulin, highlighting the relevance of blocking disease-specific MHC class II antigen presentation to treat autoimmunity.

  16. Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms

    Science.gov (United States)

    Visser, Jeroen; Rozing, Jan; Sapone, Anna; Lammers, Karen; Fasano, Alessio

    2010-01-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on celiac disease (CD), an autoimmune enteropathy, and type 1 diabetes (T1D), a hyperglycosaemia caused by a destructive autoimmune process targeting the insulin-producing pancreatic islet cells. Even if environmental factors and genetic susceptibility are clearly involved in the pathogenesis of autoimmunity, for most autoimmune disorders there is no or little knowledge about the causing agent or genetic makeup underlying the disease. In this respect, CD represents a unique autoimmune disorder because a close genetic association with HLA-DQ2 or HLA-DQ8 haplotypes and, more importantly, the environmental trigger (the gliadin fraction of gluten-containing grains wheat, barley, and rye) are known. Conversely, the trigger for autoimmune destruction of pancreatic ß cells in T1D is unclear. Interestingly, recent data suggest that gliadin is also involved in the pathogenesis of T1D. There is growing evidence that increased intestinal permeability plays a pathogenic role in various autoimmune diseases including CD and T1D. Therefore, we hypothesize that besides genetic and environmental factors, loss of intestinal barrier function is necessary to develop autoimmunity. In this review, each of these components will be briefly reviewed. PMID:19538307

  17. Type 1 Diabetes Mellitus Associated With Autoimmune Thyroid Disorders in Iranian Children: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Zamanfar

    2015-01-01

    Full Text Available Context: Type one diabetes mellitus (T1DM is an autoimmune disorder that is yet the most common type of diabetes in children and adolescents. Several genetic risk factors have been associated with T1DM, auto immune thyroiditis and other autoimmune disorder. Among autoimmune disorders, autoimmune thyroid disease (ATD is the most frequent disorder associated with T1DM. Its prevalence varies depending on age, sex and ethnic origin of the subjects and is considerably higher than the general population and increases with duration of T1DM. The aim of this study was to review the prevalence of ATD in Iranian children with T1DM compared with other countries. Evidence Acquisition: We conducted a review on all papers published on the association between autoimmune thyroiditis and T1DM, which was available on Google Scholar, Scientific Information Database (SID, Magiran and Iran Medex databases up to June 2014. Both Persian and English articles were checked. The searched terms were: diabetes mellitus, autoimmune thyroiditis, prevalence, frequency, Iranian children and adolescents. All papers which were done on patients with age under 20 years old and have used Anti-TPO and Anti-TG to evaluate patients were included. Results: Six papers met all the criteria. A total of 736 participants were included in this review. After review of all the papers, the prevalence of Anti-TPO was reported between 8% and 30% and Anti-TG was reported 6.06% to 23.6% in diabetic children in Iran. Conclusions: Autoimmune thyroid disorders are the most prevalent immunological diseases in patients with type 1 diabetes. All these studies have shown a higher prevalence of the disorder in patients with T1DM compared to the Iranian healthy population. Anti-TPO reported between 8% and 30% and Anti-TG reported 6.06% to 23.6% in diabetic children in Iran that was similar to the studies in other countries.

  18. Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice

    International Nuclear Information System (INIS)

    Black, Sasha P.; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-01-01

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic β-cell line (βTC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of βTC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic β-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes

  19. The role of monocytes and monocyte-derived dendritic cells in type 1 diabetes mellitus and autoimmune thyroid disease

    NARCIS (Netherlands)

    W.K. Lam-Tse

    2003-01-01

    textabstractType 1 diabetes mellitus (DM1) and autoimmune thyroid disease (AITD) are organ specific autoimmune diseases in which the immune system is directed against the ß cells and the thyrocytes respectively. The etio-pathogenesis of organ-specific or endocrine autoimmune diseases is complex,

  20. Anterior Hypopituitarism is Rare and Autoimmune Disease is Common in Adults with Idiopathic Central Diabetes Insipidus.

    LENUS (Irish Health Repository)

    2012-02-01

    Objective: Central diabetes insipidus is a rare clinical condition with a heterogenous aetiology. Up to 40% of cases are classified as idiopathic, though many of these are thought to have an autoimmune basis. Published data has suggested that anterior hypopituitarism is common in childhood onset idiopathic diabetes insipidus. We aimed to assess the incidence of anterior hypopituitarism in a cohort of adult patients with idiopathic diabetes insipidus. Design and Patients: We performed a retrospective review of the databases of two pituitary investigation units. This identified 39 patients with idiopathic diabetes insipidus. All had undergone MRI scanning and dynamic pituitary testing (either insulin tolerance testing or GHRH\\/arginine and short synacthen testing) to assess anterior pituitary function. Results: One patient had partial growth hormone deficiency; no other anterior pituitary hormonal deficits were found. 33% had at least one autoimmune disease in addition to central diabetes insipidus. Conclusions: Our data suggest that anterior hypopituitarism is rare in adult idiopathic diabetes insipidus. Routine screening of these patients for anterior hypopituitarism may not therefore be indicated. The significant prevalence of autoimmune disease in this cohort supports the hypothesis that idiopathic diabetes insipidus may have an autoimmune aetiology.

  1. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young.

    Science.gov (United States)

    Norris, Jill M; Kroehl, Miranda; Fingerlin, Tasha E; Frederiksen, Brittni N; Seifert, Jennifer; Wong, Randall; Clare-Salzler, Michael; Rewers, Marian

    2014-02-01

    We previously reported that lower n-3 fatty acid intake and levels in erythrocyte membranes were associated with increased risk of islet autoimmunity (IA) but not progression to type 1 diabetes in children at increased risk for diabetes. We hypothesise that specific n-3 fatty acids and genetic markers contribute synergistically to this increased risk of IA in the Diabetes Autoimmunity Study in the Young (DAISY). DAISY is following 2,547 children at increased risk for type 1 diabetes for the development of IA, defined as being positive for glutamic acid decarboxylase (GAD)65, IA-2 or insulin autoantibodies on two consecutive visits. Using a case-cohort design, erythrocyte membrane fatty acids and dietary intake were measured prospectively in 58 IA-positive children and 299 IA-negative children. Lower membrane levels of the n-3 fatty acid, docosapentaenoic acid (DPA), were predictive of IA (HR 0.23; 95% CI 0.09, 0.55), while α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not, adjusting for HLA and diabetes family history. We examined whether the effect of dietary intake of the n-3 fatty acid ALA on IA risk was modified by fatty acid elongation and desaturation genes. Adjusting for HLA, diabetes family history, ethnicity, energy intake and questionnaire type, ALA intake was significantly more protective for IA in the presence of an increasing number of minor alleles at FADS1 rs174556 (pinteraction = 0.017), at FADS2 rs174570 (pinteraction = 0.016) and at FADS2 rs174583 (pinteraction = 0.045). The putative protective effect of n-3 fatty acids on IA may result from a complex interaction between intake and genetically controlled fatty acid desaturation.

  2. Early life treatment with vancomycin reduces diabetes incidence in NOD mice

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Nielsen, Dennis Sandris; Vogensen, Finn Kvist

    Type 1 diabetes (T1D) results from an uncontrolled T cell mediated destruction of the insulin-producing beta-cells in the pancreas. Causal factors include a combination of genetics, early life incidents and the food we eat. The involved adaptive immune response can be down regulated by a regulato...... of the mechanisms regulating intestinal immune homeostasis toward a proinflammatory mucosal environment.......Type 1 diabetes (T1D) results from an uncontrolled T cell mediated destruction of the insulin-producing beta-cells in the pancreas. Causal factors include a combination of genetics, early life incidents and the food we eat. The involved adaptive immune response can be down regulated by a regulatory...... immune response and a fine-tuned balance between these immunological components is crucial for characteristics of the disease, such as severity, onset time and recovery. The balance between the regulatory and the adaptive immune response is heavily influenced by early life bacterial stimulation...

  3. CD4+ CD25+ cells in type 1 diabetic patients with other autoimmune manifestations

    Directory of Open Access Journals (Sweden)

    Dalia S. Abd Elaziz

    2014-11-01

    Full Text Available The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4+ CD25+high cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU, Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4+ CD25+high below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4+ CD25+high cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.

  4. Dysregulation of T lymphocyte proliferative responses in autoimmunity.

    Directory of Open Access Journals (Sweden)

    Sydney K Elizer

    Full Text Available T cells are critically dependent on cellular proliferation in order to carry out their effector functions. Autoimmune strains are commonly thought to have uncontrolled T cell proliferation; however, in the murine model of autoimmune diabetes, hypo-proliferation of T cells leading to defective AICD was previously uncovered. We now determine whether lupus prone murine strains are similarly hyporesponsive. Upon extensive characterization of T lymphocyte activation, we have observed a common feature of CD4 T cell activation shared among three autoimmune strains-NOD, MRL, and NZBxNZW F1s. When stimulated with a polyclonal mitogen, CD4 T cells demonstrate arrested cell division and diminished dose responsiveness as compared to the non-autoimmune strain C57BL/6, a phenotype we further traced to a reliance on B cell mediated costimulation, which underscores the success of B cell directed immune therapies in preventing T cell mediated tissue injury. In turn, the diminished proliferative capacity of these CD4 T cells lead to a decreased, but activation appropriate, susceptibility to activation induced cell death. A similar decrement in stimulation response was observed in the CD8 compartment of NOD mice; NOD CD8 T cells were distinguished from lupus prone strains by a diminished dose-responsiveness to anti-CD3 mediated stimulation. This distinction may explain the differential pathogenetic pathways activated in diabetes and lupus prone murine strains.

  5. Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging

    DEFF Research Database (Denmark)

    Berclaz, Corinne; Schmidt-Christensen, Anja; Szlag, Daniel

    2016-01-01

    destruction and associated alterations of islet vascularisation. METHODS: NOD mouse and human islets transplanted into the anterior chamber of the eye (ACE) were imaged with FOCI, in which the optical contrast of FOCI is based on intrinsic variations of the index of refraction resulting in a faster...... and vascularisation. The substantially increased backscattering of islets is dominated by the insulin-zinc nanocrystals in the beta cell granules. This translates into a high specificity for the functional beta cell volume of islets. Applying FOCI to a spontaneous mouse model of type 1 diabetes, we quantify...

  6. Management of Microvascular Complications in Secondary Diabetes Associated with Autoimmune Diseases — Case Report

    Directory of Open Access Journals (Sweden)

    Nemes-Nagy Enikő

    2017-09-01

    Full Text Available The association of multiple autoimmune diseases may represent the main focus of physicians treating patients with such pathology presenting no comorbidities of different etiology. However, autoimmune diseases and side effects of drugs may lead to development of silent health-threatening diseases that should be identified promptly. We present the case of an elderly, obese, Caucasian female patient suffering of autoimmune thyroiditis, rheumatoid arthritis, and psoriasis, who developed arterial hypertension and insulin-treated secondary diabetes mellitus (due to long-term oral corticotherapy with microvascular end-organ changes. Retinal imaging for capillary anomalies identified mild non-proliferative diabetic retinopathy with apparent diabetic macular edema and hypertensive retinopathy. Laboratory investigations looking for further vascular risk factors revealed zinc deficiency, elevated serum homocysteine levels, and constantly high C-reactive protein concentration. Attention should be payed to the proper investigation of patients with autoimmune diseases, targeting the early diagnosis of microvasculopathies due to autoimmune diseases or possible medication side effects, in order to prevent end-organ damage.

  7. The Effect of Diabetes-Associated Autoantigens on Cell Processes in Human PBMCs and Their Relevance to Autoimmune Diabetes Development

    Czech Academy of Sciences Publication Activity Database

    Včeláková, J.; Blatný, R.; Halbhuber, Z.; Kolář, Michal; Neuwirth, Aleš; Petruželková, L.; Ulmannová, T.; Koloušková, S.; Sumnik, Z.; Pithová, P.; Krivjanská, M.; Filipp, Dominik; Štechová, K.

    2013-01-01

    Roč. 2013, May (2013), s. 589451 ISSN 2314-6745 Grant - others:GA MŠk(CZ) 2B06019 Institutional support: RVO:68378050 Keywords : type 1 diabetes * autoimmune disease * Th17 * TGF-beta Subject RIV: EB - Genetics ; Molecular Biology

  8. Contrasting the Genetic Background of Type 1 Diabetes and Celiac Disease Autoimmunity

    NARCIS (Netherlands)

    Gutierrez-Achury, Javier; Romanos, Jihane; Bakker, Sjoerd F.; Magadi Gopalaiah, Vinod Kumar; de Haas, Esther C.; Trynka, Gosia; Ricano-Ponce, Isis; Steck, Andrea; Chen, Wei-Min; Onengut-Gumuscu, Suna; Simsek, Suat; Rewers, Marian; Mulder, Chris J.; Liu, Ed; Rich, Stephen S.; Wijmenga, Cisca

    2015-01-01

    Type 1 diabetes (T1D) and celiac disease (CeD) cluster in families and can occur in the same individual. Genetic loci have been associated with susceptibility to both diseases. Our aim was to explore the genetic differences between individuals developing both these diseases (double autoimmunity)

  9. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice

    NARCIS (Netherlands)

    K. Buschard (Karsten); A.K. Hansen; K. Jensen (Karen); D.J. Lindenbergh-Kortleve (Dicky); L.F. de Ruiter (Lilian); T.C. Krohn (Thomas); M.R. Hufeldt (Majbritt); F.K. Vogensen (Finn); B. Aasted (Bent); T. Osterbye (Thomas); B.O. Roep (Bart); C.J. de Haar (Colin); E.E.S. Nieuwenhuis (Edward)

    2011-01-01

    textabstractBackground: Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods: The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice

  10. A non-MHC locus essential for autoimmune type I diabetes in the Komeda Diabetes-Prone rat.

    OpenAIRE

    Yokoi, N; Kanazawa, M; Kitada, K; Tanaka, A; Kanazawa, Y; Suda, S; Ito, H; Serikawa, T; Komeda, K

    1997-01-01

    The Long-Evans Tokushima Lean (LETL) rat, characterized by rapid onset of insulin-dependent (type I) diabetes mellitus (IDDM), no sex difference in the incidence of IDDM, autoimmune destruction of pancreatic beta cells, and no significant T cell lymphopenia, is a desirable animal model for human IDDM. We have established a diabetes-prone substrain of the LETL rat, named Komeda Diabetes-Prone (KDP) rat, showing a 100% development of moderate to severe insulitis within 220 d of age. The cumulat...

  11. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice

    Science.gov (United States)

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-01-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition. PMID:27321428

  12. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice.

    Science.gov (United States)

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-11-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition.

  13. Unusual resistance of ALR/Lt mouse β cells to autoimmune destruction: Role for β cell-expressed resistance determinants

    Science.gov (United States)

    Mathews, Clayton E.; Graser, Robert T.; Savinov, Alexei; Serreze, David V.; Leiter, Edward H.

    2001-01-01

    Genetic analysis of autoimmune insulin-dependent diabetes mellitus (IDDM) has focused on genes controlling immune functions, with little investigation of innate susceptibility determinants expressed at the level of target β cells. The Alloxan (AL) Resistant (R) Leiter (Lt) mouse strain, closely related to the IDDM-prone nonobese diabetic (NOD)/Lt strain, demonstrates the importance of such determinants. ALR mice are unusual in their high constitutive expression of molecules associated with dissipation of free-radical stress systemically and at the β-cell level. ALR islets were found to be remarkably resistant to two different combinations of β-cytotoxic cytokines (IL-1β, tumor necrosis factor α, and IFN-γ) that destroyed islets from the related NOD and alloxan-susceptible strains. The close MHC relatedness between the NOD and ALR strains (H2-Kd and H2-Ag7 identical) allowed us to examine whether ALR islet cells could survive autoimmune destruction by NOD-derived Kd-restricted diabetogenic cytotoxic T lymphocyte clones (AI4 and the insulin-reactive G9C8 clones). Both clones killed islet cells from all Kd-expressing strains except ALR. ALR resistance to diabetogenic immune systems was determined in vivo by means of adoptive transfer of the G9C8 clone or by chimerizing lethally irradiated ALR or reciprocal (ALR × NOD)F1 recipients with NOD bone marrow. In all in vivo systems, ALR and F1 female recipients of NOD marrow remained IDDM free; in contrast, all of the NOD recipients became diabetic. In conclusion, the ALR mouse presents a unique opportunity to identify dominant IDDM resistance determinants expressed at the β cell level. PMID:11136257

  14. Insulinotropic and anti-inflammatory effects of rosiglitazone in experimental autoimmune diabetes.

    Science.gov (United States)

    Awara, Wageh M; el-Sisi, Alaa E; el-Refaei, Mohamed; el-Naa, Mona M; el-Desoky, Karima

    2005-01-01

    Cytokines and nitric oxide (NO) are involved in the pathogenesis of autoimmune diabetes mellitus (DM). Rosiglitazone is an insulin-sensitizing drug that is a ligand for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The anti-inflammatory and immunomodulating properties of PPAR-gamma have been documented. The aim of this study is to investigate the effectiveness of rosiglitazone in autoimmune DM and to clarify the possible mechanism(s) involved. Autoimmune DM was induced in adult male Balb/c mice by co-administration of cyclosporin A and multiple low doses of streptozotocin. Diabetic mice were treated daily with rosiglitazone (7 mg/kg, p.o.) for 21 days. Blood glucose level (BGL), serum insulin level and pancreatic levels of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and NO were measured. Histopathological examination and immunohistochemical determination of CD4 and CD8 T lymphocytes in the pancreatic islets were performed. In addition, analysis of pancreatic protein expression was carried out. The results showed that rosiglitazone treatment resulted in a significant decrease in the BGL and the pancreatic levels of TNF-alpha, IFN-gamma and NO compared to diabetic mice. The serum insulin level was significantly increased after rosiglitazone treatment compared to diabetic mice. The destroyed pancreatic islets were regenerated and became free from both CD4 and CD8 T cells after treatment. Furthermore, many changes in pancreatic protein expression were observed. These results suggest that rosiglitazone has a beneficial effect in the treatment of autoimmune diabetes, an effect that seemed to be a secondary consequence of its anti-inflammatory and immunomodulating properties and might be reflected at the level of protein expression.

  15. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  16. Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus.

    Science.gov (United States)

    Ahlgren, Kerstin M; Fall, Tove; Landegren, Nils; Grimelius, Lars; von Euler, Henrik; Sundberg, Katarina; Lindblad-Toh, Kerstin; Lobell, Anna; Hedhammar, Åke; Andersson, Göran; Hansson-Hamlin, Helene; Lernmark, Åke; Kämpe, Olle

    2014-01-01

    Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D) and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus.

  17. Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Kerstin M Ahlgren

    Full Text Available AIMS/HYPOTHESIS: Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. METHODS: Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA and GAD65 autoantibodies (GADA and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. RESULTS: None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. CONCLUSIONS/INTERPRETATIONS: Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus.

  18. Casein hydrolysate diet controls intestinal T cell activation, free radical production and microbial colonisation in NOD mice.

    Science.gov (United States)

    Emani, R; Asghar, M N; Toivonen, R; Lauren, L; Söderström, M; Toivola, D M; van Tol, E A F; Hänninen, A

    2013-08-01

    Dietary and microbial factors and the gut immune system are important in autoimmune diabetes. We evaluated inflammatory activity in the whole gut in prediabetic NOD mice using ex vivo imaging of reactive oxygen and nitrogen species (RONS), and correlated this with the above-mentioned factors. NOD mice were fed a normal diet or an anti-diabetogenic casein hydrolysate (CH) diet. RONS activity was detected by chemiluminescence imaging of the whole gut. Proinflammatory and T cell cytokines were studied in the gut and islets, and dietary effects on gut microbiota and short-chain fatty acids were determined. Prediabetic NOD mice displayed high RONS activity in the epithelial cells of the distal small intestine, in conjunction with a proinflammatory cytokine profile. RONS production was effectively reduced by the CH diet, which also controlled (1) the expression of proinflammatory cytokines and colonisation-dependent RegIIIγ (also known as Reg3g) in ileum; (2) intestinal T cell activation; and (3) islet cytokines. The CH diet diminished microbial colonisation, increased the Bacteroidetes:Firmicutes ratio, and reduced lactic acid and butyric acid production in the gut. Epithelial RONS production and proinflammatory T cell activation appears in the ileum of NOD mice after weaning to normal laboratory chow, but not after weaning to an anti-diabetogenic CH diet. Our data suggest a link between dietary factors, microbial colonisation and mucosal immune activation in NOD mice.

  19. Associated Autoimmune Diseases

    Science.gov (United States)

    ... celiac disease are type 1 diabetes and autoimmune thyroid disease. The tendency to develop autoimmune diseases is believed ... confusion, weight loss, and coma (if left untreated). Thyroid Disease There are two common forms of autoimmune thyroid ...

  20. Association between vitamin D metabolism gene polymorphisms and risk of islet autoimmunity and progression to type 1 diabetes: the diabetes autoimmunity study in the young (DAISY).

    Science.gov (United States)

    Frederiksen, Brittni N; Kroehl, Miranda; Fingerlin, Tasha E; Wong, Randall; Steck, Andrea K; Rewers, Marian; Norris, Jill M

    2013-11-01

    Vitamin D metabolism genes have been associated with type 1 diabetes (T1D) risk; however, these genes have not been investigated for association with the preclinical phase of T1D, islet autoimmunity (IA). Studies of vitamin D metabolism genes may elucidate the role of vitamin D in complex diseases. The objective of the study was to explore the association between seven vitamin D metabolism gene single-nucleotide polymorphisms (SNPs) and the risk of IA and progression to T1D. The Diabetes Autoimmunity Study in the Young is a longitudinal, observational study. Newborn screening for human leukocyte antigen, sibling and offspring recruitment, and follow-up took place in Denver, Colorado. A total of 1708 children at increased genetic risk of T1D participated in the study: 148 developed IA and 62 IA-positive children progressed to T1D. IA, defined as positivity for glutamic acid decarboxylase, insulin, or IA-2 autoantibodies on two or more consecutive visits, and T1D, diagnosed by a physician, were the main outcome measures. The risk of IA was associated with DHCR7/NADSYN1 rs12785878 and CYP27B1 rs4646536 [hazard ratio 1.36, 95% confidence interval 1.08-1.73 (for each additional minor allele) and hazard ratio 0.59, 95% confidence interval 0.39-0.89 (for A/G compared with the A/A genotype), respectively]. None of the vitamin D SNPs typed was associated with progression to T1D in IA-positive children. Six of the seven SNPs were significantly associated with 25-hydroxyvitamin D levels. DHCR7/NADSYN1 rs12785878 and CYP27B1 rs4646536 may play an important role in islet autoimmunity, the preclinical phase of T1D. These findings should be replicated in larger cohorts for confirmation.

  1. Avaliação da atividade antioxidante e dos efeitos do consumo crônico do extrato aquoso de Passiflora alata Curtis na expressão do diabetes mellitus tipo 1 em camundongos NOD (non obese diabetic)

    OpenAIRE

    Talita Cristina Colomeu

    2013-01-01

    Resumo: A linhagem NOD (non obese diabetic) é utilizada como modelo experimental de DM-1, pois desenvolve espontaneamente a doença com marcante similaridade ao observado em humanos. Vários são os mecanismos propostos para ruptura da tolerância imunológica no DM-1, como a predisposição genética do indivíduo, juntamente com fatores ambientais, tais como estresse e alimentação, parecem favorecer o desencadeamento de mecanismos auto imunes. Nos últimos anos o interesse por alimentos fitoterápicos...

  2. Autoimmunity in type 1 diabetes mellitus: a rat model

    International Nuclear Information System (INIS)

    Liu, Z.

    1987-01-01

    In this study, we have sought to isolate in vitro, from acutely diabetic BB rats, cytotoxic T lymphocytes, which exhibit specific cytotoxicity toward islet cells. Thoracic duct lymphocytes (TDL) from acutely diabetic BB rats cultured with irradiated MHC matched (RT1.u) islet cells and dendritic cells in vitro were shown to be specifically cytotoxic to MHC matched and mismatched allogeneic (RT1.1) and xenogeneic (hamster) islet target cells in a 3 H-leucine release assay. Two cell lines (V1A8 and V1D11) derived from the TDL culture showed similar patterns of non-MHC restricted islet cell killing which could be blocked by islet cells and cultured rat insulinoma cells (RIN5mF) but not by non-islet cells of various tissue origins. Both V1A8 and V1D11 were not cytotoxic to Natural Killer (NK) sensitive target cells, G1TC and YAC-1. Conventional surface markers for rat helper and suppressor/cytotoxic T cells were not detectable on either cell lines. The V1D11 cell line was positive for W 3/13 (rat T/NK marker) on OX-19 (rat T/macrophage marker), whereas the V1A8 cell line was only positive for W 3/13

  3. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents

    Science.gov (United States)

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome). The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests. PMID:27525273

  4. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Aleksandra Krzewska

    2016-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome. The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests.

  5. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice.

    Science.gov (United States)

    Zhang, Mingfeng; Racine, Jeremy J; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D; Zeng, Defu

    2018-03-06

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC-peptide complexes remains unknown. Here, using NOD.Rag1 -/- BDC2.5 or NOD.Rag1 -/- BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3 + Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. Copyright © 2018 the Author(s). Published by PNAS.

  6. Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12.

    Science.gov (United States)

    Collin, Roxanne; Dugas, Véronique; Chabot-Roy, Geneviève; Salem, David; Zahn, Astrid; Di Noia, Javier M; Rauch, Joyce; Lesage, Sylvie

    2015-04-01

    Autoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production. Thus, we generated a NOD.H2(k) congenic strain bearing B10 alleles at the locus comprised within the D12Mit184 and D12Mit12 markers, which we named NOD.H2(k)-Chr12. We determined the biological relevance of the Chr12 locus on the autoimmune process using an antigen-specific TCR transgenic autoimmune mouse model. Specifically, the 3A9 TCR transgene, which recognizes a peptide from hen egg lysozyme (HEL) in the context of I-A(k), and the HEL transgene, which is expressed under the rat-insulin promoter (iHEL), were bred into the NOD.H2(k)-Chr12 congenic strain. In the resulting 3A9 TCR:iHEL NOD.H2(k)-Chr12 mice, we observed a significant decrease in diabetes incidence as well as a decrease in both the quantity and affinity of HEL-specific IgG autoantibodies relative to 3A9 TCR:iHEL NOD.H2(k) mice. Notably, the decrease in autoantibodies due to the Chr12 locus was not restricted to the TCR transgenic model, as it was also observed in the non-transgenic NOD.H2(k) setting. Of importance, antibody affinity maturation upon immunization and re-challenge was also impeded in NOD.H2(k)-Chr12 congenic mice relative to NOD.H2(k) mice. Together, these results demonstrate that a genetic variant(s) present within the Chr12 locus plays a global role in modulating antibody affinity maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Autoimmune central diabetes insipidus in a patient with ureaplasma urealyticum infection and review on new triggers of immune response.

    Science.gov (United States)

    Murdaca, Giuseppe; Russo, Rodolfo; Spanò, Francesca; Ferone, Diego; Albertelli, Manuela; Schenone, Angelo; Contatore, Miriam; Guastalla, Andrea; De Bellis, Annamaria; Garibotto, Giacomo; Puppo, Francesco

    2015-12-01

    Diabetes insipidus is a disease in which large volumes of dilute urine (polyuria) are excreted due to vasopressin (AVP) deficiency [central diabetes insipidus (CDI)] or to AVP resistance (nephrogenic diabetes insipidus). In the majority of patients, the occurrence of CDI is related to the destruction or degeneration of neurons of the hypothalamic supraoptic and paraventricular nuclei. The most common and well recognized causes include local inflammatory or autoimmune diseases, vascular disorders, Langerhans cell histiocytosis (LCH), sarcoidosis, tumors such as germinoma/craniopharyngioma or metastases, traumatic brain injuries, intracranial surgery, and midline cerebral and cranial malformations. Here we have the opportunity to describe an unusual case of female patient who developed autoimmune CDI following ureaplasma urealyticum infection and to review the literature on this uncommon feature. Moreover, we also discussed the potential mechanisms by which ureaplasma urealyticum might favor the development of autoimmune CDI.

  8. Multiple endocrinopathies (growth hormone deficiency, autoimmune hypothyroidism and diabetes mellitus in Kearns-Sayre syndrome

    Directory of Open Access Journals (Sweden)

    A. Berio

    2013-06-01

    Full Text Available Kearns-Sayre syndrome is characterized by onset before 20 years, chronic progressive external opthalmoplegia, pigmentary retinal degeneration, and ataxia (and/or hearth block, and/or high protein content in the cerebrospinal fluid in the presence of mtDNA rearrangements. Multiple endocrine dysfunction associated with this syndrome was rarely reported. In this paper, the Authors report on a female patient with Kearns-Sayre syndrome with large heteroplasmic mtDNA deletion, absence of cytochrome c oxidase in many muscle fibers, partial GH deficiency, hypothyroidism and subsequently insulin dependent diabetes mellitus (IDDM. Anti-thyroid peroxidase and antithyreoglobulin antibodies were present in high titer in serum while anti-islet cell antibodies were absent. The patient developed thyroiditis with Hashimoto encephalopathy. The presence of GH deficiency, autoimmune thyroiditis with hypothyroidism and IDDM distinguishes this case from others and confirms the association of Kearns-Sayre syndrome with multiple endocrine dysfunction. Hashimoto encephalopathy and anti-thyroideal antibodies suggest that in this patient, predisposed by a genetic factor (a mitochondrial deletion anti-thyroideal antibodies may have contributed to the hypothyroidism and, by interfering with cerebral mitochondrial function, may have caused the encephalopathy. GH deficiency and IDDM can be attributed to oxidative phosphorylation deficiency but the autoimmunity may also have played a role in the production of glandular insufficiencies. It seems important to search for endocrine autoimmunity in every case of KSS.

  9. Insulin gene polymorphisms in type 1 diabetes, Addison's disease and the polyglandular autoimmune syndrome type II

    Directory of Open Access Journals (Sweden)

    Hahner Stefanie

    2008-07-01

    Full Text Available Abstract Background Polymorphisms within the insulin gene can influence insulin expression in the pancreas and especially in the thymus, where self-antigens are processed, shaping the T cell repertoire into selftolerance, a process that protects from β-cell autoimmunity. Methods We investigated the role of the -2221Msp(C/T and -23HphI(A/T polymorphisms within the insulin gene in patients with a monoglandular autoimmune endocrine disease [patients with isolated type 1 diabetes (T1D, n = 317, Addison's disease (AD, n = 107 or Hashimoto's thyroiditis (HT, n = 61], those with a polyglandular autoimmune syndrome type II (combination of T1D and/or AD with HT or GD, n = 62 as well as in healthy controls (HC, n = 275. Results T1D patients carried significantly more often the homozygous genotype "CC" -2221Msp(C/T and "AA" -23HphI(A/T polymorphisms than the HC (78.5% vs. 66.2%, p = 0.0027 and 75.4% vs. 52.4%, p = 3.7 × 10-8, respectively. The distribution of insulin gene polymorphisms did not show significant differences between patients with AD, HT, or APS-II and HC. Conclusion We demonstrate that the allele "C" of the -2221Msp(C/T and "A" -23HphI(A/T insulin gene polymorphisms confer susceptibility to T1D but not to isolated AD, HT or as a part of the APS-II.

  10. Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY.

    Directory of Open Access Journals (Sweden)

    Kathleen Waugh

    Full Text Available Type 1 diabetes (TID is characterized by a loss of pancreatic islet beta cell function resulting in loss of insulin production. Genetic and environmental factors may trigger immune responses targeting beta cells thus generating islet antibodies (IA. Immune response pathways involve a cascade of events, initiated by cytokines and chemokines, producing inflammation which can result in tissue damage.A nested case-control study was performed to identify temporal changes in cytokine levels in 75 DAISY subjects: 25 diagnosed T1D, 25 persistent IA, and 25 controls. Serum samples were selected at four time points: (T1 earliest, (T2 just prior to IA, (T3 just after IA, and (T4 prior to T1D diagnosis or most recent. Cytokines (IFN-α2a, IL-6, IL-17, IL-1β, IP-10, MCP-1, IFN-γ, IL-1α, and IL-1ra were measured using the Meso Scale Discovery system Human Custom Cytokine 9-Plex assay.Multivariate mixed models adjusting for HLA risk, first-degree relative status, age, and gender, showed MCP-1 and IFN-үto be significantly higher at T3 in T1D compared to IA subjects. At T4, IP-10 was significantly higher in IA subjects than controls.This repeated measures nested case-control study identified increased inflammatory markers in IA children who developed T1D compared to IA children who had not progressed to clinical disease. It also showed increased inflammation in both T1D and IA children when compared to controls. Results suggest inflammation may be related to both the development of IA and progression to T1D.

  11. Effects of Non-HLA Gene Polymorphisms on Development of Islet Autoimmunity and Type 1 Diabetes in a Population With High-Risk HLA-DR,DQ Genotypes

    NARCIS (Netherlands)

    Steck, Andrea K.; Wong, Randall; Wagner, Brandie; Johnson, Kelly; Liu, Edwin; Romanos, Jihane; Wijmenga, Cisca; Norris, Jill M.; Eisenbarth, George S.; Rewers, Marian J.

    We assessed the effects of non-HLA gene polymorphisms on the risk of islet autoimmunity (IA) and progression to type 1 diabetes in the Diabetes Autoimmunity Study in the Young. A total of 1,743 non-Hispanic, white children were included: 861 first-degree relatives and 882 general population children

  12. HLA and non-HLA genes and familial predisposition to autoimmune diseases in families with a child affected by type 1 diabetes.

    Science.gov (United States)

    Parkkola, Anna; Laine, Antti-Pekka; Karhunen, Markku; Härkönen, Taina; Ryhänen, Samppa J; Ilonen, Jorma; Knip, Mikael

    2017-01-01

    Genetic predisposition could be assumed to be causing clustering of autoimmunity in individuals and families. We tested whether HLA and non-HLA loci associate with such clustering of autoimmunity. We included 1,745 children with type 1 diabetes from the Finnish Pediatric Diabetes Register. Data on personal or family history of autoimmune diseases were collected with a structured questionnaire and, for a subset, with a detailed search for celiac disease and autoimmune thyroid disease. Children with multiple autoimmune diseases or with multiple affected first- or second-degree relatives were identified. We analysed type 1 diabetes related HLA class II haplotypes and genotyped 41 single nucleotide polymorphisms (SNPs) outside the HLA region. The HLA-DR4-DQ8 haplotype was associated with having type 1 diabetes only whereas the HLA-DR3-DQ2 haplotype was more common in children with multiple autoimmune diseases. Children with multiple autoimmune diseases showed nominal association with RGS1 (rs2816316), and children coming from an autoimmune family with rs11711054 (CCR3-CCR5). In multivariate analyses, the overall effect of non-HLA SNPs on both phenotypes was evident, associations with RGS1 and CCR3-CCR5 region were confirmed and additional associations were implicated: NRP1, FUT2, and CD69 for children with multiple autoimmune diseases. In conclusion, HLA-DR3-DQ2 haplotype and some non-HLA SNPs contribute to the clustering of autoimmune diseases in children with type 1 diabetes and in their families.

  13. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin.

    Science.gov (United States)

    Lin, Marvin; Yin, Na; Murphy, Barbara; Medof, M Edward; Segerer, Stephan; Heeger, Peter S; Schröppel, Bernd

    2010-09-01

    The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.

  14. Infant exposures and development of type 1 diabetes mellitus: The Diabetes Autoimmunity Study in the Young (DAISY).

    Science.gov (United States)

    Frederiksen, Brittni; Kroehl, Miranda; Lamb, Molly M; Seifert, Jennifer; Barriga, Katherine; Eisenbarth, George S; Rewers, Marian; Norris, Jill M

    2013-09-01

    The incidence of type 1 diabetes mellitus (T1DM) is increasing worldwide, with the most rapid increase among children younger than 5 years of age. To examine the associations between perinatal and infant exposures, especially early infant diet, and the development of T1DM. The Diabetes Autoimmunity Study in the Young (DAISY) is a longitudinal, observational study. Newborn screening for human leukocyte antigen (HLA) was done at St. Joseph's Hospital in Denver, Colorado. First-degree relatives of individuals with T1DM were recruited from the Denver metropolitan area. A total of 1835 children at increased genetic risk for T1DM followed up from birth with complete prospective assessment of infant diet. Fifty-three children developed T1DM. Early (children at increased genetic risk for T1DM is between 4 and 5 months of age. Breastfeeding while introducing new foods may reduce T1DM risk.

  15. The Rat Diabetes Susceptibility Locus Iddm4 And At Least One Additional Gene Are Required For Autoimmune Diabetes Induced By Viral Infection

    OpenAIRE

    Blankenhorn, Elizabeth P.; Rodemich, Lucy; Martin-Fernandez, Cristina; Leif, Jean; Greiner, Dale L.; Mordes, John P.

    2005-01-01

    BBDR rats develop autoimmune diabetes mellitus only after challenge with environmental perturbants. These include polyinosinic:polycytidylic acid (poly I:C, a ligand of toll-like receptor 3), agents that deplete regulatory T cell populations (Tregs), and a non-beta-cell-cytopathic parvovirus (Kilham rat virus, KRV). The dominant diabetes susceptibility locus Iddm4 is required for diabetes induced by treatment with poly I:C plus Treg depletion. Iddm4 is penetrant in congenic heterozygote rats ...

  16. The effect of childhood cow's milk intake and HLA-DR genotype on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young.

    Science.gov (United States)

    Lamb, Molly M; Miller, Melissa; Seifert, Jennifer A; Frederiksen, Brittni; Kroehl, Miranda; Rewers, Marian; Norris, Jill M

    2015-02-01

    Cow's milk intake has been inconsistently associated with islet autoimmunity (IA) and type 1 diabetes (T1D) development. Genetic and environmental factors may modify the effect of cow's milk on IA and T1D risk. The Diabetes Autoimmunity Study in the Young (DAISY) follows children at increased T1D risk of IA (presence of autoantibodies to insulin, GAD65, or IA-2 twice in succession) and T1D development. We examined 1835 DAISY children with data on cow's milk intake: 143 developed IA, 40 subsequently developed T1D. Cow's milk protein and lactose intake were calculated from prospectively collected parent- and self-reported food frequency questionnaires (FFQ). High risk HLA-DR genotype: HLA-DR3/4,DQB1*0302; low/moderate risk: all other genotypes. We examined interactions between cow's milk intake, age at cow's milk introduction, and HLA-DR genotype in IA and T1D development. Interaction models contained the base terms (e.g., cow's milk protein and HLA-DR genotype) and an interaction term (e.g., cow's milk protein*HLA-DR genotype). In survival models adjusted for total calories, FFQ type, T1D family history, and ethnicity, greater cow's milk protein intake was associated with increased IA risk in children with low/moderate risk HLA-DR genotypes [hazard ratio (HR): 1.41, 95% confidence interval (CI): 1.08-1.84], but not in children with high risk HLA-DR genotypes. Cow's milk protein intake was associated with progression to T1D (HR: 1.59, CI: 1.13-2.25) in children with IA. Greater cow's milk intake may increase risk of IA and progression to T1D. Early in the T1D disease process, cow's milk intake may be more influential in children with low/moderate genetic T1D risk. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Dietary glycemic index, development of islet autoimmunity, and subsequent progression to type 1 diabetes in young children.

    Science.gov (United States)

    Lamb, Molly M; Yin, Xiang; Barriga, Katherine; Hoffman, Michelle R; Barón, Anna E; Eisenbarth, George S; Rewers, Marian; Norris, Jill M

    2008-10-01

    Dietary factors may trigger or exacerbate the autoimmune disease process. Our objective was to examine dietary glycemic index (GI) and glycemic load (GL) for association with islet autoimmunity (IA) development, and progression from IA to type 1 diabetes. The Diabetes Autoimmunity Study in the Young follows children at increased genetic type 1 diabetes risk. Diet is collected prospectively via a parent-reported food frequency questionnaire. This was an observational study of children in the Denver area. A total of 1776 Diabetes Autoimmunity Study in the Young children younger than 11.5 yr was included in the study. There were no interventions. IA, defined as the presence of autoantibodies to insulin, glutamic acid decarboxylase, or protein tyrosine phosphatase at two consecutive visits, or the presence of autoantibodies at one visit and diabetic on the next consecutive visit was determined. Type 1 diabetes was diagnosed by a physician. A total of 89 subjects developed IA, and 17 subsequently developed type 1 diabetes during follow-up. Our hypothesis was formulated after data collection. GI and GL were not associated with IA development. More rapid progression to type 1 diabetes in children with IA was associated with higher dietary GI (hazard ratio: 2.20; 95% confidence interval: 1.17-4.15) and marginally associated with GL (hazard ratio: 1.59; 95% confidence interval: 0.96-2.64) at the first IA-positive visit. Higher dietary GI and GL are not associated with IA development, but higher GI is associated with more rapid progression to type 1 diabetes in children with IA, perhaps due to increased demand on the beta-cell to release insulin. Further study is needed to confirm this finding and identify the underlying biological mechanism.

  18. Latent autoimmune diabetes of adults: From oral hypoglycemic agents to early insulin

    Directory of Open Access Journals (Sweden)

    Resham R Poudel

    2012-01-01

    Full Text Available Approximately 10% of phenotypic type 2 diabetics have islet autoantibodies and are referred to as having latent autoimmune diabetes of adults (LADA, and they land on early sulfonylurea failure and require insulin. Diagnosing LADA has treatment implications because of high risk of progression to insulin dependency. But often there is delay in insulin therapy, as there are no recommendations for islet antibody testing in adult-onset diabetes currently. LADA clinical risk score can identify adults at high risk who may benefit from antibody testing. The optimal treatment of LADA is not established. Early insulin therapy helps to achieve good metabolic control and better long-term outcomes by preserving b-cells and endogenous C-peptide secretion. Sulfonylureas are better avoided as they exhaust b-cells; glitazones and exenatide have favorable outcomes, whereas metformin needs to be used with caution. Understanding LADA will also bring new windows in managing type 1 diabetes. Information acquisition was done by reviewing the medical literature published since 1987, with particular attention to the natural history, genetic factors, and treatment of LADA.

  19. MSC-derived Extracellular Vesicles Attenuate Immune Responses in Two Autoimmune Murine Models: Type 1 Diabetes and Uveoretinitis

    Directory of Open Access Journals (Sweden)

    Taeko Shigemoto-Kuroda

    2017-05-01

    Full Text Available Accumulating evidence shows that extracellular vesicles (EVs produced by mesenchymal stem/stromal cells (MSCs exert their therapeutic effects in several disease models. We previously demonstrated that MSCs suppress autoimmunity in models of type 1 diabetes (T1D and experimental autoimmune uveoretinitis (EAU. Therefore, here, we investigated the therapeutic potential of MSC-derived EVs using our established mouse models for autoimmune diseases affecting the pancreas and the eye: T1D and EAU. The data demonstrate that MSC-derived EVs effectively prevent the onset of disease in both T1D and EAU. In addition, the mixed lymphocyte reaction assay with MSC-derived EVs indicated that EVs inhibit activation of antigen-presenting cells and suppress development of T helper 1 (Th1 and Th17 cells. These results raise the possibility that MSC-derived EVs may be an alternative to cell therapy for autoimmune disease prevention.

  20. A non-MHC locus essential for autoimmune type I diabetes in the Komeda Diabetes-Prone rat.

    Science.gov (United States)

    Yokoi, N; Kanazawa, M; Kitada, K; Tanaka, A; Kanazawa, Y; Suda, S; Ito, H; Serikawa, T; Komeda, K

    1997-10-15

    The Long-Evans Tokushima Lean (LETL) rat, characterized by rapid onset of insulin-dependent (type I) diabetes mellitus (IDDM), no sex difference in the incidence of IDDM, autoimmune destruction of pancreatic beta cells, and no significant T cell lymphopenia, is a desirable animal model for human IDDM. We have established a diabetes-prone substrain of the LETL rat, named Komeda Diabetes-Prone (KDP) rat, showing a 100% development of moderate to severe insulitis within 220 d of age. The cumulative frequency of IDDM was 70% at 120 d of age, and reached 82% within 220 d of age. Here, we performed the first genome-wide scan for non-MHC IDDM susceptibility genes in this strain. The analysis of three crosses has led to the revelation of a major IDDM susceptibility gene, termed Iddm/kdp1, on rat chromosome (Chr) 11. Homozygosity for the KDP allele at this locus is shown to be essential for the development of moderate to severe insulitis and the onset of IDDM. Comparative mapping suggests that the homologues of Iddm/ kdp1 are located on human Chr 3 and mouse Chr 16 and would therefore be different from previously reported IDDM susceptibility genes.

  1. Diabetes insipidus is an unfavorable prognostic factor for response to glucocorticoids in patients with autoimmune hypophysitis.

    Science.gov (United States)

    Lupi, Isabella; Cosottini, Mirco; Caturegli, Patrizio; Manetti, Luca; Urbani, Claudio; Cappellani, Daniele; Scattina, Ilaria; Martino, Enio; Marcocci, Claudio; Bogazzi, Fausto

    2017-08-01

    Autoimmune hypophysitis (AH) has a variable clinical presentation and natural history; likewise, its response to glucocorticoid therapy is often unpredictable. To identify clinical and radiological findings associated with response to glucocorticoids. 12 consecutive patients with AH, evaluated from 2008 to 2016. AH was the exclusion diagnosis after ruling out other pituitary masses and secondary causes of hypophysitis. Mean follow-up time was 30 ± 27 months (range 12-96 months). MRI identified two main patterns of presentation: global enlargement of the pituitary gland or panhypophysitis ( n  = 4, PH), and pituitary stalk abnormality only, or infundibulo-neuro-hypophysitis ( n  = 8, INH). Multiple tropin defects were more common in PH (100%) than those in INH (28% P  = 0.014), whereas diabetes insipidus was more common in INH (100%) than that in PH (50%; P  = 0.028). All 4 PH and 4 out of 8 INH were treated with glucocorticoids. Pituitary volume significantly reduced in all PH patients ( P  = 0.012), defective anterior pituitary function recovered only in the two patients without diabetes insipidus (50%) and panhypopituitarism persisted, along with diabetes insipidus, in the remaining 2 (50%). In all INH patients, either treated or untreated, pituitary stalk diameter reduced ( P  = 0.008) but diabetes insipidus persisted in all. Glucocorticoid therapy may improve anterior pituitary function in a subset of patients but has no effect on restoring posterior pituitary function. Diabetes insipidus appears as a negative prognostic factor for response to glucocorticoids. © 2017 European Society of Endocrinology.

  2. Decreased quality of life and treatment satisfaction in patients with latent autoimmune diabetes of the adult

    Directory of Open Access Journals (Sweden)

    Minerva Granado-Casas

    2017-10-01

    Full Text Available Objectives Our main aim was to assess the quality of life (QoL and treatment satisfaction (TS of subjects with LADA (latent autoimmune diabetes of the adult and compare these measures with those of patients with other diabetes types, i.e., type 1 (T1DM and type 2 diabetes mellitus (T2DM. Methods This was a cross-sectional study with a total of 48 patients with LADA, 297 patients with T2DM and 124 with T1DM. The Audit of Diabetes-Dependent Quality of Life (ADDQoL-19 questionnaire and the Diabetes Treatment Satisfaction Questionnaire (DTSQ were administered. Relevant clinical variables were also assessed. The data analysis included comparisons between groups and multivariate linear models. Results The LADA patients presented lower diabetes-specific QoL (p = 0.045 and average weighted impact scores (p = 0.007 than the T2DM patients. The subgroup of LADA patients with diabetic retinopathy (DR who were treated with insulin had a lower ADDQoL average weighted impact score than the other diabetic groups. Although the overall measure of TS was not different between the LADA and T2DM (p = 0.389 and T1DM (p = 0.091 groups, the patients with LADA showed a poorer hyperglycemic frequency perception than the T2DM patients (p < 0.001 and an improved frequency of hypoglycemic perception compared with the T1DM patients (p = 0.021. Conclusions The current findings suggest a poorer quality of life, especially in terms of DR and insulin treatment, among patients with LADA compared with those with T1DM and T2DM. Hyperglycemia frequency perception was also poorer in the LADA patients than in the T1DM and T2DM patients. Further research with prospective studies and a large number of patients is necessary.

  3. Prevalence of celiac disease autoimmunity in children with type 1 diabetes

    DEFF Research Database (Denmark)

    Adlercreutz, Emma H; Svensson, Jannet; Hansen, Dorte

    2015-01-01

    OBJECTIVES: The aim was to determine the prevalence of celiac disease autoimmunity in children with type 1 diabetes (T1D) diagnosed in Denmark and Sweden. METHODS: A total of 662 Swedish children with T1D were matched with 1080 Danish children with T1D and 309 healthy children from Sweden and 283...... was equally distributed among 89 children with T1D positive for both IgAG-DGP/tTG and IgG-tTG. CONCLUSION: The discrepancy in levels of IgAG-DGP/tTG and IgG-tTG between Swedish and Danish T1D cohorts was independent of HLA and suggests that regional variations in comorbidity of celiac disease in T1D is caused...... by difference in exposure to environmental factors....

  4. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes.

    Science.gov (United States)

    Valitsky, Michael; Hoffman, Amnon; Unterman, Terry; Bar-Tana, Jacob

    2017-12-01

    Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D. Copyright © 2017 the American Physiological Society.

  5. The Association between IgG4 Antibodies to Dietary Factors, Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young

    Science.gov (United States)

    Lamb, Molly M.; Simpson, Melissa D.; Seifert, Jennifer; Scott, Fraser W.; Rewers, Marian; Norris, Jill M.

    2013-01-01

    Background Infant dietary exposures have been linked to type 1 diabetes (T1D) development. IgG4 antibody responses to food antigens are associated with food intolerances but have not been explored prospectively in the period preceding T1D. Methods Using a case-cohort design, IgG4 antibodies to ß-lactoglobulin, gluten, and ovalbumin were measured in plasma collected annually from 260 DAISY participants. Of those, 77 developed islet autoimmunity (IA), defined as positive for either insulin, GAD65 or IA-2 autoantibodies on two consecutive visits, and 22 developed T1D. Results In mixed model analysis adjusting for HLA-DR status, T1D family history, age and ethnicity, higher ß-lactoglobulin IgG4 concentrations were associated with shorter breastfeeding duration (beta = −0.03, 95% Confidence Interval: −0.05, −0.006) and earlier first cow’s milk exposure (beta = −0.04, 95% Confidence Interval: −0.08, 0.00). Higher gluten IgG4 was associated with older age at gluten introduction (beta = 0.06, 95% Confidence Interval: 0.00, 0.13). In proportional hazards analysis adjusting for HLA-DR status, T1D family history and ethnicity, IgG4 against individual or multiple dietary antigens throughout childhood were not associated with IA. In addition, mean antigen-specific IgG4 concentrations in infancy (age children with IA should be explored in other populations. PMID:23469110

  6. Different expression of NOD2 in decidual stromal cells between normal and unexplained recurrent spontaneous abortion women during first trimester gestation

    OpenAIRE

    Zhang, Yuanyuan; Yang, Chunfeng; Fu, Shuai; Chen, Xin; Zhang, Shining; Li, Yiyang; Du, Meirong; Zhang, Jianping

    2014-01-01

    The NOD2 gene, encoding intracellular paternal recognition receptor (PRR) also called caspase activation and recruitment domain 15 (CARD15), is mutated in Crohn’s disease, an autoimmune-disorder. Unexplained recurrent spontaneous abortion (URSA) involved in complex auto-immune disorder. However, little is known about the expression of NOD2 protein at maternal-fetal interface with URSA patients. Our aim was to compare the expression levels of NOD2 in the decidual stromal cells (DSCs) from pati...

  7. [Myasthenia gravis, Graves-Basedow disease and other autoimmune diseases in patient with diabetes type 1 - APS-3 case report, therapeutic complications].

    Science.gov (United States)

    Klenczar, Karolina; Deja, Grażyna; Kalina-Faska, Barbara; Jarosz-Chobot, Przemysława

    2017-01-01

    Diabetes type 1(T1D) is the most frequent form of diabetes in children and young people, which essence is autoimmune destruction of pancreatic B cells islet. Co-occurrence of other autoimmune diseases is observed in children with T1D, the most often are: Hashimoto disease or coeliac disease. We report the case of the patient, who presents coincidence of T1D with other rare autoimmune diseases such as: Graves - Basedow disease, myasthenia gravis, vitiligo and IgA deficiency. All mentioned diseases significantly complicated both endocrine and diabetic treatment of our patient and they negatively contributed her quality of life. The clinical picture of the case allows to recognize one of the autoimmune polyendocrine syndromes: APS-3 and is associated with still high risk of developing another autoimmune disease. © Polish Society for Pediatric Endocrinology and Diabetology.

  8. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities.

    Science.gov (United States)

    Kim, Sung-Whan; Zhang, Hong-Zhe; Guo, Longzhe; Kim, Jong-Min; Kim, Moo Hyun

    2012-01-01

    Although human amniotic mesenchymal stem cells (AMMs) have been recognised as a promising stem cell resource, their therapeutic potential for wound healing has not been widely investigated. In this study, we evaluated the therapeutic potential of AMMs using a diabetic mouse wound model. Quantitative real-time PCR and ELISA results revealed that the angiogenic factors, IGF-1, EGF and IL-8 were markedly upregulated in AMMs when compared with adipose-derived mesenchymal stem cells (ADMs) and dermal fibroblasts. In vitro scratch wound assays also showed that AMM-derived conditioned media (CM) significantly accelerated wound closure. Diabetic mice were generated using streptozotocin and wounds were created by skin excision, followed by AMM transplantation. AMM transplantation significantly promoted wound healing and increased re-epithelialization and cellularity. Notably, transplanted AMMs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, indicating a direct contribution to cutaneous closure. Taken together, these data suggest that AMMs possess considerable therapeutic potential for chronic wounds through the secretion of angiogenic factors and enhanced engraftment/differentiation capabilities.

  9. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγnull mice treated with alogliptin

    Directory of Open Access Journals (Sweden)

    Jurczyk A

    2013-12-01

    Full Text Available Agata Jurczyk,1 Philip diIorio,1 Dean Brostowin,1 Linda Leehy,1 Chaoxing Yang,1 Fumihiko Urano,2 David M Harlan,3 Leonard D Shultz,4 Dale L Greiner,1 Rita Bortell1 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 2Department of Medicine, Washington University School of Medicine, St Louis, MO, 3Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 4The Jackson Laboratory, Bar Harbor, ME, USA Purpose: Dipeptidyl-peptidase-4 (DPP-4 inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. Methods: Streptozotocin-induced diabetic NOD-scid IL2rγnull (NSG mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU incorporation. Results: Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. Conclusion: Human islet-engrafted immunodeficient mice

  10. Oral Tolerance: Therapeutic Implications for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Ana M. C. Faria

    2006-01-01

    Full Text Available Oral tolerance is classically defined as the suppression of immune responses to antigens (Ag that have been administered previously by the oral route. Multiple mechanisms of tolerance are induced by oral Ag. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral Ag induces Th2 (IL-4/IL-10 and Th3 (TGF-β regulatory T cells (Tregs plus CD4+CD25+ regulatory cells and LAP+T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit (CTB, Flt-3 ligand, anti-CD40 ligand and continuous feeding of Ag. In addition to oral tolerance, nasal tolerance has also been shown to be effective in suppressing inflammatory conditions with the advantage of a lower dose requirement. Oral and nasal tolerance suppress several animal models of autoimmune diseases including experimental allergic encephalomyelitis (EAE, uveitis, thyroiditis, myasthenia, arthritis and diabetes in the nonobese diabetic (NOD mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, colitis and stroke. Oral tolerance has been tested in human autoimmune diseases including MS, arthritis, uveitis and diabetes and in allergy, contact sensitivity to DNCB, nickel allergy. Positive results have been observed in phase II trials and new trials for arthritis, MS and diabetes are underway. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time and Ag-specific mechanism of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral, formulation, mucosal adjuvants, combination therapy and early therapy.

  11. Erythrocyte membrane omega-3 fatty acid levels and omega-3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY).

    Science.gov (United States)

    Miller, Melissa R; Yin, Xiang; Seifert, Jennifer; Clare-Salzler, Michael; Eisenbarth, George S; Rewers, Marian; Norris, Jill M

    2011-12-01

    We investigated whether omega-3 fatty acid intake and erythrocyte membrane omega-3 fatty acid levels are associated with conversion to type 1 diabetes in children with islet autoimmunity (IA). The Diabetes Autoimmunity Study in the Young is following children at increased genetic risk for type 1 diabetes for the development of persistent IA, as defined as being positive for glutamic acid decarboxylase 65, i, or insulin autoantibodies on two consecutive visits, and then for the development of type 1 diabetes, as diagnosed by a physician. One hundred and sixty-seven children with persistent IA were followed for a mean of 4.8 yr, and 45 of these developed type 1 diabetes at a mean age of 8.7 yr. Erythrocyte membrane fatty acids (as a percent of total lipid) and dietary fatty acid intake (estimated via food frequency questionnaire) were analyzed as time-varying covariates in proportional hazards survival analysis, with follow-up time starting at detection of the first autoantibody. Neither dietary intake of omega-3 fatty acids nor omega-6 fatty acids were associated with conversion to type 1 diabetes, adjusting for human leukocyte antigen (HLA)-DR, family history of type 1 diabetes, age at first IA positivity, maternal age, maternal education, and maternal ethnicity. Adjusting for HLA-DR, family history of type 1 diabetes and age at first IA positivity, omega-3 and omega-6 fatty acid levels of erythrocyte membranes were not associated with conversion to type 1 diabetes. In this observational study, omega-3 fatty acid intake and status are not associated with conversion to type 1 diabetes in children with IA. © 2011 John Wiley & Sons A/S.

  12. Association of sarcopenia with both latent autoimmune diabetes in adults and type 2 diabetes: a cross-sectional study.

    Science.gov (United States)

    Bouchi, Ryotaro; Fukuda, Tatsuya; Takeuchi, Takato; Nakano, Yujiro; Murakami, Masanori; Minami, Isao; Izumiyama, Hajime; Hashimoto, Koshi; Yoshimoto, Takanobu; Ogawa, Yoshihiro

    2017-06-01

    To investigate the association of both latent autoimmune diabetes in adults (LADA) and type 2 diabetes (T2DM) with muscle mass and function (sarcopenia). Japanese patients with LADA (N=20), T2DM (N=208), and control subjects (N=41) were included in this cross-sectional study. The definition of LADA was based on age of onset (≥30), positive glutamic acid decarboxylase autoantibodies, and insulin requirement within the first 6months after diagnosis. Sarcopenia was diagnosed by the criteria for Asians, using skeletal muscle index (male sarcopenia was higher in LADA (35.0%) than in either T2DM (13.3%) or control subjects (9.8%). LADA was significantly associated with an increased risk for sarcopenia in a multivariate model in which age and body mass index were incorporated (OR: 9.57, 95% CI: 1.86-49.27). In contrast, T2DM tended to be associated with an increased risk for sarcopenia (OR: 2.99, 95% CI: 0.83-10.80). This study provides evidence that patients with LADA are at a high risk for sarcopenia compared to those with T2DM or to control subjects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Daycare attendance, breastfeeding, and the development of type 1 diabetes: the diabetes autoimmunity study in the young.

    Science.gov (United States)

    Hall, Katelyn; Frederiksen, Brittni; Rewers, Marian; Norris, Jill M

    2015-01-01

    The hygiene hypothesis attributes the increased incidence of type 1 diabetes (T1D) to a decrease of immune system stimuli from infections. We evaluated this prospectively in the Diabetes Autoimmunity Study in the Young (DAISY) by examining daycare attendance during the first two years of life (as a proxy for infections) and the risk of T1D. DAISY is a prospective cohort of children at increased T1D risk. Analyses were limited to 1783 children with complete daycare and breastfeeding data from birth to 2 years of age; 58 children developed T1D. Daycare was defined as supervised time with at least one other child at least 3 times a week. Breastfeeding duration was evaluated as a modifier of the effect of daycare. Cox proportional hazards regression was used for analyses. Attending daycare before the age of 2 years was not associated with T1D risk (HR: 0.89; CI: 0.54-1.47) after adjusting for HLA, first degree relative with T1D, ethnicity, and breastfeeding duration. Breastfeeding duration modified this association, where daycare attendance was associated with increased T1D risk in nonbreastfed children and a decreasing T1D risk with increasing breastfeeding duration (interaction P value=0.02). These preliminary data suggest breastfeeding may modify the effect of daycare on T1D risk.

  14. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Adam L. Burrack

    2017-12-01

    Full Text Available Type 1 diabetes (T1D results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.

  15. Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity.

    Science.gov (United States)

    Bonifacio, Ezio; Mathieu, Chantal; Nepom, Gerald T; Ziegler, Anette-G; Anhalt, Henry; Haller, Michael J; Harrison, Leonard C; Hebrok, Matthias; Kushner, Jake A; Norris, Jill M; Peakman, Mark; Powers, Alvin C; Todd, John A; Atkinson, Mark A

    2017-01-01

    The asymptomatic phase of type 1 diabetes is recognised by the presence of beta cell autoantibodies in the absence of hyperglycaemia. We propose that an accurate description of this stage is provided by the name 'Autoimmune Beta Cell Disorder' (ABCD). Specifically, we suggest that this nomenclature and diagnosis will, in a proactive manner, shift the paradigm towards type 1 diabetes being first and foremost an immune-mediated disease and only later a metabolic disease, presaging more active therapeutic intervention in the asymptomatic stage of disease, before end-stage beta cell failure. Furthermore, we argue that accepting ABCD as a diagnosis will be critical in order to accelerate pharmaceutical, academic and public activities leading to clinical trials that could reverse beta cell autoimmunity and halt progression to symptomatic insulin-requiring type 1 diabetes. We recognize that there are both opportunities and challenges in the implementation of the ABCD concept but hope that the notion of 'asymptomatic autoimmune disease' as a disorder will be widely discussed and eventually accepted.

  16. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A "Rare" Manifestation in a "Rare" Disease.

    Science.gov (United States)

    Fierabracci, Alessandra

    2016-07-12

    Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome.

  17. Similar weight-adjusted insulin secretion and insulin sensitivity in short-duration late autoimmune diabetes of adulthood (LADA) and Type 2 diabetes

    DEFF Research Database (Denmark)

    Juhl, C B; Bradley, U; Holst, Jens Juul

    2014-01-01

    AIMS: To explore insulin sensitivity and insulin secretion in people with latent autoimmune diabetes in adulthood (LADA) compared with that in people with Type 2 diabetes. METHODS: A total of 12 people with LADA, defined as glutamic acid decarboxylase (GAD) antibody positivity and > 1 year...... of insulin independency (group A) were age-matched pairwise to people with Type 2 diabetes (group B) and to six people with Type 2 diabetes of similar age and BMI (group C). β-cell function (first-phase insulin secretion and assessment of insulin pulsatility), insulin sensitivity (hyperinsulinemic......-euglycemic clamp) and metabolic response during a mixed meal were studied. RESULTS: Both first-phase insulin secretion and insulin release during the meal were greater (P = 0.05 and P = 0.009, respectively) in Type 2 diabetes as compared with LADA; these differences were lost on adjustment for BMI (group C...

  18. Characterization of the autoimmune response against the nerve tissue S100β in patients with type 1 diabetes

    Science.gov (United States)

    Gómez-Touriño, I; Simón-Vázquez, R; Alonso-Lorenzo, J; Arif, S; Calviño-Sampedro, C; González-Fernández, Á; Pena-González, E; Rodríguez, J; Viñuela-Roldán, J; Verdaguer, J; Cordero, O J; Peakman, M; Varela-Calvino, R

    2015-01-01

    Type 1 diabetes results from destruction of insulin-producing beta cells in pancreatic islets and is characterized by islet cell autoimmunity. Autoreactivity against non-beta cell-specific antigens has also been reported, including targeting of the calcium-binding protein S100β. In preclinical models, reactivity of this type is a key component of the early development of insulitis. To examine the nature of this response in type 1 diabetes, we identified naturally processed and presented peptide epitopes derived from S100β, determined their affinity for the human leucocyte antigen (HLA)-DRB1*04:01 molecule and studied T cell responses in patients, together with healthy donors. We found that S100β reactivity, characterized by interferon (IFN)-γ secretion, is a characteristic of type 1 diabetes of varying duration. Our results confirm S100β as a target of the cellular autoimmune response in type 1 diabetes with the identification of new peptide epitopes targeted during the development of the disease, and support the preclinical findings that autoreactivity against non-beta cell-specific autoantigens may have a role in type 1 diabetes pathogenesis. PMID:25516468

  19. [Latent autoimmune diabetes of adults (LADA): The informative value of autoantibodies].

    Science.gov (United States)

    Silko, Yu V; Nikonova, T V; Ivanova, O N; Stepanova, S M; Shestakova, M V; Dedov, I I

    To investigate the prevalence of autoantibodies (autoAbs) associated with the development of type 1 diabetes mellitus (T1DM) in latent autoimmune diabetes of adults (LADA) in the Russian Federation. A total of 96 patients (46 women and 50 men) with LADA were examined. All the patients underwent an immunological examination including the determination of autoAbs, such as glutamic acid decarboxylase autoAbs (GADA), islet antigen-2 auto-Abs (IA-2A), islet cell cytoplasmic auto-Abs (ICA), zinc transporter 8 auto-Abs (ZnT8A), and insulin auto-Abs (IAA). GADAs were found in 61.5% of the examinees. ICAs were detected in 24%, IA-2As were observed in 57.3%. AutoAbs were more frequently observed in combination than alone. IAAs were least commonly seen in 8.3% and only in combinations. ZnT8As were found in 52.1% of the examinees and they were present alone in 5.2%. The antibodies that are most frequently observed in LADA are GADAs, IA-2As and ZnT8As. It is insufficient to identify only GADAs, as the latter are found in only 61.5% of the patients. IA-2As and ZnT8As, which are present in 57.3% and 52.1% of the patients, respectively, should also be used in the diagnosis of LADA. ICAs are much less commonly seen and along with IAAs may be additional markers for LADA.

  20. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes.

    Science.gov (United States)

    Kaminitz, Ayelet; Ash, Shifra; Askenasy, Nadir

    2017-06-01

    As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.

  1. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes

    Czech Academy of Sciences Publication Activity Database

    Funda, David P.; Kaas, A.; Tlaskalová, Helena; Buschard, K.

    2007-01-01

    Roč. 24, - (2007), s. 59-63 ISSN 1520-7552 R&D Projects: GA AV ČR IAA5020405; GA ČR GA303/06/1329 Institutional research plan: CEZ:AV0Z50200510 Keywords : gluten * gluten-free * type 1 diabetes Subject RIV: EE - Microbiology, Virology Impact factor: 3.087, year: 2007

  2. Vitamin D intake associates with insulin resistance in type 2 diabetes, but not in latent autoimmune diabetes in adults.

    Science.gov (United States)

    Cardoso-Sánchez, Laura Ivonne; Gómez-Díaz, Rita A; Wacher, Niels H

    2015-08-01

    This study aimed to evaluate the relationship between vitamin D (vitD) intake and serum concentrations and insulin secretion (assessed by C-peptide serum concentration)/insulin resistance (determined by estimated glucose disposal rate [eGDR]) in patients with latent autoimmune diabetes in adults (LADA) and type 2 diabetes (T2DM). C-peptide, serum vitD, lipid profile, insulin, glucose, and glycosylated hemoglobin (HbA1c) were assessed; vitD intake was determined; and eGDR was calculated. Groups were compared using the Student t or Mann-Whitney U test. Correlations were performed between insulin secretion, insulin resistance, and vitD, and linear regression models were adjusted for confounding variables. Of 107 patients included, age was 55.3 ± 11.84 years old, and time since diabetes diagnosis was 13.23 ± 5.96 years. There were significant intergroup differences in age, body mass index (BMI), hip measurements, glucose, and HbA1c. The correlation between vitD intake and C-peptide for the whole group was significant (r = 0.213; P = .032) as well as for vitD deficiency/sufficiency in T2DM (P = .042), whereas neither was significant in eGDR. After adjustment for age, HbA1c, disease progression, physical activity, solar exposure, sex, and BMI, vitD intake was only significant in T2DM (P = .028). In serum vitD, only the correlation between eGDR and vitD in T2DM was significant and intragroup when comparing vitD sufficiency. After adjustments, significance was lost. Patients with LADA had lower intake of vitD, poorer metabolic control, lower BMI, and younger age compared to T2DM patients. There was no association between serum vitD or vitD intake and insulin secretion when analyzed by group, although vitD intake was associated with insulin resistance in T2DM, but not LADA. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Potential route of Th17/Tregcell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective.

    Science.gov (United States)

    Karri, Suresh Kumar; Sheela, A

    2017-01-01

    Cytokines, small secreted proteins, have a specific effect on the interactions and communications between cells. They play a pivotal role in the pathogenesis of autoimmune diseases. Factors in the breakdown of self-tolerance and the subsequent events leading to the induction of pathogenic responses remain unclear for most of the autoimmune diseases. Large numbers of studies have revealed a general scheme in which pro-inflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate the regression of inflammation and thereby recovery from the disease. The interleukin (IL)-17/IL-23 axis that emerged as the new paradigm has compelled us to critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. T-helper 17 cells and Regulatory T cells are two lymphocyte subsets with opposing action. In this review, we discuss the mechanism that promotes development of these cells from common precursors and specific factors that impact their cell numbers and function. Also presented are findings that suggest how the equilibrium between pre-inflammatory T helper and regulatory T-cell subsets might be pharmacologically restored for therapeutic benefit, emphasising type-1 diabetes and rheumatoid arthritis. Furthermore, the emerging clinical data showing anti-IL-17 and anti-IL-23 treatments for their efficacy in treating immune-mediated inflammatory diseases are presented.

  4. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  5. Regulatory CD8+ T cells induced by exposure to all-trans retinoic acid and TGF-β suppress autoimmune diabetes

    International Nuclear Information System (INIS)

    Kishi, Minoru; Yasuda, Hisafumi; Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao

    2010-01-01

    Antigen-specific regulatory CD4 + T cells have been described but there are few reports on regulatory CD8 + T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8 + T cells from 8.3-NOD transgenic mice. CD8 + T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-β, and all-trans retinoic acid (ATRA) for 5 days. CD8 + T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-β and ATRA had low Foxp3 + expression (1.7 ± 0.9% and 3.2 ± 4.5%, respectively). In contrast, CD8 + T cells induced by exposure to IGRP, SpDCs, TGF-β, and ATRA showed the highest expression of Foxp3 + in IGRP-reactive CD8 + T cells (36.1 ± 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8 + T cells cultured with IGRP, SpDCs, TGF-β, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8 + T cells suppressed the proliferation of diabetogenic CD8 + T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-β induces CD8 + Foxp3 + T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  6. Type 1 diabetes mellitus associated with autoimmune thyroid disease, celiac disease and familial Mediterranean fever: case report.

    Science.gov (United States)

    Baş, Firdevs; Kabataş-Eryilmaz, Sema; Günöz, Hülya; Darendeliler, Feyza; Küçükemre, Banu; Bundak, Rüveyde; Saka, Nurçin

    2009-01-01

    It is known that type 1 diabetes mellitus (type 1 DM) may be associated with other autoimmune diseases. Recently, a patient with an association of type 1 DM and familial Mediterranean fever (FMF) was reported in the medical literature. A 10.5-year-old boy was brought to our clinic with complaints of polydipsia, polyuria and weight loss and was diagnosed as diabetic ketoacidosis due to autoimmune type 1 DM. Insulin therapy was started. Elevated thyroid antibodies associated with diffuse goiter and hypothyroidism led to the diagnosis of autoimmune thyroid disease (ATD), and elevated antiendomysial antibodies and abnormal intestinal biopsy findings led to the diagnosis of celiac disease (CD). L-thyroxine therapy and gluten-free diet were initiated accordingly. At the third-year of follow-up, acute attacks of fever, abdominal pain and chest pain developed. Laboratory investigations, which were normal between the attacks, revealed elevated erythrocyte sedimentation rate, fibrinogen, white blood cell count and pleural effusion on chest X-ray during the attacks. Molecular analysis for FMF revealed compound heterozygous M694I and V726A. The patient responded well to colchicine therapy started at a dose of 1.5 mg/day. We present the second patient with type 1 DM associated with FMF who also had ATD and CD.

  7. Treated Autoimmune Thyroid Disease Is Associated with a Decreased Quality of Life among Young Persons with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Alena Spirkova

    2015-01-01

    Full Text Available Type 1 diabetes (T1D in children and adolescents is relatively often accompanied by other immunopathological diseases, autoimmune thyroid disease (AITD or celiac disease (CD. Our aim was to assess whether these conditions are associated with changes in the health-related quality of life (HRQOL in pediatric patients with T1D. In a cross-sectional study we identified eligible 332 patients with T1D aged 8–18 years, of whom 248 (75% together with their parents responded to the PedsQL Generic and Diabetes Modules. Compared to 143 patients without thyroid autoantibodies, 40 patients with a thyroxine-treated AITD scored lower in the overall generic HRQOL (P=0.014, as well as in the overall diabetes-specific HRQOL (P=0.013. After adjustment for age, gender, duration of diabetes, type of diabetes treatment, and diabetes control, this association remained statistically significant for the generic HRQOL (P=0.023. Celiac disease was not associated with a change in the generic or diabetes-specific HRQOL (P=0.07  and   P=0.63, resp.. Parental scores showed no association with AITD or celiac disease, except a marginally significant decrease in the overall generic HRQOL (P=0.039 in the T1D + AITD compared to T1D group. Our study indicates that, in pediatric patients with T1D, concomitant thyroxine-treated AITD is associated with lower quality of life.

  8. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes.

    Science.gov (United States)

    Norris, Jill M; Yin, Xiang; Lamb, Molly M; Barriga, Katherine; Seifert, Jennifer; Hoffman, Michelle; Orton, Heather D; Barón, Anna E; Clare-Salzler, Michael; Chase, H Peter; Szabo, Nancy J; Erlich, Henry; Eisenbarth, George S; Rewers, Marian

    2007-09-26

    Cod liver oil supplements in infancy have been associated with a decreased risk of type 1 diabetes mellitus in a retrospective study. To examine whether intakes of omega-3 and omega-6 fatty acids are associated with the development of islet autoimmunity (IA) in children. A longitudinal, observational study, the Diabetes Autoimmunity Study in the Young (DAISY), conducted in Denver, Colorado, between January 1994 and November 2006, of 1770 children at increased risk for type 1 diabetes, defined as either possession of a high diabetes risk HLA genotype or having a sibling or parent with type 1 diabetes. The mean age at follow-up was 6.2 years. Islet autoimmunity was assessed in association with reported dietary intake of polyunsaturated fatty acids starting at age 1 year. A case-cohort study (N = 244) was also conducted in which risk of IA by polyunsaturated fatty acid content of erythrocyte membranes (as a percentage of total lipids) was examined. Risk of IA, defined as being positive for insulin, glutamic acid decarboxylase, or insulinoma-associated antigen-2 autoantibodies on 2 consecutive visits and still autoantibody positive or having diabetes at last follow-up visit. Fifty-eight children developed IA. Adjusting for HLA genotype, family history of type 1 diabetes, caloric intake, and omega-6 fatty acid intake, omega-3 fatty acid intake was inversely associated with risk of IA (hazard ratio [HR], 0.45; 95% confidence interval [CI], 0.21-0.96; P = .04). The association was strengthened when the definition of the outcome was limited to those positive for 2 or more autoantibodies (HR, 0.23; 95% CI, 0.09-0.58; P = .002). In the case-cohort study, omega-3 fatty acid content of erythrocyte membranes was also inversely associated with IA risk (HR, 0.63; 95% CI, 0.41-0.96; P = .03). Dietary intake of omega-3 fatty acids is associated with reduced risk of IA in children at increased genetic risk for type 1 diabetes.

  9. Metabolic risk profiles in diabetes stratified according to age at onset, islet autoimmunity and fasting C-peptide

    DEFF Research Database (Denmark)

    Wod, Mette; Yderstræde, Knud B; Halekoh, Ulrich

    2017-01-01

    autoantibodies (GADab) defines groups with differences in glycaemic control and markers of cardiometabolic risk. DESIGN AND METHODS: A cohort of 4,374 adults with relatively newly diagnosed diabetes referred to a Danish hospital during 1997-2012 was stratified according to age at onset above or below 30 years......OBJECTIVE: Islet autoimmunity, age at onset and time to insulin treatment are often used to define subgroups of diabetes. However, the latter criterion is not clinical useful. Here, we examined whether an unbiased stratification of diabetes according to age at onset, fasting C-peptide and GAD......, fasting C-peptide above or below 300 pmol/l (CPEPhigh or CPEPlow), and presence or absence of GADab (GADpos or GADneg). HbA1c, BMI, blood pressure (BP), lipid profile, alanine aminotransferase (ALT) and creatinine were evaluated. RESULTS: GADab were present in 13% of the cohort. Age at onset...

  10. Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Christiane Winkler

    Full Text Available AIM: To investigate whether type 2 diabetes susceptibility genes and body weight influence the development of islet autoantibodies and the rate of progression to type 1 diabetes. METHODS: Genotyping for single nucleotide polymorphisms (SNP of the type 2 diabetes susceptibility genes CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG, SLC30A8 and TCF7L2 was obtained in 1350 children from parents with type 1 diabetes participating in the BABYDIAB study. Children were prospectively followed from birth for islet autoantibodies and type 1 diabetes. Data on weight and height were obtained at 9 months, 2, 5, 8, 11, and 14 years of age. RESULTS: None of type 2 diabetes risk alleles at the CDKAL1, CDKN2A/2B, FTO, HHEX-IDE, HMGA2, IGF2BP2, KCNJ11, KCNQ1, MTNR1B, PPARG and SLC30A8 loci were associated with the development of islet autoantibodies or diabetes. The type 2 diabetes susceptible genotype of TCF7L2 was associated with a lower risk of islet autoantibodies (7% vs. 12% by age of 10 years, P = 0.015, P(corrected = 0.18. Overweight children at seroconversion did not progress to diabetes faster than non-overweight children (HR: 1.08; 95% CI: 0.48-2.45, P>0.05. CONCLUSIONS: These findings do not support an association of type 2 diabetes risk factors with islet autoimmunity or acceleration of diabetes in children with a family history of type 1 diabetes.

  11. Characterization of the humoral immune response to glutamic acid decarboxylase in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and/or type 1 diabetes.

    Science.gov (United States)

    Ronkainen, Matti S; Härkönen, Taina; Perheentupa, Jaakko; Knip, Mikael

    2005-12-01

    A humoral autoimmune response to glutamic acid decarboxylase (GAD65) is common both in patients with type 1 diabetes and in those with the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, while overt type 1 diabetes is relatively rarely diagnosed in APECED patients. The aim of this study was to assess whether this difference in the incidence of type 1 diabetes is associated with variability in the humoral immune response to GAD65, one of the major autoantigens in type 1 diabetes. Epitope- and isotype-specific GAD65 autoantibodies were analysed in 20 patients with APECED and 20 patients with newly diagnosed type 1 diabetes alone by radiobinding assays. GAD65 autoantibodies targeted the middle and carboxy-terminal regions of GAD65 and occasionally the amino-terminal region in the APECED patients and comprised mainly the IgG1 subclass and less frequently the IgG2 and IgG4 subclasses. The profile of epitope- and isotype-specific GAD65 autoantibodies was similar in type 1 diabetes and APECED, except that IgG2 subclass antibodies were observed more often and at higher levels in the patients with type 1 diabetes alone (P APECED patients with type 1 diabetes from those without type 1 diabetes. APECED-associated humoral autoimmunity to GAD65 does not differ markedly from that observed in type 1 diabetes; only IgG2-GAD65 antibodies may be more closely associated with the latter entity.

  12. Prevalence and features of pancreatic islet cell autoimmunity in women with gestational diabetes from different ethnic groups.

    Science.gov (United States)

    Kousta, E; Lawrence, N J; Anyaoku, V; Johnston, D G; McCarthy, M I

    2001-07-01

    To assess the prevalence and characteristics of islet cell autoimmunity amongst women with gestational diabetes selected from South Asian and Afro-Caribbean as well as European populations. Cross-sectional retrospective survey of subject cohort. Three hundred and twenty-one women with a recent history of gestational diabetes (173 European, 86 South Asian and 62 Afro-Caribbean), a median (range) of 22 (1-150) months postpartum. Antibodies to Glutamic acid decarboxylase were found in 13 (4%) of these women. There was no difference in the prevalence of anti-glutamic acid decarboxylase positivity between the three ethnic groups (European 4.6%, South Asian 3.5%, Afro-Caribbean 3.2%). Anti-glutamic acid decarboxylase positive women were leaner than anti-glutamic acid decarboxylase negative women (body mass index, median (upper-lower quartile) 23.9 (22.5-26.7) vs 26.6 (23.4-30.5)kg/m2, P = 0.03, P = 0.049 allowing for ethnicity). There was no difference between glutamic acid decarboxylase-positive and glutamic acid decarboxylase-negative women for age, family history of diabetes, waist/hip ratio, prevalence of insulin treatment during pregnancy, postpartum glucose status, lipid profile and indices of insulin action and beta-cell function. Markers of islet cell autoimmunity are found as frequently in gestational diabetes women of South Asian and Afro-Caribbean origin, as they are in European subjects. Identification of future risk of type 1 diabetes is relevant to the planning of clinical management and intervention strategies in women with gestational diabetes of all major ethnic groups.

  13. Exposure to perfluoroundecanoic acid (PFUnDA accelerates insulitis development in a mouse model of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    Full Text Available Perfluoralkylated substances (PFAS are classified as persistent, bioaccumulative and toxic substances and are widespread environmental contaminants. Humans are exposed through food, drinking water and air. We have previously reported that bisphenol A accelerates spontaneous diabetes development in non-obese diabetic (NOD mice and observed in the present study that perfluoroundecanoic acid, PFUnDA, increased insulitis development, a prerequisite for diabetes development in NOD mice. We exposed NOD mice to PFUnDA in drinking water (3, 30 and 300 μg/l at mating, during gestation and lactation and until 30 weeks of age. After 300 μg/l PFUnDA exposure, we report (i increased pancreatic insulitis, (ii increased number of apoptotic cells in pancreatic islets prior to insulitis and (iii decreased phagocytosis in peritoneal macrophages. There was also a trend of decreased number of tissue resident macrophages in pancreatic islets prior to insulitis after exposure to 300 μg/l, and altered cytokine secretion in activated splenocytes after exposure to 3 μg/l PFUnDA. Although insulitis is a prerequisite for autoimmune diabetes, the accelerated insulitis was not associated with accelerated diabetes development. Instead, the incidence of diabetes tended to be reduced in the animals exposed to 3 and 30 μg/l PFUnDA, suggesting a non-monotonic dose response. The effects of PFUnDA exposure on increased apoptosis in pancreas and reduced macrophage function as well as accelerated insulitis development in NOD mice, may also be relevant for human insulitis. Further observational autoimmune diabetes clinical cohort studies and animal experiments for PFUnDA as well as other PFASs are therefore encouraged. Keywords: Perfluoralkylated substances, PFUnDA, T1DM, Diabetes, NOD mice, Insulitis

  14. Altered fractalkine cleavage potentially promotes local inflammation in NOD salivary gland

    NARCIS (Netherlands)

    Wildenberg, Manon E.; van Helden-Meeuwsen, Cornelia G.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2008-01-01

    In the nonobese diabetic (NOD) mouse model of Sjögren's syndrome, lymphocytic infiltration is preceded by an accumulation of dendritic cells in the submandibular glands (SMGs). NOD mice also exhibit an increased frequency of mature, fractalkine receptor (CX3C chemokine receptor [CX3CR]1) expressing

  15. Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children.

    Science.gov (United States)

    Elding Larsson, Helena; Lynch, Kristian F; Lönnrot, Maria; Haller, Michael J; Lernmark, Åke; Hagopian, William A; She, Jin-Xiong; Simell, Olli; Toppari, Jorma; Ziegler, Anette-G; Akolkar, Beena; Krischer, Jeffrey P; Rewers, Marian J; Hyöty, Heikki

    2018-01-01

    During the A/H1N1 2009 (A/California/04/2009) pandemic, mass vaccination with a squalene-containing vaccine, Pandemrix®, was performed in Sweden and Finland. The vaccination was found to cause narcolepsy in children and young adults with the HLA-DQ 6.2 haplotype. The aim of this study was to investigate if exposure to Pandemrix® similarly increased the risk of islet autoimmunity or type 1 diabetes. In The Environmental Determinants of Diabetes in the Young (TEDDY) study, children are followed prospectively for the development of islet autoimmunity and type 1 diabetes. In October 2009, when the mass vaccination began, 3401 children at risk for islet autoimmunity and type 1 diabetes were followed in Sweden and Finland. Vaccinations were recorded and autoantibodies against insulin, GAD65 and insulinoma-associated protein 2 were ascertained quarterly before the age of 4 years and semi-annually thereafter. By 5 August 2010, 2413 of the 3401 (71%) children observed as at risk for an islet autoantibody or type 1 diabetes on 1 October 2009 had been vaccinated with Pandemrix®. By 31 July 2016, 232 children had at least one islet autoantibody before 10 years of age, 148 had multiple islet autoantibodies and 96 had developed type 1 diabetes. The risk of islet autoimmunity was not increased among vaccinated children. The HR (95% CI) for the appearance of at least one islet autoantibody was 0.75 (0.55, 1.03), at least two autoantibodies was 0.85 (0.57, 1.26) and type 1 diabetes was 0.67 (0.42, 1.07). In Finland, but not in Sweden, vaccinated children had a lower risk of islet autoimmunity (0.47 [0.29, 0.75]), multiple autoantibodies (0.50 [0.28, 0.90]) and type 1 diabetes (0.38 [0.20, 0.72]) compared with those who did not receive Pandemrix®. The analyses were adjusted for confounding factors. Children with an increased genetic risk for type 1 diabetes who received the Pandemrix® vaccine during the A/H1N1 2009 pandemic had no increased risk of islet autoimmunity

  16. High Prevalence of Autoimmune Diabetes and Poor Glycaemic Control among Adults in Madagascar: A Brief Report from a Humanitarian Health Campaign in Ambanja

    Directory of Open Access Journals (Sweden)

    Ernesto Maddaloni

    2017-01-01

    Full Text Available Madagascar is a geographically isolated country considered a biodiversity hotspot with unique genomics. Both the low-income and the geographical isolation represent risk factors for the development of diabetes. During a humanitarian health campaign conducted in Ambanja, a rural city in the northern part of Madagascar, we identified 42 adult subjects with diabetes and compared their features to 24 randomly enrolled healthy controls. 42.9% (n=18 of diabetic subjects showed HbA1c values ≥ 9.0%. Unexpectedly, waist circumference and BMI were similar in people with diabetes and controls. Different from the healthy controls, diabetic subjects showed a low prevalence of obesity (5.7% versus 30%, p=0.02. Accordingly, we found a high prevalence of autoimmune diabetes as 12% of people with diabetes showed positivity for the autoantibody against glutamic acid decarboxylase. Diabetic subjects with positive autoantibody had higher HbA1c values (11.3 ± 4.1% versus 8.3 ± 2.6%, p=0.03 compared to diabetic subjects with negative autoantibody. In conclusion, here we describe the presence of diabetes and its features in a rural area of Northern Madagascar, documenting poor glycaemic control and a high prevalence of autoimmune diabetes. These data highlight that the diabetes epidemic involves every corner of the world possibly with different patterns and features.

  17. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation.

    Science.gov (United States)

    Askenasy, Nadir

    2016-04-01

    The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.

  18. Mid-term results of bariatric surgery in morbidly obese Japanese patients with slow progressive autoimmune diabetes.

    Science.gov (United States)

    Uno, Kohei; Seki, Yosuke; Kasama, Kazunori; Wakamatsu, Kotaro; Hashimoto, Kenkichi; Umezawa, Akiko; Yanaga, Katsuhiko; Kurokawa, Yoshimochi

    2017-12-11

    Bariatric surgery is recognized as an effective treatment for type 2 diabetes mellitus, but data on its efficacy for type 1 diabetes mellitus, especially slowly progressive insulin-dependent diabetes mellitus, are limited. We investigated five Japanese patients with slowly progressive insulin-dependent diabetes mellitus who underwent bariatric surgery at our center. Five morbidly obese glutamic acid decarboxylase antibody-positive diabetic patients underwent two different types of bariatric surgery. The mean titer of anti-glutamic acid decarboxylase antibody was 4.6 U/mL, and the mean preoperative bodyweight and BMI were 113 kg and 39.6 kg/m 2 , respectively. The mean hemoglobin A1c was 8.4%. The mean fasting serum C-peptide was 5.0 ng/mL. Laparoscopic sleeve gastrectomy was performed in two patients, while laparoscopic sleeve gastrectomy with duodenojejunal bypass was performed in three patients. At one year after surgery, the mean bodyweight and BMI significantly dropped, and the mean percentage of excess weight loss was 96.4%. The mean hemoglobin A1c was 5.7%. This favorable trend was maintained at mid-term. Bariatric surgery for morbidly obese patients with anti-glutamic acid decarboxylase antibody-positive type 1 diabetes mellitus, especially slow progressive autoimmune diabetes, seemed effective in achieving mid-term glycemic control. Longer follow-up with a larger number of patients, as well as validation with more advanced patients with slowly progressive insulin-dependent diabetes mellitus, will be needed. © 2017 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  19. Autoimmune Hepatitis

    Science.gov (United States)

    ... with type 1 autoimmune hepatitis commonly have other autoimmune disorders, such as celiac disease, an autoimmune disease in ... 2 can also have any of the above autoimmune disorders. What are the symptoms of autoimmune hepatitis? The ...

  20. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis.

    Science.gov (United States)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-08-01

    Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on T1D development in nonobese diabetic mice. Female nonobese diabetic mice were weaned to long- and short-chain ITFs [ITF(l) and ITF(s), 5%] supplemented diet up to 24 weeks. T1D incidence, pancreatic-gut immune responses, gut barrier function, and microbiota composition were analyzed. ITF(l) but not ITF(s) supplementation dampened the incidence of T1D. ITF(l) promoted modulatory T-cell responses, as evidenced by increased CD25 + Foxp3 + CD4 + regulatory T cells, decreased IL17A + CD4 + Th17 cells, and modulated cytokine production profile in the pancreas, spleen, and colon. Furthermore, ITF(l) suppressed NOD like receptor protein 3 caspase-1-p20-IL-1β inflammasome in the colon. Expression of barrier reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides β-defensin-1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production were enhanced by ITF(l). Next-generation sequencing analysis revealed that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli. Our data demonstrate that ITF(l) but not ITF(s) delays the development of T1D via modulation of gut-pancreatic immunity, barrier function, and microbiota homeostasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Depletion of CD4+CD25+ regulatory T cells exacerbates sodium iodide-induced experimental autoimmune thyroiditis in human leucocyte antigen DR3 (DRB1*0301) transgenic class II-knock-out non-obese diabetic mice.

    Science.gov (United States)

    Flynn, J C; Meroueh, C; Snower, D P; David, C S; Kong, Y M

    2007-03-01

    Both genetic and environmental factors contribute to autoimmune disease development. Previously, we evaluated genetic factors in a humanized mouse model of Hashimoto's thyroiditis (HT) by immunizing human leucocyte antigen DR3 (HLA-DR3) and HLA-DQ8 transgenic class II-knock-out non-obese diabetic (NOD) mice. DR3+ mice were susceptible to experimental autoimmune thyroiditis (EAT) induction by both mouse thyroglobulin (mTg) and human (h) Tg, while DQ8+ mice were weakly susceptible only to hTg. As one environmental factor associated with HT and tested in non-transgenic models is increased sodium iodide (NaI) intake, we examined the susceptibility of DR3+ and/or DQ8+ mice to NaI-induced disease. Mice were treated for 8 weeks with NaI in the drinking water. At 0 x 05% NaI, 23% of DR3+, 0% of DQ8+ and 20% of DR3+DQ8+ mice had thyroid destruction. No spleen cell proliferation to mTg was observed. Most mice had undetectable anti-mTg antibodies, but those with low antibody levels usually had thyroiditis. At 0.3% NaI, a higher percentage of DR3+ and DR3+DQ8+ mice developed destructive thyroiditis, but it was not statistically significant. However, when DR3+ mice had been depleted of CD4+CD25+ regulatory T cells prior to NaI treatment, destructive thyroiditis (68%) and serum anti-mTg antibodies were exacerbated further. The presence of DQ8 molecules does not alter the susceptibility of DR3+DQ8+ mice to NaI-induced thyroiditis, similar to earlier findings with mTg-induced EAT. Susceptibility of DR3+ mice to NaI-induced EAT, in both the presence and absence of regulatory T cells, demonstrates the usefulness of HLA class II transgenic mice in evaluating the roles of environmental factors and immune dysregulation in autoimmune thyroid disease.

  2. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes.

    Science.gov (United States)

    Dooley, James; Tian, Lei; Schonefeldt, Susann; Delghingaro-Augusto, Viviane; Garcia-Perez, Josselyn E; Pasciuto, Emanuela; Di Marino, Daniele; Carr, Edward J; Oskolkov, Nikolay; Lyssenko, Valeriya; Franckaert, Dean; Lagou, Vasiliki; Overbergh, Lut; Vandenbussche, Jonathan; Allemeersch, Joke; Chabot-Roy, Genevieve; Dahlstrom, Jane E; Laybutt, D Ross; Petrovsky, Nikolai; Socha, Luis; Gevaert, Kris; Jetten, Anton M; Lambrechts, Diether; Linterman, Michelle A; Goodnow, Chris C; Nolan, Christopher J; Lesage, Sylvie; Schlenner, Susan M; Liston, Adrian

    2016-05-01

    Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.

  3. Beta-cell, thyroid, gastric, adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes

    Science.gov (United States)

    De block, C E M; De leeuw, I H; Vertommen, J J F; Rooman, R P A; Du Caju, M V L; Van Campenhout, C M; Weyler, J J; Winnock, F; Van Autreve, J; Gorus, F K

    2001-01-01

    The autoimmune attack in type 1 diabetes is not only targeted to β cells. We assessed the prevalence of thyroid peroxidase (aTPO), parietal cell (PCA), antiadrenal (AAA) and endomysial antibodies (EmA-IgA), and of overt autoimmune disease in type 1 diabetes, in relation to gender, age, duration of disease, age at onset, β-cell antibody status (ICA, GADA, IA2A) and HLA-DQ type. Sera from 399 type 1 diabetic patients (M/F: 188/211; mean age: 26 ± 16 years; duration: 9 ± 8 years) were tested for ICA, PCA, AAA and EmA-IgA by indirect immunofluorescence, and for IA2A (tyrosine phosphatase antibodies), GADA (glutamic acid decarboxylase-65 antibodies) and aTPO by radiobinding assays. The prevalence rates were: GADA 70%; IA2A, 44%; ICA, 39%; aTPO, 22%; PCA, 18%; EmA-IgA, 2%; and AAA, 1%. aTPO status was determined by female gender (β = − 1·15, P = 0·002), age (β = 0·02, P = 0·01) and GADA + (β = 1·06, P = 0·02), but not by HLA-DQ type or IA2A status. Dysthyroidism (P < 0·0001) was more frequent in aTPO + subjects. PCA status was determined by age (β = 0·03, P = 0·002). We also observed an association between PCA + and GADA + (OR = 1·9, P = 0·049), aTPO + (OR = 1·9, P = 0·04) and HLA DQA1*0501-DQB1*0301 status (OR = 2·4, P = 0·045). Iron deficiency anaemia (OR = 3·0, P = 0·003) and pernicious anaemia (OR = 40, P < 0·0001) were more frequent in PCA + subjects. EmA-IgA + was linked to HLA DQA1*0501-DQB1*0201 + (OR = 7·5, P = 0·039), and coeliac disease was found in three patients. No patient had Addison's disease. In conclusion, GADA but not IA2A indicate the presence of thyrogastric autoimmunity in type 1 diabetes. aTPO have a female preponderance, PCA are weakly associated with HLA DQA1*0501-DQB1*0301 and EmA-IgA + with HLA DQA1*0501-DQB1*0201. PMID:11703366

  4. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    Science.gov (United States)

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Effects of co-existing autoimmune diseases on serum lipids and lipoprotein subclasses profile in paediatric patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Bojanin, Dragana; Milenkovic, Tatjana; Vekic, Jelena; Vukovic, Rade; Zeljkovic, Aleksandra; Janac, Jelena; Ivanisevic, Jasmina; Todorovic, Sladjana; Mazibrada, Ilijana; Spasojevic-Kalimanovska, Vesna

    2018-02-02

    Paediatric patients with type 1 diabetes mellitus (T1DM) frequently develop other autoimmune disorders; most commonly autoimmune thyroiditis (ATD) and celiac disease (CD). In this study we evaluated whether co-existing autoimmune diseases had significant impact on lipid and lipoprotein subclasses, as known cardiovascular risk factors in T1DM. Study included 201 subjects with T1DM (14.1 ± 2.9 years) and 141 age- and gender-matched controls. ATD was presented in 30 and CD in 15 T1DM patients. Serum lipid parameters were determined by routine laboratory methods and plasma low-density (LDL) and high-density lipoprotein (HDL) subclasses by gradient-gel electrophoresis method. Both groups of T1DM patients with concomitant autoimmune disease had significantly lower HDL-C levels (P autoimmune diseases. The patients with co-existing autoimmune diseases had higher risk of low HDL-C level (OR: 2.96; P autoimmune diseases on lipid profile in patients with T1DM. The most prominent changes were found in HDL lipoprotein characteristics in T1DM + CD group. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Implication of the intestinal microbiome as a potential surrogate marker of immune responsiveness to experimental therapies in autoimmune diabetes.

    Science.gov (United States)

    Needell, James C; Dinarello, Charles A; Ir, Diana; Robertson, Charles E; Ryan, Sarah M; Kroehl, Miranda E; Frank, Daniel N; Zipris, Danny

    2017-01-01

    Type 1 diabetes (T1D) is an autoimmune proinflammatory disease with no effective intervention. A major obstacle in developing new immunotherapies for T1D is the lack of means for monitoring immune responsiveness to experimental therapies. The LEW1.WR1 rat develops autoimmunity following infection with the parvovirus Kilham rat virus (KRV) via mechanisms linked with activation of proinflammatory pathways and alterations in the gut bacterial composition. We used this animal to test the hypothesis that intervention with agents that block innate immunity and diabetes is associated with a shift in the gut microbiota. We observed that infection with KRV results in the induction of proinflammatory gene activation in both the spleen and pancreatic lymph nodes. Furthermore, administering animals the histone deacetylase inhibitor ITF-2357 and IL-1 receptor antagonist (Anakinra) induced differential STAT-1 and the p40 unit of IL-12/IL-23 gene expression. Sequencing of bacterial 16S rRNA genes demonstrated that both ITF-2357 and Anakinra alter microbial diversity. ITF-2357 and Anakinra modulated the abundance of 23 and 8 bacterial taxa in KRV-infected animals, respectively, of which 5 overlapped between the two agents. Lastly, principal component analysis implied that ITF-2357 and Anakinra induce distinct gut microbiomes compared with those from untreated animals or rats provided KRV only. Together, the data suggest that ITF-2357 and Anakinra differentially influence the innate immune system and the intestinal microbiota and highlight the potential use of the gut microbiome as a surrogate means of assessing anti-inflammatory immune effects in type 1 diabetes.

  7. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice.

    OpenAIRE

    von Herrath, M G; Dyrberg, T; Oldstone, M B

    1996-01-01

    Oral administration of self-antigens has been proposed as a therapy to prevent and treat autoimmune diseases. Here we report that oral treatment with insulin prevents virus-induced insulin-dependent diabetes mellitus (IDDM) in a transgenic (tg) mouse model. Such mice express the viral nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) under control of the rat insulin promoter in their pancreatic beta cells and < 2% spontaneously develop diabetes. However, 2 mo after challenge wit...

  8. Dietary polyherbal supplementation decreases CD3+ cell infiltration into pancreatic islets and prevents hyperglycemia in nonobese diabetic mice.

    Science.gov (United States)

    Burke, Susan J; Karlstad, Michael D; Conley, Caroline P; Reel, Danielle; Whelan, Jay; Collier, J Jason

    2015-04-01

    Type 1 diabetes mellitus results from autoimmune-mediated destruction of pancreatic islet β-cells, a process associated with inflammatory signals. We hypothesized that dietary supplementation with botanicals known to contain anti-inflammatory properties would prevent losses in functional β-cell mass in nonobese diabetic (NOD) mice, a rodent model of autoimmune-mediated islet inflammation that spontaneously develops diabetes. Female NOD mice, a model of spontaneous autoimmune diabetes, were fed a diet supplemented with herbal extracts (1.916 g total botanical extracts per 1 kg of diet) over a 12-week period. The mice consumed isocaloric matched diets without (controls) and with polyherbal supplementation (PHS) ad libitum starting at a prediabetic stage (age 6 weeks) for 12 weeks. Control mice developed hyperglycemia (>180 mg/dL) within 16 weeks (n = 9). By contrast, mice receiving the PHS diet did not develop hyperglycemia by 18 weeks (n = 8). Insulin-positive cell mass within pancreatic islets was 31.9% greater in PHS mice relative to controls. We also detected a 26% decrease in CD3(+) lymphocytic infiltration in PHS mice relative to mice consuming a control diet. In vitro assays revealed reduced β-cell expression of the chemokines CCL2 and CXCL10 after overnight PHS addition to the culture media. We conclude that dietary PHS delays initiation of autoimmune-mediated β-cell destruction and subsequent onset of diabetes mellitus by diminishing islet inflammatory responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Diabetes mellitus tipo 1: multifatores que conferem suscetibilidade à patogenia auto-imune = Type 1 diabetes mellitus: multifactors that confer susceptibility to the autoimmune pathogenesis

    Directory of Open Access Journals (Sweden)

    Staub, Henrique Luiz

    2007-01-01

    Full Text Available Objetivos: revisar dados de literatura concernentes aos fatores que conferem suscetibilidade à patogenia auto-imune do diabetes mellitus tipo 1. Fonte de dados: revisão de artigos especializados no assunto publicados em bancos de dados nacionais e internacionais (SCIELO, LILACS e PUBMED. Síntese de dados: a etiopatogenia do diabetes mellitus tipo 1 está associada a fatores inflamatórios, genéticos e ambientais. Nesta revisão, abordamos o papel da auto-imunidade humoral e celular que culmina com a disfunção das células-beta produtoras de insulina. A precocidade da presença de alguns autoanticorpos como anti-ilhotas pancreáticas, antiinsulina e anti-ácido glutâmico descarboxilase é uma característica importante nesta patologia. Os diversos fatores genéticos associados ao deflagramento do diabetes mellitus tipo 1, sobretudo os associados ao sistema de antígenos leucocitários humanos, acabam por potencializar a apresentação de antígenos das ilhotas para o sistema imune. Por fim, fatores ambientais como exposição viral também contribuem para a quebra de tolerância imunológica observada nesses pacientes. Conclusões: o diabetes mellitus tipo 1 é uma entidade de etiopatogenia altamente complexa. Diversos fatores genéticos e ambientais potencializam os mecanismos de auto-imunidade humoral e celular que levam à insulite. O risco de hipoglicemia severa observada com o tratamento insulínico e as complicações crônicas do diabetes mellitus tipo 1 justificam pesquisas contínuas em relação à etiopatogenia desta entidade, o que contribuirá para abordagens terapêuticas mais eficazes. Aims: To review the literature data concerning the factors which confer susceptibilitiy to the autoimmune pathogenesis of type I diabetes mellitus. Source of data: Review of specific articles on the issue published in national and in-ternational databases (SCIELO, LILACS, PUBMED. Summary of the findings: The etiopathogenesis of type I diabetes

  10. The Effect of Childhood Cow's Milk Intake and HLA-DR Genotype on Risk of Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young (DAISY)

    Science.gov (United States)

    Lamb, Molly M.; Miller, Melissa; Seifert, Jennifer A.; Frederiksen, Brittni; Kroehl, Miranda; Rewers, Marian; Norris, Jill M.

    2014-01-01

    Background Cow's milk intake has been inconsistently associated with islet autoimmunity (IA) and type 1 diabetes (T1D) development. Genetic and environmental factors may modify the effect of cow's milk on IA and T1D risk. Methods The Diabetes Autoimmunity Study in the Young (DAISY) follows children at increased T1D risk for IA (presence of autoantibodies to insulin, GAD65 or IA-2 twice in succession) and T1D development. We examined 1,835 DAISY children with data on cow's milk intake: 143 developed IA, 40 subsequently developed T1D. Cow's milk protein and lactose intake were calculated from prospectively collected parent- and self-reported food frequency questionnaires (FFQ). High risk HLA-DR genotype: HLA-DR3/4,DQB1*0302; low/moderate risk: all other genotypes. We examined interactions between cow's milk intake, age at cow's milk introduction, and HLA-DR genotype in IA and T1D development. Interaction models contained the base terms (e.g., cow's milk protein and HLA-DR genotype) and an interaction term (cow's milk protein*HLA-DR genotype). Results In survival models adjusted for total calories, FFQ type, T1D family history, and ethnicity, greater cow's milk protein intake was associated with increased IA risk in children with low/moderate risk HLA-DR genotypes (Hazard Ratio (HR): 1.41, 95% Confidence Interval (CI): 1.08–1.84), but not in children with high risk HLA-DR genotypes. Cow's milk protein intake was associated with progression to T1D (HR: 1.59, CI: 1.13–2.25) in children with IA. Conclusions Greater cow's milk intake may increase risk of IA and progression to T1D. Early in the T1D disease process, cow's milk intake may be more influential in children with low/moderate genetic T1D risk. PMID:24444005

  11. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Tokunori Ikeda

    Full Text Available We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs using two models of autoimmune disease, namely non-obese diabetic (NOD mice and experimental autoimmune encephalomyelitis (EAE. Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases.

  12. Comparative analysis of HLA II allele and genotype frequency distribution in patients with type 1 diabetes mellitus and autoimmune thyroiditis

    Directory of Open Access Journals (Sweden)

    Ekaterina Aleksandrovna Repina

    2013-12-01

    Full Text Available Aim. To compare HLA II allele and genotype frequency distribution in type 1 diabetes mellitus (T1DM and autoimmune thyroiditis (AIT with that in isolated T1DM.Materials and Methods. A total of 92 T1DM patients were subdivided into two groups. The first group comprised 54 patients with established AIT comorbidity or elevation of anti-thyroid autoantibodies (ATA. Patients with isolated T1DM (ATA-negative formed the second group. HLA-genotyping was performed by multiprimer PCR set for the three following genes: DRB1, DQA1 and DQВ1.Results. Prevalence of alleles DRB1*01, *03(017, *04, *07, *11 and genotypes 01/03, 01/04, 03/04 tends to be higher among patients with AIT comorbidity. The comorbidity group was also characterized by the trend towards higher prevalence of “marker/marker” and “marker/non-marker” combinations favouring the former variant. Conversely, ATA-negative patients exhibited trend for higher prevalence of “non-marker/non-marker” combination.Conclusion. Statistically insignificant difference between HLA II alleles and genotypes in the two studied groups suggests that primary genetic factors are common in these two diseases. Plausibly, genes other than DRB1, DQA1 and DQВ1 determine the localization of the autoimmune process.

  13. IPEX due to an exon 7 skipping FOXP3 mutation with autoimmune diabetes mellitus cured by selective TReg cell engraftment.

    Science.gov (United States)

    Magg, Thomas; Wiebking, Volker; Conca, Raffaele; Krebs, Stefan; Arens, Stefan; Schmid, Irene; Klein, Christoph; Albert, Michael H; Hauck, Fabian

    2018-03-19

    Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inherited disorder leading to severe organ-specific autoimmunity. IPEX is caused by hemizygous mutations in FOXP3, which codes for a master transcription factor of regulatory T (T Reg ) cell development and function. We describe a four-year-old boy with typical but slightly delayed-onset of IPEX with autoimmune diabetes mellitus, enteropathy, hepatitis and skin disease. We found the unreported FOXP3 splice site mutation c.816+2T>A that leads to the loss of leucine-zipper coding exon 7. RNA-Seq revealed that FOXP3Δ7 leads to differential expression of FOXP3 regulated genes. After myeloablative conditioning the patient underwent allogeneic HSCT from a matched unrelated donor. HSCT led to the resolution of all IPEX symptoms including insulin requirement despite persisting autoantibody levels. After initial full donor engraftment nearly complete autologous reconstitution was documented, but donor-derived T Reg cells persisted with a lineage-specific chimerism of >70% and the patient remained in clinical remission. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. In vivo treatment with a MHC class I-restricted blocking peptide can prevent virus-induced autoimmune diabetes.

    Science.gov (United States)

    von Herrath, M G; Coon, B; Lewicki, H; Mazarguil, H; Gairin, J E; Oldstone, M B

    1998-11-01

    We tested the in vivo potential of a MHC class I-restricted blocking peptide to sufficiently lower an anti-viral CTL response for preventing virus-induced CTL-mediated autoimmune diabetes (insulin-dependent diabetes mellitus (IDDM)) in vivo without affecting systemic viral clearance. By designing and screening several peptides with high binding affinities to MHC class I H-2Db for best efficiency in blocking killing of target cells by lymphocytic choriomeningitis virus (LCMV) and other viral CTL, we identified the peptide for this study. In vitro, it selectively lowered CTL killing restricted to the Db allele, which correlated directly with the affinity of the respective epitopes. Expression of the blocking peptide in the target cell lowered recognition of all Db-restricted LCMV epitopes. In addition, in vitro expansion of LCMV memory CTL was prevented, resulting in decreased IFN-gamma secretion. In vivo, a 2-wk treatment with this peptide lowered the LCMV Db-restricted CTL response by over threefold without affecting viral clearance. However, the CTL reduction by the peptide treatment was sufficient to prevent LCMV-induced IDDM in rat insulin promoter-LCMV-glycoprotein transgenic mice. Following LCMV infection, these mice develop IDDM, which depends on Db-restricted anti-self (viral) CTL. Precursor numbers of splenic LCMV-CTL in peptide-treated mice were reduced, but their cytokine profile was not altered, indicating that the peptide did not induce regulatory cells. Further, non-LCMV-CTL recognizing the blocking peptide secreted IFN-gamma and did not protect from IDDM. This study demonstrates that in vivo treatment with a MHC class I blocking peptide can prevent autoimmune disease by directly affecting expansion of autoreactive CTL.

  15. Long Term Effect of Gut Microbiota Transfer on Diabetes Development

    Science.gov (United States)

    Peng, Jian; Narasimhan, Sukanya; Marchesi, Julian R.; Benson, Andrew; Wong, F. Susan; Wen, Li

    2015-01-01

    The composition of the gut microbiome represents a very important environmental factor that influences the development of type 1 diabetes (T1D). We have previously shown that MyD88-deficient non-obese diabetic (MyD88−/−NOD) mice, that were protected from T1D development, had a different composition of gut microbiota compared to wild type NOD mice. The aim of our study was to investigate whether this protection could be transferred. We demonstrate that transfer of gut microbiota from diabetes-protected MyD88-deficient NOD mice, reduced insulitis and significantly delayed the onset of diabetes. Gut bacteria from MyD88-deficient mice, administered over a 3-week period, starting at 4 weeks of age, stably altered the family composition of the gut microbiome, with principally Lachnospiraceae and Clostridiaceae increased and Lactobacillaceae decreased. The transferred mice had a higher concentration of IgA and TGFβ in the lumen that was accompanied by an increase in CD8+CD103+ and CD8αβ T cells in the lamina propria of the large intestine. These data indicate not only that gut bacterial composition can be altered after the neonatal/weaning period, but that the composition of the microbiome affects the mucosal immune system and can delay the development of autoimmune diabetes. This result has important implications for the development of probiotic treatment for T1D. PMID:24767831

  16. Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Lingling Jia

    2017-10-01

    Full Text Available Recent evidence indicates that indigenous Clostridium species induce colonic regulatory T cells (Tregs, and gut lymphocytes are able to migrate to pancreatic islets in an inflammatory environment. Thus, we speculate that supplementation with the well-characterized probiotics Clostridium butyricum CGMCC0313.1 (CB0313.1 may induce pancreatic Tregs and consequently inhibit the diabetes incidence in non-obese diabetic (NOD mice. CB0313.1 was administered daily to female NOD mice from 3 to 45 weeks of age. The control group received an equal volume of sterile water. Fasting glucose was measured twice a week. Pyrosequencing of the gut microbiota and flow cytometry of mesenteric lymph node (MLN, pancreatic lymph node (PLN, pancreatic and splenic immune cells were performed to investigate the effect of CB0313.1 treatment. Early oral administration of CB0313.1 mitigated insulitis, delayed the onset of diabetes, and improved energy metabolic dysfunction. Protection may involve increased Tregs, rebalanced Th1/Th2/Th17 cells and changes to a less proinflammatory immunological milieu in the gut, PLN, and pancreas. An increase of α4β7+ (the gut homing receptor Tregs in the PLN suggests that the mechanism may involve increased migration of gut-primed Tregs to the pancreas. Furthermore, 16S rRNA gene sequencing revealed that CB0313.1 enhanced the Firmicutes/Bacteroidetes ratio, enriched Clostridium-subgroups and butyrate-producing bacteria subgroups. Our results provide the basis for future clinical investigations in preventing type 1 diabetes by oral CB0313.1 administration.

  17. Exposure to perfluoroundecanoic acid (PFUnDA) accelerates insulitis development in a mouse model of type 1 diabetes.

    Science.gov (United States)

    Bodin, Johanna; Groeng, Else-Carin; Andreassen, Monica; Dirven, Hubert; Nygaard, Unni Cecilie

    2016-01-01

    Perfluoralkylated substances (PFAS) are classified as persistent, bioaccumulative and toxic substances and are widespread environmental contaminants. Humans are exposed through food, drinking water and air. We have previously reported that bisphenol A accelerates spontaneous diabetes development in non-obese diabetic (NOD) mice and observed in the present study that perfluoroundecanoic acid, PFUnDA, increased insulitis development, a prerequisite for diabetes development in NOD mice. We exposed NOD mice to PFUnDA in drinking water (3, 30 and 300 μg/l) at mating, during gestation and lactation and until 30 weeks of age. After 300 μg/l PFUnDA exposure, we report (i) increased pancreatic insulitis, (ii) increased number of apoptotic cells in pancreatic islets prior to insulitis and (iii) decreased phagocytosis in peritoneal macrophages. There was also a trend of decreased number of tissue resident macrophages in pancreatic islets prior to insulitis after exposure to 300 μg/l, and altered cytokine secretion in activated splenocytes after exposure to 3 μg/l PFUnDA. Although insulitis is a prerequisite for autoimmune diabetes, the accelerated insulitis was not associated with accelerated diabetes development. Instead, the incidence of diabetes tended to be reduced in the animals exposed to 3 and 30 μg/l PFUnDA, suggesting a non-monotonic dose response. The effects of PFUnDA exposure on increased apoptosis in pancreas and reduced macrophage function as well as accelerated insulitis development in NOD mice, may also be relevant for human insulitis. Further observational autoimmune diabetes clinical cohort studies and animal experiments for PFUnDA as well as other PFASs are therefore encouraged.

  18. Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Daniela Paccagnini

    2009-09-01

    Full Text Available The etiology of type 1 diabetes mellitus (T1DM is still unknown; numerous studies are performed to unravel the environmental factors involved in triggering the disease. SLC11A1 is a membrane transporter that is expressed in late endosomes of antigen presenting cells involved in the immunopathogenic events leading to T1DM. Mycobacterium avium subsp. paratuberculosis (MAP has been reported to be a possible trigger in the development of T1DM.Fifty nine T1DM patients and 79 healthy controls were genotyped for 9 polymorphisms of SLC11A1 gene, and screened for the presence of MAP by PCR. Differences in genotype frequency were evaluated for both T1DM patients and controls. We found a polymorphism in the SLC11A1 gene (274C/T associated to type 1 diabetic patients and not to controls. The presence of MAP DNA was also significantly associated with T1DM patients and not with controls.The 274C/T SCL11A1 polymorphism was found to be associated with T1DM as well as the presence of MAP DNA in blood. Since MAP persists within macrophages and it is also processed by dendritic cells, further studies are necessary to evaluate if mutant forms of SLC11A1 alter the processing or presentation of MAP antigens triggering thereby an autoimmune response in T1DM patients.

  19. Preventative effects of the flowers of Inula britannica on autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin.

    Science.gov (United States)

    Kobayashi, Takao; Song, Qing-Hua; Hong, Tie; Kitamura, Hajime; Cyong, Jong-Chol

    2002-06-01

    We have reported that an aqueous extract from the flowers of Inula britannica L. subsp. japonica Kitam. (IB) prevented immunologically induced experimental hepatitis in mice and suggested that the antihepatitic effect of IB is due to inhibition of IFN-gamma production. We then investigated the effects of IB on diabetes in mice induced by multiple low doses of streptozotocin (MLDSTZ), which is a mouse model for IFN-gamma-dependent autoimmune diabetes. C57BL/KsJ mice (male, 7 weeks) were provided with IB extract (500 mg/ kg/ day) in drinking water ad libitum, starting 7 days before the first STZ injection. Autoimmune diabetes was induced by MLDSTZ (40 mg/kg/day for 5 daily doses, i.p.). The IB treatment significantly suppressed the increase of blood glucose levels. Histological analysis of the pancreas showed that the degree of insulitis and destruction of beta-cells were reduced by IB treatment. The IFN-gamma production from stimulated splenic T lymphocytes was inhibited by the IB treatment. Moreover, the proportion of IFN-gamma-producing cells in the CD4(+) population, which was increased by MLDSTZ, was significantly decreased by the IB treatment. These results suggest that IB has a preventative effect on autoimmune diabetes by regulating cytokine production. Copyright 2002 John Wiley & Sons, Ltd.

  20. Association of CTLA-4 gene A/G polymorphism in Japanese type 1 diabetic patients with younger age of onset and autoimmune thyroid disease.

    Science.gov (United States)

    Takara, M; Komiya, I; Kinjo, Y; Tomoyose, T; Yamashiro, S; Akamine, H; Masuda, M; Takasu, N

    2000-07-01

    We studied the association between type 1 diabetes with autoimmune thyroid disease (AITD) and A/G allele polymorphism in exon 1 of the CTLA-4 gene in a Japanese population. We studied 74 Japanese type 1 diabetic patients with or without AITD and 107 normal subjects to identify the association between CTLA-4 polymorphism and type 1 diabetes using polymerase chain reaction-restriction fragment length polymorphism analysis. The frequency of the CTLA-4 G allele differed significantly between the type 1 diabetic patients (61%) and the normal control subjects (48%) (P = 0.016). The difference in the CTLA-4 G allele became greater between patients with a younger age of onset of type 1 diabetes (age at onset frequency of the CTLA-4 G allele did not differ between type 1 diabetic patients with younger and older age of onset (64% vs. 57%). The G allele frequencies in the patients with younger-onset type 1 diabetes and AITD increased more than in the control patients (P = 0.025). These differences reflected a significant increase in the frequency of G/G genotype--that is, 54% in those with younger-onset type 1 diabetes and AITD, 39% in those without AITD, and 28% in control subjects. An association was detected between the CTLA-4 gene polymorphism and younger-onset type 1 diabetes with AITD. The G variant was suggested to be genetically linked to AITD-associated type 1 diabetes of younger onset in this apanese population. The defect in these patients presumably lies in a T-cell-mediated autoimmune mechanism.

  1. Dietary manipulation of beta cell autoimmunity in infants at increased risk of type 1 diabetes: a pilot study.

    Science.gov (United States)

    Akerblom, H K; Virtanen, S M; Ilonen, J; Savilahti, E; Vaarala, O; Reunanen, A; Teramo, K; Hämäläinen, A-M; Paronen, J; Riikjärv, M-A; Ormisson, A; Ludvigsson, J; Dosch, H-M; Hakulinen, T; Knip, M

    2005-05-01

    We aimed to assess the feasibility of a dietary intervention trial with weaning to hydrolysed formula in infants at increased risk of type 1 diabetes and to study the effect of the intervention on the emergence of diabetes-associated autoantibodies in early childhood. We studied 242 newborn infants who had a first-degree relative with type 1 diabetes and carried risk-associated HLA-DQB1 alleles. After exclusive breastfeeding, the infants underwent a double-blind, randomised pilot trial of either casein hydrolysate (Nutramigen; Mead Johnson) or conventional cow's milk-based formula until the age of 6-8 months. During a mean observation period of 4.7 years, autoantibodies to insulin, anti-glutamic acid decarboxylase and insulinoma-associated antigen-2 were measured by radiobinding assays, and islet cell antibodies (ICA) by immunofluorescence. The feasibility of screening and identifying a cohort of first-degree relatives with HLA-conferred disease susceptibility, enrolling them in a dietary intervention trial and following them for seroconversion to autoantibody positivity is established. The cumulative incidence of autoantibodies was somewhat smaller in the casein hydrolysate vs control formula group, suggesting the need for a larger well-powered study. After adjustment for duration of study formula feeding, life-table analysis showed a significant protection by the intervention from positivity for ICA (p=0.02) and at least one autoantibody (p=0.03). The present study provides the first evidence ever in man, despite its limited power, that it may be possible to manipulate spontaneous beta cell autoimmunity by dietary intervention in infancy.

  2. NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): Inductive ...

    Indian Academy of Sciences (India)

    Stimulation with NOD1- and NOD2-specific ligands, i.e. iE-DAP and MDP, activated NOD1 and NOD2 receptor signalling in vivo and in vitro resulting in significant ( < 0.05) induction of downstream signalling molecule RICK, and the effector molecules IL-1, IL-8 and IFN- in the treated group as compared to their controls.

  3. Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice.

    NARCIS (Netherlands)

    Kubosaki, A.; Gross, S.; Miura, J.; Saeki, K.; Zhu, M.; Nakamura, S.; Hendriks, W.J.A.J.; Notkins, A.L.

    2004-01-01

    Insulinoma-associated protein (IA)-2beta, also known as phogrin, is an enzymatically inactive member of the transmembrane protein tyrosine phosphatase family and is located in dense-core secretory vesicles. In patients with type 1 diabetes, autoantibodies to IA-2beta appear years before the

  4. Time dynamics of autoantibodies are coupled to phenotypes and add to the heterogeneity of autoimmune diabetes in adults: the HUNT study, Norway.

    Science.gov (United States)

    Sørgjerd, E P; Skorpen, F; Kvaløy, K; Midthjell, K; Grill, V

    2012-05-01

    The aetiology of latent autoimmune diabetes in adults (LADA), assessed by autoimmune markers, is insufficiently clarified. We cross-sectionally investigated the prevalence and prospectively the prediabetic and postdiabetic presence of antibodies to glutamic acid decarboxylase (GADA), insulinoma-associated protein 2 and zinc transporter 8 in LADA and in type 1 diabetes. We included 208 'classic' type 1, 161 LADA and 302 type 2 diabetic cases from the second (HUNT2: 1995–1997) and third (HUNT3: 2006–2008) Nord-Trøndelag health surveys. Prospective data were available for 59 type 1, 44 LADA and 302 type 2 diabetic cases followed from HUNT2 to HUNT3. From HUNT3, 24 type 1 diabetic and 31 LADA incident cases were available. Cross-sectionally, 90% of LADA cases were positive for only one antibody (10% multiple-antibodypositive). Prospectively, 59% of GADA-positive LADA patients in HUNT2 were no longer positive in HUNT3. LADA patients who became negative possessed less frequently risk HLA haplotypes and were phenotypically more akin to those with type 2 diabetes than to those who stayed positive. Still, those losing positivity differed from those with type 2 diabetes by lower C-peptide levels (p = 0.009). Of incident LADA cases in HUNT3, 64% were already antibody-positive in HUNT2, i.e. before diabetes diagnosis. These incident LADA cases were phenotypically more akin to type 1 diabetes than were those who did not display positivity in HUNT2. The pattern of antibodies, the postdiabetic loss or persistence as well as the prediabetic absence or presence of antibodies influence LADA phenotypes. Time-dependent presence or absence of antibodies adds new modalities to the heterogeneity of LADA.

  5. [Carotid artery intima-media thickness (cIMT) in young type 1 diabetic patients in relation to comorbid additional autoimmune diseases and microvascular complications].

    Science.gov (United States)

    Klonowska, Bożenna; Charemska, Dorota; Jabłońska, Jolanta; Banach, Agnieszka; Kącka, Anna; Szynkarczuk, Edyta; Konopka, Malwina; Jarocka-Cyrta, Elżbieta; Załuski, Dariusz; Głowińska-Olszewska, Barbara

    2016-01-01

    Atherosclerosis, which is the cause of diseases of the cardiovascular system, and frequent and serious complications of type 1 diabetes (T1DM), has an autoimmune origin. Some diseases of this type, as rheumatoid arthritis, but also Hashimoto thyroiditis or celiac disease are associated with a higher incidence of heart disease. So far no studies evaluated the preclinical phase of development of atherosclerosis (cIMT) in young patients with T1DM and the comorbid additional autoimmune diseases. was evaluation of cIMT (carotid intima media thickness) carotid arteries and the risk factors of atherosclerosis in young patients with type 1 diabetes according to the comorbid autoimmune diseases and a comparison group of patients with known vascular complications and a group of healthy people. The study involved a group of 90 adolescents and young adults with T1DM in middle age 17,1±3years, with an average disease duration of 10,5±3,3 years. Diabetes patients were divided into 4 groups - diabetes without complications - C, diabetes with celiac disease - CC, diabetes with Hashimoto's thyroiditis - CH, diabetes with vascular complications - CN. The control group (K) consisted of 22 healthy age-matched volunteers. In statistical analysis rated: average A1C of all the years of illness, BMI, blood pressure, lipid values, duration of illness, presence of diabetes complications, daily insulin dose and cIMT thickness of the common carotid artery. cIMT of T1DM patients was significantly higher: 0,470 mm than in healthy: 0,409 mm. In the group with vascular complications of diabetes was found the highest rate of cIMT: 0,501 mm in comparison to the group of diabetes without complications: 0,462 mm, diabetes with celiac disease: 0,462 mm, and diabetes with Hashimoto's thyroiditis: 0,453 mm. HbA1c was highest in the group CN: 9,84±1,5%, compared to CH: 9,04± 1,2%, CC: 8,84±1,8% and C without complications: 8,55±1,2%. BMI was highest in the group CN: 23,3± 4,4kg/m2and CH: 22,6 ± 2

  6. Latent Autoimmune Diabetes Mellitus in Adults (LADA and it’s characteristics in a subset of Nigerians initially managed for type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Adeleye Olufunmilayo O

    2012-08-01

    Full Text Available Abstract Introduction Latent autoimmune diabetes in adults (LADA is an entity characterized by the presence of GAD autoantibodies. LADA is largely understudied and underreported amongst Nigerians with Diabetes Mellitus (DM. We undertook to document the Prevalence, clinical and biochemical characteristics of LADA in a subset of Nigerians who hitherto had been treated for type 2 DM. Methods This is a cross-sectional study conducted on 235 patients being managed for type 2 DM. The diagnosis of LADA was made in the presence of Glutamic Acid Decarboxylase autoantibody (GADA positivity in the study subjects. Thereafter persons with LADA were compared with those without LADA. Clinical parameters such as demographic data, history of diabetes mellitus (DM and its complications were obtained, biochemical parameters including Fasting blood glucose (FBG, C-peptide, glycated haemoglobin (HbA1c and lipid parameters were compared in both groups of Study subject. Test statistics used were Student t- test and χ 2. SPSS was used for data analysis. Results Thirty three out of 235 of the Study subjects were GADA positive, giving a prevalence of 14%. The mean age (SD of the subjects with LADA is 53.24(7.22 with an age range of 30–63 years. Majority (48% of LADA subjects were in the 50–59 age category. There was no significant difference in the proportion of males and females with LADA (p = 0.3. 37% of patients with LADA were on insulin for glycaemic control. Three (3 LADA subjects had history/clinical evidence of autoimmune thyroid disease. 66% of LADA were in the overweight/obese category. LADA subjects had significant poor long term glycaemic control compared with anti-GAD negative subjects (p = 0.026. About half of LADA subjects were insulinopaenic. LADA subjects had lower levels of total cholesterol than GADA-ve subjects (p = 0.03. A higher proportion of LADA had evidence of microvascular complications of DM compared with antiGAD negative individuals

  7. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes

    NARCIS (Netherlands)

    Kracht, Maria J L; van Lummel, Menno; Nikolic, Tatjana; Joosten, Antoinette M; Laban, Sandra; van der Slik, Arno R; van Veelen, Peter A; Carlotti, Françoise; de Koning, Eelco J P; Hoeben, Rob C; Zaldumbide, Arnaud; Roep, Bart O

    Identification of epitopes that are recognized by diabetogenic T cells and cause selective beta cell destruction in type 1 diabetes (T1D) has focused on peptides originating from native beta cell proteins. Translational errors represent a major potential source of antigenic peptides to which central

  8. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  9. Islet autoimmunity identifies a unique pattern of impaired pancreatic beta-cell function, markedly reduced pancreatic beta cell mass and insulin resistance in clinically diagnosed type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Angela Subauste

    Full Text Available There is a paucity of literature describing metabolic and histological data in adult-onset autoimmune diabetes. This subgroup of diabetes mellitus affects at least 5% of clinically diagnosed type 2 diabetic patients (T2DM and it is termed Latent Autoimmune Diabetes in Adults (LADA. We evaluated indexes of insulin secretion, metabolic assessment, and pancreatic pathology in clinically diagnosed T2DM patients with and without the presence of humoral islet autoimmunity (Ab. A total of 18 patients with at least 5-year duration of clinically diagnosed T2DM were evaluated in this study. In those subjects we assessed acute insulin responses to arginine, a glucose clamp study, whole-body fat mass and fat-free mass. We have also analyzed the pancreatic pathology of 15 T2DM and 43 control cadaveric donors, using pancreatic tissue obtained from all the T2DM organ donors available from the nPOD network through December 31, 2013. The presence of islet Ab correlated with severely impaired β-cell function as demonstrated by remarkably low acute insulin response to arginine (AIR when compared to that of the Ab negative group. Glucose clamp studies indicated that both Ab positive and Ab negative patients exhibited peripheral insulin resistance in a similar fashion. Pathology data from T2DM donors with Ab or the autoimmune diabetes associated DR3/DR4 allelic class II combination showed reduction in beta cell mass as well as presence of autoimmune-associated pattern A pathology in subjects with either islet autoantibodies or the DR3/DR4 genotype. In conclusion, we provide compelling evidence indicating that islet Ab positive long-term T2DM patients exhibit profound impairment of insulin secretion as well as reduced beta cell mass seemingly determined by an immune-mediated injury of pancreatic β-cells. Deciphering the mechanisms underlying beta cell destruction in this subset of diabetic patients may lead to the development of novel immunologic therapies aimed at

  10. Islet autoimmunity identifies a unique pattern of impaired pancreatic beta-cell function, markedly reduced pancreatic beta cell mass and insulin resistance in clinically diagnosed type 2 diabetes.

    Science.gov (United States)

    Subauste, Angela; Gianani, Roberto; Chang, Annette M; Plunkett, Cynthia; Pietropaolo, Susan L; Zhang, Ying-Jian; Barinas-Mitchell, Emma; Kuller, Lewis H; Galecki, Andrzej; Halter, Jeffrey B; Pietropaolo, Massimo

    2014-01-01

    There is a paucity of literature describing metabolic and histological data in adult-onset autoimmune diabetes. This subgroup of diabetes mellitus affects at least 5% of clinically diagnosed type 2 diabetic patients (T2DM) and it is termed Latent Autoimmune Diabetes in Adults (LADA). We evaluated indexes of insulin secretion, metabolic assessment, and pancreatic pathology in clinically diagnosed T2DM patients with and without the presence of humoral islet autoimmunity (Ab). A total of 18 patients with at least 5-year duration of clinically diagnosed T2DM were evaluated in this study. In those subjects we assessed acute insulin responses to arginine, a glucose clamp study, whole-body fat mass and fat-free mass. We have also analyzed the pancreatic pathology of 15 T2DM and 43 control cadaveric donors, using pancreatic tissue obtained from all the T2DM organ donors available from the nPOD network through December 31, 2013. The presence of islet Ab correlated with severely impaired β-cell function as demonstrated by remarkably low acute insulin response to arginine (AIR) when compared to that of the Ab negative group. Glucose clamp studies indicated that both Ab positive and Ab negative patients exhibited peripheral insulin resistance in a similar fashion. Pathology data from T2DM donors with Ab or the autoimmune diabetes associated DR3/DR4 allelic class II combination showed reduction in beta cell mass as well as presence of autoimmune-associated pattern A pathology in subjects with either islet autoantibodies or the DR3/DR4 genotype. In conclusion, we provide compelling evidence indicating that islet Ab positive long-term T2DM patients exhibit profound impairment of insulin secretion as well as reduced beta cell mass seemingly determined by an immune-mediated injury of pancreatic β-cells. Deciphering the mechanisms underlying beta cell destruction in this subset of diabetic patients may lead to the development of novel immunologic therapies aimed at halting the

  11. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A “Rare” Manifestation in a “Rare” Disease

    Science.gov (United States)

    Fierabracci, Alessandra

    2016-01-01

    Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison’s disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome. PMID:27420045

  12. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED: A “Rare” Manifestation in a “Rare” Disease

    Directory of Open Access Journals (Sweden)

    Alessandra Fierabracci

    2016-07-01

    Full Text Available Type 1 autoimmune polyglandular syndrome (APS1 is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE; the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison’s disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome.

  13. Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells

    Science.gov (United States)

    Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.

    2014-01-01

    It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon

  14. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jessica A Pane

    2014-03-01

    Full Text Available It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I

  15. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    Science.gov (United States)

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-04-18

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  16. Sleep deprivation reduces the lymphocyte count in a non-obese mouse model of type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    F.S. Ruiz

    2007-05-01

    Full Text Available The objective of the present study was to determine whether sleep deprivation (SD would promote changes in lymphocyte numbers in a type 1 diabetes model (non-obese diabetic, NOD, mouse strain and to determine whether SD would affect female and male NOD compared to Swiss mice. The number of lymphocytes in peripheral blood after 24 and 96 h of SD (by multiple platform method or equivalent period of time in home-cage controls was examined prior to the onset of diabetes. SD for 96 h significantly reduced lymphocytes in male Swiss mice compared to control (8.6 ± 2.1 vs 4.1 ± 0.7 10³/µL; P < 0.02. In male NOD animals, 24- and 96-h SD caused a significant decrease of lymphocytes compared to control (4.4 ± 0.3 vs 1.6 ± 0.5; P < 0.001 and 4.4 ± 0.3 vs 0.9 ± 0.1 10³/µL; P < 0.00001, respectively. Both 24- and 96-h SD induced a reduction in the number of lymphocytes in female Swiss (7.5 ± 0.5 vs 4.5 ± 0.5, 4.4 ± 0.6 10³/µL; P < 0.001, respectively and NOD mice (4 ± 0.6 vs 1.8 ± 0.2, 1.2 ± 0.4 10³/µL; P < 0.01, respectively compared to the respective controls. Loss of sleep induced lymphopenia in peripheral blood in both genders and strains used. Since many cases of autoimmunity present reduced numbers of lymphocytes and, in this study, it was more evident in the NOD strain, our results suggest that SD should be considered a risk factor in the onset of autoimmune disorders.

  17. Sleep deprivation reduces the lymphocyte count in a non-obese mouse model of type 1 diabetes mellitus.

    Science.gov (United States)

    Ruiz, F S; Andersen, M L; Zager, A; Martins, R C S; Tufik, S

    2007-05-01

    The objective of the present study was to determine whether sleep deprivation (SD) would promote changes in lymphocyte numbers in a type 1 diabetes model (non-obese diabetic, NOD, mouse strain) and to determine whether SD would affect female and male NOD compared to Swiss mice. The number of lymphocytes in peripheral blood after 24 and 96 h of SD (by multiple platform method) or equivalent period of time in home-cage controls was examined prior to the onset of diabetes. SD for 96 h significantly reduced lymphocytes in male Swiss mice compared to control (8.6 +/- 2.1 vs 4.1 +/- 0.7 10(3)/microL; P < 0.02). In male NOD animals, 24- and 96-h SD caused a significant decrease of lymphocytes compared to control (4.4 +/- 0.3 vs 1.6 +/- 0.5; P < 0.001 and 4.4 +/- 0.3 vs 0.9 +/- 0.1 10(3)/microL; P < 0.00001, respectively). Both 24- and 96-h SD induced a reduction in the number of lymphocytes in female Swiss (7.5 +/- 0.5 vs 4.5 +/- 0.5, 4.4 +/- 0.6 10(3)/microL; P < 0.001, respectively) and NOD mice (4 +/- 0.6 vs 1.8 +/- 0.2, 1.2 +/- 0.4 10(3)/microL; P < 0.01, respectively) compared to the respective controls. Loss of sleep induced lymphopenia in peripheral blood in both genders and strains used. Since many cases of autoimmunity present reduced numbers of lymphocytes and, in this study, it was more evident in the NOD strain, our results suggest that SD should be considered a risk factor in the onset of autoimmune disorders.

  18. Relationships between thyroid function and autoimmunity with metabolic derangement at the onset of type 1 diabetes: a cross-sectional and longitudinal study.

    Science.gov (United States)

    Balsamo, C; Zucchini, S; Maltoni, G; Rollo, A; Martini, A L; Mazzanti, L; Pession, A; Cassio, A

    2015-06-01

    Type 1 diabetes (T1DM) is an autoimmune disease often associated with thyroid abnormalities. We investigated the correlation between thyroid function and metabolic derangement at onset and the influence of autoimmunity on thyroid function at onset and subsequently. We evaluated 152 patients diagnosed with T1DM between 2000 and 2012 at onset and during a mean follow-up of 5.45 ± 2.8 years. Thyroid function at onset was correlated with metabolic derangement (degree of acidosis, metabolic control and adrenal function) and compared with that of 78 healthy children. Follow-up consisted of regular evaluation of thyroid function and autoimmunity. Thyroid hormonal pattern was not influenced at onset by thyroid autoimmunity, but only by metabolic derangement: pH and base excess in fact were significantly lower in patients with impaired thyroid function (p thyroid function at onset showed a reduced conversion from FT4 to FT3 compared to nondiabetic children (FT3/FT4 0.3 ± 0.4 in the control group, 0.24 ± 0.4 in diabetic patients, p Thyroid abnormalities related to metabolic derangement disappeared during follow-up. Patients with thyroid antibodies at T1DM onset were at higher risk to require levothyroxine treatment during follow-up (p Thyroid function at T1DM onset is mainly influenced by metabolic derangement, irrespective of thyroid autoimmunity. Antithyroid antibodies evaluation at T1DM onset may be helpful to define which patients are at higher risk of developing hypothyroidism.

  19. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Feng-Cheng Chou

    2012-01-01

    Full Text Available Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1 detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2 inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.

  20. Islet-specific CTL cloned from a type 1 diabetes patient cause beta-cell destruction after engraftment into HLA-A2 transgenic NOD/scid/IL2RG null mice.

    Directory of Open Access Journals (Sweden)

    Wendy W J Unger

    Full Text Available Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP. HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP(265-273-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγ(null mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies.

  1. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data.

    Science.gov (United States)

    Beyerlein, Andreas; Strobl, Andreas N; Winkler, Christiane; Carpus, Michaela; Knopff, Annette; Donnachie, Ewan; Ankerst, Donna P; Ziegler, Anette-G

    2017-03-27

    Vaccinations in early childhood potentially stimulate the immune system and may thus be relevant for the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). We determined the association of vaccination burden with T1D-associated islet autoimmunity in children with high familial risk followed prospectively from birth. A total of 20,570 certified vaccination records from 1918 children were correlated with time to onset of T1D-associated islet autoimmunity using Cox regression, considering multiple time periods up until age two years and vaccination types, and adjusting for HLA genotype, sex, delivery mode, season of birth, preterm delivery and maternal T1D status. Additionally, prospective claims data of 295,420 subjects were used to validate associations for the tick-borne encephalitis (TBE) vaccination. Most vaccinations were not associated with a significantly increased hazard ratio (HR) for islet autoimmunity (e.g. HR [95% confidence interval]: 1.08 [0.96-1.21] per additional vaccination against measles, mumps and rubella at age 0-24months). TBE vaccinations within the first two years of life were nominally associated with a significantly increased autoimmunity risk (HR: 1.44 [1.06-1.96] per additional vaccination at age 0-24months), but this could not be confirmed with respect to outcome T1D in the validation cohort (HR: 1.02 [0.90-1.16]). We found no evidence that early vaccinations increase the risk of T1D-associated islet autoimmunity development. The potential association with early TBE vaccinations could not be confirmed in an independent cohort and appears to be a false positive finding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Early deficits in insulin secretion, beta cell mass and islet blood perfusion precede onset of autoimmune type 1 diabetes in BioBreeding rats.

    Science.gov (United States)

    Medina, Anya; Parween, Saba; Ullsten, Sara; Vishnu, Neelanjan; Siu, Yuk Ting; Quach, My; Bennet, Hedvig; Balhuizen, Alexander; Åkesson, Lina; Wierup, Nils; Carlsson, Per Ola; Ahlgren, Ulf; Lernmark, Åke; Fex, Malin

    2018-04-01

    Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available. We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry. Additionally, measurements of intra-islet blood flow were performed using microsphere injections. We also assessed immune cell infiltration, cytokine expression in islets (by immunohistochemistry and qPCR), as well as islet Glut2 expression and ATP/ADP ratio to determine effects on glucose uptake and metabolism in beta cells. DRLyp/Lyp rats were normoglycaemic and without traces of immune cell infiltrates. However, IVGTTs revealed a significant decrease in the acute insulin response to glucose compared with control rats (1685.3 ± 121.3 vs 633.3 ± 148.7; p beta cell ATP/ADP ratio in DRLyp/Lyp rats vs control rats. The present study identifies a deterioration of beta cell function and mass, and intra-islet blood flow that precedes insulitis and diabetes development in animals prone to autoimmune type 1 diabetes. These underlying changes in islet function may be previously unrecognised factors of importance in type 1 diabetes development.

  3. Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes.

    Science.gov (United States)

    Lee, Myung-Shik

    2014-08-01

    The importance of innate immunity in host defense is becoming clear after discovery of innate immune receptors such as Toll-like receptor or Nod-like receptor. Innate immune system plays an important role in diverse pathological situations such as autoimmune diseases. Role of innate immunity in the pathogenesis of metabolic disorders such as type 2 diabetes, metabolic syndrome or atherosclerosis that has not been previously considered as inflammatory disorders, is also being appreciated. Here, the role of innate immunity in the development of type 1 diabetes, a classical organ-specific autoimmune disease, and type 2 diabetes will be discussed, focusing on the role of specific innate immune receptors involved in these disease processes.

  4. Evidence of Stage- and Age-Related Heterogeneity of Non-HLA SNPs and Risk of Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young

    Directory of Open Access Journals (Sweden)

    Brittni N. Frederiksen

    2013-01-01

    Full Text Available Previously, we examined 20 non-HLA SNPs for association with islet autoimmunity (IA and/or progression to type 1 diabetes (T1D. Our objective was to investigate fourteen additional non-HLA T1D candidate SNPs for stage- and age-related heterogeneity in the etiology of T1D. Of 1634 non-Hispanic white DAISY children genotyped, 132 developed IA (positive for GAD, insulin, or IA-2 autoantibodies at two or more consecutive visits; 50 IA positive children progressed to T1D. Cox regression was used to analyze risk of IA and progression to T1D in IA positive children. Restricted cubic splines were used to model SNPs when there was evidence that risk was not constant with age. C1QTNF6 (rs229541 predicted increased IA risk (HR: 1.57, CI: 1.20–2.05 but not progression to T1D (HR: 1.13, CI: 0.75–1.71. SNP (rs10517086 appears to exhibit an age-related effect on risk of IA, with increased risk before age 2 years (age 2 HR: 1.67, CI: 1.08–2.56 but not older ages (age 4 HR: 0.84, CI: 0.43–1.62. C1QTNF6 (rs229541, SNP (rs10517086, and UBASH3A (rs3788013 were associated with development of T1D. This prospective investigation of non-HLA T1D candidate loci shows that some SNPs may exhibit stage- and age-related heterogeneity in the etiology of T1D.

  5. Evidence of Stage- and Age-Related Heterogeneity of Non-HLA SNPs and Risk of Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young

    Science.gov (United States)

    Frederiksen, Brittni N.; Steck, Andrea K.; Lamb, Molly M.; Rewers, Marian; Norris, Jill M.

    2013-01-01

    Previously, we examined 20 non-HLA SNPs for association with islet autoimmunity (IA) and/or progression to type 1 diabetes (T1D). Our objective was to investigate fourteen additional non-HLA T1D candidate SNPs for stage- and age-related heterogeneity in the etiology of T1D. Of 1634 non-Hispanic white DAISY children genotyped, 132 developed IA (positive for GAD, insulin, or IA-2 autoantibodies at two or more consecutive visits); 50 IA positive children progressed to T1D. Cox regression was used to analyze risk of IA and progression to T1D in IA positive children. Restricted cubic splines were used to model SNPs when there was evidence that risk was not constant with age. C1QTNF6 (rs229541) predicted increased IA risk (HR: 1.57, CI: 1.20–2.05) but not progression to T1D (HR: 1.13, CI: 0.75–1.71). SNP (rs10517086) appears to exhibit an age-related effect on risk of IA, with increased risk before age 2 years (age 2 HR: 1.67, CI: 1.08–2.56) but not older ages (age 4 HR: 0.84, CI: 0.43–1.62). C1QTNF6 (rs229541), SNP (rs10517086), and UBASH3A (rs3788013) were associated with development of T1D. This prospective investigation of non-HLA T1D candidate loci shows that some SNPs may exhibit stage- and age-related heterogeneity in the etiology of T1D. PMID:24367383

  6. Effect of sodium selenite on thyroid gland functioning and efficacy of chemotherapy in tuberculosis patients with a concomitant diabetes mellitus and autoimmune thyroiditis

    Directory of Open Access Journals (Sweden)

    S.L. Matveyeva

    2017-10-01

    Full Text Available In 40 tuberculosis patients with diabetes mellitus and autoimmune thyroiditis ultrasonic research of thyroid structure and measurement of levels of free thyroxine, thyroid stimulating hormone, antibodies to thyroglobulin and peroxidase and selenium in the serum of blood were conducted by immune-enzyme method at the beginning and at the end of the phase of intensive chemotherapy depending on the prescribing of sodium selenite. Efficacy of antituberculosis chemotherapy was estimated by general clinical, bacteriological and X-ray criteria. Autoimmune thyroiditis with the phenomena of subclinical hypothyroidism is diagnosed for all investigational persons. Prescribing of sodium selenite during the phase of intensive chemotherapy promotes the recovery of thyroid function. Rates of intoxication symptoms elimination, abacillation reduction and healing of the cavities at the end of intensive phase of chemotherapy were for certain higher in the group of patients with prescribing of sodium selenite.

  7. Ghrelin mitigates β-cell mass loss during insulitis in an animal model of autoimmune diabetes mellitus, the BioBreeding/Worcester rat.

    Science.gov (United States)

    Baena-Nieto, Gloria; Lomas-Romero, Isabel M; Mateos, Rosa M; Leal-Cosme, Noelia; Perez-Arana, Gonzalo; Aguilar-Diosdado, Manuel; Segundo, Carmen; Lechuga-Sancho, Alfonso M

    2017-01-01

    Ghrelin is a peptide hormone with pleiotropic effects. It stimulates cell proliferation and inhibits apoptosis-mediated cell death. It prevents diabetes mellitus in several models of chemical, surgical and biological toxic insults to pancreas in both in vivo and in vitro models and promotes glucose-stimulated insulin secretion under cytotoxic conditions. It has not yet been tested in vivo in an autoimmune model of diabetes with a persistent insult to the β-cell. Given the immunomodulating effects of ghrelin and its trophic effects on β-cells, we hypothesized that ghrelin treatment during the early stages of insulitis would delay diabetes onset. BioBreeding/Worcester male rats received ghrelin (10 ng/kg/day) before insulitis development. Glucose metabolism was characterized by glucose and insulin tolerance tests. β-cell mass, islet area, islet number, β-cell clusters, proliferation and apoptosis and degree of insulitis were analysed by histomorphometry. A Kaplan-Meier survival curve was plotted and analysed applying the log-rank (Mantel-Cox) test. Ghrelin treatment significantly reduced the probability of developing diabetes in our model (p cell mass loss, enabling the maintenance of β-cell neogenesis and proliferation rates. Furthermore, ghrelin treatment did not induce any metabolic perturbations. These findings support the hypothesis that ghrelin delays the development of autoimmune diabetes by attenuating insulitis and supporting β-cell mass. Ghrelin promotes β-cell viability and function through diverse mechanisms that may have significant implications for diabetes prevention, therapy and also transplant success of both islets and complete pancreas. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Prognosis of type 1 autoimmune pancreatitis after corticosteroid therapy-induced remission in terms of relapse and diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Masaki Miyazawa

    Full Text Available Relapse and diabetes mellitus (DM are major problems for the prognosis of autoimmune pancreatitis (AIP. We examined the prognosis of type 1 AIP after corticosteroid therapy (CST-induced remission in terms of relapse and DM.The study enrolled 82 patients diagnosed with type 1 AIP who achieved remission with CST. We retrospectively evaluated the relapse rate in terms of the administration period of CST, clinical factors associated with relapse, and the temporal change in glucose tolerance.During follow-up, 32 patients (39.0% experienced relapse. There was no significant clinical factor that could predict relapse before beginning CST. AIP patients who ceased CST within 2 or 3 years experienced significantly earlier relapse than those who had the continuance of CST (p = 0.050 or p = 0.020. Of the 37 DM patients, 15 patients (40.5% had pre-existing DM, 17 (45.9% showed new-onset DM, and 5 (13.5% developed CST-induced DM. Patients with new-onset DM were significantly more likely to show improvement (p = 0.008 than those with pre-existing DM.It was difficult to predict relapse of AIP based on clinical parameters before beginning CST. Relapse was likely to occur within 3 years after the beginning of CST and maintenance of CST for at least 3 years reduced the risk of relapse. The early initiation of CST for AIP with impaired glucose tolerance is desirable because pre-existing DM is refractory to CST.

  9. Comparison of Metabolic Outcomes in Children Diagnosed with Type 1 Diabetes Through Research Screening (Diabetes Autoimmunity Study in the Young [DAISY]) Versus in the Community.

    Science.gov (United States)

    Chan, Christine L; Taki, Iman; Dong, Fran; Hoffman, Michelle; Norris, Jill M; Klingensmith, Georgeanna; Rewers, Marian J; Steck, Andrea K

    2015-09-01

    Children with positive islet autoantibodies monitored prospectively avoid metabolic decompensation at type 1 diabetes (T1D) diagnosis. However, the effects of early diagnosis and treatment on preservation of insulin secretion and long-term metabolic control are unknown. We compared characteristics of children detected through research screening (Diabetes Autoimmunity Study in the Young [DAISY]) versus community controls at baseline and, in a subset, 6- and 12-month metabolic outcomes. This was a case-control study comparing DAISY children with T1D to children diagnosed in the general community. All participants underwent mixed-meal tolerance testing; a subset wore a continuous glucose monitoring (CGM) device. Fasting and stimulated C-peptide levels, insulin dose-adjusted hemoglobin A1c (IDAA1c), and CGM variables were compared. Children (21 DAISY, 21 community) were enrolled and matched by age, time of diagnosis, and diabetes duration; 18 were enrolled within 2 months and 24 within 2.5 years on average from diagnosis. In the overall group and the subgroup of participants enrolled 2.5 years from diagnosis, there were no IDAA1c or C-peptide differences between DAISY versus community children. The subgroup of DAISY versus community children enrolled near diagnosis, however, had lower baseline hemoglobin A1c (6.5±1.4% vs. 9.2±2.9%; P=0.0007) and IDAA1c (7.4±2.1% vs. 11.2±3.5%; P=0.04) and higher stimulated C-peptide (2.5±0.5 vs. 1.6±0.2 ng/mL; P=0.02). In this subgroup, IDAA1c differences persisted at 6 months but not at 1 year. CGM analyses revealed lower minimum overnight glycemia in community children (72 vs. 119 mg/dL; P=0.01). Favorable patterns of IDAA1c and C-peptide seen in research-screened versus community-diagnosed children with T1D within 2 months of diagnosis are no longer apparent 1 year from diagnosis.

  10. B lymphocytes not required for progression from insulitis to diabetes in non-obese diabetic mice.

    Science.gov (United States)

    Charlton, B; Zhang, M D; Slattery, R M

    2001-12-01

    Previous studies have implicated B lymphocytes in the pathogenesis of diabetes in the non-obese diabetic (NOD) mouse. While it is clear that B lymphocytes are necessary, it has not been clear at which stage of disease they play a role; early, late or both. To clarify when B lymphocytes are needed, T lymphocytes were transferred from 5-week-old NOD female mice to age-matched NOD/severe combined immunodeficiency (SCID) recipient mice. NOD/SCID mice, which lack functionally mature T and B lymphocytes, do not normally develop insulitis or insulin-dependent diabetes melitus (IDDM). The NOD/SCID mice that received purified T lymphocytes from 5-week-old NOD mice subsequently developed insulitis and diabetes even though they did not have detectable B lymphocytes. This suggests that while B lymphocytes may be essential for an initial priming event they are not requisite for disease progression in the NOD mouse.

  11. Achieving Consensus Through Professionalized Head Nods

    DEFF Research Database (Denmark)

    Oshima, Sae

    2014-01-01

    of nodding in a particular professional-client setting, namely, hair salon interactions. My interest specifically lies in the frequent occurrence of synchronized head nods during the “service-assessment sequence,” where both service provider and customer inspect and determine whether the completed work...... is adequate. I pursue mechanisms of synchronized head nods by revealing exactly how participants collaborate in producing a nod, and how their verbal actions may at times be designed accordingly. In doing so, the study provides insight into what consensus may look like at service encounters in Japan......While the interactional functions of head nodding in everyday Japanese conversation have been frequently studied, a discourse on head nodding as a professional communicative practice has yet to be explored. With the method of multimodal conversation analysis, the current study examines the role...

  12. pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence

    Science.gov (United States)

    Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan

    2014-01-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504

  13. [Polyglandular autoimmune syndromes : An overview].

    Science.gov (United States)

    Komminoth, P

    2016-05-01

    Polyglandular autoimmune syndromes (PGAS), also known as autoimmune polyendocrinopathy syndromes (APS), are a heterogeneous group of rare, genetically caused diseases of the immune system which lead to inflammatory damage of various endocrine glands resulting in malfunctions. In addition, autoimmune diseases of non-endocrine organs may also be found. Early diagnosis of PGAS is often overlooked because of heterogeneous symptoms and the progressive occurrence of the individual diseases. The two most important forms of PGAS are the juvenile and adult types. The juvenile type (PGAS type 1) is caused by mutations in the autoimmune regulator (AIRE) gene on chromosome 21, exhibits geographic variations in incidence and is defined by the combination of mucocutaneous candidiasis, Addison's disease and hypoparathyroidism. In addition, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome and other autoimmune diseases can also occur. The adult form of PGAS (PGAS type 2) is a multigenetic disorder associated with some HLA haplotypes, is more common than the juvenile type, shows female predominance and exhibits the combination of type 1 diabetes, autoimmune thyroid disease, Addison's disease and other autoimmune disorders. The histological alterations in affected organs of PGAS patients are similar to findings in sporadically occurring autoimmune diseases of these organs but there are no pathognomic fine tissue findings. If patients exhibit autoimmune changes in two different endocrine glands or if there are indications of several autoimmune disorders from the patient history, it is important to consider PGAS and inform the clinicians of this suspicion.

  14. Clinical and epidemiologic characteristics of nodding syndrome in ...

    African Journals Online (AJOL)

    Background: Nodding syndrome (repetitive nodding and progressive generalized seizures) is assuming epidemic proportions in South Sudan, Tanzania and Uganda. Objective: To describe clinical and epidemiological features of nodding syndrome in southern Sudan based on preliminary investigations conducted in 2001 ...

  15. Autoimmune disorders

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000816.htm Autoimmune disorders To use the sharing features on this page, please enable JavaScript. An autoimmune disorder occurs when the body's immune system attacks and ...

  16. [An evaluation of HLA class 2 alleles and anti-islet antibodies as evidence for non-autoimmune diabetes in Wolfram syndrome].

    Science.gov (United States)

    Zmysłowska, Agnieszka; Borowiec, Maciej; Antosik, Karolina; Wyka, Krystyna; Cieślik-Heinrich, Agnieszka; Klich, Izabela; Młynarski, Wojciech

    2010-01-01

    A clinical criterion of the Wolfram syndrome is the coexistence of diabetes and optic atrophy recognized before the age of 15. Diabetes present in Wolfram syndrome is a result of the selective β cell loss and failed insulin secretion which is probably associated with non-autoimmune pathogenesis. The aim of the study was an evaluation of HLA subtypes and presence of β-cell autoantibodies in patients with molecularly confirmed Wolfram syndrome. 9 patients with Wolfram syndrome aged 10-24 years were examined. We also studied 218 patients with type 1 diabetes as a reference group. A control group of 176 healthy individuals was included in the study. Besides the clinical assessment the HLA typing by PCR-SSO was performed. Islet cell antibodies (ICA), antibodies to glutamic acid decarboxylase (GADA), thyrosine phosphatase antibodies (IA2A) and insulin antibodies (IAA) were also detected. In all nine patients the coexistence of diabetes with optic atrophy was observed and in 8/9 individuals additional symptoms were recognized. In patients with Wolfram syndrome a significantly lower age of diagnosis of diabetes (Me=5.0 years) than in type 1 diabetic children (Me=10.4; p=0.002) was observed. Studies of HLA subtypes demonstrated an increased prevalence of HLA-DQw1, DRB1⋅03 and/or 04 and DR2. A comparison of the frequency of the HLA alleles in patients with Wolfram syndrome with type 1 diabetic children showed a more frequent presence of the DRB1⋅1501 (p=0.03; OR=13.28 (2.44-72.12)) and DQB1⋅06 (p=0.016; OR=10.15 (2.49-41.35)) alleles in patients with Wolfram syndrome. Polish patients with Wolfram syndrome have a different profile of the HLA antigens with the presence of DR2, DQw1 and DRB3/4 allele and are negative for diabetes-related autoantibodies, which may confirm non-autoimmune β-cell destruction in this syndrome.

  17. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Daniel J Moore

    2010-10-01

    Full Text Available Insulin-dependent Type 1 diabetes (T1D is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction.Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells.These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.

  18. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes.

    Science.gov (United States)

    Maffeis, Claudio; Martina, Alessia; Corradi, Massimiliano; Quarella, Sara; Nori, Nicole; Torriani, Sandra; Plebani, Mario; Contreas, Giovanna; Felis, Giovanna E

    2016-10-01

    Pancreatic organ-specific autoimmunity in subjects at risk for type 1 diabetes (T1D) is associated with increased intestinal permeability and an aberrant gut microbiota, but these factors have not yet been simultaneously investigated in the same subjects. Thus, the aim of this study was to assess both intestinal permeability and gut microbiota composition in an Italian sample of children at risk for T1D. Ten Italian children with beta cell autoimmunity at risk for T1D and 10 healthy children were involved in a case-control study. The lactulose/mannitol test was used to assess intestinal permeability. Analysis of microbiota composition was performed using polymerase chain reaction followed by denaturing gradient gel electrophoresis, based on the 16S rRNA gene. Intestinal permeability was significantly higher in children at risk for T1D than in healthy controls. Moreover, the gut microbiota of the former differed from that of the latter group: Three microorganisms were detected - Dialister invisus, Gemella sanguinis and Bifidobacterium longum - in association with the pre-pathologic state. The results of this study validated the hypothesis that increased intestinal permeability together with differences in microbiota composition are contemporaneously associated with the pre-pathological condition of T1D in a sample of Italian children. Further studies are necessary to confirm the microbial markers identified in this sample of children as well as to clarify the involvement of microbiota modifications in the mechanisms leading to increased permeability and the autoimmune mechanisms that promote diabetes onset. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Trajectories of obesity by spousal diabetes status in the English Longitudinal Study of Ageing

    DEFF Research Database (Denmark)

    Silverman-Retana, O.; Hulman, A.; Simmons, R. K.

    2017-01-01

    Background and aims: Autoreactive T cells are a hallmark of type 1 diabetes (T1D) pathogenesis and represent key mediators of islet autoimmunity. Insulitic lesions from both T1D donors and NOD mice are enriched with CD8+ Tcells which lead to beta-cell destruction. Previous studies demonstrated...... detected for the first time the presence of ZnT8186-194- reactive cells in the pancreas of T1D donors, thus suggesting an unprecedented role for these cells in destructive insulitis during autoimmune diabetes...... localization of such ZnT8186-194-reactive CD8+ Tcell in T1D. Therefore, the aim of this study was to identify ZnT8186-194-reactive cells in the pancreas of T1D donors using HLA-A2 multimer (MMr) immunostaining. Materials and methods: The in-situ MMr immunohistochemical detection method used herein has been...

  20. Nodding Syndrome: challenges for a bizarre condition

    African Journals Online (AJOL)

    2011-02-01

    Feb 1, 2011 ... Nodding syndrome in Kediba County, Western Equatoria State in 2010 Southern. Sudan Medical Journal 2011; 4 (1):3-6. Sejvar J, Foltz J, Dowell S. Nodding disease in Uganda – new clues, persistent. 2. enigma. Scientific Seminar Series Presentation, CDC, 2010. Winkler AS, Friedrich K, König R, Meindl ...

  1. Effect of early-life gut mucosal compromise on disease progression in NOD mice

    DEFF Research Database (Denmark)

    Bendtsen, Katja M.; Hansen, Camilla HF; Krych, Lukasz

    2017-01-01

    Disease expression in spontaneous nonobese diabetic (NOD) mice depends on environmental stimuli such as stress, diet, and gut microbiota composition. We evaluated a brief, early-life gut intervention in which pups were weaned to low-dose dextran sulfate sodium (DSS). We hypothesized that the mucu...

  2. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets.

    Science.gov (United States)

    McCarty, Mark F

    2014-09-01

    Third World quasi-vegan cultures have been characterized by low risks for "Western" cancers, autoimmune disorders, obesity, and diabetes. The relatively low essential amino acid contents of many vegan diets may play a role in this regard. It is proposed that such diets modestly activate the kinase GCN2 - a physiological detector of essential amino acid paucity - within the liver, resulting in up-regulated production of fibroblast growth factor 21 (FGF21). FGF21, by opposing the stimulatory effect of growth hormone on hepatic IGF-I production, may be responsible for the down-regulation of plasma IGF-I observed in vegans consuming diets of modest protein content. Decreased IGF-I bioactivity throughout life can be expected to have a favorable impact on cancer risk, as observed in rodents that are calorie restricted or genetically defective in IGF-I activity. Increased FGF21 in vegans might also contribute to their characteristic leanness and low LDL cholesterol by promoting hepatic lipid oxidation while inhibiting lipogenesis. Direct trophic effects of FGF21 on pancreatic beta-cells may help to explain the low risk for diabetes observed in vegans, and the utility of vegan diets in diabetes management. And up-regulation of GCN2 in immune cells, by boosting T regulatory activity, might play some role in the reduced risk for autoimmunity reported in some quasi-vegan cultures. The fact that bone density tends to be no greater in vegans than omnivores, despite consumption of a more "alkaline" diet, might be partially attributable to the fact that FGF21 opposes osteoblastogenesis and decreases IGF-I. If these speculations have merit, it should be possible to demonstrate that adoption of a vegan diet of modest protein content increases plasma FGF21 levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Self-Transducible Bimodal PDX1-FOXP3 Protein Lifts Insulin Secretion and Curbs Autoimmunity, Boosting Tregs in Type 1 Diabetic Mice.

    Science.gov (United States)

    Amatya, Christina; Radichev, Ilian A; Ellefson, Jacob; Williams, Mark; Savinov, Alexei Y

    2018-01-03

    Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing β cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting β cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4 + T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other β lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3 + CD4 + CD25 + T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Crosses of NOD mice with the related NON strain. A polygenic model for IDDM.

    Science.gov (United States)

    McAleer, M A; Reifsnyder, P; Palmer, S M; Prochazka, M; Love, J M; Copeman, J B; Powell, E E; Rodrigues, N R; Prins, J B; Serreze, D V

    1995-10-01

    Chromosome locations of non-major histocompatibility complex (MHC) genes contributing to insulin-dependent diabetes mellitus (IDDM) in mice have been determined by outcrossing NOD mice to other inbred strains congenic for the NOD MHC haplotype (H2g7). At least nine non-MHC IDDM susceptibility genes (Idd) were previously identified at first backcross (BC1) after outcross of NOD to C57BL/10.H2g7 congenic mice (B10.H2g7). We investigated whether the same set of Idd loci segregated with IDDM susceptibility after outcross of NOD to NON.H2g7 congenic mice. Since the outcrosses to NON.H2g7 and B10.H2g7 were performed in the same vivarium, direct comparisons were made of the chromosomal locations and relative strengths of Idd alleles in diabetic progeny from the two different outcrosses. In comparison with the NOD x B10.H2g7 outcross, the NOD x NON.H2g7 outcross produced significantly higher IDDM frequencies in F1, F2, and BC1 generations. The high F2 diabetes frequency allowed evaluation of the effects of homozygous expression of both the susceptibility and the resistance allele at Idd loci. This analysis demonstrated that no single non-MHC Idd locus was essential for the onset of diabetes in this cross. After outcross to NON.H2g7, Idd4 (chromosome [Chr] 11), Idd5 (Chr 1), and Idd8 (Chr 14) did not segregate with IDDM in either the BC1 or the F2 generation. Diabetogenic NOD-derived alleles at Idd2 (Chr 9), Idd3 (Chr 3), and Idd10 (Chr 3) were segregating in the BC1. An NON-derived allele contributing to susceptibility on Chr 7 (Idd7) was also detected. Dominant traits, detectable only in the F2 cross, were encoded by Chr 4 (Idd9) and two newly mapped loci on Chr 13 (Idd14) and 5 (Idd15). A third dominant trait was encoded by Chr 6 (possibly Idd6), but here, in contrast to Idd9, Idd14, and Idd15, the NON allele was diabetogenic. Stepwise logistic regression analysis of the BC1 and F2 data confirmed that the ability to identify certainty of the non-MHC Idd loci was

  5. NOD2 and inflammation: current insights

    Directory of Open Access Journals (Sweden)

    Negroni A

    2018-02-01

    Full Text Available Anna Negroni,1 Maria Pierdomenico,2 Salvatore Cucchiara,2 Laura Stronati3 1Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy; 2Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy; 3Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy Abstract: The nucleotide-binding oligomerization domain (NOD protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis. In this review, we discuss recent developments about the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of the gene, with particular emphasis on its central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. Furthermore, we survey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, inflammatory bowel disease, of which it is the main susceptibility gene. Keywords: innate immunity, intestinal homeostasis, ER stress, autophagy, inflammatory bowel disease, extraintestinal disease

  6. Evolutionary origin of rhizobium Nod factor signaling

    Science.gov (United States)

    Streng, Arend; op den Camp, Rik; Bisseling, Ton

    2011-01-01

    For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor.1 Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes.2 As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the vast majority of land plants, it is most probable that this signaling cascade is wide spread in the plant kingdom.3 However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of rhizobium Nod factor signaling demonstrate that this is not the case.4,5 The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling. PMID:21904113

  7. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    genes were identified on chromosome X in Tpaths. Such methylation patterns and eight identified genes may play important roles in regulating functional differentiation and/or maturation of these T cells. Type 1 diabetes (T1D) is an autoimmune disease resulting from selective destruction of insulin-producing pancreatic.

  8. Thymic epithelial cell-specific deletion of Jmjd6 reduces Aire protein expression and exacerbates disease development in a mouse model of autoimmune diabetes.

    Science.gov (United States)

    Yanagihara, Toyoshi; Tomino, Takahiro; Uruno, Takehito; Fukui, Yoshinori

    2017-07-15

    Thymic epithelial cells (TECs) establish spatially distinct microenvironments in which developing T cells are selected to mature or die. A unique property of medullary TECs is their expression of thousands of tissue-restricted self-antigens that is largely under the control of the transcriptional regulator Aire. We previously showed that Jmjd6, a lysyl hydroxylase for splicing regulatory proteins, is important for Aire protein expression and that transplantation of Jmjd6-deficient thymic stroma into athymic nude mice resulted in multiorgan autoimmunity. Here we report that TEC-specific deletion of Jmjd6 exacerbates development of autoimmune diabetes in a mouse model, which express both ovalbumin (OVA) under the control of the rat insulin gene promoter and OT-I T cell receptor specific for OVA peptide bound to major histocompatibility complex class I K b molecules. We found that Aire protein expression in mTECs was reduced in the absence of Jmjd6, with retention of intron 2 in Aire transcripts. Our results thus demonstrate the importance of Jmjd6 in establishment of immunological tolerance in a more physiological setting. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The comorbidity of bipolar disorder, diabetes mellitus, and autoimmune hypothyroidism in an adult woman with Turner’s syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Li J

    2017-09-01

    Full Text Available Jinling Li, Xiaohong Hong, Haiyun Xu The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Turner’s syndrome (TS is the most common sex chromosome abnormality in females and characterized with short stature and ovarian dysgenesis. Patients with TS may also present many other physical diseases and mental disorders. In this case report, we present a 49-year-old woman with TS, who also met criteria for bipolar disorder, type 2 diabetes mellitus, and autoimmune hypothyroidism. The patient was admitted to the mental health center for depressive symptoms in 1991 and was misdiagnosed as hypopituitarism, which was not corrected until 2005 when her karyotype of 45, X/46, X, i(Xq was identified. Due to the misdiagnosis and other specific reasons, the patient missed the optimal time for hormone replacement therapy. Keywords: Turner’s syndrome, bipolar disorder, karyotype, comorbidity

  10. Is pancreas development abnormal in the non-obese diabetic mouse, a spontaneous model of type I diabetes?

    Directory of Open Access Journals (Sweden)

    F. Homo-Delarche

    2001-04-01

    Full Text Available Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1 higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2 high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3 elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4 abnormalities of extracellular matrix (ECM protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling, some ECM proteins (particularly, fibronectin and collagen I, antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s may play a key role.

  11. [Type 2 autoimmune polyendocrine syndromes (APS-2)].

    Science.gov (United States)

    Vialettes, Bernard; Dubois-Leonardon, Noémie

    2013-01-01

    Type 2 autoimmune polyendocrine syndromes (APS-2) are the most frequent disorders associating several organ-specific autoimmune diseases. Their high prevalence is due to the fact that the main manifestations of APS-2, such as thyroidal autoimmunity, type 1 diabetes, autoimmune gastric atrophy and vitiligo, are common diseases. APS-2 represents a clinical model that can serve to help unravel the mechanisms underlying autoimmunity. Diagnosis of APS-2 is a challenge for the clinician, especially in poorly symptomatic forms, and may require systematic screening based on measurement of autoantibodies and functional markers.

  12. Nueva definición, prevalencia, caracterización y tratamiento de la diabetes autoinmune latente del adulto A new definition, prevalence, characterization, and treatment of the latent autoimmune diabetes of adult

    Directory of Open Access Journals (Sweden)

    Eduardo Cabrera Rode

    2008-12-01

    hasta a los 12 años después del diagnóstico de la enfermedad, aunque el deterioro de la respuesta de las células ß a la glucosa intravenosa o al glucagón puede ser detectado en algunos sujetos al diagnóstico de la diabetes. Por tal razón, no estamos en presencia de una enfermedad latente. Existen varios estudios que sugieren que el tratamiento con insulina es el más indicado al momento del diagnóstico de la enfermedad para contrarrestar el daño de la función de las células ß. En este trabajo, se revisó lo relacionado con su definición, la genética, la presencia de autoanticuerpos antiislotes y su patogenia, así como las experiencias con la función de las células y los tratamientos en discusión. Además, como la diabetes autoinmune la podemos encontrar no solo en adultos sino también en niños y adolescentes, así como en adultos jóvenes, sugerimos el epónimo de diabetes autoinmune de progresión lenta como más apropiado.Latent autoimmune diabetes of adult is a way of autoimmune diabetes present in some subjects erroneously classified as Type 2 diabetics. Progression of autoimmune damage of ß cells in this entity is slower than in children presenting with Type 1 diabetes. At diagnosis, persons affected by this condition, have a greater preservation of ß cells function than those presenting with the classic Type 1 diabetes. Their present diagnosis is based on 3 features: age similar o greater than 30 years (however, it may be present in subjects in ages lower than 30 years; presence of at least 1 of the 5 antibodies to pancreatic antigens of islet-cells (anti-islet [AI] auto-antibodies, anti-descarboxylase of glutamic acid [AGAD], antibodies to phosphatase tyrosine [AIA2], and to zinc-cation transporter within ß islet-cells [AZnT8], and the need of insulin requirements, at least 6 months after diagnosis. It is present in 10 % of subjects presenting with Type 2 diabetes in ³35 years, and in 25 % of those younger than 35 years. Some genes of

  13. Autoimmune gastritis.

    Science.gov (United States)

    Kulnigg-Dabsch, Stefanie

    2016-10-01

    Autoimmune gastritis is a chronic inflammatory disease with destruction of parietal cells of the corpus and fundus of the stomach. The known consequence is vitamin B12 deficiency and, consequently, pernicious anemia. However, loss of parietal cells reduces secretion of gastric acid which is also required for absorption of inorganic iron; thus, iron deficiency is commonly found in patients with autoimmune gastritis. This usually precedes vitamin B12 deficiency and is found mainly in young women. Patients with chronic iron deficiency, especially those refractory to oral iron therapy, should therefore be evaluated for the presence of autoimmune gastritis.

  14. NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): Inductive ...

    Indian Academy of Sciences (India)

    2013-06-04

    Jun 4, 2013 ... D-glutamyl-meso-diaminopimelic acid; IκB, inhibitor of NF-κB; Iκκ, IκB kinase; LRR, leucine-rich repeat; MDP, muramyl dipeptide;. NF-κB, nuclear factor κB; NLR, NOD-like receptor; NOD, nucleotide binding and oligomerization domain; PAMP, pathogen- associated molecular pattern; PBL, peripheral blood ...

  15. NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): Inductive ...

    Indian Academy of Sciences (India)

    2013-06-04

    Jun 4, 2013 ... their products and play a key role in inducing innate immunity. This report describes the role of NOD1 and NOD2 receptors signalling in innate immunity in the Indian major carp, mrigal (Cirrhinus mrigala). Tissue-specific ...... The innate immune system is the only defence weapon of invertebrates and a ...

  16. Autoimmune pancreatitis

    Directory of Open Access Journals (Sweden)

    Davorin Dajčman

    2007-05-01

    Full Text Available Background: Autoimmune pancreatitis is a recently described type of pancreatitis of presumed autoimmune etiology. Autoimmune pancreatitis is often misdiagnosed as pancreatic cancer difficult, since their clinical presentations are often similar. The concept of autoimmune pancreatitis was first published in 1961. Since then, autoimmune pancreatitis has often been treated not as an independent clinical entity but rather as a manifestation of systemic disease. The overall prevalence and incidence of the disease have yet to be determined, but three series have reported the prevalence as between 5 and 6 % of all patients with chronic pancreatitis. Patient vary widely in age, but most are older than 50 years. Patients with autoimmune pancreatitis usually complain of the painless jaundice, mild abdominal pain and weight loss. There is no laboratory hallmark of the disease, even if cholestatic profiles of liver dysfunction with only mild elevation of amylase and lipase levels have been reported.Conclusions: Proposed diagnostic criteria contains: (1 radiologic imaging, diffuse enlargement of the pancreas and diffusely irregular narrowing of the main pancreatic duct, (2 laboratory data, elevated levels of serum ã-globulin and/or IgG, specially IgG4, or the presence of autoantibodies and (3 histopathologic examination, fibrotic change with dense lymphoplasmacytic infiltration in the pancreas. For correct diagnosis of autoimmune pancreatitis, criterion 1 must be present with criterion 2 and/or 3. Autoimmune pancreatitis is frequently associated with rheumatoid arthritis, Sjogren’s syndrome, inflammatory bowel disease, tubulointersticial nephritis, primary sclerosing cholangitis and idiopathic retroperitoneal fibrosis. Pancreatic biopsy using an endoscopic ultrasound-guided fine needle aspiration biopsy is the most important diagnostic method today. Treatment with corticosteroids leads to the and resolution of pancreatic inflamation, obstruction and

  17. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice.

    Science.gov (United States)

    Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M; Joshi, Nikita; Luyendyk, James P

    2014-10-01

    Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function.

    Science.gov (United States)

    Yamamoto-Furusho, Jesus K; Barnich, Nicolas; Hisamatsu, Tadakazu; Podolsky, Daniel K

    2010-05-01

    Human neutrophil peptide 1 (HNP-1) is a defensin with antibacterial activity secreted by various cells as a component of the innate immune host defense. NOD2 is a cytoplasmic protein that recognizes bacterial derived muramyl dipeptide, and is involved in bacterial clearance. The aim of the present study was to investigate the relationship between antibacterial activity of NOD2 and HNP-1 expression in epithelial cell lines. Gentamicin protection assay using Salmonella typhimurium was performed in Caco-2 cells. The mRNA level was determined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and defensin expression was assessed by Western blot and enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappaB activation was assessed using pIV luciferase and Renilla plasmids. A NOD2 mutant was generated by site-directed mutagenesis. Among the defensins tested, only HNP-1 expression is induced in colonic epithelial model HCT116 cells after MDP-LD stimulation. HNP-1 secretion is significantly increased after MDP-LD stimulation in the cell supernatant of intestinal epithelial cells expressing endogenous NOD2, but not in cells that lack endogenous NOD2 expression. HNP-1 is required for NOD2-dependent NF-kappaB activation after MDP-LD stimulation since hnp-1 siRNA transfection abrogated the response to MDP-LD stimulation. The antibacterial function of NOD2 against S. typhimurium was impaired when expression of HNP-1 was blocked by siRNA. HNP-1 secretion depends on NOD2 stimulation by MDP-LD and contributes to antibacterial activity in intestinal epithelial cells expressing endogenous NOD2, but not NOD2 3020insC mutant associated with increased susceptibility to Crohn's disease.

  19. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny

    DEFF Research Database (Denmark)

    Kelly, Simon; Sullivan, John T; Kawaharada, Yasuyuki

    2018-01-01

    The Lotus japonicus symbiont Mesorhizobium loti R7A encodes two copies of nodD and here we identify striking differences in Nod factor biosynthesis gene induction by NodD1 and NodD2 both in vitro and in planta. We demonstrate that induction of Nod factor biosynthesis genes is preferentially...... of nodD that provides the host plant with another level of compatibility scrutiny at the stage of infection thread development. This article is protected by copyright. All rights reserved....

  20. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice.

    Directory of Open Access Journals (Sweden)

    Jesper Larsen

    Full Text Available The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD but may also be important in type 1 diabetes (T1D, and could potentially explain the reduced incidence of T1D in mice receiving a gluten-free (GF diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD gluten containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR, if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found that a GF diet increased the percentage of macrophages in BALB/c spleen and of CD11c+ DCs in BALB/c and NOD spleen. Strictly gluten-free (SGF diet increased the percentage of CD103+ DCs in BALB/c mice and decreased percentages of CD11b+ DCs in mesenteric and pancreatic lymph nodes in BALB/c mice. SGF diet in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation of the low diabetes incidence in GF NOD mice. This mechanism may be important in development of type 1 diabetes, celiac disease and non-celiac gluten sensitivity.

  1. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Itoh A

    2017-05-01

    Full Text Available Arata Itoh, William M Ridgway Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Abstract: Type 1 diabetes (T1D is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs. Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase, the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody have shown partial successes (e.g., prolonged C peptide preservation but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR 4-stimulating lipopolysaccharide [LPS] dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic

  2. Genotipificación del gen HLA DQB1 en diabetes autoinmune del adulto (lada) HLA DQB1 genotyping in latent autoimmune diabetes of adults (LADA)

    OpenAIRE

    Mariela Caputo; Gloria E. Cerrone; Ariel P. López; Claudio Gónzalez; Carmen Mazza; Norberto Cedola; Félix M. Puchulu; Héctor M. Targovnik; Gustavo D. Frechtel

    2005-01-01

    La diabetes autoinmune es una enfermedad multifactorial causada por factores genéticos predisponentes y ambientales desencadenantes. Se manifiesta en la edad infantojuvenil (diabetes tipo 1, DMID) y en la edad adulta (diabetes autoinmune latente del adulto, LADA). La predisposición genética es de tipo poligénico, se ha establecido asociación con alelos polimórficos del gen DQB del sistema HLA, VNTR del gen de insulina y polimorfismos en el gen CTLA4. En el presente trabajo se analizaron las f...

  3. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  4. Fatal Attraction: Interactions between antigen-presenting cells and islets of Langerhans in the pathogenesis of autoimmune diabetes

    NARCIS (Netherlands)

    J.G.M. Rosmalen (Judith)

    2000-01-01

    textabstractThe onset of diabetes mellitus is characterized by various symptoms, all the result of a disturbed glucose metabolism. The main symptoms are thirst and an excessive production of urine. The disturbed glucose metabolism underlying these symptoms is due to an absolute deficiency of insulin

  5. Understanding Autoimmune Diseases

    Science.gov (United States)

    ... What are they? Points To Remember About Autoimmune Diseases Autoimmune diseases refer to problems with the immune system, ... Infectious Diseases Website: https://www.niaid.nih.gov/diseases-conditions/autoimmune-diseases American Autoimmune Related Diseases Association Website: https:// ...

  6. Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats

    NARCIS (Netherlands)

    Visser, J. T. J.; Bos, N. A.; Harthoorn, L. F.; Stellaard, F.; Beijer-Liefers, S.; Rozing, J.; van Tol, E. A. F.

    Background It remains controversial whether avoidance of dietary diabetogenic triggers, such as cow's milk proteins, can prevent type 1 diabetes in genetically susceptible individuals. Here, different extensive casein hydrolysates (HC) and single amino acid (AA) formulations were tested for their

  7. Postnatal events in intestinal gene expression and splenic cell composition is altered in NOD mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Kristensen, Matilde Bylov

    2013-01-01

    Evidence suggests that colonisation pattern of the gut in the early postnatal period is highly correlated with the risk of developing type 1 diabetes (T1D). We have recently shown that colonization in SPF mice accelerates gut maturation and that at postnatal day (PND) 1, in comparison with germ...... free mice, certain chemokines, including Cxcl2 encoding macrophage inflammatory protein (MIP)-2 and involved in attraction of neutrophils was downregulated in the gut epithelium. The non-obese diabetes (NOD) mouse is widely used as a model for studying the pathogenesis of T1D. The neonatal gut...... microbiota seems to play an important role in the development and control of T1D. We hypothesized that NOD mice in the perinatal period respond differently than mice not prone to develop T1D (C57/Bl6), and we investigated the differences in postnatal expression of genes in gut, spleen, liver and pancreas...

  8. Nodding syndrome: origins and natural history of a longstanding ...

    African Journals Online (AJOL)

    Nodding syndrome: origins and natural history of a longstanding epileptic disorder in sub-Saharan Africa. ... Conclusion: Historical accounts of head nodding (amesinzia kichwa, Swahili) among the Wapogoro tribe fit the August 2012 World Health Organization (WHO) case definition of probable Nodding Syndrome.

  9. Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice.

    Science.gov (United States)

    Flynn, Jeffrey C; Gilbert, Jacqueline A; Meroueh, Chady; Snower, Daniel P; David, Chella S; Kong, Yi-chi M; Banga, J Paul

    2007-10-01

    We have examined the induction of autoimmunity and the maintenance of sustained hyperthyroidism in autoimmunity-prone human leucocyte antigen (HLA) DR3 transgenic non-obese diabetic (NOD) mice following chronic stimulation of the thyrotropin receptor (TSHR) by monoclonal thyroid-stimulating autoantibodies (TSAbs). Animals received weekly injections over the course of 9 weeks of monoclonal antibodies (mAbs) with strong thyroid-stimulating properties. Administration of the mAbs KSAb1 (IgG2b) or KSAb2 (IgG2a), which have similar stimulating properties but different TSH-binding blocking activity, resulted in significantly elevated serum thyroxine (T(4)) levels and thyroid hyperplasia. After the first injection, an initial surge then fall in serum T(4) levels was followed by sustained elevated levels with subsequent injections for at least 63 days. Examination of KSAb1 and KSAb2 serum bioactivity showed that the accumulation of the TSAbs in serum was related to their subclass half-lives. The thyroid glands were enlarged and histological examination showed hyperplastic follicles, with minimal accompanying thyroid inflammation. Our results show that chronic in vivo administration of mAbs with strong thyroid-stimulating activity resulted in elevated T(4) levels, suggesting persistent stimulation without receptor desensitization, giving a potential explanation for the sustained hyperthyroid status in patients with Graves' disease. Moreover, despite the presence of HLA disease susceptibility alleles and the autoimmune prone NOD background genes, chronic stimulation of the thyroid gland did not lead to immune cell-mediated follicular destruction, suggesting the persistence of immunoregulatory influences to suppress autoimmunity.

  10. NOD3: Single dish reduction software

    Science.gov (United States)

    Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip

    2017-11-01

    NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

  11. Autoimmun hypophysitis

    DEFF Research Database (Denmark)

    Krarup, Therese; Hagen, Claus

    2010-01-01

    during pregnancy or postpartum, but also occurs in males and children. AH is often associated with other autoimmune diseases, most frequently with Hashimoto's thyroiditis. The symptoms are caused by enlargement of the pituitary gland and disturbances of the hormone function. Treatment is either......Autoimmune hypophysitis (AH) - often referred to as lymphocytic hypophysitis - is a rare disease that affects the pituitary gland and causes inflammation. The disease enlarges the pituitary gland and the clinical presentations are lack of pituitary function and headaches. AH is mostly seen in women...

  12. Autoimmun hypophysitis

    DEFF Research Database (Denmark)

    Krarup, Therese; Hagen, Claus

    2010-01-01

    during pregnancy or postpartum, but also occurs in males and children. AH is often associated with other autoimmune diseases, most frequently with Hashimoto's thyroiditis. The symptoms are caused by enlargement of the pituitary gland and disturbances of the hormone function. Treatment is either......Autoimmune hypophysitis (AH) - often referred to as lymphocytic hypophysitis - is a rare disease that affects the pituitary gland and causes inflammation. The disease enlarges the pituitary gland and the clinical presentations are lack of pituitary function and headaches. AH is mostly seen in women...... immunosuppressive treatment or surgery....

  13. Usefulness of postmortem biochemistry in identification of ketosis: Diagnosis of ketoacidosis at the onset of autoimmune type 1 diabetes in an autopsy case with cold exposure and malnutrition.

    Science.gov (United States)

    Tani, Naoto; Michiue, Tomomi; Chen, Jian-Hua; Oritani, Shigeki; Ishikawa, Takaki

    2016-09-01

    A severely malnourished, Japanese female in her twenties was found dead in her apartment. On autopsy, most of the findings from the internal examination were suggestive of hypothermia. Postmortem biochemistry, however, showed severely increased levels of glycated hemoglobin (HbA1c) and blood and urine glucose levels. Levels of acetone, 3-hydroxybutyric acid, and acetoacetate in various body fluids were also highly increased, indicating ketosis. The serum insulin and c-peptide levels were severely low, and subsequent testing was positive for anti-GAD antibodies. Immunohistochemical examination of the pancreatic islet cells revealed few insulin-positive cells but many glucagon-positive cells on staining. Furthermore, slight invasion of CD8-positive lymphocytes in the pancreatic islets of Langerhans was observed. Results of immunostaining of the pancreatic and bronchial epithelial tissues were partly positive for the Influenza A virus. We concluded that severe ketoacidosis associated with rapid-onset hyperglycemia due to autoimmune type 1 diabetes (AT1D) had occurred shortly before death. However, the ketosis was accompanied by hypothermia and malnutrition as well as diabetic ketoacidosis (DKA). Therefore, we retrospectively collected biochemical data on cases of hypothermia and malnutrition and compared them with the present case. Serum glucose, acetone, 3-hydroxybutyric acid, and acetoacetic acid can be used for screening and diagnosis to distinguish DKA from ketosis due to hypothermia and malnutrition. Therefore, in the present case, we diagnosed that the natural cause of death was due to AT1D. In conclusion, screening investigations for relevant biochemical markers can provide essential information for the diagnosis of metabolic disturbances, which fail to demonstrate characteristic autopsy findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Cholinergic stimulation prevents the development of autoimmune diabetes: Evidence for the modulation of Th17 effector cells via an IFNgamma-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Junu George

    2016-10-01

    Full Text Available Type I diabetes (T1D results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple-low-dose streptozotocin (MLD-STZ model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI. We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.

  15. The inflammatory bowel disease (IBD susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish

    Directory of Open Access Journals (Sweden)

    Stefan H. Oehlers

    2011-11-01

    Inflammatory bowel disease (IBD, in the form of Crohn’s disease (CD or ulcerative colitis (UC, is a debilitating chronic immune disorder of the intestine. A complex etiology resulting from dysfunctional interactions between the intestinal immune system and its microflora, influenced by host genetic susceptibility, makes disease modeling challenging. Mutations in NOD2 have the highest disease-specific risk association for CD, and a related gene, NOD1, is associated with UC. NOD1 and NOD2 encode intracellular bacterial sensor proteins acting as innate immune triggers, and represent promising therapeutic targets. The zebrafish has the potential to aid in modeling genetic and environmental aspects of IBD pathogenesis. Here, we report the characterization of the Nod signaling components in the zebrafish larval intestine. The nod1 and nod2 genes are expressed in intestinal epithelial cells and neutrophils together with the Nod signaling pathway genes ripk2, a20, aamp, cd147, centaurin b1, erbin and grim-19. Using a zebrafish embryo Salmonella infection model, morpholino-mediated depletion of Nod1 or Nod2 reduced the ability of embryos to control systemic infection. Depletion of Nod1 or Nod2 decreased expression of dual oxidase in the intestinal epithelium and impaired the ability of larvae to reduce intracellular bacterial burden. This work highlights the potential use of zebrafish larvae in the study of components of IBD pathogenesis.

  16. CP-25 Alleviates Experimental Sjögren's Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets.

    Science.gov (United States)

    Gu, Fang; Xu, Shixia; Zhang, Pengying; Chen, Xiaoyun; Wu, Yujing; Wang, Chun; Gao, Mei; Si, Min; Wang, Xinming; Heinrich, Korner; Wu, Huaxun; Wei, Wei

    2018-04-17

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune illness of the moisture-producing glands such as salivary glands that is characterized by various immune abnormalities. The aetiology of pSS remains unclear and there is no curative agent. In this study, we investigated the putative therapeutic effects on a NOD/Ltj mouse model of Sjögren's syndrome-like disorders of an ester derivative of paeoniflorin, Paeoniflorin-6'O-benzene (termed CP-25). Our study showed that CP-25 alleviated effectively clinical manifestations in NOD/Ltj mice resulting for example in increased salivary flow and reduced histopathological scores. Furthermore, CP-25 decreased lymphocyte viability in NOD/Ltj mice and attenuated the infiltration of Th1 cells and Th2 cells into the salivary glands of NOD/Ltj mice. In the spleen on NOD/Ltj mice, CP-25 skewed the ratio of Th17 and regulatory T cells towards regulatory T cells. After treatment, concentrations of anti-La/SSB and IgG antibodies were reduced and the titer of the inflammatory cytokines IFN-γ, IL-4, IL-6 and IL-17A in the serum on NOD/Ltj mice was alleviated. Thus, we define CP-25 as a novel compound that is a potent therapeutic agent for pSS by modulating T lymphocyte subsets. Future studies will validate the use of CP-25 as a therapeutic strategy for the treatment of pSS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Autoimmun hypophysitis

    DEFF Research Database (Denmark)

    Krarup, Therese; Hagen, Claus

    2010-01-01

    during pregnancy or postpartum, but also occurs in males and children. AH is often associated with other autoimmune diseases, most frequently with Hashimoto's thyroiditis. The symptoms are caused by enlargement of the pituitary gland and disturbances of the hormone function. Treatment is either...

  18. Autoimmune sialadenitis

    NARCIS (Netherlands)

    Guntinas-Lichius, O.; Vissink, A.; Ihrler, S.

    Using the European-American classification criteria the diagnosis of autoimmune sialadenitis in Sjogren's syndrome can generally be easily established or excluded. In addition, sonography performed by the ENT physician is helpful in diagnosing and especially in follow-up screening for MALT

  19. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Science.gov (United States)

    Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony; Lechler, Robert; Lombardi, Giovanna

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  20. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  1. Reply to Noddings, Darwall, Wren, and Fullinwider

    Science.gov (United States)

    Slote, Michael

    2010-01-01

    I respond to Noddings with further clarification of the notion of empathy and also argue that previous care ethics has put too much of an exclusive emphasis on relationships. I respond to Darwall by pointing out some implausible implications of his own and Kantian views about respect and by showing how a sentimentalist approach can avoid those…

  2. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice

    DEFF Research Database (Denmark)

    Larsen, Jesper; Weile, Christian; Antvorskov, Julie Christine

    2015-01-01

    The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD) but may also be important in type 1 diabetes (T1D), and could potentially explain the reduced incidence of T1D in mice receiving a gluten...... in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation...

  3. Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats

    DEFF Research Database (Denmark)

    Hartoft-Nielsen, Marie-Louise; Rasmussen, Aase Krogh; Bock, Troels

    2009-01-01

    affect the development of type 1 diabetes mellitus (T1DM). The aim was to investigate the influence of changes in thyroid function during postnatal development on the prevalence of T1DM in BB rats and the influence of T3 on the beta cell mass in non-diabetic Wistar rats. BB rats were treated with sodium...... iodine (NaI) or thyroid stimulating hormone (TSH) neonatally or with tri-iodo-thyronine (T3) during adolescence. At the age of 19 weeks the incidence of T1DM and the degree of insulitis were evaluated. The influence of T3 treatment on the beta cell mass was evaluated in Wistar rats by unbiased...... stereological methods. The incidence of T1DM in control BB rats was 68% at the age of 19 weeks. NaI and T3 reduced the incidence, whereas TSH had no effect. In Wistar rats T3 treatment increased the beta cell mass per bodyweight. The modulation of thyroid function during postnatal development may thus affect...

  4. A novel technique for the in vivo imaging of autoimmune diabetes development in the pancreas by two-photon microscopy.

    Directory of Open Access Journals (Sweden)

    Ken Coppieters

    Full Text Available Type 1 diabetes (T1D is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.

  5. [Autoimmune channelopathies].

    Science.gov (United States)

    Michaud, M; Delrieu, J; Astudillo, L

    2011-12-01

    Autoimmune channelopathies are rare neuromuscular diseases that have been characterized clinically for several decades but for which the evidence of associated antibodies has only been recently demonstrated. Ion channels have an important role of activation, inhibition and regulation in neuromuscular transmission. Myasthenia gravis, generally associated with the presence of anti-acetylcholine receptor antibody, is the best-known channelopathy. Other anti-channel antibodies, including voltage-dependent, are associated with several neurological diseases, as illustrated by anti-voltage-gated calcium channels found in Lambert-Eaton myasthenic syndrome and paraneoplastic cerebellar ataxia, and anti-voltage-gated potassium channels found in neuromyotonia, Morvan's syndrome and limbic encephalitis. The treatment of autoimmune channelopathies is logically based on corticosteroids, immunosuppressant drugs, intravenous immunoglobulins and plasmapheresis. Copyright © 2011 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  6. Education, immigration and income as risk factors for hemoglobin A1c >70 mmol/mol when diagnosed with type 2 diabetes or latent autoimmune diabetes in adult: a population-based cohort study.

    Science.gov (United States)

    Martinell, Mats; Pingel, Ronnie; Hallqvist, Johan; Dorkhan, Mozhgan; Groop, Leif; Rosengren, Anders; Storm, Petter; Stålhammar, Jan

    2017-01-01

    The aim of this research is to study education, income and immigration as risk factors for high hemoglobin A1c (HbA1c >70 mmol/mol (8.6%)) when diagnosed with type 2 diabetes (T2D) or latent autoimmune diabetes in the adult (LADA). Patients were included from the All New Diabetics in Scania study (2008-2013). Level of education, disposable income and immigration year were retrieved from the longitudinal integrated database for labour market research (LISA) register compiled by Statistics Sweden. Logistic regression models were used to estimate ORs for HbA1c >70 mmol/mol (8.6%) at diagnosis. A total of 3794 patients with incident T2D (n=3 525) or LADA (n=269) were included. Patients with T2D with a low (≤9 years) or medium (10-12 years) levels of education were more likely to have high HbA1c at diagnosis compared with patients with T2D with a high (>12 years) level of education (OR 1.34, 95% CI 1.08 to1.66, OR 1.26, 95% CI 1.03 to 1.54). Low-income patients with T2D (150% of median) (OR 1.35, 95% CI 1.02 to 1.79). Patients with lower levels of education or low income and are more likely to have HbA1c is >70 mmol/mol (8.6%) when diagnosed with T2D. An understanding of how socioeconomic position influences the clinical presentation at diagnosis may facilitate screening programs designed to target populations at risk for delayed diagnosis.

  7. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR and Inflammation: Focus on the Gastrointestinal (GI Tract

    Directory of Open Access Journals (Sweden)

    Evagelia Spanou

    2017-05-01

    Full Text Available The fundamental role of human Toll-like receptors (TLRs and NOD-like receptors (NLRs, the two most studied pathogen recognition receptors (PRRs, is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell motility and migration, and DNA repair mechanisms. We briefly review the impact of TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation, tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists for cancer, allergic diseases, viral infections and vaccine development against both infectious diseases and cancer.

  8. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR) and Inflammation: Focus on the Gastrointestinal (GI) Tract.

    Science.gov (United States)

    Spanou, Evagelia; Kalisperati, Polyxeni; Pateras, Ioannis S; Papalampros, Alexandros; Barbouti, Alexandra; Tzioufas, Athanasios G; Kotsinas, Athanassios; Sougioultzis, Stavros

    2017-01-01

    The fundamental role of human Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the two most studied pathogen recognition receptors (PRRs), is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell motility and migration, and DNA repair mechanisms. We briefly review the impact of TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation, tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists for cancer, allergic diseases, viral infections and vaccine development against both infectious diseases and cancer.

  9. Autoimmun pankreatitis

    DEFF Research Database (Denmark)

    Fjordside, Eva; Novovic, Srdan; Schmidt, Palle Nordblad

    2015-01-01

    Autoimmune pancreatitis (AIP) is a rare inflammatory disease. AIP has characteristic histology, serology and imaging findings. Two types of AIP exist, type 1, which is a part of the systemic immunoglobulin G4-related disease, and type 2, which is only localized to the pancreas. Patients with type...... are predominantly older men, have involvement of other organs and more often experience relapse than patients with type 2. Both types respond well to steroid treatment. The most important differential diagnose is pancreatic cancer....

  10. Celiac disease and endocrine autoimmunity.

    Science.gov (United States)

    Kahaly, George J; Schuppan, Detlef

    2015-01-01

    Celiac disease (CD) is a small-intestinal inflammatory disease that is triggered by the ingestion of the storage proteins (gluten) of wheat, barley and rye. Endocrine autoimmunity is prevalent in patients with CD and their relatives. The genes that predispose to endocrine autoimmune diseases, e.g. type 1 diabetes, autoimmune thyroid diseases, and Addison's disease, i.e. DR3-DQ2 and DR4-DQ8, are also the major genetic determinants of CD, which is the best understood HLA-linked disease. Thus, up to 30% of first-degree relatives both of patients with CD and/or endocrine autoimmunity are affected by the other disease. In CD, certain gluten proteins bind with high affinity to HLA-DQ2 or -DQ8 in the small-intestinal mucosa, to activate gluten-specific T cells which are instrumental in the destruction of the resorptive villi. Here, the autoantigen tissue transglutaminase increases the T cell response by generating deamidated gluten peptides that bind more strongly to DQ2 or DQ8. Classical symptoms such as diarrhea and consequences of malabsorption like anemia and osteoporosis are often absent in patients with (screening-detected) CD, but this absence does not significantly affect these patients' incidence of endocrine autoimmunity. Moreover, once autoimmunity is established, a gluten-free diet is not able to induce remission. However, ongoing studies attempt to address how far a gluten-free diet may prevent or retard the development of CD and endocrine autoimmunity in children at risk. The close relationship between CD and endocrine autoimmunity warrants a broader immune genetic and endocrine screening of CD patients and their relatives. © 2015 S. Karger AG, Basel.

  11. Danger-signaler og inflammasomer ved autoinflammatoriske og autoimmune sygdomme

    DEFF Research Database (Denmark)

    Bendtzen, Klaus

    2011-01-01

    NOD-like receptor protein (NLRP)3 inflammasomes. These inflammasomes govern the induction of proinflammatory cytokines such as IL-1ß, IL-18 and IL-33. PRR and inflammasome dysfunctions may underly immunoinflammatory diseases such as gout and other arthritides, type 1 diabetes and arteriosclerosis....

  12. High Risk First Degree Relatives of Type 1 Diabetics: An Association with Increases in CXCR3+ T Memory Cells Reflecting an Enhanced Activity of Th1 Autoimmune Response

    Directory of Open Access Journals (Sweden)

    Tanja Milicic

    2014-01-01

    Full Text Available We analyzed the level of (a CXCR3+ (Th1 and CCR4+ (Th2 T memory cells (b interferon-γ inducible chemokine (IP-10(Th1 and thymus and activation-regulated chemokine (TARC(Th2, in 51 first degree relatives (FDRs of type 1 diabetics (T1D (17 high risk FDRs (GADA+, IA-2+ and 34 low risk FDRs (GADA−, IA-2−, 24 recent-onset T1D (R-T1D, and 18 healthy subjects. T memory subsets were analyzed by using four-color immunofluorescence staining and flowcytometry. IP-10 and TARC were determined by ELISA. High risk FDRs showed higher levels of CXCR3+ and lower level of CCR4+ T memory cells compared to low risk FDRs (64.98 ± 5.19 versus 42.13 ± 11.11; 29.46 ± 2.83 versus 41.90 ± 8.58%, resp., P<0.001. Simultaneously, both IP-10 and TARC levels were increased in high risk versus low risk FDRs (160.12 ± 73.40 versus 105.39 ± 71.30; 438.83 ± 120.62 versus 312.04 ± 151.14 pg/mL, P<0.05. Binary logistic regression analysis identified the level of CXCR3+ T memory cells as predictors for high risk FDRs, together with high levels of IP-10. The results imply that, in FDRs, the risk for T1D might be strongly influenced by enhanced activity of Th1 and diminished activity of Th2 autoimmune response.

  13. Pre-autoimmune thyroid abnormalities in the biobreeding diabetes-prone (BB-DP) rat: a possible relation with the intrathyroid accumulation of dendritic cells and the initiation of the thyroid autoimmune response

    NARCIS (Netherlands)

    P.J. Simons (Peter); F.G. Delemarre; P.H. Jeucken; H.A. Drexhage (Hemmo)

    1998-01-01

    textabstractThyroid autoimmune reactions start with an accumulation of mainly dendritic cells in the thyroid. There is increasing evidence that, apart from being antigen-presenting cells, they are also able to control the growth and hormone synthesis of neighbouring

  14. Divergent effects of T cell costimulation and inflammatory cytokine production on autoimmune peripheral neuropathy provoked by Aire deficiency.

    Science.gov (United States)

    Zeng, Xiaopei L; Nagavalli, Anil; Smith, Colin-Jamal; Howard, James F; Su, Maureen A

    2013-04-15

    Chronic inflammatory demyelinating polyneuropathy results from autoimmune destruction of the peripheral nervous system and is a component of the multiorgan autoimmunity syndrome that results from Aire gene mutations in humans. In parallel, peripheral nervous system autoimmunity resembling chronic inflammatory demyelinating polyneuropathy develops spontaneously in NOD mice with a partial loss of Aire function (NOD.Aire(GW/+) mice) and is a T cell-mediated disease. In this study, we analyze how key aspects of T cell activation and function modulate disease development in Aire-deficient mice. We show that genetic ablation of the Th1 cytokine IFN-γ completely prevents clinical and electrophysiological evidence of neuropathy in NOD.Aire(GW/+) mice. IFN-γ deficiency is associated with absence of immune infiltration and decreased expression of the T cell chemoattractant IP-10 in sciatic nerves. Thus, IFN-γ is absolutely required for the development of autoimmune peripheral neuropathy in NOD.Aire(GW/+) mice. Because IFN-γ secretion is enhanced by B7-CD28 costimulation of T cells, we sought to determine the effects of these costimulatory molecules on neuropathy development. Surprisingly, B7-2 deficiency accelerated neuropathy development in NOD.Aire(GW/+) mice, and Ab blockade of both B7-1 and B7-2 resulted in fulminant, early-onset neuropathy. Thus, in contrast to IFN-γ, B7-2 alone and B7-1/B7-2 in combination function to ameliorate neuropathy development in NOD.Aire(GW/+) mice. Together, these findings reveal distinct and opposing effects of the T cell costimulatory pathway and IFN-γ production on the pathogenesis of autoimmune peripheral neuropathy.

  15. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  16. Endocrine autoimmune disease: genetics become complex.

    Science.gov (United States)

    Wiebolt, Janneke; Koeleman, Bobby P C; van Haeften, Timon W

    2010-12-01

    The endocrine system is a frequent target in pathogenic autoimmune responses. Type 1 diabetes and autoimmune thyroid disease are the prevailing examples. When several diseases cluster together in one individual, the phenomenon is called autoimmune polyglandular syndrome. Progress has been made in understanding the genetic factors involved in endocrine autoimmune diseases. Studies on monogenic autoimmune diseases such as autoimmune polyglandular syndrome type 1, immunodysregulation, polyendocrinopathy, enteropathy, X-linked and primary immune deficiencies helped uncover the role of key regulators in the preservation of immune tolerance. Alleles of the major histocompatibility complex have been known to contribute to the susceptibility to most forms of autoimmunity for more than 3 decades. Furthermore, sequencing studies revealed three non-major histocompatibility complex loci and some disease specific loci, which control T lymphocyte activation or signalling. Recent genome-wide association studies (GWAS) have enabled acceleration in the identification of novel (non-HLA) loci and hence other relevant immune response pathways. Interestingly, several loci are shared between autoimmune diseases, and surprisingly some work in opposite direction. This means that the same allele which predisposes to a certain autoimmune disease can be protective in another. Well powered GWAS in type 1 diabetes has led to the uncovering of a significant number of risk variants with modest effect. These studies showed that the innate immune system may also play a role in addition to the adaptive immune system. It is anticipated that next generation sequencing techniques will uncover other (rare) variants. For other autoimmune disease (such as autoimmune thyroid disease) GWAS are clearly needed. © 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.

  17. AUTOIMMUNE HEPATITIS

    Directory of Open Access Journals (Sweden)

    Yusri Dianne Jurnalis

    2010-05-01

    Full Text Available AbstrakHepatitis autoimun merupakan penyakit inflamasi hati yang berat dengan penyebab pasti yang tidak diketahui yang mengakibatkan morbiditas dan mortalitas yang tinggi. Semua usia dan jenis kelamin dapat dikenai dengan insiden tertinggi pada anak perempuan usia prepubertas, meskipun dapat didiagnosis pada usia 6 bulan. Hepatitis autoimun dapat diklasifikasikan menjadi 2 bagian berdasarkan adanya antibodi spesifik: Smooth Muscle Antibody (SMA dengan anti-actin specificity dan/atau Anti Nuclear Antibody (ANA pada tipe 1 dan Liver-Kidney Microsome antibody (LKM1 dan/atau anti-liver cytosol pada tipe 2. Gambaran histologisnya berupa “interface hepatitis”, dengan infiltrasi sel mononuklear pada saluran portal, berbagai tingkat nekrosis, dan fibrosis yang progresf. Penyakit berjalan secara kronik tetapi keadaan yang berat biasanya menjadi sirosis dan gagal hati.Tipe onset yang paling sering sama dengan hepatitis virus akut dengan gagal hati akut pada beberapa pasien; sekitar sepertiga pasien dengan onset tersembunyi dengan kelemahan dan ikterik progresif ketika 10-15% asimptomatik dan mendadak ditemukan hepatomegali dan/atau peningkatan kadar aminotransferase serum. Adanya predominasi perempuan pada kedua tipe. Pasien LKM1 positif menunjukkan keadaan lebih akut, pada usia yang lebih muda, dan biasanya dengan defisiensi Immunoglobulin A (IgA, dengan durasi gejala sebelum diagnosis, tanda klinis, riwayat penyakit autoimun pada keluarga, adanya kaitan dengan gangguan autoimun, respon pengobatan dan prognosis jangka panjang sama pada kedua tipe.Kortikosteroid yang digunakan secara tunggal atau kombinasi azathioprine merupakan terapi pilihan yang dapat menimbulkan remisi pada lebih dari 90% kasus. Strategi terapi alternatif adalah cyclosporine. Penurunan imunosupresi dikaitkan dengan tingginya relap. Transplantasi hati dianjurkan pada penyakit hati dekom-pensata yang tidak respon dengan pengobatan medis lainnya.Kata kunci : hepatitis Autoimmune

  18. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  19. Nod2 mediates susceptibility to Yersinia pseudotuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Ulrich Meinzer

    Full Text Available Nucleotide oligomerisation domain 2 (NOD2 is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.

  20. Effect of prophylactic insulin treatment on the number of ER-MP23+ macrophages in the pancreas of NOD mice. Is the prevention of diabetes based on beta-cell rest?

    NARCIS (Netherlands)

    Jansen, A; Rosmalen, J G; Homo-Delarche, F; Dardenne, M; Drexhage, H A

    Prophylactic insulin treatment has been shown to have beneficial effects in type 1 diabetes, both in humans and in various animal models of the disease. In experimental models, the protective effect of prophylactic insulin treatment was observed in two parameters: (1) progression of insulitis and

  1. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: a meta-analysis.

    Science.gov (United States)

    Zhang, Na; Huang, Weihuang; Dong, Fang; Liu, Yang; Zhang, Baohuan; Jing, Lipeng; Wang, Man; Yang, Guang; Jing, Chunxia

    2015-12-01

    A variable number of tandem repeat (VNTRs) region in the insulin gene (INS) possibly influences the progression of type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). However, effects of INS VNTR polymorphisms in these contexts remain inconclusive. We performed a systematic review of work on the INS VNTR -2221MspI and -23HphI polymorphisms to estimate the overall effects thereof on disease susceptibility; we included 17,498 T1D patients and 24,437 controls, and 1960 LADA patients and 5583 controls. For T1D, the C allele at -2221MspI and the A allele at -23HphI were associated with estimated relative risks of 2.13 (95 % CI 1.94, 2.35) and 0.46 (95 % CI 0.44, 0.48), which contributed to absolute increases of 46.76 and 46.98 % in the risk of all T1D, respectively. The estimated lambda values were 0.44 and 0.42, respectively, suggesting that a co-dominant model most likely explained the effects of -2221MspI and -23HphI on T1D. For -23HphI, the A allele carried an estimated relative risk of 0.55 (95 % CI 0.50, 0.61) for LADA and increased the risk of all LADA by 36.94 %. The λ value was 0.43, suggesting that a co-dominant model most likely explained the effect of -23HphI on LADA. Our results support the existence of associations of INS with T1D and LADA.

  2. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR) and Inflammation: Focus on the Gastrointestinal (GI) Tract

    OpenAIRE

    Spanou, Evagelia; Kalisperati, Polyxeni; Pateras, Ioannis S.; Papalampros, Alexandros; Barbouti, Alexandra; Tzioufas, Athanasios G.; Kotsinas, Athanassios; Sougioultzis, Stavros

    2017-01-01

    The fundamental role of human Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the two most studied pathogen recognition receptors (PRRs), is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angioge...

  3. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    Science.gov (United States)

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  4. Update in Endocrine Autoimmunity

    OpenAIRE

    Anderson, Mark S.

    2008-01-01

    Context: The endocrine system is a common target in pathogenic autoimmune responses, and there has been recent progress in our understanding, diagnosis, and treatment of autoimmune endocrine diseases.

  5. Bradyrhizobium elkanii nod regulon: insights through genomic analysis

    Directory of Open Access Journals (Sweden)

    Luciane M. P. Passaglia

    2017-07-01

    Full Text Available Abstract A successful symbiotic relationship between soybean [Glycine max (L. Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs. Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.

  6. Monogenic autoimmune diseases of the endocrine system.

    Science.gov (United States)

    Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E

    2016-10-01

    The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry...... diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24aß type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24aß NKT cells...... exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24aß NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred...

  8. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  9. Detection of molecular paths associated with insulitis and type 1 diabetes in non-obese diabetic mouse.

    Directory of Open Access Journals (Sweden)

    Erno Lindfors

    Full Text Available Recent clinical evidence suggests important role of lipid and amino acid metabolism in early pre-autoimmune stages of type 1 diabetes pathogenesis. We study the molecular paths associated with the incidence of insulitis and type 1 diabetes in the Non-Obese Diabetic (NOD mouse model using available gene expression data from the pancreatic tissue from young pre-diabetic mice. We apply a graph-theoretic approach by using a modified color coding algorithm to detect optimal molecular paths associated with specific phenotypes in an integrated biological network encompassing heterogeneous interaction data types. In agreement with our recent clinical findings, we identified a path downregulated in early insulitis involving dihydroxyacetone phosphate acyltransferase (DHAPAT, a key regulator of ether phospholipid synthesis. The pathway involving serine/threonine-protein phosphatase (PP2A, an upstream regulator of lipid metabolism and insulin secretion, was found upregulated in early insulitis. Our findings provide further evidence for an important role of lipid metabolism in early stages of type 1 diabetes pathogenesis, as well as suggest that such dysregulation of lipids and related increased oxidative stress can be tracked to beta cells.

  10. Structural models of zebrafish (Danio rerio NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Jitendra Maharana

    Full Text Available Nucleotide-binding oligomerization domain-containing protein 1 (NOD1 and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds and Aspartic acid (Walker B formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2 interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.

  11. Antibacterial action of new antibacterial peptides, Nod1 and Nod2, isolated from Nordotis discus discus.

    Science.gov (United States)

    Park, Seong-Cheol; Kim, Jin-Young; Lee, Jong-Kook; Hahm, Kyung-Soo; Park, Yoonkyung

    2012-07-11

    Abalone is a valuable seafood in the aquaculture industry worldwide as it is rich in protein. However, to date, research on the functional proteins of abalone is lacking. Herein, we report two peptides with antibacterial activity from Nordotis discus discus . The purification of peptides was performed by solvent extraction, ultrafiltration, and reverse-phase high performance liquid chromatography. The N-terminal amino acid sequences of the isolated antibacterial peptides, named as Nod1 and Nod2, were identified by Edman degradation and did not show any similarity to other proteins and peptides in databases based on results of BLAST homology analysis. Molecular masses of Nod1 and Nod2 were 6145.06 and 6360.07 Da, respectively, as determined by mass spectrometric analysis. The two peptides displayed pH-dependent antibacterial activity against various bacteria that was more potent at pH 5.4 than pH 7.4, but they did not inhibit fungal growth at either pH levels. Their antibacterial activity was due to membranolytic action, which was assayed by SYTOX-green uptake. In addition, both peptides were virtually noncytolytic for human erythrocytes and mammalian cells.

  12. Stereotypes on Nodding syndrome: responses of health workers in ...

    African Journals Online (AJOL)

    Objective: To identify stereotypes and negative attitudes held by primary care health workers about nodding syndrome. Method: Of one hundred health workers invited by the Uganda Ministry of Health for training on nodding syndrome from the three most affected districts of Pader, Lamwo and Kitgum forty were interviewed ...

  13. NOD1 gene polymorphisms in relation to aggressive periodontitis

    NARCIS (Netherlands)

    Loos, B.G.; Fiebig, A.; Nothnagel, M.; Jepsen, S.; Groessner-Schreiber, B.; Franke, A.; Jervoe-Storm, P.M.; Schenck, K.; van der Velden, U.; Schreiber, S.

    2009-01-01

    Background: NOD proteins are part of innate immunity mechanisms. They play a role in epithelial barrier functions and inflammatory responses to bacteria. Single nucleotide polymorphisms (SNPs) in the NOD1 gene have proven to be associated with inflammatory bowel disease (IBD) and asthma. Objective:

  14. Stereotypes on Nodding syndrome: responses of health workers in ...

    African Journals Online (AJOL)

    EB

    Overall, four broad categories of negative stereotypes were identified; Nodding syndrome is 1) an incurable disease, 2) is associated with evil spirits and curses, 3) is disabling, making the patient a burden to society and 4) is a fatal illness. Conclusion: Primary health care workers who lead the care of patients with nodding ...

  15. Celiac disease and autoimmune thyroid disease.

    Science.gov (United States)

    Ch'ng, Chin Lye; Jones, M Keston; Kingham, Jeremy G C

    2007-10-01

    Celiac disease (CD) or gluten sensitive enteropathy is relatively common in western populations with prevalence around 1%. With the recent availability of sensitive and specific serological testing, many patients who are either asymptomatic or have subtle symptoms can be shown to have CD. Patients with CD have modest increases in risks of malignancy and mortality compared to controls. The mortality among CD patients who comply poorly with a gluten-free diet is greater than in compliant patients. The pattern of presentation of CD has altered over the past three decades. Many cases are now detected in adulthood during investigation of problems as diverse as anemia, osteoporosis, autoimmune disorders, unexplained neurological syndromes, infertility and chronic hypertransaminasemia of uncertain cause. Among autoimmune disorders, increased prevalence of CD has been found in patients with autoimmune thyroid disease, type 1 diabetes mellitus, autoimmune liver diseases and inflammatory bowel disease. Prevalence of CD was noted to be 1% to 19% in patients with type 1 diabetes mellitus, 2% to 5% in autoimmune thyroid disorders and 3% to 7% in primary biliary cirrhosis in prospective studies. Conversely, there is also an increased prevalence of immune based disorders among patients with CD. The pathogenesis of co-existent autoimmune thyroid disease and CD is not known, but these conditions share similar HLA haplotypes and are associated with the gene encoding cytotoxic T-lymphocyte-associated antigen-4. Screening high risk patients for CD, such as those with autoimmune diseases, is a reasonable strategy given the increased prevalence. Treatment of CD with a gluten-free diet should reduce the recognized complications of this disease and provide benefits in both general health and perhaps life expectancy. It also improves glycemic control in patients with type 1 diabetes mellitus and enhances the absorption of medications for associated hypothyroidism and osteoporosis. It

  16. Autoimmune Pancreatitis.

    Science.gov (United States)

    Majumder, Shounak; Takahashi, Naoki; Chari, Suresh T

    2017-07-01

    Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disease of the pancreas that belongs to the spectrum of immunoglobulin G-subclass4-related diseases (IgG4-RD) and typically presents with obstructive jaundice. Idiopathic duct-centric pancreatitis (IDCP) is a closely related but distinct disease that mimics AIP radiologically but manifests clinically most commonly as recurrent acute pancreatitis in young individuals with concurrent inflammatory bowel disease. IgG4 levels are often elevated in AIP and normal in IDCP. Histologically, lymphoplasmacytic acinar inflammation and storiform fibrosis are seen in both. In addition, the histologic hallmark of IDCP is the granulocyte epithelial lesion: intraluminal and intraepithelial neutrophils in medium-sized and small ducts with or without granulocytic acinar inflammation often associated with destruction of ductal architecture. Initial treatment of both AIP and IDCP is with oral corticosteroids for duration of 4 weeks followed by a gradual taper. Relapses are common in AIP and relatively uncommon in IDCP, a relatively rare disease for which the natural history is not well understood. For patients with relapsing AIP, treatment with immunomodulators and more recently rituximab has been recommended. Although rare instances of pancreaticobiliary malignancy has been reported in patients with AIP, overall the lifetime risk of developing pancreatic cancer does not appear to be elevated.

  17. Effect of early-life gut mucosal compromise on disease progression in NOD mice

    DEFF Research Database (Denmark)

    Bendtsen, Katja M.; Hansen, Camilla HF; Krych, Lukasz

    2017-01-01

    Disease expression in spontaneous nonobese diabetic (NOD) mice depends on environmental stimuli such as stress, diet, and gut microbiota composition. We evaluated a brief, early-life gut intervention in which pups were weaned to low-dose dextran sulfate sodium (DSS). We hypothesized that the mucus...... of the microbiota during weeks 4 through 6 led to increased cecal length and weight and, in week 13, a tendency toward decreased colon length, with increased leakage of LPS to the blood. We conclude that mucus reduction and subsequent increased host–bacterial contact did not affect overall disease progression...

  18. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  19. Impaired hapten sensitization in patients with autoimmune disease

    DEFF Research Database (Denmark)

    Bangsgaard, N; Engkilde, K; Menné, T

    2011-01-01

    An inverse relation between contact allergy and autoimmune diseases is suggested from epidemiological studies. The aim of this study was to investigate susceptibility and reactivity in patients with psoriasis, patients with diabetes and healthy controls in an experimental sensitization study. We...... in individuals with autoimmune diseases such as psoriasis....

  20. Clinical implications of shared genetics and pathogenesis in autoimmune diseases

    NARCIS (Netherlands)

    Zhernakova, Alexandra; Withoff, Sebo; Wijmenga, Cisca

    2013-01-01

    Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the

  1. Autoimmunity and Gastric Cancer

    Science.gov (United States)

    Bizzaro, Nicola; Antico, Antonio; Villalta, Danilo

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms. PMID:29373557

  2. Autoimmunity and Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Nicola Bizzaro

    2018-01-01

    Full Text Available Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms.

  3. Cigarette smoke extract (CSE delays NOD2 expression and affects NOD2/RIPK2 interactions in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Marian C Aldhous

    Full Text Available Genetic and environmental factors influence susceptibility to Crohn's disease (CD: NOD2 is the strongest individual genetic determinant and smoking the best-characterised environmental factor. Carriage of NOD2 mutations predispose to small-intestinal, stricturing CD, a phenotype also associated with smoking. We hypothesised that cigarette smoke extract (CSE altered NOD2 expression and function in intestinal epithelial cells.Intestinal epithelial cell-lines (SW480, HT29, HCT116 were stimulated with CSE and nicotine (to mimic smoking ±TNFα (to mimic inflammation. NOD2 expression was measured by qRT-PCR and western blotting; NOD2-RIPK2 interactions by co-immunoprecipitation (CoIP; nuclear NFκB-p65 by ELISA; NFκB activity by luciferase reporter assays and chemokines (CCL20, IL8 in culture supernatants by ELISA. In SW480 and HT29 cells the TNFα-induced NOD2 expression at 4 hours was reduced by CSE (p = 0.0226, a response that was dose-dependent (p = 0.003 and time-dependent (p = 0.0004. Similar effects of CSE on NOD2 expression were seen in cultured ileal biopsies from healthy individuals. In SW480 cells CSE reduced TNFα-induced NFκB-p65 translocation at 15 minutes post-stimulation, upstream of NOD2. Levels of the NOD2-RIPK2 complex were no different at 8 hours post-stimulation with combinations of CSE, nicotine and TNFα, but at 18 hours it was increased in cells stimulated with TNFα+CSE but decreased with TNFα alone (p = 0.0330; CSE reduced TNFα-induced NFκB activity (p = 0.0014 at the same time-point. At 24 hours, basal CCL20 and IL8 (p<0.001 for both and TNFα-induced CCL20 (p = 0.0330 production were decreased by CSE. CSE also reduced NOD2 expression, CCL20 and IL8 production seen with MDP-stimulation of SW480 cells pre-treated with combinations of TNFα and CSE.CSE delayed TNFα-induced NOD2 mRNA expression and was associated with abnormal NOD2/RIPK2 interaction, reduced NFκB activity and decreased chemokine

  4. Phenotyping of Nod1/2 double deficient mice and characterization of Nod1/2 in systemic inflammation and associated renal disease

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    2012-10-01

    It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system. Three-month-old wildtype (Wt and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours. Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.

  5. MyD88-, but not Nod1- and/or Nod2-deficient mice, show increased susceptibility to polymicrobial sepsis due to impaired local inflammatory response.

    Directory of Open Access Journals (Sweden)

    Fabiane Sônego

    Full Text Available Pathogen recognition and triggering of the inflammatory response following infection in mammals depend mainly on Toll-like and Nod-like receptors. Here, we evaluated the role of Nod1, Nod2 and MyD88-dependent signaling in the chemokine production and neutrophil recruitment to the infectious site during sepsis induced by cecal ligation and puncture (CLP in C57Bl/6 mice. We demonstrate that Nod1 and Nod2 are not involved in the release of chemokines and recruitment of neutrophils to the infectious site during CLP-induced septic peritonitis because these events were similar in wild-type, Nod1-, Nod2-, Nod1/Nod2- and Rip2-deficient mice. Consequently, the local and systemic bacterial loads were not altered. Accordingly, neither Nod1 nor Nod2 was involved in the production of the circulating cytokines and in the accumulation of leukocytes in the lungs. By contrast, we showed that MyD88-dependent signaling is crucial for the establishment of the local inflammatory response during CLP-induced sepsis. MyD88-deficient mice were susceptible to sepsis because of an impaired local production of chemokines and defective neutrophil recruitment to the infection site. Altogether, these data show that Nod1, Nod2 and Rip2 are not required for local chemokine production and neutrophil recruitment during CLP-induced sepsis, and they reinforce the importance of MyD88-dependent signaling for initiation of a protective host response.

  6. Autoimmunity and Gastric Cancer

    OpenAIRE

    Nicola Bizzaro; Antonio Antico; Danilo Villalta

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastri...

  7. Increased prevalence of autoimmunity in Turner syndrome

    DEFF Research Database (Denmark)

    Mortensen, K H; Cleemann, L; Hjerrild, B E

    2009-01-01

    Individuals with Turner syndrome (TS) are prone to develop autoimmune conditions such as coeliac disease (CD), thyroiditis and type 1 diabetes (T1DM). The objective of the present study was to examine TS of various karyotypes for autoantibodies and corresponding diseases. This was investigated...

  8. Autoimmune Hemolytic Anemia.

    Science.gov (United States)

    Liebman, Howard A; Weitz, Ilene C

    2017-03-01

    Autoimmune hemolytic anemia is an acquired autoimmune disorder resulting in the production of antibodies directed against red blood cell antigens causing shortened erythrocyte survival. The disorders can present as a primary disorder (idiopathic) or secondary to other autoimmune disorders, malignancies, or infections. Treatment involves immune modulation with corticosteroids and other agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Case of Autoimmune Pancreatitis Presenting as a Deterioration in Glycaemic Control in a Patient with Pre-Existing Type 2 Diabetes

    LENUS (Irish Health Repository)

    Forde, H

    2017-05-01

    Autoimmune pancreatitis (AIP) was first described in 1961 and accounts for 5-6% of cases of chronic pancreatitis, though the prevalence is increasing with increasing awareness of the disease1,2. There are two types of autoimmune pancreatitis with different clinical and pathological features. Type 1 AIP is an IgG4 related disease and tends to occur in elderly patients in the 7th decade, with a male preponderance3. Type 1 AIP is associated with other organ involvement and commonly affects the biliary system3. In contrast, Type 2 AIP occurs in patients in the 5th-6th decade of life and other organ involvement is uncommon3. Both types of AIP respond well to steroids with reported remission rates of 99% and 92% for Type 1 and Type 2 AIP respectively4.\\r\

  10. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages.

    Science.gov (United States)

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G; Puri, Raj K; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-11-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2-deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.

  11. Caring to Care: Applying Noddings' Philosophy to Medical Education.

    Science.gov (United States)

    Balmer, Dorene F; Hirsh, David A; Monie, Daphne; Weil, Henry; Richards, Boyd F

    2016-12-01

    The authors argue that Nel Noddings' philosophy, "an ethic of caring," may illuminate how students learn to be caring physicians from their experience of being in a caring, reciprocal relationship with teaching faculty. In her philosophy, Noddings acknowledges two important contextual continuities: duration and space, which the authors speculate exist within longitudinal integrated clerkships. In this Perspective, the authors highlight core features of Noddings' philosophy and explore its applicability to medical education. They apply Noddings' philosophy to a subset of data from a previously published longitudinal case study to explore its "goodness of fit" with the experience of eight students in the 2012 cohort of the Columbia-Bassett longitudinal integrated clerkship. In line with Noddings' philosophy, the authors' supplementary analysis suggests that students (1) recognized caring when they talked about "being known" by teaching faculty who "cared for" and "trusted" them; (2) responded to caring by demonstrating enthusiasm, action, and responsibility toward patients; and (3) acknowledged that duration and space facilitated caring relations with teaching faculty. The authors discuss how Noddings' philosophy provides a useful conceptual framework to apply to medical education design and to future research on caring-oriented clinical training, such as longitudinal integrated clerkships.

  12. A Challenging Form of Non-autoimmune Insulin-Dependent Diabetes in a Wolfram Syndrome Patient with a Novel Sequence Variant.

    Science.gov (United States)

    Paris, Liliana P; Usui, Yoshihiko; Serino, Josefina; Sá, Joaquim; Friedlander, Martin

    2015-06-01

    Wolfram syndrome type 1 is a rare, autosomal recessive, neurodegenerative disorder that is diagnosed when insulin-dependent diabetes of non-auto-immune origin and optic atrophy are concomitantly present. Wolfram syndrome is also designated by DIDMOAD that stands for its most frequent manifestations: diabetes insipidus, diabetes mellitus, optic atrophy and deafness. With disease progression, patients also commonly develop severe neurological and genito-urinary tract abnormalities. When compared to the general type 1 diabetic population, patients with Wolfram Syndrome have been reported to have a form of diabetes that is more easily controlled and with less microvascular complications, such as diabetic retinopathy. We report a case of Wolfram syndrome in a 16-year-old male patient who presented with progressive optic atrophy and severe diabetes with very challenging glycemic control despite intensive therapy since diagnosis at the age of 6. Despite inadequate metabolic control he did not develop any diabetic microvascular complications during the 10-year follow-up period. To further investigate potential causes for this metabolic idiosyncrasy, we performed genetic analyses that revealed a novel combination of homozygous sequence variants that are likely the cause of the syndrome in this family. The identified genotype included a novel sequence variant in the Wolfram syndrome type 1 gene along with a previously described one, which had initially been associated with isolated low frequency sensorineural hearing loss (LFSNHL). Interestingly, our patient did not show any abnormal findings with audiometry testing.

  13. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.

  14. Vitamin D and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    E. A. Potrokhova

    2017-01-01

    Full Text Available The review discusses the effect of vitamin D on the tolerogenic modulation of an immune response, its relationship to cells of the monocyte-macrophage series, including dendritic cells, monocytes, and macrophages, in the context of the impact of the expression of anti-inflammatory proinflammatory cytokines in some autoimmune diseases (rheumatoid arthritis, systemic scleroderma, multiple sclerosis, type 1 diabetes mellitus, systemic lupus erythematosus, and Crohn`s disease. It discusses the role of vitamin D in the development of innate and adaptive immunity. Despite some conflicting evidence, the immune regulatory function of vitamin D is generally directed toward inhibition of the components of innate and acquired immunity, which are responsible for the induction of autoimmune reactions; in this connection there are a growing number of publications devoted to the issues of vitamin D supplementation in patients with autoimmune diseases, the preventive effect of vitamin D intake on the risk of an abnormality and that of therapeutic doses of the vitamin on its course. The maintenance of the threshold value for serum 25(OHD3 at least 30 ng/ml, which is achieved by the intake of about 2000 IU of vitamin D, is shown to be required for its immune regulatory function. The data given raise the question as to whether it is necessity to revise the Russian recommended daily dietary allowances for vitamin D through its infant food fortification.

  15. Human Cytomegalovirus and Autoimmune Disease

    Science.gov (United States)

    2014-01-01

    Human cytomegalovirus (HCMV) represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE), systemic sclerosis (SSc), diabetes mellitus type 1, and rheumatoid arthritis (RA) is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention. PMID:24967373

  16. MAdCAM-1 is needed for diabetes development mediated by the T cell clone, BDC-2·5

    Science.gov (United States)

    Phillips, Jenny M; Haskins, Kathryn; Cooke, Anne

    2005-01-01

    The NOD-derived islet-reactive CD4+ T cell clone, BDC-2·5, is able to transfer diabetes to neonatal non-obese diabetic (NOD) mice but is unable to transfer disease to either adult NOD or NOD scid recipients. Transfer of diabetes to adult recipients by BDC-2·5 is only accomplished by cotransfer of CD8+ T cells from a diabetic donor. To understand why this CD4+ T cell clone is able to mediate diabetes in neonatal but not the adult recipients we examined the ability of the clone to traffic in the different recipients. Our studies showed that MAdCAM-1 has a very different expression pattern in the neonatal and adult pancreas. Blockade of this addressin prevents the clone from transferring diabetes to neonatal mice, suggesting that the differential pancreatic expression of MAdCAM-1 in neonatal and adult pancreas provides an explanation of the differences in diabetes development. PMID:16313366

  17. Sirolimus for Autoimmune Disease of Blood Cells

    Science.gov (United States)

    2017-11-02

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  18. Gluten-free diet prevents diabetes in NOD mice

    Czech Academy of Sciences Publication Activity Database

    Funda, David P.; Kaas, A.; Bock, T.; Tlaskalová, Helena; Buschard, K.

    1999-01-01

    Roč. 15, - (1999), s. 323-327 ISSN 1520-7552 R&D Projects: GA ČR GA306/98/0433; GA ČR GA311/97/0784; GA MZd NI5051; GA AV ČR IAA7020716; GA AV ČR IAA7020808 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EC - Immunology Impact factor: 2.417, year: 1999

  19. Galectin-3 in autoimmunity and autoimmune diseases.

    Science.gov (United States)

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo; Doria, Andrea

    2015-08-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. © 2015 by the Society for Experimental Biology and Medicine.

  20. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1.

    Directory of Open Access Journals (Sweden)

    Wendy Chi

    Full Text Available Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia. These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1 activation with bacterial peptidoglycan (PGN caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT explants from WT, but not NOD1⁻/⁻mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK,protein kinase A (PKA, and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK. NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL. Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes.

  1. Functional Roles of NOD1 in Odontoblasts on Dental Pulp Innate Immunity

    Directory of Open Access Journals (Sweden)

    Yuki Hosokawa

    2016-01-01

    Full Text Available Caries-related pathogens are first recognized by odontoblasts and induce inflammatory events that develop to pulpitis. Generally, initial sensing of microbial pathogens is mediated by pattern recognition receptors, such as Toll-like receptor and nucleotide-binding oligomerization domain (NOD; however, little is known about NODs in odontoblasts. In this study, the levels of NODs expressed in rat odontoblastic cell line, KN-3, were assessed by flow cytometry and the levels of chemokines in NOD-specific ligand-stimulated KN-3 cells were analyzed by real-time PCR and ELISA. The signal transduction pathway activated with NOD-specific ligand was assessed by blocking assay with specific inhibitors and reporter assay. In KN-3 cells, the expression level of NOD1 was stronger than that of NOD2 and the production of chemokines, such as CINC-1, CINC-2, CCL20, and MCP-1, was upregulated by stimulation with NOD1-specific ligand, but not with NOD2-specific ligand. CINC-2 and CCL20 production by stimulation with NOD1-specific ligand was reduced by p38 MAPK and AP-1 signaling inhibitors. Furthermore, the reporter assay demonstrated AP-1 activation in NOD1-specific ligand-stimulated KN-3 cells. These findings indicated that NOD1 expressed in odontoblasts functions to upregulate the chemokines expression via p38-AP-1 signaling pathway and suggested that NOD1 may play important roles in the initiation and progression of pulpitis.

  2. Functional Roles of NOD1 in Odontoblasts on Dental Pulp Innate Immunity.

    Science.gov (United States)

    Hosokawa, Yuki; Hirao, Kouji; Yumoto, Hiromichi; Washio, Ayako; Nakanishi, Tadashi; Takegawa, Daisuke; Kitamura, Chiaki; Matsuo, Takashi

    2016-01-01

    Caries-related pathogens are first recognized by odontoblasts and induce inflammatory events that develop to pulpitis. Generally, initial sensing of microbial pathogens is mediated by pattern recognition receptors, such as Toll-like receptor and nucleotide-binding oligomerization domain (NOD); however, little is known about NODs in odontoblasts. In this study, the levels of NODs expressed in rat odontoblastic cell line, KN-3, were assessed by flow cytometry and the levels of chemokines in NOD-specific ligand-stimulated KN-3 cells were analyzed by real-time PCR and ELISA. The signal transduction pathway activated with NOD-specific ligand was assessed by blocking assay with specific inhibitors and reporter assay. In KN-3 cells, the expression level of NOD1 was stronger than that of NOD2 and the production of chemokines, such as CINC-1, CINC-2, CCL20, and MCP-1, was upregulated by stimulation with NOD1-specific ligand, but not with NOD2-specific ligand. CINC-2 and CCL20 production by stimulation with NOD1-specific ligand was reduced by p38 MAPK and AP-1 signaling inhibitors. Furthermore, the reporter assay demonstrated AP-1 activation in NOD1-specific ligand-stimulated KN-3 cells. These findings indicated that NOD1 expressed in odontoblasts functions to upregulate the chemokines expression via p38-AP-1 signaling pathway and suggested that NOD1 may play important roles in the initiation and progression of pulpitis.

  3. Comparative genomic analysis of buffalo (Bubalus bubalis NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Nucleotide binding and oligomerization domain (NOD-like receptors (NLRs are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo--a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1 and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.

  4. [Thymoma and autoimmune diseases].

    Science.gov (United States)

    Jamilloux, Y; Frih, H; Bernard, C; Broussolle, C; Petiot, P; Girard, N; Sève, P

    2018-01-01

    The association between thymoma and autoimmunity is well known. Besides myasthenia gravis, which is found in 15 to 20% of patients with thymoma, other autoimmune diseases have been reported: erythroblastopenia, systemic lupus erythematosus, inflammatory myopathies, thyroid disorders, Isaac's syndrome or Good's syndrome. More anecdotally, Morvan's syndrome, limbic encephalitis, other autoimmune cytopenias, autoimmune hepatitis, and bullous skin diseases (pemphigus, lichen) have been reported. Autoimmune diseases occur most often before thymectomy, but they can be discovered at the time of surgery or later. Two situations require the systematic investigation of a thymoma: the occurrence of myasthenia gravis or autoimmune erythroblastopenia. Nevertheless, the late onset of systemic lupus erythematosus or the association of several autoimmune manifestations should lead to look for a thymoma. Neither the characteristics of the patients nor the pathological data can predict the occurrence of an autoimmune disease after thymectomy. Thus, thymectomy usefulness in the course of the autoimmune disease, except myasthenia gravis, has not been demonstrated. This seems to indicate the preponderant role of self-reactive T lymphocytes distributed in the peripheral immune system prior to surgery. Given the high infectious morbidity in patients with thymoma, immunoglobulin replacement therapy should be considered in patients with hypogammaglobulinemia who receive immunosuppressive therapy, even in the absence of prior infection. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  5. Bistability in autoimmune diseases

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Mosekilde, Erik; Lund, Ole

    2011-01-01

    Autoimmune diseases damage host tissue, which, in turn, may trigger a stronger immune response. Systems characterized by such positive feedback loops can display co-existing stable steady states. In a mathematical model of autoimmune disease, one steady state may correspond to the healthy state...... and another to an autoimmune steady state characterized by widespread tissue damage and immune activation. We show how a triggering event may move the system from the healthy to the autoimmune state and how transient immunosuppressive treatment can move the system back to the healthy state....

  6. Predominant Occupation of the Class I MHC Molecule H-2Kwm7 with a Single Self-peptide Suggests a Mechanism for its Diabetes-protective Effect

    Energy Technology Data Exchange (ETDEWEB)

    Brims, D.; Qian, J; Jarchum, I; Mikesh, L; Palmieri, E; Ramagopal, U; Malashkevich, V; Chaparro, R; Lund, T; et. al.

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

  7. Risk of Celiac Disease Autoimmunity is Modified by Non-HLA Genetic Markers During the First Year of Clinical Type 1 Diabetes

    DEFF Research Database (Denmark)

    Adlercreutz, Emma H.; Hansen, Dorthe; Mortensen, Henrik B.

    2014-01-01

    , 133 females) (0.5-16.3 years) with T1D recruited at 18 European centers were screened at 1, 6 and 12 months after diagnosis, using a combined ELISA measuring both IgA and IgG antibodies against deamidated gliadin peptide and tissue transglutaminase (IgAG-DGP/tTG) and a radioligand binding assays...... measuring IgG-tTG. Children positive in both assays in two consecutive samples were defined as having celiac disease autoimmunity (CDA). Associations between CDA and genotypes of HLA, IL18 rap, CCR 5, PTPN2 and correlations with islet autoantibodies (ICA, GADA, IA2 and IA) and HbA1C and C-peptide were...

  8. NOD1-Mediated Mucosal Host Defense against Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Tomohiro Watanabe

    2010-01-01

    Full Text Available Infection of the stomach with Helicobacter pylori is an important risk factor for gastritis, peptic ulcer, and gastric carcinoma. Although it has been well established that persistent colonization by H. pylori is associated with adaptive Th1 responses, the innate immune responses leading to these Th1 responses are poorly defined. Recent studies have shown that the activation of nucleotide-binding oligomerization domain 1 (NOD1 in gastric epithelial cells plays an important role in innate immune responses against H. pylori. The detection of H. pylori-derived ligands by cytosolic NOD1 induces several host defense factors, including antimicrobial peptides, cytokines, and chemokines. In this paper, we review the molecular mechanisms by which NOD1 contributes to mucosal host defense against H. pylori infection of the stomach.

  9. NOD2 mutations and colorectal cancer - Where do we stand?

    Science.gov (United States)

    Branquinho, Diogo; Freire, Paulo; Sofia, Carlos

    2016-01-01

    Due to the overwhelming burden of colorectal cancer (CRC), great effort has been placed on identifying genetic mutations that contribute to disease development and progression. One of the most studied polymorphisms that could potentially increase susceptibility to CRC involves the nucleotide-binding and oligomerization-domain containing 2 (NOD2) gene. There is growing evidence that the biological activity of NOD2 is far greater than previously thought and a link with intestinal microbiota and mucosal immunity is increasingly sought after. In fact, microbial composition may be an important contributor not only to inflammatory bowel diseases (IBD) but also to CRC. Recent studies have showed that deficient NOD2 function confers a communicable risk of colitis and CRC. Despite the evidence from experimental models, population-based studies that tried to link certain NOD2 polymorphisms and an increase in CRC risk have been described as conflicting. Significant geographic discrepancies in the frequency of such polymorphisms and different interpretations of the results may have limited the conclusions of those studies. Since being first associated to IBD and CRC, our understanding of the role of this gene has come a long way, and it is tempting to postulate that it may contribute to identify individuals with susceptible genetic background that may benefit from early CRC screening programs or in predicting response to current therapeutic tools. The aim of this review is to clarify the status quo of NOD2 mutations as genetic risk factors to chronic inflammation and ultimately to CRC. The use of NOD2 as a predictor of certain phenotypic characteristics of the disease will be analyzed as well. PMID:27152134

  10. American Autoimmune Related Diseases Association

    Science.gov (United States)

    ... List Common Thread Women & Autoimmunity Diagnosis Tips Coping Tools Support Groups Education Modules Caregivers Patient/Caregiver Relationship The Male Caregiver AD Knowledge Base Autoimmune Disease List Common ...

  11. Plant recognition of Bradyrhizobium japonicum nod factors. Final report, September 15, 1992--March 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, G.

    1998-01-01

    This grant had three objectives: (1) isolate and identify the unique nod factor metabolites made by different wild-type B. japonicum strains; (2) investigate the biological activity of these unique nod factors, especially as it relates to host range; and (3) initiate studies to define the mechanism of plant recognition of the nod factors. This report summarizes the results of this research.

  12. DMPD: Role of Nods in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17379560 Role of Nods in bacterial infection. Bourhis LL, Werts C. Microbes Infect.... 2007 Apr;9(5):629-36. Epub 2007 Jan 27. (.png) (.svg) (.html) (.csml) Show Role of Nods in bacterial infection.... PubmedID 17379560 Title Role of Nods in bacterial infection. Authors Bourhis LL, Werts C. Publication M

  13. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    Science.gov (United States)

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DMPD: NOD-like receptors (NLRs): bona fide intracellular microbial sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18585455 NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Shaw...tml) (.csml) Show NOD-like receptors (NLRs): bona fide intracellular microbial sensors. PubmedID 18585455 Ti...tle NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Authors

  15. DMPD: Sensing of bacteria: NOD a lonely job. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17161646 Sensing of bacteria: NOD a lonely job. Kufer TA, Sansonetti PJ. Curr Opin ...Microbiol. 2007 Feb;10(1):62-9. Epub 2006 Dec 11. (.png) (.svg) (.html) (.csml) Show Sensing of bacteria: NOD a lonely job.... PubmedID 17161646 Title Sensing of bacteria: NOD a lonely job. Authors Kufer TA, Sansonetti

  16. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in Medicago nodules

    NARCIS (Netherlands)

    Moling, S.; Pietraszewska-Bogiel, A.; Postma, M.; Fedorova, E.E.; Hink, M.A.; Limpens, E.H.M.; Gadella, T.W.J.; Bisseling, T.

    2014-01-01

    Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It

  17. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules

    NARCIS (Netherlands)

    Moling, S.; Pietraszewska-Bogiel, A.; Postma, M.; Fedorova, E.; Hink, M.A.; Limpens, E.; Gadella, T.W.J.; Bisseling, T.

    2014-01-01

    Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It

  18. THE AUTOIMMUNE ECOLOGY.

    Directory of Open Access Journals (Sweden)

    Juan-Manuel eAnaya

    2016-04-01

    Full Text Available Autoimmune diseases (ADs represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology, which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation. As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology. In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics to favor or protect against autoimmunity and its outcomes. Herein we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status, gender and sex hormones, vitamin D, organic solvents and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.

  19. Update in endocrine autoimmunity.

    Science.gov (United States)

    Anderson, Mark S

    2008-10-01

    The endocrine system is a common target in pathogenic autoimmune responses, and there has been recent progress in our understanding, diagnosis, and treatment of autoimmune endocrine diseases. Rapid progress has recently been made in our understanding of the genetic factors involved in endocrine autoimmune diseases. Studies on monogenic autoimmune diseases that include endocrine phenotypes like autoimmune polyglandular syndrome type 1 and immune dysregulation, polyendocrinopathy, enteropathy, X-linked have helped reveal the role of key regulators in the maintenance of immune tolerance. Highly powered genetic studies have found and confirmed many new genes outside of the established role of the human leukocyte antigen locus with these diseases, and indicate an essential role of immune response pathways in these diseases. Progress has also been made in identifying new autoantigens and the development of new animal models for the study of endocrine autoimmunity. Finally, although hormone replacement therapy is still likely to be a mainstay of treatment in these disorders, there are new agents being tested for potentially treating and reversing the underlying autoimmune process. Although autoimmune endocrine disorders are complex in etiology, these recent advances should help contribute to improved outcomes for patients with, or at risk for, these disorders.

  20. Nodding syndrome: 2015 International Conference Report and Gulu Accord

    Directory of Open Access Journals (Sweden)

    P.S. Spencer

    2016-06-01

    Full Text Available Nodding syndrome is a pediatric epileptic encephalopathy of apparent environmental origin that was first described in Tanzania, with recent epidemics in South Sudan and Uganda. Following a brief description of the medical geography, setting and case definition of this progressive brain disorder, we report recent advances relating to etiology, diagnosis and treatment described in papers given at the 2nd International Conference on Nodding Syndrome held in July 2015 in Gulu, Uganda. The target audience for this report includes: anthropologists, entomologists, epileptologists, health care workers, helminthologists, medical researchers, neuroepidemiologists, neurologists, neuroscientists, neuropathologists, nurses, nutritional scientists, primary health care physicians, psychiatrists, public health practitioners, toxicologists, and virologists.

  1. Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction.

    Science.gov (United States)

    Borg, Danielle J; Yap, Felicia Y T; Keshvari, Sahar; Simmons, David G; Gallo, Linda A; Fotheringham, Amelia K; Zhuang, Aowen; Slattery, Robyn M; Hasnain, Sumaira Z; Coughlan, Melinda T; Kantharidis, Phillip; Forbes, Josephine M

    2018-01-02

    The contribution of environmental factors to pancreatic islet damage in type 1 diabetes remains poorly understood. In this study, we crossed mice susceptible to type 1 diabetes, where parental male (CD8 + T cells specific for IGRP 206-214 ; NOD8.3) and female (NOD/ShiLt) mice were randomized to a diet either low or high in AGE content and maintained on this diet throughout pregnancy and lactation. After weaning, NOD8.3 + female offspring were identified and maintained on the same parental feeding regimen for until day 28 of life. A low AGE diet, from conception to early postnatal life, decreased circulating AGE concentrations in the female offspring when compared to a high AGE diet. Insulin, proinsulin and glucagon secretion were greater in islets isolated from offspring in the low AGE diet group, which was akin to age matched non-diabetic C57BL/6 mice. Pancreatic islet expression of Ins2 gene was also higher in offspring from the low AGE diet group. Islet expression of glucagon, AGEs and the AGE receptor RAGE, were each reduced in low AGE fed offspring. Islet immune cell infiltration was also decreased in offspring exposed to a low AGE diet. Within pancreatic lymph nodes and spleen, the proportions of CD4 + and CD8 + T cells did not differ between groups. There were no significant changes in body weight, fasting glucose or glycemic hormones. This study demonstrates that reducing exposure to dietary AGEs throughout gestation, lactation and early postnatal life may benefit pancreatic islet secretion and immune infiltration in the type 1 diabetic susceptible mouse strain, NOD8.3.

  2. Serum uric acid is associated with new-onset diabetes in hypertensive patients with left ventricular hypertrophy: The LIFE Study

    DEFF Research Database (Denmark)

    Wiik, Benedicte P; Larstorp, Anne C K; Høieggen, Aud

    2010-01-01

    It is unclear whether serum uric acid (SUA) is associated with development of new-onset diabetes (NOD) in patients with hypertension and left ventricular hypertrophy (LVH). The aim of the present investigation was to test the hypothesis that SUA predicts development of NOD in these patients....

  3. How do autoimmune diseases cluster in families? A systematic review and meta-analysis

    Science.gov (United States)

    2013-01-01

    Background A primary characteristic of complex genetic diseases is that affected individuals tend to cluster in families (that is, familial aggregation). Aggregation of the same autoimmune condition, also referred to as familial autoimmune disease, has been extensively evaluated. However, aggregation of diverse autoimmune diseases, also known as familial autoimmunity, has been overlooked. Therefore, a systematic review and meta-analysis were performed aimed at gathering evidence about this topic. Methods Familial autoimmunity was investigated in five major autoimmune diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid disease, multiple sclerosis and type 1 diabetes mellitus. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed. Articles were searched in Pubmed and Embase databases. Results Out of a total of 61 articles, 44 were selected for final analysis. Familial autoimmunity was found in all the autoimmune diseases investigated. Aggregation of autoimmune thyroid disease, followed by systemic lupus erythematosus and rheumatoid arthritis, was the most encountered. Conclusions Familial autoimmunity is a frequently seen condition. Further study of familial autoimmunity will help to decipher the common mechanisms of autoimmunity. PMID:23497011

  4. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  5. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  6. Resveratrol Role in Autoimmune Disease—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Ana Lígia de Brito Oliveira

    2017-12-01

    Full Text Available Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.

  7. Resveratrol Role in Autoimmune Disease-A Mini-Review.

    Science.gov (United States)

    Oliveira, Ana Lígia de Brito; Monteiro, Valter Vinicius Silva; Navegantes-Lima, Kely Campos; Reis, Jordano Ferreira; Gomes, Rafaelli de Souza; Rodrigues, Dávila Valentina Silva; Gaspar, Silvia Letícia de França; Monteiro, Marta Chagas

    2017-12-01

    Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.

  8. Polyglandular Autoimmune Syndrome Type III with Primary Hypoparathyroidism

    Directory of Open Access Journals (Sweden)

    Sang Jin Kim

    2013-09-01

    Full Text Available Polyglandular autoimmune syndrome is defined as multiple endocrine gland insufficiencies accompanied by autoimmune diseases of the endocrine and nonendocrine system. After Schmidt introduced a case of nontuberculosis adrenal gland dysfunction with thyroiditis in 1926, Neufeld defined polyglandular autoimmune syndrome by I, II, and III subtypes in 1980 by their presentation of occurrence age, heredity methods, relationship with human leukocyte antigen, and accompanying diseases. We report a case of a 32-year-old female with polyglandular autoimmune syndrome III accompanied by type 1 diabetes mellitus that was treated with insulin (36 units per day for 11 years. She had insulin deficiency and Hashimoto thyroiditis as an autoimmune disorder. In addition, she had several features similar to Albright's hereditary osteodystrophy including short stature, truncal obesity, round face, short neck, low intelligence (full IQ 84, and decreased memory. Although Albright's hereditary osteodystrophy is morphological evidence of pseudohypoparathyroidism or pseudopseudohypoparathyroidism, she had primary hypoparathyroidism on laboratory results. Here, we report a case of polyglandular autoimmune syndrome III with type 1 diabetes mellitus, autoimmune thyroiditis, and primary hypoparathyroidism, accompanied by clinical features similar to Albright's hereditary osteodystrophy.

  9. The expression of the beta cell-derived autoimmune ligand for the killer receptor nkp46 is attenuated in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Chamutal Gur

    Full Text Available NK cells rapidly kill tumor cells, virus infected cells and even self cells. This is mediated via killer receptors, among which NKp46 (NCR1 in mice is prominent. We have recently demonstrated that in type 1 diabetes (T1D NK cells accumulate in the diseased pancreas and that they manifest a hyporesponsive phenotype. In addition, we found that NKp46 recognizes an unknown ligand expressed by beta cells derived from humans and mice and that blocking of NKp46 activity prevented diabetes development. Here we investigated the properties of the unknown NKp46 ligand. We show that the NKp46 ligand is mainly located in insulin granules and that it is constitutively secreted. Following glucose stimulation the NKp46 ligand translocates to the cell membrane and its secretion decreases. We further demonstrate by using several modalities that the unknown NKp46 ligand is not insulin. Finally, we studied the expression of the NKp46 ligand in type 2 diabetes (T2D using 3 different in vivo models and 2 species; mice and gerbils. We demonstrate that the expression of the NKp46 ligand is decreased in all models of T2D studied, suggesting that NKp46 is not involved in T2D.

  10. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    Science.gov (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  11. Psoriasis and autoimmunity.

    Science.gov (United States)

    Sticherling, Michael

    2016-12-01

    Psoriasis is one of the most common chronic inflammatory human skin diseases. Though clinically well characterized, the exact etiological and pathogenic mechanisms are still not known in detail. Current knowledge indicates distinct overlap to other inflammatory as well as autoimmune disorders. However, the one or more relevant autoantigens could not be characterized so-far. On the other side, several autoimmune diseases were shown to be associated with psoriasis. In addition, serological autoimmune phenomena, namely diverse circulating specific autoantibodies could be demonstrated in the past. A matter of current debate is if psoriasis is a primary autoimmune disease or secondarily evolving into autoimmunity as seen in other chronic inflammatory diseases. Related to this aspect is the concept of autoinflammation versus autoimmunity where psoriasis shares mechanisms of both entities. Though T-cells remain among the most important cellular players in the pathogenesis of psoriasis and current therapeutic strategies successfully target these cells or their products irrespective of these concepts, autoimmunity if relevant will add to the treatment armamentarium by using protective and prophylactic antigen-specific modalities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis

    Science.gov (United States)

    Padgett, Lindsey E; Broniowska, Katarzyna A; Hansen, Polly A; Corbett, John A; Tse, Hubert M

    2013-01-01

    Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic β cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause β-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic β-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for β-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-γ, TNF-α, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing β cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to β-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-γ influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes. PMID:23323860

  13. Nodding syndrome in Mundri county, South Sudan: Environmental ...

    African Journals Online (AJOL)

    Background: Nodding Syndrome is a seizure disorder of children in Mundri County, Western Equatoria, South Sudan. The disorder is reported to be spreading in South Sudan and northern Uganda. Objective: To describe environmental, nutritional, infectious, and other factors that existed before and during the de novo 1991 ...

  14. Coupling of Nod1D and HOTCHANNEL: static case

    International Nuclear Information System (INIS)

    Gomez T, A.M.; Ovando C, R.

    2003-01-01

    In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)

  15. Investigation into the Nodding syndrome in Witto Payam, Western ...

    African Journals Online (AJOL)

    2011-02-01

    Feb 1, 2011 ... and to suggest possible causes and ways the condition may be transmitted. We also interviewed five parents ... have been contaminated, childhood vaccinations or large or small flies which had invaded the areas of ... in children with learning disability, autism, etc. The link between nodding and mental ...

  16. Caring and Agency: Noddings on Happiness in Education

    Science.gov (United States)

    Alexander, Hanan

    2013-01-01

    In this short essay I express my own deep sympathy with Nel Noddings's ethic of care and applaud her stubborn resistance in "Happiness and Education" to what John Dewey would have called false dualisms, such as those between intelligence and emotion, theory and practice, or vocation and academic studies.However, I question whether…

  17. Proposed guidelines for the management of nodding syndrome

    African Journals Online (AJOL)

    EB

    Medical, nutritional and rehabilitation needs, nursing, psychiatric disorders and social support;. 1. Classify patients as: high or low medical risks or needs. 2. Decide type and where care should be provided. Low medical risk and needs; Community based care and prevention: Nodding syndrome patients need long term.

  18. Letter to the editors Nodding syndrome (NS) and Onchocerca ...

    African Journals Online (AJOL)

    There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the ...

  19. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    Science.gov (United States)

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  20. Stress proteins, autoimmunity, and autoimmune disease.

    Science.gov (United States)

    Winfield, J B; Jarjour, W N

    1991-01-01

    At birth, the immune system is biased toward recognition of microbial antigens in order to protect the host from infection. Recent data suggest that an important initial line of defense in this regard involves autologous stress proteins, especially conserved peptides of hsp60, which are presented to T cells bearing gamma delta receptors by relatively nonpolymorphic class lb molecules. Natural antibodies may represent a parallel B cell mechanism. Through an evolving process of "physiological" autoreactivity and selection by immunodominant stress proteins common to all prokaryotes, B and T cell repertoires expand during life to meet the continuing challenge of infection. Because stress proteins of bacteria are homologous with stress proteins of the host, there exists in genetically susceptible individuals a constant risk of autoimmune disease due to failure of mechanisms for self-nonself discrimination. That stress proteins actually play a role in autoimmune processes is supported by a growing body of evidence which, collectively, suggests that autoreactivity in chronic inflammatory arthritis involves, at least initially, gamma delta cells which recognize epitopes of the stress protein hsp60. Alternate mechanisms for T cell stimulation by stress proteins undoubtedly also exist, e.g., molecular mimicry of the DR beta third hypervariable region susceptibility locus for rheumatoid arthritis by a DnaJ stress protein epitope in gram-negative bacteria. While there still is confusion with respect to the most relevant stress protein epitopes, a central role for stress proteins in the etiology of arthritis appears likely. Furthermore, insight derived from the work thus far in adjuvant-induced arthritis already is stimulating analyses of related phenomena in autoimmune diseases other than those involving joints. Only limited data are available in the area of humoral autoimmunity to stress proteins. Autoantibodies to a number of stress proteins have been identified in SLE and

  1. Coupling of Nod1D and HOTCHANNEL: static case; Acoplamiento de Nod1D y HOTCHANNEL: caso estatico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A.M. [IPN-ESFM, 07738 Mexico D.F. (Mexico); Ovando C, R. [IIE-Gcia. de Energia Nuclear, Cuernavaca, Morelos (Mexico)]. e-mail: rovando@iie.org.mx

    2003-07-01

    In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)

  2. A rare combination of type 3 autoimmune polyendocrine syndrome (APS-3) or multiple autoimmune syndrome (MAS-3).

    Science.gov (United States)

    Betterle, Corrado; Garelli, Silvia; Coco, Graziella; Burra, Patrizia

    2014-06-01

    Type 3 autoimmune polyendocrine syndrome (APS-3) is defined by the presence of an autoimmune thyroid disease and another autoimmune illness, excluding Addison's disease; this is a frequent combination. We report the case of a 55 years old female patient with APS-3, with seven clinical or latent autoimmune manifestations. At 49 years of age she was admitted at the General Hospital for leukopenia, weight loss, tremors, anxiety and diarrhea. The personal history revealed ulcerative colitis and, during the last year, episodes of fever with migrant arthralgia and cutaneous lesions. The patient was evaluated for thyroid function and imaging, mielobiopsy, glycaemic control, gastrointestinal and rheumatologic disorders with specific biochemical tests, imaging and endoscopic procedures. We concluded that the patient was affected by APS-3, characterized by the association of Graves' disease, autoimmune leukopenia, latent autoimmune diabetes of the adult (LADA), autoimmune gastritis, ulcerative colitis, Sjögren's and anti-phospholipid syndromes. The patient started low doses of corticosteroid drugs for leukopenia, underwent (131)I therapy for hyperthyroidism and later started substitutive thyroid therapy with l-thyroxine, insulin therapy for LADA, mesalazine for ulcerative colitis and artificial tears for Sjögren's syndrome. In this article we report a complex case of APS-3, characterized by the association of seven different autoimmune diseases, which required a complex therapeutic strategy.

  3. Interleukin-35 administration counteracts established murine type 1 diabetes--possible involvement of regulatory T cells.

    Science.gov (United States)

    Singh, Kailash; Kadesjö, Erik; Lindroos, Julia; Hjort, Marcus; Lundberg, Marcus; Espes, Daniel; Carlsson, Per-Ola; Sandler, Stellan; Thorvaldson, Lina

    2015-07-30

    The anti-inflammatory cytokine IL-35 is produced by regulatory T (Treg) cells to suppress autoimmune and inflammatory responses. The role of IL-35 in type 1 diabetes (T1D) remains to be answered. To elucidate this, we investigated the kinetics of Treg cell response in the multiple low dose streptozotocin induced (MLDSTZ) T1D model and measured the levels of IL-35 in human T1D patients. We found that Treg cells were increased in MLDSTZ mice. However, the Treg cells showed a decreased production of anti-inflammatory (IL-10, IL-35, TGF-β) and increased pro-inflammatory (IFN-γ, IL-2, IL-17) cytokines, indicating a phenotypic shift of Treg cells under T1D condition. IL-35 administration effectively both prevented development of, and counteracted established MLDSTZ T1D, seemingly by induction of Eos expression and IL-35 production in Treg cells, thus reversing the phenotypic shift of the Treg cells. IL-35 administration reversed established hyperglycemia in NOD mouse model of T1D. Moreover, circulating IL-35 levels were decreased in human T1D patients compared to healthy controls. These findings suggest that insufficient IL-35 levels play a pivotal role in the development of T1D and that treatment with IL-35 should be investigated in treatment of T1D and other autoimmune diseases.

  4. Vaccines, adjuvants and autoimmunity.

    Science.gov (United States)

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Higher susceptibility of NOD/LtSz-scid Il2rg-/- NSG mice to xenotransplanted lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kanaji N

    2014-10-01

    Full Text Available Nobuhiro Kanaji,1 Akira Tadokoro,1 Kentaro Susaki,1 Saki Yokokura,1 Kiyomi Ohmichi,2 Reiji Haba,2 Naoki Watanabe,1 Shuji Bandoh,1 Tomoya Ishii,1 Hiroaki Dobashi,1 Takuya Matsunaga11Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan; 2Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, JapanPurpose: No lung cancer xenograft model using non-obese diabetic (NOD-scid Il2rg-/- mice has been reported. The purpose of this study is to select a suitable mouse strain as a xenogenic host for testing tumorigenicity of lung cancer.Materials and methods: We directly compared the susceptibility of four immunodeficient mouse strains, c-nu, C.B-17 scid, NOD-scid, and NOD/LtSz-scid Il2rg-/- (NSG mice, for tumor formation from xenotransplanted lung cancer cell lines. Various numbers (101–105 cells/head of two lung cancer cell lines, A549 and EBC1, were subcutaneously inoculated and tumor sizes were measured every week up to 12 weeks.Results: When 104 EBC1 cells were inoculated, no tumor formation was observed in BALB/c-nu or C.B-17 scid mice. Tumors developed in two of the five NOD-scid mice (40% and in all the five NSG mice (100%. When 103 EBC1 cells were injected, no tumors developed in any strain other than NSG mice, while tumorigenesis was achieved in all the five NSG mice (100%, P=0.0079 within 9 weeks. NSG mice similarly showed higher susceptibility to xenotransplantation of A549 cells. Tumor formation was observed only in NSG mice after inoculation of 103 or fewer A549 cells (40% vs 0% in 15 NSG mice compared with others, respectively, P=0.0169. We confirmed that the engrafted tumors originated from inoculated human lung cancer cells by immunohistochemical staining with human cytokeratin and vimentin.Conclusion: NSG mice may be the most suitable strain for testing tumorigenicity of lung cancer, especially if only a few cells

  6. Eosinophils in Autoimmune Diseases.

    Science.gov (United States)

    Diny, Nicola L; Rose, Noel R; Čiháková, Daniela

    2017-01-01

    Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

  7. Prolactin and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Vânia Vieira Borba

    2018-02-01

    Full Text Available The great asymmetry of autoimmune diseases between genders represents one of the most enigmatic observations among the mosaic of autoimmunity. Sex hormones are believed to play a crucial role on this dimorphism. The higher prevalence of autoimmunity among women at childbearing ages, disease onset/relapses during pregnancy, and post-partum are some of the arguments that support this hypothesis. Certainly, motherhood represents one of the most remarkable challenges for the immune system, which not only has to allow for the conceptus, but also has to deal with complex endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in achieving a competent and healthy immune system. Prolactin (PRL has a bioactive function acting as a hormone and a cytokine. It interferes with immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, hyperprolactinemia has been described in relation to the pathogenesis and activity of several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, we attempt to provide a critical overview of the link between PRL, autoimmune diseases, and motherhood.

  8. Eosinophils in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Daniela Čiháková

    2017-04-01

    Full Text Available Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

  9. Characterization of Rabbit Nucleotide-Binding Oligomerization Domain 1 (NOD1 and the Role of NOD1 Signaling Pathway during Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Mengjiao Guo

    2017-10-01

    Full Text Available Nucleotide-binding oligomerization domain 1 (NOD1 is the most prominent of all NOD-like receptors, which in the mammalian innate immune system, serve as intracellular receptors for pathogens and endogenous molecules during tissue injury. From rabbit kidney cells, we cloned rabbit NOD1 (rNOD1 and identified an N-terminal caspase activation and recruitment domain, a central NACHT domain, and C-terminal leucine-rich repeat domains. rNOD1 was expressed in all tested tissues; infection with Escherichia coli induced significantly higher expression in the spleen, liver, and kidney compared to other tissues. The overexpression of rNOD1 induced the expression of proinflammatory cytokines Il1b, Il6, Il8, Ifn-γ, and Tnf and defensins, including Defb124, Defb125, Defb128, Defb135, and Np5 via activation of the nuclear factor (NF-κB pathway. Overexpression of rNOD1 inhibited the growth of E. coli, whereas knockdown of rNOD1 or inhibition of the NF-κB pathway promoted the growth of E. coli. rNOD1 colocalized with LC3, upregulated autophagy pathway protein LC3-II, and increased autolysosome formation in RK-13 cells infected with E. coli. In summary, our results explain the primary signaling pathway and antibacterial ability of rNOD1, as well as the induction of autophagy that it mediates. Such findings suggest that NOD1 could contribute to therapeutic strategies such as targets of new vaccine adjuvants or drugs.

  10. Defective major histocompatibility complex class I expression on lymphoid cells in autoimmunity.

    OpenAIRE

    Fu, Y; Nathan, D M; Li, F; Li, X; Faustman, D L

    1993-01-01

    Lymphocytes from patients with insulin-dependent diabetes mellitus (IDDM), a chronic autoimmune disease, have recently been shown to have decreased surface expression of MHC class I antigens. Since IDDM and other autoimmune diseases share a strong genetic association with MHC class II genes, which may in turn be linked to genes that affect MHC class I expression, we studied other autoimmune diseases to determine whether MHC class I expression is abnormal. Fresh PBLs were isolated from patient...

  11. Resilience of the intestinal microbiota following pathogenic bacterial infection is independent of innate immunity mediated by NOD1 or NOD2.

    Science.gov (United States)

    Robertson, Susan J; Geddes, Kaoru; Maisonneuve, Charles; Streutker, Catherine J; Philpott, Dana J

    2016-01-01

    The innate immune receptors, NOD1 and NOD2, are key regulators of intestinal homeostasis. NOD2 deficiency is linked to increased risk for Crohn's disease, a type of inflammatory bowel disease characterized by chronic inflammatory pathology and dysbiosis within resident microbial communities. However, the relationship between NOD protein-regulated immune functions and dysbiosis remains unclear. We hypothesized that the relationship between NOD1 or NOD2 deficiency and altered community structure during chronic disease may arise via NOD-dependent impairment of community resilience over time. Using the Salmonella ΔaroA model of chronic colitis with littermate mice to control for environmental influences on the microbiota, we show that NOD proteins exert a relatively minor impact on the chronic inflammatory environment and do not significantly contribute to bacterial abundance or community resilience following infection. Rather, temporal shifts in relative abundance of targeted bacterial groups correlated with inflammatory phenotype driven by presence of the pathogen and the ensuing complex immune response. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Efeito do iodo sobre a expressão de RNA mensageiro de Fas, Fas-ligante, BCL-w, TNF-alfa e citocinas caracteristicas das respostas Th1 e Th2 em tiroides de camundongos NOD pre-tratados com metimazole

    OpenAIRE

    Luis Henrique Barbosa Boechat

    2001-01-01

    Resumo: Os camundongos NOD (non obese diabetic) representam modelo experimental estabelecido para o estudo de diabetes mellttus tipo 1, onde permitem o acompanhamento detalhado da evolução dos processos imunológicos que antecedem a expressão clínica da doença. Entretanto, estes animais desenvolvem outras manifestações auto-imunes como adenosialite, anemia hemolítica, paratiroidite e tiroidite espontâneas. Resultados publicados a partir da década de 1990 demonstraram que os camundongos NOD, qu...

  13. [Cardiovascular and pupillary autonomic and somatosensory neuropathy in chronic diseases with autoimmune phenomena. A comparative study of patients with Crohn disease, ulcerative colitis, systemic lupus erythematosus, progressive systemic sclerosis and type I diabetes mellitus].

    Science.gov (United States)

    Straub, R H; Andus, T; Lock, G; Zeuner, M; Palitzsch, K D; Gross, V; Lang, B; Schölmerich, J

    1997-11-15

    During the last years, examination of autonomic nervous function and of autonomic neuropathy has attracted attention not only in diabetes mellitus research but also in other areas of internal medicine. However, patients with various chronic diseases with autoimmune phenomenons have never been investigated in a comparative study with standardized examination techniques. Hence, the aim of the study was to examine the prevalence and the severity of autonomic neuropathy in patients with the following chronic diseases. We investigated 28 patients with Crohn's disease (CD: age: 32.4 +/- 2.0 y), 17 patients with ulcerative colitis (UC: 39.7 +/- 3.6 y), 39 patients with systemic lupus erythematosus (SLE: 34.9 +/- 2.0 y), 38 patients with progressive systemic sclerosis (pSS; 51.5 +/- 2.4 y) and 65 patients with insulin-dependent diabetes mellitus (IDDM: 35.5 +/- 1.6 y). Cardiovascular autonomic (cANP), pupillary autonomic (pANP), and sensorimotor (ssNP) neuropathy were assessed by standardized techniques. Prevalence rates for cANP, pANP and ssNP were found to be 0%, 19%, and 7% in CD, 6%, 25%, and 18% in UC, 5%, 29%, and 10% in SLE, 11%, 16%, and 32% in pSS, and 26%, 66%, and 29% in IDDM, respectively. The study demonstrated patients with IDDM to have the highest prevalence rates of cANP and pANP. Patients with other chronic diseases, particularly SLE, pSS and UC, had high prevalence rates of pANP. This may be due to alterations of structures of the central nervous system in these patients. cANP was rare in patients with inflammatory bowel disease and ssNP was found very often in patients with pSS, probably due to local fibrotic lesions. The various disease groups differ in the pattern and severity of autonomic and sensorimotor neuropathy, which indicates that different structures and neuropathogenic mechanisms may be involved.

  14. Autoimmune gastritis: Pathologist's viewpoint.

    Science.gov (United States)

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-11-14

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling.

  15. Nutrition, geoepidemiology, and autoimmunity.

    Science.gov (United States)

    Selmi, Carlo; Tsuneyama, Koichi

    2010-03-01

    As well represented by the impaired immune function of malnourished individuals encountered in developing countries and the incidence of specific diseases following local nutrient deficiencies, nutrition and immunity have been linked to each other for centuries while the specific connection between dietary factors and autoimmunity onset or modulation is a more recent acquisition. Autoimmune diseases manifest limited prevalence rates in developing countries while numerous immunity-related claims have been proposed in the field of functional foods. Nevertheless, over the past years multiple lines of evidence have supported a major role for specific dietary factors (including vitamin D, vitamin A, selenium, zinc, omega-3 fatty acids, probiotics, and flavanols) in determining the immune responses involved in infections, allergies, and autoimmune diseases. Interestingly, the link between nutrition and autoimmunity may well contribute to the geoepidemiology observed for numerous conditions. In general terms, most data that will be discussed herein were obtained in experimental or animal models while human data from real-life clinical settings or randomized clinical trials remain largely unsatisfactory. Our current knowledge on the beneficial impact of nutrition on autoimmunity prompts us to encourage the search for evidence-based nutrition to support the everyday diet choices of patients. 2009 Elsevier B.V. All rights reserved.

  16. Diabetes

    DEFF Research Database (Denmark)

    Damm, Peter; Mathiesen, Elisabeth R

    2015-01-01

    For >30 years, insulin has been the drug of choice for the medical treatment of gestational diabetes mellitus. However, the use of oral hypoglycaemic agents has increased during the past 1–2 decades, so a recent comparison of treatment with glibenclamide, metformin or insulin in women with gestat......For >30 years, insulin has been the drug of choice for the medical treatment of gestational diabetes mellitus. However, the use of oral hypoglycaemic agents has increased during the past 1–2 decades, so a recent comparison of treatment with glibenclamide, metformin or insulin in women...... with gestational diabetes mellitus is highly relevant....

  17. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    Science.gov (United States)

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  18. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase.

    Science.gov (United States)

    John, M; Röhrig, H; Schmidt, J; Wieneke, U; Schell, J

    1993-01-15

    The common nodulation genes nodABC are conserved in all rhizobia and are involved in synthesis of a lipooligosaccharide signal molecule. This bacterial signal consists of a chitooligosaccharide backbone, which carries at the nonreducing end a fatty acyl chain. The modified chitooligosaccharide molecule triggers development of nodules on the roots of the leguminous host plant. To elucidate the specific role of the NodB protein in nodulation factor synthesis, we have purified recombinant NodB and determined its biochemical role by direct assays. Our data show that the NodB protein of Rhizobium meliloti deacetylates the nonreducing N-acetylglucosamine residue of chitooligosaccharides. The monosaccharide N-acetylglucosamine is not deacetylated by NodB. In the pathway of Nod factor synthesis, deacetylation at the nonreducing end of the oligosaccharide backbone may be a necessary requirement for attachment of the fatty acyl chain.

  19. Diabetes

    Science.gov (United States)

    ... including: Blurry vision Excess thirst Fatigue Frequent urination Hunger Weight loss Because type 2 diabetes develops slowly, ... must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get ...

  20. Diabetes

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These datasets provide de-identified insurance data for diabetes. The data is provided by three managed care organizations in Allegheny County (Gateway Health Plan,...

  1. Epigenetics and Autoimmune Diseases

    Science.gov (United States)

    Quintero-Ronderos, Paula; Montoya-Ortiz, Gladis

    2012-01-01

    Epigenetics is defined as the study of all inheritable and potentially reversible changes in genome function that do not alter the nucleotide sequence within the DNA. Epigenetic mechanisms such as DNA methylation, histone modification, nucleosome positioning, and microRNAs (miRNAs) are essential to carry out key functions in the regulation of gene expression. Therefore, the epigenetic mechanisms are a window to understanding the possible mechanisms involved in the pathogenesis of complex diseases such as autoimmune diseases. It is noteworthy that autoimmune diseases do not have the same epidemiology, pathology, or symptoms but do have a common origin that can be explained by the sharing of immunogenetic mechanisms. Currently, epigenetic research is looking for disruption in one or more epigenetic mechanisms to provide new insights into autoimmune diseases. The identification of cell-specific targets of epigenetic deregulation will serve us as clinical markers for diagnosis, disease progression, and therapy approaches. PMID:22536485

  2. Headache in autoimmune diseases.

    Science.gov (United States)

    John, Seby; Hajj-Ali, Rula A

    2014-03-01

    Autoimmune diseases are a group of heterogeneous inflammatory disorders characterized by systemic or localized inflammation, leading to ischemia and tissue destruction. These include disorders like systemic lupus erythematosus and related diseases, systemic vasculitides, and central nervous system (CNS) vasculitis (primary or secondary). Headache is a very common manifestation of CNS involvement of these diseases. Although headache characteristics can be unspecific and often non-diagnostic, it is important to recognize because headache can be the first manifestation of CNS involvement. Prompt recognition and treatment is necessary not only to treat the headache, but also to help prevent serious neurological sequelae that frequently accompany autoimmune diseases. In this review, we discuss headache associated with autoimmune diseases along with important mimics. © 2014 American Headache Society.

  3. The mechanisms behind helminth's immunomodulation in autoimmunity.

    Science.gov (United States)

    Bashi, Tomer; Bizzaro, Giorgia; Ben-Ami Shor, Dana; Blank, Miri; Shoenfeld, Yehuda

    2015-02-01

    The incidence of autoimmune diseases has risen throughout the last half a century, mostly in the industrialized world. Helminths and their derivatives were found to have a protective role in autoimmunity and inflammatory conditions, as they manipulate the immune network, attenuating the host's cellular and humoral responses. Indeed, various helminth species used in several human and animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Our review will focus on the main mechanisms by which helminths and their secreted molecules modulate the host's immune system. The main pathways induce a shift from Th1 to Th2 phenotype, accelerate T regulatory and B regulatory phenotypes, and attenuate the levels of the inflammatory cytokines, leading to a tolerable scenario. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bell's palsy and autoimmunity.

    Science.gov (United States)

    Greco, A; Gallo, A; Fusconi, M; Marinelli, C; Macri, G F; de Vincentiis, M

    2012-12-01

    To review our current knowledge of the etiopathogenesis of Bell's palsy, including viral infection or autoimmunity, and to discuss disease pathogenesis with respect to pharmacotherapy. Relevant publications on the etiopathogenesis, clinical presentation, diagnosis and histopathology of Bell's palsy from 1975 to 2012 were analysed. Bell's palsy is an idiopathic peripheral nerve palsy involving the facial nerve. It accounts for 60 to 75% of all cases of unilateral facial paralysis. The annual incidence of Bell's palsy is 15 to 30 per 100,000 people. The peak incidence occurs between the second and fourth decades (15 to 45 years). The aetiology of Bell's palsy is unknown but viral infection or autoimmune disease has been postulated as possible pathomechanisms. Bell's palsy may be caused when latent herpes viruses (herpes simplex, herpes zoster) are reactivated from cranial nerve ganglia. A cell-mediated autoimmune mechanism against a myelin basic protein has been suggested for the pathogenesis of Bell's palsy. Bell's palsy may be an autoimmune demyelinating cranial neuritis, and in most cases, it is a mononeuritic variant of Guillain-Barré syndrome, a neurologic disorder with recognised cell-mediated immunity against peripheral nerve myelin antigens. In Bell's palsy and GBS, a viral infection or the reactivation of a latent virus may provoke an autoimmune reaction against peripheral nerve myelin components, leading to the demyelination of cranial nerves, especially the facial nerve. Given the safety profile of acyclovir, valacyclovir, and short-course oral corticosteroids, patients who present within three days of the onset of symptoms should be offered combination therapy. However it seems logical that in fact, steroids exert their beneficial effect via immunosuppressive action, as is the case in some other autoimmune disorders. It is to be hoped that (monoclonal) antibodies and/or T-cell immunotherapy might provide more specific treatment guidelines in the

  5. Autoimmune Polyglandular Syndrome Type 2: An Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Hamdollah Karamifar

    2010-05-01

    Full Text Available "nAutoimmune polyglandular syndrome (APS type 2 is characterized by the presence of Addison's disease, in association with autoimmune thyroid disease and/or type 1 diabetes mellitus. APS type 2 occurs most often in middle aged females and is rare in children. Here an 11 year old boy is reported with Addison's disease who developed symptom's of diabetes mellitus, goiter, malabsorption, macrocytic anemia and keratitis. APS type 2 occurs most often in middle aged females and is quite rare in children but one should think to autoimmune poly glandular syndrome type II in patient at any age especially in patients with Addison's disease.

  6. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression

    Directory of Open Access Journals (Sweden)

    Michele L. Semeraro

    2017-09-01

    Full Text Available Natural killer (NK cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO, and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO, related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which

  7. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  8. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    Science.gov (United States)

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  9. Backchannel Head Nods in Danish First Meeting Encounters with a Humanoid Robot

    DEFF Research Database (Denmark)

    Krogsager, Anders; Segato, Nicolaj; Rehm, Matthias

    2014-01-01

    Head nods have been shown to play an important role for communication management in human communication, e.g. as a non-verbal feedback signal from the listener. Based on a study with virtual agents, which showed that the use of head nods helps eliciting more verbal input from the user, we...... investigate the use of head nods in communications between a user and a humanoid robot (Nao) that they meet for the first time. Contrary to the virtual agent case, the robot elicited less talking from the user when it was using head nods as a feedback signal. A follow-up experiment revealed that the physical...

  10. The Cofilin Phosphatase Slingshot Homolog 1 (SSH1) Links NOD1 Signaling to Actin Remodeling

    OpenAIRE

    Bielig, Harald; Lautz, Katja; Braun, Peter R.; Menning, Maureen; Machuy, Nikolaus; Brügmann, Christine; Barisic, Sandra; Eisler, Stephan A.; Andree, Maria; Zurek, Birte; Kashkar, Hamid; Sansonetti, Philippe J.; Hausser, Angelika; Meyer, Thomas F.; Kufer, Thomas A.

    2014-01-01

    Author Summary NOD1 was one of the first NLR-family members shown to act as an important intracellular pattern-recognition molecule mediating antimicrobial activities in mammals. It has been demonstrated that perturbation of F-actin and RhoGTPase activity affects NOD1 and NOD2 signaling, however, the effectors of this process remained elusive. By using a multilayered high-throughput druggable genome wide siRNA screening approach to discover novel components specific for the NOD1 pathway, we i...

  11. NOD2 Deficiency Protects against Cardiac Remodeling after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-12-01

    Full Text Available Background/Aims: Although the pathogenesis of myocardial infarction (MI is multifactorial, activation of innate immune system to induce inflammation has emerged as a key pathophysiological process in MI. NOD2, one member of the NOD-like receptor (NLR family, plays an important role in the innate immune response. This study was to examine the role of NOD2 during MI. Methods: MI was induced by permanent ligation of the left coronary artery in wild type and NOD2-/- mice and cardiac fibroblasts were isolated. Results: NOD2 expression was significantly increased in myocardium in post-MI mice. NOD2 deficiency improved cardiac dysfunction and remodeling after MI as evidenced by echocardiographic analysis, reduced the levels of cytokines, inflammatory cell infiltration and matrix metalloproteinase-9 (MMP-9 activity. In vitro, we further found that NOD2 activation induced the activation of MAPK signaling pathways, production of proinflammatory mediators and MMP-9 activity in cardiac fibroblasts. Conclusions: Our studies demonstrate that NOD2 is a critical component of a signal transduction pathway that links cardiac injury by exacerbation of inflammation and MMP-9 activity. Pharmacological targeting of NOD2-mediated signaling pathways may provide a novel approach to treatment of cardiovascular diseases.

  12. AUTOIMMUNE DISEASE DURING PREGNANCY AND THE MICROCHIMERISM LEGACY OF PREGNANCY

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Nelson, J. Lee

    2009-01-01

    Pregnancy has both short-term effects and long-term consequences. For women who have an autoimmune disease and subsequently become pregnant, pregnancy can induce amelioration of the mother’s disease, such as in rheumatoid arthritis, while exacerbating or having no effect on other autoimmune diseases like systemic lupus erythematosus. That pregnancy also leaves a long-term legacy has recently become apparent by the discovery that bi-directional cell trafficking results in persistence of fetal cells in the mother and of maternal cells in her offspring for decades after birth. The long-term persistence of a small number of cells (or DNA) from a genetically disparate individual is referred to as microchimerism. While microchimerism is common in healthy individuals and is likely to have health benefits, microchimerism has been implicated in some autoimmune diseases such as systemic sclerosis. In this paper, we will first discuss short-term effects of pregnancy on women with autoimmune disease. Pregnancy-associated changes will be reviewed for selected autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus and autoimmune thyroid disease. The pregnancy-induced amelioration of rheumatoid arthritis presents a window of opportunity for insights into both immunological mechanisms of fetal-maternal tolerance and pathogenic mechanisms in autoimmunity. A mechanistic hypothesis for the pregnancy-induced amelioration of rheumatoid arthritis will be described. We will then discuss the legacy of maternal-fetal cell transfer from the perspective of autoimmune diseases. Fetal and maternal microchimerism will be reviewed with a focus on systemic sclerosis (scleroderma), autoimmune thyroid disease, neonatal lupus and type I diabetes mellitus. PMID:18716941

  13. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Kim

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs, little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs. The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3CSK(4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2 led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3CSK(4 and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor restored osteogenic differentiation enhanced by Pam(3CSK(4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3CSK(4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.

  14. A Sweet Deal for Diabetes.

    Science.gov (United States)

    Villa, Matteo; Qiu, Jing; Pearce, Erika L

    2018-01-01

    Sugars have pathogenic roles in diabetes. In Nature Medicine, Zhang et al. revisit this dogma and show that mannose induces the generation of regulatory T (Treg) cells. The immunoregulatory effect of mannose not only prevented the onset of autoimmune diabetes but also blocked disease progression in new-onset diabetic mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Psychosis: an autoimmune disease?

    Science.gov (United States)

    Al-Diwani, Adam A J; Pollak, Thomas A; Irani, Sarosh R; Lennox, Belinda R

    2017-11-01

    Psychotic disorders are common and disabling. Overlaps in clinical course in addition to epidemiological and genetic associations raise the possibility that autoimmune mechanisms may underlie some psychoses, potentially offering novel therapeutic approaches. Several immune loci including the major histocompatibility complex and B-cell markers CD19 and CD20 achieve genome-wide significance in schizophrenia. Emerging evidence suggests a potential role via neurodevelopment in addition to classical immune pathways. Additionally, lymphocyte biology is increasingly investigated. Some reports note raised peripheral CD19 + and reduced CD3 + lymphocyte counts, with altered CD4 : CD8 ratios in acute psychosis. Also, post-mortem studies have found CD3 + and CD20 + lymphocyte infiltration in brain regions that are of functional relevance to psychosis. More specifically, the recent paradigm of neuronal surface antibody-mediated (NSAb) central nervous system disease provides an antigen-specific model linking adaptive autoimmunity to psychopathology. NSAbs bind extracellular epitopes of signalling molecules that are classically implicated in psychosis such as NMDA and GABA receptors. This interaction may cause circuit dysfunction leading to psychosis among other neurological features in patients with autoimmune encephalitis. The detection of these cases is crucial as autoimmune encephalitis is ameliorated by commonly available immunotherapies. Meanwhile, the prevalence and relevance of these antibodies in people with isolated psychotic disorders is an area of emerging scientific and clinical interest. Collaborative efforts to achieve larger sample sizes, comparison of assay platforms, and placebo-controlled randomized clinical trials are now needed to establish an autoimmune contribution to psychosis. © 2017 John Wiley & Sons Ltd.

  16. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    Directory of Open Access Journals (Sweden)

    Mark S. Gresnigt

    2017-12-01

    Full Text Available One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA. Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the

  17. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder?

    Science.gov (United States)

    Somers, Emily C; Thomas, Sara L; Smeeth, Liam; Hall, Andrew J

    2009-03-15

    Limited evidence suggests that autoimmune diseases tend to co-occur, although data are needed to determine whether individuals with an existing autoimmune disorder are at increased risk of a second disorder. The authors conducted a series of population-based cohort studies, utilizing the United Kingdom General Practice Research Database, to assess intraindividual risks of coexistence of rheumatoid arthritis (RA), autoimmune thyroiditis (AIT), multiple sclerosis (MS), and insulin-dependent diabetes mellitus (IDDM) during 1990-1999. Sex-specific age- and calendar-period standardized incidence ratios (SIRs) were calculated for development of a second autoimmune disease among index populations including 22,888 RA, 26,198 AIT, 4,332 MS, and 6,170 IDDM patients compared with the general population. Among those with IDDM, adjusted AIT rates were higher than expected for both males (SIR = 646.0, 95% confidence interval (CI): 466, 873) and females (SIR = 409.6, 95% CI: 343, 485), as were RA rates for females (SIR = 181.6, 95% CI: 136, 238). Coexistence of AIT and RA was also shown for either disease sequence (sex-specific SIRs = 130.4-162.0). However, point estimates suggested an inverse relation between RA and MS, irrespective of diagnostic sequence. This study demonstrates coexistence of RA, AIT, and IDDM at higher than expected rates but reduced comorbidity between RA and MS.

  18. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    Science.gov (United States)

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  19. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling

    DEFF Research Database (Denmark)

    Damgaard, Rune Busk; Fiil, Berthe Katrine; Speckmann, Carsten

    2013-01-01

    that the RIPK2 binding site in XIAP overlaps with the BIR2 IBM-binding pocket and find that a bivalent Smac mimetic compound (SMC) potently antagonises XIAP function downstream of NOD2 to limit signalling. These findings suggest that impaired immune signalling in response to NOD1/2 stimulation is a general...

  20. A role of lipophilic peptidoglycan-related molecules in induction of Nod1-mediated immune responses

    NARCIS (Netherlands)

    Hasegawa, M.; Kawasaki, A.; Yang, K.; Fujimoto, Y.; Masumoto, J.; Breukink, E.J.; Nuñez, G.; Fukase, K.; Inohara, N.

    2007-01-01

    Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is -D-glutamyl-meso-diaminopimelic acid (iE-DAP),

  1. NOD2/CARD15 genotype and common gastrointestinal diseases in 43 600 individuals

    DEFF Research Database (Denmark)

    Yazdanyar, S.; Nordestgaard, B.G.

    2010-01-01

    Objectives. NOD2/CARD15 is involved in the innate immune response and three polymorphisms in this gene (Arg702Trp rs2066844, Gly908Arg rs2066845 and Leu1007fsinsC rs5743293) have been associated with risk of the rare Crohn's disease. We tested the hypothesis that polymorphisms in NOD2/CARD15 asso...

  2. Nodding syndrome: origins and natural history of a longstanding epileptic disorder in sub-Saharan Africa.

    Science.gov (United States)

    Spencer, P S; Palmer, V S; Jilek-Aall, L

    2013-06-01

    Repetitive involuntary head nodding was first reported in the 1960s in the Wapogoro tribe of Tanzania. We describe the natural history of head nodding in the Wapogoro tribe, with special reference to the earliest reported dates of onset. We analyzed clinical data from 150 historical patients seen between 1960 and 1971. Head nodding with or without grand mal convulsions was present in 33/150 (∼20%) cases, was mostly familial and equally distributed by gender. Age at onset of head nodding ranged from 2-22 years (mean: ∼10 years) in the period 1934-1962. Head nodding preceded onset of grand mal convulsions by up to 12 months, and motor and psychomotor deficits indicative of brain damage developed with time. Fourteen of the 33 cases died at 13-39 years of age (mean: ∼20 years) while nineteen aged 16-28 years (mean: ∼16 years) were still alive. Historical accounts of head nodding (amesinzia kichwa, Swahili) among the Wapogoro tribe fit the August 2012 World Health Organization (WHO) case definition of probable Nodding Syndrome. Reported to have existed in this population for at least 80 years, Nodding Syndrome is a progressive seizure disorder that leads to generalized convulsions (kifafa), brain damage and death.

  3. Expression and function of NOD-like receptors by human term gestation-associated tissues.

    Science.gov (United States)

    Bryant, Aled H; Bevan, Ryan J; Spencer-Harty, Samantha; Scott, Louis M; Jones, Ruth H; Thornton, Catherine A

    2017-10-01

    Nucleotide-binding oligomerization domain (NOD)-like receptors or NOD-like receptors (NLRs) have been implicated in several disease pathologies associated with inflammation. Since local and systemic inflammation is a hallmark of both term and preterm labour, a role for NLRs at the materno-fetal interface has been postulated. Gene expression and immunolocalisation of NLR family members in human placenta, choriodecidua, and amnion were examined. Tissue explants were used to examine the response to activators of NOD1 (Tri-DAP), NOD2 (MDP) and NLRP3 (nigericin). Cell/tissue-free supernatants were examined for the production of interleukin (IL)-1β, IL-6, IL-8 and IL-10 using specific ELISAs. Expression of transcripts for NOD1, NOD2, NLRP3, NLRC4, NLRX1, NLRP1 and NAIP and protein expression of NOD1, NOD2 and NLRP3 were a broad feature of all term gestation-associated tissues. Production of cytokines was increased significantly in response to all ligands in placenta and choriodecidua, except for MDP-induced IL-10. Similarly, there was a significant in the amnion except for MDP induced IL-1β and IL-10 response to either agonist. IL-1β production was dependent on caspase-1 regardless of agonist used or tissue examined. Term human gestation-associated tissues express functional NLRs which likely play a role in both sterile and pathogen-driven inflammatory responses at the materno-fetal interface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nod2 suppresses Borrelia burgdorferi mediated murine Lyme arthritis and carditis through the induction of tolerance.

    Directory of Open Access Journals (Sweden)

    Tanja Petnicki-Ocwieja

    2011-02-01

    Full Text Available The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP, resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance.

  5. It’s all about perception : nod factor perception inside nodules of Medicago truncatula

    NARCIS (Netherlands)

    Moling, S.G.J.A.

    2014-01-01

    Legumes are unique in that they are able to establish a mutual symbiotic interaction with nitrogen fixing soil bacteria generally referred to as rhizobia. This interaction starts off in the root epidermis where the bacterial signal molecule, the Nod factor, is perceived by the plant (Nod factor

  6. Recent advances in understanding autoimmune thyroid disease

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Nielsen, Claus Henrik; Feldt-Rasmussen, Ulla

    2017-01-01

    Autoimmune thyroid disease (AITD) is often observed together with other autoimmune diseases. The coexistence of two or more autoimmune diseases in the same patient is referred to as polyautoimmunity, and AITD is the autoimmune disease most frequently involved. The occurrence of polyautoimmunity has...... led to the hypothesis that the affected patients suffer from a generalized dysregulation of their immune system. The present review summarizes recent discoveries unravelling the immunological mechanisms involved in autoimmunity, ranging from natural autoimmunity to disease-specific autoimmunity...

  7. Inflammatory Bowel Disease: Autoimmune or Immune-mediated Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Zhonghui Wen

    2004-01-01

    Full Text Available The pathogenesis of Crohn's disease (CD and ulcerative colitis (UC, the two main forms of inflammatory bowel disease (IBD, is still unclear, but both autoimmune and immune-mediated phenomena are involved. Autoimmune phenomena include the presence of serum and mucosal autoantibodies against intestinal epithelial cells in either form of IBD, and against human tropomyosin fraction five selectively in UC. In addition, perinuclear antineutrophil cytoplasmic antibodies (pANCA are common in UC, whereas antibodies against Saccharomyces cerevisiae (ASCA are frequently found in CD. Immune-mediate phenomena include a variety of abnormalities of humoral and cell-mediated immunity, and a generalized enhanced reactivity against intestinal bacterial antigens in both CD and UC. It is currently believed that loss of tolerance against the indigenous enteric flora is the central event in IBD pathogenesis. Various complementary factors probably contribute to the loss of tolerance to commensal bacteria in IBD. They include defects in regulatory T-cell function, excessive stimulation of mucosal dendritic cells, infections or variants of proteins critically involved in bacterial antigen recognition, such as the products of CD-associated NOD2/CARD15 mutations.

  8. Salmonella enterica serovar Typhimurium ΔmsbB Triggers Exacerbated Inflammation in Nod2 Deficient Mice

    Science.gov (United States)

    Claes, Anne-Kathrin; Steck, Natalie; Schultz, Dorothee; Zähringer, Ulrich; Lipinski, Simone; Rosenstiel, Philip; Geddes, Kaoru; Philpott, Dana J.; Heine, Holger; Grassl, Guntram A.

    2014-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS). S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host's immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella's interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2−/− mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2−/− mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1−/− and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2−/− mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with “genetically detoxified” LPS

  9. Sarcoidosis and Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Piera Fazzi

    2017-08-01

    Full Text Available Most of the studies have shown a higher risk for subclinical and clinical hypothyroidism, antithyroid autoantibodies [overall antithyroid peroxidase antibodies (TPOAb], and in general, thyroid autoimmunity, overall in the female gender in patients with sarcoidosis (S. A significantly higher prevalence of clinical hypothyroidism and Graves’ disease was also described in female S patients with respect to controls. Gallium-67 (Ga-67 scyntigraphy in S patients, in the case of thyroid uptake, suggests the presence of aggressive autoimmune thyroiditis and hypothyroidism. For this reason, ultrasonography and thyroid function should be done in the case of Ga-67 thyroid uptake. In conclusion, thyroid function, TPOAb measurement, and ultrasonography should be done to assess the clinical profile in female S patients, and the ones at high risk (female individuals, with TPOAb positivity, and hypoechoic and small thyroid should have periodically thyroid function evaluations and suitable treatments.

  10. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with Sjogren's syndrome.

    Science.gov (United States)

    Wu, G-L; Pu, X-H; Yu, G-Y; Li, T-Y

    2015-01-01

    The aim of this study was to observe the effects of total glucosides of peony (TGP) on pathological change, Aquaporin-5 (AQP-5) and its mRNA expression in submandibular glands of non-obese diabetic (NOD) mice with Sjogren's Syndrome, to investigate its regulation on secretion of salivary glands. 40 NOD mice were randomly divided into model group, TGP group, hydroxychloroquine group, combination group (n = 10). For TGP group, the mice were intragastrically administrated with 0.4 ml TGP dilution per day in accordance with 300 g/kg dose; for hydroxychloroquine group, the mice were intragastrically administrated with 0.4 ml hydroxychloroquine per day in accordance with 60 mg/kg dose; for the combination group, the mice were intragastrically administrated with 0.4 ml TGP dilution and 0.4 ml hydroxychloroquine. 8 weeks later, the mice were sacrificed, and submandibular glands were collected by anatomy. Pathological changes of submandibular gland were observed under a light microscope; AQP-5 protein in submandibular glands was detected by immunohistochemical staining; and AQP-5 mRNA expression in submandibular glands was detected by RT-PCR. The lymphocytic infiltration score of model mice was significantly higher than that of other groups. The pathological morphology and score of NOD mice were significantly improved after administration, and the combination group was superior to the hydroxychloroquine group and TGP group (p TGP group and the combination group were higher than the hydroxychloroquine group (p TGP may improve pathological damage of submandibular glands of NOD mouse with Sjogren's syndrome by upregulating AQP-5 and its mRNA expression in submandibular glands.

  11. Effect of iodide on Fas, Fas-ligand and Bcl-w mRNA expression in thyroid of NOD mice pretreated with methimazole

    Directory of Open Access Journals (Sweden)

    L.H.B. Boechat

    2002-03-01

    Full Text Available Nonobese diabetic (NOD mice and a derived strain, NOD.H.2h4, have been used as a model for experimental spontaneous thyroiditis and thyroiditis induced by iodide excess after a goiter-inducing period. Some authors have proposed that iodide, given after methimazole or propylthiouracil, is capable of inducing apoptosis in thyroid cells and that anti-thyroid drugs can modulate the expression of apoptosis components such as Fas and its ligand (Fas-L. Here we evaluated the effect of potassium iodide (20 µg/animal for 4 days, ip given to NOD mice at the 10th week of life after exposure to methimazole (1 mg/ml in drinking water from the 4th to the 10th week of life. Fas, Fas-L and Bcl-w expression were analyzed semiquantitatively by RT-PCR immediately after potassium iodide administration (group MI44D or at week 32 (MI32S. Control groups were added at 10 (C10 and 32 weeks (C32, as well as a group that received only methimazole (CM10. An increase in the expression of Fas-L and Bcl-w (P<0.01, ANOVA was observed in animals of group MI44D, while Fas was expressed at higher levels (P = 0.02 in group C32 (72.89 ± 47.09 arbitrary units when compared to group C10 (10.8 ± 8.55 arbitrary units. Thus, the analysis of Fas-L and Bcl-w expression in the MI44D group and Fas in group C32 allowed us to detect two different patterns of expression of these apoptosis components in thyroid tissue of NOD mice.

  12. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  13. Thymoma and autoimmunity

    OpenAIRE

    Shelly, Shahar; Agmon-Levin, Nancy; Altman, Arie; Shoenfeld, Yehuda

    2011-01-01

    The thymus is a central lymphatic organ that is responsible for many immunological functions, including the production of mature, functional T cells and the induction of self-tolerance. Benign or malignant tumors may originate from the thymus gland, with thymoma being the most common and accounting for 50% of anterior mediastinal tumors. Malignancies linked to thymoma include the loss of self-tolerance and the presence of autoimmunity. In this review, we compiled the current scientific eviden...

  14. Are human endogenous retroviruses triggers of autoimmune diseases?

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Villesen, Palle; Nissen, Kari K

    2016-01-01

    factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian...... manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus...

  15. Segmental vitiligo with segmental morphea: An autoimmune link?

    Directory of Open Access Journals (Sweden)

    Pravesh Yadav

    2014-01-01

    Full Text Available An 18-year old girl with segmental vitiligo involving the left side of the trunk and left upper limb with segmental morphea involving the right side of trunk and right upper limb without any deeper involvement is illustrated. There was no history of preceding drug intake, vaccination, trauma, radiation therapy, infection, or hormonal therapy. Family history of stable vitiligo in her brother and a history of type II diabetes mellitus in the father were elicited. Screening for autoimmune diseases and antithyroid antibody was negative. An autoimmune link explaining the co-occurrence has been proposed. Cutaneous mosiacism could explain the presence of both the pathologies in a segmental distribution.

  16. Autoimmune liver disease 2007.

    Science.gov (United States)

    Muratori, Paolo; Granito, Alessandro; Pappas, Georgios; Muratori, Luigi; Lenzi, Marco; Bianchi, Francesco B

    2008-01-01

    Autoimmune liver disease (ALD) includes a spectrum of diseases which comprises both cholestatic and hepatitic forms: autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and the so called "overlap" syndromes where hepatitic and cholestatic damage coexists. All these diseases are characterized by an extremely high heterogeneity of presentation, varying from asymptomatic, acute (as in a subset of AIH) or chronic (with aspecific symptoms such as fatigue and myalgia in AIH or fatigue and pruritus in PBC and PSC). The detection and characterization of non organ specific autoantibodies plays a major role in the diagnostic approach of autoimmune liver disease; anti nuclear reactivities (ANA) and anti smooth muscle antibodies (SMA) mark type 1 AIH, liver kidney microsomal antibody type 1 (LKM1) and liver cytosol type 1 (LC1) are the serological markers of type 2 AIH; antimitochondrial antibodies (AMA) are associated with PBC, while no specific marker is found in PSC, since anticytoplasmic neutrophil antibodies with perinuclear pattern (atypical p-ANCA or p-ANNA) are also detected in a substantial proportion of type 1 AIH cases. Treatment options rely on immunosoppressive therapy (steroids and azathioprine) in AIH and on ursodeoxycholic acid in cholestatic conditions; in all these diseases liver transplantation remains the only therapeutical approach for the end stage of liver disease.

  17. [Autoimmune blistering diseases].

    Science.gov (United States)

    Duvert-Lehembre, S; Joly, P

    2014-03-01

    Autoimmune blistering diseases are characterized by the production of pathogenic autoantibodies that are responsible for the formation of epidermal blisters. Major advances in the understanding of the pathogenesis of these disorders have allowed the development of new therapeutic agents. Recent epidemiologic data showed that bullous pemphigoid mainly affects elderly patients. Bullous pemphigoid is often associated with degenerative neurologic disorders. A major increase in the incidence of bullous pemphigoid has been observed in France. Treatment of bullous pemphigoid is mainly based on superpotent topical corticosteroids. The role of desmosomal proteins has been demonstrated in the initiation, propagation and persistence of the autoimmune response in pemphigus. Several studies have shown a correlation between anti-desmoglein antibody titers and disease activity. Pemphigus susceptibility genes have been identified. Oral corticosteroids remain the mainstay of pemphigus treatment. Dramatic and long-lasting improvement has been recently obtained with rituximab in recalcitrant types of pemphigus. Other autoimmune junctional blistering diseases are rare entities, whose prognosis can be severe. Their diagnosis has been improved by the use of new immunological assays and immunoelectronic microscopy. Immunosupressants are widely used in severe types in order to prevent mucosal sequelae. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  18. Thymoma and autoimmunity

    Science.gov (United States)

    Shelly, Shahar; Agmon-Levin, Nancy; Altman, Arie; Shoenfeld, Yehuda

    2011-01-01

    The thymus is a central lymphatic organ that is responsible for many immunological functions, including the production of mature, functional T cells and the induction of self-tolerance. Benign or malignant tumors may originate from the thymus gland, with thymoma being the most common and accounting for 50% of anterior mediastinal tumors. Malignancies linked to thymoma include the loss of self-tolerance and the presence of autoimmunity. In this review, we compiled the current scientific evidence detailing the various interactions between thymoma and autoimmune diseases, including myasthenia gravis, systemic lupus erythematosus, inappropriate antidiuretic hormone secretion, pure red cell aplasia, pernicious anemia, pemphigus and autoimmune thyroid diseases. In recent years, several mechanisms have been proposed to explain these interactions. Most are based on the assumption that the ‘sick' thymus, like the ‘normal' thymus, can generate mature T cells; however, the T cells generated by the sick thymus are impaired and thus may exert cellular autoreactivity. Here, we present several theories that may shed light on the loss of self-tolerance associated with this epithelial tumor of the thymus. PMID:21317916

  19. Autoimmune disease classification by inverse association with SNP alleles.

    Directory of Open Access Journals (Sweden)

    Marina Sirota

    2009-12-01

    Full Text Available With multiple genome-wide association studies (GWAS performed across autoimmune diseases, there is a great opportunity to study the homogeneity of genetic architectures across autoimmune disease. Previous approaches have been limited in the scope of their analysis and have failed to properly incorporate the direction of allele-specific disease associations for SNPs. In this work, we refine the notion of a genetic variation profile for a given disease to capture strength of association with multiple SNPs in an allele-specific fashion. We apply this method to compare genetic variation profiles of six autoimmune diseases: multiple sclerosis (MS, ankylosing spondylitis (AS, autoimmune thyroid disease (ATD, rheumatoid arthritis (RA, Crohn's disease (CD, and type 1 diabetes (T1D, as well as five non-autoimmune diseases. We quantify pair-wise relationships between these diseases and find two broad clusters of autoimmune disease where SNPs that make an individual susceptible to one class of autoimmune disease also protect from diseases in the other autoimmune class. We find that RA and AS form one such class, and MS and ATD another. We identify specific SNPs and genes with opposite risk profiles for these two classes. We furthermore explore individual SNPs that play an important role in defining similarities and differences between disease pairs. We present a novel, systematic, cross-platform approach to identify allele-specific relationships between disease pairs based on genetic variation as well as the individual SNPs which drive the relationships. While recognizing similarities between diseases might lead to identifying novel treatment options, detecting differences between diseases previously thought to be similar may point to key novel disease-specific genes and pathways.

  20. Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice

    Directory of Open Access Journals (Sweden)

    Shanbao Cai

    2011-01-01

    Full Text Available Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chainnull mice to support long-term engraftment of MGMTP140K-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMTP140K-transduced CD34+ cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMTP140K-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMTP140K-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chainnull mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chainnull mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin.

  1. Brucella abortus 2308ΔNodVΔNodW double-mutant is highly attenuated and confers protection against wild-type challenge in BALB/c mice.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Jinliang; Yang, Guangli; Yuan, Baodong; Huang, Jie; Han, Jincheng; Xi, Li; Xiao, Yanren; Chen, Chuangfu; Zhang, Hui

    2017-05-01

    Brucellosis is an important zoonotic disease of worldwide distribution, which causes animal and human disease. However, the current Brucella abortus (B. abortus) vaccines (S19 and RB51) have several drawbacks, including residual virulence for animals and humans. Moreover, S19 cannot allow serological differentiation between infected and vaccinated animals. We constructed double deletion (ΔNodVΔNodW) mutant from virulent B. abortus 2308 (S2308) by deleting the genes encoding two-component regulatory system (TCS) in chromosome II in S2308.2308ΔNodVΔNodW was significantly reduced survival in murine macrophages (RAW 264.7) and BALB/c mice. Moreover, the inoculated mice showed no splenomegaly. The mutant induced high protective immunity in BALB/c mice against challenge with S2308, and elicited an anti-Brucella-specific immunoglobulin G (IgG) response and induced the secretion of gamma interferon (IFN-γ) and interleukin-4 (IL-4). Moreover, NODV and NODW antigens would allow the serological differentiation between infected and vaccinated animals. These results suggest that 2308ΔNodVΔNodW mutant is a potential live attenuated vaccine candidate and can be used effectively against bovine brucellosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors.

    Science.gov (United States)

    Mulder, Lonneke; Lefebvre, Benoit; Cullimore, Julie; Imberty, Anne

    2006-09-01

    The establishment of the symbiosis between legume plants and rhizobial bacteria depends on the production of rhizobial lipo-chitooligosaccharidic signals (the Nod factors) that are specifically recognized by roots of the host plant. In Medicago truncatula, specific recognition of Sinorhizobium meliloti and its Nod factors requires the NFP (Nod factor perception) gene, which encodes a putative serine/threonine receptor-like kinase (RLK). The extracellular region of this protein contains three tandem lysin motifs (LysMs), a short peptide domain that is implicated in peptidoglycan or chitin binding in various bacterial or eukaryotic proteins, respectively. We report here the homology modeling of the three LysM domains of M. truncatula NFP based on the structure of a LysM domain of the Escherichia coli membrane-bound lytic murein transglycosidase D (MltD). Expression of NFP in a homologous system (M. truncatula roots) revealed that the protein is highly N-glycosylated, probably with both high-mannose and complex glycans. Surface analysis and docking calculations performed on the models of the three domains were used to predict the most favored binding modes for chitooligosaccharides and Nod factors. A convergent model can be proposed where the sulfated, O-acetylated lipo-chitooligosaccharidic Nod factor of S. meliloti binds in similar orientation to the three LysM domains of M. truncatula NFP. N-glycosylation is not expected to interfere with Nod factor binding in this orientation.

  3. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces experimental autoimmune encephalomyelitis-induced injury and promotes oligodendrocyte regeneration and neurogenesis in a murine model of progressive multiple sclerosis.

    Science.gov (United States)

    Yu, Guoliang; Zheng, Shikan; Zhang, Hao

    2018-02-07

    It is known that oxidative stress produced by proinflammatory myeloid cells plays an important role in demyelination and neuronal injury in progressive multiple sclerosis (MS). Myeloperoxidase (MPO) is a pro-oxidative enzyme released from myeloid cells during inflammation. It has been shown that MPO-dependent oxidative stress plays important roles in inducing tissue injury in many inflammatory diseases. In this report, we treated NOD experimental autoimmune encephalomyelitis (EAE) mice, a murine model of progressive MS, with N-acetyl lysyltyrosylcysteine amide (KYC), a novel specific MPO inhibitor. Our data showed that KYC treatment not only attenuated MPO-mediated oxidative stress but also reduced demyelination and axonal injury in NOD EAE mice. More importantly, we found that KYC treatment increased oligodendrocyte regeneration and neurogenesis in NOD EAE mice. Taken together, our data suggests that targeting MPO should be a good therapeutic approach for reducing oxidative injury and preserving neuronal function in progressive MS patients.

  4. Humanized in vivo Model for Autoimmune Diabetes

    Science.gov (United States)

    2010-02-01

    Mannering, S. I., J. Zhong, and C. Cheers. 2002. T-cell activation, proliferation and apoptosis in primary Listeria monocytogenes infection. Immunology...mouse TCR *Benaroya Research Institute, Seattle WA 98101; †Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331

  5. Diabetes classification: grey zones, sound and smoke: Action LADA 1

    DEFF Research Database (Denmark)

    Leslie, R D G; Kolb, H; Schloot, N C

    2008-01-01

    those who are initially insulin dependent. Ketosis-prone diabetes (KPD) and latent autoimmune diabetes in adults (LADA) are each exclusive forms of diabetes which are, at least initially, clinically distinct from type 2 diabetes and type 1 diabetes, and each have a different natural history from...

  6. [Treatment of autoimmune hepatic diseases].

    Science.gov (United States)

    Bueverov, A O

    2004-01-01

    The immunosuppresive drugs, primarily glucocorticosteroids, serve as the basis for the pathogenetic treatment of autoimmune diseases of the liver. In autoimmune hepatitis, immunosuppressive therapy induces and maintains persistent remission in most patients while in primary biliary cirrhosis and primary sclerosing cholangitis, its capacities are substantially limited. Ursodeoxycholic acid is used as the basic drug in predominantly occurring intrahepatic cholestasis. The treatment of cross autoimmune syndromes generally requires the choice of a combination of drugs.

  7. B Cells in Autoimmune Diseases

    OpenAIRE

    Hampe, Christiane S.

    2012-01-01

    The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell...

  8. Autoimmunity against INS-IGF2 expressed in human pancreatic islets.

    OpenAIRE

    Kanatsuna, Norio; Taneera, Jalal; Vaziri Sani, Fariba; Wierup, Nils; Larsson, Helena; Delli, Ahmed; Skärstrand, Hanna; Balhuizen, Alexander; Bennet, Hedvig; Steiner, Donald F; Törn, Carina; Fex, Malin; Lernmark, Åke

    2013-01-01

    Insulin is a major autoantigen in islet autoimmunity and progression to type 1 diabetes. It has been suggested that the insulin B-chain may be critical to insulin autoimmunity in type 1 diabetes. INS-IGF2 consists of the preproinsulin signal peptide, the insulin B-chain and eight amino acids of the C-peptide in addition to 138 amino acids from the IGF2 gene. We aimed to determine 1) expression of INS-IGF2 in human pancreatic islets and 2) autoantibodies in newly diagnosed type 1 diabetes chil...

  9. [Autoimmune hemolytic anemia in children].

    Science.gov (United States)

    Becheur, M; Bouslama, B; Slama, H; Toumi, N E H

    2015-01-01

    Autoimmune hemolytic anemia is a rare condition in children which differs from the adult form. It is defined by immune-mediated destruction of red blood cells caused by autoantibodies. Characteristics of the autoantibodies are responsible for the various clinical entities. Classifications of autoimmune hemolytic anemia include warm autoimmune hemolytic anemia, cold autoimmune hemolytic anemia, and paroxysmal cold hemoglobinuria. For each classification, this review discusses the epidemiology, etiology, clinical presentation, laboratory evaluation, and treatment options. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Palivizumab Exposure and the Risk of Autoimmune Disease

    DEFF Research Database (Denmark)

    Haerskjold, Ann; Linder, Marie; Henriksen, Lonny

    2016-01-01

    of autoimmune disease were diagnosed among palivizumab-exposed children during the period of observation. Among the children exposed to palivizumab, one child in Denmark developed inflammatory bowel disease; in Sweden, children developed juvenile arthritis (one child), diabetes mellitus (two children), celiac......BACKGROUND: Treatment with biologic pharmaceuticals may be associated with an increased risk of immune-mediated disease. Palivizumab is a humanized monoclonal antibody designed to provide passive immunity against respiratory syncytial virus infection. Palivizumab is primarily used in preterm...... children known to be immunologically immature. The long-term effect of palivizumab in terms of autoimmune diseases has not yet been investigated. AIM: Our objective was to investigate whether exposure to palivizumab was associated with the development of autoimmune diseases in children. METHODS...

  11. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD 2 in Host Defense during Pneumococcal Pneumonia.

    Directory of Open Access Journals (Sweden)

    Tijmen J Hommes

    Full Text Available Streptococcus (S. pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/- and wild-type (Wt alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39, an isogenic capsule locus deletion mutant (D39Δcps or serotype 3 S. pneumoniae (6303 via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.

  12. NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways

    Directory of Open Access Journals (Sweden)

    S.M. Nashir Udden

    2017-06-01

    Full Text Available Although NOD2 is the major inflammatory bowel disease susceptibility gene, its role in colorectal tumorigenesis is poorly defined. Here, we show that Nod2-deficient mice are highly susceptible to experimental colorectal tumorigenesis independent of gut microbial dysbiosis. Interestingly, the expression of inflammatory genes and the activation of inflammatory pathways, including NF-κB, ERK, and STAT3 are significantly higher in Nod2−/− mouse colons during colitis and colorectal tumorigenesis, but not at homeostasis. Consistent with higher inflammation, there is greater proliferation of epithelial cells in hyperplastic regions of Nod2−/− colons. In vitro studies demonstrate that, while NOD2 activates the NF-κB and MAPK pathways in response to MDP, it inhibits TLR-mediated activation of NF-κB and MAPK. Notably, NOD2-mediated downregulation of NF-κB and MAPK is associated with the induction of IRF4. Taken together, NOD2 plays a critical role in the suppression of inflammation and tumorigenesis in the colon via downregulation of the TLR signaling pathways.

  13. Celiac disease and other autoimmune diseases in patients with collagenous colitis.

    Science.gov (United States)

    Vigren, Lina; Tysk, Curt; Ström, Magnus; Kilander, Anders F; Hjortswang, Henrik; Bohr, Johan; Benoni, Cecilia; Larson, Lasse; Sjöberg, Klas

    2013-08-01

    Collagenous colitis (CC) is associated with autoimmune disorders. The aim of the present study was to investigate the relationship between CC and autoimmune disorders in a Swedish multicenter study. Patients with CC answered questionnaires about demographic data and disease activity. The patient's files were scrutinized for information about autoimmune diseases. A total number of 116 CC patients were included; 92 women, 24 men, median age 62 years (IQR 55-73). In total, 30.2% had one or more autoimmune disorder. Most common were celiac disease (CeD; 12.9%) and autoimmune thyroid disease (ATD, 10.3%), but they also had Sjögren's syndrome (3.4%), diabetes mellitus (1.7%) and conditions in skin and joints (6.0%). Patients with associated autoimmune disease had more often nocturnal stools. The majority of the patients with associated CeD or ATD got these diagnoses before the colitis diagnosis. Autoimmune disorders occurred in one-third of these patients, especially CeD. In classic inflammatory bowel disease (IBD), liver disease is described in contrast to CC where no cases occurred. Instead, CeD was prevalent, a condition not reported in classic IBD. Patients with an associated autoimmune disease had more symptoms. Patients with CC and CeD had an earlier onset of their colitis. The majority of the patients with both CC and CeD were smokers. Associated autoimmune disease should be contemplated in the follow-up of these patients.

  14. Genetics Home Reference: autoimmune Addison disease

    Science.gov (United States)

    ... of each kidney. It is classified as an autoimmune disorder because it results from a malfunctioning immune system ... disease or their family members can have another autoimmune disorder, most commonly autoimmune thyroid disease or type 1 ...

  15. [Keratitis - Infectious or Autoimmune?].

    Science.gov (United States)

    Messmer, E M

    2016-07-01

    Histopathological evaluation of ocular tissues is important in differentiating between infectious and autoimmune disease. Inflammation, necrosis and keratolysis are common to most forms of keratitis. Histopathology can be of great help in identifying the causative organism, establishing a final diagnosis and/or managing the patient with herpes simplex virus keratitis, mycotic keratitis, acanthamoeba keratitis or microsporidia keratoconjunctivitis. Important pathogenetic knowledge with therapeutic relevance has been gained from histopathological studies in nummular keratitis after epidemic keratoconjunctivitis and atopic keratoconjunctivitis. Georg Thieme Verlag KG Stuttgart · New York.

  16. Warm autoimmune hemolytic anemia.

    Science.gov (United States)

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Hyposalivation in autoimmune diseases

    OpenAIRE

    Maeshima, Etsuko; Furukawa, Kanako; Maeshima, Shinichiro; Koshiba, Hiroya; Sakamoto, Wataru

    2012-01-01

    We have investigated the prevalence of dry mouth among patients with autoimmune diseases other than Sj?gren?s syndrome. One hundred and forty-four patients, excluding patients with primary Sj?gren?s syndrome, were enrolled in this study. The volume of saliva secreted was measured with the screening technique for estimation of salivary flow, which uses a filter paper for diagnosing dry mouth. Disturbed salivary secretion was observed in 84 (58.3?%) of the 144 patients. In the case of patients ...

  18. Autoimmune diseases and myelodysplastic syndromes.

    Science.gov (United States)

    Komrokji, Rami S; Kulasekararaj, Austin; Al Ali, Najla H; Kordasti, Shahram; Bart-Smith, Emily; Craig, Benjamin M; Padron, Eric; Zhang, Ling; Lancet, Jeffrey E; Pinilla-Ibarz, Javier; List, Alan F; Mufti, Ghulam J; Epling-Burnette, Pearlie K

    2016-05-01

    Immune dysregulation and altered T-cell hemostasis play important roles in the pathogenesis of myelodysplastic syndromes (MDS). Recent studies suggest an increased risk of MDS among patients with autoimmune diseases. Here, we investigated the prevalence of autoimmune diseases among MDS patients, comparing characteristics and outcomes in those with and without autoimmune diseases. From our study group of 1408 MDS patients, 391 (28%) had autoimmune disease, with hypothyroidism being the most common type, accounting for 44% (n = 171) of patients (12% among all MDS patients analyzed). Other autoimmune diseases with ≥5% prevalence included idiopathic thrombocytopenic purpura in 12% (n = 46), rheumatoid arthritis in 10% (n = 41), and psoriasis in 7% (n = 28) of patients. Autoimmune diseases were more common in female MDS patients, those with RA or RCMD WHO subtype, and those who were less dependent on red blood cell transfusion. Median overall survival (OS) was 60 months (95% CI, 50-70) for patients with autoimmune diseases versus 45 months (95% CI, 40-49) for those without (log-rank test, P = 0.006). By multivariate analysis adjusting for revised IPSS and age >60 years, autoimmune diseases were a statistically significant independent factor for OS (HR 0.78; 95% CI, 0.66-0.92; P = 0.004). The rate of acute myeloid leukemia (AML) transformation was 23% (n = 89) in MDS patients with autoimmune disease versus 30% (n = 301) in those without (P = 0.011). Patient groups did not differ in response to azacitidine or lenalidomide treatment. Autoimmune diseases are prevalent among MDS patients. MDS patients with autoimmune diseases have better OS and less AML transformation. © 2016 Wiley Periodicals, Inc.

  19. Bone involvement in clusters of autoimmune diseases: just a complication?

    Science.gov (United States)

    Lombardi, Francesca; Franzese, Adriana; Iafusco, Dario; del Puente, Antonio; Esposito, Antonella; Prisco, Francesco; Troncone, Riccardo; Valerio, Giuliana

    2010-02-01

    Bone loss, described in individual groups of patients with Type 1 diabetes (T1D), autoimmune thyroid disease (ATD) or celiac disease (CD) is usually viewed as a complication of these diseases. There is increasing evidence that alterations in the immune system may directly affect bone mass. Clustering of autoimmune diseases in the same individual might predispose to higher risk of osteopenia due to imbalance in immune regulation. The aim of this study was to evaluate bone involvement in clusters of the most common autoimmune diseases (T1D, ATD and CD) in children. The study was performed at a tertiary care center for the care of pediatric diabetes. One-hundred-two patients with T1D alone or associated with ATD and/or CD were studied; 13 patients had cluster of three autoimmune diseases. Amplitude-dependent speed of sound (AD-SoS) was measured by phalangeal quantitative ultrasound and expressed as standard deviation score (SDS). AD-SoS SDS diseases. Poor compliance to gluten-free diet increased osteopenia to 18.8% in patients with T1D and CD and 80% in patients with three autoimmune disorders. No difference among groups was found with regard to gluco-metabolic control, calcium metabolism, thyroid function. In conclusion bone impairment in multiple autoimmune diseases might be considered not only a complication due to endocrine or nutritional mechanisms, but also a consequence of an immunoregulatory imbalance. Alterations of homeostatic mechanisms might explain an imbalance of osteoclast activity leading to osteopenia. (c) 2009 Elsevier Inc. All rights reserved.

  20. Autoimmune liver disease and concomitant extrahepatic autoimmune disease.

    Science.gov (United States)

    Muratori, Paolo; Fabbri, Angela; Lalanne, Claudine; Lenzi, Marco; Muratori, Luigi

    2015-10-01

    To assess the frequency and clinical impact of associated extrahepatic autoimmune diseases (EAD) on autoimmune liver diseases (ALD). We investigated 608 patients with ALD (327 autoimmune hepatitis - AIH and 281 primary biliary cirrhosis - PBC) for concomitant EAD. In both AIH and PBC, we observed a high prevalence of EAD (29.9 and 42.3%, respectively); both diseases showed a significant association with autoimmune thyroid disease, followed by autoimmune skin disease, celiac disease, and vasculitis in AIH patients and sicca syndrome, CREST syndrome, and celiac disease in PBC patients. At diagnosis, AIH patients with concurrent EAD were more often asymptomatic than patients with isolated AIH (Pautoimmune thyroid disease. In the light of our results, all patients with an EAD should be assessed for the concomitant presence of an asymptomatic ALD.

  1. Are NOD2 polymorphisms linked to a specific disease endophenotype of Crohn's disease?

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Nielsen, Ole Haagen; Brix, Susanne

    2011-01-01

    ) protein and on the importance of established adherent-invasive E. coli (AIEC) in ileal mucosa. To date, there are several reports pointing to the implications of NOD2 polymorphisms in epithelial and immunological responses against microbes, but the pathological significance of NOD2 mutations in CD...... is not yet clarified. The enhanced number of pathogenic E. coli in the ileal mucosa of CD as compared to healthy controls may result from a genetically based failure in one of the intestinal bacteria sensing systems, like NOD2, making the ileal epithelium more prone to colonization with microbes harboring...

  2. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy.

    Science.gov (United States)

    Kisand, Kai; Peterson, Pärt

    2015-07-01