WorldWideScience

Sample records for autocrine effect orchestrating

  1. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  2. The Effects of Orchestration on Musicians' and Nonmusicians' Perception of Musical Tension

    Science.gov (United States)

    Silvey, Brian A.

    2011-01-01

    The purpose of this study was to examine the effects of orchestration on musicians' and nonmusicians' (N = 40) perception of musical tension. Participants were asked to register their perceptions of tension using the Continuous Response Digital Interface dial while listening to three orchestrations (full orchestra, brass quintet, and solo piano)…

  3. Adiponectin action: a combination of endocrine and autocrine/paracrine effects

    Directory of Open Access Journals (Sweden)

    Gary eSweeney

    2011-11-01

    Full Text Available The widespread physiological actions of adiponectin have now been well characterized as clinical studies and work in animal models have established strong correlations between circulating adiponectin levels and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectins beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways and its principal physiological effects (ie. metabolic and cardiovascular. The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.

  4. Orchestrating innovation

    NARCIS (Netherlands)

    Berkers, F.T.H.M.; Klein Woolthuis, R.J.A.; Boer, J. de

    2015-01-01

    Orchestrating Innovation increases the probability of success, minimizing the probability of failure of technological innovations by creating sustained societal and economic value. Orchestrating innovation propagates to take into account and actively involve all relevant stakeholders of the (future)

  5. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue.

    Science.gov (United States)

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner Henke, Kateřina; Škop, Vojtěch; Malínská, Hana; Trnovská, Jaroslava; Kazdová, Ludmila; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-06-01

    Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat. Copyright © 2016 the American Physiological Society.

  6. Orchestrating innovation

    OpenAIRE

    Berkers, F.T.H.M.; Klein Woolthuis, R.J.A.; J. de Boer

    2015-01-01

    Orchestrating Innovation increases the probability of success, minimizing the probability of failure of technological innovations by creating sustained societal and economic value. Orchestrating innovation propagates to take into account and actively involve all relevant stakeholders of the (future) ecosystem in which the innovation will, can or has to be adopted.

  7. International organizations as orchestrators

    CERN Document Server

    Abbott, Kenneth W

    2015-01-01

    International Organizations as Orchestrators reveals how IOs leverage their limited authority and resources to increase their effectiveness, power, and autonomy from states. By 'orchestrating' intermediaries - including NGOs - IOs can shape and steer global governance without engaging in hard, direct regulation. This volume is organized around a theoretical model that emphasizes voluntary collaboration and support. An outstanding group of scholars investigate the significance of orchestration across key issue areas, including trade, finance, environment and labor, and in leading organizations, including the GEF, G20, WTO, EU, Kimberley Process, UNEP and ILO. The empirical studies find that orchestration is pervasive. They broadly confirm the theoretical hypotheses while providing important new insights, especially that states often welcome IO orchestration as achieving governance without creating strong institutions. This volume changes our understanding of the relationships among IOs, nonstate actors and sta...

  8. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells.

    Science.gov (United States)

    Watson, Maria L; Macrae, Katherine; Marley, Anna E; Hundal, Harinder S

    2011-01-01

    Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  9. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells.

    Directory of Open Access Journals (Sweden)

    Maria L Watson

    Full Text Available BACKGROUND: Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. PRINCIPAL FINDINGS: GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt. Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII and extracellular signal-regulated kinase (ERK as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75% in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. CONCLUSIONS: Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  10. Orchestrating Docker

    CERN Document Server

    Holla, Shrikrishna

    2015-01-01

    If you are a competent developer or DevOps with a good understanding of Linux filesystems but want to manage and orchestrate Docker services, images, and products using a multitude of techniques, then this book is for you. No prior knowledge of Docker or container virtualization is required.

  11. The Effect of Bevacizumab on Human Malignant Melanoma Cells with Functional VEGF/VEGFR2 Autocrine and Intracrine Signaling Loops

    Directory of Open Access Journals (Sweden)

    Una Adamcic

    2012-07-01

    Full Text Available Receptors for the angiogenic factor VEGF are expressed by tumor cancer cells including melanoma, although their functionality remains unclear. Paired human melanoma cell lines WM115 and WM239 were used to investigate differences in expression and functionality of VEGF and VEGFR2 in vitro and in vivo with the anti-VEGF antibody bevacizumab. Both WM115 and WM239 cells expressed VEGF and VEGFR2, the levels of which were modulated by hypoxia. Detection of native and phosphorylated VEGFR2 in subcellular fractions under serum-free conditions showed the presence of a functional autocrine as well as intracrine VEGF/VEGFR2 signaling loops. Interestingly, treatment of WM115 and WM239 cells with increasing doses of bevacizumab (0–300 µg/ml in vitro did not show any significant inhibition of VEGFR2 phosphorylation. Small-molecule tyrosine kinase inhibitor, sunitinib, caused an inhibition of VEGFR2 phosphorylation in WM239 but not in WM115 cells. An increase in cell proliferation was observed in WM115 cells treated with bevacizumab, whereas sunitinib inhibited proliferation. When xenografted to immune-deficient mice, we found bevacizumab to be an effective antiangiogenic but not antitumorigenic agent for both cell lines. Because bevacizumab is unable to neutralize murine VEGF, this supports a paracrine angiogenic response. We propose that the failure of bevacizumab to generate an antitumorigenic effect may be related to its generation of enhanced autocrine/intracrine signaling in the cancer cells themselves. Collectively, these results suggest that, for cancers with intracrine VEGF/ VEGFR2 signaling loops, small-molecule inhibitors of VEGFR2 may be more effective than neutralizing antibodies at disease control.

  12. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures.

    Science.gov (United States)

    Ahumada-Solórzano, S Marisela; Martínez-Moreno, Carlos G; Carranza, Martha; Ávila-Mendoza, José; Luna-Acosta, José Luis; Harvey, Steve; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.

  13. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Shanshan Gao

    Full Text Available Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.

  14. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Gao, Shanshan; Li, Fangmin; Li, Huimin; Huang, Yibing; Liu, Yu; Chen, Yuxin

    2016-01-01

    Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.

  15. Orchestrating Lean Implementation

    DEFF Research Database (Denmark)

    Riis, Jens Ove; Mikkelsen, Hans; Andersen, Jesper Rank

    2008-01-01

    The notion of Lean Manufacturing is not merely confined to a set of well defined techniques, but represents a broad approach to managing a company. Working with lean entails many aspects, such as production planning and control, production engineering, product development, supply chain......, and organizational issues. To become effective, many functional areas and departments must be involved. At the same time companies are embedded in a dynamic environment. The aim of the paper is to propose a comprehensive approach to better implementation of lean initiatives, based on two empirical studies. The paper...... will discuss how a concerted effort can be staged taking into account the interdependencies among individual improvement initiatives. The notion of orchestration will be introduced, and several means for orchestration will be presented. Critical behavioral issues for lean implementation will be discussed....

  16. Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development.

    Science.gov (United States)

    Zhang, Weigang; Guo, Sen; Li, Bing; Liu, Lin; Ge, Rui; Cao, Tianyu; Wang, Huina; Gao, Tianwen; Wang, Gang; Li, Chunying

    2017-02-01

    Psoriasis is an autoimmune skin disease, in which keratinocytes play a crucial pathogenic role. High-mobility group protein B1 (HMGB1) is an inflammatory factor that can be released from keratinocyte nuclei in psoriatic lesions. We aimed to investigate the proinflammatory effect of HMGB1 on keratinocytes and the contribution of HMGB1 to psoriasis development. Normal human keratinocytes were treated with recombinant human HMGB1, and the production of inflammatory factors and the intermediary signalling pathways were examined. Furthermore, the imiquimod-induced psoriasis-like mouse model was used to investigate the role of HMGB1 in psoriasis development in vivo. A total of 11 inflammatory factors were shown to be upregulated by HMGB1 in keratinocytes, among which interleukin (IL)-18 showed the greatest change. We then found that activation of the nuclear factor-κB signalling pathway and inflammasomes accounted for HMGB1-induced IL-18 expression and secretion. Moreover, HMGB1 and downstream IL-18 contributed to the development of psoriasiform dermatitis in the imiquimod-treated mice. In addition, T-helper 17 immune response in the psoriasis-like mouse model could be inhibited by both HMGB1 and IL-18 blockade. Our findings indicate that HMGB1 secreted from keratinocytes can facilitate the production and secretion of inflammatory factors such as IL-18 in keratinocytes in an autocrine way, thus promoting the development of psoriasis. Blocking the proinflammatory function of the HMGB1-IL-18 axis may be useful for psoriasis treatment in the future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. THE AUTOCRINE REGULATORY EFFECT OF VASOACTIVE INTESTINAL PEPTIDE ON THE GROWTH OF HUMAN PANCREATIC CARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    陈元方; 陈潜; 陆国钧; 范振符; 钟守先

    1994-01-01

    In the present study, the effets of VIP on the growth of two human pancreatic carcinoma cell lines PU-PAH-1 and PANC-1 were determined using tritiated thymidine incorporation, VIP receptors, intracellular cAMP and polyamings were investlsa.ted, The results indicated that VIP at a concentcation of 10-8mol/L to 10-7 mol/L can significantly Stimulate the growth of PU-PAN-1 cells but not PANC-1 cells, This effect is dose-dependent and abolished by VIP receptor antagonist, [4-CI-Phe6 , Leu7] VIP, suggesting VIP receptors in PU-PAN-1 cells maymediate this effect. VIP can markedly elevate the levels of intracellular cAMP and polyammes in PU-PAN-1 cells,indicating that the growth-promoting effect stimulated by VIP may be via a rapid increase in the biosynth~es of cAMP and polyamines. In addition, the VIP-antibody ir2Libited the growth of PU-PAN-1 cells in serum-free culture medium. The results above suggested that VIP has an autoctine regulatory effect on this pancreatic carcinoma cell line(PU-PAN-1).

  18. Orchestrated Session Compliance

    Directory of Open Access Journals (Sweden)

    Franco Barbanera

    2015-08-01

    Full Text Available We investigate the notion of orchestrated compliance for client/server interactions in the context of session contracts. Devising the notion of orchestrator in such a context makes it possible to have orchestrators with unbounded buffering capabilities and at the same time to guarantee any message from the client to be eventually delivered by the orchestrator to the server, while preventing the server from sending messages which are kept indefinitely inside the orchestrator. The compliance relation is shown to be decidable by means of 1 a procedure synthesising the orchestrators, if any, making a client compliant with a server, and 2 a procedure for deciding whether an orchestrator behaves in a proper way as mentioned before.

  19. Classroom orchestration : The third circle of usability

    OpenAIRE

    Dillenbourg, Pierre; Zufferey, Guillaume; Alavi, Hamed Seyed; Jermann, Patrick; Do, Lenh Hung Son; Bonnard, Quentin; Cuendet, Sébastien; Kaplan, Frédéric

    2011-01-01

    We analyze classroom orchestration as a question of usability in which the classroom is the user. Our experiments revealed design features that reduce the global orchestration load. According to our studies in vocational schools, paper-based interfaces have the potential of making educational workflows tangible, i.e. both visible and manipulable. Our studies in university classes converge on minimalism: they reveal the effectiveness o tools that make visible what is invisible but do not analy...

  20. The effect of tyrphostins AG494 and AG1478 on the autocrine growth regulation of A549 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Agnieszka Bojko

    2012-07-01

    Full Text Available We employed two selective EGFR tyrosine kinase inhibitors: AG494 (reversible and AG1478 (irreversible for growth regulation of human lung (A549 and prostate (DU145 cancer cell lines, cultured in chemically defined DMEM/F12 medium. Both tested tyrphostins significantly inhibited autocrine growth of the investigated cell lines. The action of AG494 was dose dependent, and at highest concentrations led to complete inhibition of growth. AG1478 seemed to be more effective at lower concentrations, but was unable to completely inhibit growth of A549 cells. Inhibition of EGFR kinase activity by AG494 in contrast to AG1478 had no effect on the activity of ERK in both cell lines. Both EGFR’s inhibitors induced apoptosis of the investigated lung and prostate cancer cell lines, but the proapoptotic effect of the investigated tyrphostins was greater in A549 than in DU145 cells. The tyrphostins arrested cell growth of DU145 and A549 cells in the G1 phase, similarly to other known inhibitors of EGFR. The influence of AG494 and AG1478 on the activity of two signaling proteins (AKT and ERK was dependent upon the kind of investigated cells. In the case of DU145 cells, there was an evident decline in enzymatic activity of both kinases (stronger for AG1478, while in A549, only AG1478 effectively inhibited the phosphorylation of Akt. Tyrphostins AG494 and AG1478 are ATP-competitors and are supposed to have a similar mechanism of action, but our results suggest that this is not quite true.

  1. Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Hui; Wu, Huanwen; Guan, Jian; Wang, Li; Ren, Xinyu; Shi, Xiaohua; Liang, Zhiyong; Liu, Tonghua

    2015-02-20

    Pancreatic cancer exhibits the poorest prognosis among all tumors and is characterized by high resistance to the currently available chemotherapeutic agents. Our previous studies have suggested that stromal components could promote the chemoresistance of pancreatic cancer cells (PCCs). Here, we explored the roles of pancreatic stellate cells (PSCs) and the SDF-1α/CXCR4 axis in pancreatic cancer chemoresitance. Our results showed that primary PSCs typically expressed SDF-1α, whereas its receptor CXCR4 was highly expressed in PCCs. PSC-conditioned medium (PSC-CM) inhibited Gemcitabine (GEM)-induced cytotoxicity and apoptosis in the human PCC line Panc-1, which was antagonized by an SDF-1α neutralizing Ab. Recombinant human SDF-1α (rhSDF-1α) increased IL-6 expression and secretion in Panc-1 cells in a time and dose-dependent manner, and this effect was suppressed by the CXCR4 antagonist AMD3100. rhSDF-1α protected Panc-1 cells from GEM-induced apoptosis, and the protective effect was significantly reduced by blocking IL-6 using a neutralizing antibody. Moreover, rhSDF-1α increased FAK, ERK1/2, AKT and P38 phosphorylation in Panc-1 cells, and either FAK or ERK1/2 inhibition suppressed SDF-1α-upregulated IL-6 expression. SDF-1α-induced AKT activation was almost completely blocked by FAK inhibition. In conclusion, we demonstrate for the first time that PSCs promote the chemoresistance of PCCs to GEM, and this effect is mediated by paracrine SDF-1α/CXCR4 signaling-induced activation of the intracellular FAK-AKT and ERK1/2 signaling pathways and a subsequent IL-6 autocrine loop in PCCs. Our findings indicate that blocking the PSC-PCC interaction by inhibiting SDF-1α/CXCR4 signaling may be a promising therapeutic strategy for overcoming chemoresistance in pancreatic cancer.

  2. Orchestrating with Contracts

    DEFF Research Database (Denmark)

    Kiniry, Joseph Roland; Martinez, Josu

    2012-01-01

    Our domain of interest is self-healing systems. We wish to reason about the behavior of statically and dynamically composed systems. The orchestration language Orc permits one to write programs that compose such systems. Unfortunately, Orc's semantics make no assumptions about the behavior...... of the units under composition. Orc is an executable language, and in the Orc system, units are realized as methods implemented in the Java programming language. Since Java methods' behavior can be formally specified with the Java Modeling Language (JML), then the behavior of an Orc program can be reasoned...

  3. Orchestration of Globally Distributed Knowledge for Innovation in Multinational Companies

    DEFF Research Database (Denmark)

    Sajadirad, Solmaz; Lassen, Astrid Heidemann

    2017-01-01

    Conducting a multiple-case study in five companies from Danish industry, this paper explores how multinational companies orchestrate knowledge from their globally distributed subsidiaries for innovation. Comparisons of knowledge orchestration within headquarter and subsidiaries for improvement...... and innovation show that a combination of the dynamic use of inter-firm objects and a well-established knowledge orchestration process underlies knowledge orchestration for innovation in multinational companies, as it advances headquarters’ abilities to effectively acquire, evaluate, disseminate, and utilize...... globally distributed knowledge. This study contributes to the understanding of knowledge orchestration between headquarter and distributed subsidiaries in multinational companies and how it is related to innovation. Specifically, this paper has important implications regarding the use of inter-firm objects...

  4. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    Science.gov (United States)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  5. Sound exposure of professional orchestral musicians during solitary practice.

    Science.gov (United States)

    O'Brien, Ian; Driscoll, Tim; Ackermann, Bronwen

    2013-10-01

    It is broadly acknowledged that professional orchestral musicians risk noise-induced hearing pathologies due to sound exposure in rehearsal and performance. While much has been published regarding orchestral sound levels, little is known of the sound exposure these musicians experience during solitary practice, despite the many hours they spend engaged in this activity. This study aimed to determine sound exposure during solitary practice of 35 professional orchestral musicians, representing players of most orchestral instruments. To allow cross-comparison, participants were assessed playing similar repertoire in a controlled environment, recording simultaneously at each ear to determine sound exposure levels. Sound levels were recorded between 60 and 107 dB L(Aeq), with peak levels between 101 and 130 dB L(C,peak). For average reported practice durations (2.1 h per day, five days a week) 53% would exceed accepted permissible daily noise exposure in solitary practice, in addition to sound exposure during orchestral rehearsals and performances. Significant inter-aural differences were noted in violin, viola, flute/piccolo, horn, trombone, and tuba. Only 40% used hearing protection at any time while practicing. These findings indicate orchestral musicians at risk of noise-induced hearing loss in ensemble face significant additional risks during solitary practice. Data presented will enable more effective and targeted management strategies for this population.

  6. Orchestrating Life Skills: The Effect of Increased School-Based Music Classes on Children's Social Competence and Self-Esteem

    Science.gov (United States)

    Rickard, Nikki S.; Appelman, Peter; James, Richard; Murphy, Fintan; Gill, Anneliese; Bambrick, Caroline

    2013-01-01

    Music training has been found to produce a range of cognitive benefits for young children, although well-controlled evaluation of the effects on psychosocial functioning has been limited. In this study participants were recruited from two grade levels (prep/grade 1, "N" = 210; grade 3, "N" = 149), and were allocated to a music…

  7. Musical acoustics of orchestral water crotales.

    Science.gov (United States)

    Worland, Randy

    2012-01-01

    An experimental investigation of orchestral crotale vibrational modes in water is presented, along with a qualitative virtual mass model describing the observed effects. Changes in frequency, overtone ratio, and mode splitting as a function of water depth are reported for a C(6) crotale using electronic speckle-pattern interferometry. These data are related to perceived changes in pitch and timbre, along with the creation of audible beats at particular water depths. It is also shown that the suspension method used by musicians when dipping crotales into water leads to the creation of additional acoustically significant modes that are not excited when the crotales are mounted in the standard manner.

  8. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  9. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  10. Orchestral Performance and the Footprint of Mindfulness

    Science.gov (United States)

    Langer, Ellen; Russell, Timothy; Eisenkraft, Noah

    2009-01-01

    Two studies were designed to test the hypothesis that actively creating novel distinctions and sonically portraying them during the performance of orchestral music is preferable to attempting to re-create a past performance. The data suggest that orchestral musicians preferred creating music when they were encouraged to mindfully incorporate…

  11. Orchestral Performance and the Footprint of Mindfulness

    Science.gov (United States)

    Langer, Ellen; Russell, Timothy; Eisenkraft, Noah

    2009-01-01

    Two studies were designed to test the hypothesis that actively creating novel distinctions and sonically portraying them during the performance of orchestral music is preferable to attempting to re-create a past performance. The data suggest that orchestral musicians preferred creating music when they were encouraged to mindfully incorporate…

  12. Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Massimiliano Cadamuro

    2017-01-01

    Full Text Available Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.

  13. Autocrine effect of DHT on FGF signaling and cell proliferation in LNCaP cells: role of heparin/heparan-degrading enzymes.

    Science.gov (United States)

    Kassen, A E; Sensibar, J A; Sintich, S M; Pruden, S J; Kozlowski, J M; Lee, C

    2000-07-01

    LNCaP cells are androgen-sensitive human prostate cancer cells. They are characterized by a bell-shaped growth curve in response to increasing doses of dihydrotestosterone (DHT) in culture. At a low concentration of DHT (0.1 nM), these cells show an increase in proliferation, but their growth is arrested at a high concentration (100 nM) of DHT. Results of our previous study demonstrated that the inhibitory effect of DHT at a high concentration was mediated through the action of TGF-beta1. The objective of the present study was to elucidate the mechanism of the proliferative effect of DHT in LNCaP cells. METHODS AND RESULTS DHT stimulated LNCaP proliferation only when cells were cultured in the presence of serum. In serum-free cultures, the characteristic DHT-induced proliferation was not observed. The addition of neutralizing antibody against FGF-2 (basic fibroblast growth factor) was able to inhibit this DHT-induced proliferation. These results suggest that the proliferative effect of DHT was mediated through the action of FGF-2. However, results of the reverse transcriptase polymerase chain reaction indicated that LNCaP cells did not express FGF-2 message. As a result, the source of FGF-2 in these cultures must be the serum supplemented in the culture media. FGF-2 can bind to heparin sulfate chains within the extracellular matrix (ECM). In cultures treated with exogenous heparin, the proliferative effect of DHT was abolished. These results led to the development of the hypothesis that DHT treatment mediates the release of FGF-2 entrapped in the ECM through increased heparinase activity. The addition of heparinase to cultures of LNCaP cells, in the absence of DHT, was able to stimulate cell proliferation. Moreover, 0.1 nM DHT caused a significant increase in heparinase activity. These results provide a possible mechanism for DHT action in LNCaP cells. In the absence of DHT, FGF-2 in culture was trapped in the extracellular matrix and was not available to interact

  14. Optimizing Decisions in Web Services Orchestrations

    OpenAIRE

    Kattepur, Ajay; Benveniste, Albert; Jard, Claude

    2011-01-01

    International audience; Web services orchestrations conventionally employ exhaustive comparison of runtime quality of service (QoS) metrics for decision making. The ability to incorporate more complex mathematical packages are needed, especially in case of workflows for resource allocation and queuing systems. By modeling such optimization routines as service calls within orchestration specifications, techniques such as linear programming can be conveniently invoked by non-specialist workflow...

  15. Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, Özcan; Larsen, Niels Bent

    2016-01-01

    the effect of autocrine CCL19 on in vitro migration of human DCs toward CCL21. Results. Using human monocyte-derived DCs in a 3D chemotaxis assay, we are the first to demonstrate that CCL19 more potently induces directed migration of human DCs compared with CCL21. When comparing migration of type 1 DCs......Background aims. Maturation of dendritic cells (DCs) induces their homing from peripheral to lymphatic tissues guided by CCL21. However, in vitro matured human monocyte-derived DC cancer vaccines injected intradermally migrate poorly to lymph nodes (LNs). In vitro maturation protocols generate DCs...... and PGE2-DCs, migration of type 1 DCs was strikingly impaired compared with PGE2-DCs, but only toward low concentrations of CCL21. When type 1 DCs were cultured overnight in fresh culture medium (reducing autocrine CCL19 levels), a rescuing effect was observed on migration toward low concentrations of CCL...

  16. The RichWPS Environment for Orchestration

    Directory of Open Access Journals (Sweden)

    Felix Bensmann

    2014-12-01

    Full Text Available Web service (WS orchestration can be considered as a fundamental concept in service-oriented architectures (SOA, as well as in spatial data infrastructures (SDI. In recent years in SOA, advanced solutions were developed, such as realizing orchestrated web services on the basis of already existing more fine-granular web services by using standardized notations and existing orchestration engines. Even if the concepts can be mapped to the field of SDI, on a conceptual level the implementations target different goals. As a specialized form of a common web service, an Open Geospatial Consortium (OGC web service (OWS is optimized for a specific purpose. On the technological level, web services depend on standards like the Web Service Description Language (WSDL or the Simple Object Access Protocol (SOAP. However OWS are different. Consequently, a new concept for OWS orchestration is needed that works on the interface provided by OWS. Such a concept is presented in this work. The major component is an orchestration engine integrated in a Web Processing Service (WPS server that uses a domain specific language (DSL for workflow description. The developed concept is the base for the realization of new functionality, such as workflow testing, and workflow optimization.

  17. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.

    OpenAIRE

    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.

    1995-01-01

    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  18. Orchestrating Distributed Resource Ensembles for Petascale Science

    Energy Technology Data Exchange (ETDEWEB)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul; Yufeng, Xin

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstract API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.

  19. Metric-Aware Secure Service Orchestration

    Directory of Open Access Journals (Sweden)

    Gabriele Costa

    2012-12-01

    Full Text Available Secure orchestration is an important concern in the internet of service. Next to providing the required functionality the composite services must also provide a reasonable level of security in order to protect sensitive data. Thus, the orchestrator has a need to check whether the complex service is able to satisfy certain properties. Some properties are expressed with metrics for precise definition of requirements. Thus, the problem is to analyse the values of metrics for a complex business process. In this paper we extend our previous work on analysis of secure orchestration with quantifiable properties. We show how to define, verify and enforce quantitative security requirements in one framework with other security properties. The proposed approach should help to select the most suitable service architecture and guarantee fulfilment of the declared security requirements.

  20. Russian orchestral works. Torgny Sporsen / Ivan March

    Index Scriptorium Estoniae

    March, Ivan

    1991-01-01

    Uuest heliplaadist "Russian orchestral works. Torgny Sporsen (bass). Gothenburg Symphony Brass Band. Gothenburg Symphony Chorus and Orchestra / Neeme Järvi" D6 MC 429 984 - 4 GH; CD 429 984 - 26H (76 minutes). Borodin: In Central Asia. Prince Igor - Polovtsian Dances

  1. Dynamic System Adaptation by Constraint Orchestration

    CERN Document Server

    Groenewegen, L P J

    2008-01-01

    For Paradigm models, evolution is just-in-time specified coordination conducted by a special reusable component McPal. Evolution can be treated consistently and on-the-fly through Paradigm's constraint orchestration, also for originally unforeseen evolution. UML-like diagrams visually supplement such migration, as is illustrated for the case of a critical section solution evolving into a pipeline architecture.

  2. Russian orchestral works. Torgny Sporsen / Ivan March

    Index Scriptorium Estoniae

    March, Ivan

    1991-01-01

    Uuest heliplaadist "Russian orchestral works. Torgny Sporsen (bass). Gothenburg Symphony Brass Band. Gothenburg Symphony Chorus and Orchestra / Neeme Järvi" D6 MC 429 984 - 4 GH; CD 429 984 - 26H (76 minutes). Borodin: In Central Asia. Prince Igor - Polovtsian Dances

  3. Prolactin as an autocrine/paracrine factor in breast tissue.

    Science.gov (United States)

    Clevenger, C V; Plank, T L

    1997-01-01

    The neuroendocrine hormone prolactin (PRL) stimulates breast growth and differentiation during puberty, pregnancy, and lactation. Despite extensive and convincing data indicating that PRL significantly contributes to the pathogenesis and progression of rodent mammary carcinoma, parallel observations for human breast cancer have not been concordant. In particular, the therapeutic alteration of somatolactogenic hormone levels has not consistently altered the course of human breast cancer. Recent data, however, suggest that extra-pituitary tissues are capable of elaborating PRL; indeed, the observation of sustained serum levels of PRL in post-hypophysectomy patients supports this hypothesis. Proof of an autocrine/paracrine loop for PRL within normal and malignant human breast tissues requires that the following three criteria be met: (1) PRL must be synthesized and secreted within mammary tissues; (2) the receptor for PRL (PRLR) must be present within these tissues; and, (3) proliferative responses to autocrine/paracrine PRL must be demonstrated. These criteria have now been fulfilled in several laboratories. With the demonstration of a PRL autocrine/paracrine loop in mammary glands, the basis for the ineffective treatment of human breast cancer by prior endocrine-based anti-somatolactogenic therapies is evident. These findings provide the precedent for novel therapeutic strategies aimed at interrupting the stimulation of breast cancer growth by PRL at both endocrine and autocrine/paracrine levels.

  4. Microsoft System Center 2012 Orchestrator cookbook

    CERN Document Server

    Erskine, Samuel

    2013-01-01

    This book is written in a practical, Cookbook style with numerous chapters and recipes focusing on creating runbooks to automate mission critical and everyday administration tasks.System Center 2012 Orchestrator is for administrators who wish to simplify the process of automating systems administration tasks. This book assumes that you have a basic knowledge of Windows Server 2008 Administration, Active Directory, Network Systems, and Microsoft System Center technologies.

  5. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function.

    Science.gov (United States)

    Vannella, Kevin M; McMillan, Tracy R; Charbeneau, Ryan P; Wilke, Carol A; Thomas, Peedikayil E; Toews, Galen B; Peters-Golden, Marc; Moore, Bethany B

    2007-12-01

    Pulmonary fibrosis is characterized by the accumulation of fibroblasts and myofibroblasts. These cells may accumulate from three potential sources: the expansion of resident lung fibroblasts, the process of epithelial-mesenchymal transition, or the recruitment and differentiation of circulating mesenchymal precursors known as fibrocytes. We have previously demonstrated that fibrocytes participate in lung fibrogenesis following administration of FITC to mice. We now demonstrate that leukotriene-deficient 5-LO(-/-) mice are protected from FITC-induced fibrosis. Both murine and human fibrocytes express both cysteinyl leukotriene receptor (CysLT) 1 and CysLT2. In addition, fibrocytes are capable of producing CysLTs and can be regulated via the autocrine or paracrine secretion of these lipid mediators. Exogenous administration of leukotriene (LT) D(4), but not LTC(4) induces proliferation of both murine and human fibrocytes in a dose-dependent manner. Consistent with this result, CysLT1 receptor antagonists are able to block the mitogenic effects of exogenous LTD(4) on fibrocytes. Endogenous production of CysLTs contributes to basal fibrocyte proliferation, but does not alter fibrocyte responses to basic fibroblast growth factor. Although CysLTs can induce the migration of fibrocytes in vitro, they do not appear to be essential for fibrocyte recruitment to the lung in vivo, possibly due to compensatory chemokine-mediated recruitment signals. However, CysLTs do appear to regulate the proliferation of fibrocytes once they are recruited to the lung. These data provide mechanistic insight into the therapeutic benefit of leukotriene synthesis inhibitors and CysLT1 receptor antagonists in animal models of fibrosis.

  6. Endocrine, paracrine, and autocrine placental mediators in labor.

    Science.gov (United States)

    Iliodromiti, Zoe; Antonakopoulos, Nikolaos; Sifakis, Stavros; Tsikouras, Panagiotis; Daniilidis, Angelos; Dafopoulos, Kostantinos; Botsis, Dimitrios; Vrachnis, Nikolaos

    2012-01-01

    Considering that preterm birth accounts for about 6-10% of all births in Western countries and of more than 65% of all perinatal deaths, elucidation of the particularly complicated mechanisms of labor is essential for determination of appropriate and effective therapeutic interventions. Labor in humans results from a complex interplay of fetal and maternal factors, which act upon the uterus to trigger pathways leading gradually to a coordinated cervical ripening and myometrial contractility. Although the exact mechanism of labor still remains uncertain, several components have been identified and described in detail. Based on the major role played by the human placenta in pregnancy and the cascade of labor processes activated via placental mediators exerting endocrine, paracrine, and autocrine actions, this review article has aimed at presenting the role of these mediators in term and preterm labor and the molecular pathways of their actions. Some of the aforementioned mediators are involved in myometrial activation and preparation and others in myometrial stimulation leading to delivery. In the early stages of pregnancy, myometrial molecules, like progesterone, nitric oxide, and relaxin, contribute to the retention of pregnancy. At late stages of gestation, fetal hypothalamus maturation signals act on the placenta causing the production of hormones, including CRH, in an endocrine manner; the signals then enhance paracrinically the production of more hormones, such as estrogens and neuropeptides, that contribute to cervical ripening and uterine contractility. These molecules act directly on the myometrium through specific receptors, while cytokines and multiple growth factors are also produced, additionally contributing to labor. In situations leading to preterm labor, as in maternal stress and fetal infection, cytokines trigger placental signaling sooner, thus leading to preterm birth.

  7. Injury and the orchestral environment: part II. Organisational culture, behavioural norms, and attitudes to injury.

    Science.gov (United States)

    Rickert, Dale Ll; Barrett, Margaret S; Ackermann, Bronwen J

    2014-06-01

    The organisational culture, behavioural norms, and attitudes of a workplace have a profound influence on levels of injury and illness amongst its workers. While this is well established in Work Health and Safety literature, very little research has attempted to understand the influence of organisational culture on injury risk in the orchestral profession. To address this, the current study aimed to investigate the influence of organisational culture on injury outcomes for orchestral musicians. Using a qualitative case study methodology, in-depth semi-structured interviews were undertaken with 10 professional orchestral cellists (2 freelance and 8 fulltime members) from a single Australian orchestra. After initial data analysis, further interviews were undertaken with a set of 5 orchestral management staff as a means of data triangulation. All data were analysed using a themes-based "analysis of narrative" approach. The findings indicate that an orchestral culture exists in which musicians see injury as a sign of weakness, failure, and poor musicianship. Such negative perceptions of injury influence musicians to play through considerable levels of pain and continue performing with injuries. Because of perceived judgment from the orchestral group, musicians were found to conceal injuries from colleagues and management staff. Freelance musicians felt that disclosing injuries may lead to decreased work opportunities, and both full-time and casual musicians felt that "opening up" about injury may subject them to group judgment about their technique or musicianship. The study suggests education measures which may be effective at influencing individual behaviours and attitudes as well as cultural change initiatives which could lead to long-term positive health outcomes in the orchestral workplace.

  8. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  9. Orchestrating Life Skills: The Effect of Increased School-Based Music Classes on Children's Social Competence and Self-Esteem

    Science.gov (United States)

    Rickard, Nikki S.; Appelman, Peter; James, Richard; Murphy, Fintan; Gill, Anneliese; Bambrick, Caroline

    2013-01-01

    Music training has been found to produce a range of cognitive benefits for young children, although well-controlled evaluation of the effects on psychosocial functioning has been limited. In this study participants were recruited from two grade levels (prep/grade 1, "N" = 210; grade 3, "N" = 149), and were allocated to a music…

  10. From Orchestration to Choreography through Contract Automata

    Directory of Open Access Journals (Sweden)

    Davide Basile

    2014-10-01

    Full Text Available We study the relations between a contract automata and an interaction model. In the former model, distributed services are abstracted away as automata - oblivious of their partners - that coordinate with each other through an orchestrator. The interaction model relies on channel-based asynchronous communication and choreography to coordinate distributed services. We define a notion of strong agreement on the contract model, exhibit a natural mapping from the contract model to the interaction model, and give conditions to ensure that strong agreement corresponds to well-formed choreography.

  11. Orchestration Roles to Facilitate Networked Innovation in a Healthcare Ecosystem

    Directory of Open Access Journals (Sweden)

    Minna Pikkarainen

    2017-09-01

    Full Text Available This study examines orchestration roles in a networked innovation context characterized by significant transformation. In particular, an exploratory case study approach is taken to study the roles of innovation network orchestrators and their actions to facilitate networked activities in different phases of the innovation process. The context of the case study, a healthcare ecosystem that aims to co-create technological innovations to support the pediatric surgery journey, provides valuable insights about orchestration and adds knowledge on specific limitations set by the orchestrator-specific and context-related issues in a professional context. The findings of this study highlight the need for careful coordination that allows shared understanding of the goals of the orchestration process and achievable innovation implementations. It is shown that parallel, evolving, and even changing orchestrator roles are needed in complex networked innovation settings.

  12. Service Orchestration on the Internet of Things

    Directory of Open Access Journals (Sweden)

    Jordán Pascual Espada

    2012-12-01

    Full Text Available On July 27, 2010, Jordán Pascual Espada defended his Master’s thesis at Oviedo University (Spain, titled: “Service Orchestration on the internet of things”. This Master’s thesis is the final part of the Web Engineering Official Research Master belonging to the European Higher Education Area. Jordán Pascual Espada defended his dissertation in a publicly open presentation held in the School of Computer Engineering at Oviedo University, and was able to comment on every question raised by his committee and the audience. The master’s thesis was supervised by his advisors, Juan Manuel Cueva Lovelle and Oscar Sanjuán Martínez. The thesis has been read and approved by his thesis committee, receiving the highest rating.

  13. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    In biological networks, millions of neurons organize themselves from microscopic noisy individuals to robust macroscopic entities. These entities are capable of producing higher functions like sensory processing, decision-making, and elaborate behavioral responses. Every aspect of these behaviors...... is the outcome of an advanced orchestration of the activity of populations of neurons. Through spiking activity, neurons are able to interact; yet we know little about how this interaction occurs in spinal networks. How is the activity distributed across the population? What is the composition of synaptic input...... that is received by the individual neurons and how is the synaptic input processed? This thesis focuses on aspects of these questions for spinal networks involved in the generation of stereotypical motor behaviors. The thesis consists of two studies. In the first study, I investigated the synaptic input...

  14. Orchestrating Transnational Environmental Governance in Maritime Shipping

    DEFF Research Database (Denmark)

    Lister, Jane; Taudal Poulsen, René; Ponte, Stefano

    2015-01-01

    —the International Maritime Organization. Drawing on original empirical evidence and archival data, we introduce a four-factor framework to investigate two main questions: why is shipping lagging in its environmental governance; and what is the potential for the International Maritime Organization to orchestrate...... emerging private ‘green shipping’ initiatives to achieve better ecological outcomes? Contributing to transnational governance theory, we find that conditions stalling regulatory progress include low environmental issue visibility, poor interest alignment, a broadening scope of environmental issues......Maritime shipping is the transmission belt of the global economy. It is also a major contributor to global environmental change through its under-regulated air, water and land impacts. It is puzzling that shipping is a lagging sector as it has a well-established global regulatory body...

  15. An Exploratory Comparison of Novice, Intermediate, and Expert Orchestral Conductors

    Science.gov (United States)

    Bergee, Martin J.

    2005-01-01

    This study compared novice, "intermediate" (graduate student), and expert orchestral conductors. Two novice conductors, one graduate student in orchestral conducting, and one expert conductor led a university symphony orchestra in part of the first movement of Brahms's Symphony No. 2. Wired for sound, conductors attempted to verbalize their…

  16. Orchestration of Social Modes in e-Learning

    DEFF Research Database (Denmark)

    Weinberger, Armin; Papadopoulos, Pantelis M.

    2016-01-01

    of tools offering possibilities to the teachers, orchestration refers to the purposeful mixture of different aspects of the learning experience, serving a particular set of learning goals. In this paper, we present the current dialogue on e-learning orchestration, identifying the questions and open issues...

  17. Orchestration of Social Modes in e-Learning

    DEFF Research Database (Denmark)

    Weinberger, Armin; Papadopoulos, Pantelis M.

    2016-01-01

    The concept of orchestration has recently emerged as a useful metaphor in technology-enhanced learning research communities, because of its explanatory power and appeal in describing how different learning activities, tools, and arrangements could be combined to promote learning. More than a buffet...... in orchestrating different social modes and learning arrangements....

  18. Real-Time QoS Control for Service Orchestration

    NARCIS (Netherlands)

    Bosman, J.; Berg, H. van den; Mei, R. van der

    2015-01-01

    Service orchestration has become the predominant paradigm that enables businesses to combine and integrate services offered by third parties. For the commercial viability of orchestrated services, it is crucial that they are offered at sharp price-quality ratios. A complicating factor is that many

  19. Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

    Science.gov (United States)

    Okada, Kimiko; Noda, Masatsugu; Nogawa, Hiroyuki

    2013-01-01

    The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

  20. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay.

    Science.gov (United States)

    Knizetova, Petra; Ehrmann, Jiri; Hlobilkova, Alice; Vancova, Iveta; Kalita, Ondrej; Kolar, Zdenek; Bartek, Jiri

    2008-08-15

    Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and progression of malignant brain tumors. Given the significance of tumor microenvironment in general, and the established role of paracrine VEGF signaling in glioblastoma (GBM) biology in particular, we explored the potential autocrine control of human astrocytoma behavior by VEGF. Using a range of cell and molecular biology approaches to study a panel of astrocytoma (grade III and IV/GBM)-derived cell lines and a series of clinical specimens from low- and high-grade astrocytomas, we show that co-expression of VEGF and VEGF receptors (VEGFRs) occurs commonly in astrocytoma cells. We found VEGF secretion and VEGF-induced biological effects (modulation of cell cycle progression and enhanced viability of glioblastoma cells) to function in an autocrine manner. Morevover, we demonstrated that the autocrine VEGF signaling is mediated via VEGFR2 (KDR), and involves co-activation of the c-Raf/MAPK, PI3K/Akt and PLC/PKC pathways. Blockade of VEGFR2 by the selective inhibitor (SU1498) abrogated the VEGF-mediated enhancement of astrocytoma cell growth and viability under unperturbed culture conditions. In addition, such interference with VEGF-VEGFR2 signaling potentiated the ionizing radiation-induced tumor cell death. In clinical specimens, both VEGFRs and VEGF were co-expressed in astroglial tumor cells, and higher VEGF expression correlated with tumor progression, thereby supporting the relevance of functional VEGF-VEGFR signaling in vivo. Overall, our results are consistent with a potential autocrine role of the VEGF-VEGFR2 (KDR) interplay as a factor contributing to malignant astrocytoma growth and radioresistance, thereby supporting the candidacy of this signaling cascade as a therapeutic target, possibly in combination with radiotherapy.

  1. Regulation of spermatogenesis by paracrine/autocrine testicular factors

    Institute of Scientific and Technical Information of China (English)

    MahmoudHuleihel; EitanLunenfeld

    2004-01-01

    Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors.Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family and testicular hormones. Testicular cytokines and growth factors (such as IL-1, IL-6, TNF, IFN-T, LIF and SCF) were shown to affect both the germ cell proliferation and the Leydig and Sertoli cells functions and secretion. Cytokines and growth factors are produced by immune cells and in the interstitial and seminiferous tubular compartments by various testicular cells, including Sertoli, Leydig, peritubular cells, spermatogonia, differentiated spermatogonia and even spermatozoa. Corresponding cytokine and growth factor receptors were demonstrated on some of the testicular cells. These cytokines also control the secretion of the gonadotropins and testosterone in the testis. Under pathological conditions the levels of pro-inflammatory cytokines are increased and negatively affected spermatogenesis. Thus,the expression levels and the mechanisms involved in the regulation of testicular paracrine/autocrine factors should be considered in future therapeutic strategies for male infertility. (Asian J Androl 2004 Sep; 6: 259-268)

  2. MDA-MB-231细胞源exosome对人脐静脉内皮细胞(HUVEC)VEGF自分泌及体外成管作用的影响%Effects of exosomes derived from MDA-MB-231 on the expression of autocrine VEGF and capillary-like tube formation in HUVECs

    Institute of Scientific and Technical Information of China (English)

    隆霜; 沈宜; 谢莹珊; 范维珂; 姜蓉; 陈黎

    2012-01-01

    目的 研究人乳腺癌MDA-MB-231细胞源exosome对人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)血管内皮生长因子(vascular endothelial growth factor,VEGF)自分泌及体外成管作用的影响,探讨肿瘤细胞源exosome在肿瘤微环境中对血管内皮细胞血管生成的调控作用.方法 低温超速离心及密度梯度离心法提取乳腺癌MDA-MB-231细胞源exosome;酶联免疫吸附试验(ELISA)检测HUVEC与exosome共培养24 h后上清液中VEGF的变化水平;Western blot技术检测HUVEC与exosome共培养24 h后VEGF、VEGFR2及p-VEGFR2的蛋白表达情况;RT-PCR法检测HUVEC与exosome共培养24 h后VEGF的基因表达情况;观察HUVEC与exosome共培养24 h后的体外成管能力.结果 HUVEC与exosome共培养24 h后上清液中VEGF为(110.851±18.404)pg/mL,与对照组相比差异具有统计学意义(P<0.05);Western blot结果显示,HUVEC与exosome共培养24 h后VEGF和p-VEGFR2的蛋白表达水平均增加(P<0.05);RT-PCR结果显示,HUVEC与exosome共培养24 h后VEGF的基因表达水平增加(P<0.05);体外成管实验显示,exosome显著提高了HUVEC的管腔形成能力(P<0.05).结论 乳腺癌MDA-MB-231细胞源exosome促进了血管内皮细胞VEGF的表达及分泌,激活了血管内皮细胞VEGF/VEGFR2自分泌环并提高了血管内皮细胞的体外成管能力,对促肿瘤血管生成有一定的调控作用.%Objective To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on the expression of autocrine vascular endothelial growth factor (VEGF) and capillary-like tube formation in human umbilical vein endothelial cells ( HUVECs) , and to observe the regulatory effect of exosomes derived from cancer cells on angiogenesis in tumor microenvironment. Methods Exosomes were purified by serial ultracentrifugation and sugar density ultracentrifugation. The expression of autocrine VEGF in HUVECs with exosomes co-cultured 24 hours were detected by

  3. Orchestration of angiogenesis by immune cells

    Directory of Open Access Journals (Sweden)

    Antonino eBruno

    2014-07-01

    Full Text Available It is widely accepted that the tumor microenvironment plays a major role in cancer and is indispensable for tumor progression. The tumor microenvironment involves many players going well beyond the malignant-transformed cells, including stromal, immune and endothelial cells. The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can orchestrate the symphony of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy.Considerable attention within the context of tumor angiogenesis should focus not only on the endothelial cells, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation and angiogenesis to tumor progression. Here we review the data in the literature and seek to identify the conductors of this orchestra. We also suggest that interrupting the immune -> inflammation -> angiogenesis -> tumor progression process can delay or prevent tumor insurgence and malignant disease.

  4. Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop.

    Science.gov (United States)

    Tang, Kai-Dun; Liu, Ji; Jovanovic, Lidija; An, Jiyuan; Hill, Michelle M; Vela, Ian; Lee, Terence Kin-Wah; Ma, Stephanie; Nelson, Colleen; Russell, Pamela J; Clements, Judith A; Ling, Ming-Tat

    2016-01-26

    Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention.

  5. Effect of Voice Conversion on Glinka's Orchestration Thinking in Russian Folk Music%俄罗斯民间音乐中的声部变换对格林卡配器思维的影响∗

    Institute of Scientific and Technical Information of China (English)

    黄惠力

    2015-01-01

    俄罗斯民间音乐蕴含着丰厚的音乐素材和独特的理论体系,俄罗斯古典音乐的开拓者和奠基人格林卡在其管弦乐作品中大量地借鉴了俄罗斯民间音乐中特有的声部变换技术,并将其与西方作曲技法相结合,形成了特有的管弦乐作品风格和具有俄罗斯民族音乐特点的配器手法,同时也为俄罗斯古典乐派形成具有传承性的音乐体系开辟了道路。%Russian folk music contains rich musical materials and a unique theoretical system. The Russian classical music pioneer and founder, Glinka, borrowed a large number of unique voice transformation techniques from Russian folk music and combined western composition techniques in the pipe string works. This has helped to form a unique orchestral work style and characteristics of Russian national music orchestration and has also paved the way to form the musical system of inheritance for Russian classical music researchers.

  6. Tchaikovsky, P.: Orchestral Suite no. 3 op. 55 / Terry Williams

    Index Scriptorium Estoniae

    Williams, Terry

    1996-01-01

    Uuest heliplaadist "Tchaikovsky, P.: Orchestral Suite no. 3 op. 55. Francesca di Rimini op. 32. Detroit Symphony Orchestra, Neeme Järvi". Chandos CHAN 9 419, distribution Media 7 (CD: 160F). TT: 1h 09'20"

  7. Optimization of Orchestral Layouts Based on Instrument Directivity Patterns

    Science.gov (United States)

    Stroud, Nathan Paul

    The experience of hearing an exceptional symphony orchestra perform in an excel- lent concert hall can be profound and moving, causing a level of excitement not often reached for listeners. Romantic period style orchestral music, recognized for validating the use of intense emotion for aesthetic pleasure, was the last significant development in the history of the orchestra. In an age where orchestral popularity is waning, the possibil- ity of evolving the orchestral sound in our modern era exists through the combination of our current understanding of instrument directivity patterns and their interaction with architectural acoustics. With the aid of wave field synthesis (WFS), newly proposed variations on orchestral layouts are tested virtually using a 64-channel WFS array. Each layout is objectively and subjectively compared for determination of which layout could optimize the sound of the orchestra and revitalize the excitement of the performance.

  8. Tchaikovsky, P.: Orchestral Suite no. 3 op. 55 / Terry Williams

    Index Scriptorium Estoniae

    Williams, Terry

    1996-01-01

    Uuest heliplaadist "Tchaikovsky, P.: Orchestral Suite no. 3 op. 55. Francesca di Rimini op. 32. Detroit Symphony Orchestra, Neeme Järvi". Chandos CHAN 9 419, distribution Media 7 (CD: 160F). TT: 1h 09'20"

  9. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.

    Science.gov (United States)

    Walsh, Tony G; Harper, Matthew T; Poole, Alastair W

    2015-01-01

    Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20-100 ng/mL(-1) could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca2+ mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway.

  10. Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chenqi Zhao

    2015-01-01

    Full Text Available Emerging evidence suggests a role for sphingosine-1-phosphate (S1P in various aspects of rheumatoid arthritis (RA pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2 on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1 and S1P lyase (SPL, the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation.

  11. Autocrine DNA fragmentation of intra-epithelial lymphocytes (IELs) in mouse small intestine.

    Science.gov (United States)

    Ogata, Masaki; Ota, Yuta; Nanno, Masanobu; Suzuki, Ryuji; Itoh, Tsunetoshi

    2015-09-01

    Intraepithelial lymphocytes (IELs) are present in the intestinal epithelium. Mechanisms of IELs for the protection of villi from foreign antigens and from infections by micro-organisms have not been sufficiently explained. Although more than 70% of mouse duodenal and jejunal IELs bear γδTCR (γδIELs), the functions of γδIELs are little investigated. We stimulate γδIELs by anti-CD3 monoclonal antibody (mAb) injection. The mAb activates γδIELs to release Granzyme B (GrB) into the spaces surrounding the γδIELs and intestinal villous epithelial cells (IECs). Released GrB induces DNA fragmentation in IECs independently of Perforin (Pfn). IECs immediately repair their fragmented DNA. Activated IELs reduce their cell size, remain for some time in the epithelium after the activation and are ultimately eliminated without leaving the site. We focus our attention on the response of IELs to the released GrB present in the gap surrounding IELs, after activation, in order to examine whether the released GrB has a similar effect on IELs to that observed on IECs in our previous studies. DNA fragmentation is also induced in IELs together with the repair of fragmented DNA thereafter. The time-kinetics of both events were found to be identical to those observed in IECs. DNA fragmentation in IELs is Pfn-independent. Here, we present Pfn-independent "autocrine DNA fragmentation" in IELs and the repair of fragmented DNA in IELs and discuss their biological significance. Autocrine DNA fragmentation has never been reported to date in vivo.

  12. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  13. Subjectivity of Time Perception: A Visual Emotional Orchestration

    Directory of Open Access Journals (Sweden)

    Anna eLambrechts

    2011-11-01

    Full Text Available The aim of the present study was to examine how visual emotional content could orchestrate time perception. The experimental design allowed us to single out the share of emotion in the specific processing of content-bearing pictures, i.e. real-life scenes. Two groups of participants had to reproduce the duration (2, 4 or 6s of content-deprived stimuli (grey squares or differentially valenced content-bearing stimuli, which included neutral, pleasant and unpleasant pictures (IAPS. Results showed that the effect of content differed according to duration: for 2s, the reproduced duration was longer for content-bearing than content-deprived stimuli, but the difference between the two types of stimuli decreased as duration increased and was not significant for the longest duration (6s. For 4s, emotional (pleasant and unpleasant stimuli were judged longer than neutral pictures. Furthermore, whatever the duration, the precision of the reproduction was greater for non-emotional than emotional stimuli (pleasant and unpleasant. These results suggest a dissociation within content effect on timing: relative overestimation of all content-bearing pictures limited to short durations (2s, and delayed overestimation of emotional relative to neutral pictures at 4s, as well as a lesser precision in the temporal judgment of emotional pictures whatever the duration. The angle of emotion processing in time perception allows us to discuss a few theoretical models proposed in the timing literature.

  14. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    DEFF Research Database (Denmark)

    Hamerlik, Petra; Lathia, Justin D; Rasmussen, Rikke;

    2012-01-01

    glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2-Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF-VEGFR2-NRP1......, which is associated with VEGFR2-NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions...

  15. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum.

    Science.gov (United States)

    Doğaner, Berkalp A; Yan, Lawrence K Q; Youk, Hyun

    2016-04-01

    'Secrete-and-sense cells' can communicate by secreting a signaling molecule while also producing a receptor that detects the molecule. The cell can potentially 'talk' to itself ('self-communication') or talk to neighboring cells with the same receptor ('neighbor communication'). The predominant forms of secrete-and-sense cells are self-communicating 'autocrine cells', which are largely found in animals, and neighbor-communicating 'quorum sensing cells', which are mostly associated with bacteria. While assumed to function independently of one another, recent studies have discovered quorum-sensing organs and autocrine-signaling microbes. Moreover, similar types of genetic circuit control many autocrine and quorum-sensing cells. Here, we outline these recent findings and explain how autocrine and quorum sensing are two sides of a many-sided 'dice' created by the versatile secrete-and-sense cell.

  16. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Shogo [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan); Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya [Graduate School of Health Sciences, Hokkaido University, Sapporo (Japan); Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara [Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo (Japan); Ozaki, Yukio [Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi (Japan); Moriyama, Takanori, E-mail: moriyama@hs.hokuda.ac.jp [Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  17. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  18. Decentralized Orchestration of Composite Ogc Web Processing Services in the Cloud

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Cao, J.

    2016-09-01

    Current web-based GIS or RS applications generally rely on centralized structure, which has inherent drawbacks such as single points of failure, network congestion, and data inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved for new applications on Internet or Web. Decentralized orchestration offers performance improvements in terms of increased throughput and scalability and lower response time. This paper investigates build time and runtime issues related to decentralized orchestration of composite geospatial processing services based on OGC WPS standard specification. A case study of dust storm detection was demonstrated to evaluate the proposed method and the experimental results indicate that the method proposed in this study is effective for its ability to produce the high quality solution at a low cost of communications for geospatial processing service composition problem.

  19. DECENTRALIZED ORCHESTRATION OF COMPOSITE OGC WEB PROCESSING SERVICES IN THE CLOUD

    Directory of Open Access Journals (Sweden)

    F. Xiao

    2016-09-01

    Full Text Available Current web-based GIS or RS applications generally rely on centralized structure, which has inherent drawbacks such as single points of failure, network congestion, and data inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved for new applications on Internet or Web. Decentralized orchestration offers performance improvements in terms of increased throughput and scalability and lower response time. This paper investigates build time and runtime issues related to decentralized orchestration of composite geospatial processing services based on OGC WPS standard specification. A case study of dust storm detection was demonstrated to evaluate the proposed method and the experimental results indicate that the method proposed in this study is effective for its ability to produce the high quality solution at a low cost of communications for geospatial processing service composition problem.

  20. FGF19 functions as autocrine growth factor for hepatoblastoma.

    Science.gov (United States)

    Elzi, David J; Song, Meihua; Blackman, Barron; Weintraub, Susan T; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E; Shiio, Yuzuru

    2016-03-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma.

  1. Logistics orchestration scenarios in a potted plant supply chain network

    NARCIS (Netherlands)

    Keizer, de M.; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    The Dutch potted plant sector has a dominant international position, but new marketing channels and emerging markets on distance call for new logistics concepts. This paper explores the potential of an advanced logistics concept, i.e. logistics orchestration, that aims for improved collaboration

  2. Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework

    Science.gov (United States)

    Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit

    2015-01-01

    The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…

  3. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  4. Shostakovich: The Orchestral Songs Vol. 2 / Michael Tanner

    Index Scriptorium Estoniae

    Tanner, Michael

    1996-01-01

    Uuest heliplaadist "Shostakovich: The Orchestral Songs Vol. 2: Six Romances on texts by Japanese poets, Op. 21. Six Poems on Marina Tsvetayeva, Op. 143. Suite on Verses of Michelangelo, Op. 145. Gothenburg Symphony Orchestra, Neeme Järvi". DG 447 085-2GH (71 minutes:DDD)

  5. Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework

    Science.gov (United States)

    Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit

    2015-01-01

    The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…

  6. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  7. Shostakovich: The Orchestral Songs Vol. 2 / Michael Tanner

    Index Scriptorium Estoniae

    Tanner, Michael

    1996-01-01

    Uuest heliplaadist "Shostakovich: The Orchestral Songs Vol. 2: Six Romances on texts by Japanese poets, Op. 21. Six Poems on Marina Tsvetayeva, Op. 143. Suite on Verses of Michelangelo, Op. 145. Gothenburg Symphony Orchestra, Neeme Järvi". DG 447 085-2GH (71 minutes:DDD)

  8. Approaches to Learning and Study Orchestrations in High School Students

    Science.gov (United States)

    Cano, Francisco

    2007-01-01

    In the framework of the SAL (Students' approaches to learning) position, the learning experience (approaches to learning and study orchestrations) of 572 high school students was explored, examining its interrelationships with some personal and familial variables. Three major results emerged. First, links were found between family's intellectual…

  9. Score-Informed Source Separation for Multichannel Orchestral Recordings

    Directory of Open Access Journals (Sweden)

    Marius Miron

    2016-01-01

    Full Text Available This paper proposes a system for score-informed audio source separation for multichannel orchestral recordings. The orchestral music repertoire relies on the existence of scores. Thus, a reliable separation requires a good alignment of the score with the audio of the performance. To that extent, automatic score alignment methods are reliable when allowing a tolerance window around the actual onset and offset. Moreover, several factors increase the difficulty of our task: a high reverberant image, large ensembles having rich polyphony, and a large variety of instruments recorded within a distant-microphone setup. To solve these problems, we design context-specific methods such as the refinement of score-following output in order to obtain a more precise alignment. Moreover, we extend a close-microphone separation framework to deal with the distant-microphone orchestral recordings. Then, we propose the first open evaluation dataset in this musical context, including annotations of the notes played by multiple instruments from an orchestral ensemble. The evaluation aims at analyzing the interactions of important parts of the separation framework on the quality of separation. Results show that we are able to align the original score with the audio of the performance and separate the sources corresponding to the instrument sections.

  10. Pärt: Chamber and Orchestral Works / Robert Cowan

    Index Scriptorium Estoniae

    Cowan, Robert

    1994-01-01

    Uuest heliplaadist "Pärt: Chamber and Orchestral Works. Bournemouth Sinfonietta, Richard Studt. EMI Eminence CD CD-EMX 2221; Fratres; Cantus in memory of Benjamin Britten; Summa; Spiegel im Spiegel; Festina lente; Tabula Rasa; Fratres - selected comparison: Bachmann, Kibonoff (12/94)(CATA) 09026 61824-2. Kremer, Jarrett (ECM) 817 764-2

  11. Logistics orchestration scenarios in a potted plant supply chain network

    NARCIS (Netherlands)

    Keizer, de M.; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    The Dutch potted plant sector has a dominant international position, but new marketing channels and emerging markets on distance call for new logistics concepts. This paper explores the potential of an advanced logistics concept, i.e. logistics orchestration, that aims for improved collaboration bet

  12. Orchestrating Masses of Sensors; A Design-Driven Development Approach

    OpenAIRE

    Kabáč, Milan; Consel, Charles

    2015-01-01

    International audience; This paper proposes a design-driven development approach that is dedicated to the domain of orchestration of masses of sensors. The developer declares what an application does using a domain-specific language (DSL). Our compiler processes domain-specific declarations to generate a customized programming framework that guides and supports the programming phase.

  13. Pärt: Chamber and Orchestral Works / Robert Cowan

    Index Scriptorium Estoniae

    Cowan, Robert

    1994-01-01

    Uuest heliplaadist "Pärt: Chamber and Orchestral Works. Bournemouth Sinfonietta, Richard Studt. EMI Eminence CD CD-EMX 2221; Fratres; Cantus in memory of Benjamin Britten; Summa; Spiegel im Spiegel; Festina lente; Tabula Rasa; Fratres - selected comparison: Bachmann, Kibonoff (12/94)(CATA) 09026 61824-2. Kremer, Jarrett (ECM) 817 764-2

  14. Positive Feedback Loop of Autocrine BDNF from Microglia Causes Prolonged Microglia Activation

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-08-01

    Full Text Available Background/Aims: Microglia, which represent the immune cells of the central nervous system (CNS, have long been a subject of study in CNS disease research. Substantial evidence indicates that microglial activation functions as a strong neuro-inflammatory response in neuropathic pain, promoting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF-α. In addition, activated microglia release brain-derived neurotrophic factor (BDNF, which acts as a powerful cytokine. In this study, we performed a series of in vitro experiments to examine whether a positive autocrine feedback loop existed between microglia-derived BDNF and subsequent microglial activation as well as the mechanisms underlying this positive feedback loop. Methods: Because ATP is a classic inducer of microglial activation, firstly, we examined ATP-activated microglia in the present study. Secondly, we used TrkB/Fc, the BDNF sequester, to eliminate the effects of endogenous BDNF. ATP-stimulated microglia without BDNF was examined. Finally, we used exogenous BDNF to further determine whether BDNF could directly activate BV2 microglia. In all experiments, to quantify BV2 microglia activation, the protein levels of CD11b, a microglial activation marker, were measured by western blot. A Transwell migration assay was used to examine microglial migration. To assess the synthesis and release of proinflammatory cytokines, western blot was used to measure BDNF synthesis, and ELISA was used to quantify TNF-α release. Results: In our present research, we have observed that ATP dramatically activates microglia, enhancing microglial migration, increasing the synthesis of BDNF and up-regulating the release of TNF-α. Microglial activation is inhibited following the sequestration of endogenous BDNF, resulting in impaired microglial migration and decreased TNF-α release. Furthermore, exogenous BDNF can also activate microglia to subsequently enhance migration and increase TNF

  15. Interleukin-19 acts as a negative autocrine regulator of activated microglia.

    Directory of Open Access Journals (Sweden)

    Hiroshi Horiuchi

    Full Text Available Activated microglia can exert either neurotoxic or neuroprotective effects, and they play pivotal roles in the pathogenesis and progression of various neurological diseases. In this study, we used cDNA microarrays to show that interleukin-19 (IL-19, an IL-10 family cytokine, is markedly upregulated in activated microglia. Furthermore, we found that microglia are the only cells in the nervous system that express the IL-19 receptor, a heterodimer of the IL-20Rα and IL-20Rβ subunits. IL-19 deficiency increased the production of such pro-inflammatory cytokines as IL-6 and tumor necrosis factor-α in activated microglia, and IL-19 treatment suppressed this effect. Moreover, in a mouse model of Alzheimer's disease, we observed upregulation of IL-19 in affected areas in association with disease progression. Our findings demonstrate that IL-19 is an anti-inflammatory cytokine, produced by activated microglia, that acts negatively on microglia in an autocrine manner. Thus, microglia may self-limit their inflammatory response by producing the negative regulator IL-19.

  16. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  17. Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells

    Science.gov (United States)

    Kho, Dhong Hyo; Nangia-Makker, Pratima; Balan, Vitaly; Hogan, Victor; Tait, Larry; Wang, Yi; Raz, Avraham

    2013-01-01

    Trastuzumab (Herceptin®) is an effective targeted therapy in HER2 overexpressing human breast carcinoma. However, many HER2-positive patients initially or eventually become resistant to this treatment, so elucidating mechanisms of trastuzumab resistance that emerge in breast carcinoma cells is clinically important. Here we show that autocrine motility factor (AMF) binds to HER2 and induces cleavage to the ectodomain-deleted and constitutively active form p95HER2. Mechanistic investigations indicated that interaction of AMF with HER2 triggers HER2 phosphorylation and metalloprotease-mediated ectodomain shedding, activating PI3K and MAPK signaling and ablating the ability of trastuzumab to inhibit breast carcinoma cell growth. Further, we found that HER2 expression and AMF secretion were inversely related in breast carcinoma cells. Based on this evidence that AMF may contribute to HER2-mediated breast cancer progression, our findings suggest that AMF-HER2 interaction might be a novel target for therapeutic management of breast cancer patients whose disease is resistant to trastuzumab. PMID:23248119

  18. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities.

    Science.gov (United States)

    Allerstorfer, S; Sonvilla, G; Fischer, H; Spiegl-Kreinecker, S; Gauglhofer, C; Setinek, U; Czech, T; Marosi, C; Buchroithner, J; Pichler, J; Silye, R; Mohr, T; Holzmann, K; Grasl-Kraupp, B; Marian, B; Grusch, M; Fischer, J; Micksche, M; Berger, W

    2008-07-10

    Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.

  19. Introduction to Devices Orchestration in Internet of Things Using SBPMN

    Directory of Open Access Journals (Sweden)

    Alejandro González García

    2011-12-01

    Full Text Available In this research we try to provide an architecture that allows the orchestration of objects that are part of the Internet of things creating business processes. Internet of Things is still in full development; this implies that there is a lack of standards for its proper implementation. Among these gaps is for example the technology used to allow objects to connect to the network, since there are several options but none seems to end imposed that is why this work try to provide architecture that imposes an alternative solution to this problem. However, it is difficult to provide a common solution to all the objects used in everyday life because of its great diversity, it requires us to classify them and thus create an appropriate architecture for each of the types These architectures are designed to facilitate the devices orchestration in a similar way as is currently done with web services enabling business process modeling.

  20. Orchestration Framework for Learning Activities in Augmented Reality Environments

    OpenAIRE

    Ibáñez, María Blanca; Delgado Kloos, Carlos; Di Serio, Angela

    2011-01-01

    Proceedings of: Across Spaces11 Workshop in conjunction with the EC-TEL2011, Palermo, Italy, September 21, 2011 In this paper we show how Augmented Reality (AR) technology restricted to the use of mobiles or PCs, can be used to develop learning activities with the minimun level of orchestation required by meaningful learning sequences. We use Popcode as programming language to deploy orchestrated learning activities specified with an AR framework. Publicado

  1. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  2. Psycho and The Orchestration of Anxiety

    OpenAIRE

    Deutsch, Stephen

    2010-01-01

    Since its release in 1960, Alfred Hitchcock’s Psycho has entered the consciousness of our culture as have few other films. Its striking imagery, combined with its universally recognised score, has prompted a wealth of scholarly output. New understanding in the areas of emotion and cognition now affords us the opportunity to re-examine this film from a less familiar vantage point. This article places Psycho within the context of American TV drama of the 1950s and explores the effect of Bernard...

  3. Melatonin--a pleiotropic, orchestrating regulator molecule.

    Science.gov (United States)

    Hardeland, Rüdiger; Cardinali, Daniel P; Srinivasan, Venkatramanujam; Spence, D Warren; Brown, Gregory M; Pandi-Perumal, Seithikurippu R

    2011-03-01

    Melatonin, the neurohormone of the pineal gland, is also produced by various other tissues and cells. It acts via G protein-coupled receptors expressed in various areas of the central nervous system and in peripheral tissues. Parallel signaling mechanisms lead to cell-specific control and recruitment of downstream factors, including various kinases, transcription factors and ion channels. Additional actions via nuclear receptors and other binding sites are likely. By virtue of high receptor density in the circadian pacemaker, melatonin is involved in the phasing of circadian rhythms and sleep promotion. Additionally, it exerts effects on peripheral oscillators, including phase coupling of parallel cellular clocks based on alternate use of core oscillator proteins. Direct central and peripheral actions concern the up- or downregulation of various proteins, among which inducible and neuronal NO synthases seem to be of particular importance for antagonizing inflammation and excitotoxicity. The methoxyindole is also synthesized in several peripheral tissues, so that the total content of tissue melatonin exceeds by far the amounts in the circulation. Emerging fields in melatonin research concern receptor polymorphism in relation to various diseases, the control of sleep, the metabolic syndrome, weight control, diabetes type 2 and insulin resistance, and mitochondrial effects. Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging. Newly discovered influences on sirtuins and downstream factors indicate that melatonin has a role in mitochondrial biogenesis.

  4. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review).

    Science.gov (United States)

    Long, Xinxin; Ye, Yingnan; Zhang, Lijie; Liu, Pengpeng; Yu, Wenwen; Wei, Feng; Ren, Xiubao; Yu, Jinpu

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process through which epithelial cells trans-differentiate and acquire an aggressive mesenchymal phenotype. In tumor cells, EMT is a vital step of tumor progression and metastasis. Amid the increasing interest in tumor EMT, only a few studies focused on the soluble mediators secreted by tumor cells passing through this phenotypic switch. In this review, we focus on the essential role of interleukin-8 (IL-8) signaling for the acquisition and maintenance of tumor EMT via direct and indirect mechanisms. Besides the autocrine loop between IL-8 and tumor cells that have gone through EMT, IL-8 could potentiate adjacent epithelial tumor cells into a mesenchymal phenotype via a paracrine mode. Moreover, understanding the role of IL-8 in EMT will provide insight into the pathogenesis of tumor progression and may facilitate the development of an effective strategy for the prevention and treatment of metastatic cancer.

  5. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-05-01

    Full Text Available Abstract Background Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Methods Migration was assessed in luminal (MCF-7, post-EMT (MDA-MB-231, MDA-MB-435S, and basal-like (MDA-MB-468 human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG was tested. Results Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Conclusions Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients.

  6. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    Science.gov (United States)

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  7. Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Luca Parisi

    2017-01-01

    Full Text Available Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.

  8. Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases

    Science.gov (United States)

    Bassani, Barbara; Tremolati, Marco; Gini, Elisabetta; Farronato, Giampietro; Bruno, Antonino

    2017-01-01

    Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions. PMID:28428965

  9. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.

  10. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  11. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation.

    Directory of Open Access Journals (Sweden)

    Ludvig J Backman

    Full Text Available It has been hypothesised that substance P (SP may be produced by primary fibroblastic tendon cells (tenocytes, and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10⁻⁷ M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.

  12. TRIO: Burst Buffer Based I/O Orchestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University; Oral, H Sarp [ORNL; Pritchard, Michael [Auburn University; Wang, Bin [Auburn University; Yu, Weikuan [Auburn University

    2015-01-01

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desired to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.

  13. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Hynes, Richard O

    2017-06-30

    Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.

  14. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration.

    Science.gov (United States)

    Luga, Valbona; Zhang, Liang; Viloria-Petit, Alicia M; Ogunjimi, Abiodun A; Inanlou, Mohammad R; Chiu, Elaine; Buchanan, Marguerite; Hosein, Abdel Nasser; Basik, Mark; Wrana, Jeffrey L

    2012-12-21

    Stroma in the tumor microenvironment plays a critical role in cancer progression, but how it promotes metastasis is poorly understood. Exosomes are small vesicles secreted by many cell types and enable a potent mode of intercellular communication. Here, we report that fibroblast-secreted exosomes promote breast cancer cell (BCC) protrusive activity and motility via Wnt-planar cell polarity (PCP) signaling. We show that exosome-stimulated BCC protrusions display mutually exclusive localization of the core PCP complexes, Fzd-Dvl and Vangl-Pk. In orthotopic mouse models of breast cancer, coinjection of BCCs with fibroblasts dramatically enhances metastasis that is dependent on PCP signaling in BCCs and the exosome component, Cd81 in fibroblasts. Moreover, we demonstrate that trafficking in BCCs promotes tethering of autocrine Wnt11 to fibroblast-derived exosomes. This work reveals an intercellular communication pathway whereby fibroblast exosomes mobilize autocrine Wnt-PCP signaling to drive BCC invasive behavior.

  15. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction

    OpenAIRE

    Nishimune, Hiroshi; Jarad, George; Moulson, Casey L.; Müller, Ulrich; Miner, Jeffrey H.; Valdez, Gregorio; Sanes, Joshua R

    2008-01-01

    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the α4, α5, and β2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at ...

  16. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    Science.gov (United States)

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  17. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  18. Orchestrating learning during implementation of a 3D virtual world

    Science.gov (United States)

    Karakus, Turkan; Baydas, Ozlem; Gunay, Fatma; Coban, Murat; Goktas, Yuksel

    2016-10-01

    There are many issues to be considered when designing virtual worlds for educational purposes. In this study, the term orchestration has acquired a new definition as the moderation of problems encountered during the activity of turning a virtual world into an educational setting for winter sports. A development case showed that community plays a key role in both the emergence of challenges and in the determination of their solutions. The implications of this study showed that activity theory was a useful tool for understanding contextual issues. Therefore, instructional designers first developed relevant tools and community-based solutions. This study attempts to use activity theory in a prescriptive way, though it is known as a descriptive theory. Finally, since virtual world projects have many aspects, the variety of challenges and practical solutions presented in this study will provide practitioners with suggestions on how to overcome problems in future.

  19. Programming Cloud Resource Orchestration Framework: Operations and Research Challenges

    CERN Document Server

    Ranjan, Rajiv

    2012-01-01

    The emergence of cloud computing over the past five years is potentially one of the breakthrough advances in the history of computing. It delivers hardware and software resources as virtualization-enabled services and in which administrators are free from the burden of worrying about the low level implementation or system administration details. Although cloud computing offers considerable opportunities for the users (e.g. application developers, governments, new startups, administrators, consultants, scientists, business analyst, etc.) such as no up-front investment, lowering operating cost, and infinite scalability, it has many unique research challenges that need to be carefully addressed in the future. In this paper, we present a survey on key cloud computing concepts, resource abstractions, and programming operations for orchestrating resources and associated research challenges, wherever applicable.

  20. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis.

    Science.gov (United States)

    Tawk, Marcel; Araya, Claudio; Lyons, Dave A; Reugels, Alexander M; Girdler, Gemma C; Bayley, Philippa R; Hyde, David R; Tada, Masazumi; Clarke, Jonathan D W

    2007-04-12

    The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.

  1. Engaging with Mathematics in the Kindergarten. Orchestrating a Fairy Tale through Questioning and Use of Tools

    Science.gov (United States)

    Carlsen, Martin

    2013-01-01

    The aim of this study is to analyse how a kindergarten teacher orchestrated a mathematical activity involving a fairy tale. Taking a sociocultural perspective on learning and development, naturally occurring talk-in-interaction has been analysed in order to scrutinise the subtleties of the orchestration. The fairy tale "Goldilocks and the…

  2. Vascular endothelial growth factor regulates osteoblast survival – evidence for an autocrine feedback mechanism

    Directory of Open Access Journals (Sweden)

    Street John

    2009-06-01

    Full Text Available Abstract Background Apoptosis of osteoblasts and osteoclasts regulates bone homeostasis. Skeletal injury in humans results in 'angiogenic' responses primarily mediated by vascular endothelial growth factor(VEGF, a protein essential for bone repair in animal models. Osteoblasts release VEGF in response to a number of stimuli and express receptors for VEGF in a differentiation dependent manner. This study investigates the putative role of VEGF in regulating the lifespan of primary human osteoblasts(PHOB in vitro. Methods PHOB were examined for VEGF receptors. Cultures were supplemented with VEGF(0–50 ng/mL, a neutralising antibody to VEGF, mAB VEGF(0.3 ug/mL and Placental Growth Factor (PlGF, an Flt-1 receptor-specific VEGF ligand(0–100 ng/mL to examine their effects on mineralised nodule assay, alkaline phosphatase assay and apoptosis.. The role of the VEGF specific antiapoptotic gene target BCl2 in apoptosis was determined. Results PHOB expressed functional VEGF receptors. VEGF 10 and 25 ng/mL increased nodule formation 2.3- and 3.16-fold and alkaline phosphatase release 2.6 and 4.1-fold respectively while 0.3 ug/mL of mAB VEGF resulted in approx 40% reductions in both. PlGF 50 ng/mL had greater effects on alkaline phosphatase release (103% increase than on nodule formation (57% increase. 10 ng/mL of VEGF inhibited spontaneous and pathological apoptosis by 83.6% and 71% respectively, while PlGF had no significant effect. Pretreatment with mAB VEGF, in the absence of exogenous VEGF resulted in a significant increase in apoptosis (14 vs 3%. VEGF 10 ng/mL increased BCl2 expression 4 fold while mAB VEGF decreased it by over 50%. Conclusion VEGF is a potent regulator of osteoblast life-span in vitro. This autocrine feedback regulates survival of these cells, mediated via a non flt-1 receptor mechanism and expression of BCl2 antiapoptotic gene.

  3. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells.

    Science.gov (United States)

    Kloen, P; Jennings, C L; Gebhardt, M C; Springfield, D S; Mankin, H J

    1994-08-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be associated with increased expression of TGF-beta. Since bone is the largest storage site and producer of TGF-beta, we speculated on the existence of an autocrine mechanism in osteosarcoma, a malignant bone tumor. Expression of TGF-beta cell surface receptors, effects on growth of TGF-beta and TGF-beta antibodies and production of 2 TGF-beta isoforms were studied in a panel of 7 osteosarcoma cell lines. In contrast to most previous reports on the effects of TGF-beta on osteosarcoma cell growth, we found a mitogenic effect of TGF-beta 1 in 4 of 7 osteosarcoma cell lines. Receptor profiles for TGF-beta were aberrant in 5 of the 7 cell lines tested, and production of TGF-beta 1 and TGF-beta 2 varied among cell lines. Addition of anti-TGF-beta antagonized the effects of endogenous TGF-beta. Our results suggest a potential role of TGF-beta in autocrine growth control of osteosarcoma cells.

  4. Effects of Autocrine Motility Factor (AMF) on the Migration and Invasion of Glioblastoma U251 Cells and Their Mechanism%自分泌运动因子AMF对人胶质母细胞瘤U251细胞迁移、侵袭的影响及相关机制研究

    Institute of Scientific and Technical Information of China (English)

    李阳; 汤宁; 刘哲宇; 孙铮

    2016-01-01

    为了探讨自分泌运动因子(autocrine motility factor,AMF)对人胶质母细胞瘤U251细胞迁移、侵袭影响及其相关分子机制,该实验采用了RT-PCR及免疫印迹法检测RNA干扰AMF后U251细胞中AMF的表达变化;细胞划痕实验、Transwell实验分别观察了AMF干扰前后U251细胞迁移、侵袭能力的变化;免疫印记检测AMF干扰前后细胞中总Akt、p-Akt、Sox2、基质金属蛋白酶-2(matrix metalloprotein-2,MMP-2)及MMP-9蛋白水平的变化.研究结果表明,AMF成功干扰后U251细胞的迁移和侵袭能力受到抑制,p-Akt、Sox2、MMP-2和MMP-9蛋白表达水平降低.该研究表明,AMF敲低可以通过下调PI3K/Ak信号通路活性及Sox2、MMP-2和MMP-9蛋白水平,抑制人胶质母细胞瘤U251细胞迁移和侵袭.

  5. The Live Access Server Scientific Product Generation Through Workflow Orchestration

    Science.gov (United States)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.

    2006-12-01

    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  6. SF/HGF-c-Met autocrine and paracrine promote metastasis of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Qian Xie; Kang-Da Liu; Mei-Yu Hu; Kang Zhou

    2001-01-01

    AIM: To explore the role of SF/HGF-Met autocrine and parscrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western Blot in 4 HCC cell lines, including HepG2, Hep3B,SMMC7721 and MHCC-1, the last cell line had a higher potential of metastasis. Sf/hgf cDNA was transfected by the method of Lipofectin into SMMC7721. SF/HGF and c-met antibody were used to stimulate and block SF/HGF-c-met signal transduction. Cell morphology, mobility, and proliferation were respectively compared by microscopic observation, wound healing assay and cell growth curve. RESULTS: HCC malignancy appeared to be relative to its met-SF/HGF expression. In MHCC-1, c-met expression was much stronger than that in other cell lines with lower potential of metastasis and only SF/HGF autocrine existed in MHCC-1. After sf/hgf cDNA transfection or conditioned medium of MHCC-1 stimulation, SMMC7721 changed into elongated morphology, and the abilities of proliferation ( P < 0.05) and mobility increased. Such bio-activity could he blocked by c-met antibody ( P< 0.05). CONCLUSION: The system of SF/HGF-c-met autocrine and paracrine played an important role in development and metastasis potential of HCC. Inhibition of SF/HGF-c-met signal transduction system may reduce the growth and metastasis of HCC.

  7. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  8. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  9. Automation Hooks Architecture Trade Study for Flexible Test Orchestration

    Science.gov (United States)

    Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.

    2010-01-01

    We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.

  10. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.

    Science.gov (United States)

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G M; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-11-10

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.

  11. Endocrine orchestration of cardiovascular, gastrointestinal and hypothalamic control.

    Science.gov (United States)

    Angelone, T; Quintieri, A M; Amodio, N; Cerra, M C

    2011-01-01

    The richly structured neuroendocrine control of the heart in health and disease requires, in addition to the autonomic nervous outflow, the essential contribute of various and often interacting humoral peptides (e.g. natriuretic peptides, Chromogranin-A-derived fragments, etc). In many cases, these molecules also influence the activity of other organ systems, including the gastrointestinal apparatus, in which they control mucosal function as well as motility and secretion. Interestingly, by acting centrally, some of these peptides also regulate satiety and appetite, thus forming an interesting link between cardiac and gastrointestinal function, and the feeding pattern. Prolonged inhibition and/or activation of these peptide pathways frequently results in severe and long-lasting dysfunctions, including cardiovascular diseases associated to alimentary disorders (e.g. obesity). Notably, their multifarious actions and mutual interactions make them excellent candidates for long-term resetting of both cardiac, gastrointestinal and nutrition homeostasis. Here we will provide only few examples taken from the quickly evolving scenario, with the purpose to provide indications concerning the complex circuits generated by multilevel signalling peptides, which contributes to orchestrate the association between cardiovascular, gastrointestinal and alimentary functions. This will highlight not only the complexity of the cardiovascular and GI regulatory networks, but also aspects of integration between feeding stimulating peptides and the other neuroendocrine systems affecting the heart and the GI tract.

  12. Perception of orchestral musicians about work environment and conditions

    Directory of Open Access Journals (Sweden)

    Clarissa Stefani Teixeira

    2014-04-01

    Full Text Available The objective of this study was to investigate the perception of 11 orchestral string (viola and violin musicians of both genders with respect to their work environment and conditions. We applied a questionnaire with demographic information and the scale Profile of Work Environment and Working Conditions by Nahas et al. (2009, which analyzes the following components: physical environment, social environment, development and professional achievement, salary and benefits, and social relevance. The social environment component presented the highest score - 8.00 (1.50 points, followed by professional achievement - 7.11 (1.96 points, and physical environment - 6.89 (0.93 points. The salary and benefits provided by the orchestra presented the lowest score - 6.78 (1.56 points. In general, the musicians showed positive perceptions of the components related to work environment and working conditions. However, remuneration and social relevance are work bases that could contribute to improve the working conditions of these professionals.

  13. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    Science.gov (United States)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  14. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    Science.gov (United States)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  15. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    Science.gov (United States)

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  16. The first trimester human trophoblast cell line ACH-3P: A novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations – TNF-α stimulates MMP15 expression

    Directory of Open Access Journals (Sweden)

    Knöfler Martin

    2007-12-01

    Full Text Available Abstract Background The trophoblast compartment of the placenta comprises various subpopulations with distinct functions. They interact among each other by secreted signals thus forming autocrine or paracrine regulatory loops. We established a first trimester trophoblast cell line (ACH-3P by fusion of primary human first trimester trophoblasts (week 12 of gestation with a human choriocarcinoma cell line (AC1-1. Results Expression of trophoblast markers (cytokeratin-7, integrins, matrix metalloproteinases, invasion abilities and transcriptome of ACH-3P closely resembled primary trophoblasts. Morphology, cytogenetics and doubling time was similar to the parental AC1-1 cells. The different subpopulations of trophoblasts e.g., villous and extravillous trophoblasts also exist in ACH-3P cells and can be immuno-separated by HLA-G surface expression. HLA-G positive ACH-3P display pseudopodia and a stronger expression of extravillous trophoblast markers. Higher expression of insulin-like growth factor II receptor and human chorionic gonadotropin represents the basis for the known autocrine stimulation of extravillous trophoblasts. Conclusion We conclude that ACH-3P represent a tool to investigate interaction of syngeneic trophoblast subpopulations. These cells are particularly suited for studies into autocrine and paracrine regulation of various aspects of trophoblast function. As an example a novel effect of TNF-α on matrix metalloproteinase 15 in HLA-G positive ACH-3P and explants was found.

  17. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  18. Parametric method for the noise risk assessment of professional orchestral musicians

    National Research Council Canada - National Science Library

    Matteo Bo; Marina Clerico; Federica Pognant

    2016-01-01

    ..." OH&S approach, which was identified to be necessarily organizational.MATERIALS AND METHODSIn this study, a parametric-based method for orchestral exposure assessment and management was developed...

  19. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells.

    Science.gov (United States)

    Redhai, Siamak; Hellberg, Josephine E E U; Wainwright, Mark; Perera, Sumeth W; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C I; Wilson, Clive

    2016-10-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.

  20. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner.

    Science.gov (United States)

    Ramirez-Carrozzi, Vladimir; Sambandam, Arivazhagan; Luis, Elizabeth; Lin, Zhongua; Jeet, Surinder; Lesch, Justin; Hackney, Jason; Kim, Janice; Zhou, Meijuan; Lai, Joyce; Modrusan, Zora; Sai, Tao; Lee, Wyne; Xu, Min; Caplazi, Patrick; Diehl, Lauri; de Voss, Jason; Balazs, Mercedesz; Gonzalez, Lino; Singh, Harinder; Ouyang, Wenjun; Pappu, Rajita

    2011-10-12

    Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the T(H)17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate-induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.

  1. Autocrine glutamatergic transmission for the regulation of embryonal carcinoma stem cells.

    Science.gov (United States)

    Teng, Lin; Lei, Hui-Min; Sun, Fan; An, Shi-Min; Tang, Ya-Bin; Meng, Shuang; Wang, Cong-Hui; Shen, Ying; Chen, Hong-Zhuan; Zhu, Liang

    2016-08-02

    Glutamate behaves as the principal excitatory neurotransmitter in the vertebrate central nervous system and recently demonstrates intercellular signaling activities in periphery cancer cells. How the glutamatergic transmission is organized and operated in cancer stem cells remains undefined. We have identified a glutamatergic transmission circuit in embryonal carcinoma stem cells. The circuit is organized and operated in an autocrine mechanism and suppresses the cell proliferation and motility. Biological analyses determined a repertoire of glutamatergic transmission components, glutaminase, vesicular glutamate transporter, glutamate NMDA receptor, and cell membrane excitatory amino-acid transporter, for glutamate biosynthesis, package for secretion, reaction, and reuptake in mouse and human embryonal carcinoma stem cells. The glutamatergic components were also identified in mouse transplanted teratocarcinoma and in human primary teratocarcinoma tissues. Released glutamate acting as the signal was directly quantified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Genetic and pharmacological abolishment of the endogenously released glutamate-induced tonic activation of the NMDA receptors increased the cell proliferation and motility. The finding suggests that embryonal carcinoma stem cells can be actively regulated by establishing a glutamatergic autocrine/paracrine niche via releasing and responding to the transmitter.

  2. An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis

    Science.gov (United States)

    Carbone, Carmine; Piro, Geny; Fassan, Matteo; Tamburrino, Anna; Mina, Maria Mihaela; Zanotto, Marco; Chiao, Paul J; Bassi, Claudio; Scarpa, Aldo; Tortora, Giampaolo; Melisi, Davide

    2015-01-01

    The identification of the earliest molecular events responsible for the metastatic dissemination of pancreatic ductal adenocarcinoma (PDAC) remains critical for early detection, prevention, and treatment interventions. In this study, we hypothesized that an autocrine signaling between Angiopoietin-like Protein (ANGPTL)2 and its receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) might be responsible for the epithelial-to-mesenchymal transition (EMT) and, the early metastatic behavior of cells in pancreatic preneoplastic lesions. We demonstrated that the sequential activation of KRAS, expression of HER2 and silencing of p16/p14 are sufficient to progressively and significantly increase the secretion of ANGPTL2, and the expression of LILRB2. Silencing the expression of ANGPTL2 reverted EMT and reduced migration in these cell lines. Blocking ANGPTL2 receptor LILRB2 in KRAS, and KRAS/HER2/p16p14shRNA LILRB2- expressing cells reduced ANGPTL2-induced cell proliferation and invasion. An increasingly significant overexpression of ANGPTL2 was observed in in a series of 68 different human PanIN and 27 PDAC lesions if compared with normal pancreatic parenchyma. These findings showed that the autocrine signaling of ANGPTL2 and its receptor LILRB2 plays key roles in sustaining EMT and the early metastatic behavior of cells in pancreatic preneoplastic lesions supporting the potential role of ANGPTL2 for early detection, metastasis prevention, and treatment in PDAC. PMID:25360865

  3. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling

    Science.gov (United States)

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  4. XIAP gene expression and function is regulated by autocrine and paracrine TGF-β signaling

    Directory of Open Access Journals (Sweden)

    Van Themsche Céline

    2010-08-01

    Full Text Available Abstract Background X-linked inhibitor of apoptosis protein (XIAP is often overexpressed in cancer cells, where it plays a key role in survival and also promotes invasiveness. To date however, the extracellular signals and intracellular pathways regulating its expression and activity remain incompletely understood. We have previously showed that exposure to each of the three TGF-β (transforming growth factor beta isoforms upregulates XIAP protein content in endometrial carcinoma cells in vitro. In the present study, we have investigated the clinical relevance of TGF-β isoforms in endometrial tumours and the mechanisms through which TGF-β isoforms regulate XIAP content in uterine cancer cells. Methods TGF-β isoforms immunoreactivity in clinical samples from endometrial tumours was assessed using immunofluorescence. Two model cancer cell lines (KLE endometrial carcinoma cells and HeLa cervical cancer cells and pharmacological inhibitors were used to investigate the signalling pathways regulating XIAP expression and activity in response to autocrine and paracrine TGF-β in cancer cell. Results We have found immunoreactivity for each TGF-β isoform in clinical samples from endometrial tumours, localizing to both stromal and epithelial/cancer cells. Blockade of autocrine TGF-β signaling in KLE endometrial carcinoma cells and HeLa cervical cancer cells reduced endogenous XIAP mRNA and protein levels. In addition, each TGF-β isoform upregulated XIAP gene expression when given exogenously, in a Smad/NF-κB dependent manner. This resulted in increased polyubiquitination of PTEN (phosphatase and tensin homolog on chromosome ten, a newly identified substrate for XIAP E3 ligase activity, and in a XIAP-dependent decrease of PTEN protein levels. Although each TGF-β isoform decreased PTEN content in a XIAP- and a Smad-dependent manner, decrease of PTEN levels in response to only one isoform, TGF-β3, was blocked by PI3-K inhibitor LY294002. Conclusions

  5. 'Big'-insulin-like growth factor-II signaling is an autocrine survival pathway in gastrointestinal stromal tumors.

    NARCIS (Netherlands)

    Rikhof, B.; Graaf, W.T.A. van der; Suurmeijer, A.J.H.; Doorn, J. van; Meersma, G.J.; Groenen, P.J.T.A.; Schuuring, E.M.; Meijer, C.; Jong, S. de

    2012-01-01

    New treatment targets need to be identified in gastrointestinal stromal tumors (GISTs) to extend the treatment options for patients experiencing failure with small-molecule tyrosine kinase inhibitors, such as imatinib. Insulin-like growth factor (IGF)-II acts as an autocrine factor in several tumor

  6. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.

  7. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling.

    Science.gov (United States)

    Lim, Xinhong; Tan, Si Hui; Koh, Winston Lian Chye; Chau, Rosanna Man Wah; Yan, Kelley S; Kuo, Calvin J; van Amerongen, Renée; Klein, Allon Moshe; Nusse, Roel

    2013-12-06

    The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/β-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.

  8. Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer

    DEFF Research Database (Denmark)

    Nitze, Louise Maymann; Galsgaard, Elisabeth Douglas; Din, Nanni

    2013-01-01

    synthesised PRL in breast cancer. We analysed the expression of PRL in human breast cancer tumours using qPCR analysis and in situ hybridization (ISH). PRL mRNA expression was very low or undetectable in the majority of samples in three cDNA arrays representing samples from 144 breast cancer patients...... and in 13 of 14 breast cancer cell lines when analysed by qPCR. In accordance, PRL expression did not reach detectable levels in any of the 19 human breast carcinomas or 5 cell lines, which were analysed using a validated ISH protocol. Two T47D-derived breast cancer cell lines were stably transfected......The pituitary hormone prolactin (PRL) has been implicated in tumourigenesis. Expression of PRL and its receptor (PRLR) was reported in human breast epithelium and breast cancer cells. It was suggested that PRL may act as an autocrine/paracrine growth factor. Here, we addressed the role of locally...

  9. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    Science.gov (United States)

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  10. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor.

    Science.gov (United States)

    Nicholl, Michael B; Ledgewood, Chelsea L; Chen, Xuhui; Bai, Qian; Qin, Chenglu; Cook, Kathryn M; Herrick, Elizabeth J; Diaz-Arias, Alberto; Moore, Bradley J; Fang, Yujiang

    2014-12-01

    Interleukin-35 (IL-35), an IL-12 cytokine family member, mediates the immune inhibitory function of regulatory T cells (Treg). We assayed the presence of IL-35 in paraffin-embedded human pancreas cancer (PCAN) and unexpectedly found IL-35 was expressed mainly by epithelial derived PCAN cells, but not by Treg. We further examined the expression and effect of exogenous IL-35 in human PCAN cell lines and found IL-35 promoted growth and inhibited apoptosis in PCAN cell lines. IL-35 induced proliferation correlated with an increase in cyclin B, cyclin D, cdk2, and cdk4 and a decrease in p27 expression, while inhibition of apoptosis was associated with an increase in Bcl-2 and a decrease in TRAILR1. We conclude IL-35 is produced by PCAN in vivo and promotes PCAN cell line growth in vitro. These results might indicate an important new role for IL-35 as an autocrine growth factor in PCAN growth.

  11. Orchestrating Radical Innovation Through Corporate Entrepreneurship: What About the Little Ones?

    DEFF Research Database (Denmark)

    Middel, Rick; Lassen, Astrid Heidemann; Timenes Laugen, Bjørge

    2009-01-01

    In spite of a growing body of knowledge on corporate entrepreneurship as well as radical innovation, there is still a lack of knowledge on how entrepreneurial behavior and its effect on radical innovation relate to smaller organizations. Smaller organizations bear particular characteristics which...... significant reasons to make use of corporate entrepreneurship in radical innovation processes. Proactivity, risk-taking and autonomy were in particular significant elements of the approach applied by the case firms to orchestrate radical innovation processes.......In spite of a growing body of knowledge on corporate entrepreneurship as well as radical innovation, there is still a lack of knowledge on how entrepreneurial behavior and its effect on radical innovation relate to smaller organizations. Smaller organizations bear particular characteristics which...... differ from those of larger organizations, and such differences can be expected to have an influence on the use of corporate entrepreneurship and the creation of radical innovation. In the paper the central problem will be the clarification of the role that corporate entrepreneurship plays...

  12. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms.

    Science.gov (United States)

    Subramanian, Karthik; Du, Ruijuan; Tan, Nguan Soon; Ho, Bow; Ding, Jeak Ling

    2013-05-15

    Lysis of RBCs during numerous clinical settings such as severe hemolytic anemia, infection, tissue injury, or blood transfusion releases the endogenous damage-associated molecular pattern, hemoglobin (Hb), into the plasma. The redox-reactive Hb generates cytotoxic reactive oxygen species, disrupting the redox balance and impairing the immune-responsive blood cells. Therefore, it is crucial to understand how the immune system defends against the cytotoxic Hb. We identified a shortcut "capture and quench" mechanism of detoxification of Hb by the monocyte scavenger receptor CD163, independent of the well-known dominant antioxidant, haptoglobin. Our findings support a highly efficient two-pass mechanism of detoxification and clearance of Hb: 1) a direct suppression of Hb-pseudoperoxidase activity by CD163, involving an autocrine loop of CD163 shedding, sequestration of Hb, recycling, and homeostasis of CD163 in human monocytes and 2) paracrine transactivation of endothelial cells by the shedded soluble CD163 (sCD163), which further detoxifies and clears residual Hb. We showed that sCD163 and IgG interact with free Hb in the plasma and subsequently the sCD163-Hb-IgG complex is endocytosed into monocytes via FcγR. The endocytosed sCD163 is recycled to restore the homeostasis of CD163 on the monocyte membrane in an autocrine cycle, whereas the internalized Hb is catabolized. Using ex vivo coculture experiments, we demonstrated that the monocyte-derived sCD163 and IgG shuttle residual plasma Hb into the proximal endothelial cells. These findings suggest that CD163 and IgG collaborate to engage monocytes and endothelial cells in a two-pass detoxification mechanism to mount a systemic defense against Hb-induced oxidative stress.

  13. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    Science.gov (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  14. Differential roles of ATF-2 in survival and DNA repair contributing to radioresistance induced by autocrine soluble factors in A549 lung cancer cells.

    Science.gov (United States)

    Desai, Sejal; Kumar, Amit; Laskar, S; Pandey, B N

    2014-11-01

    Radioresistance is one of the obstacles to the effective radiotherapy for non-small cell lung cancer. Soluble factors in the tumour microenvironment are often implicated in radioresistance but the underpinning mechanism(s) remain largely elusive. We herein studied the wholesome effect of autocrine cytokines and growth factors in the form of self-conditioned medium (CM) on the radiosensitivity of A549 cells. A549 cells grown in CM exhibited radioresistance which was associated with increased survival and DNA repair. CM induced pro-survival pathways through increased intracellular cAMP and phosphorylation of JNK and p38. Downstream to JNK/p38 signalling, ATF-2 phosphorylated at Thr69/71 was accompanied with its increased transcriptional activity in CM treated cells. Pre-treatment with cAMP inhibitor and silencing of ATF-2 abrogated the CM-induced survival. Interestingly, in cells treated with CM followed by radiation, ATF-2 was found to be switched over from transcription factor to DNA damage response protein. In CM treated cells, after γ-radiation p-ATF-2(Thr69/71) and subsequently the transcriptional activity of ATF-2 were declined with simultaneous rise in p-ATF-2(Ser490/498). Immunoprecipitation/immunoblotting and inhibitor studies showed that phosphorylation of ATF-2 at Ser490/498 was mediated by ATM. Moreover, p-ATF-2(Ser490/498) was found to be co-localised with γ-H2AX in DNA repair foci in CM-treated cells. The DNA repair activity of ATF-2 was assisted with higher activity MRN complex in cells grown in CM. Our study revealed that, autocrine soluble factors regulate dual but differential role of ATF-2 as a transcription factor or DNA repair protein, which collectively culminate in radioresistance of A549 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  16. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    Science.gov (United States)

    Lauvau, Grégoire; Goriely, Stanislas

    2016-09-01

    Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.

  17. Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function

    Directory of Open Access Journals (Sweden)

    Omary Chillo

    2016-08-01

    Full Text Available The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.

  18. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  19. Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE₂.

    Directory of Open Access Journals (Sweden)

    Luciana B Gentile

    Full Text Available Vascular Endothelial Growth Factor (VEGF is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PGE₂ are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE₂ generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE₂ generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE₂ production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE₂ on VEGF production, Caco-2 cells were treated with cPLA₂ (ATK and COX-2 (NS-398 inhibitors, that completely block PGE₂ generation. The Caco-2 cells were also treated with a non selective PGE₂ receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE₂ or selective EP₂ receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE₂ appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl₂ was decreased by inhibition of concomitant PGE₂ generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE

  20. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling.

    Science.gov (United States)

    Leung, Kar Wah; Barnstable, Colin J; Tombran-Tink, Joyce

    2009-04-01

    Inflammation is a major contributing factor to many blinding disorders including uveitis, diabetic retinopathy, and age-related macular degeneration. Here we examined the response of the retinal pigment epithelium (RPE) to physiological levels of lipopolysaccharide (LPS) to understand the role of this epithelium in inflammatory retinal conditions. Expression of a group of inflammatory mediators was identified by gene array analysis and confirmed by PCR and immunocytochemistry in primary human RPE cultures and ARPE19. The effects of LPS on the expression of these cytokines and RPE survival were examined by PCR, Luminex bead, and MTT assays. RPE cells express many cytokine receptors including IL-1R, -4R, -6R, -8RA, IFNAR1, IFNGR1/2 and secrete a range of pro- and anti-inflammatory cytokines including IL-4, -6, -8, -10, -17, IFN-gamma, MCP-1, and VEGF. LPS increases IL-13RA1 and IFNAR1, and decreases IL-7R receptor expression. It also increases RPE secretion of IL-4, -6, -8, -10, IFN-gamma and MCP-1, and is toxic to RPE cells at LC(50)=17.7 microg/ml. LPS toxicity is mediated by IL-6 and IL-8 through an autocrine feedback loop. Silencing IL-6R and IL-8RA gene expression by siRNA blocks death by their respective ligands or LPS. These findings imply that RPE cells are acutely sensitive to inflammatory stress and that over secretion of IL-6 and IL-8 by this epithelium during inflammatory stimulus may be an underlying factor in the progression of some retinal pathologies.

  1. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza

    2009-10-01

    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  2. 基于注解的服务编排%Annotation-Based Service Orchestration

    Institute of Scientific and Technical Information of China (English)

    王斌; 黄鹤远; 徐景民; 朱俊

    2009-01-01

    Service orchestration plays a vital role in assembling services into business processes in a Service Oriented Arcmtecture.In current practices,the orchestrating logic is usually described by a process language,which is theretore separated from the services in the system implemented by certain programming language.It introduces two issues:1)It cost additional efforts for developers to be proficient with a new process language/script,and its running environment.2)It causes development performance degradation due to transtormation efforts for process language and programming language,such as transforms Java services into web services.To overcome these issues,this paper proposes a novel alternative system which takes advantage of the annotation construct of Java programming language to represent business processes.Through the expenments,we found that developers can efficiently develop business processes based on their current proficient programming language skill using the proposed system to achieve the service orchestration.

  3. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  4. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  5. WPS orchestration using the Taverna workbench: The eScience approach

    Science.gov (United States)

    de Jesus, J.; Walker, P.; Grant, M.; Groom, S.

    2012-10-01

    eScience is an umbrella concept which covers internet technologies, such as web service orchestration that involves manipulation and processing of high volumes of data, using simple and efficient methodologies. This concept is normally associated with bioinformatics, but nothing prevents the use of an identical approach for geoinfomatics and OGC (Open Geospatial Consortium) web services like WPS (Web Processing Service). In this paper we present an extended WPS implementation based on the PyWPS framework using an automatically generated WSDL (Web Service Description Language) XML document that replicates the WPS input/output document structure used during an Execute request to a server. Services are accessed using a modified SOAP (Simple Object Access Protocol) interface provided by PyWPS, that uses service and input/outputs identifiers as element names. The WSDL XML document is dynamically generated by applying XSLT (Extensible Stylesheet Language Transformation) to the getCapabilities XML document that is generated by PyWPS. The availability of the SOAP interface and WSDL description allows WPS instances to be accessible to workflow development software like Taverna, enabling users to build complex workflows using web services represented by interconnecting graphics. Taverna will transform the visual representation of the workflow into a SCUFL (Simple Conceptual Unified Flow Language) based XML document that can be run internally or sent to a Taverna orchestration server. SCUFL uses a dataflow-centric orchestration model as opposed to the more commonly used orchestration language BPEL (Business Process Execution Language) which is process-centric.

  6. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Marbouty, Martial; Martins, Francisco de Lemos

    2016-01-01

    of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell...

  7. Kindergarten Teachers' Orchestration of Mathematical Activities Afforded by Technology: Agency and Mediation

    Science.gov (United States)

    Carlsen, Martin; Erfjord, Ingvald; Hundeland, Per Sigurd; Monaghan, John

    2016-01-01

    This paper focuses on kindergarten teachers' interactions with young children during mathematical learning activities involving the use of digital tools. We aim to characterise the teachers' roles and actions in these activities and extend considerations of teachers' orchestrations current in the research literature with regard to agency and…

  8. Webbing and Orchestration. Two Interrelated Views on Digital Tools in Mathematics Education

    Science.gov (United States)

    Trouche, Luc; Drijvers, Paul

    2014-01-01

    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of "webbing" and "instrumental orchestration" are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this article, we investigate…

  9. Webbing and orchestration : Two interrelated views on digital tools in mathematics education

    NARCIS (Netherlands)

    Trouche, L.; Drijvers, Paul

    2014-01-01

    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of webbing and instrumental orchestration are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this a

  10. Orchestrating innovation networks: The case of innovation brokers in the agri-food sector

    NARCIS (Netherlands)

    Batterink, M.H.; Wubben, E.F.M.; Klerkx, L.W.A.; Omta, S.W.F.

    2010-01-01

    This explorative study of network orchestration processes conducted by innovation brokers addresses new issues in bridging small and medium-sized enterprises (SMEs) and research institutes in innovation networks. The study includes four in-depth case studies in the agri-food sector from different co

  11. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Dando, Robin; Roper, Stephen D

    2009-11-01

    Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.

  12. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    Science.gov (United States)

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  13. Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis.

    Science.gov (United States)

    Koči, Juraj; Simo, Ladislav; Park, Yoonseong

    2014-03-01

    Dopamine (DA) is known to be the most potent activator of tick salivary secretion, which is an essential component of successful tick feeding. We examined the quantitative changes of catecholamines using a method coupling high-pressure liquid chromatography with electrochemical detection (HPLC-ECD). We also investigated the levels of catecholamines conjugated to other molecules utilising appropriate methods to hydrolyse the conjugates. Three different biological samples, salivary glands, synganglia, ovaries and haemolymph were compared, and the largest quantity of DA was detected in salivary gland extracts (up to ∼100pg/tick), supporting the hypothesis that autocrine/paracrine dopamine activates salivary secretion. Quantitative changes of catecholamines in the salivary glands over the entire blood feeding duration were examined. The amount of dopamine in the salivary glands increased until the day 5 of feeding, at which the rapid engorgement phase began. We also detected a small but significant amount of norepinephrine in the salivary glands. Interestingly, saliva collected after induction of salivary secretion by the cholinergic agonist pilocarpine contained a large amount of DA sulphate with a trace amount of DA, suggesting a potential biological role of DA sulphate in tick saliva.

  14. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development

    Institute of Scientific and Technical Information of China (English)

    Yongmei Wang; Daniel D. Bikle; Wenhan Chang

    2013-01-01

    Insulin-like growth factor-I (IGF-I) regulates cell growth, survival, and differentiation by acting on the IGF-I receptor, (IGF-IR)-a tyrosine kinase receptor, which elicits diverse intracellular signaling responses. All skeletal cells express IGF-I and IGF-IR. Recent studies using tissue/cell-specific gene knockout mouse models and cell culture techniques have clearly demonstrated that locally produced IGF-I is more critical than the systemic IGF-I in supporting embryonic and postnatal skeletal development and bone remodeling. Local IGF-I/IGF-IR signaling promotes the growth, survival and differentiation of chondrocytes and osteo-blasts, directly and indirectly, by altering other autocrine/paracrine signaling pathways in cartilage and bone, and by enhancing interactions among these skeletal cells through hormonal and physical means. Moreover, local IGF-I/IGF-IR signaling is critical for the anabolic bone actions of growth hormone and parathyroid hormone. Herein, we review evidence supporting the actions of local IGF-I/IGF-IR in the above aspects of skeletal development and remodeling.

  15. GDNF protects enteric glia from apoptosis: evidence for an autocrine loop

    Directory of Open Access Journals (Sweden)

    Steinkamp Martin

    2012-01-01

    Full Text Available Abstract Background Enteric glia cells (EGC play an important role in the maintenance of intestinal mucosa integrity. During the course of acute Crohn's disease (CD, mucosal EGC progressively undergo apoptosis, though the mechanisms are largely unknown. We investigated the role of Glial-derived neurotrophic factor (GDNF in the regulation of EGC apoptosis. Methods GDNF expression and EGC apoptosis were determined by immunofluorescence using specimen from CD patients. In primary rat EGC cultures, GDNF receptors were assessed by western blot and indirect immunofluorescence microscopy. Apoptosis in cultured EGC was induced by TNF-α and IFN-γ, and the influence of GDNF on apoptosis was measured upon addition of GDNF or neutralizing anti-GDNF antibody. Results Increased GDNF expression and Caspase 3/7 activities were detected in in specimen of CD patients but not in healthy controls. Moreover, inactivation of GDNF sensitized in EGC cell to IFN-γ/TNF-α induced apoptosis. Conclusions This study proposes the existence of an autocrine anti-apoptotic loop in EGC cells which is operative in Crohn's disease and dependent of GDNF. Alterations in this novel EGC self-protecting mechanism could lead to a higher susceptibility towards apoptosis and thus contribute to disruption of the mucosal integrity and severity of inflammation in CD.

  16. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kana [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Division of Orthopedic Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ninomiya, Ken [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sonoda, Koh-Hei [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); Miyauchi, Yoshiteru; Hoshi, Hiroko [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Division of Orthopedic Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro [Division of Orthopedic Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyamoto, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Division of Orthopedic Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2009-06-05

    Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays a critical role in the recruitment and activation of leukocytes. Here, we describe that multinuclear osteoclast formation was significantly inhibited in cells derived from MCP-1-deficient mice. MCP-1 has been implicated in the regulation of osteoclast cell-cell fusion; however defects of multinuclear osteoclast formation in the cells from mice deficient in DC-STAMP, a seven transmembrane receptor essential for osteoclast cell-cell fusion, was not rescued by recombinant MCP-1. The lack of MCP-1 in osteoclasts resulted in a down-regulation of DC-STAMP, NFATc1, and cathepsin K, all of which were highly expressed in normal osteoclasts, suggesting that osteoclast differentiation was inhibited in MCP-1-deficient cells. MCP-1 alone did not induce osteoclastogenesis, however, the inhibition of osteoclastogenesis in MCP-1-deficient cells was restored by addition of recombinant MCP-1, indicating that osteoclastogenesis was regulated in an autocrine/paracrine manner by MCP-1 under the stimulation of RANKL in osteoclasts.

  17. Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction.

    Science.gov (United States)

    Nishimune, Hiroshi; Valdez, Gregorio; Jarad, George; Moulson, Casey L; Müller, Ulrich; Miner, Jeffrey H; Sanes, Joshua R

    2008-09-22

    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the alpha4, alpha5, and beta2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin alpha5 and arrested in mutants lacking both alpha4 and alpha5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.

  18. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pan Zhongzong

    2009-01-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors. Methods Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1 was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B, and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression. Results Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα. Conclusion Our data indicate

  19. Sound Practice– Improving occupational health and safety for professional orchestral musicians in Australia

    Directory of Open Access Journals (Sweden)

    Bronwen Jane Ackermann

    2014-09-01

    Full Text Available The Sound Practice Project is a five-year study involving baseline evaluation, development and implementation of musician-specific work health and safety initiatives. A cross-sectional population physical and psychological survey and physical assessment were conducted at the same time, with an auditory health assessment conducted later. The results were used to guide the development of a series of targeted interventions, encompassing physical, psychological and auditory health components. This paper provides an overview of the project but focuses on the health findings arising from the cross-sectional survey.377 musicians from the eight professional symphony orchestras in Australia took part in the cross-sectional study (about 70% of eligible musicians. Eighty-four percent (84% of musicians reported past performance-related musculoskeletal disorder (PRMD episodes; 50% were suffering a current PRMD. Of the 63% who returned hearing surveys, 43% believed they had hearing loss, and 64% used earplugs at least intermittently. Noise exposure was found to be high in private practice, although awareness of risk and earplug use in this environment was lower than in orchestral settings. Improved strategic approaches, acoustic screens and recently developed active earplugs were found to provide effective new options for hearing protection. With respect to psychosocial screening, female musicians reported significantly more trait anxiety, music performance anxiety, social anxiety, and other forms of anxiety and depression than male musicians. The youngest musicians were significantly more anxious compared with the oldest musicians. Thirty-three percent (33% of musicians may meet criteria for a diagnosis of social phobia; 32% returned a positive depression screen and 22% for post-traumatic stress disorder. PRMDs and trigger point discomfort levels were strongly associated with increasing severity of psychological issues such as depression and music

  20. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock.

    Science.gov (United States)

    Alvarez-Saavedra, Matías; Antoun, Ghadi; Yanagiya, Akiko; Oliva-Hernandez, Reynaldo; Cornejo-Palma, Daniel; Perez-Iratxeta, Carolina; Sonenberg, Nahum; Cheng, Hai-Ying M

    2011-02-15

    Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.

  1. Raft-dependent endocytosis of autocrine motility factor/phosphoglucose isomerase: a potential drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Liliana D Kojic

    Full Text Available BACKGROUND: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway. METHODOLOGY/PRINCIPAL FINDINGS: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen

  2. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis.

    Science.gov (United States)

    Duque, Gustavo; Huang, Dao Chao; Macoritto, Michael; Rivas, Daniel; Yang, Xian Fang; Ste-Marie, Louis Georges; Kremer, Richard

    2009-03-01

    Interferon (IFN)gamma is a strong inhibitor of osteoclast differentiation and activity. However, its role in osteoblastogenesis has not been carefully examined. Using microarray expression analysis, we found that several IFNgamma-inducible genes were upregulated during early phases of osteoblast differentiation of human mesenchymal stem cells (hMSCs). We therefore hypothesized that IFNgamma may play a role in this process. We first observed a strong and transient increase in IFNgamma production following hMSC induction to differentiate into osteoblasts. We next blocked this endogenous production using a knockdown approach with small interfering RNA and observed a strong inhibition of hMSC differentiation into osteoblasts with a concomitant decrease in Runx2, a factor indispensable for osteoblast development. Additionally, exogenous addition of IFNgamma accelerated hMSC differentiation into osteoblasts in a dose-dependent manner and induced higher levels of Runx2 expression during the early phase of differentiation. We next examined IFNgamma signaling in vivo in IFNgamma receptor 1 knockout (IFNgammaR1(-/-)) mice. Compared with their wild-type littermates, IFNgammaR1(-/-) mice exhibited a reduction in bone mineral density. As in the in vitro experiments, MSCs obtained from IFNgammaR1(-/-) mice showed a lower capacity to differentiate into osteoblasts. In summary, we demonstrate that the presence of IFNgamma plays an important role during the commitment of MSCs into the osteoblastic lineage both in vitro and in vivo, and that this process can be accelerated by exogenous addition of IFNgamma. These data therefore support a new role for IFNgamma as an autocrine regulator of hMSC differentiation and as a potential new target of bone-forming cells in vivo.

  3. Safflower extract: a novel renal fibrosis antagonist that functions by suppressing autocrine TGF-beta.

    Science.gov (United States)

    Yang, Yu-Lin; Chang, Shan-Yu; Teng, Hsiang-Chun; Liu, Yi-Shiuan; Lee, Tao-Chen; Chuang, Lea-Yea; Guh, Jinn-Yuh; Chang, Fang-Rong; Liao, Tung-Nan; Huang, Jau-Shyang; Yeh, Jeng-Hsien; Chang, Wen-Teng; Hung, Min-Yuan; Wang, Ching-Jen; Chiang, Tai-An; Hung, Chien-Ya; Hung, Tsung-Jen

    2008-06-01

    Progressive renal disease is characterized by the accumulation of extracellular matrix proteins in the renal interstitium. Hence, developing agents that antagonize fibrogenic signals is a critical issue facing researchers. The present study investigated the blood-circulation-promoting Chinese herb, safflower, on fibrosis status in NRK-49F cells, a normal rat kidney interstitial fibroblast, to evaluate the underlying signal transduction mechanism of transforming growth factor-beta (TGF-beta), a potent fibrogenic growth factor. Safflower was characterized and extracted using water. Renal fibrosis model was established both in vitro with fibroblast cells treated with beta-hydroxybutyrate and in vivo using rats undergone unilateral ureteral obstruction (UUO). Western blotting was used to examine protein expression in TGF-beta-related signal proteins such as type I and type II TGF-beta receptor, Smads2/3, pSmad2/3, Smads4, and Smads7. ELISA was used to analyze bioactive TGF-beta1 and fibronectin levels in the culture media. Safflower extract (SE) significantly inhibited beta-HB-induced fibrosis in NRK cells concomitantly with dose-dependent inhibition of the type I TGF-beta1 receptor and its down-stream signals (i.e., Smad). Moreover, SE dose-dependently enhanced inhibitory Smad7. Thus, SE can suppress renal cellular fibrosis by inhibiting the TGF-beta autocrine loop. Moreover, remarkably lower levels of tissue collagen were noted in the nephron and serum TGF-beta1 of UUO rats receiving oral SE (0.15 g/3 ml/0.25 kg/day) compared with the untreated controls. Hence, SE is a potential inhibitor of renal fibrosis. We suggest that safflower is a novel renal fibrosis antagonist that functions by down-regulating TGF-beta signals.

  4. PTHrP induces autocrine/paracrine proliferation of bone tumor cells through inhibition of apoptosis.

    Directory of Open Access Journals (Sweden)

    Isabella W Y Mak

    Full Text Available Giant Cell Tumor of Bone (GCT is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathyroid hormone-related protein (PTHrP. The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastasis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor.

  5. Autocrine and paracrine STIP1 signaling promote osteolytic bone metastasis in renal cell carcinoma.

    Science.gov (United States)

    Wang, Jiang; You, Hongbo; Qi, Jun; Yang, Caihong; Ren, Ye; Cheng, Hao

    2017-03-07

    Bone metastases are responsible for some of the most devastating complications of renal cell carcinoma (RCC). However, pro-metastatic factors leading to the highly osteolytic characteristics of RCC bone metastasis have barely been explored. We previously developed novel bone-seeking RCC cell lines by the in vivo selection strategy and performed a comparative proteome analysis on their total cell lysate. Here, we focused on STIP1 (stress-induced phosphoprotein 1), the high up-regulated protein in the bone-seeking cells, and explored its clinical relevance and functions in RCC bone metastasis. We observed high levels of both intracellular and extracellular STIP1 protein in bone metastatic tissue samples. Elevated STIP1 mRNA in the primary RCC tumors remarkably correlated with worse clinical outcomes. Furthermore, both human recombinant STIP1 protein and anti-STIP1 neutralizing antibody were used in the functional studies. We found that 1) STIP1 protein on the extracellular surface of tumor cells promoted the proliferation and migration/invasion of RCC tumor cells through the autocrine STIP1-ALK2-SMAD1/5 pathway; and 2) STIP1 protein secreted into the extracellular tumor stromal area, promoted the differentiation of osteoclasts through the paracrine STIP1-PrPc-ERK1/2 pathway. Increased cathepsin K (CTSK), the key enzyme secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption was further detected in the differentiated osteoclasts. These results provide evidence of the great potential of STIP1 as a novel biomarker and therapeutic target in RCC bone metastasis.

  6. Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo.

    Science.gov (United States)

    Jin, Xing Liang; O'Neill, C

    2011-06-01

    Autocrine embryotropins act as survival signals for the preimplantation embryo. In this study we examined the role of Paf in the transcription of the key proto-oncogenes Bcl2 and Fos. Transcripts were detected in oocytes and some cohorts of zygotes but not in cohorts of 2-cell, 8-cell, and blastocyst stage embryos. Immunolocalization of BCL2 and FOS showed little staining in oocytes and zygotes but increased staining in the embryo from the 2-cell to blastocyst stage. Paf (37 nM) treatment of 2-cell embryos caused an alpha-amanitin (26 μM)-sensitive increase in Bcl2 and Fos transcripts 20 min after treatment that subsided by 40 min. This increase was blocked by inhibition of calcium (by BAPTA-AM) or phosphatidylinositol-3-kinase signaling (by LY294002). Paf challenge also caused increased staining of BCL2 and FOS. Increased staining of FOS required new protein synthesis that had a half-life of 2-4 h after Paf challenge. Only a small proportion (∼12%) of individual 2-cell embryos collected from the reproductive tract had detectable Bcl2 and Fos. This dichotomous pattern of transcript expression is consistent with the known periodic actions of Paf (which has a periodicity of ∼90 min) and the relatively short half-life of the resulting transcripts. A BCL2 antagonist (HA14-1) caused a dose-dependent decrease in the capacity of cultured zygotes to develop to morphological blastocysts, which was partially reversed by the simultaneous addition of Paf to medium. The results show that Paf induces periodic transient transcriptions of key proto-oncogenes that result in the persistent presence of the resulting proteins in the preimplantation phase of development.

  7. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    Science.gov (United States)

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  8. Context-Based Orchestration for Control of Resource-Efficient Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Michael Schwarz

    2012-08-01

    Full Text Available The increasing competition between manufacturers, the shortening of innovation cycles and the growing importance of resource-efficient manufacturing demand a higher versatility of factory automation. Service-oriented approaches depict a promising possibility to realize new control architectures by encapsulating the functionality of mechatronic devices into services. An efficient discovery, context-based selection and dynamic orchestration of these services are the key features for the creation of highly adaptable manufacturing processes. We describe a semantic service discovery and ad-hoc orchestration system, which is able to react to new process variants and changed contextual information (e.g., failure of field devices, requirements on the consumption of resources. Because a standardized vocabulary, especially for the description of mechatronic functionalities, is still missing in the manufacturing domain, the semantic description of services, processes and manufacturing plants as well as the semantic interpretation of contextual information play an important part.

  9. IP Models to Orchestrate Innovation Ecosystems: IMEC, A PUBLIC RESEARCH INSTITUTE IN NANO-ELECTRONICS

    OpenAIRE

    Leten, Bart; Vanhaverbeke, Wim; Roijakkers, Nadine; Clerix, André; Van Helleputte, Johan

    2013-01-01

    Companies increasingly organize innovation activities within innovation ecosystems. This study illustrates the central role of the IP-model that an orchestrator develops for the innovation ecosystem partners. The governance of IP is instrumental for the success of innovation ecosystems as it determines the value appropriation potential for the ecosystem partners and positively influences the success of innovation ecosystems. The insights are based on a case study of IMEC, a public research in...

  10. Webbing and orchestration. Two interrelated views on digital tools in mathematics education

    OpenAIRE

    Trouche, Luc; Drijvers, Paul

    2014-01-01

    International audience; The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of webbing and instrumental orchestration are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this article, we investigate the distinct and joint journeys of these two theoretical perspectives. Taking some key moments in recent history as points of de- parture, we conclude...

  11. An Orchestrating Evaluation of Complex Educational Technologies: a Case Study of a CSCL System

    Directory of Open Access Journals (Sweden)

    Luis P. Prieto

    2014-06-01

    Full Text Available As digital technologies permeate every aspect of our lives, the complexity of the educational settings, and of the technological support we use within them, unceasingly rises. This increased complexity, along with the need for educational practitioners to apply such technologies within multi-constraint authentic settings, has given rise to the notion of technology-enhanced learning practice as “orchestration of learning”. However, at the same time, the complexity involved in evaluating the benefits of such educational technologies has also increased, prompting questions about the way evaluators can cope with the different places, technologies, informants and issues involved in their evaluation activity. By proposing the notion of “orchestrating evaluation”, this paper tries to reconcile the often disparate “front office accounts” of research publications and the “shop floor practice” of evaluation of educational technology, through the case study of evaluating a system to help teachers in coordinating computer-supported collaborative learning (CSCL scenarios. We reuse an internationally-evaluated conceptual framework of “orchestration aspects” (design, management, adaptation, pragmatism, etc. to structure the case‟s narrative, showing how the original evaluation questions and methods were modulated in the face of the multiple (authentic evaluation setting constraints.

  12. Software Defined Resource Orchestration System for Multitask Application in Heterogeneous Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Qi Qi

    2016-01-01

    Full Text Available The mobile cloud computing (MCC that combines mobile computing and cloud concept takes wireless access network as the transmission medium and uses mobile devices as the client. When offloading the complicated multitask application to the MCC environment, each task executes individually in terms of its own computation, storage, and bandwidth requirement. Due to user’s mobility, the provided resources contain different performance metrics that may affect the destination choice. Nevertheless, these heterogeneous MCC resources lack integrated management and can hardly cooperate with each other. Thus, how to choose the appropriate offload destination and orchestrate the resources for multitask is a challenge problem. This paper realizes a programming resource provision for heterogeneous energy-constrained computing environments, where a software defined controller is responsible for resource orchestration, offload, and migration. The resource orchestration is formulated as multiobjective optimal problem that contains the metrics of energy consumption, cost, and availability. Finally, a particle swarm algorithm is used to obtain the approximate optimal solutions. Simulation results show that the solutions for all of our studied cases almost can hit Pareto optimum and surpass the comparative algorithm in approximation, coverage, and execution time.

  13. WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets

    Science.gov (United States)

    Gutfreund, Yechezkal-Shimon; Nicol, John R.

    1997-01-01

    The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.

  14. Visualization Cockpit: Orchestration of Multiple Visualizations for Knowledge-Exploration

    Directory of Open Access Journals (Sweden)

    Kawa Nazemi

    2010-11-01

    Full Text Available Semantic-Web technologies and ontology-based information processing systems are established techniques, in more than only research areas and institutions. Different worldwide projects and enterprise companies identified already the added value of semantic technologies, so they work on different sub-topics for gathering and conveying knowledge. As the process of gathering and structuring semantic information plays a key role in the most developed applications, the process of transferring and adopting knowledge to and by humans is neglected, although the complex structure of knowledge-design opens many research-questions. The customization of the presentation itself and the interaction techniques with these presentation artifacts is a key question for gainful and effective work with semantic information. The following paper describes a new approach for visualizing semantic information as a composition of different adaptable ontology-visualization techniques. We start with a categorized description of existing ontology visualization techniques and show potential gaps.

  15. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance

    Science.gov (United States)

    Grünberg, John R.; Hoffmann, Jenny M.; Hedjazifar, Shahram; Nerstedt, Annika; Jenndahl, Lachmi; Elvin, Johannes; Castellot, John; Wei, Lan; Movérare-Skrtic, Sofia; Ohlsson, Claes; Holm, Louise Mannerås; Bäckhed, Fredrik; Syed, Ismail; Bosch, Fatima; Saghatelian, Alan; Kahn, Barbara B.; Hammarstedt, Ann; Smith, Ulf

    2017-01-01

    WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity. PMID:28240264

  16. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species.

    Science.gov (United States)

    Pal, Anuradha K; Gajjar, Devarshi U; Vasavada, Abhay R

    2014-01-01

    Melanins are high molecular weight hydrophobic pigments that have been studied for their role in the virulence of fungal pathogens. We investigated the amount and type of melanin in 20 isolates of Aspergillus spp.; A. niger (n = 3), A. flavus (n = 5), A. tamarii (n = 3), A. terreus (n = 3), A. tubingensis (n = 3), A. sydowii (n = 3). Aspergillus spp. were identified by sequencing the internal transcribed spacer (ITS) region. Extraction of melanin from culture filtrate and fungal biomass was done and followed by qualitative and quantitative analysis of melanin pigment. Ultraviolet (UV), Fourier transformed infrared (FT-IR), and electron paramagnetic resonance (EPR) spectra analyses confirmed the presence of melanin. The melanin pathway was studied by analyzing the effects of inhibitors; kojic acid, tropolone, phthalide, and tricyclazole. The results indicate that in A. niger and A. tubingensis melanin was found in both culture filtrate and fungal biomass. For A. tamarii and A. flavus melanin was extracted from biomass only, whereas melanin was found only in culture filtrate for A. terreus. A negligible amount of melanin was found in A. sydowii. The maximum amount of melanin from culture filtrate and fungal biomass was found in A. niger and A. tamarrii, respectively. The DOPA (3,4-dihydroxyphenylalanine) pathway produces melanin in A. niger, A. tamarii and A. flavus, whereas the DHN (1,8-dihydroxynaphthalene) pathway produces melanin in A. tubingensis and A. terreus. It can be concluded that the amount and type of melanin in aspergilli largely differ from species to species.

  17. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes.

    Science.gov (United States)

    Zouboulis, Christos C; Seltmann, Holger; Hiroi, Naoki; Chen, WenChieh; Young, Maggie; Oeff, Marina; Scherbaum, Werner A; Orfanos, Constantin E; McCann, Samuel M; Bornstein, Stefan R

    2002-05-14

    Sebaceous glands may be involved in a pathway conceptually similar to that of the hypothalamic-pituitary-adrenal (HPA) axis. Such a pathway has been described and may occur in human skin and lately in the sebaceous glands because they express neuropeptide receptors. Corticotropin-releasing hormone (CRH) is the most proximal element of the HPA axis, and it acts as central coordinator for neuroendocrine and behavioral responses to stress. To further examine the probability of an HPA equivalent pathway, we investigated the expression of CRH, CRH-binding protein (CRH-BP), and CRH receptors (CRH-R) in SZ95 sebocytes in vitro and their regulation by CRH and several other hormones. CRH, CRH-BP, CRH-R1, and CRH-R2 were detectable in SZ95 sebocytes at the mRNA and protein levels: CRH-R1 was the predominant type (CRH-R1/CRH-R2 = 2). CRH was biologically active on human sebocytes: it induced biphasic increase in synthesis of sebaceous lipids with a maximum stimulation at 10(-7) M and up-regulated mRNA levels of 3 beta- hydroxysteroid dehydrogenase/Delta(5-4) isomerase, although it did not affect cell viability, cell proliferation, or IL-1 beta-induced IL-8 release. CRH, dehydroepiandrosterone, and 17 beta-estradiol did not modulate CRH-R expression, whereas testosterone at 10(-7) M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. The findings implicate CRH in the clinical development of acne, seborrhea, androgenetic alopecia, skin aging, xerosis, and other skin disorders associated with alterations in lipid formation of sebaceous origin.

  18. Injury and the orchestral environment: part III. the role of psychosocial factors in the experience of musicians undertaking rehabilitation.

    Science.gov (United States)

    Rickert, Dale Ll; Barrett, Margaret S; Ackermann, Bronwen J

    2014-09-01

    Workplace rehabilitation in the orchestral setting poses a number of challenges that arise in part due to a poor fit between generic injury insurance and medical care and the elite performance requirements of professional musicians. Currently, the orchestral profession lacks information and strategies to best deal with the unique challenges of this complex rehabilitation environment. In order to inform future directions for research and suggest possible changes of practice, the researchers conducted a qualitative case-study aimed at understanding the injury and rehabilitation experiences of professional musicians. In-depth semi-structured interviews were undertaken with three chronically injured professional cellists from a single Australian orchestra. After initial data analysis, further interviews were undertaken with a set of five orchestral management staff as a means of data triangulation. All data were analysed using a themes-based analysis-of-narrative approach. The findings indicate that injury concealment played a considerable role in the development of chronic injuries for these musicians, and management staff felt that this concealment may be the norm amongst orchestral musicians. The musicians in this study suffered emotional and psychological trauma as the result of their injuries, and two participants felt socially marginalised. During rehabilitation, the musicians in this study encountered difficulties with medical staff not understanding the elite performance requirements of orchestral work. The article proposes recommendations that may assist in dealing with the complex challenges of injury rehabilitation in the orchestral environment.

  19. The Functional Effect of an Amphiregulin Autocrine Loop on Inflammatory Breast Cancer Progression

    Science.gov (United States)

    2008-03-01

    SUM149 cells with 10µM of the NF-κB inhibitor parthenolide for 8 hours were included to determine the efficacy of the EMSA. Data are represented as...MCF10A AR, MCF10A+AR, and MCF10A cells with 10µM of the NFκB inhibitor parthenolide and collected RNA and conditioned medium. Both IL-1α and IL-1β...real-time PCR and ELISA, respectively. EGFR activation was inhibited by 10µM of the NF-κB inhibitor parthenolide . Data are represented as means

  20. An IL-12/Shh-C domain fusion protein-based IL-12 autocrine loop for sustained natural killer cell activation.

    Science.gov (United States)

    Zhu, Lining; Zhao, Zhihui; Wei, Yanzhang; Marcotte, William; Wagner, Thomas E; Yu, Xianzhong

    2012-08-01

    The dependency of activated natural killer (NK) cells on the continuous support of exogenous interleukin (IL)-2 for their in vivo survival, tumor localization and consequently, their antitumor effect, is a major obstacle for NK cell-mediated tumor therapy. In the present study, a fusion gene between IL-12 and mouse sonic hedgehog C-terminal domain (Shh-C) was constructed. The fusion protein was autocatalytically processed to form cholesterol-modified IL-12 molecules and an autocrine loop of IL-12 was established for the sustained activation of NK cells. The transduced NK cells matured more rapidly in vitro with the enhanced expression of granule-related proteins. NKIL-12/Shh-C cells reached the same proliferation rate as NK cells transduced with enhanced green fluorescent protein (EGFP)/Shh-C (NKEGFP/Shh-C) with Shh-C cells 5 and 7 days after transduction was significantly higher than that in the supernatants of NKIL-12 cells. Immunofluorescent staining of lung tissues from B16-bearing mice which had received an intravenous injection of lentivirus-transduced NK cells without exogenous IL-2 confirmed that donor NK cells successfully infiltrated into the lung tissues. The survival time of the mice which had received NKIL-12/Shh-C cells was significantly prolonged compared to the mice which had received NKEGFP/Shh-C cells.

  1. The Autocrine Mitogenic Loop of the Ciliate Euplotes raikovi: The Pheromone Membrane-bound Forms Are the Cell Binding Sites and Potential Signaling Receptors of Soluble Pheromones

    Science.gov (United States)

    Ortenzi, Claudio; Alimenti, Claudio; Vallesi, Adriana; Di Pretoro, Barbara; Terza, Antonietta La; Luporini, Pierangelo

    2000-01-01

    Homologous proteins, denoted pheromones, promote cell mitotic proliferation and mating pair formation in the ciliate Euplotes raikovi, according to whether they bind to cells in an autocrine- or paracrine-like manner. The primary transcripts of the genes encoding these proteins undergo alternate splicing, which generates at least two distinct mRNAs. One is specific for the soluble pheromone, the other for a pheromone isoform that remains anchored to the cell surface as a type II protein, whose extracellular C-terminal region is structurally equivalent to the secreted form. The 15-kDa membrane-bound isoform of pheromone Er-1, denoted Er-1mem and synthesized by the same E. raikovi cells that secrete Er-1, has been purified from cell membranes by affinity chromatography prepared with matrix-bound Er-1, and its extracellular and cytoplasmic regions have been expressed as recombinant proteins. Using the purified material and these recombinant proteins, it has been shown that Er-1mem has the property of binding pheromones competitively through its extracellular pheromone-like domain and associating reversibly and specifically with a guanine nucleotide-binding protein through its intracellular domain. It has been concluded that the membrane-bound pheromone isoforms of E. raikovi represent the cell effective pheromone binding sites and are functionally equipped for transducing the signal generated by this binding. PMID:10749941

  2. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein.

    Science.gov (United States)

    Demont, Yohann; Corbet, Cyril; Page, Adeline; Ataman-Önal, Yasemin; Choquet-Kastylevsky, Genevieve; Fliniaux, Ingrid; Le Bourhis, Xuefen; Toillon, Robert-Alain; Bradshaw, Ralph A; Hondermarck, Hubert

    2012-01-13

    The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75(NTR) and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75(NTR) and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion.

  3. Cyclosporin A induces hyperpermeability of the blood-brain barrier by inhibiting autocrine adrenomedullin-mediated up-regulation of endothelial barrier function.

    Science.gov (United States)

    Dohgu, Shinya; Sumi, Noriko; Nishioku, Tsuyoshi; Takata, Fuyuko; Watanabe, Takuya; Naito, Mikihiko; Shuto, Hideki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2010-10-10

    Cyclosporin A, a potent immunosuppressant, can often produce neurotoxicity in patients, although its penetration into the brain is restricted by the blood-brain barrier (BBB). Brain pericytes and astrocytes, which are periendothelial accessory structures of the BBB, can be involved in cyclosporin A-induced BBB disruption. However, the mechanism by which cyclosporin A causes BBB dysfunction remains unknown. Here, we show that in rodent brain endothelial cells, cyclosporin A decreased transendothelial electrical resistance (TEER) by inhibiting intracellular signal transduction downstream of adrenomedullin, an autocrine regulator of BBB function. Cyclosporin A stimulated adrenomedullin release from brain endothelial cells, but did not affect binding of adrenomedullin to its receptors. This cyclosporin A-induced decrease in TEER was attenuated by exogenous addition of adrenomedullin. Cyclosporin A dose-dependently decreased the total cAMP concentration in brain endothelial cells. A combination of cyclosporin A (1microM) with an adenylyl cyclase inhibitor, 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536; 10microM), or a protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89; 1microM), markedly increased sodium fluorescein permeability in brain endothelial cells, whereas each drug alone had no effect. Thus, these data suggest that cyclosporin A inhibits the adenylyl cyclase/cyclic AMP/PKA signaling pathway activated by adrenomedullin, leading to impairment of brain endothelial barrier function. Copyright 2010. Published by Elsevier B.V.

  4. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway.

    Science.gov (United States)

    Yang, Jing; Zhang, Dan; Yu, Ying; Zhang, Run-Ju; Hu, Xiao-Ling; Huang, He-Feng; Lu, Yong-Chao

    2015-01-01

    Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm cells (TEs) that lead to the formation of the blastocyst as well as the underlying mechanism have not been elucidated. The present study has demonstrated for the first time that endogenous FGF2 secreted by TEs can regulate protein expression and distribution in TEs via the FGFR2-mediated activation of PKC and p38, which are important for the development of expanded blastocysts. This finding provides the first explanation for the long-observed phenomenon that only high concentrations of exogenous FGFs have effects on embryonic development, but in vivo the amount of endogenous FGFs are trace. Besides, the present results suggest that FGF2/FGFR2 may act in an autocrine fashion and activate the downstream PKC/p38 pathway in TEs during expanded blastocyst formation.

  5. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata).

    Science.gov (United States)

    Handrigan, Gregory R; Richman, Joy M

    2010-01-01

    Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.

  6. Connective tissue growth factor and β-catenin constitute an autocrine loop for activation in rat sarcomatoid mesothelioma.

    Science.gov (United States)

    Jiang, Li; Yamashita, Yoriko; Chew, Shan-Hwu; Akatsuka, Shinya; Ukai, Shun; Wang, Shenqi; Nagai, Hirotaka; Okazaki, Yasumasa; Takahashi, Takashi; Toyokuni, Shinya

    2014-08-01

    Due to the formerly widespread use of asbestos, malignant mesothelioma (MM) is increasingly frequent worldwide. MM is classified into epithelioid (EM), sarcomatoid (SM), and biphasic subtypes. SM is less common than EM but is recognized as the most aggressive type of MM, and these patients have a poor prognosis. To identify genes responsible for the aggressiveness of SM, we induced EM and SM in rats, using asbestos, and compared their transcriptomes. Based on the results, we focused on connective tissue growth factor (Ctgf), whose expression was significantly increased in SM compared with EM; EM itself exhibited an increased expression of Ctgf compared with normal mesothelium. Particularly in SM, Ctgf was a major regulator of MM proliferation and invasion through activation of the β-catenin-TCF-LEF signalling pathway, which is autocrine and formed a positive feedback loop via LRP6 as a receptor for secreted Ctgf. High Ctgf expression also played a role in the epithelial-mesenchymal transition in MM. Furthermore, Ctgf is a novel serum biomarker for both early diagnosis and determining the MM prognosis in rats. These data link Ctgf to SM through the LRP6-GSK3β-β-catenin-TCF-Ctgf autocrine axis and suggest Ctgf as a therapeutic target.

  7. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  8. CD73-Generated Adenosine: Orchestrating the Tumor-Stroma Interplay to Promote Cancer Growth

    Directory of Open Access Journals (Sweden)

    Bertrand Allard

    2012-01-01

    Full Text Available Despite the coming of age of cancer immunotherapy, clinical benefits are still modest. An important barrier to successful cancer immunotherapy is that tumors employ a number of mechanisms to facilitate immune escape, including the production of anti-inflammatory cytokines, the recruitment of regulatory immune subsets, and the production of immunosuppressive metabolites. Significant therapeutic opportunity exists in targeting these immunosuppressive pathways. One such immunosuppressive pathway is the production of extracellular adenosine by CD73, an ectonucleotidase overexpressed in various types of cancer. We hereafter review the biology of CD73 and its role in cancer progression and metastasis. We describe the role of extracellular adenosine in promoting tumor growth through paracrine and autocrine action on tumor cells, endothelial cells, and immune cells.

  9. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    Science.gov (United States)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  10. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity.

    Science.gov (United States)

    Li, Fangjun; Cheng, Cheng; Cui, Fuhao; de Oliveira, Marcos V V; Yu, Xiao; Meng, Xiangzong; Intorne, Aline C; Babilonia, Kevin; Li, Maoying; Li, Bo; Chen, Sixue; Ma, Xianfeng; Xiao, Shunyuan; Zheng, Yi; Fei, Zhangjun; Metz, Richard P; Johnson, Charles D; Koiwa, Hisashi; Sun, Wenxian; Li, Zhaohu; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2014-12-10

    Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.

  11. Parametric method for the noise risk assessment of professional orchestral musicians.

    Science.gov (United States)

    Bo, Matteo; Clerico, Marina; Pognant, Federica

    2016-01-01

    The Occupational Health and Safety (OH&S) literature shows that noise could represent a risk factor for professional orchestral musicians. The continuative exposition to elevated noise levels and the particular nature of the activity make necessary an "atypical" OH&S approach, which was identified to be necessarily organizational. In this study, a parametric-based method for orchestral exposure assessment and management was developed. The goal was to achieve a predictive tool to involve safety in the decision making of concert season program. After setting the parameters, the project's hypothesis was defined and then validated through a yearly-scale monitoring on an important European symphonic orchestra. Moreover, workers' exposure was assessed from the parametric study by a wide measurement campaign. A general validation of the method was obtained by the verification of the main parameters' (repertoire, headcount, and disposition) significant influence on the sound pressure levels produced by the orchestra. Exposure levels comparable to the trends in literature for symphonic orchestras were observed, with criticalities among brass musicians, which was the only group exceeding the upper exposure action values. This research has emphasized that the exposure condition of musicians can be critical and requires the implementation of improvement plans. The study has shown that the predictive analysis can be performed on parameters describing the concert's emissive characteristics. The future development of research currently under study will focus on the concert's pieces and the use of parameters as indicators of the exposure context.

  12. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer.

    Science.gov (United States)

    Zhang, Weijie; Qian, Pengxu; Zhang, Xiao; Zhang, Min; Wang, Hong; Wu, Mingming; Kong, Xiangjun; Tan, Sheng; Ding, Keshuo; Perry, Jo K; Wu, Zhengsheng; Cao, Yuan; Lobie, Peter E; Zhu, Tao

    2015-05-29

    Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.

  13. Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin

    Directory of Open Access Journals (Sweden)

    Daniel Wehner

    2014-02-01

    Full Text Available Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.

  14. The orchestration of processes in relation to the product, and the role of psychological variables in written composition

    Directory of Open Access Journals (Sweden)

    María-Lourdes Álvarez-Fernández

    2015-01-01

    Full Text Available We studied the timing of writing processes using a direct retrospective online technique, and differences in the textual product from the earliest school years where such a study is feasible to the final years of compulsory education. We also analysed a range of psychological variables to determine their modulating effect on writing. Participants comprised a highly purified sample of 348 students aged between 9 and 16 years old who presented standard development and average levels of curricular and writing competence. Our results reveal complex patterns in the development of the writing process and its orchestration, compared with the textual product, and no direct relationship was observed between development of the writing process and its timing, and improvement in the textual product. Among the youngest students, all this was mediated by psychological variables related to the existence of inaccurate perceptions of self-efficacy as regards the deployment and use of writing processes and causal attributions to external factors. The implications, limitations and future perspectives are discussed.

  15. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart

    Science.gov (United States)

    Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham; Miyagawa-Tomita, Sachiko; Meyers, Erik; Klingensmith, John; Camenisch, Todd; Buckingham, Margaret; Moon, Anne M.

    2009-01-01

    In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFβ and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development. PMID:18832392

  16. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69 and nondiabetic (n = 46 individuals were used to grow endothelial colony forming cells (ECFC, early endothelial progenitor cells (eEPCs and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM. In CM derived from CD34+ cells of diabetic individuals (diabetic-CM, the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM. Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  17. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Science.gov (United States)

    Jarajapu, Yagna P R; Hazra, Sugata; Segal, Mark; Li Calzi, Sergio; LiCalzi, Sergio; Jadhao, Chandra; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K; Raizada, Mohan K; Boulton, Michael E; Grant, Maria B

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  18. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Kaining Liu

    Full Text Available BACKGROUND: We previously demonstrated that 25-hydroxyvitamin D(3, the precursor of 1α,25-dihydroxyvitamin D(3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D(3 is converted to 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells. METHODOLOGY/PRINCIPAL FINDINGS: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1α-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1α-hydroxylase substrate 25-hydroxyvitamin D(3, human gingival fibroblasts and periodontal ligament cells generated detectable 1α,25-dihydroxyvitamin D(3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1α-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1α,25-dihydroxyvitamin D(3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1α-hydroxylase (parathyroid hormone, calcium and 1α,25-dihydroxyvitamin D(3 and Porphyromonas gingivalis lipopolysaccharide did not influence 1α-hydroxylase expression significantly, however, interleukin-1β and sodium butyrate strongly induced 1α-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. CONCLUSIONS/SIGNIFICANCE: In this study, the expression, activity and functionality of 1α-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.

  19. Supporting Discourse and Classroom Orchestration in a Knowledge Community and Inquiry Approach

    Science.gov (United States)

    Fong, Cresencia G. W.

    This thesis presents a design-based research study of a new technology enhanced learning environment called Common Knowledge (CK), which supports students and teachers as they create socially shared notes, including tags, votes, and other forms of interactive knowledge construction. The research served to advance CK through 3 iterations, examining and extending the specific forms of technology, as well as the designs for activity sequences and teacher-mediated discussions. Two teachers participated, with their grade 5/6 students, in all three iterations. The teachers were actively involved in planning and designing the inquiry sequences, informing the designs of CK features, and giving feedback during and after the enactments. In early iterations, CK was employed as a stand-alone brainstorming and reflection tool, used to complement a broader inquiry activity where students collectively investigate a simulated phenomenon that is embedded within their classroom walls. In the final iteration, CK was employed as a scaffolding environment for a structured inquiry progression that included several phases for brainstorming, proposing topics, and open investigations. Discourse episodes are coded and analyzed to reveal patterns of interaction between teachers, students, and the shared knowledge base. Each iteration of CK is examined in terms of the interplay between technology features, activity sequences, and the forms of teacher-guided discourse that emerge to support effective enactment. Because the inquiry topics, technology features and activity sequences vary from one iteration to the next, the teacher-guided discussions must play different roles and make use of CK note content and other knowledge elements in different ways. An activity systems approach is well suited to the interpretation of such interdependencies, as patterns of discourse can be understood as emerging to meet the system requirements, given the fixed set of technology affordances and well defined

  20. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway.

    Science.gov (United States)

    Carregaro, Vanessa; Valenzuela, Jesus G; Cunha, Thiago M; Verri, Waldiceu A; Grespan, Renata; Matsumura, Graziela; Ribeiro, José M C; Elnaiem, Dia-Eldin; Silva, João S; Cunha, Fernando Q

    2008-07-01

    In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1alpha, TNF-alpha, and leukotriene B4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE2. SGE treatments failed to inhibit neutrophil migration and MIP-1alpha and LTB4 production in IL-10-/- mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE2 release triggered by SGE remained increased in IL-10-/- mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4+T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE2 and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE2/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.

  1. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.

    Science.gov (United States)

    Dohadwala, Mariam; Batra, Raj K; Luo, Jie; Lin, Ying; Krysan, Kostyantyn; Pold, Mehis; Sharma, Sherven; Dubinett, Steven M

    2002-12-27

    Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC.

  2. Analysis of secretome changes uncovers an autocrine/paracrine component in the modulation of cell proliferation and motility by c-Myc.

    Science.gov (United States)

    Pocsfalvi, Gabriella; Votta, Giuseppina; De Vincenzo, Anna; Fiume, Immacolata; Raj, Delfin Albert Amal; Marra, Giancarlo; Stoppelli, Maria Patrizia; Iaccarino, Ingram

    2011-12-02

    Proteins secreted by cancer cells are a major component of tumor microenvironment. However, little is known on the impact of single oncogenic lesions on the expression of secreted proteins at early stages of tumor development. Because c-Myc overexpression is among the most frequent alterations in cancer, here we investigated the effect of sustained c-Myc expression on the secretome of a nontransformed human epithelial cell line (hT-RPE). By using a quantitative proteomic approach, we have identified 125 proteins in conditioned media of hT-RPE/MycER cells upon c-Myc induction. Analysis of the 49 proteins significantly down-regulated by c-Myc revealed a marked enrichment of factors associated with growth inhibition and cellular senescence. Accordingly, media conditioned by hT-RPE cells expressing c-Myc show an increased ability to sustain hT-RPE cellular proliferation/viability. We also find a marked down-regulation of several structural and regulatory components of the extracellular matrix (ECM), which correlates with an increased chemotactic potency of the conditioned media toward fibroblasts, a major cellular component of tumor stroma. In accordance with these data, the expression of the majority of the genes encoding proteins down-regulated in hT-RPE was significantly reduced also in colorectal adenomatous polyps, early tumors in which c-Myc is invariably overexpressed. These findings help to elucidate the significance of c-Myc overexpression at early stages of tumor development and uncover a remarkable autocrine/paracrine component in the ability of c-Myc to stimulate proliferation, sustain tumor maintenance, and modulate cell migration.

  3. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.

    Science.gov (United States)

    Takai, Erina; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Sawada, Keisuke; Moriyama, Yoshinori; Kojima, Shuji

    2012-11-01

    TGF-β1 plays a key role in cancer progression through induction of various biological effects, including cell migration. Extracellular nucleotides, such as ATP, released from cells play a role in signaling through activation of P2 receptors. We show here that exocytosis of ATP followed by activation of P2 receptors play a key role in TGF-β1-induced actin remodeling associated with cell migration. Treatment with TGF-β1 facilitated migration of human lung cancer A549 cells, which was blocked by pretreatment with ecto-nucleotidase and P2 receptor antagonists. ATP and P2 agonists facilitated cell migration. TGF-β1-induced actin remodeling, which contributes to cell migration, was also suppressed by pretreatment with ecto-nucleotidase and P2 receptor antagonists. Knockdown of P2X7 receptor suppressed TGF-β1-induced migration and actin remodeling. These results indicate the involvement of TGF-β1-induced ATP release in cell migration, at least in part, through activation of P2X7 receptors. TGF-β1 caused release of ATP from A549 cells within 10 minutes. Both ATP-enriched vesicles and expression of a vesicular nucleotide transporter (VNUT) SLC17A9, which is responsible for exocytosis of ATP, were found in cytosol of A549 cells. TGF-β1 failed to induce release of ATP from SLC17A9-knockdown cells. TGF-β1-induced cell migration and actin remodeling were also decreased in SLC17A9-knockdown cells. These results suggest the importance of exocytosis of ATP in cell migration. We conclude that autocrine signaling through exocytosis of ATP and activation of P2 receptors is required for the amplification of TGF-β1-induced migration of lung cancer cells.

  4. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis*

    Science.gov (United States)

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-01-01

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855

  5. Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells.

    Science.gov (United States)

    Desai, Sejal; Laskar, S; Pandey, B N

    2013-09-01

    Soluble factors in tumour microenvironment play a major role in modulating the metastatic potential of cancer cells. Herein, we investigated the effect of autocrine cytokines and growth factors in the form of self-conditioned medium (CM) on A549 lung carcinoma cells. We demonstrated that CM induced morphological and molecular changes associated with epithelial-mesenchymal transition viz change in shape from cuboidal to spindle, actin cytoskeleton remodelling, upregulation of vimentin and downregulation of E-cadherin etc. These changes were accompanied with enhanced motility, invasion, anchorage-independent growth and anoikis-resistance. Amongst the different factors of CM, IL-8 and VEGF were found to play a major role in the CM-induced motility and invasion. In the intracellular signalling cascade, CM triggered phosphorylation of JNK and p38 which was associated with the CM-enhanced invasiveness. In CM-treated cells, activated p38 and JNK further activated ATF-2 (Activating Transcription Factor-2) and knock-down of ATF-2 abrogated the CM-induced invasiveness, suggesting the signal transduction along the p38/JNK-ATF-2 axis. Furthermore, neutralising IL-8 and VEGF in CM, significantly abrogated CM-induced phosphorylation of ATF-2. Conversely, exogenous addition of these individual cytokines in plain medium, increased the activation of ATF-2 and invasiveness marginally. However, when added in combination these cytokines (IL-8 and VEGF) resulted in drastic increase in ATF-2 phosphorylation and subsequent invasiveness suggesting their synergetic interplay in the observed phenomenon. Taken together, our results identify IL-8/VEGF induced JNK/p38-ATF-2 as a novel pro-invasive pathway, which may be explored as potential therapeutic target to circumvent the invasiveness of lung malignancies. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    Science.gov (United States)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  7. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.

  8. Search and Orchestration of Data and Processes in a Federated Environment

    Science.gov (United States)

    Siao Him Fa, J.; Reed, T. W.; Tan, C.; West, G.; McMeekin, D. A.; Moncrieff, S.; Cox, S.

    2015-06-01

    This paper describes on-going research on streamlining the access and use of spatial data and processes in Australia. Spatial data in Australia is available on-line at many levels of government from local authorities, state and territories (jurisdictions), and nationally from the Commonwealth and other sources. Much of this data is available via Open Geospatial Consortium and World Wide Web Consortium standard web services. This abstract discusses three related research topics that have been identified by a wide range of stakeholders through a comprehensive consultation process. These are search and discovery, federation and orchestration of data and processes. The commonality across the three research topics is that they all require Semantic Web and Artificial Intelligence methods and embrace the various standards, and if needed, propose modifications to such standards.

  9. Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response

    Institute of Scientific and Technical Information of China (English)

    Weiming XU; Ian G. CHARLES; Salvador MONCADA

    2005-01-01

    Mitochondria have long been considered to be the powerhouse of the living cell, generating energy in the form of the molecule ATP via the process of oxidative phosphorylation. In the past 20 years, it has been recognised that they also play an important role in the implementation of apoptosis, or programmed cell death. More recently it has become evident that mitochondria also participate in the orchestration of cellular defence responses. At physiological concentrations,the gaseous molecule nitric oxide (NO) inhibits the mitochondrial enzyme cytochrome c oxidase (complex IV) in competition with oxygen. This interaction underlies the mitochondrial actions of NO, which range from the physiological regulation of cell respiration, through mitochondrial signalling, to the development of "metabolic hypoxia" - a situation in which, although oxygen is available, the cell is unable to utilise it.

  10. HLA-G Orchestrates the Early Interaction of Human Trophoblasts with the Maternal Niche

    Science.gov (United States)

    Gregori, Silvia; Amodio, Giada; Quattrone, Federica; Panina-Bordignon, Paola

    2015-01-01

    Extravillous trophoblasts (EVTs) play a central role in educating maternal leukocytes, endometrial stromal and endothelial cells to generate a receptive decidual microenvironment tailored to accept the semi-allogeneic fetus. HLA-G, a non-classical HLA class I molecule endowed with immune-regulatory functions, is primarily expressed on EVTs lining the placenta and on the naturally occurring tolerogenic dendritic cells, named DC-10, which are enriched in the human first trimester decidua. Decidual DC-10 are involved in HLA-G-mediated tolerance at the maternal–fetal interface. EVTs not only establish a tolerogenic microenvironment through the interaction with maternal innate and adaptive cells but also orchestrate placenta vascular and tissue remodeling, leading to a successful pregnancy. Here, we discuss the potential implications of the HLA-G-mediated cross-talk among the cells present at the maternal–fetal interface, and its role in maintaining a positive relationship between the mother and the fetus. PMID:25870595

  11. Management of natural crises with choreography and orchestration of federated warning-systems

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Hammitzsch, Martin

    2013-04-01

    The project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme focuses on real-time intelligent information management in earth management. The addressed challenges include the design and implementation of a robust and scalable service infrastructure supporting the integration of existing resources, components and systems. Key challenge for TRIDEC is establishing a network of independent systems, cooperatively interacting as a collective in a system-of-systems (SoS). For this purpose TRIDEC adopts enhancements of service-oriented architecture (SOA) principles in terms of an event-driven architecture (EDA) design (SOA 2.0). In this way TRIDEC establishes large-scale concurrent and intelligent information management of a manifold of crisis types by focusing on the integration of autonomous, task-oriented and geographically distributed systems. To this end TRIDEC adapts both ways SOA 2.0 offers: orchestration and choreography. In orchestration, a central knowledge-based processing framework takes control over the involved services and coordinates their execution. Choreography on the other hand avoids central coordination. Rather, each system involved in the SoS follows a global scenario without a single point of control but specifically defined (enacted, agreed upon) trigger conditions. More than orchestration choreography allows collaborative business processes of various heterogeneous sub-systems (e.g. cooperative decision making) by concurrent Complex Event Processing (CEP) and asynchronous communication. These types of interaction adapt the concept of decoupled relationships between information producers (e.g. sensors and sensor systems) and information consumers (e.g. warning systems and warning dissemination systems). Asynchronous communication is useful if a participant wants to trigger specific actions by delegating the responsibility (separation of concerns

  12. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    Science.gov (United States)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to

  13. Parametric method for the noise risk assessment of professional orchestral musicians

    Directory of Open Access Journals (Sweden)

    Matteo Bo

    2016-01-01

    Full Text Available Background: The Occupational Health and Safety (OH&S literature shows that noise could represent a risk factor for professional orchestral musicians. The continuative exposition to elevated noise levels and the particular nature of the activity make necessary an “atypical” OH&S approach, which was identified to be necessarily organizational. Materials and Methods: In this study, a parametric-based method for orchestral exposure assessment and management was developed. The goal was to achieve a predictive tool to involve safety in the decision making of concert season program. After setting the parameters, the project’s hypothesis was defined and then validated through a yearly-scale monitoring on an important European symphonic orchestra. Moreover, workers’ exposure was assessed from the parametric study by a wide measurement campaign. Results: A general validation of the method was obtained by the verification of the main parameters’ (repertoire, headcount, and disposition significant influence on the sound pressure levels produced by the orchestra. Exposure levels comparable to the trends in literature for symphonic orchestras were observed, with criticalities among brass musicians, which was the only group exceeding the upper exposure action values. Conclusion: This research has emphasized that the exposure condition of musicians can be critical and requires the implementation of improvement plans. The study has shown that the predictive analysis can be performed on parameters describing the concert’s emissive characteristics. The future development of research currently under study will focus on the concert’s pieces and the use of parameters as indicators of the exposure context.

  14. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya

    2011-01-01

    cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling...

  15. Siim Nestor soovitab : Bell Orchestre. DJ Deep ja TRL. Akrobatik ja MC Mr.Lif. Black Dice / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Muusikaüritustest: Kanada post-rock ansambel Bell Orchestre12. sept. Tallinnas klubis Juuksur, DJ Deep 12. sept. Tallinna Linnahalli ruumides Plektrumi klubiööl (vt. www.plektrumfestival.ee), Akrobatik ja Mr.Lif 12. sept. Tartus klubis Illusion, New Yorgi kollektiiv Black Dice 17. sept. Tallinnas Von Krahlis

  16. Siim Nestor soovitab : Bell Orchestre. DJ Deep ja TRL. Akrobatik ja MC Mr.Lif. Black Dice / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Muusikaüritustest: Kanada post-rock ansambel Bell Orchestre12. sept. Tallinnas klubis Juuksur, DJ Deep 12. sept. Tallinna Linnahalli ruumides Plektrumi klubiööl (vt. www.plektrumfestival.ee), Akrobatik ja Mr.Lif 12. sept. Tartus klubis Illusion, New Yorgi kollektiiv Black Dice 17. sept. Tallinnas Von Krahlis

  17. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor.

    Science.gov (United States)

    Gorzalczany, Yaara; Akiva, Eyal; Klein, Ofir; Merimsky, Ofer; Sagi-Eisenberg, Ronit

    2017-07-01

    Mast cells (MCs) constitute an important part of the tumor microenvironment (TME). However, their underlying mechanisms of activation within the TME remain poorly understood. Here we show that recapitulating cell-to-cell contact interactions by exposing MCs to membranes derived from a number of cancer cell types, results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases and Akt, in a phosphatidylinositol 3-kinase dependent fashion. Activation is unidirectional since MC derived membranes do not activate cancer cells. Stimulated ERK1/2 phosphorylation is strictly dependent on the ecto enzyme CD73 that mediates autocrine formation of adenosine, and is inhibited by knockdown of the A3 adenosine receptor (A3R) as well as by an A3R antagonist or by agonist-stimulated down-regulation of the A3R. We also show that cancer cell mediated triggering upregulates expression and stimulates secretion of interleukin 8 from the activated MCs. These findings provide evidence for a novel mode of unidirectional crosstalk between MCs and cancer cells implicating direct activation by cancer cells in MC reprogramming into a pro tumorigenic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Neuropeptide-Y and Y-receptors in the autocrine-paracrine regulation of adrenal gland under physiological and pathophysiological conditions (Review).

    Science.gov (United States)

    Spinazzi, Raffaella; Andreis, Paola G; Nussdorfer, Gastone G

    2005-01-01

    Neuropeptide-Y (NPY) is a 36-amino acid peptide, which belongs, along with peptide YY (PYY), to the pancreatic polypeptide (PP) family. The members of this family of peptides act via G protein-coupled receptors (Rs), six subtypes of which (from Y1- to Y6-R) have been identified. NPY and PYY preferentially bind the Y1-R, Y2-R and Y5-R, while PP mainly acts via the Y4-R. Evidence has been provided that the Y3-R is selective for NPY. NPY and Y-Rs are expressed in the adrenal gland (preferentially adrenal medulla) and pheochromocytomas, where they exert various autocrine-paracrine regulatory functions. Findings indicate that NPY is co-released with catecholamines under a variety of stimuli, including splanchnic nerve and cholinergic- and nicotinic-receptor activation. NPY, mainly acting via the Y1-R, Y2-R and Y3-R, either inhibits catecholamine secretion from bovine adrenal chromaffin cells or stimulates catecholamine secretion from adrenomedullary cells of humans and rats. NPY inhibits aldosterone secretion from dispersed zona glomerulosa (ZG) cells, but this effect has probably to be considered non-specific and toxic in nature, since it is obtained only using micromolar concentrations of the peptide. In contrast, NPY appears to modulate the secretory response of dispersed rat ZG cells to their main agonists (ACTH, angiotensin-II and potassium). However, there is indication that the main effect of NPY on the ZG in rats is indirect and involves the local release of catecholamines, which in turn, acting via beta-adrenoceptors, enhance the secretion of aldosterone. The prolonged treatment with NPY is also able to enhance the growth of the rat ZG. In contrast, the effects of NPY on glucocorticoid secretion from zona fasciculata-reticularis cells are negligible and doutbful. The physiological relevance of the effects of NPY on adrenal medulla and ZG remains to be addressed by future experimental studies employing more selective and potent Y-R antagonists. In contrast

  19. Activation of vitamin D regulates response of human bronchial epithelial cells to Aspergillus fumigatus in an autocrine fashion.

    Science.gov (United States)

    Li, Pei; Wu, Ting; Su, Xin; Shi, Yi

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is one of the most common fungi to cause diseases in humans. Recent evidence has demonstrated that airway epithelial cells play an important role in combating A. fumigatus through inflammatory responses. Human airway epithelial cells have been proven to synthesize the active vitamin D, which plays a key role in regulating inflammation. The present study was conducted to investigate the impact of A. fumigatus infection on the activation of vitamin D and the role of vitamin D activation in A. fumigatus-elicited antifungal immunity in normal human airway epithelial cells. We found that A. fumigatus swollen conidia (SC) induced the expression of 1α-hydroxylase, the enzyme catalyzing the synthesis of active vitamin D, and vitamin D receptor (VDR) in 16HBE cells and led to increased local generation of active vitamin D. Locally activated vitamin D amplified SC-induced expression of antimicrobial peptides in 16HBE cells but attenuated SC-induced production of cytokines in an autocrine fashion. Furthermore, we identified β-glucan, the major A. fumigatus cell wall component, as the causative agent for upregulation of 1α-hydroxylase and VDR in 16HBE cells. Therefore, activation of vitamin D is inducible and provides a bidirectional regulation of the responses to A. fumigatus in 16HBE cells.

  20. Role of TGF-β in Survival of Phagocytizing Microglia: Autocrine Suppression of TNF-α Production and Oxidative Stress.

    Science.gov (United States)

    Ryu, Keun-Young; Cho, Geum-Sil; Piao, Hua Zi; Kim, Won-Ki

    2012-12-01

    Microglia are recognized as residential macrophageal cells in the brain. Activated microglia play a critical role in removal of dead or damaged cells through phagocytosis activity. During phagocytosis, however, microglia should survive under the harmful condition of self-producing ROS and pro-inflammatory mediators. TGF-β has been known as a classic anti-inflammatory cytokine and controls both initiation and resolution of inflammation by counter-acting inflammatory cytokines. In the present study, to understand the self-protective mechanism, we studied time-dependent change of TNF-α and TGF-β production in microglia phagocytizing opsonized-beads (i.e., polystyrene microspheres). We found that microglia phagocytized opsonized-bead in a time-dependent manner and simultaneously produced both TNF-α and TGF-β. However, while TNF-α production gradually decreased after 6 h, TGF-β production remained at increased level. Microglial cells pre-treated with lipopolysaccharides (a strong immunostimulant, LPS) synergistically increased the production of TNF-α and TGF-β both. However, LPS-pretreated microglia produced TNF-α in a more sustained manner and became more vulnerable, probably due to the marked and sustained production of TNF-α and reduced TGF-β. Intracellular oxidative stress appears to change in parallel with the microglial production of TNF-α. These results indicate TGF-β contributes for the survival of phagocytizing microglia through autocrine suppression of TNF-α production and oxidative stress.

  1. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Science.gov (United States)

    Corrêa, Luís Henrique; Corrêa, Rafael; Farinasso, Cecília Menezes; de Sant’Ana Dourado, Lívia Pimentel; Magalhães, Kelly Grace

    2017-01-01

    Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs), which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization. PMID:28970834

  2. ISOMP: An Instant Service-Orchestration Mobile M2M Platform

    Directory of Open Access Journals (Sweden)

    Cholhong Im

    2016-01-01

    Full Text Available Smartphones have greater computing power than ever before, providing convenient applications to improve our lives. In general, people find it difficult to locate suitable applications and implementing new applications often requires professional skills. In this paper, we propose a new service platform that facilitates the implementation of new applications by composing prebuilt components that provide the context information of mobile devices such as location and contacts. Our platform introduces an innovative concept named context collaboration, in which smartphones exchange context information with each other, which in turn is used to deduct useful inferences. The concept is realized by instant orchestration, which assembles some components and implements a composite component. The interactive communication interface helps a mobile device to communicate with other devices using open APIs, such as SOAP and HTTP (REST. The platform also works in heterogeneous environments, for example, between Android and iOS operating systems. Throughout the platform, mobile devices can act as smart M2M machines with context awareness, enabling intelligent tasks on behalf of users. Our platform will open up a new and innovative pathway for both enhanced mobile context awareness and M2M, which is expected to be a fundamental feature of the next generation of mobile devices.

  3. Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

    Directory of Open Access Journals (Sweden)

    A. Valera

    2012-10-01

    Full Text Available The integration of equipment and other devices built into industrial robot cells with modern Ethernet interface technologies and low‐cost mass produced devices (such as vision systems, laser scanners, force torque‐sensors, PLCs and PDAs etc. enables integrators to offer more powerful and smarter solutions. Nevertheless, the programming of all these devices efficiently requires very specific knowledge about them, such as their hardware architectures and specific programming languages as well as details about the system’s low level communication protocols. To address these issues, this paper describes and analyses the Plug‐and‐Play architecture. This is one of the most interesting service‐oriented architectures (SOAs available, which exhibits characteristics that are well adapted to industrial robotics cells. To validate their programming features and applicability, a test bed was specially designed. This provides a new graphical service orchestration which was implemented using Workflow Foundation 4 of .NET. The obtained results allowed us to verify that the use of integration schemes based on SOAs reduces the system integration time and is better adapted to industrial robotic cell system integrators.

  4. PARP1 orchestrates variant histone exchange in signal-mediated transcriptional activation.

    Science.gov (United States)

    O'Donnell, Amanda; Yang, Shen-Hsi; Sharrocks, Andrew D

    2013-12-01

    Transcriptional activation is accompanied by multiple molecular events that remodel the local chromatin environment in promoter regions. These molecular events are often orchestrated in response to the activation of signalling pathways, as exemplified by the response of immediate early genes such as FOS to ERK MAP kinase signalling. Here, we demonstrate that inducible NFI recruitment permits PARP1 binding to the FOS promoter by a mutually reinforcing loop. PARP1 and its poly(ADP-ribosyl)ation activity are required for maintaining FOS activation kinetics. We also show that the histone variant H2A.Z associates with the FOS promoter and acts in a transcription-suppressive manner. However, in response to ERK pathway signalling, H2A.Z is replaced by H2A; PARP1 activity is required to promote this exchange. Thus, our work has revealed an additional facet of PARP1 function in promoting dynamic remodelling of promoter-associated nucleosomes to allow transcriptional activation in response to cellular signalling.

  5. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks

    Science.gov (United States)

    Torcini, Alessandro; Luccioli, Stefano; Bonifazi, Paolo; Ben-Jacob, Eshel; Barzilai, Ari

    2015-03-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in developing neuronal circuits, typically composed of only excitatory cells, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally regulated constraints on single neuron excitability and connectivity leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. This work is part of the activity of the Joint Italian-Israeli Laboratory on Integrative Network Neuroscience supported by the Italian Ministry of Foreign Affairs.

  6. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks.

    Directory of Open Access Journals (Sweden)

    Stefano Luccioli

    2014-09-01

    Full Text Available It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity.

  7. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  8. Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma.

    Science.gov (United States)

    Ritchie, Andrew I; Jackson, David J; Edwards, Michael R; Johnston, Sebastian L

    2016-03-01

    Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments.

  9. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis.

    Science.gov (United States)

    Fu, Jiang; Hsu, Wei

    2013-04-01

    A signal first arising in the dermis to initiate the development of hair follicles has been described for many decades. Wnt is the earliest signal known to be intimately involved in hair follicle induction. However, it is not clear whether the inductive signal of Wnt arises intradermally or intraepidermally. Whether Wnt acts as the first dermal signal to initiate hair follicle development also remains unclear. Here we report that Wnt production mediated by Gpr177, the mouse Wls ortholog, is essential for hair follicle induction. Gpr177, encoding a multipass transmembrane protein, regulates Wnt sorting and secretion. Cell type-specific abrogation of the signal reveals that only epidermal, but not dermal, production of Wnt is required. An intraepidermal Wnt signal is necessary and sufficient for hair follicle initiation. However, the subsequent development depends on reciprocal signaling crosstalk of epidermal and dermal cells. Wnt signals within the epidermis and dermis and crossing between the epidermis and dermis have distinct roles and specific functions in skin development. This study not only defines the cell type responsible for Wnt production, but also reveals a highly dynamic regulation of Wnt signaling at different steps of hair follicle morphogenesis. Our findings uncover a mechanism underlying hair follicle development orchestrated by the Wnt pathway.

  10. A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions.

    Directory of Open Access Journals (Sweden)

    Benjamin Pfeuty

    2012-01-01

    Full Text Available Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI and then to meiosis II (MII is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions.

  11. Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm.

    Science.gov (United States)

    Covarrubias, Sergio; Richner, Justin M; Clyde, Karen; Lee, Yeon J; Glaunsinger, Britt A

    2009-09-01

    Lytic infection with the two human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), leads to significant depletion of the cellular transcriptome. This host shutoff phenotype is driven by the conserved herpesviral alkaline exonuclease, termed SOX in KSHV and BGLF5 in EBV, which in gammaherpesviruses has evolved the genetically separable ability to target cellular mRNA. We now show that host shutoff is also a prominent consequence of murine gammaherpesvirus 68 (MHV68) infection, which is widely used as a model system to study pathogenesis of these viruses in vivo. The effector of MHV68-induced host shutoff is its SOX homolog, here termed muSOX. There is remarkable functional conservation of muSOX host shutoff activities with those of KSHV SOX, including the recently described ability of SOX to induce mRNA hyperadenylation in the nucleus as well as cause nuclear relocalization of the poly(A) binding protein. SOX and muSOX localize to both the nucleus and cytoplasm of infected cells. Using spatially restricted variants of these proteins, we go on to demonstrate that all known host shutoff-related activities of SOX and muSOX are orchestrated exclusively from the cytoplasm. These results have important mechanistic implications for how SOX and muSOX target nascent cellular transcripts in the nucleus. Furthermore, our findings establish MHV68 as a new, genetically tractable model to study host shutoff.

  12. Orchestrating A/P and D/V guidance - A Wnt/Netrin tale.

    Science.gov (United States)

    Levy-Strumpf, Naomi

    2016-01-01

    While ample information was gathered in identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V) graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts provide instructive polarity information to guide cells and axons along their respective gradients. In this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt signaling components contribute to D/V polarity, while Netrin signaling components contribute to A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling pathways, roles that are masked due to their redundant nature, and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish polarity in multiple biological processes.

  13. Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible.

    Science.gov (United States)

    McKemmish, Laura K; Reimers, Jeffrey R; McKenzie, Ross H; Mark, Alan E; Hush, Noel S

    2009-08-01

    Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is postulated that microtubules act as quantum processing units, with individual tubulin dimers forming the computational elements. This model requires that the tubulin is able to switch between alternative conformational states in a coherent manner, and that this process be rapid on the physiological time scale. Here, the biological feasibility of the Orch OR proposal is examined in light of recent experimental studies on microtubule assembly and dynamics. It is shown that the tubulins do not possess essential properties required for the Orch OR proposal, as originally proposed, to hold. Further, we consider also recent progress in the understanding of the long-lived coherent motions in biological systems, a feature critical to Orch OR, and show that no reformation of the proposal based on known physical paradigms could lead to quantum computing within microtubules. Hence, the Orch OR model is not a feasible explanation of the origin of consciousness.

  14. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.

    Science.gov (United States)

    Kolas, Nadine K; Chapman, J Ross; Nakada, Shinichiro; Ylanko, Jarkko; Chahwan, Richard; Sweeney, Frédéric D; Panier, Stephanie; Mendez, Megan; Wildenhain, Jan; Thomson, Timothy M; Pelletier, Laurence; Jackson, Stephen P; Durocher, Daniel

    2007-12-07

    Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.

  15. Decentralized operating procedures for orchestrating data and behavior across distributed military systems and assets

    Science.gov (United States)

    Peach, Nicholas

    2011-06-01

    In this paper, we present a method for a highly decentralized yet structured and flexible approach to achieve systems interoperability by orchestrating data and behavior across distributed military systems and assets with security considerations addressed from the beginning. We describe an architecture of a tool-based design of business processes called Decentralized Operating Procedures (DOP) and the deployment of DOPs onto run time nodes, supporting the parallel execution of each DOP at multiple implementation nodes (fixed locations, vehicles, sensors and soldiers) throughout a battlefield to achieve flexible and reliable interoperability. The described method allows the architecture to; a) provide fine grain control of the collection and delivery of data between systems; b) allow the definition of a DOP at a strategic (or doctrine) level by defining required system behavior through process syntax at an abstract level, agnostic of implementation details; c) deploy a DOP into heterogeneous environments by the nomination of actual system interfaces and roles at a tactical level; d) rapidly deploy new DOPs in support of new tactics and systems; e) support multiple instances of a DOP in support of multiple missions; f) dynamically add or remove run-time nodes from a specific DOP instance as missions requirements change; g) model the passage of, and business reasons for the transmission of each data message to a specific DOP instance to support accreditation; h) run on low powered computers with lightweight tactical messaging. This approach is designed to extend the capabilities of existing standards, such as the Generic Vehicle Architecture (GVA).

  16. Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible

    Science.gov (United States)

    McKemmish, Laura K.; Reimers, Jeffrey R.; McKenzie, Ross H.; Mark, Alan E.; Hush, Noel S.

    2009-08-01

    Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is postulated that microtubules act as quantum processing units, with individual tubulin dimers forming the computational elements. This model requires that the tubulin is able to switch between alternative conformational states in a coherent manner, and that this process be rapid on the physiological time scale. Here, the biological feasibility of the Orch OR proposal is examined in light of recent experimental studies on microtubule assembly and dynamics. It is shown that the tubulins do not possess essential properties required for the Orch OR proposal, as originally proposed, to hold. Further, we consider also recent progress in the understanding of the long-lived coherent motions in biological systems, a feature critical to Orch OR, and show that no reformation of the proposal based on known physical paradigms could lead to quantum computing within microtubules. Hence, the Orch OR model is not a feasible explanation of the origin of consciousness.

  17. Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

    Directory of Open Access Journals (Sweden)

    A. Valera

    2012-10-01

    Full Text Available The integration of equipment and other devices built into industrial robot cells with modern Ethernet interface technologies and low-cost mass produced devices (such as vision systems, laser scanners, force torque-sensors, PLCs and PDAs etc. enables integrators to offer more powerful and smarter solutions. Nevertheless, the programming of all these devices efficiently requires very specific knowledge about them, such as their hardware architectures and specific programming languages as well as details about the system's low level communication protocols. To address these issues, this paper describes and analyses the Plug-and-Play architecture. This is one of the most interesting service-oriented architectures (SOAs available, which exhibits characteristics that are well adapted to industrial robotics cells. To validate their programming features and applicability, a test bed was specially designed. This provides a new graphical service orchestration which was implemented using Workflow Foundation 4 of .NET. The obtained results allowed us to verify that the use of integration schemes based on SOAs reduces the system integration time and is better adapted to industrial robotic cell system integrators.

  18. Orchestration of an uncommon maturation cascade of the house dust mite protease allergen quartet

    Directory of Open Access Journals (Sweden)

    Marie-Eve eDumez

    2014-03-01

    Full Text Available In more than 20% of the world population, sensitization to house dust mite (HDM allergens triggers typical allergic diseases such as allergic rhinitis and asthma. Amongst the 23 mite allergen groups hitherto identified, groups 1 are cysteine proteases belonging to the papain-like family whereas groups 3, 6 and 9 are serine proteases displaying trypsin, chymotrypsin and collagenolytic activities, respectively. While these proteases are more likely to be involved in the mite digestive system, they also play critical roles in the initiation and in the chronicity of the allergic response notably through the activation of innate immune pathways. All these allergenic proteases are expressed in mite as inactive precursor form. Until recently, the exact mechanisms of their maturation into active proteases remained to be fully elucidated. Recent breakthroughs in the understanding of the activation mechanisms of mite allergenic protease precursors have highlighted an uncommon and unique maturation pathway orchestrated by group 1 proteases that tightly regulates the proteolytic activities of groups 1, 3, 6 and 9 through complex intra- or intermolecular mechanisms. This review presents and discusses the currently available knowledge of the activation mechanisms of group 1, 3, 6 and 9 allergens of Dermatophagoides pteronyssinus laying special emphasis on their localization, regulation and interconnection.

  19. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process.

    Science.gov (United States)

    Puppo, Alain; Groten, Karin; Bastian, Fabiola; Carzaniga, Raffaella; Soussi, Mariam; Lucas, M Mercedes; de Felipe, Maria Rosario; Harrison, Judith; Vanacker, Hélène; Foyer, Christine H

    2005-03-01

    Research on legume nodule development has contributed greatly to our current understanding of plant-microbe interactions. However, the factors that orchestrate root nodule senescence have received relatively little attention. Accumulating evidence suggests that redox signals contribute to the establishment of symbiosis and senescence. Although degenerative in nature, nodule senescence is an active process programmed in development in which reactive oxygen species (ROS), antioxidants, hormones and proteinases have key roles. Nodules have high levels of the redox buffers, ascorbate and glutathione, which are important in the nodulation process and in senescence. These metabolites decline with N-fixation as the nodule ages but the resultant decrease in redox buffering capacity does not necessarily lead to enhanced ROS or oxidative stress. We propose models by which ROS and antioxidants interact with hormones such as abscisic acid in the orchestration of nodule senescence.

  20. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    OpenAIRE

    Barnes, Ryan; Eckert, Kristin

    2017-01-01

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome ...

  1. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    Science.gov (United States)

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  2. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kawamura

    Full Text Available Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for

  3. Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells.

    Science.gov (United States)

    Gouyer, V; Fontaine, D; Dumont, P; de Wever, O; Fontayne-Devaud, H; Leteurtre, E; Truant, S; Delacour, D; Drobecq, H; Kerckaert, J-P; de Launoit, Y; Bracke, M; Gespach, C; Desseyn, J-L; Huet, G

    2008-07-03

    From the conditioned medium of the human colon carcinoma cells, HT-29 5M21 (CM-5M21), expressing a spontaneous invasive phenotype, tumor-associated trypsin inhibitor (TATI) was identified and characterized by proteomics, cDNA microarray approaches and functional analyses. Both CM-5M21 and recombinant TATI, but not the K18Y-TATI mutant at the protease inhibitor site, trigger collagen type I invasion by several human adenoma and carcinoma cells of the colon and breast, through phosphoinositide-3-kinase, protein kinase C and Rho-GTPases/Rho kinase-dependent pathways. Conversely, the proinvasive action of TATI in parental HT29 cells was alleviated by the TATI antibody PSKAN2 and the K18Y-TATI mutant. Stable expression of K18Y-TATI in HT-29 5M21 cells downregulated tumor growth, angiogenesis and the expression of several metastasis-related genes, including CSPG4 (13.8-fold), BMP-7 (9.7-fold), the BMP antagonist CHORDIN (5.2-fold), IGFBP-2 and IGF2 (9.6- and 4.6-fold). Accordingly, ectopic expression of KY-TATI inhibited the development of lung metastases from HT-29 5M21 tumor xenografts in immunodeficient mice. These findings identify TATI as an autocrine transforming factor potentially involved in early and late events of colon cancer progression, including local invasion of the primary tumor and its metastatic spread. Targeting TATI, its molecular partners and effectors may bring novel therapeutic applications for high-grade human solid tumors in the digestive and urogenital systems.

  4. Interleukin-19 Acts as a Negative Autocrine Regulator of Activated Microglia

    OpenAIRE

    2015-01-01

    Activated microglia can exert either neurotoxic or neuroprotective effects, and they play pivotal roles in the pathogenesis and progression of various neurological diseases. In this study, we used cDNA microarrays to show that interleukin-19 (IL-19), an IL-10 family cytokine, is markedly upregulated in activated microglia. Furthermore, we found that microglia are the only cells in the nervous system that express the IL-19 receptor, a heterodimer of the IL-20Rα and IL-20Rβ subunits. IL-19 defi...

  5. Heme oxygenase-1-derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Reyna, Sylvia V; Chapman, Gary B; Ensenat, Diana; Liu, Xiao-ming; Wang, Hong; Schafer, Andrew I; Durante, William

    2002-06-15

    Vascular smooth muscle cells (SMCs) generate carbon monoxide (CO) via the catabolism of heme by the enzyme heme oxygenase (HO). In the present study, we found that serum stimulated a time- and concentration-dependent increase in the levels of HO-1 messenger RNA (mRNA) and protein in vascular SMCs. The induction of HO-1 expression by serum was inhibited by actinomycin D or cycloheximide. In addition, serum stimulated HO activity, as reflected by an increase in the concentration of bilirubin in the culture media. Treatment of vascular SMCs with serum stimulated DNA synthesis and this was potentiated by the HO inhibitors, zinc and tin protoporphyrin-IX as well as by the CO scavenger, hemoglobin. The iron chelator desferrioxamine had no effect on DNA synthesis. However, exposure of vascular SMCs to exogenous CO inhibited serum-stimulated SMC proliferation and the phosphorylation of retinoblastoma protein. In addition, CO arrested SMCs at the G(1)/S transition phase of the cell cycle and selectively blocked the serum-stimulated expression of cyclin A mRNA and protein without affecting the expression of cyclin D1 and E. CO also inhibited the serum-stimulated activation of cyclin A-associated kinase activity and cyclin-dependent kinase 2 activity. These results demonstrate that serum stimulates HO-1 gene expression and CO synthesis. Furthermore, they show that CO acts in a negative feedback fashion to inhibit vascular SMC growth by regulating specific components of the cell cycle machinery. The capacity of vascular mitogens to induce CO synthesis may provide a novel mechanism by which these agents modulate cell growth.

  6. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    OpenAIRE

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF express...

  7. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  8. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  9. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes

    National Research Council Canada - National Science Library

    Gao, Shanshan; Li, Fangmin; Li, Huimin; Huang, Yibing; Liu, Yu; Chen, Yuxin

    2016-01-01

    Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community...

  10. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB

    Science.gov (United States)

    Porta, Chiara; Rimoldi, Monica; Raes, Geert; Brys, Lea; Ghezzi, Pietro; Di Liberto, Diana; Dieli, Francesco; Ghisletti, Serena; Natoli, Gioacchino; De Baetselier, Patrick; Mantovani, Alberto; Sica, Antonio

    2009-01-01

    Cells of the monocyte–macrophage lineage play a central role in the orchestration and resolution of inflammation. Plasticity is a hallmark of mononuclear phagocytes, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic or M1 and alternative or M2. NF-κB is a key regulator of inflammation and resolution, and its activation is subject to multiple levels of regulation, including inhibitory, which finely tune macrophage functions. Here we identify the p50 subunit of NF-κB as a key regulator of M2-driven inflammatory reactions in vitro and in vivo. p50 NF-κB inhibits NF-κB–driven, M1-polarizing, IFN-β production. Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and defective capacity to mount allergy and helminth-driven M2-polarized inflammatory reactions. Thus, NF-κB p50 is a key component in the orchestration of M2-driven inflammatory reactions. PMID:19706447

  11. Orchestrating care through the fast-track perspective: A qualitative content analysis of the provision of individualised nursing care in orthopaedic fast-track programmes.

    Science.gov (United States)

    Berthelsen, Connie Bøttcher; Frederiksen, Kirsten

    2017-02-01

    The lack of individualised care in orthopaedic regimes is often explained by the extended use of patient pathways and clinical guidelines. The aim of this study was to illuminate orthopaedic nurses' perceptions and experiences of providing individual nursing care for older patients in standardised fast-track programmes after total hip or knee replacement. Ten semi-structured interviews were conducted with orthopaedic nurses in orthopaedic wards at three Danish hospitals between April and June of 2015. Data were analysed using manifest and latent content analysis according to Graneheim and Lundman. The main theme of the overall interpretation was Orchestrating care through the fast-track perspective, accompanied by three sub-themes: Identifying and legitimising relevant individual care in the fast-track programme, Struggling to fit all patients in the fast-track programme and Justifying individualised care-related actions in the fast-track programme. The study concluded that, even though the nurses struggled to comply with the programme, they still found themselves compromising their nursing care and ethics to follow the standardised regime. There is a need to establish more specific inclusion criteria to maintain the effective elements in the programme and to facilitate nurses' opportunities to offer individual care, thereby ensuring that fragile patients have access to other possibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  13. Theory-Led Design of Instruments and Representations in Learning Analytics: Developing a Novel Tool for Orchestration of Online Collaborative Learning

    Science.gov (United States)

    Kelly, Nick; Thompson, Kate; Yeoman, Pippa

    2015-01-01

    This paper describes theory-led design as a way of developing novel tools for learning analytics (LA). It focuses upon the domain of automated discourse analysis (ADA) of group learning activities to help an instructor to orchestrate online groups in real-time. The paper outlines the literature on the development of LA tools within the domain of…

  14. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    Science.gov (United States)

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  15. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  16. Co-expression of epidermal growth factor-receptor and c-erb B-2 proto-oncogene product in human salivary-gland adenocarcinoma cell line HSG and the implications for HSG cell autocrine growth.

    Science.gov (United States)

    Kyakumoto, S; Kurokawa, R; Hoshino, M; Ota, M

    1994-07-01

    The autonomous proliferation of HSG cells is mediated by an autocrine growth factor, a 46K epidermal growth factor (EGF)-like molecule. The receptor for this molecule was investigated. Immunoprecipitation and immunoblotting revealed the expression of two possible receptor molecules, EGF-R and p185erbB-2, in HSG cells. Northern blotting also revealed the co-expression of 5.6-kb EGF-R mRNA and 4.6-kb c-erb B-2 mRNA. When the purified EGF-like molecule was added to the cultures, EGF-R but not p185erbB-2 was autophosphorylated. These results suggest that, although both EGF-R and p185erbB-2 are co-expressed in HSG cells, the EGF-R is the genuine receptor for the EGF-like molecule. However, there is a possibility that p185erB-2 is involved in the signal transduction system. This possibility was examined by using specific antibodies to human EGF-R (hEGF-R), p185erbB-2, and EGF to inhibit the functions of these molecules. Addition of these three antibodies to the cultures inhibited the growth of HSG cells. The antibodies to EGF-R and p185erbB-2 also caused morphological changes such as disturbances of the plasma membrane, and some cell death. Surprisingly, the effect of the anti-p185erbB-2 antibody on growth inhibition and morphology was stronger than that of the anti-hEGF-R antibody. Thus, p185erB-2 expressed in HSG cells has an important function in the signal transduction of HSG cell growth.

  17. Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge.

    Science.gov (United States)

    de Witte, Moniek A; Kierkels, Guido J J; Straetemans, Trudy; Britten, Cedrik M; Kuball, Jürgen

    2015-07-01

    Over half a century ago, the first allogeneic stem cell transplantation (allo-SCT) initiated cellular immunotherapy. For several decades, little progress was made, and toxicity of allo-SCT remained a major challenge. However, recent breakthroughs have opened new avenues to further develop this modality and to provide less toxic and equally efficient interventions for patients suffering from hematological or solid malignancies. Current novel cellular immune interventions include ex vivo expansion and adoptive transfer of tumor-infiltrating immune cells or administration of drugs which antagonize tolerizing mechanisms. Alternatively, transfer of immune cells engineered to express defined T cell receptors (TCRs) and chimeric antigen receptors (CARs) has shown its potential. A valuable addition to 'engineered' adaptive immunity has emerged recently through the improved understanding of how innate immune cells can attack cancer cells without substantial side effects. This has enabled the development of transplantation platforms with limited side effects allowing early immune interventions as well as the design of engineered immune cells expressing innate immune receptors. Here, we focus on innate immune interventions and their orchestration with TCR- and CAR-engineered immune cells. In addition, we discuss how the exploitation of the full potential of cellular immune interventions is influenced by regulatory frameworks. Finally, we highlight and discuss substantial differences in the current landscape of clinical trials in Europe as compared to the USA. The aim is to stimulate international efforts to support regulatory authorities and funding agencies, especially in Europe, to create an environment that will endorse the development of engineered immune cells for the benefit of patients.

  18. Transfection of rat myoblasts with leuflvirus carrying autocrine motility factor gene%携带自分泌运动因子基因的慢病毒载体转染大鼠成肌细胞

    Institute of Scientific and Technical Information of China (English)

    李任; 金岚; 田怡; 牙祖蒙

    2009-01-01

    目的 探索高效、安全的自分泌运动因子(autocrine motility factor,AMF)基因转染方法 ,为携带AMF基因的成肌细胞移植提供实验依据. 方法 取SD大鼠胸肌,用组织块培养法原代培养成肌细胞,纯化、鉴定、扩增成肌细胞;构建携带AMF及增强型绿色荧光蛋白(enhancedgreen fluorescent protein,EGFP)基因的猫免疫缺陷病毒(feline immuneddieiency vires,FIV)慢病毒载体;后者转染至成肌细胞;用荧光显微镜、激光共聚焦显微镜检测EGFP以确定转染的阳性率;应用免疫组化方法 检测AMF的表达. 结果 经过2周的原代培养及纯化,可获得纯度为98%的成肌细胞,在转染复数(multiplieity ofinfection,MOI)为100时,可获得90.4%(P<0.01)的转染阳性率,而转染后的AMF基因能正常表达. 结论 组织块培养法适合成肌细胞的原代培养;FIV载体能以高转染率将AMF基因转至大鼠成肌细胞,并获得高效的表达.该方法 为一种较理想的AMF基因转染模式.%Objective To explore a safe and high efficiency way of gene transfection of autocrine motility factor(AMF) in order to provide experimental basis for transplantation of myoblasts carrying AMF gone. Methods Sprague Dawley rat myoblasts were cultured, purified, proliferated and immunohisto-chemically verified. Then, the myoblasts were transfected with AMF and eGFP (enhanced green fluores-cent protein) gene by FIV (feline immunodeficiency virus). Fluorescence microscope and laser scanning confocal microscope were employed to detect eGFP so as to verify positive transfection rate. Expression of AMF was detected by immunohistochemical method. Results Myoblasts with 98% purity could he ob-tained after two weeks of primary culture and purification. Positive transfection rate reached 90.4% when MOI (multiplicity of infection) was 100 (P <0.01). The transfected AMF gene could express normally. Conclusions Explant culture is a proper way in rat myoblast culture. Meanwhile, AMF gene can

  19. The Scaffold Protein Muscle A-Kinase Anchoring Protein β Orchestrates Cardiac Myocyte Hypertrophic Signaling Required for the Development of Heart Failure

    Science.gov (United States)

    Kritzer, Michael D.; Li, Jinliang; Passariello, Catherine L.; Gayanilo, Marjorie; Thakur, Hrishikesh; Dayan, Joseph; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Background Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPβ signalosomes to pathological remodeling and heart failure in vivo remains unknown. Methods and Results Using conditional, cardiac myocyte–specific gene deletion, we now demonstrate that mAKAPβ expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPβ targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPβ knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPβ knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPβ scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPβ knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold. Conclusions mAKAPβ orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPβ signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure. PMID:24812305

  20. Role of autocrine osteopontin in promoting multiple functions of murine Nf1+/-osteoclast%自分泌骨桥蛋白在Nf1+/-小鼠破骨细胞功能增强中的作用

    Institute of Scientific and Technical Information of China (English)

    李会杰; 刘亚玲; 井永敏; 张英泽; 王振昊; 闫金成

    2013-01-01

    Objective To detect the osteopontin (OPN) autocrine function of the osteoclasts in neurofibromatosis type 1 heterozygote (Nfl+/-) and wild type (Nfl+/+) mice.Test the osteoclasts function of neurofibromatosis type 1 heterozygote (Nfl+/-) and wild type (Nil+/+) mice with exogenous neutralizing OPN antibody,analysis the role of autocrine OPN in the hyperfunction of osteoclast in neurofibromatosis type 1.Methods Culture the low density bone marrow cells from Nfl heterozygote (Nfl+/-) and wild type (Nfl+/+) mice (4-6 weeks old) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand(RANKL),Measure.the OPN concentration in osteoclast culture superenant with ELISA.Culture the low density bone marrow cells from Nf1+/-and Nf1+/+ mice with or without exogenous neutralizing antibody for OPN.The function of osteoclasts and osteoclast progenitors in formation,migration,adhesion,and bone absorption were tested.Results A significantly higher concentration of OPN was detected in the Nf1+/-osteoclast culture media as compared to that of wild type.In control,Osteoclast functions,including migration,adhesion,and bone resorption of Nf1 +/-were higher than that of wild type.Addition OPN neutralizing antibody to the Nf1+/-OCL significantly reduced OCL formation.Neutralizing OPN antibody diminished both wild type and Nf1+/-OCL adhensiontion,Anti-OPN minimized OCL migration in both wild type and Nf1 +/-OCL cultures as measured by the transwell assays.Neutralizing OPN antibody diminished both wild type and Nf1+/-OCL pit formation,P>0.05 for comparing Nfl+/-vs.wild type OCLs with anti-OPN antibody.Conclusion The hyperfunction of osteoclast in Nf1 heterozygote is related with autocrine osteopontin,inhibition of OPN may be an effective treatment for bone destruction of neurofibromatosis type 1.%目的 研究体外培养的Nf1+/-小鼠破骨细胞合成、分泌骨桥蛋白(osteopontin,OPN)的能力,应用OPN中和抗体抑制破骨细胞分泌的OPN,测

  1. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Ryan Barnes

    2017-01-01

    Full Text Available Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  2. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases.

    Science.gov (United States)

    Barnes, Ryan; Eckert, Kristin

    2017-01-06

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize "difficult to replicate" genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  3. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    Science.gov (United States)

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  5. Nodal promotes the self-renewal of human colon cancer stem cells via an autocrine manner through Smad2/3 signaling pathway.

    Science.gov (United States)

    Gong, Yuehua; Guo, Ying; Hai, Yanan; Yang, Hao; Liu, Yang; Yang, Shi; Zhang, Zhenzhen; Ma, Meng; Liu, Linhong; Li, Zheng; He, Zuping

    2014-01-01

    Colorectal cancer is one of the most common and fatal tumors. However, molecular mechanisms underlying carcinogenesis of colorectal cancer remain largely undefined. Here, we explored the expression and function of Nodal in colon cancer stem cells (CCSCs). Nodal and its receptors were present in numerous human colorectal cancer cell lines. NODAL and ALK-4 were coexpressed in human colon cancerous tissues, and NODAL, CD24, and CD44, markers for CCSCs, were expressed at higher levels in human colon cancerous tissues than adjacent noncancerous colon tissues. Human CCSCs were isolated by magnetic activated cell sorting using anti-CD24 and anti-CD44. Nodal transcript and protein were hardly detectable in CD44- or CD24-negative human colorectal cancer cell lines, whereas Nodal and its receptors were present in CCSCs. Notably, Nodal facilitated spheroid formation of human CCSCs, and phosphorylation of Smad2 and Smad3 was activated by Nodal in cells of spheres derived from human CCSCs. Collectively, these results suggest that Nodal promotes the self-renewal of human CCSCs and mediate carcinogenesis of human colorectal cancer via an autocrine manner through Smad2/3 pathway. This study provides a novel insight into molecular mechanisms controlling fate of human CCSCs and offers new targets for gene therapy of human colorectal cancer.

  6. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    Directory of Open Access Journals (Sweden)

    Juan Bayo

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs and human umbilical cord perivascular cells (HUCPVCs towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2 and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  7. Tumor suppressor ataxia telangiectasia mutated functions downstream of TGF-β1 in orchestrating profibrotic responses

    NARCIS (Netherlands)

    Overstreet, Jessica M; Samarakoon, Rohan; Cardona-Grau, Diana; Goldschmeding, Roel|info:eu-repo/dai/nl/102376069; Higgins, Paul J

    2015-01-01

    Effective therapy to prevent organ fibrosis, which is associated with more than half of all mortalities, remains elusive. Involvement of tumor suppressor ataxia telangiectasia mutated (ATM) in the TGF-β1 pathway related to renal fibrosis is largely unknown. ATM activation (pATM(Ser1981)) increased 4

  8. Logistics orchestration in the ornamental plant supply chain network: towards responsive and differentiated demand driven networks

    NARCIS (Netherlands)

    Vorst, van der J.G.A.J.; Duineveld, M.P.J.; Scheer, F.P.

    2007-01-01

    At the moment the Dutch ornamental plant sector has a dominant international position fulfilling about 44% of the European market. However, emerging markets are positioned at a great distance requiring new logistics concepts to operate efficiently and effectively, new marketing channels become appar

  9. COML (Classroom Orchestration Modelling Language) and Scenarios Designer: Toolsets to Facilitate Collaborative Learning in a One-to-One Technology Classroom

    OpenAIRE

    Niramitranon, Jitti; Sharples, Mike; Greenhalgh, Chris

    2006-01-01

    In a one-to-one collaborative learning classroom supported by ubiquitous computing, teachers require tools that allow them to design of learning scenarios, and to manage and monitor the activities happening in the classroom. Our project proposes an architecture for a classroom management system and a scenarios designer tool, both based on a Classroom Orchestration Modelling Language (COML), to support these requirements. We are developing and testing this with the GroupScribbles software usin...

  10. Interleukin-1 and Interferon-γ Orchestrate β-Glucan-Activated Human Dendritic Cell Programming via IκB-ζ Modulation

    OpenAIRE

    2014-01-01

    Recognition of microbial components via innate receptors including the C-type lectin receptor Dectin-1, together with the inflammatory environment, programs dendritic cells (DCs) to orchestrate the magnitude and type of adaptive immune responses. The exposure to β-glucan, a known Dectin-1 agonist and component of fungi, yeasts, and certain immune support supplements, activates DCs to induce T helper (Th)17 cells that are essential against fungal pathogens and extracellular bacteria but may tr...

  11. Efficient Orchestration of Data Centers Via Comprehensive and Application Aware Trade Off Exploration

    Science.gov (United States)

    2016-12-01

    of computer servers called data centers to remotely store, manage, and process user data , is be- coming increasingly popular as a cost-effective and on...same data intensive workload as close as possible to reduce both bandwidth contention and communication latency [14]. But although the concept of...different types of indi- vidual application workloads (e.g., computation or memory intensive vs. data or network intensive) within a shared multi-tenant

  12. Logistics orchestration in the ornamental plant supply chain network: towards responsive and differentiated demand driven networks

    OpenAIRE

    Vorst, van der, H.A.; Duineveld, M.P.J.; Scheer, F.P.

    2007-01-01

    At the moment the Dutch ornamental plant sector has a dominant international position fulfilling about 44% of the European market. However, emerging markets are positioned at a great distance requiring new logistics concepts to operate efficiently and effectively, new marketing channels become apparent which require increased responsiveness and product diversification, and new competitors like Spain and Italy are entering the arena. If no action is taken, the Dutch might loose their renowned ...

  13. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation.

    Science.gov (United States)

    Vragović, Kristina; Sela, Ayala; Friedlander-Shani, Lilach; Fridman, Yulia; Hacham, Yael; Holland, Neta; Bartom, Elizabeth; Mockler, Todd C; Savaldi-Goldstein, Sigal

    2015-01-20

    The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth.

  14. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress.

    Science.gov (United States)

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-06-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications.

  15. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    Science.gov (United States)

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications.

  16. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail;

    2013-01-01

    Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here......, we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... MPs inhibited MPC fusion while anti-inflammatory MPs strongly promoted MPC differentiation by increasing their commitment into differentiated myocytes and the formation of mature myotubes. Furthermore, the in vivo time course of expression of myogenic and MP markers was studied in regenerating human...

  17. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.

    Science.gov (United States)

    Marini, Francesco; Demeter, Elise; Roberts, Kenneth C; Chelazzi, Leonardo; Woldorff, Marty G

    2016-01-20

    Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction

  18. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness.

    Science.gov (United States)

    Rouleau, Nicolas; Dotta, Blake T

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.

  19. Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control

    Directory of Open Access Journals (Sweden)

    Massimo Trusel

    2015-11-01

    Full Text Available The basal ganglia play a critical role in shaping motor behavior. For this function, the activity of medium spiny neurons (MSNs of the striatonigral and striatopallidal pathways must be integrated. It remains unclear whether the activity of the two pathways is primarily coordinated by synaptic plasticity mechanisms. Using a model of Parkinson’s disease, we determined the circuit and behavioral effects of concurrently regulating cell-type-specific forms of corticostriatal long-term synaptic depression (LTD by inhibiting small-conductance Ca2+-activated K+ channels (SKs of the dorsolateral striatum. At striatopallidal synapses, SK channel inhibition rescued the disease-linked deficits in endocannabinoid (eCB-dependent LTD. At striatonigral cells, inhibition of these channels counteracted a form of adenosine-mediated LTD by activating the ERK cascade. Interfering with eCB-, adenosine-, and ERK signaling in vivo alleviated motor abnormalities, which supports that synaptic modulation of striatal pathways affects behavior. Thus, our results establish a central role of coordinated synaptic plasticity at MSN subpopulations in motor control.

  20. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection.

    Science.gov (United States)

    Batista, Edleusa M L; Doria, Juliana G; Ferreira-Vieira, Talita H; Alves-Silva, Juliana; Ferguson, Stephen S G; Moreira, Fabricio A; Ribeiro, Fabiola M

    2016-08-20

    The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1 promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1- and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca(2+) do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.

  1. Cyclin G2 Promotes Hypoxia- Driven Local Invasion of Glioblastoma by Orchestrating Cytoskeletal Dynamics

    Directory of Open Access Journals (Sweden)

    Atsushi Fujimura

    2013-11-01

    Full Text Available Microenvironmental conditions such as hypoxia potentiate the local invasion of malignant tumors including glioblastomas by modulating signal transduction and protein modification, yet the mechanism by which hypoxia controls cytoskeletal dynamics to promote the local invasion is not well defined. Here, we show that cyclin G2 plays pivotal roles in the cytoskeletal dynamics in hypoxia-driven invasion by glioblastoma cells. Cyclin G2 is a hypoxia-induced and cytoskeleton-associated protein and is required for glioblastoma expansion. Mechanistically, cyclin G2 recruits cortactin to the juxtamembrane through its SH3 domain-binding motif and consequently promotes the restricted tyrosine phosphorylation of cortactin in concert with src. Moreover, cyclin G2 interacts with filamentous actin to facilitate the formation of membrane ruffles. In primary glioblastoma, cyclin G2 is abundantly expressed in severely hypoxic regions such as pseudopalisades, which consist of actively migrating glioma cells. Furthermore, we show the effectiveness of dasatinib against hypoxia-driven, cyclin G2-involved invasion in vitro and in vivo. Our findings elucidate the mechanism of cytoskeletal regulation by which severe hypoxia promotes the local invasion and may provide a therapeutic target in glioblastoma.

  2. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1.

    Science.gov (United States)

    Thapa, Puspa; Manso, Bryce; Chung, Ji Young; Romera Arocha, Sinibaldo; Xue, Hai-Hui; Angelo, Derek B Sant'; Shapiro, Virginia Smith

    2017-08-01

    iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.

  3. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  4. Is the audiologic status of professional musicians a reflection of the noise exposure in classical orchestral music?

    Science.gov (United States)

    Emmerich, Edeltraut; Rudel, Lars; Richter, Frank

    2008-07-01

    The sound in classical orchestral music is louder than noise emissions allowed by national rules in industry. We wanted to assess the audiologic status of professional musicians at different ages of their careers and to look for a coherence of declined hearing ability and the sound emissions in order to substantiate advices for hearing protection and occupational medicine in musicians. Data from questionnaires (anamnestic data on sound exposure in profession and leisure times, use of hearing protection, self-evaluation of hearing function and hearing deficits), audiometric data and amplitudes of OAE were evaluated from 109 professional musicians aged 30-69 years from three major German orchestras and from 110 students of an academy of music (aged 11-19 years). Sound emissions of the whole orchestra and of single instruments/instrument groups were measured at the orchestra stages and pits during rehearsals and performances. None of the musicians was engaged in noisy hobbies and only a few used hearing protectors regularly. More than 50% of the musicians had a hearing loss of 15 dB(A) and more. Highest losses were found among the strings and the brass players. DPOAE amplitudes coincidently declined with the duration of performing music in the orchestras. Professional musicians aged older than 60 years had a significantly greater hearing loss at 4 and 6 kHz than those aged 30-39 years. Among the strings in one orchestra a dominant hearing deficit in the left ears was observed. Musicians need the same health care for their hearing as workers in noisy industry. A better education on the hearing hazards (use of hearing protectors) as well as sound protection in the rehearsal rooms is necessary. Hearing loss in professional musicians should be accepted as an occupational disease.

  5. ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis .

    Science.gov (United States)

    Promchuea, Sujittra; Zhu, Yujuan; Chen, Zhizhong; Zhang, Jing; Gong, Zhizhong

    2017-01-01

    Multiple hormones, including abscisic acid (ABA) and auxin, regulate cell division and differentiation of Arabidopsis root meristems. AUXIN RESPONSE FACTOR 2 (ARF2) functions as a negative regulator of ABA responses, as seed germination and primary root growth of arf2 mutants are hypersensitive to ABA. In this study, we found that ABA treatment reduced the expression levels of the PIN-FORMEDs (PIN) auxin efflux carriers, PIN1, PIN3, PIN4, and PIN7, to a greater extent in the root meristems of arf2-101 mutant than in the wild type. Also, arf2-101 pin1 and arf2-101 pin4 double mutants show less ABA-induced inhibition of root meristem activity than the arf2-101 mutants. Furthermore, ARF2 positively mediates the transcripts of transcription factor PLETHORA 1 (PLT1) gene but negatively mediates PLT2 at protein level in root meristems. Using a dexamethasone (DEX)-inducible transgenic line, Pro35S:PLT2-GR, we showed that PLT2 greatly promotes cell division and completely inhibits cell differentiation in root meristems of the arf2-101 mutant once PLT2 is induced by DEX, which can be partially reversed by ABA treatment, suggesting that ABA regulates root meristem activity in both ARF2-dependent and independent pathways. Our results uncover a complex regulatory architecture in which ARF2 coordinates with PLTs and PINs to orchestrate ABA-mediated regulation of root meristem activity in Arabidopsis. © 2016 Institute of Botany, Chinese Academy of Sciences.

  6. Expression of autocrine prolactin and the short isoform of prolactin receptor are associated with inflammatory response and apoptosis in monocytes stimulated with Mycobacterium bovis proteins.

    Science.gov (United States)

    López-Rincón, Gonzalo; Mancilla, Raúl; Pereira-Suárez, Ana L; Martínez-Neri, Priscila A; Ochoa-Zarzosa, Alejandra; Muñoz-Valle, José Francisco; Estrada-Chávez, Ciro

    2015-06-01

    Increased levels of prolactin (PRL) have recently been associated with carcinogenesis and the exacerbation of autoimmune diseases, and might be involved in the progression of tuberculosis (TB). To investigate the relationship between PRL and prolactin receptor (PRLr) expression with inflammatory response and apoptosis in monocytes, we used THP-1 cells stimulated with antigens of the Mycobacterium bovis AN5 strain culture filtrate protein (CFP-M. bovis). Western blot (WB), real-time Polymerase chain reaction (PCR), and immunocytochemistry were performed to identify both PRL and PRLr molecules. PRL bioactivity and proinflammatory cytokine detection were assessed. The results showed that PRL and PRLr messenger RNA (mRNA) were synthesized in THP-1 monocytes induced with CFP-M. bovis at peaks of 176- and 404-fold, respectively. PRL forms of 60 and 80kDa and PRLr isoforms of 40, 50, and 65kDa were also identified as time-dependent, while 60-kDa PRL, as well as 40-, and 50-kDa PRLr, were found as soluble forms in culture media and later in the nucleus of THP-1 monocytes. PRL of 60kDa released by monocytes exhibited bioactivity in Nb2 cells, and both synthesized PRL and synthesized PRLr were related with nitrite and proinflammatory cytokine levels proapoptotic activity in CFP-M. bovis-induced monocytes. Our results suggest the overexpression of a full-autocrine loop of PRL and PRLr in monocytes that enhances the inflammatory response and apoptosis after priming with M. bovis antigens.

  7. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Nagai, Mami [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Matsui, Keiji; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Asano, Shigetaka [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan)

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  8. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis.

    Directory of Open Access Journals (Sweden)

    Liliana Endo-Munoz

    Full Text Available Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA and of the uPA receptor (uPAR exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC, and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004 inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.

  9. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder;

    2013-01-01

    Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment...

  10. Orchestrating Multiple Intelligences

    Science.gov (United States)

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  11. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization and the ......The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization...

  12. Orchestration of bone remodeling

    NARCIS (Netherlands)

    Moester, Martiene Johanna Catharina

    2014-01-01

    In healthy individuals, a balance exists between bone formation and resorption. Disruption of this balance can lead to higher or lower bone mass, and disease such as osteoporosis. Treatment for osteoporosis generally inhibits bone resorption, but does not rebuild bone to a healthy strength. More kno

  13. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization and the ......The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization...... and the making of subjects have held sway for many years; and it is also well known that schools have been some of the most regular purchasers of psychological methods, tests and classifications. Following but also elaborating upon governmentality studies, it is suggested that a current shift towards...

  14. Orchestrating an Exceptional Death

    DEFF Research Database (Denmark)

    Jensen, Anja Marie Bornø

    , reinterpret and translate death and organ donation into something culturally acceptable and sense making. With chapters focusing analytically on the performance of trust, the transformative practices of hope, the aesthetization of ambiguous bodies, the sociality of exchangeable organs and the organ donation......This Ph.D. thesis explores the experiences of Danish donor families and the context of organ donation in Denmark. Based on comprehensive ethnographic studies at Danish hospitals and interviews with health care professionals and donor families, readers are invited on a journey into the complex...... processes of facing brain death and deciding about organ donation. This study suggests that organ donation should be understood as a ‘strange figure’ challenging traditions and attitudes regarding the boundaries between life and death and the practices surrounding dead human bodies. Simultaneously, organ...

  15. Orchestrating an Exceptional Death

    DEFF Research Database (Denmark)

    Jensen, Anja Marie Bornø

    This Ph.D. thesis explores the experiences of Danish donor families and the context of organ donation in Denmark. Based on comprehensive ethnographic studies at Danish hospitals and interviews with health care professionals and donor families, readers are invited on a journey into the complex...... processes of facing brain death and deciding about organ donation. This study suggests that organ donation should be understood as a ‘strange figure’ challenging traditions and attitudes regarding the boundaries between life and death and the practices surrounding dead human bodies. Simultaneously, organ......, reinterpret and translate death and organ donation into something culturally acceptable and sense making. With chapters focusing analytically on the performance of trust, the transformative practices of hope, the aesthetization of ambiguous bodies, the sociality of exchangeable organs and the organ donation...

  16. Orchestrating an Effective Formulation to Investigate the Impact of EMSs (Energy Management Systems for Residential Units Prior to Installation

    Directory of Open Access Journals (Sweden)

    Danish Mahmood

    2017-03-01

    Full Text Available Demand Response (DR programs under the umbrella of Demand Side Management (DSM tend to involve end users in optimizing their Power Consumption (PC patterns and offer financial incentives to shift the load at “low-priced” hours. However, users have their own preferences of anticipating the amount of consumed electricity. While installing an Energy Management System (EMS, the user must be assured that this investment gives optimum comfort of bill savings, as well as appliance utility considering Time of Use (ToU. Moreover, there is a difference between desired load distribution and optimally-scheduled load across a 24-h time frame for lowering electricity bills. This difference in load usage timings, if it is beyond the tolerance level of a user, increases frustration. The comfort level is a highly variable phenomenon. An EMS giving optimum comfort to one user may not be able to provide the same level of satisfaction to another who has different preferences regarding electricity bill savings or appliance utility. Under such a diversity of human behaviors, it is difficult to select an EMS for an individual user. In this work, a numeric performance metric,“User Comfort Level (UCL”isformulatedonthebasisofuserpreferencesoncostsaving,toleranceindelayregardinguse of an appliance and return of investment. The proposed framework (UCL allows the user to select an EMS optimally that suits his.her preferences well by anticipating electricity bill reduction, tolerable delay in ToU of the appliance and return on investment. Furthermore, an extended literature analysis is conducted demonstrating generic strategies of EMSs. Five major building blocks are discussed and a comparative analysis is presented on the basis of the proposed performance metric.

  17. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis.

    Science.gov (United States)

    Roy, Debasmita; Sin, Sang-Hoon; Lucas, Amy; Venkataramanan, Raman; Wang, Ling; Eason, Anthony; Chavakula, Veenadhari; Hilton, Isaac B; Tamburro, Kristen M; Damania, Blossom; Dittmer, Dirk P

    2013-04-01

    Kaposi sarcoma originates from endothelial cells and it is one of the most overt angiogenic tumors. In Sub-Saharan Africa, where HIV and the Kaposi sarcoma-associated herpesvirus (KSHV) are endemic, Kaposi sarcoma is the most common cancer overall, but model systems for disease study are insufficient. Here, we report the development of a novel mouse model of Kaposi sarcoma, where KSHV is retained stably and tumors are elicited rapidly. Tumor growth was sensitive to specific allosteric inhibitors (rapamycin, CCI-779, and RAD001) of the pivotal cell growth regulator mTOR. Inhibition of tumor growth was durable up to 130 days and reversible. mTOR blockade reduced VEGF secretion and formation of tumor vasculature. Together, the results show that mTOR inhibitors exert a direct anti-Kaposi sarcoma effect by inhibiting angiogenesis and paracrine effectors, suggesting their application as a new treatment modality for Kaposi sarcoma and other cancers of endothelial origin.

  18. Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor.

    Science.gov (United States)

    Van Wagoner, N J; Oh, J W; Repovic, P; Benveniste, E N

    1999-07-01

    In the CNS, astrocytes are a major inducible source of interleukin-6 (IL-6). Although IL-6 has beneficial effects in the CNS because of its neurotrophic properties, its overexpression is generally detrimental, adding to the pathophysiology associated with CNS disorders. Many factors have been shown to induce IL-6 expression by astrocytes, particularly the cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta). However, the role of IL-6 in its own regulation in astrocytes has not been determined. In this study, we examined the influence of IL-6 alone or in combination with TNF-alpha or IL-1beta on IL-6 expression. IL-6 alone had no effect on IL-6 expression; however, the addition of the soluble IL-6 receptor (sIL-6R) induced IL-6 transcripts. Addition of TNF-alpha or IL-1beta plus IL-6/sIL-6R led to synergistic increases in IL-6 expression. This synergy also occurred in the absence of exogenously added IL-6, attributable to TNF-alpha- or IL-1beta-induced endogenous IL-6 protein production. IL-6 upregulation seen in the presence of TNF-alpha or IL-1beta plus IL-6/sIL-6R was transcriptional, based on nuclear run-on analysis. Experiments were extended to other IL-6 family members to determine their role in IL-6 regulation in astrocytes. Oncostatin M (OSM) induced IL-6 alone and synergized with TNF-alpha for enhanced expression. These results demonstrate that IL-6/sIL-6R and OSM play an important role in the regulation of IL-6 expression within the CNS, particularly in conjunction with the proinflammatory cytokines TNF-alpha and IL-1beta.

  19. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  20. Transformation and Implementation from WS-CDL Choreography to BPEL Orchestration%WS-CDL编排到BPEL编制的转换与实现

    Institute of Scientific and Technical Information of China (English)

    周洁颖; 阮彤; 张弘

    2012-01-01

    Web服务编排流程与编制流程之间的转换一直是学术界的研究热点,尤其是W3C提出的标准规范WS-CDL与如今广泛应用的编制规范BPEL流程之间的转换,对SOA实践者来说具有很强的实用性。然而,现有的转换规则都没有考虑全局模型到局部模型的转换过程中可能存在的不可执行问题,并且其转换规则本身也存在一些不合理的地方。提出了新的WS-CDL编排到BPEL编制流程的转换规则,该规则不但给出了转换过程中不可执行问题的检验和排除方法,并且其转换规则相较于现有的规则更加准确合理。%To transform from service choreography to service orchestration is very useful for SOA practitioners,especially the transformation from the standard WS-CDL to the widely adopted orchestration standard BPEL.However,the existing transformation rules are not accurate in some aspects,and lack verification of enforceability during the transformation from global model to local model.Therefore,this paper proposes a set of transformation rules from WS-CDL choreography to BPEL orchestration with verification of enforceability,which is proved more accurate than the existing rules.

  1. Composition Characteristics of Olivier Messiaen’s Later Orchestral Works%梅西安晚期管弦乐作品的创作特征

    Institute of Scientific and Technical Information of China (English)

    汪胜付

    2016-01-01

    Olivier Messiaen (1908~1992 ) was a great French composer of the 20th century. This paper discussed his later orchestral works composed after the 1970s, which were rarely analyzed or studied in China. Main composition characteristics of Messiaen’s last six orchestral works were analyzed and summarized as follows. First-ly, in the aspect of structure thinking, his works used multi-materials, multi-color juxtaposition and symmetry. Secondly, his composition was more extensively influ-enced by synaesthesia. Thirdly, symphonic characteristics of birdsongs were fully demonstrated in his last six orchestral works. Finally, just like his other works, these six works were deeply influenced by religion or relevant themes.%文章选取了国内20世纪法国作曲家奥利维耶·梅西安(Olivier Messiaen,1908~1992)在70年代以后创作的晚期管弦乐作品为研究对象,归纳总结了梅西安晚期的六部管弦乐作品的在创作上的主要特点与整体特征。首先,在结构思维上主要体现出多材料、多色彩并置与对称性。其次,在音乐创作上受到了更宽泛的“联觉”影响。再次,晚期六部管弦乐作品充分表现出鸟歌的交响性。最后,这六部管弦乐作品深远地受到宗教题材影响。

  2. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells.

    Science.gov (United States)

    Ahmad, Aamir; Aboukameel, Amro; Kong, Dejuan; Wang, Zhiwei; Sethi, Seema; Chen, Wei; Sarkar, Fazlul H; Raz, Avraham

    2011-05-01

    Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) plays an important role in glycolysis and gluconeogenesis and is associated with invasion and metastasis of cancer cells. We have previously shown its role in the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells, which led to increased aggressiveness; however, the molecular mechanism by which PGI/AMF regulates EMT is not known. Here we show, for the first time, that PGI/AMF overexpression led to an increase in the DNA-binding activity of NF-κB, which, in turn, led to increased expression of ZEB1/ZEB2. The microRNA-200s (miR-200s) miR-200a, miR-200b, and miR-200c are known to negatively regulate the expression of ZEB1/ZEB2, and we found that the expression of miR-200s was lost in PGI/AMF overexpressing MCF-10A cells and in highly invasive MDA-MB-231 cells, which was consistent with increased expression of ZEB1/ZEB2. Moreover, silencing of PGI/AMF expression in MDA-MB-231 cells led to overexpression of miR-200s, which was associated with reversal of EMT phenotype (i.e., mesenchymal-epithelial transition), and these findings were consistent with alterations in the relative expression of epithelial (E-cadherin) and mesenchymal (vimentin, ZEB1, ZEB2) markers and decreased aggressiveness as judged by clonogenic, motility, and invasion assays. Moreover, either reexpression of miR-200 or silencing of PGI/AMF suppressed pulmonary metastases of MDA-MB-231 cells in vivo, and anti-miR-200 treatment in vivo resulted in increased metastases. Collectively, these results suggest a role of miR-200s in PGI/AMF-induced EMT and thus approaches for upregulation of miR-200s could be a novel therapeutic strategy for the treatment of highly invasive breast cancer.

  3. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  4. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.

    Science.gov (United States)

    Lee, Dong-Keun; Chung, Pil Joong; Jeong, Jin Seo; Jang, Geupil; Bang, Seung Woon; Jung, Harin; Kim, Youn Shic; Ha, Sun-Hwa; Choi, Yang Do; Kim, Ju-Kon

    2016-11-28

    Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6-mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root-specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome-wide analyses of loss- and gain-of-function mutants revealed that OsNAC6 up-regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3'-phophoadenosine 5'-phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high-yielding crops under water-limiting conditions.

  5. IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection.

    Science.gov (United States)

    Romagnoli, Pablo A; Sheridan, Brian S; Pham, Quynh-Mai; Lefrançois, Leo; Khanna, Kamal M

    2016-07-26

    Memory γδ T cells are important for the clearance of Listeria monocytogenes infection in the intestinal mucosa. However, the mechanisms by which memory γδ T cells provide protection against secondary oral infection are poorly understood. Here we used a recombinant strain of L. monocytogenes that efficiently invades the intestinal epithelium to show that Vγ4(+) memory γδ T cells represent a resident memory (Trm) population in the mesenteric lymph nodes (MLNs). The γδ Trm exhibited a remarkably static pattern of migration that radically changed following secondary oral L. monocytogenes infection. The γδ Trms produced IL-17A early after rechallenge and formed organized clusters with myeloid cells surrounding L. monocytogenes replication foci only after a secondary oral infection. Antibody blocking studies showed that in addition to IL-17A, the chemokine receptor C-X-C chemokine receptor 3 (CXCR3) is also important to enable the local redistribution of γδ Trm cells and myeloid cells specifically near the sites of L. monocytogenes replication within the MLN to restrict bacterial growth and spread. Our findings support a role for γδ Trms in orchestrating protective immune responses against intestinal pathogens.

  6. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling.

    Science.gov (United States)

    Shafiee, Abbas; Patel, Jatin; Wong, Ho Yi; Donovan, Prudence; Hutmacher, Dietmar W; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2017-02-01

    The prospect of using endothelial progenitors is currently hampered by their low engraftment upon transplantation. We report that mesenchymal stem/stromal cells (MSCs), independent of source and age, improve the engraftment of endothelial colony forming cells (ECFCs). MSC coculture altered ECFC appearance to an elongated mesenchymal morphology with reduced proliferation. ECFC primed via MSC contact had reduced self-renewal potential, but improved capacity to form tube structures in vitro and engraftment in vivo Primed ECFCs displayed major differences in transcriptome compared to ECFCs never exposed to MSCs, affecting genes involved in the cell cycle, up-regulating of genes influencing mesenchymal transition, adhesion, extracellular matrix. Inhibition of NOTCH signaling, a potential upstream regulator of mesenchymal transition, in large part modulated this gene expression pattern and functionally reversed the mesenchymal morphology of ECFCs. The collective results showed that primed ECFCs survive better and undergo a mesenchymal transition that is dependent on NOTCH signaling, resulting in significantly increased vasculogenic potential.-Shafiee, A., Patel, J., Wong, H. Y., Donovan, P., Hutmacher, D. W., Fisk, N. M., Khosrotehrani, K. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling.

  7. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers.

    Science.gov (United States)

    Tattini, Massimiliano; Loreto, Francesco; Fini, Alessio; Guidi, Lucia; Brunetti, Cecilia; Velikova, Violeta; Gori, Antonella; Ferrini, Francesco

    2015-08-01

    The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.

  8. Hsp70 and the Cochaperone StiA (Hop) Orchestrate Hsp90-Mediated Caspofungin Tolerance in Aspergillus fumigatus.

    Science.gov (United States)

    Lamoth, Frédéric; Juvvadi, Praveen R; Soderblom, Erik J; Moseley, M Arthur; Steinbach, William J

    2015-08-01

    Aspergillus fumigatus is the primary etiologic agent of invasive aspergillosis (IA), a major cause of death among immunosuppressed patients. Echinocandins (e.g., caspofungin) are increasingly used as second-line therapy for IA, but their activity is only fungistatic. Heat shock protein 90 (Hsp90) was previously shown to trigger tolerance to caspofungin and the paradoxical effect (i.e., decreased efficacy of caspofungin at higher concentrations). Here, we demonstrate the key role of another molecular chaperone, Hsp70, in governing the stress response to caspofungin via Hsp90 and their cochaperone Hop/Sti1 (StiA in A. fumigatus). Mutation of the StiA-interacting domain of Hsp70 (C-terminal EELD motif) impaired thermal adaptation and caspofungin tolerance with loss of the caspofungin paradoxical effect. Impaired Hsp90 function and increased susceptibility to caspofungin were also observed following pharmacologic inhibition of the C-terminal domain of Hsp70 by pifithrin-μ or after stiA deletion, further supporting the links among Hsp70, StiA, and Hsp90 in governing caspofungin tolerance. StiA was not required for the physical interaction between Hsp70 and Hsp90 but had distinct roles in the regulation of their function in caspofungin and heat stress responses. In conclusion, this study deciphering the physical and functional interactions of the Hsp70-StiA-Hsp90 complex provided new insights into the mechanisms of tolerance to caspofungin in A. fumigatus and revealed a key C-terminal motif of Hsp70, which can be targeted by specific inhibitors, such as pifithrin-μ, to enhance the antifungal activity of caspofungin against A. fumigatus.

  9. Autocrine transforming growth factor-{beta}1 activation mediated by integrin {alpha}V{beta}3 regulates transcriptional expression of laminin-332 in Madin-Darby canine kidney epithelial cells.

    Science.gov (United States)

    Moyano, Jose V; Greciano, Patricia G; Buschmann, Mary M; Koch, Manuel; Matlin, Karl S

    2010-11-01

    Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2-Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.

  10. Autocrine Transforming Growth Factor-β1 Activation Mediated by Integrin αVβ3 Regulates Transcriptional Expression of Laminin-332 in Madin-Darby Canine Kidney Epithelial Cells

    Science.gov (United States)

    Greciano, Patricia G.; Buschmann, Mary M.; Koch, Manuel; Matlin, Karl S.

    2010-01-01

    Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury. PMID:20844080

  11. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits.

    Science.gov (United States)

    Frenzel, Elrike; Doll, Viktoria; Pauthner, Matthias; Lücking, Genia; Scherer, Siegfried; Ehling-Schulz, Monika

    2012-07-01

    Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR-PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A-AbrB regulatory circuit partially controls the plasmid-borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient-responsive regulator of Gram-positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR-dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.

  12. Yes, you can? A speaker's potency to act upon his words orchestrates early neural responses to message-level meaning.

    Directory of Open Access Journals (Sweden)

    Ina Bornkessel-Schlesewsky

    Full Text Available Evidence is accruing that, in comprehending language, the human brain rapidly integrates a wealth of information sources-including the reader or hearer's knowledge about the world and even his/her current mood. However, little is known to date about how language processing in the brain is affected by the hearer's knowledge about the speaker. Here, we investigated the impact of social attributions to the speaker by measuring event-related brain potentials while participants watched videos of three speakers uttering true or false statements pertaining to politics or general knowledge: a top political decision maker (the German Federal Minister of Finance at the time of the experiment, a well-known media personality and an unidentifiable control speaker. False versus true statements engendered an N400 - late positivity response, with the N400 (150-450 ms constituting the earliest observable response to message-level meaning. Crucially, however, the N400 was modulated by the combination of speaker and message: for false versus true political statements, an N400 effect was only observable for the politician, but not for either of the other two speakers; for false versus true general knowledge statements, an N400 was engendered by all three speakers. We interpret this result as demonstrating that the neurophysiological response to message-level meaning is immediately influenced by the social status of the speaker and whether he/she has the power to bring about the state of affairs described.

  13. Yes, you can? A speaker's potency to act upon his words orchestrates early neural responses to message-level meaning.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Krauspenhaar, Sylvia; Schlesewsky, Matthias

    2013-01-01

    Evidence is accruing that, in comprehending language, the human brain rapidly integrates a wealth of information sources-including the reader or hearer's knowledge about the world and even his/her current mood. However, little is known to date about how language processing in the brain is affected by the hearer's knowledge about the speaker. Here, we investigated the impact of social attributions to the speaker by measuring event-related brain potentials while participants watched videos of three speakers uttering true or false statements pertaining to politics or general knowledge: a top political decision maker (the German Federal Minister of Finance at the time of the experiment), a well-known media personality and an unidentifiable control speaker. False versus true statements engendered an N400 - late positivity response, with the N400 (150-450 ms) constituting the earliest observable response to message-level meaning. Crucially, however, the N400 was modulated by the combination of speaker and message: for false versus true political statements, an N400 effect was only observable for the politician, but not for either of the other two speakers; for false versus true general knowledge statements, an N400 was engendered by all three speakers. We interpret this result as demonstrating that the neurophysiological response to message-level meaning is immediately influenced by the social status of the speaker and whether he/she has the power to bring about the state of affairs described.

  14. The Thymic Orchestration Involving Aire, miRNAs, and Cell-Cell Interactions during the Induction of Central Tolerance.

    Science.gov (United States)

    Passos, Geraldo Aleixo; Mendes-da-Cruz, Daniella Arêas; Oliveira, Ernna Hérida

    2015-01-01

    Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue antigens (PTAs), a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high affinity for PTAs are eliminated by apoptosis in a process termed negative selection, which is essential for tolerance induction. The Aire gene is an important factor that controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the expression of miRNAs in mTECs. These miRNAs are important in the organization of the thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss recent discoveries and highlight open questions regarding the migration and interaction of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs, the association between Aire and miRNAs and its effects on central tolerance.

  15. Interleukin-1 and interferon-γ orchestrate β-glucan-activated human dendritic cell programming via IκB-ζ modulation.

    Science.gov (United States)

    Cardone, Marco; Dzutsev, Amiran K; Li, Hongchuan; Riteau, Nicolas; Gerosa, Franca; Shenderov, Kevin; Winkler-Pickett, Robin; Provezza, Lisa; Riboldi, Elena; Leighty, Robert M; Orr, Selinda J; Steinhagen, Folkert; Wewers, Mark D; Sher, Alan; Anderson, Stephen K; Goldszmid, Romina; McVicar, Daniel W; Lyakh, Lyudmila; Trinchieri, Giorgio

    2014-01-01

    Recognition of microbial components via innate receptors including the C-type lectin receptor Dectin-1, together with the inflammatory environment, programs dendritic cells (DCs) to orchestrate the magnitude and type of adaptive immune responses. The exposure to β-glucan, a known Dectin-1 agonist and component of fungi, yeasts, and certain immune support supplements, activates DCs to induce T helper (Th)17 cells that are essential against fungal pathogens and extracellular bacteria but may trigger inflammatory pathology or autoimmune diseases. However, the exact mechanisms of DC programming by β-glucan have not yet been fully elucidated. Using a gene expression/perturbation approach, we demonstrate that in human DCs β-glucan transcriptionally activates via an interleukin (IL)-1- and inflammasome-mediated positive feedback late-induced genes that bridge innate and adaptive immunity. We report that in addition to its known ability to directly prime T cells toward the Th17 lineage, IL-1 by promoting the transcriptional cofactor inhibitor of κB-ζ (IκB-ζ) also programs β-glucan-exposed DCs to express cell adhesion and migration mediators, antimicrobial molecules, and Th17-polarizing factors. Interferon (IFN)-γ interferes with the IL-1/IκB-ζ axis in β-glucan-activated DCs and promotes T cell-mediated immune responses with increased release of IFN-γ and IL-22, and diminished production of IL-17. Thus, our results identify IL-1 and IFN-γ as regulators of DC programming by β-glucan. These molecular networks provide new insights into the regulation of the Th17 response as well as new targets for the modulation of immune responses to β-glucan-containing microorganisms.

  16. Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development*

    Science.gov (United States)

    Lewandowski, Sara L.; Janardhan, Harish P.; Trivedi, Chinmay M.

    2015-01-01

    About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-β1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-β1 regulatory region and thereby maintains epigenetic silencing of Tgf-β1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-β1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease. PMID:26420484

  17. Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development.

    Science.gov (United States)

    Lewandowski, Sara L; Janardhan, Harish P; Trivedi, Chinmay M

    2015-11-06

    About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-β1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-β1 regulatory region and thereby maintains epigenetic silencing of Tgf-β1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-β1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease.

  18. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.

    Science.gov (United States)

    Beach, Adam; Richard, Vincent R; Bourque, Simon; Boukh-Viner, Tatiana; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Arlia-Ciommo, Anthony; Feldman, Rachel; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2015-01-01

    We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.

  19. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    Directory of Open Access Journals (Sweden)

    Zikun Huang

    Full Text Available The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  20. Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception.

    Science.gov (United States)

    Bidelman, Gavin M; Alain, Claude

    2015-01-21

    Musicianship in early life is associated with pervasive changes in brain function and enhanced speech-language skills. Whether these neuroplastic benefits extend to older individuals more susceptible to cognitive decline, and for whom plasticity is weaker, has yet to be established. Here, we show that musical training offsets declines in auditory brain processing that accompanying normal aging in humans, preserving robust speech recognition late into life. We recorded both brainstem and cortical neuroelectric responses in older adults with and without modest musical training as they classified speech sounds along an acoustic-phonetic continuum. Results reveal higher temporal precision in speech-evoked responses at multiple levels of the auditory system in older musicians who were also better at differentiating phonetic categories. Older musicians also showed a closer correspondence between neural activity and perceptual performance. This suggests that musicianship strengthens brain-behavior coupling in the aging auditory system. Last, "neurometric" functions derived from unsupervised classification of neural activity established that early cortical responses could accurately predict listeners' psychometric speech identification and, more critically, that neurometric profiles were organized more categorically in older musicians. We propose that musicianship offsets age-related declines in speech listening by refining the hierarchical interplay between subcortical/cortical auditory brain representations, allowing more behaviorally relevant information carried within the neural code, and supplying more faithful templates to the brain mechanisms subserving phonetic computations. Our findings imply that robust neuroplasticity conferred by musical training is not restricted by age and may serve as an effective means to bolster speech listening skills that decline across the lifespan. Copyright © 2015 the authors 0270-6474/15/351240-10$15.00/0.

  1. Pain among professional orchestral musicians

    DEFF Research Database (Denmark)

    Nygaard Andersen, Lotte; Roessler, Kirsten K; Eichberg, Henning

    2013-01-01

    Professional musicians experience high rates of musculoskeletal pain, but only few studies have investigated how this pain is accepted by musicians.......Professional musicians experience high rates of musculoskeletal pain, but only few studies have investigated how this pain is accepted by musicians....

  2. Orchestrating Company Development in SMEs

    DEFF Research Database (Denmark)

    Riis, Jens Ove

    2003-01-01

    Over a period of several years many companies undergo a transformation with signifi­cant improvement in performance. We have studied such a process in seven SMEs to achieve a better understanding of how the change process was initiated and orches­trated. A rather complex picture has emerged...

  3. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance

    DEFF Research Database (Denmark)

    Grünberg, John R; Hoffmann, Jenny M; Hedjazifar, Shahram

    2017-01-01

    undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice...

  4. Cortisone induces insulin resistance in C2C12 myotubes through activation of 11beta-hydroxysteroid dehydrogenase 1 and autocrinal regulation.

    Science.gov (United States)

    Park, Seung Yeon; Bae, Ji Hyun; Cho, Young Sik

    2014-04-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin-induced glucose. This was corroborated by the application of 11β-HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU-486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β-HSD1 might be a promising way to improve impaired insulin-stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8.

    Science.gov (United States)

    Hartman, Zachary C; Poage, Graham M; den Hollander, Petra; Tsimelzon, Anna; Hill, Jamal; Panupinthu, Nattapon; Zhang, Yun; Mazumdar, Abhijit; Hilsenbeck, Susan G; Mills, Gordon B; Brown, Powel H

    2013-06-01

    Triple-negative breast cancers (TNBC) are aggressive with no effective targeted therapies. A combined database analysis identified 32 inflammation-related genes differentially expressed in TNBCs and 10 proved critical for anchorage-independent growth. In TNBC cells, an LPA-LPAR2-EZH2 NF-κB signaling cascade was essential for expression of interleukin (IL)-6, IL-8, and CXCL1. Concurrent inhibition of IL-6 and IL-8 expression dramatically inhibited colony formation and cell survival in vitro and stanched tumor engraftment and growth in vivo. A Cox multivariable analysis of patient specimens revealed that IL-6 and IL-8 expression predicted patient survival times. Together these findings offer a rationale for dual inhibition of IL-6/IL-8 signaling as a therapeutic strategy to improve outcomes for patients with TNBCs.

  6. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes.

    Science.gov (United States)

    Lin, Chih-Chung; Hsieh, Hsi-Lung; Liu, Shiau-Wen; Tseng, Hui-Ching; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Bradykinin (BK) is a proinflammatory mediator and elevated in several brain injury and inflammatory diseases. The deleterious effects of BK on brain astrocytes may aggravate brain inflammation mediated through the upregulation of cytosolic phospholipase A2 (cPLA2)/cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production. However, the signaling mechanisms underlying BK-induced cPLA2 expression in brain astrocytes remain unclear. Herein, we investigated the effects of activation of cPLA2/COX-2 system on BK-induced cPLA2 upregulation in rat brain astrocytes (RBA-1). The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that BK-induced de novo cPLA2 expression was mediated through activation of cPLA2/COX-2 system. Upregulation of native cPLA2/COX-2 system by BK through activation of PKCδ, c-Src, MAPKs (ERK1/2 and JNK1/2) cascades led to PGE2 biosynthesis and release. Subsequently, the released PGE2 induced cPLA2 expression via the same signaling pathways (PKCδ, c-Src, ERK1/2, and JNK1/2) and then activated the cyclic AMP response element-binding protein (CREB) via B2 BK receptor-mediated cPLA2/COX-2 system-derived PGE2/EP-dependent manner. Finally, upregulation of cPLA2 by BK may promote more PGE2 production. These results demonstrated that in RBA-1, activation of CREB by PGE2/EP-mediated PKCδ/c-Src/MAPK cascades is essential for BK-induced de novo cPLA2 protein. More importantly, upregulation of cPLA2 by BK through native cPLA2/COX-2 system may be a positive feedback mechanism that enhances prolonged brain inflammatory responses. Understanding the mechanisms of cPLA2/COX-2 system upregulated by BK on brain astrocytes may provide rational therapeutic interventions for brain injury and inflammatory diseases.

  7. FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1

    Science.gov (United States)

    Katoh, Hiroto; Qin, Zhaohui S.; Liu, Runhua; Wang, Lizhong; Li, Weiquan; Li, Xiangzhi; Wu, Lipeng; Du, Zhanwen; Lyons, Robert; Liu, Chang-Gong; Liu, Xiuping; Dou, Yali; Zheng, Pan; Liu, Yang

    2011-01-01

    SUMMARY Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells. PMID:22152480

  8. Functional Erythropoietin Autocrine Loop in Melanoma

    OpenAIRE

    Kumar, Suresh M; Acs, Geza; Fang, Dong; Herlyn, Meenhard; Elder, David E.; Xu, Xiaowei

    2005-01-01

    Although erythropoietin (Epo) is a known stimulator of erythropoiesis, recent evidence suggests that its biological functions are not confined to hematopoietic cells. To elucidate the role of Epo and erythropoietin receptor (EpoR) in melanoma, we examined the expression and function of these proteins in melanocytes and melanoma cells. We found increased expression of Epo in melanoma cells compared to melanocyte in vitro. EpoR was also strongly expressed in all of the melanoma cell lines and t...

  9. Orexin A in cortical cultures: expression and effect on synaptogenesis during development

    NARCIS (Netherlands)

    Stoyanova, Irina I.; Rutten, Wim L.C.; Feber, le Joost

    2012-01-01

    Orexin-A (OXA) is an excitatory hypothalamic neurotransmitter and ligand for Orexin Receptor-1 (OR1), isolated from a small group of hypothalamic neurons. OXA orchestrates different brain functions, and at the cognitive level some of the effects of insufficiency of OXA are well-known, for example in

  10. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    Science.gov (United States)

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  11. Construction of Antisense Transforming Growth Factorβ1 Gene and Its Effect on the Proliferation by Expression in Osteosarcoma Cells

    Institute of Scientific and Technical Information of China (English)

    刘勇; 郑启新; 杜靖远; 杨述华; 邵增务; 肖宝钧

    2003-01-01

    Summary: To construct the antisensc transforming growth factorβl (TGFβ1) gene and investigatethe effect of TGFβ1 autocrine loop blockage on the proliferation of osteosarcoma cells. TGFβ1 cDNAwas cloned by RT-PCR from human osteosarcoma cells (MG-63) and inserted into pcDNA3 to con-struct an antisense expression vector, which was dubbed pcDNA3-TGFβ1(- ). MTT was used to de-tect the proliferation of osteosarcoma cells transfected by antisense TGFβ1 gene. Our results showedthat the proliferation of the transfected osteosarcoma cells was suppressed markedly. It is concludedthat TGFβ1 autocrine loop blockage in osteosarcoma cells could inhibit cell proliferation, which mightbe helpful for gene therapy of osteosarcoma.

  12. De la compétence de service aux compétences de coordination et d’orchestration : Autour du conseiller funéraire From service competency to coordination and orchestration skills: the funeral director De la competencia de servicio a las competencias de coordinación y de orquestación : el consejero fúnebre

    Directory of Open Access Journals (Sweden)

    Sandrine Caroly

    2006-05-01

    Full Text Available Partir à la découverte du « conseiller funéraire », personnage emblématique de la profession de pompes funèbres, nous donne accès aux principaux registres de compétence des opérateurs funéraires, tout au long d’une prestation de service qui conjugue traitement du corps, service public et ritualité funéraire. Maître d’œuvre des obsèques, le conseiller se découvre historiquement comme une figure à géométrie variable, évoluant d’une fonction de personnage public, au cœur des réseaux notables et religieux de la communauté locale, à celle de conseiller technico-commercial, cependant de plus en plus investi d’un rôle « d’officiant » dans la production des funérailles comme bien culturel et symbolique. Cet article s’intéresse à la manière dont les compétences du conseiller funéraire sont mises en œuvre à travers trois principaux registres de compétence : la gestion de l’interaction avec le client, la coordination interprofessionnelle et enfin « l’orchestration » de l’événement et du sacré dans le déroulement des opérations funéraires. L’analyse de l’activité funéraire révèle des propriétés essentielles des compétences de service.In describing the funeral director, who is the symbol of funeral services, we gain access to the main skill registries of funeral operators during the entire provision of services, which include: the handling of the deceased, the public service, and the funeral ritual. As the individual who manages the funeral, the funeral director historically is a person with variable geometry, evolving from a public persona within the local community’s important religious networks to that of a technical and commercial consultant, but increasingly invested with the role of "officiant" in the production of funerals as cultural and symbolic property. This article is interested in how the funeral director’s skills are applied through three main skill registries

  13. Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis.

    Science.gov (United States)

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-05-31

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.

  14. Regulation of a Dynamic Interaction between Two Microtubule-binding Proteins, EB1 and TIP150, by the Mitotic p300/CBP-associated Factor (PCAF) Orchestrates Kinetochore Microtubule Plasticity and Chromosome Stability during Mitosis*

    Science.gov (United States)

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L.; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-01-01

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis. PMID:23595990

  15. Investigation on the Current Situation of Orchestral Music Education in Higher Vocational Colleges --Taking Jincheng Institute of Technology as an Example%高职院校管乐教育现状调查研究--以晋城职业技术学院为例

    Institute of Scientific and Technical Information of China (English)

    高百宁

    2015-01-01

    文章对晋城职业技术学院管乐教育进行了分析和总结,并通过调查研究、考察比较,分析学院管乐教育存在的主要原因,同时根据学院管乐教育现状,提出了对策建议。%By analyzing and summarizing the orchestral music education in Jincheng Institute of Technolo⁃gy, the paper analyses the main reasons of the problems and puts forward some suggestions about the music ed⁃ucation based on the present orchestral music education situation.

  16. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Max Nordgren

    Full Text Available Electroconvulsive therapy (ECT is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.

  17. Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition.

    Science.gov (United States)

    Sockman, Keith W; Sharp, Peter J; Schwabl, Hubert

    2006-11-01

    How much effort to expend in any one bout of reproduction is among the most important decisions made by an individual that breeds more than once. According to life-history theory, reproduction is costly, and individuals that invest too much in a given reproductive bout pay with reduced reproductive output in the future. Likewise, investing too little does not maximize reproductive potential. Because reproductive effort relative to output can vary with predictable and unpredictable challenges and opportunities, no single level of reproductive effort maximizes fitness. This leads to the prediction that individuals possessing behavioural mechanisms to buffer challenges and take advantage of opportunities would incur fitness benefits. Here, we review evidence in birds, primarily of altricial species, for the presence of at least two such mechanisms and evidence for and against the seasonal coordination of these mechanisms through seasonal changes in plasma concentrations of the pituitary hormone prolactin. First, the seasonal decline in clutch size of most bird species may partially offset a predictable seasonal decline in the reproductive value of offspring. Second, establishing a developmental sibling-hierarchy among offspring may hedge against unpredictable changes in resource availability and offspring viability or quality, and minimize energy expenditure in raising a brood. The hierarchy may be a product, in part, of the timing of incubation onset relative to clutch completion and the rate of yolk androgen deposition during the laying cycle. Because clutch size should influence the effects of both these traits on the developmental hierarchy, we predicted and describe evidence in some species that females adjust the timing of incubation onset and rate of yolk androgen deposition to match clutch size. Studies on domesticated precocial species reveal an inhibitory effect of the pituitary hormone prolactin on egg laying, suggesting a possible hormonal basis for the

  18. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    Science.gov (United States)

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  19. Mutations in NOTCH1 PEST-domain orchestrate CCL19-driven homing of Chronic Lymphocytic Leukemia cells by modulating the tumor suppressor gene DUSP22.

    Science.gov (United States)

    Arruga, F; Gizdic, B; Bologna, C; Cignetto, S; Buonincontri, R; Serra, S; Vaisitti, T; Gizzi, K; Vitale, N; Garaffo, G; Mereu, E; Diop, F; Neri, F; Incarnato, D; Coscia, M; Allan, J; Piva, R; Oliviero, S; Furman, R R; Rossi, D; Gaidano, G; Deaglio, S

    2016-12-26

    Even if NOTCH1 is commonly mutated in Chronic Lymphocytic Leukemia (CLL), its functional impact in the disease remains unclear. Using CRISPR/Cas9-generated Mec-1 cell line models, we show that NOTCH1 regulates growth and homing of CLL cells by dictating expression levels of the tumor suppressor gene DUSP22. Specifically, NOTCH1 affects the methylation of DUSP22 promoter by modulating a nuclear complex, which tunes the activity of DNA methyltransferase 3A (DNMT3A). These effects are enhanced by PEST-domain mutations, which stabilize the molecule and prolong signaling. CLL patients with a NOTCH1-mutated clone showed low levels of DUSP22 and active chemotaxis to CCL19. Lastly, in xenograft models, NOTCH1-mutated cells displayed a unique homing behavior, localizing preferentially to the spleen and brain. These findings connect NOTCH1, DUSP22, and CCL19-driven chemotaxis within a single functional network, suggesting that modulation of the homing process may provide a relevant contribution to the unfavorable prognosis associated with NOTCH1 mutations in CLL.Leukemia accepted article preview online, 26 December 2016. doi:10.1038/leu.2016.383.

  20. GASOTRANSMITTERS: FROM THE TOXIC EFFECTS TO THE REGULATION OF CELLULAR FUNCTION AND CLINICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    G. F. Sitdikova

    2014-01-01

    Full Text Available Nitric oxide II (NO, carbon monoxide (СО and hydrogen sulfide (H2S for many decades were described as the toxic gases inducing damaging action in man’s organisms. Recently it was found that NO, CO and H2S endogenously synthesized and served as signaling molecules of autocrine and paracrine regulation in many systems. The properties, mechanisms of synthesis and action in excitable systems are presented in this paper. Besides we also descried our results concerning the effects and mechanisms of action of gaseous messengers in peripheral nervous system – in neuromuscular junction. 

  1. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network.

    Science.gov (United States)

    Santos, Márcia C T; Tegge, Allison N; Correa, Bruna R; Mahesula, Swetha; Kohnke, Luana Q; Qiao, Mei; Ferreira, Marco A R; Kokovay, Erzsebet; Penalva, Luiz O F

    2016-01-01

    The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect. © 2015 AlphaMed Press.

  2. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young Min; Jeong, Migyeong; Park, Jong-Min; Go, Eun-Jin; Hahm, Ki-Baik

    2016-02-16

    Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α-stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α-induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately.

  3. Orchestrating Expertise in Reading and Writing

    Science.gov (United States)

    Hibbert, Kathryn M.; Scheffel, Tara-Lynn; Rich, Sharon; Heydon, Rachel

    2013-01-01

    With increased attention focused on the economic cache afforded through literacy and numeracy skills, governments around the world have turned their attention to developing the expertise of their teachers. Improving teachers' levels of competency leads to improvement in student achievement. In this qualitative case study, we focus on the…

  4. ERP Benefits Capability Framework: Orchestration Theory Perspective

    OpenAIRE

    Badewi, Amgad; Shehab, Essam; Zeng, Jing; Mostafa, Mohamad

    2017-01-01

    ERP benefits can be classified as automation, planning and innovation benefits. This research aims to answer two research questions: (1) what are the ERP resources and organizational complementary resources (OCRs) required to achieve each group of benefits? and (2) on the basis of its resources, when should an organization invest more in ERP resources and/or OCRs so that the potential value of its ERP is realised? Evidence from studying 12 organizations in different countries and validating t...

  5. REST SOA Orchestration and BPM Platforms

    National Research Council Canada - National Science Library

    Octavian Dospinescu; Catalin Strîmbei; Roxana-Marina Strainu; Alexandra Nistor

    2017-01-01

      BPM initiatives and SOA approaches emerged and developed as distinct efforts although they could be perceived as the two sides of the same coin in the context of online business and information systems...

  6. REST SOA Orchestration and BPM Platforms

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2017-01-01

    Full Text Available BPM initiatives and SOA approaches emerged and developed as distinct efforts although they could be perceived as the two sides of the same coin in the context of online business and information systems. Thus, inherently, their modeling perspectives met (or collided and generated some frameworks and languages like SOAML or SOAMF. Starting from these standards and initiatives we will propose a methodological approach that could lead to a feasible implementation of web service integration in a formal Business Process context.

  7. Introducing Young Children to Live Orchestral Performance.

    Science.gov (United States)

    Suthers, Louie

    1993-01-01

    Outlines the innovative nature of the Sydney Symphony Orchestra's program of concerts designed especially for children ages five through eight that feature children as a participatory audience. The selection of repertoire and the types of support and resources provided for teachers are also discussed. (MDM)

  8. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  9. Orchestrating Semiotic Resources in Explicit Strategy Instruction

    Science.gov (United States)

    Shanahan, Lynn E.; Flury-Kashmanian, Caroline

    2014-01-01

    Research and pedagogical information provided to teachers on implementing explicit strategy instruction has primarily focused on teachers' speech, with limited attention to other modes of communication, such as gesture and artefacts. This interpretive case study investigates two teachers' use of different semiotic resources when introducing…

  10. MNC Headquarters as Global Network Orchestrators

    DEFF Research Database (Denmark)

    Valentino, Alfredo; Nell, Phillip Christopher; Hotho, Jasper J.

    2014-01-01

    Despite increased interest in headquarters (HQ) and their activities, we still lack a comprehensive understanding of the drivers of HQ relocations and their consequences. We seek to address this gap by examining whether HQ relocations are primarily driven by cost-reduction or value-creation motiv...

  11. Orchestrating Learning Scenarios for the Borderless Classroom

    NARCIS (Netherlands)

    Tan, Esther; Rusman, Ellen

    2016-01-01

    This part of the symposium focuses on the design of seamless learning experiences in a borderless classroom. There are two parts to this symposium. We start with unpacking various theoretical approaches that inform the instructional design of boundary-crossing learning scenarios, such as social lear

  12. The baton of death orchestrating life

    Directory of Open Access Journals (Sweden)

    Altair Macedo Lahud Loureiro

    2008-01-01

    Full Text Available Making references to other analyzers of death, I present notes on death organizing life. I hold the idea that death is needed to give meaning to life in this human search of completeness. I look into a special situation of regarding death: the reaction of the individuals when witnessing and feeling the death of their aged ones; the reaction of someone, being a relative or not, who assumes their care and follows their imminent end; of individuals witnessing powerlessly, the hour of the lonely departure of their elder. Lonely and exclusive death, proper of that aged ones of whom we used to took care of, and their natural end, as a human being.

  13. Formins in Development: Orchestrating Body Plan Origami

    Science.gov (United States)

    Liu, Raymond; Linardopoulou, Elena V.; Osborn, Gregory E.; Parkhurst, Susan M.

    2009-01-01

    Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development. PMID:18996154

  14. Orchestrating Learning Scenarios for the Borderless Classroom

    NARCIS (Netherlands)

    Tan, Esther; Rusman, Ellen

    2016-01-01

    This part of the symposium focuses on the design of seamless learning experiences in a borderless classroom. There are two parts to this symposium. We start with unpacking various theoretical approaches that inform the instructional design of boundary-crossing learning scenarios, such as social

  15. RNA assemblages orchestrate complex cellular processes

    DEFF Research Database (Denmark)

    Nielsen, Finn Cilius; Hansen, Heidi Theil; Christiansen, Jan

    2016-01-01

    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA-binding proteins containing low-complexity sequences are prone to generate liquid...... droplets via liquid-liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA-binding protein Imp, which exhibits a C-terminal low-complexity sequence, increases the formation of F-actin by binding to 3......' untranslated regions of mRNAs encoding components participating in F-actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed...

  16. Orchestrating Learning Scenarios for the Borderless Classroom

    NARCIS (Netherlands)

    Tan, Esther; Rusman, Ellen

    2016-01-01

    This part of the symposium focuses on the design of seamless learning experiences in a borderless classroom. There are two parts to this symposium. We start with unpacking various theoretical approaches that inform the instructional design of boundary-crossing learning scenarios, such as social lear

  17. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    Science.gov (United States)

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-04-07

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  18. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  19. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  20. Autocrine and Paracrine Hh Signaling Regulate Prostate Development

    Science.gov (United States)

    2010-09-01

    and Placzek, M. (2006) Nat. Rev. Genet. 7, 841–850 13. Callahan, C. A., Ofstad, T., Horng, L.,Wang, J. K., Zhen, H. H., Coulombe , P. A., and Oro, A. E...Albig, A. R., and Schiemann, W. P. (2005)Mol. Biol. Cell 16, 609–625 45. Olsen, M. W., Ley , C. D., Junker, N., Hansen, A. J., Lund, E. L., and Krist

  1. TGF-β1 autocrine signalling and enamel matrix components.

    Science.gov (United States)

    Kobayashi-Kinoshita, Saeko; Yamakoshi, Yasuo; Onuma, Kazuo; Yamamoto, Ryuji; Asada, Yoshinobu

    2016-09-16

    Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cleavage products, particularly the neutral-soluble P103 amelogenin, to maintain its activity. The P103 amelogenin-TGF-β1 complex binds to TGFBR1 to induce TGF-β1 signalling. The P103 amelogenin-TGF-β1 complex is slowly cleaved by kallikrein 4 (KLK4), which is secreted into the transition- and maturation-stage enamel matrix, thereby reducing TGF-β1 activity. To exert the multiple biological functions of TGF-β1 for amelogenesis, we propose that TGF-β1 is activated or inactivated by MMP20 or KLK4 and that the amelogenin cleavage product is necessary for the in-solution mobility of TGF-β1, which is necessary for binding to its receptor on ameloblasts and retention of its activity.

  2. TGF-β1 autocrine signalling and enamel matrix components

    Science.gov (United States)

    Kobayashi-Kinoshita, Saeko; Yamakoshi, Yasuo; Onuma, Kazuo; Yamamoto, Ryuji; Asada, Yoshinobu

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cleavage products, particularly the neutral-soluble P103 amelogenin, to maintain its activity. The P103 amelogenin-TGF-β1 complex binds to TGFBR1 to induce TGF-β1 signalling. The P103 amelogenin-TGF-β1 complex is slowly cleaved by kallikrein 4 (KLK4), which is secreted into the transition- and maturation-stage enamel matrix, thereby reducing TGF-β1 activity. To exert the multiple biological functions of TGF-β1 for amelogenesis, we propose that TGF-β1 is activated or inactivated by MMP20 or KLK4 and that the amelogenin cleavage product is necessary for the in-solution mobility of TGF-β1, which is necessary for binding to its receptor on ameloblasts and retention of its activity. PMID:27633089

  3. FGF19 functions as autocrine growth factor for hepatoblastoma

    OpenAIRE

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain in...

  4. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Shimizu; Takashi Tajiri; Shigeki Yokomuro; Yoshiaki Mizuguchi; Yutaka Kawahigashi; Yasuo Arima; Nobuhiko Taniai; Yasuhiro Mamada; Hiroshi Yoshida; Koho Akimaru

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholangiocarcinoma (ICC).METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells.RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3.CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion.TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1.

  5. Classroom Management in Young Learners English Teaching——Typical Problems and Effective Solutions

    Institute of Scientific and Technical Information of China (English)

    罗基萍

    2009-01-01

    Classroom management is the orchestration of classroom life:planning curriculum,organizing procedures and rcsources,arranging the environment to maximize efficiency,monitoring progress,dealing with existent problems.Successful clasgroonl management looked like magic shows because students in these classrooms seem to glide from one activity to the next.Successful classroom management contributes to students' good achievement.Effective classroom management is one of the key elements of importance for efficient school education.However,almost all English teachers face a same problem-classroom management.In this paper,some typical problems and effective solutions in classroom management will be described.defined,or characterized.

  6. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  7. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration.

    Science.gov (United States)

    Chang, C F; Fan, J Y; Zhang, F C; Ma, J; Xu, C S

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  8. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    Science.gov (United States)

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  9. Orchestrating the Dynamic Adaptation of Distributed Software With Process Technology

    Science.gov (United States)

    2004-01-01

    Scanning and Software Distribution After Auto Discovery, IBM Red Book, May 9, 2003. [35] Marimba Inc., Marimba Embedded Management - Creating Self...Updating Appliances and Devices, Marimba White Paper, Mountain View, Ca., USA, 2001, http://www.marimba.com/products/datasheets/Embedded-wp-april

  10. Orchestrating organisational changes for Corporate Sustainability: Overcoming barriers to change

    NARCIS (Netherlands)

    Lozano, R.

    2012-01-01

    Corporations are increasingly recognising their role in helping to make societies more sustainable. To incorporate sustainability principles into their systems and activities, companies have developed and fostered the development of a variety of voluntary efforts. In many cases these efforts have be

  11. Maestro: an orchestration framework for large-scale WSN simulations.

    Science.gov (United States)

    Riliskis, Laurynas; Osipov, Evgeny

    2014-03-18

    Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation.

  12. GIP/MZT1 proteins orchestrate nuclear shaping

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2014-02-01

    Full Text Available The functional organization of the nuclear envelope (NE is only just emerging in plants with the recent characterization of NE protein complexes and their molecular links to the actin cytoskeleton. The NE also plays a role in microtubule (MT nucleation by recruiting γ-Tubulin Complexes (γ-TuCs which contribute to the establishment of a robust mitotic spindle. γ-tubulin Complex Protein 3 (GCP3-interacting proteins (GIPs have been identified recently as integral components of γ-TuCs. GIPs have been conserved throughout evolution and are also named MZT1 (mitotic-spindle organizing protein 1. This review focuses on recent data investigating the role of GIP/MZT1 at the NE, including insights from the study of GIP partners. It also uncovers new functions for GIP/MZT1 during interphase and highlights a current view of NE-associated components which are critical for nuclear shaping during both cell division and differentiation.

  13. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis.

    Science.gov (United States)

    Kilbey, A; Terry, A; Wotton, S; Borland, G; Zhang, Q; Mackay, N; McDonald, A; Bell, M; Wakelam, M J O; Cameron, E R; Neil, J C

    2017-06-01

    The three-membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over-expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the "sphingolipid rheostat" from ceramide to sphingosine-1-phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre-mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid-mediated apoptosis, and elucidate the mechanism of cross-talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T-lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx-driven lymphomagenesis. J. Cell. Biochem. 118: 1432-1441, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Supporting Reflection and Classroom Orchestration with Tangible Tabletops

    OpenAIRE

    Do, Lenh Hung Son

    2012-01-01

    Tangible tabletop systems have been extensively proven to be able to enhance participation and engagement as well as enable many exciting activities, particularly in the education domain. However, it remains unclear as to whether students really benefit from using them for tasks that require a high level of reflection. Moreover, most existing tangible tabletops are designed as stand-alone systems or devices. Increasingly, this design assumption is no ...

  15. Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures

    Science.gov (United States)

    Little, Reginald B.; Lochner, Eric; Goddard, Robert

    2005-01-01

    Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.

  16. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    Science.gov (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  17. Comparative Cloud Deployment and Service Orchestration Process Using Juju Charms

    Directory of Open Access Journals (Sweden)

    Gaurav Raj

    2013-04-01

    Full Text Available This age is known as a service oriented age due to the globalization and advancement in technology day by day which lead business developers to deploy their services over the cloud. It lead to the development of new platform that has the capability to easily cope with the business expectations and has introduced a tough competition between the platform providers. These days Services like IaaS hasbeen provided by many cloud service providers along with PaaS and SaaS. We provide a comparative study in between the types of platform (open source cloud platform as OpenStack and proprietary basedplatform as Eucalyptus for deployment of IaaS , which has taken into consideration the size of deployment, manageability and fault tolerance, API provisioning /support, performance, compatibility withother platforms and types of services to be hosted. We discussed here about two high demanding IaaS platform provided by OpenStack and Eucalyptus. Both of the platform providers are competitive in termsof deployment of IaaS and service provisioning to its big clients. We also discussed here about the tools that can be used with these cloud platforms to easily install services on these clouds.

  18. Runtime Logistic Process Orchestration Based on Business Transaction Choreography

    NARCIS (Netherlands)

    Hofman, W.J.

    2013-01-01

    Today logistic systems are business document based, e.g. processing ship manifest, load lists, declarations, and shipping instructions. Business processes are organized in handling these business documents in the context of framework contracts with business partners. Implementations of new requireme

  19. p53 orchestrates between normal differentiation and cancer.

    Science.gov (United States)

    Rivlin, Noa; Koifman, Gabriela; Rotter, Varda

    2015-06-01

    During recent years, it is becoming more and more evident that there is a tight connection between abnormal differentiation processes and cancer. While cancer and stem cells are very different, especially in terms of maintaining genomic integrity, these cell types also share many similar properties. In this review, we aim to provide an over-view of the roles of the key tumor suppressor, p53, in regulating normal differentiation and function of both stem cells and adult cells. When these functions are disrupted, undifferentiated cells may become transformed. Understanding the function of p53 in stem cells and its role in maintaining the balance between differentiation and malignant transformation can help shed light on cancer initiation and propagation, and hopefully also on cancer prevention and therapy.

  20. Supply chain orchestration and choreography: Programmable logistics using semantics

    NARCIS (Netherlands)

    Dalmolen, S.; Moonen, H.M.; Hillegersberg, van J.; Stoter, A.J.R.; Cornelisse, E.

    2015-01-01

    Interoperability between enterprise systems in supply chains is increasingly essential for successful supply chain integration and key in the creation of innovative businesses / business models. In this paper we present a novel approach for supply chain choreography to support supply chain organizat

  1. Group choreography: mechanisms orchestrating the collective movement of border cells.

    Science.gov (United States)

    Montell, Denise J; Yoon, Wan Hee; Starz-Gaiano, Michelle

    2012-10-01

    Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.

  2. Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome

    OpenAIRE

    2015-01-01

    Irritable bowel syndrome (IBS) is a multifactorial functional disorder with no clearly defined etiology or pathophysiology. Modern culture-independent techniques have improved the understanding of the gut microbiota’s composition and demonstrated that an altered gut microbiota profile might be found in at least some subgroups of IBS patients. Research on IBS from a microbial perspective is gaining momentum and advancing. This review will therefore highlight potential links between the gut mic...

  3. Platelets Orchestrate Remote Tissue Damage After Mesenteric Ischemia-Reperfusion

    Science.gov (United States)

    2012-02-02

    in the mesenteric vasculature in patients with ulcerative colitis. Eur J Gastroenterol Hepatol 20: 283–289, 2008. 41. Irving PM, Macey MG, Shah U...ischemic stroke. Cerebrovasc Dis 28: 276–282, 2009. 50. Matthijsen RA, Huugen D, Hoebers NT, de VB , Peutz-Kootstra CJ, Aratani Y, Daha MR, Tervaert JW

  4. Specifying Orchestrating Capability in Network Organization and Interfirm Innovation Networks

    DEFF Research Database (Denmark)

    Hu, Yimei; Sørensen, Olav Jull

    -tech industry. Besides interfirm networks, some organizational researchers are interested in the internal network organizational design. Prospector firms putting innovation on top of the agenda usually has a network organization which is more flexible. This paper analyzes how an SME from a traditional industry...

  5. Orchestrating Literacies: Print Literacy Learning Opportunities within Multimodal Intergenerational Ensembles

    Science.gov (United States)

    McKee, Lori L.; Heydon, Rachel M.

    2015-01-01

    This exploratory case study considered the opportunities for print literacy learning within multimodal ensembles that featured art, singing and digital media within the context of an intergenerational programme that brought together 13 kindergarten children (4 and 5 years) with seven elder companions. Study questions concerned how reading and…

  6. Active suppression of a leaf meristem orchestrates determinate leaf growth.

    Science.gov (United States)

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-10-06

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.

  7. Cytokine orchestration in post-operative peritoneal adhesion formation

    Institute of Scientific and Technical Information of China (English)

    Ronan A Cahill; H Paul Redmond

    2008-01-01

    Peritoneal adhesions are a near inevitable occurrence after laparotomy and a major cause of both patient and physician misery.To date,clinical attempts at their amelioration have concentrated on manipulating the physical factors that affect their development despite a wealth of experimental data elucidating the molecular mechanisms that underlie their initiation,development and maturation.However,the advent of targeted,specific anti-cytokine agents as directed therapy for inflammatory and neoplastic conditions raises the prospect of a new era for anti-adhesion strategies.To harness this potential will require considerable cross-disciplinary collaboration and that surgeon-scientists propel themselves to the forefront of this emerging field.

  8. Polyphony: A Workflow Orchestration Framework for Cloud Computing

    Science.gov (United States)

    Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom

    2010-01-01

    Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.

  9. The nervous system orchestrates and integrates craniofacial development: a review

    Directory of Open Access Journals (Sweden)

    Kaj eFried

    2016-02-01

    Full Text Available Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration.

  10. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.

    Science.gov (United States)

    Mazier, Wilfrid; Saucisse, Nicolas; Gatta-Cherifi, Blandine; Cota, Daniela

    2015-10-01

    The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.

  11. Phospholipase D signaling : Orchestration by PIP2 and small GTPases

    NARCIS (Netherlands)

    Weernink, Paschal A. Oude; de Jesus, Maider Lopez; Schmidt, Martina

    2007-01-01

    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival

  12. Outside the Framework of Thinkable Thought: The Modern Orchestration Project

    Science.gov (United States)

    Gattegno, Eliot Aron

    2010-01-01

    In today's world of too much information, context--not content--is king. This proposal is for the development of an unparalleled sonic analysis tool that converts audio files into musical score notation and a Web site (API) to collect manage and preserve information about the musical sounds analyzed, as well as music scores, videos, and articles…

  13. How does a plant orchestrate defense in time and space?

    DEFF Research Database (Denmark)

    Burow, Meike; Halkier, Barbara Ann

    2017-01-01

    The sessile nature of plants has caused plants to develop means to defend themselves against attacking organisms. Multiple strategies range from physical barriers to chemical warfare including pre-formed anticipins as well as phytoalexins produced only upon attack. While phytoalexins require rapid...

  14. Orchestrating Authorship: Teaching Writing across the Psychology Curriculum

    Science.gov (United States)

    Soysa, Champika K.; Dunn, Dana S.; Dottolo, Andrea L.; Burns-Glover, Alyson L.; Gurung, Regan A. R.

    2013-01-01

    This article describes the kinds of writing that could be introduced at the beginner, intermediate, and advanced course levels in the psychology major. We present exemplars of writing assignments across three institutions, including textual analysis, integrating intratext and intertext writing, and a capstone thesis project, where the skills…

  15. Employing Semantic Technologies for the Orchestration of Government Services

    Science.gov (United States)

    Sabol, Tomáš; Furdík, Karol; Mach, Marián

    The main aim of the eGovernment is to provide efficient, secure, inclusive services for its citizens and businesses. The necessity to integrate services and information resources, to increase accessibility, to reduce the administrative burden on citizens and enterprises - these are only a few reasons why the paradigm of the eGovernment has been shifted from the supply-driven approach toward the connected governance, emphasizing the concept of interoperability (Archmann and Nielsen 2008). On the EU level, the interoperability is explicitly addressed as one of the four main challenges, including in the i2010 strategy (i2010 2005). The Commission's Communication (Interoperability for Pan-European eGovernment Services 2006) strongly emphasizes the necessity of interoperable eGovernment services, based on standards, open specifications, and open interfaces. The Pan-European interoperability initiatives, such as the European Interoperability Framework (2004) and IDABC, as well as many projects supported by the European Commission within the IST Program and the Competitiveness and Innovation Program (CIP), illustrate the importance of interoperability on the EU level.

  16. Information leadership: The CIO as orchestrator and equilibrist

    NARCIS (Netherlands)

    Maes, R.; de Vries, E.J.

    2008-01-01

    The dominant interpretation of the function and role of the CIO is technology-related with business-ICT alignment as a core concept. We criticize this vision as a product of the dominant interpretive scheme and show how the logic of this scheme restricts the worldview of CIO’s and researchers. To ov

  17. Information leadership: The CIO as orchestrator and equilibrist

    NARCIS (Netherlands)

    Maes, R.; de Vries, E.J.

    2008-01-01

    The dominant interpretation of the function and role of the CIO is technology-related with business-ICT alignment as a core concept. We criticize this vision as a product of the dominant interpretive scheme and show how the logic of this scheme restricts the worldview of CIO's and researchers. To ov

  18. RB, the conductor that orchestrates life, death and differentiation.

    Science.gov (United States)

    Khidr, L; Chen, P-L

    2006-08-28

    The retinoblastoma susceptibility gene was the first tumor suppressor gene identified in humans and the first tumor suppressor gene knocked out by targeted deletion in mice. RB serves as a transducer between the cell cycle machinery and promoter-specific transcription factors, its most documented activity being the repression of the E2F family of transcription factors, which regulate the expression of genes involved in cell proliferation and survival. Recent investigations of RB function suggest that it works as a fundamental regulator to coordinate pathways of cellular growth and differentiation. In this review, we unravel the novel role of an equally important aspect of RB in downregulating the differentiation inhibitor EID-1 during cellular differentiation by teasing apart the signal, which elicit differentiation and limit cell cycle progression, since the molecular mechanisms relating to RB activation of differentiation is much less understood. We review the various roles for RB in differentiation of neurons, muscle, adipose tissue, and the retina. In addition, we provide an update for the current models of the role of RB in cell cycle to entry and exit, extending the view toward chromatin remodeling and expose the dichotomies in the regulation of RB family members. We conclude with a discussion of a novel RB regulatory network, incorporating the dynamic contribution of EID family proteins.

  19. PtdIns 3-Kinase Orchestrates Autophagosome Formation in Yeast

    Directory of Open Access Journals (Sweden)

    Keisuke Obara

    2011-01-01

    Full Text Available Eukaryotic cells can massively transport their own cytoplasmic contents into a lytic compartment, the vacuole/lysosome, for recycling through a conserved system called autophagy. The key process in autophagy is the sequestration of cytoplasmic contents within a double-membrane structure, the autophagosome. Autophagosome formation requires the elaborate cooperation of Atg (autophagy-related proteins and lipid molecules. Phosphorylation of phosphatidylinositol (PtdIns by a PtdIns 3-kinase, Vps34, is a key step in coordinating Atg proteins and lipid molecules. Vps34 forms two distinct protein complexes, only one of which is involved in generating autophagic membranes. Upon induction of autophagy, PtdIns(3P, the enzymatic product of PtdIns 3-kinase, is massively transported into the lumen of the vacuole via autophagy. PtdIns(3P is enriched on the inner membrane of the autophagosome. PtdIns(3P recruits the Atg18−Atg2 complex and presumably other Atg proteins to autophagic membranes, thereby coordinating lipid molecules and Atg proteins.

  20. Orchestrating Authorship: Teaching Writing across the Psychology Curriculum

    Science.gov (United States)

    Soysa, Champika K.; Dunn, Dana S.; Dottolo, Andrea L.; Burns-Glover, Alyson L.; Gurung, Regan A. R.

    2013-01-01

    This article describes the kinds of writing that could be introduced at the beginner, intermediate, and advanced course levels in the psychology major. We present exemplars of writing assignments across three institutions, including textual analysis, integrating intratext and intertext writing, and a capstone thesis project, where the skills…

  1. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding

    National Research Council Canada - National Science Library

    Jennings, Joshua H; Rizzi, Giorgio; Stamatakis, Alice M; Ung, Randall L; Stuber, Garret D

    2013-01-01

    .... The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined...

  2. Orchestrating organisational changes for Corporate Sustainability: Overcoming barriers to change

    NARCIS (Netherlands)

    Lozano, R.

    2012-01-01

    Corporations are increasingly recognising their role in helping to make societies more sustainable. To incorporate sustainability principles into their systems and activities, companies have developed and fostered the development of a variety of voluntary efforts. In many cases these efforts have

  3. Orchestrating the management of patients with high-output stomas.

    Science.gov (United States)

    McDonald, Alison

    Working in isolation, managing high-output stomas can be stressful and difficult, with patient outcomes varying significantly. For the stoma care clinical nurse specialist, managing the choice of stoma appliance is only a small part of the care provided. To standardise and improve outcomes for patients with high-output stomas, team working is required. After contacting other stoma care services and using guidance from the High Impact Actions for Stoma Care document ( Coloplast, 2010 ), it was evident that the team should put together an algorithm/flow chart to guide both specialists and ward nursing staff in the evidence-based and standardised management of patients with high-output stomas. This article presents the flowchart that was produced and uses case studies to demonstrate improvements.

  4. DNA DSB repair pathway choice: an orchestrated handover mechanism.

    Science.gov (United States)

    Kakarougkas, A; Jeggo, P A

    2014-03-01

    DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch from NHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate extensive chromatin changes in the DSB vicinity.

  5. Cloud resource orchestration programming : Overview, issues and directions

    NARCIS (Netherlands)

    Ranjan, Rajiv; Benatallah, Boualem; Dustdar, Schahram; Papazoglou, M.

    2015-01-01

    Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and networking equipment) and software (e.g., databases, application servers, load-balancers, data processing frameworks, etc.) resources. The pervasiveness and power of cloud computing alleviates s

  6. Supply chain orchestration and choreography: Programmable logistics using semantics

    OpenAIRE

    Dalmolen, S.; Moonen, H.M.; Hillegersberg, van, Jos; Stoter, A.J.R.; Cornelisse, E.

    2015-01-01

    Interoperability between enterprise systems in supply chains is increasingly essential for successful supply chain integration and key in the creation of innovative businesses / business models. In this paper we present a novel approach for supply chain choreography to support supply chain organizations in practice in creating seamless chain integration. The aim we set ourselves in this paper is to propose an architecture to enable and/or improve the exchange of information between supply cha...

  7. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  8. Polyphony: A Workflow Orchestration Framework for Cloud Computing

    Science.gov (United States)

    Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom

    2010-01-01

    Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.

  9. Spindle Activity Orchestrates Plasticity during Development and Sleep

    Directory of Open Access Journals (Sweden)

    Christoph Lindemann

    2016-01-01

    Full Text Available Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs and adult sleep spindles (ASSs show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.

  10. Cytokine orchestration in post-operative peritoneal adhesion formation.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    Peritoneal adhesions are a near inevitable occurrence after laparotomy and a major cause of both patient and physician misery. To date, clinical attempts at their amelioration have concentrated on manipulating the physical factors that affect their development despite a wealth of experimental data elucidating the molecular mechanisms that underlie their initiation, development and maturation. However, the advent of targeted, specific anti-cytokine agents as directed therapy for inflammatory and neoplastic conditions raises the prospect of a new era for anti-adhesion strategies. To harness this potential will require considerable cross-disciplinary collaboration and that surgeon-scientists propel themselves to the forefront of this emerging field.

  11. The ciliary baton: orchestrating neural crest cell development.

    Science.gov (United States)

    Chang, Ching-Fang; Schock, Elizabeth N; Attia, Aria C; Stottmann, Rolf W; Brugmann, Samantha A

    2015-01-01

    Primary cilia are cell surface, microtubule-based organelles that dynamically extend from cells to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has gained increasing popularity due to its ability to act as a cellular antenna, receive molecular stimuli, and respond to the cell's environment. A growing field of data suggests that various tissues utilize and interpret the loss of cilia in different ways. Thus, careful examination of the role of cilia on individual cell types and tissues is necessary. Neural crest cells (NCCs) are an excellent example of cells that survey their environment for developmental cues. In this review, we discuss how NCCs utilize primary cilia during their ontogenic development, paying special attention to the role primary cilia play in processing developmental signals required for NCC specification, migration, proliferation, and differentiation. We also discuss how the loss of functional cilia on cranial and trunk NCCs affects the development of various organ systems to which they contribute. A deeper understanding of ciliary function could contribute greatly to understanding the molecular mechanisms guiding NCC development and differentiation. Furthermore, superimposing the ciliary contribution on our current understanding of NCC development identifies new avenues for therapeutic intervention in neurocristopathies. © 2015 Elsevier Inc. All rights reserved.

  12. Capitalist discipline: on the orchestration of corporate games

    NARCIS (Netherlands)

    A.F.P. Wassenberg

    2011-01-01

    Samenlevingen raken van tijd tot tijd ontwricht door economische crises. Arthur Wassenberg onderzocht de instabiliteiten die het gevolg zijn van coördinatietekorten die van binnenuit, vanuit de politieke economie zelf, tot ontregeling van het maatschappelijk verkeer leiden. De meest radicale ontwric

  13. Orchestration of dynamic copper navigation - new and missing pieces.

    Science.gov (United States)

    Öhrvik, Helena; Aaseth, Jan; Horn, Nina

    2017-09-20

    A general principle in all cells in the body is that an essential metal - here copper - is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells. Here we attempt to provide a critical view on key concepts involved in copper transfer across membranes and through compartments in the human body. The focus of this review is on the influence of bioinorganic and thermodynamic rules on the flow in cellular copper networks. Transition of copper from one oxidation state to another will often lead to errant electrons that are highly reactive and prone to form radicals and reactive oxygen or nitrogen species (ROS and RNS). Strict control of potentially toxic oxidative species is an important part of understanding the edge of human copper metabolism. The present review critically covers translocation across simple and complex membranes as well as extracellular and intracellular copper routing. We discuss in depth four tissues with polarized cell barriers - the gut, liver, kidneys, and brain - to illustrate the similarities and differences in transcellular transfer. Copper chaperoning, buffering and binding dynamics to guide the metal to different sites are also covered, while individual molecular interaction kinetics are not detailed. Sorting and targeting mechanisms and principles crucial for correct localisation will also be touched upon.

  14. Optimizing DC cross-presentation, orchestrating the immune response

    NARCIS (Netherlands)

    Flinsenberg, T.W.H.

    2014-01-01

    Cord blood (CB) stem cell transplantation (SCT) is a last resort treatment for several malignancies, immune- and metabolic disorders. Although the safety of this procedure has improved over the past decades, room for improvement remains. Two of the major causes contributing to post-SCT mortality are

  15. Cardioprotective effects of adipokine apelin on myocardial infarction.

    Science.gov (United States)

    Zhang, Bao-Hai; Guo, Cai-Xia; Wang, Hong-Xia; Lu, Ling-Qiao; Wang, Ya-Jie; Zhang, Li-Ke; Du, Feng-He; Zeng, Xiang-Jun

    2014-09-01

    Angiogenesis plays an important role in myocardial infarction. Apelin and its natural receptor (angiotensin II receptor-like 1, AGTRL-1 or APLNR) induce sprouting of endothelial cells in an autocrine or paracrine manner. The aim of this study is to investigate whether apelin can improve the cardiac function after myocardial infarction by increasing angiogenesis in infarcted myocardium. Left ventricular end-diastolic pressure (LVEDP), left ventricular end systolic pressure (LVESP), left ventricular developed pressure (LVDP), maximal left ventricular pressure development (±LVdp/dtmax), infarct size, and angiogenesis were evaluated to analyze the cardioprotective effects of apelin on ischemic myocardium. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-bromo-2'-deoxyuridine incorporation, wound healing, transwells, and tube formation were used to detect the effects of apelin on proliferation, migration, and chemotaxis of cardiac microvascular endothelial cells. Fluorescein isothiocyanate-labeled bovine serum albumin penetrating through monolayered cardiac microvascular endothelial cells was measured to evaluate the effects of apelin on permeability of microvascular endothelial cells. In vivo results showed that apelin increased ±LV dp/dtmax and LVESP values, decreased LVEDP values (all p myocardial infarction through promoting angiogenesis and decreasing permeability of microvascular endothelial cells via upregulating the expression of VEGFR2 and Tie-2 in cardiac microvascular endothelial cells.

  16. Nitric oxide counters ethylene effects on ripening fruits.

    Science.gov (United States)

    Manjunatha, Girigowda; Gupta, Kapuganti J; Lokesh, Veeresh; Mur, Luis A J; Neelwarne, Bhagyalakshmi

    2012-04-01

    Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits.

  17. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms.

    Science.gov (United States)

    Cholewa, Jason M; Guimarães-Ferreira, Lucas; Zanchi, Nelo Eidy

    2014-08-01

    Betaine is a methyl derivative of glycine first isolated from sugar beets. Betaine consumed from food sources and through dietary supplements presents similar bioavailability and is metabolized to di-methylglycine and sarcosine in the liver. The ergogenic and clinical effects of betaine have been investigated with doses ranging from 500 to 9,000 mg/day. Some studies using animal models and human subjects suggest that betaine supplementation could promote adiposity reductions and/or lean mass gains. Moreover, previous investigations report positive effects of betaine on sports performance in both endurance- and resistance-type exercise, despite some conflicting results. The mechanisms underlying these effects are poorly understood, but could involve the stimulation of lipolysis and inhibition of lipogenesis via gene expression and subsequent activity of lipolytic-/lipogenic-related proteins, stimulation of autocrine/endocrine IGF-1 release and insulin receptor signaling pathways, stimulation of growth hormone secretion, increased creatine synthesis, increases in protein synthesis via intracellular hyper-hydration, as well as exerting psychological effects such as attenuating sensations of fatigue. However, the exact mechanisms behind betaine action and the long-term effects of supplementation on humans remain to be elucidated. This review aims to describe evidence for the use of betaine as an ergogenic and esthetic aid, and discuss the potential mechanisms underlying these effects.

  18. Effect

    OpenAIRE

    M.F. Sabry; M.R. Hamed; El Sayed, M.E.

    2014-01-01

    Stress alters psychological diseases such as anxiety and depression. Protein malnutrition (PM) contributes to psychological disorders. The present study aimed to investigate the effect of biphenyl dimethyl dicarboxylate (DDB) on anxiety of psychologically stressed protein malnourished mice as compared to its effect in normally-fed mice. Fluoxetine (FLX) was used as reference standard. Animals were randomly divided into two major groups, normally-fed group provided with 20% casein diet and a p...

  19. Effect

    OpenAIRE

    Amin Abdou Seleem; Fakhr El-Din M. Lashein

    2016-01-01

    Verapamil is a calcium channel blocker that belongs to the phenylalkylamine group. It has been clinically used for various diseases such as combating hypertension, ischemic heart diseases, supraventricular antiarrhythmic and tycolysis. The study was conducted to investigate the effect of verapamil on selected pro- and apoptotic factors during prenatal retinal differentiation of mice at E14 and E17 of gestation. The pregnant females were classified into two groups, the first is the control and...

  20. ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    Full Text Available ADAM17 (a disintegrin and metalloprotease 17 is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.

  1. ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis.

    Science.gov (United States)

    Das, Sudipta; Czarnek, Maria; Bzowska, Monika; Mężyk-Kopeć, Renata; Stalińska, Krystyna; Wyroba, Barbara; Sroka, Jolanta; Jucha, Jarosław; Deneka, Dawid; Stokłosa, Paulina; Ogonek, Justyna; Swartz, Melody A; Madeja, Zbigniew; Bereta, Joanna

    2012-01-01

    ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.

  2. Growth advantage of chronic myeloid leukemia CFU-GM in vitro: survival to growth factor deprivation, possibly related to autocrine stimulation, is a more common feature than hypersensitivity to GM-CSF/IL3 and is efficiently counteracted by retinoids +- alpha-interferon.

    Science.gov (United States)

    Ferrero, D; Foli, C; Giaretta, F; Argentino, C; Rus, C; Pileri, A

    2001-03-01

    Bcr/abl fusion gene, in experimental models, induces survival to growth factor deprivation and hypersensitivity to IL3. However, conflicting data were reported about chronic myeloid leukemia (CML) progenitors. We investigated the responsiveness of purified CML CFU-GM to GM-CSF/IL3 and their survival to growth factor deprivation. CFU-GM hypersensitivity to IL3 and/or GM-CSF was found in 3/11 CML cases only. CML CFU-GM survived well in stroma-free 'mass' culture (5 x 10(4) cells/ml) without cytokine addition, up to day 11, average recovery being around 95% in medium + 10% fetal bovine serum and 67-81% in serum-free medium. Conversely, normal progenitors declined steadily, particularly after extensive purification (18 +/- 10% recovery at the 7th day), and in serum-free medium (4 +/- 6% recovery). By contrast, normal and CML CFU-GM declined in a similar way in limiting dilution cultures (1-10 cells/50 microl). We also investigated the effects of retinoic acid and alpha-interferon on CFU-GM survival. Both all-trans- and 13-cis retinoic acid, particularly in combination with alpha-interferon, reduced CML CFU-GM recovery down to normal progenitors' values. In conclusion, hypersensitivity to CSFs is rare in CML, whereas resistance to growth factor deprivation has been confirmed in mass, but not in limiting, dilution cultures. Both stereoisomers of retinoic acid, at therapeutic concentrations and in combination with alpha-interferon, can overcome the survival advantage of CML progenitors.

  3. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor.

    Science.gov (United States)

    Cherian, Priscilla P; Cheng, Benxu; Gu, Sumin; Sprague, Eugene; Bonewald, Lynda F; Jiang, Jean X

    2003-10-31

    Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells functions in an autocrine manner to regulate gap junction function and connexin 43 (Cx43) expression. Here we show that fluid flow regulates gap junctions through the PGE2 receptor EP2 activation of cAMP-dependent protein kinase A (PKA) signaling. The expression of the EP2 receptor, but not the subtypes EP1,EP3, and EP4, increased in response to fluid flow. Application of PGE2 or conditioned medium from fluid flow-treated cells to non-stressed MLO-Y4 cells increased expression of the EP2 receptor. The EP2 receptor antagonist, AH6809, suppressed the stimulatory effects of PGE2 and fluid flow-conditioned medium on the expression of the EP2 receptor, on Cx43 protein expression, and on gap junction-mediated intercellular coupling. In contrast, the EP2 receptor agonist butaprost, not the E1/E3 receptor agonist sulprostone, stimulated the expression of Cx43 and gap junction function. Fluid flow conditioned medium and PGE2 stimulated cAMP production and PKA activity suggesting that PGE2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE2 on gap junctions. These studies suggest that the EP2 receptor mediates the effects of autocrine PGE2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP2 receptor, cAMP, and PKA are critical components

  4. Short-term and rapid effects of lysophosphatidic acid on human adipose cell lipolytic and glucose uptake activities

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-05-01

    Full Text Available Lysophosphatidic acid (LPA is a bioactive phospholipid that activates cell proliferation, differentiation and migration via the activation of its membrane-bound receptors (LPAR 1 to 6 expressed in various tissues and organs. Adipose tissue produces LPA, which, in turn, increases preadipocyte proliferation, mainly through the stimulation of LPA1R. However, while LPA plasma levels increase with obesity, only few studies have investigated the acute autocrine properties of LPA on mature adipocytes. We therefore assessed the lipolytic and antilipolytic effects of LPA on human adipocytes. Here, we show that, in human subcutaneous adipocytes, LPA (0.1–10 µM did not mimic insulin effects in human adipocytes, i.e. lipolysis inhibition and glucose uptake activation. By contrast, supramicromolar doses of the phospholipid slightly activated lipolysis, and the effect of 100 µM LPA was additive to the β-adrenergic stimulation of lipolysis by isoprenaline. Moreover, LPA did not alter the activity of primary amine oxidase, an enzyme highly expressed in human adipose cells. Our observations indicate that, although rapid and direct, LPA impact on triglyceride storage in mature adipocytes is less pronounced than its ability to stimulate proliferation in preadipocytes.

  5. Regulation of Hemichannels and Gap Junction Channels by Cytokines in Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Pablo J. Sáez

    2014-01-01

    Full Text Available Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs and gap junction channels (GJCs and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs or pannexins (Panxs, which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.

  6. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  7. Tumor-Secreted Autocrine Motility Factor (AMF): Casual Role in a Animal Model of Cachexia

    Science.gov (United States)

    2004-08-01

    cbfal/runx2 in cells of the osteoblastic cancer cell lines. Oncogene 2002; 21:964-973. lineage. Mol Cell Biol 2002; 22:6222-6233. 36. Cornish J, Callon ...Cornish J, Callon KE, Bava U, Coy DH, Mulvey TB, genic cytokines by cell lines and primary cultures of Murray MA, Cooper GJ, Cooper GJ, Reid IR. Systemic...C. J., Hardre, R. & Salmon, L. (2001). Crystal A. M., van Beeuman, J., Opperdoes, F. R. & structure of rabbit phosphoglucose isomerase com- Michels

  8. Adiponectin self-regulates its expression and multimerization in adipose tissue: an autocrine/paracrine mechanism?

    Science.gov (United States)

    Lin, Huan; Li, Zhen

    2012-01-01

    Adiponectin, a 30-kDa peptide hormone discovered in the mid 1990s, is secreted abundantly and exclusively by adipose tissue. Adiponectin exists in three major forms: a low molecular weight (LMW) trimer, a medium molecular weight (MMW) hexamer, and a high molecular weight (HMW) 18-36 oligomer. The HMW oligomer has the most potent insulin-sensitizing activity therefore impaired adiponectin multimerization may lead to impaired glycemic control. Decreased ratio of HMW/total adiponectin has been observed in patients with obesity, type-2 diabetes mellitus, cardiovascular diseases and insulin resistance-related metabolic syndrome. Previous studies have indicated that berberine or aminoimidazole carboxamide ribonucleotide (AICAR)-induced activation of AMP-activated protein kinase (AMPK) suppresses the expression of adiponectin but promotes adiponectin multimerization in adipocytes. Since adiponectin activates AMPK through adiponectin receptors (AdipoRs) in the membranes of adipocytes, we speculate that adiponectin self-regulates its expression and multimerization in adipose tissue. The hypothesis suggests a potential drug target for treating insulin resistance and provides new interpretation of several clinical observations. In addition, we propose a rapid method for one-step detection of the distribution of adiponectin oligomers in approximately 30 min, based on the open sandwich immunoassay and fluorescence resonance energy transfer technology. With the development of this new method, the ratio of HMW/total adiponectin may be applied in clinical diagnosis as a novel biomarker for insulin resistance and metabolic disorders.

  9. Ace inhibitors and cardiovascular regulation : the importance of autocrine and paracrine mechanisms

    NARCIS (Netherlands)

    Wijngaarden, Jan van

    1992-01-01

    As demonstrated in a large number of clinical studies, angiotensin converting enzyme (ACE) inhibitors are of great value for the treatment of cardiovascular disorders. Although the clinical merits of these drugs are now well recognized, their mechanism of action is not yet completely understood. The

  10. CXCR2 signaling regulates KRAS(G12D)-induced autocrine growth of pancreatic cancer

    Science.gov (United States)

    Purohit, Abhilasha; Varney, Michelle; Rachagani, Satyanarayana; Ouellette, Michel M.; Batra, Surinder K.; Singh, Rakesh K.

    2016-01-01

    Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC. PMID:26771140

  11. Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis

    OpenAIRE

    Koči, Juraj; Šimo, Ladislav; Park, Yoonseong

    2014-01-01

    Dopamine (DA) is known to be the most potent activator of tick salivary secretion, which is an essential component of successful tick feeding. We examined the quantitative changes of catecholamines using a method coupling high-pressure liquid chromatography with electrochemical detection (HPLC-ECD). We also investigated the levels of catecholamines conjugated to other molecules utilising appropriate methods to hydrolyse the conjugates. Three different biological samples, salivary glands, syng...

  12. Evidence for paracrine/autocrine regulation of GLP-1-producing cells

    DEFF Research Database (Denmark)

    Kappe, Camilla; Zhang, Qimin; Holst, Jens Juul

    2013-01-01

    Glucagon-like peptide-1 (GLP-1), secreted from gut L cells upon nutrient intake, forms the basis for novel drugs against type 2 diabetes (T2D). Secretion of GLP-1 has been suggested to be impaired in T2D and in conditions associated with hyperlipidemia and insulin resistance. Further, recent stud...

  13. Interferon γ Gene Expression in Sensory Neurons: Evidence for Autocrine Gene Regulation

    OpenAIRE

    1997-01-01

    We explored expression and possible function of interferon-γ (IFN-γ) in cultured fetal (E15) rat dorsal root ganglion neurons combining whole cell patch-clamp electrophysiology with single cell reverse transcriptase polymerase chain reaction and confocal laser immunocytochemistry. Morphologically, we located IFN-γ protein in the cytoplasm of the neurons in culture as well as in situ during peri- and postnatal development. Transcripts for classic IFN-γ and for its receptor were determined in p...

  14. Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms

    OpenAIRE

    1996-01-01

    Several FGF family members are expressed in skeletal muscle; however, the roles of these factors in skeletal muscle development are unclear. We examined the RNA expression, protein levels, and biological activities of the FGF family in the MM14 mouse skeletal muscle cell line. Proliferating skeletal muscle cells express FGF-1, FGF-2, FGF-6, and FGF-7 mRNA. Differentiated myofibers express FGF-5, FGF-7, and reduced levels of FGF-6 mRNA. FGF-3, FGF-4, and FGF-8 were not detectable by RT-PCR in ...

  15. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling

    NARCIS (Netherlands)

    Lim, X.; Tan, S.H.; Koh, W.L.C.; Chau, R.M.W.; Yan, K.S.; Kuo, C.J.; van Amerongen, R.; Klein, A.M.; Nusse, R.

    2013-01-01

    The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed

  16. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling.

    Science.gov (United States)

    Massip-Copiz, María Macarena; Clauzure, Mariángeles; Valdivieso, Ángel Gabriel; Santa-Coloma, Tomás Antonio

    2017-02-15

    Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.

  17. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  18. Autocrine signaling mechanism of vitamin D in the bovine innate immune response

    Science.gov (United States)

    Vitamin D is 25-hydroxylated in the liver to provide the precursor for renal production of the steroid hormone 1,25-dihydroxyvitamin D (1,25(OH)2D3) by 1alpha-hydroxylase. This highly regulated endocrine pathway is key to controlling many aspects of calcium homeostasis. In contrast to the hormone’...

  19. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling

    NARCIS (Netherlands)

    Lim, X.; Tan, S.H.; Koh, W.L.C.; Chau, R.M.W.; Yan, K.S.; Kuo, C.J.; van Amerongen, R.; Klein, A.M.; Nusse, R.

    2013-01-01

    The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed

  20. Effects of dietary eicosapentaenoic acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle.

    Science.gov (United States)

    Bertrand, Chantal; Pignalosa, Angelica; Wanecq, Estelle; Rancoule, Chloé; Batut, Aurélie; Deleruyelle, Simon; Lionetti, Lillà; Valet, Philippe; Castan-Laurell, Isabelle

    2013-01-01

    Various studies have shown that eicosapentaenoic acid (EPA) has beneficial effects on obesity and associated disorders. Apelin, the ligand of APJ receptor also exerts insulin-sensitizing effects especially by improving muscle metabolism. EPA has been shown to increase apelin production in adipose tissue but its effects in muscle have not been addressed. Thus, the effects of EPA supplementation (36 g/kg EPA) in high-fat diet (HFD) (45% fat, 20% protein, 35% carbohydrate) were studied in mice with focus on muscle lipid metabolism and apelin/APJ expression. Compared with HFD mice, HFD+EPA mice had significantly less weight gain, fat mass, lower blood glucose, insulinemia and hepatic steatosis after 10 weeks of diet. In addition, EPA prevented muscle metabolism alterations since intramuscular triglycerides were decreased and β-oxidation increased. In soleus muscles of HFD+EPA mice, apelin and APJ expression were significantly increased compared to HFD mice. However, plasma apelin concentrations in HFD and HFD+EPA mice were similar. EPA-induced apelin expression was confirmed in differentiated C2C12 myocytes but in this model, apelin secretion was also increased in response to EPA treatment. In conclusion, EPA supplementation in HFD prevents obesity and metabolic alterations in mice, especially in skeletal muscle. Since EPA increases apelin/APJ expression in muscle, apelin may act in a paracrine/autocrine manner to contribute to these benefical effects.

  1. The effect of ghrelin on cell proliferation in small intestinal IEC-6 cells.

    Science.gov (United States)

    Yu, Huafang; Xu, Guoxiong; Fan, Xiaoming

    2013-04-01

    Recent evidence demonstrates that ghrelin, a short orexigenic peptide from the stomach, has dual effects on cell proliferation in different cell types via autocrine and/or paracrine mechanisms. The aim of this study is to investigate the proliferative role of ghrelin in intestinal epithelial IEC-6 cells and explore underlying mechanism. RT-PCR was used for the detection of growth hormone secretagogue receptor 1a. Cell proliferation was measured using Cell Counting Kit-8. Protein expression of ERK 1/2 and Akt was examined using western blotting. Inhibitors of mitogen activated protein kinases kinase and phosphatidylinositol 3-kinase were used to evaluate the role of these signalling pathways in ghrelin-induced proliferation of IEC-6 cells. Growth hormone secretagogue receptor 1a mRNA was present in IEC-6 cells. Ghrelin and des-acyl ghrelin increased IEC-6 cell proliferation in a dose- and time-dependent manner. Ghrelin and des-acyl ghrelin activated ERK1/2, but not Akt. U0126, a specific inhibitor of mitogen activated protein kinases kinase, blocked ghrelin- and des-acyl ghrelin-induced ERK1/2 phosphorylation and cell proliferation in IEC-6 cells. Ghrelin and des-acyl ghrelin stimulate the proliferation of IEC-6 cells via the ERK1/2 pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. The effects of war on children in Africa.

    Science.gov (United States)

    Albertyn, R; Bickler, S W; van As, A B; Millar, A J W; Rode, H

    2003-06-01

    There is no doubt that the effects of war extend to the most vulnerable members of society, including children. Although armed conflicts occur throughout the world, the African continent seems to be a particular background for civil and international wars. The aim of this study was to identify causes of conflict in Africa and to evaluate the effect of war on children and their health in order to make practical recommendations to health care workers dealing with children in the setting of war. All articles written in the past 5 years concerning "war" and "children" were identified by means of a literature search and internet review. Contrary to common belief, the causes of conflict are complicated and multi-factorial. The effects of war on childhood are disastrous and include severe negative effects on general paediatric health status. Short-term recommendations for health care workers working with children in war include supply of emergency medical infrastructures, basic health care, rehabilitation and education. Long-term recommendations include orchestrating the relief and support efforts from both national governments and international non-profit organisations and speeding up of economic recovery. The causes of conflict in Africa are complex and unlikely to be resolved soon. The effects of war on children are horrendous in many ways, but can be limited by providing timely and appropriate health care.

  3. Effect Of α2-Adrenergic Agonists And Antagonists On Cytokine Release From Human Lung Macrophages Cultured In Vitro

    Science.gov (United States)

    Piazza, O.; Staiano, R.I.; De Robertis, E.; Conti, G.; Di Crescenzo, V.; Loffredo, S.; Marone, G.; Marinosci, G. Zito; Cataldi, M. M.

    2016-01-01

    The most trusted hypothesis to explain how α2-adrenergic agonists may preserve pulmonary functions in critically ill patients is that they directly act on macrophages by interfering with an autocrine/paracrine adrenergic system that controls cytokine release through locally synthetized noradrenaline and α1- and α2-adrenoreceptors. We tested this hypothesis in primary cultures of resident macrophages from human lung (HLMs). HLMs were isolated by centrifugation on percoll gradients from macroscopically healthy human lung tissue obtained from four different patients at the time of lung resection for cancer. HLMs from these patients showed a significant expression of α2A, α2B and α2C adrenoreceptors both at the mRNA and at the protein level. To evaluate whether α2 adrenoreceptors controlled cytokine release from HMLs, we measured IL-6, IL-8 and TNF-α concentrations in the culture medium in basal conditions and after preincubation with several α2-adrenergic agonists or antagonists. Neither the pretreatment with the α2-adrenergic agonists clonidine, medetomidine or dexdemetomidine or with the α2-adrenergic antagonist yohimbine caused significant changes in the response of any of these cytokines to LPS. These results show that, different from what reported in rodents, clonidine and dexdemetomidine do not directly suppress cytokine release from human pulmonary macrophages. This suggests that alternative mechanisms such as effects on immune cells activation or the modulation of autonomic neurotransmission could be responsible for the beneficial effects of these drugs on lung function in critical patients. PMID:27896229

  4. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells.

    Science.gov (United States)

    Sun, Chaofan; Chen, Lijiao; Shi, Xinlian; Cao, Zhensheng; Hu, Bibo; Yu, Wenbin; Ren, Manman; Hu, Rongdang; Deng, Hui

    2016-09-01

    Mechanical strain plays an important role in bone formation and resorption during orthodontic tooth movement. The mechanism has not been fully studied, and the process becomes complex with increased amounts of periodontal patients seeking orthodontic care. Our aims were to elucidate the combined effects of proinflammatory cytokines and intermittent cyclic strain (ICS) on the osteogenic capacity of human periodontal ligament cells. Cultured human periodontal ligament cells were exposed to proinflammatory cytokines (interleukin-1β 5 ng/mL and tumor necrosis factor-α 10 ng/mL) for 1 and 5 days, and ICS (0.5 Hz, 12% elongation) was applied for 4 h per day. The autocrine of inflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of osteoblast markers runt-related transcription factor 2 and rabbit collagen type I was determined using real-time polymerase chain reaction and Western blot. The osteogenic capacity was also detected by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. We demonstrated that ICS impaired the osteogenic capacity of human periodontal ligament cells when incubated with proinflammatory cytokines, as evidenced by the low expression of ALP staining, low ALP activity, reduced alizarin red staining, and reduced osteoblast markers. These data, for the first time, suggest that ICS has a negative effect on the inductive inhibition of osteogenicity in human PDL cells mediated by proinflammatory cytokines.

  5. Effects of Brazilian green propolis on double-stranded RNA-mediated induction of interferon-inducible gene and inhibition of recruitment of polymorphonuclear cells.

    Science.gov (United States)

    Hayakari, Ryo; Matsumiya, Tomoh; Xing, Fei; Tayone, Janeth C; Dempoya, Junichi; Tatsuta, Tetsuya; Aizawa-Yashiro, Tomomi; Imaizumi, Tadaatsu; Yoshida, Hidemi; Satoh, Kei

    2013-02-01

    Propolis is a bee product with various biological properties, including an antiviral activity when taken orally. However, its mechanisms at the cellular and molecular level are not well understood. We investigated the effect of propolis on antiviral signaling in A549 cells transfected with double-stranded RNA (dsRNA), a model for viral infection. Pretreatment of the cells with propolis inhibited poly I:C (synthetic dsRNA)-induced interferon (IFN)-β expression. Propolis had no effect on the dsRNA-induced expression of RIG-I-like receptors (RLRs), which are known as intracellular viral RNA sensors. As to the effect on antiviral executor genes, propolis enhanced myxovirus resistance 1 (MX1) expression, whereas interferon-inducible gene 6-16 (G1P3) and 2'-5'-oligoadenylate synthetase (OAS) were unaffected. All of these genes belong to the IFN-inducible genes, suggesting that the effect of propolis on antiviral signaling is not necessarily mediated by the autocrine regulation by IFN-β. Propolis pretreatment inhibited dsRNA-induced interleukin-8 (IL8) and CCL5 expression, and consequently lowered polymorphonuclear leukocyte (PMN) chemotactic activity in the cell-conditioned medium. Taken together, these results suggest that propolis may suppress excess inflammatory responses without affecting the innate immunity during viral infection. © 2012 Society of Chemical Industry.

  6. Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise?

    Science.gov (United States)

    Tamura, Yoshiaki; Watanabe, Keiichi; Kantani, Tomomi; Hayashi, Junichi; Ishida, Nobuhiko; Kaneki, Masao

    2011-01-01

    The beneficial effects of endurance exercise include insulin-sensitization and reduction of fat mass. Limited knowledge is available about the mechanisms by which endurance exercise exerts the salutary effects. Myokines, cytokines secreted by skeletal muscle, have been recognized as a potential mediator. Recently, a role of skeletal muscle-derived interleukin-15 (IL-15) in improvement of fat-lean body mass composition and insulin sensitivity has been proposed. Yet, previous studies have reported that endurance training does not increase production or secretion of IL-15 in skeletal muscle. Here, we show that in opposition to previous findings, 30-min treadmill running at 70% of age-predicted maximum heart rate resulted in a significant increase in circulating IL-15 level in untrained healthy young men. These findings suggest that IL-15 might play a role in the systemic anti-obesogenic and insulin-sensitizing effects of endurance exercise, not only as a paracrine and autocrine but also as an endocrine factor.

  7. Promoting effects of the adipokine, apelin, on diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Bao-hai Zhang

    Full Text Available Angiogenesis, increased glomerular permeability, and albuminuria are thought to contribute to the progression of diabetic nephropathy (DN. Apelin receptor (APLNR and the endogenous ligand of APLNR, apelin, induce the sprouting of endothelial cells in an autocrine or paracrine manner, which may be one of the mechanisms of DN. The aim of this study was to investigate the role of apelin in the pathogenesis of DN. Therefore, we observed apelin/APLNR expression in kidneys from patients with type 2 diabetes as well as the correlation between albuminuria and serum apelin in patients with type 2 diabetes. We also measured the proliferating, migrating, and chemotactic effects of apelin on glomerular endothelial cells. To measure the permeability of apelin in glomerular endothelial cells, we used transwells to detect FITC-BSA penetration through monolayered glomerular endothelial cells. The results showed that serum apelin was significantly higher in the patients with type 2 diabetes compared to healthy people (p<0.05, Fig. 1B and that urinary albumin was positively correlated with serum apelin (R = 0.78, p<0.05. Apelin enhanced the migration, proliferation, and chemotaxis of glomerular endothelial cells in a dose-dependent manner (p<0.05. Apelin also promoted the permeability of glomerular endothelial cells (p<0.05 and upregulated the expression of VEGFR2 and Tie2 in glomerular endothelial cells (p<0.05. These results indicated that upregulated apelin in type 2 diabetes, which may be attributed to increased fat mass, promotes angiogenesis in glomeruli to form abnormal vessels and that enhanced apelin increases permeability via upregulating the expression of VEGFR2 and Tie2 in glomerular endothelial cells.

  8. Neuroprotective and immune effects of active forms of vitamin D3 and docosahexaenoic acid in Alzheimer disease patients

    Directory of Open Access Journals (Sweden)

    Milan Fiala

    2011-12-01

    Full Text Available ABSTRACT:Neurodegenerative diseases, in particular Alzheimer disease (AD, afflict an increasing proportion of the older population with aging. Decreased exposure to sunlight and decreased consumption of fish, fruits, and vegetables, are two epidemiological factors that appear to be related to the pandemic of AD. In addition to replacing simple with complex carbohydrates and avoiding saturated fat, two nutritional components, vitamin D (acting through the endogenous hormonal form 1,25 dihydroxyvitamin D, 1,25D and docosahexaenoic acid (DHA (acting through the docosanoid lipidic modulators resolvins and neuroprotectins have high potential for prevention of Alzheimer disease. 1,25D is a neuroprotective, it acts both directly and indirectly in neurons by improving the clearance of amyloid-beta by macrophages/microglia. Resolvins and neuroprotectins inhibit amyloidogenic processing of amyloid-precursor protein, inflammatory cytokines, and apoptosis. It is likely that the increased consumption of vitamin D and fish oil could prevent neurodegeneration in some subjects by maintaining adequate endocrine, paracrine, and/or autocrine production of 1,25D and the DHA-derived lipidic modulators. Before firm recommendations of the dosage can be proposed, however, the in vivo effects of vitamin D3 and DHA supplementation should be investigated by prospective studies.

  9. THE EFFECT OF CD40 SIGNAL ON THE ANGIOGENESIS OF CERVICAL CANCER%CD40信号对宫颈癌血管生成的影响

    Institute of Scientific and Technical Information of China (English)

    倪冬梅; 黄沁; 瞿秋霞; 沈宗姬

    2013-01-01

    Objective To study the effect of CD40 signal on the angiogenesis of cervical cancer. Methods The expression of CD40 in human cervical squamous epithelium cancer cell line (SiHa) and human umbilical vein endothelial cells (HUVEC) were determined by flow cytometry (FCM). Enzyme linked immunosorbent assay (ELISA) was used to detect the secretion for vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) of SiHa and HUVEC. And agonistic anti-human CD40 monoclonal antibody(5C11) was used to active CD40 signal. The proliferation of HUVEC was analyzed by 3-(4,5)-dimethylthna 20(-z-yl)-2, 5-diphernyltetra zolium bromide (MTT) reduction assay after treating with 5C11 and SiHa. Results SiHa and HUVEC cell lines both highly expressed CD40,their expression rates were 91. 3% and 91. 1% respectively. SiHa can autocrine VEGF and IL-6, and 5C11 can significantly increase their secretion. HUVEC can autocrine VEGF and IL-6,but,5C11 had no effect on their secretion. 5C11 had no effect on the proliferation of HUVEC, while SiHa can significantly promote the proliferation of HUVEC and 5C11 combined with SiHa can much more significantly promote the proliferation of HUVEC. Conclusion Human cervical cancer cell can autocrine VEGF and IL-6,and CD40 signal can increase their secretion. CD40 signal may promote the proliferation of vascular endothelial cell by increasing the secretion of VEGF and IL-6 in cervical cancer. The CD40 signal may play an important role in the angiogenesis of cervical cancer.%目的 探讨CD40信号对宫颈癌血管生成的影响.方法 采用流式细胞术检测CD40在宫颈鳞癌细胞株(human cervical squamous epithelium cancer cell line,SiHa)及人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVEC)上的表达;酶联免疫吸附实验(enzyme linked immunosorbent assay,ELISA)检测CD40信号对SiHa及HUVEC分泌血管内皮生长因子(vascular endothelial growth factor,VEGF)及白细胞介素6(interleukin-6,IL-6)

  10. The effects of retinoic acid on immunoglobulin synthesis: Role of interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Ballow, M.; Xiang, Shunan; Wang, Weiping; Brodsky, L. [Children`s Hospital of Buffalo, NY (United States)]|[State Univ. of New York, Buffalo, NY (United States)

    1996-05-01

    Retinoic acid (RA) and its parent compound, retinol (ROH, vitamin A), have been recognized as important immunopotentiating agents. Previous studies from our laboratory have demonstrated that PA can augment formalin-treated Staphylococcus aureus (SAC) stimulated immunoglobulin (Ig) synthesis of cord blood mononuclear cells (CBMC). To determine the mechanism(s) by which RA modulates Ig synthesis, we studied the effects of RA on B cells and cytokine production. The addition of RA (10{sup -5} to 10{sup -10} M) to Epstein-Barr virus (EBV)-transformed B-cell clones derived from either adult or cord blood B cells augmented Ig secretion twofold. In contrast, cell proliferation was inhibited as measured by {sup 3}H-thymidine incorporation. We evaluated two cytokines known to be constitutively produced by EBV cell lines, IL-1 and IL-6. While RA had no effect on IL-1 production, IL-6 synthesis was greatly enhanced (20- to 45-fold), which was also reflected by an increase in steady-state mRNA levels for IL-6 but not TNF-{alpha} or TGF-{beta} on Northern blot analysis. Polyclonal rabbit anti-IL-6 antibodies were used to block the augmenting effects of RA on Ig synthesis of adenoidal B cells. RA-induced augmentation in IgG and IgA synthesis was blocked 58 and 29%, respectively, by anti-IL-6 antibodies. These studies suggest that the enhancing effects of RA on Ig synthesis are mediated, at least in part, by the autocrine or paracrine effects of IL-6 on B-cell differentiation. 37 refs., 5 figs.

  11. Selection, optimization, and compensation strategies : Interactive effects on daily work engagement

    NARCIS (Netherlands)

    Zacher, Hannes; Chan, Felicia; Bakker, Arnold B.; Demerouti, Evangelia

    2015-01-01

    The theory of selective optimization with compensation (SOC) proposes that the "orchestrated" use of three distinct action regulation strategies (selection, optimization, and compensation) leads to positive employee outcomes. Previous research examined overall scores and additive models (i.e., main

  12. Effects of static magnetic fields on growth of Paramecium caudatum.

    Science.gov (United States)

    Elahee, Khouaildi B; Poinapen, Danny

    2006-01-01

    Little is known about the influence of magnetic fields on growth of primitive eukaryotes such as the ciliate Paramecium. The latter are known to exhibit interesting characteristics such as electrotaxis, gravitaxis, and membrane excitability not commonly encountered in higher organisms. This preliminary study reports the effects of static magnetic fields on growth of Paramecium caudatum. The microorganisms were either permanently or 24 h on-and-off exposed to North and South polarity magnetic fields of average field gradient 4.3 T/m, for a period of 96 h. The growth rate and lag phase of all exposed populations were not significantly different from control ones exposed to normal geomagnetic field (P > .05). However, a significant negative shift in t(max) (time taken for maximum growth) of 10.5%-12.2% and a significant decrease (P fields, irrespective of polarity and exposure period reduce Paramecium growth by triggering early senescence of the population. The mechanisms underlying the small changes in population growth are unknown at this level, but various hypotheses have been suggested, including disorganization of swimming patterns resulting from (i) changes in cell membrane electric potential due to high speed movement through a gradient magnetic field and (ii) thermodynamic effect of anisotropic magnetic energies on cell membrane components affecting functioning of calcium channels. Altered swimming movements could in turn affect highly orchestrated processes such as conjugation, essential for survival of the organisms during development of adverse environmental conditions as thought to occur in the closed culture system used in this study.

  13. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).

    Science.gov (United States)

    El Sayed, Salah Mohamed; Mahmoud, Ahmed Alamir; El Sawy, Samer Ahmed; Abdelaal, Esam Abdelrahim; Fouad, Amira Murad; Yousif, Reda Salah; Hashim, Marwa Shaban; Hemdan, Shima Badawy; Kadry, Zainab Mahmoud; Abdelmoaty, Mohamed Ahmed; Gabr, Adel Gomaa; Omran, Faten M; Nabo, Manal Mohamed Helmy; Ahmed, Nagwa Sayed

    2013-11-01

    Cancer cells undergo an increased steady-state ROS condition compared to normal cells. Among the major metabolic differences between cancer cells and normal cells is the dependence of cancer cells on glycolysis as a major source of energy even in the presence of oxygen (Warburg effect). In Warburg effect, glucose is catabolized to lactate that is extruded through monocarboxylate transporters to the microenvironment of cancer cells, while in normal cells, glucose is metabolized into pyruvate that is not extruded. Pyruvate is a potent antioxidant, while lactate has no antioxidant effect. Pyruvate in normal cells may be further metabolized to acetyl CoA and then through Krebs cycle with production of antioxidant intermediates e.g. citrate, malate and oxaloacetate together with the reducing equivalents (NADH.H+). Through activity of mitochondrial transhydrogenase, NADH.H+ replenishes NADPH.H+, coenzyme of glutathione reductase which replenishes reduced form of glutathione (potent antioxidant). This enhances antioxidant capacities of normal cells, while cancer cells exhibiting Warburg effect may be deprived of all that antioxidant capabilities due to loss of extruded lactate (substrate for Krebs cycle). Although intrinsic oxidative stress in cancer cells is high, it may be prevented from reaching progressively increasing levels that are cytotoxic to cancer cells. This may be due to some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+ produced through HMP shunt. Glycolytic phenotype in cancer cells maintains a high non-toxic oxidative stress in cancer cells and may be responsible for their malignant behavior. Through HK II, glycolysis fuels the energetic arm of malignancy, the mitotic arm of malignancy (DNA synthesis through HMP shunt pathway) and the metastatic arm of malignancy (hyaluronan synthesis through uronic acid pathway) in addition to the role of phosphohexose isomerase (autocrine motility factor). All those critical three arms start with the

  14. Inhibitory Effects of Anti-VEGF Antibody on the Growth and Angiogenesis of Estrogen-induced Pituitary Prolactinoma in Fischer 344 Rats: Animal Model of VEGF-targeted Therapy for Human Endocrine Tumors

    Science.gov (United States)

    Miyajima, Katsuhiro; Takekoshi, Susumu; Itoh, Johbu; Kakimoto, Kochi; Miyakoshi, Takashi; Osamura, Robert Yoshiyuki

    2010-01-01

    Estrogen-induced pituitary prolactin-producing tumors (PRLoma) in F344 rats express a high level of vascular endothelial growth factor (VEGF) associated with marked angiogenesis and angiectasis. To investigate whether tumor development in E2-induced PRLoma is inhibited by anti-VEGF monoclonal antibody (G6-31), we evaluated tumor growth and observed the vascular structures. With simultaneous treatment with G6-31 for the latter three weeks of the 13-week period of E2 stimulation (E2+G6-31 group), the following inhibitory effects on the PRLoma were observed in the E2+G6-31 group as compared with the E2-only group. In the E2+G6-31 group, a tendency to reduction in pituitary weight was observed and significant differences were observed as (1) reductions in the Ki-67-positive anterior cells, (2) increases in TUNEL-positive anterior cells, and (3) repair of the microvessel count by CD34-immunohistochemistry. The characteristic “blood lakes” in PRLomas were improved and replaced by repaired microvascular structures on 3D observation using confocal laser scanning microscope. These inhibitory effects due to anti-VEGF antibody might be related to the autocrine/paracrine action of VEGF on the tumor cells, because VEGF and its receptor are co-expressed on the tumor cells. Thus, our results demonstrate that anti-VEGF antibody exerted inhibitory effects on pituitary tumorigenesis in well-established E2 induced PRLomas. PMID:20514290

  15. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  16. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Science.gov (United States)

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  17. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Moez Berrich

    Full Text Available Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs, namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host ECs vs feline (reservoir host ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2 in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human

  18. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats.

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    Full Text Available Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day. Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.

  19. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  20. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    Science.gov (United States)

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  1. Characterization of the pharmaceutical effect of drugs on atherosclerotic lesions in vivo using integrated fluorescence imaging and Raman spectral measurements.

    Science.gov (United States)

    Yang, Yi-Cyun; Chang, Wei-Tien; Huang, Shao-Kang; Liau, Ian

    2014-04-15

    Direct assessment of the vascular lesions of model animals in vivo is important for the development of new antiatherosclerotic drugs. Nevertheless, biochemical analysis of the lipid profile in blood in vitro remains the most common way to evaluate the therapeutic effect of drugs targeting atherosclerosis because of an inherent difficulty to access the vascular wall. Using hypercholesterolemic zebrafish, we present an orchestrated application of Raman spectral measurements and confocal fluorescence imaging to interrogate the pharmacological response of atherosclerotic lesions in situ and in vivo. For demonstration, we investigated two commonly prescribed antihyperlipidemic drugs, ezetimibe and atorvastatin. The treatment of ezetimibe or atorvastatin alone decreased effectively the deposition of lipids in the vascular wall, and a combined dose showed a synergistic effect. Atorvastatin exerted a profound antioxidative effect on vascular fatty lesions. Analysis of individual lesions shows further that these lesions exhibited a heterogeneous response to the treatment of atorvastatin; a significant fraction of, but not all, the lesions became nonoxidized after the intervention. Beyond its efficacies in suppressing both the accumulation and oxidation of vascular lipids, atorvastatin expedited the clearance of vascular lipids. The possession of pleotropic (multiple) therapeutic effects on vascular fatty lesions of hypercholesterolemic zebrafish by atorvastatin is notably consistent with the known pharmaceutical effects of this drug on human beings. These results improve our understanding of the antiatherosclerotic effect of drugs. We envisage that our approach has the potential to become a platform to predict the pharmaceutical effects of new drugs aiming to cure human atherosclerotic diseases.

  2. Emerging approaches for supporting easy, engaged and effective collaborative learning

    Directory of Open Access Journals (Sweden)

    Lanqin Zheng

    2014-01-01

    Full Text Available Collaborative learning is one of the key instructional strategies and is adopted world widely. In the past three to five decades, cooperative learning in a traditional classroom has been popular in the west countries and has been adopted gradually in east countries; collaborative knowledge building through online community attracted much attention in the last 10 years. With the development of social networking and the expansion of Web 2.0/x.0, the query of collaborative learning effectiveness appeared in both classrooms and online environments, which are a concern to educators, researchers and policy makers. Based on the analysis of new generation of students, in the present article, we first analyzed the issues in both F2F and online collaborative learning, and the differences of collaborative learning between the west and the east from the perspective of culture. After that, we proposed three new approaches for future CSCL studies: orchestrating diverse activities with resources, embedding assessment into learner experience, and infusing smart environment with group activities.

  3. Effects of angiotensin Ⅱ receptor antagonist, Losartan on the apoptosis, proliferation and migration of the human pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin Liu; Xing-Peng Wang; Kai Wu; Ru-Ling Zhang

    2005-01-01

    AIM: To investigate the effects of AT1 (Type 1 angiotensin Ⅱ receptor) antagonist (Losartan) on the apoptosis,proliferation and migration of the human pancreaticstellate cells (hPSCs).METHODS: hPSCs were isolated from pancreatic sample of patients with pancreatic carcinoma using radioimmunoassay (RIA) technique to detect the concentration of AngⅡ in culture media and cell homogenate. Immunocytochemistry (ICC) and in situ hybridization (ISH) methods were utilized to test AT1 expression in hPSCs. Effects of Losartan on hPSCs proliferation, apoptosis and migration were investigated using BrdU incorporation, TUNEL, flow cytometry (FCM),and phase-contrast microscope separately when cells treated with Losartan. Immunofluorescence and Western blot were applied to quantify the expression of type Ⅰ collagen in hPSCs.RESULTS: There exists AT1 expression in hPSCs, while no AngⅡ was detected in culture media and cell homogenate. Losartan induces cell apoptosis in a doseand time-dependent manner (apparently at 10-5 mol/L),no pro-proliferative effect was observed in the same condition.Corresponding dosage of Losartan can also alleviate the motion capability and type Ⅰ collagen content of hPSCs compared with AngⅡ treatment and non-treatment control groups.CONCLUSION: These findings suggest that paracrine not autocrine functions of AngⅡ may have effects on hPSCs,which was mediated by AT1 expressed on cells, while Losartan may exert anti-fibrotic effects by inhibiting hPSCs motion and partly by inducing apoptosis.

  4. Low birth weight and early-life iron deficiency in piglets : Post-weaning effects on cognition, development, and motivation

    NARCIS (Netherlands)

    Antonides, A.

    2016-01-01

    Proper cognitive, physical and anatomical development depend on the correct orchestration of developmental processes and the factors influencing them. Complications and disturbances around birth and during early development may negatively affect development permanently. In this thesis, we studied tw

  5. Effects of Panax ginseng on Tumor Necrosis Factor-α-Mediated Inflammation: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Davy CW Lee

    2011-03-01

    Full Text Available Panax ginseng is one of the most commonly used Chinese medicines in China, Asia and Western countries. The beneficial effects of ginseng have been attributed to the biological activities of its constituents, the ginsenosides. In this review, we summarize recent publications on the anti-inflammatory effects of ginseng extracts and ginsenosides on cellular responses triggered by different inducers including endotoxin, tumor necrosis factor-alpha (TNF-α, interferon-gamma and other stimuli. Proinflammatory cytokines, chemokines, adhesion molecules and mediators of inflammation including inducible nitric oxide synthase, cyclooxygenase-2 and nitric oxide orchestrate the inflammatory response. Ginseng extracts and ginsenosides including Rb1, Rd, Rg1, Rg3, Rh1, Rh2, Rh3 and Rp1 have been reported to have anti-inflammatory properties in different studies related to inflammation. Ginsenosides inhibit different inducers-activated signaling protein kinases and transcription factor nuclear factor-kappaB leading to decreases in the production of cytokines and mediators of inflammation. The therapeutic potential of ginseng on TNF-α-mediated inflammatory diseases is also discussed. Taken together, this summary provides evidences for the anti-inflammatory effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their effects on inflammatory diseases.

  6. The Warburg effect version 2.0

    Science.gov (United States)

    Menendez, Javier A.; Joven, Jorge; Cufí, Sílvia; Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Martin-Castillo, Begoña; López-Bonet, Eugeni; Alarcón, Tomás; Vazquez-Martin, Alejandro

    2013-01-01

    When fighting cancer, knowledge on metabolism has always been important. Today, it matters more than ever. The restricted cataloging of cancer genomes is quite unlikely to achieve the task of curing cancer, unless it is integrated into metabolic networks that respond to and influence the constantly evolving cancer stem cell (CSC) cellular states. Once the genomic era of carcinogenesis had pushed the 1920s Otto Warburg’s metabolic cancer hypothesis into obscurity for decades, the most recent studies begin to support a new developing paradigm, in which the molecular logic behind the conversion of non-CSCs into CSCs can be better understood in terms of the “metabolic facilitators” and “metabolic impediments” that operate as proximate openings and roadblocks, respectively, for the transcriptional events and signal transduction programs that ultimately orchestrate the intrinsic and/or microenvironmental paths to CSC cellular states. Here we propose that a profound understanding of how human carcinomas install a proper “Warburg effect version 2.0” allowing them to “run” the CSCs’ “software” programs should guide a new era of metabolo-genomic-personalized cancer medicine. By viewing metabolic reprogramming of CSCs as an essential characteristic that allows dynamic, multidimensional and evolving cancer populations to compete successfully for their expansion on the organism, we now argue that CSCs bioenergetics might be another cancer hallmark. A definitive understanding of metabolic reprogramming in CSCs may complement or to some extent replace, the 30-y-old paradigm of targeting oncogenes to treat human carcinomas, because it can be possible to metabolically create non-permissive or “hostile” metabotypes to prevent the occurrence of CSC cellular states with tumor- and metastasis-initiating capacity. PMID:23549172

  7. Dual Effect of Serum Amyloid A on the Invasiveness of Glioma Cells

    Science.gov (United States)

    Knebel, Franciele Hinterholz; Albuquerque, Renata Chaves; Massaro, Renato Ramos; Maria-Engler, Silvya Stuchi; Campa, Ana

    2013-01-01

    Evidence sustains a role for the acute-phase protein serum amyloid A (SAA) in carcinogenesis and metastasis, and the protein has been suggested as a marker for tumor progression. Nevertheless, the demonstration of a direct activity of SAA on tumor cells is still incipient. We have investigated the effect of human recombinant SAA (rSAA) on two human glioma cell lines, A172 and T98G. rSAA stimulated the [3H]-thymidine incorporation of both lines, but had dual effects on migration and invasiveness which varied according to the cell line. In T98G, the rSAA increased migration and invasion behaviors whereas in A172 it decreased these behaviors. These findings agree with the effect triggered by rSAA on matrix metalloproteinases (MMPs) activities measured in a gelatinolytic assay. rSAA inhibited activity of both MMPs in A172 cells while increasing them in T98G cells. rSAA also affected the production of compounds present in the tumor microenvironment that orchestrate tumor progression, such as IL-8, the production of reactive oxygen species (ROS) and nitric oxide (NO). We also observed that both lines expressed all three of the isoforms of SAA: SAA1, SAA2, and SAA4. These data suggest that some tumor cells are responsive to SAA and, in these cases, SAA may have a role in cancer progression that varies according to the cell type. PMID:23533307

  8. Dual Effect of Serum Amyloid A on the Invasiveness of Glioma Cells

    Directory of Open Access Journals (Sweden)

    Franciele Hinterholz Knebel

    2013-01-01

    Full Text Available Evidence sustains a role for the acute-phase protein serum amyloid A (SAA in carcinogenesis and metastasis, and the protein has been suggested as a marker for tumor progression. Nevertheless, the demonstration of a direct activity of SAA on tumor cells is still incipient. We have investigated the effect of human recombinant SAA (rSAA on two human glioma cell lines, A172 and T98G. rSAA stimulated the [3H]-thymidine incorporation of both lines, but had dual effects on migration and invasiveness which varied according to the cell line. In T98G, the rSAA increased migration and invasion behaviors whereas in A172 it decreased these behaviors. These findings agree with the effect triggered by rSAA on matrix metalloproteinases (MMPs activities measured in a gelatinolytic assay. rSAA inhibited activity of both MMPs in A172 cells while increasing them in T98G cells. rSAA also affected the production of compounds present in the tumor microenvironment that orchestrate tumor progression, such as IL-8, the production of reactive oxygen species (ROS and nitric oxide (NO. We also observed that both lines expressed all three of the isoforms of SAA: SAA1, SAA2, and SAA4. These data suggest that some tumor cells are responsive to SAA and, in these cases, SAA may have a role in cancer progression that varies according to the cell type.

  9. Regulation of insulin-stimulated glucose uptake in rat white adipose tissue upon chronic central leptin infusion: effects on adiposity.

    Science.gov (United States)

    Bonzón-Kulichenko, Elena; Fernández-Agulló, Teresa; Moltó, Eduardo; Serrano, Rosario; Fernández, Alejandro; Ros, Manuel; Carrascosa, José M; Arribas, Carmen; Martínez, Carmen; Andrés, Antonio; Gallardo, Nilda

    2011-04-01

    Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [(3)H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.

  10. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone.

    Science.gov (United States)

    Huang, Y; Brodda-Jansen, G; Lundeberg, T; Yu, L C

    2000-08-04

    The present study investigated the role of calcitonin gene-related peptide (CGRP) on nociception in nucleus raphe magnus (NRM) and the interaction between CGRP and opioid peptides in NRM of rats. CGRP-like immunoreactivity was found at a concentration of 6.0+/-0. 77 pmol/g in NRM tissue of ten samples of rats, suggesting that it may contribute to physiological responses orchestrated by the NRM. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation increased significantly after intra-NRM administration of 0.5 or 1 nmol of CGRP in rats, but not 0.25 nmol. The anti-nociceptive effect induced by CGRP was antagonized by following intra-NRM injection of 1 nmol of the CGRP receptor antagonist CGRP8-37. Furthermore, the CGRP-induced anti-nociceptive effect was attenuated by following intra-NRM administration of 6 nmol of naloxone. The results indicate that CGRP and its receptors play an important role in anti-nociception, and there is a possible interaction between CGRP and opioid peptides in NRM of rats.

  11. Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients

    Directory of Open Access Journals (Sweden)

    Smeland Eivind

    2011-07-01

    Full Text Available Abstract Background Non-gastrointestinal stromal tumor soft-tissue sarcomas (non-GIST STSs constitute a heterogeneous group of tumors with poor prognosis. Fibroblast growth factor 2 (FGF2 and fibroblast growth factor receptor-1 (FGFR-1, in close interplay with platelet-derived growth factor-B (PDGF-B and vascular endothelial growth factor receptor-3 (VEGFR-3, are strongly involved in angiogenesis. This study investigates the prognostic impact of FGF2 and FGFR-1 and explores the impact of their co-expression with PDGF-B and VEGFR-3 in widely resected tumors from non-GIST STS patients. Methods Tumor samples from 108 non-GIST STS patients were obtained and tissue microarrays were constructed for each specimen. Immunohistochemistry was used to evaluate the expressions of FGF-2, FGFR-1, PDGF-B and VEGFR-3. Results In the multivariate analysis, high expression of FGF2 (P = 0.024, HR = 2.2, 95% CI 1.1-4.4 and the co-expressions of FGF2 & PDGF-B (overall; P = 0.007, intermediate; P = 0.013, HR = 3.6, 95% CI = 1.3-9.7, high; P = 0.002, HR = 6.0, 95% CI = 2.0-18.1 and FGF2 & VEGFR-3 (overall; P = 0.050, intermediate; P = 0.058, HR = 2.0, 95% CI = 0.98-4.1, high; P = 0.028, HR = 2.6, 95% CI = 1.1-6.0 were significant independent prognostic indicators of poor disease-specific survival. Conclusion FGF2, alone or in co-expression with PDGF-B and VEGFR-3, is a significant independent negative prognosticator in widely resected non-GIST STS patients.

  12. Gaining insight into business networks: a simulation based support environment to improve process orchestration

    NARCIS (Netherlands)

    Tewoldeberhan, T.W.

    2005-01-01

    In today's world, organizations are becoming increasingly interested in using business networks as a means to adapt to the ever-changing environment to increase their performance level. As a result, the focus of efforts to improve the performance of organizations has shifted from organizational

  13. How Amelogenin Orchestrates the Organization of Hierarchical Elongated Microstructures of Apatite

    Science.gov (United States)

    Yang, Xiudong; Wang, Lijun; Qin, Yueling; Sun, Zhi; Henneman, Zachary J.; Moradian-Oldak, Janet; Nancollas, George H.

    2010-01-01

    Amelogenin (Amel) accelerates the nucleation of hydroxyapatite (HAP) in supersaturated solutions of calcium phosphate (Ca-P), shortening the induction time (delay period), under near-physiological conditions of pH, temperature, and ionic strength. Hierarchically organized Amel and amorphous calcium phosphate (ACP) nanorod microstructures are formed involving co-assembly of Amel-ACP particles at low supersaturations and low protein concentrations in a slow, well-controlled, constant composition (CC) crystallization system. At the earliest nucleation stages, the CC method allows the capture of prenucleation clusters and intermediate nanoclusers, spherical nanoparticles, and nanochains prior to enamel–like nanorod microstructure formations at later maturation stages. Amel-ACP nanoscaled building blocks are formed spontaneously by synergistic interactions between flexible Amel protein molecules and Ca-P prenucleation clusters, and these spherical nanoparticles evolve by orientated aggregation to form nanochains. Our results suggest that, in vivo, Amel may determine the structure of enamel by controlling prenucleation cluster aggregation at the earliest stages by forming stable Amel-ACP microstructures prior to subsequent crystal growth and mineral maturation. PMID:20104924

  14. Metaphor as an Instrument for Orchestrating Change in Counselor Training and the Counseling Process

    Science.gov (United States)

    Robert, Tracey; Kelly, Virginia A.

    2010-01-01

    The authors explore the use of metaphors as a training tool for beginning counselors for enhancing client case conceptualization, counselor-client relationships, and intervention strategies. The history of the use of metaphors in counseling, several definitions, and a case study are presented. The authors discuss intentional use of metaphors with…

  15. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    Science.gov (United States)

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability. © 2015 The Authors.

  16. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation.

    Science.gov (United States)

    Sethi, Jaswinder K; Vidal-Puig, Antonio J

    2007-06-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanisms emerge that provide a molecular understanding for obesity-associated insulin resistance. These are a) the dysregulation of adipose tissue expandability and b) the abnormal production of adipokines. This knowledge has the potential to pave the way for novel therapeutic concepts and strategies for managing and/or correcting complications associated with obesity and the metabolic syndrome.

  17. Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation

    OpenAIRE

    Sethi, Jaswinder K.; Vidal-Puig, Antonio J

    2007-01-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanis...

  18. The interplay between environmental factors and DNA methylation in psychotic disorders : Environmental orchestration of the epigenome

    NARCIS (Netherlands)

    Houtepen, LC

    2016-01-01

    Introduction: Environmental exposures during early- life increase the risk of developing a psychotic disorder, but it remains unclear how early life events can have such persistent later life consequences. DNA methylation is the addition of a methyl group to a DNA base and is part of a group of epig

  19. A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs.

    Directory of Open Access Journals (Sweden)

    Allison C Billi

    Full Text Available Piwi-interacting RNAs (piRNAs fulfill a critical, conserved role in defending the genome against foreign genetic elements. In many organisms, piRNAs appear to be derived from processing of a long, polycistronic RNA precursor. Here, we establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 21 nucleotide (nt piRNA sequence and an ∼50 nt upstream motif with limited genomic context for expression. Combining computational analyses with a novel, in vivo transgenic system, we demonstrate that this upstream motif is necessary for independent expression of a germline-enriched, Piwi-dependent piRNA. We further show that a single nucleotide position within this motif directs differential germline enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in male or female germline, and comparison of the genes they target suggests that these two populations have evolved independently. Together, our results indicate that C. elegans piRNA upstream motifs act as independent promoters to specify which sequences are expressed as piRNAs, how abundantly they are expressed, and in what germline. As the genome encodes well over 15,000 unique piRNA sequences, our study reveals that the number of transcriptional units encoding piRNAs rivals the number of mRNA coding genes in the C. elegans genome.

  20. Family business: multiple members of major phytohormone classes orchestrate plant stress responses.

    Science.gov (United States)

    Erb, Matthias; Glauser, Gaetan

    2010-09-10

    Low-molecular-weight compounds such as jasmonic, abscisic and salicylic acids are commonly thought to be regulators of plant stress responses. However, it is becoming clear that these molecules, often referred to as phytohormones, are only a part of bigger groups of compounds with biological activity. We propose that the concept of "hormone families" may help to better understand plant physiological responses by taking into account not only the alleged main regulators, but also their precursors, conjugates and catabolites. Novel approaches to profile potentially active compounds in plants are discussed.